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Summary: 

Maintenance of equipment at the required condition to ensure a reliable performance, as 

well as improvement of safety, are major concerns in the field of asset integrity 

management. Condition monitoring is a procedure that allows one to identify early signs 

of failures and implement efficient maintenance plans to eliminate the uncertainties in 

machine operation. In addition, vibration monitoring is known as a detection tool for early 

detection of degradation from the expected performance. It is often superior to other 

condition monitoring techniques, due to its high sensitivity and simplicity of 

implementation. Vibration analysis provides substantial information regarding the 

operating condition of components and aids to remedy problems. Therefore, it can be used 

to detect a wide range of fault conditions in rotating machinery, such as imbalance, 

misalignment of internal shafts, looseness, cracked shaft, gear failures, rolling element 

bearing damages, motor faults and impeller issues. 

The primary intention of the research reported in this dissertation is to investigate the 

applicability of a neural network methodology for the detection and diagnosis of 

mechanical defects of impellers in centrifugal pumps. The study focuses on extracting 
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appropriate features from vibration signals associated with pump impellers and the 

performance of artificial neural networks (ANNs) using these features. The second 

intention is to enhance maintenance decisions regarding the actual impeller condition. 

This leads to a transition from time based preventive maintenance to condition based 

maintenance, and also improving the safety and reliability of pumping systems, as well as 

reducing unexpected and catastrophic failures. Hence, vibration analysis techniques are 

used as a principal tool to characterise the impeller conditions under flow variation, with 

the requirements of data collection, data processing, transformation and selection of 

essential features corresponding to the running condition.  

This dissertation presents a study of current vibration analysis techniques to extract the 

required features, namely time based features, frequency based features and wavelet based 

features. An experimental setup is developed to measure the impeller vibration. The 

experiment is performed using seven impeller fault conditions such as crack and 

imbalance under fluctuating flow conditions to simulate non-stationary conditions in the 

system. Also, the evolution of features over varying flow rates are evaluated in order to 

identify features that contain fundamental information corresponding the fault 

characteristics. Moreover, the collected features form non-dimensional training data sets 

are used to train ANNs. Comparisons of different training algorithms, network hidden 

nodes and effectiveness of different transfer functions are performed to select the most 

appropriate parameters of networks.  

Validation of the results prove that the accuracy of ANN prediction improves considerably 

by using decomposed vibration signals and energy based features. Comparison of the 

network accuracy based on wavelet packet transform (WPT) features with time analysis 

and frequency analysis based features, indicate that WPT-ANN lead to lower mean square 

errors and higher correlation coefficients, as well as shorter training times. The WPT-

ANN model can save computational time and provides better diagnostic information, 

which can be effectively used for classification of impeller defects under non-stationary 

conditions. 
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1. Introduction 

1.1. Background and Motivation 

Asset integrity management (AIM) aspires to ensure the highest possible availability, 

maintainability and reliability in operating machines. AIM can be accomplished through 

the contribution of maintenance and operational plans based on reliability strategies. It 

encompasses effective maintenance to obtain high reliability, reduction of both 

maintenance cost and failure probability, as well as reducing the consequences of risk to 

people and the environment as much as possible. It also helps to minimise machine life 

cycle costs by utilizing effective maintenance strategies such as reliability centred 

maintenance (RCM), total productive maintenance (TPM) and condition based 

maintenance (CBM). These are also recognized as the approaches that minimize 

downtime and ensure the machine longevity (SGS, 2015). 

TPM eliminates the factors which may cause performance drop. The aim is to achieve the 

highest productivity with the lowest maintenance costs. It separates the maintenance 

activities into three main levels. Level one needs to be done by operators and technicians, 

which lets them feel responsible for their role in production and maintenance activities. 

Level two needs to be carried out by maintenance staff and the third level by the 

manufacturer. In addition, RCM is an optimization method that specifies individual 

maintenance strategies for each piece of component in order to operate as it was designed 

for (Deepak Prabhakar & Jagathy Raj, 2014). On the other hand, CBM is a maintenance 

strategy that uses the actual condition of machines to decide if maintenance is necessary.  

Rotating machinery such as pumps, fans, compressors, engines, motors, gearboxes and 

bearings are key equipment that are extensively used in industrial systems such as fluid 

power systems. As these systems are becoming more complex in design as well as 

operation, higher reliability, safety and production capabilities are required. Pumps, valves 

and actuators are the main components in fluid power systems with application in farming, 

forestry, food, agriculture, power plants and automotive industries. The required reliability 

depends on the role of these applications, where critical equipment which are vital to the 

plant process, require the highest reliability and availability. In addition, according to the 

U.S. electric power research energy institute 22 % of the electricity consumption of 

industrial motors may be attributed to pumps. Electric motors are responsible for 69 % of 

the total electricity consumption in industry, thus pumps are responsible for 15 % of the 

total electricity consumption in both European and American industries (Ahonen, 2011).  
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Common defects of the pump components like impeller and bearings derived from 

imbalance, misalignment and looseness issues, may cause undesired deviation from the 

expected performance. Therefore, detecting the presence of defects at the early stage of 

development can help to maintain pumps at the highest performance, and lead to a notable 

saving in energy consumption. 

1.2. Fault Detection 

Fault detection (FD) also known as “diagnosis and prognosis procedures”, involves 

detection of faults as well as making decisions on how to deal with them. Abnormal 

conditions affect the demanded performance and desired reliability, which lead to lower 

efficiencies and an increase in the total operational cost. Also, failure of critical machine 

components in a system could cause catastrophic or unacceptable damage. Hence, FD can 

significantly reduce the maintenance costs and unscheduled shutdowns by provision of 

preventive maintenance, optimal replacement decisions and scheduled shutdowns. 

FD methods are applied to several industrial applications to detect various types of faults. 

This allows maintenance teams to order parts in advance, schedule manpower or plan 

other repairs during the downtime, and perform an overall boost in effective performance 

during the life cycle. Condition monitoring (CM) is therefore considered as a powerful 

tool to extract the required data for the maintenance strategies and assists in fault detection 

and maintenance plans. In addition, vibration signals are widely used in condition 

monitoring of rotating machinery due to their high sensitivity in detecting defects. 

Subsequently, interpretation of extracted data becomes an important issue. This stage can 

be implemented by experienced personnel, but usually this method may not be adequate 

enough to indicate satisfactory results due to its difficulty and dependency on experienced 

engineers. Thus, the automated fault diagnosis can be performed by intelligent fault 

diagnosis and prognosis systems. Intelligent systems utilize machine learning algorithms 

such as artificial neural networks attempt to combine CM data to predict the propagation 

of faults. 

Based on the preceding discussion, this dissertation focuses on vibration based condition 

monitoring of impellers in centrifugal pumps. Performance of the relevant condition 

monitoring techniques are evaluated for their ability to train ANNs and distinguish failures 

at an early stage under fluctuating operating conditions. 
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1.3. Literature  

1.3.1. Introduction  

This section is organized as follows. Section 1.3.2 looks at vibration analysis aspects in 

condition monitoring of rotating machinery, to explore the role of vibration analysis in 

fault diagnosis in pumping systems. Section 1.3.3 reviews pumping systems and the 

relevant common potential failure modes. A short discussion about aspects of condition 

monitoring in pumping systems is provided. In addition, significant frequency 

characteristics of the vibration in rotary components, such as impellers and bearings, are 

studied. Section 1.3.4 provides a study about signal measurement and signal processing. 

Common methods of signal analysis are explored in three main domains, namely time, 

frequency and time-frequency respectively. Also, a list of prominent parameters in each 

analysis method is presented. Section 1.3.5 gives a background about intelligent systems 

and their superiority as failure prognostic tools. A brief study of machine learning and the 

common learning algorithms is prepared. In this section, neural networks as well as recent 

studies in this field are explored. 

1.3.2. Condition Monitoring and Fault Diagnosis 

Condition monitoring  is a method in identification of the health status of assets while in 

operation. During this process any considerable changes to health status that could lead to 

a failure will be identified.  

CM methods can be classified in two classes, condition checking (direct-methods) and 

trend monitoring (indirect-methods) (Jardine et al., 2005)(Neale & Woodley, 1978). 

Direct methods measure the performance of equipment at one time point while in 

operation. This method is adequate to check condition of several similar items of 

equipment that are in operation in order to compare the measured parameters. 

Measurement of volumetric loss is an example of performing direct methods. On the other 

hand, indirect methods such as vibration, measure the condition parameters during the 

operational time, and evaluate the data to identify any changes regard to health condition.  

In addition, maintenance strategies can be effectively performed based on the information 

obtained from condition monitoring during machine life cycle. A normal bathtub curve 

presents machine failure rate   (number of failures per unit of time) over the life cycle 

as shown in figure1.1. 
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Figure 1.1. Bathtub curve and product failure behaviour (Bray & Stanley, 1997) 

As shown in the figure 1.1, a failure rate curve consists of three main regions. The first 

“burn-in” region indicates early failures that are related to manufacturing defects. The 

constant failure and final failure regions are associated with time dependent operations of 

equipment in industry. As a typical failure rate is expected during the equipment life cycle, 

CM can determine if the equipment is running as expected by revealing the reliability level

)(tR  which is a time )(t dependent function.  

tetR )(                                                               (1.1) 

Girdhar introduces vibration monitoring as the most effective technique to identify the 

presence of potential failures in rotating machinery among other monitoring tools 

(Girdhar, 2004). A potential failure is a detectable condition that shows the occurrence of 

failure. Therefore, the stages of failure can be illustrated as a P-F curve (figure 1.2) which 

is an essential and cost saving tool for a RCM plan.  
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Figure 1.2. The P-V curve (Potential to functional failure (Moubray, 1992)) 

The intention of a P-F curve is to present how a machine fails and how early detection 

provides time before final functional failure occurs. Failures begin to occur as the machine 

operates, but unfortunately these signs are initially not detectable. Thereby, failure signs 

become detectable by growing defect sizes at a certain time using monitoring methods. 

Figure 1.2 illustrates how machine performance drops over a period of time, where the 

vertical axis denotes machine condition and the horizontal axis represents time. 

The main concern on using the P-V curve is to identify the interval between a potential 

failure point and functional failure to be able to schedule maintenance before the total 

system fails completely. Figure 1.3 shows how failure signs can be detected using different 

CM tools, and the superiority of vibration analysis in comparison to other methods.  

 

Figure 1.3. Monitoring tools based on P-F curve (Moubray, 1992) 

A major advantage of vibration analysis is the capability to identify the existent of defects 

before they become too serious and cause unexpected breakdowns (Girdhar, 2004). Also 

vibration as a monitoring tool does not require any modification to the machine. Any 

machine running in good condition has a stable level of noise and vibration, which 

spectrum will change if any changes appear to machine condition (Heyns, 2008). Nandi 
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explained the advantages for this method regarding the sensors as non-destructive 

instruments. These sensors can provide continuous and full time monitoring capabilities, 

and are known as inexpensive monitoring instruments (Nandi et al., 2013). 

Despite the advantages there are a few disadvantages associated with vibration analysis. 

Specifically on pumping systems that the recorded vibration signals are dependent on 

material and pump operating conditions. Also various types of vibration sensors with 

different characteristics exist and expertise is required to select the appropriate sensors 

and perform the analysis (Nandi et al., 2013). 

1.3.3. Pumping Systems and Common Failure Modes 

Pumps are devices that produce mechanical actions in order to move fluids or slurries. 

Mechanical pumps are presently applied in a comprehensive range of applications. There 

are different types of pumps that can operate in a variety of fields such as domestic or 

industrial applications with critical roles in operations. Failure occurrence may not only 

damage the system, but also can cause catastrophic failure in plants or affect the plant 

availability. In addition, defects may cause shock waves to the pump and lead to a 

reduction in the life cycle of all mechanical components. 

Vibration Sources in Centrifugal Pumps 

Vibration signals are often used to determine the condition and detect the mechanical 

faults in pumping systems. Vibration signatures include information related to amplitude, 

frequency and direction that provide crucial leads to diagnose the machine condition. It 

contains frequencies such as pumping frequencies related to the flow and recirculation, 

rotational speed, electrical excitation components and some mechanical failures like 

imbalance, misalignment, looseness, bearing defects, piping problems and resonance 

(Graney & Group, 2011). 

A basic level of vibration in centrifugal pumps is expected with regard to the dynamic 

forces associated with mechanical and hydraulic sources. Potential failure and unusual 

running conditions could however cause higher levels of vibration and noise. All pumping 

systems vibrate due to excitation sources such as unbalanced rotors, turbulent flow, 

cavitation and wear of mechanical components and internal damages. Moreover, the 

magnitude of vibration increases rapidly if the frequency of vibration get close to the pump 

component resonance frequencies (Birajdar et al., 2009). Therefore, high levels of 

vibration indicates that there might be enough energy to lead to failure of component 

function. CTC Inc. mentions the common sources of vibration in centrifugal pumps  
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namely vane pass, flow recirculation, cavitation, unbalance, misalignment and bearing 

failures (Connection Technology Center Inc, 2012). Albraik et al. investigated the 

relations between pump performance characteristics such as head, flow rate and energy 

consumption, for the purpose of CM in pumping systems and the evaluation of 

performance. The results demonstrate that any defects on impeller can be obtained due to 

the effects on performance curve (Albraik et al., 2012). 

Birajdar et al. have studied the sources of vibration in centrifugal pumps. This paper 

indicates three major sources that increase the vibration level in centrifugal pumps, namely 

peripheral (external), mechanical and hydraulic causes (Birajdar et al., 2009). 

The peripheral causes are due to the external sources such as nearby machines, while the 

mechanical causes of vibrations include vibrating of the components due to the pressure 

variation in the liquid or air (or other pumping material) such as (Taneja, 2013): 

 Mechanical imbalance of rotating components due to inexpert balancing, careless 

assembly or operational influence such as cavitation, erosion, corrosion, jammed 

parts, etc. 

 Coupling excitation, especially when pump and motor are not aligned.  

 Excitation from motor or gearing. 

 Bent shaft 

 Strain of the pipes  

 Increase of the temperature in components 

 Components in physical contacts 

 Worn components 

 Loose components  

 Defected components 

 Pump critical speed  
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On the other hand, a considerable amount of vibration in pumping systems is related to 

hydraulic excitations, which are generated from the flow interaction with the pump 

internal components. Taneja has listed the common hydraulic causes of vibrations as: 

“operating pump at other than best efficiency point (BEP), vaporization of the product, 

impeller vane running too close to the pump cutwater, internal recirculation, air in the 

system, turbulence in the system (non-laminar flow) and water hammer” (Taneja, 2013). 

Also, Birajdar et al. introduced hydraulic phenomenon in two groups, transient condition 

and non-stationary of flow, as described below (Birajdar et al., 2009): 

Water hammer is an example of a transient condition that can be produced by opening and 

closing of valves to stop and start the pump. It causes sudden surges in pressure and can 

also cause impacts on the pump. The high levels of energy is then dissipated as vibration 

and noise. In addition, non-stationary flow can be caused by the secondary flow in the 

impeller due to rotation, number of blades, blade thickness, turbulence effects, pressure 

pulsation and cavitation. The number of blades and their thicknesses may lead to 

asymmetric flow with notches, and increase the vibration level.  

Pressure pulsations are created by the interaction between fluctuating flow that leaves the 

impeller and impeller blades, at the blade passing frequency (BPF). The BPF is the number 

of blades N  times the rpm (rotation speed) of impeller as presented in the equation below. 

60

rpmN
BPF


                                                                   (1.2) 

Turbulence causes fluctuation in the dynamic pressure of the flow through the system and 

impacts the impeller by producing pulses. This phenomenon can generate vibration in 

rotating shafts. In addition, the existence of any restriction could cause turbulence and 

lead to vortices in the system. This generates vibration in a high frequency range that can 

excite resonant frequencies of other components. The vortex frequency is dependent on 

the flow velocity and the geometry of the restriction area. The frequency of turbulence in 

the system can be calculated using the equation below. 

D

VS
f s                                                                         (1.3) 

where f  is the vortex frequency (Hz), D  is the dimension of the restriction area and 
sS

is the Strouhal number which describes oscillating flow mechanisms. The Strouhal 

number is a dimensionless parameter that varies between 0.2 and 0.5 (Girdhar, 2004).  
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Cavitation is a phenomenon that appears as high frequency and high energy components 

in vibration that can also be superimposed on to the BPF harmonics. Cavitation occurs 

when the fluid pressure drops below the vapour pressure. Since, gasses dissolve in liquid 

due to the inlet pressure of pumps, these gasses will escape from the liquid and appear as 

bubbles floating by reducing the inlet pressure. If the pressure drop reaches the vapour 

pressure of the liquid, then vapour bubbles will appear. As vapour bubbles travel through 

the pump into areas of increasing pressure, they collapse and release energy. The produced 

energy can cause damage to the internal components and affects the pump performance. 

Each explosion of bubbles causes an impact that generates high frequency vibration.  

1.3.4. Vibration Analysis Techniques  

Mechanical vibrations are most often measured by accelerometers, but velocity and 

displacement sensors are also available (Birajdar et al., 2009). Generally three quantities 

are used to describe vibration, namely displacement, velocity and acceleration. These 

quantities must capture the levels of vibration with respect to time, over a wide range of 

frequencies (Girdhar, 2004). Therefore, it is important to know which quantity is needed 

to be used to monitor the condition. Displacement and velocity can be converted by 

integrating the acceleration signal. Obtaining acceleration from the displacement signal 

through differentiation is generally risky because of the sensitivity of the differentiation 

process to noise in the signals (Heyns, 2008). Girdhar suggested a relationship between 

the use of these quantities, based on the vibration amplitude. He introduced the 

displacement measurement as a useful measurement unit for motions below 10 Hz which 

produces very little vibration in terms of acceleration and velocity, but relatively large 

vibrations in terms of displacement. Furthermore, for the high frequency range (over 1000 

Hz) it is suggested that the acceleration yield more significant values than velocity or 

displacement, while velocity is a good indicator for the frequency range of 10 Hz to 1000 

Hz (Girdhar, 2004).  

On the other hand, it is also essential to choose a suitable analysis technique when using 

vibration as a CM tool. Several techniques are available and are explored in more details 

as follows. 

1.3.4.1. Time Domain Analysis 

This technique is known as a useful diagnosis process. It is a traditional way to extract 

significant information of signal behaviour over time. However signal evaluation by 

measuring the changes in vibration amplitude over time in raw signals, is complicated and 
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often does not reveal very sensitive information relevant to the actual condition. Hence, 

statistical methods have been in widespread use in time domain signals which provide 

vibration characteristics of the data (Sakthivel et al., 2010). Common statistical parameters 

are root mean square (RMS), impulse factor, shape factor, skewness, standard deviation, 

kurtosis and mean value. 

RMS of a time history is a measure of the overall energy in vibration which is often used 

as a signal parameter for prognostic purposes and to trend data (Davies, 2015). The RMS 

value is known as an effective feature and an indication to identify the rotating machine 

condition. The RMS value including the energy of all elements, does however not 

necessarily help to identify defects in early stages (Heyns, 2008). Jantunen has mentioned 

series of tests that RMS value is evaluated through the performance of few other statistical 

parameters. The evaluation proved that RMS value may not be the best but it is one of the 

significant functioning parameters (Jantunen, 2002). 

Mean, variance and skewness are the first three statistical moments of probability density 

distribution. Variance is a measure of signal points and shows how points are spread out. 

Also, the square root of variance is called standard deviation which is the amount of 

effective energy of the vibration (Sakthivel et al., 2010). The skewness value measures 

the level of asymmetry of a distribution, which the value of skewness for a normal 

distribution with symmetric data is zero. 

The fourth statistical moment is known as kurtosis and is widely utilized in condition 

monitoring of rotating components. It is a dimensionless value that indicates the impulsive 

shape of a time signal. Without impulsive phenomena in time signal (for a normal 

distribution) the value of kurtosis is 3 while it can reach up to 50 with shocks (Lorenzo & 

Calabro, 2007).  

Patel et al. introduced the equations of the most common statistical parameters (Patel et 

al., 2013). The corresponding equations are shown in table 1.1. 

Table 1.1. Time domain features 
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Signal distribution 2 
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Deore and Khandekar have performed a time domain analysis on acceleration data of a 2 

HP electric motor in order to extract information that helps to distinguish the signals from 

normal to faulty conditions. Five parameters were introduced as informative and primary 

statistical parameters, namely, peak value, RMS value, skewness, crest factor and kurtosis 

(Deore & Khandekar, 2014). Abdulkarem et al. investigated the effectiveness of the time 

domain statistical parameters in detection of impeller cracks. The results show that as the 

crack size increases, the value of time domain parameters increase (Abdulkarem et al., 

2014). Sakthivel et al. applied a wide range of statistical parameters to a neural network 

for an online bearing condition monitoring. The authors suggested not to use all the 

parameters for online monitoring due to the correlation of features that may result 

ambiguous behaviour (Sakthivel et al., 2010). Heyns has introduced the time domain 

features that display good correlation and easy to be implemented which many condition 

monitoring systems rely on them, but also he has mentioned the sensitivity to disturbances 

as a drawback for time domain features. Therefore, other features from other domains are 

necessary to be used (Heyns, 2007).  

1.3.4.2. Frequency Domain Analysis 

Time domain vibration is mostly transformed to frequency domain and called spectral 

analysis. It can reveal information about signal that might not be apparent in the time 

domain. It also describes the signal power distribution over the frequency and gives us the 

essential information for condition monitoring. Randall suggests two main benefits of 

using the frequency analysis: Firstly, a rise in time domain features like RMS value is an 

indicator of having an internal disturbance but no indication about the causes of 

disturbance. Secondly, any minor changes or incipient failures can be identified in 

spectrum analysis (Randall, 1974).  

Fourier transform (FT) is commonly used to deal with non-periodic signals that varies 

continuously over time (John & Putman, 2007). The most common approach to transform 

the data from time to frequency domain is known as the fast Fourier transform (FFT). This 

is a method of taking a time-varying signal and decompose it into components, each with 

an amplitude, a phase and a frequency (Shreve, 1995). Several studies are conducted with 

the intention to identify the fault initiation using frequency analysis. Yang et al. provided 

a review on vibration feature extraction techniques that are successfully implemented on 

rotating machinery data. The paper presents features from frequency analysis (FA) as 
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more sensitive, which can usually reveal information regarding the component defects 

better than the TDA features. The frequency characteristic like “resonance frequency 

components” or “defect frequency components” can be identified quickly (Yang et al., 

2003). Nandi et al. have introduced parameters, namely arithmetic mean of a frequency 

spectrum, geometric mean and RMS amplitude of the frequency component, which 

provide a quick overview of the machine condition without specific diagnostic capability 

(Nandi et al., 2013). 

Moreover, the frequency domain is commonly divided into three major frequency ranges 

which highlight specific faults. These are the low, medium and high frequency regions. 

Faults such as unbalance, misalignments, bent shaft, etc. reveal themselves as low 

frequency components around the shaft revolution speed (e.g. first harmonic). The second 

harmonic (2×rpm) indicates a bent shaft and misalignment. The appearance of such faults 

can therefore be detected in terms of changes in these frequency components. Some other 

indicators such as tooth meshing frequency in a gearbox (frequency corresponding to 

rotational speed multiplied by the number of teeth on the gear) and its harmonics can be 

identified in higher frequencies, and manifest themselves in the medium frequency range. 

Tooth cracks and wear influence the level of tooth meshing frequencies and its harmonics. 

Signals generated in rolling elements bearings are observed at even higher frequencies in 

the high frequency range that indicates defects like crack or corrosion on inner race, outer 

race or even on rolling elements. They create small impulses every time one of the rolling 

elements passes over it (Angelo, 1987).  

Abdulkarem et al. used vane passing frequency and its harmonics as frequency domain 

indicators in crack diagnosis on a centrifugal pump impeller. The paper showed that the 

amplitudes at the relevant frequencies (VPF and its harmonics) increase as the crack size 

grows (Abdulkarem et al., 2014). Zhao et al. indicated pump rotational frequency, vane 

passing frequency and the second to tenth harmonics as frequencies to contain valuable 

information. This paper suggested using the amplitude ratios as features instead of directly 

using the frequency amplitudes, while some peaks are shown at fractional frequencies. 

Since the fractional frequencies become visible in frequency analysis of normal 

conditions, it is not clear if the fractional frequencies are due to the impeller defect (Zhao 

et al., 2010). Also, Liu and Ganeriwala have investigated vibration signatures due to 

cavitation in centrifugal pumps and the effects of cavitation on pump performance using 

spectrum analysis. From the observations it is deduced that cavitation appears at high 

frequencies and also that vibration along the axial direction is a better indication of 

abnormal conditions (Liu & Ganeriwala, 2012). 
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1.3.4.3. Time-Frequency Analysis 

Rotating machines often do not operate under stationary conditions and the frequency 

composition is time varying most of the time. Fluctuating operations cause non-stationary 

conditions and changes in the signal information over time. Therefore, time-frequency 

analysis (TFA), which inspects vibration in the time and frequency domains, are 

introduced for non-stationary conditions. TFA includes signal processing methods in both 

time and frequency domains simultaneously. TFA aims to understand spectral evolution 

of a signal over time. This analysis technique is appropriate for non-stationary conditions 

where the spectral content varies with time. 

TFA employs time-frequency distributions to display the energy density or intensity of a 

signal and reveal a more complete fault pattern. It intends to decompose a signal that 

contains several frequency ranges into different resolutions, and the reason for using this 

methodology is due to the changes of statistics of data over the operational period. 

Short-time Fourier transform (STFT) or the power of STFT (spectrogram), Wigner–Ville 

distribution and wavelet analysis are the most common time-frequency representations 

(Jardine et al., 2005). Wang et al. investigated the performance of common TFA methods 

in an intelligent diagnostic procedure for an accelerating vehicle noise in order to identify 

the various failure modes. The comparison results of five TFA techniques show that 

wavelet analysis techniques render more suitable information regarding the operating 

condition of a system (Xing et al., 2015). Some common TFA techniques are explained in 

more detail in the following sections. 

Short time Fourier transform 

Short-time Fourier transform (STFT) is a Fourier based transform by a fixed-sized, 

moving window to a signal. STFT determines the frequency and phase content of signals 

as they change over time. Implementing the discrete Fourier transform (DFT) over a long 

window under non-stationary conditions does not reveal transitions in spectral content, 

therefore it is needed to implement it over short periods of time to overcome this problem. 

The main STFT steps are (i) Define a window function of limited length, (ii) Define the 

amount of overlap between windows, (ii) Generate windowed segments (multiply signal 

by windowing function), (iv) Compute the FT of the windowed segment and save results, 

(v) Slide the window to the right until the window achieves to the end of the signal and 

reveal the Fourier spectrum on each segment. (vi) Finally plot the changing spectra as a 

function of time. 
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dtettWtfutSTFT utj 

  2)].().([),(                                   (1.18) 

where STFT of )(tf  computed for each window centered at tt  , t is time parameter, u

is frequency parameter, )(tf represents time domain signal to be analysed and W is the 

window function centered at )( tt  . 

One of the disadvantages of the STFT is that the resolution is dependent on the window 

length. The length of the windowing function determines whether there is a good 

frequency or a good time domain resolution. In other words: A short window performs a 

good time resolution but poor frequency resolution. On the other hand, a longer window 

length gives more uncertainty on the instant that the signal changes. Jardine et al. 

introduced STFT as a method that can only be used for non-stationary conditions when 

the the dynamics change relatively slowly (Jardine et al., 2005). 

Wigner-Ville Distribution (WVD) 

The Wigner–Ville distribution (WVD) is a bilinear transform technique. Since WVD is 

not based on dividing signals in to various sections, it can overcome the difficulties of 

time-frequency resolution (Jardine et al., 2005). Baydar and Ball mentioned the 

interference terms and its difficulty to interpret the time-frequency representation as 

drawback of the WVD. Also a smoothed version of the WVD is presented to overcome 

this problem and reduce the presence of interference components (Baydar & Ball, 2001).  

Wavelet Transform 

Like FA, wavelet analysis expands the signals in terms of wavelets that are produced 

through a set of scale and translation of a wavelet called mother wavelet (Lee & 

Yamamoto, 1994). WT is introduced as an effective approach that deals with non-

stationary signals such as vibration signals (Chebil et al., 2009). 

From a historical point of view, Alfred Haar was the first person who introduced wavelets 

and developed the Haar wavelet. Later on Paul Levy (1930) found out that the Haar basis 

function performs better than the Fourier functions. The major advancement in the field 

of wavelet research is due to Jean Morlet (1970), who improved the method of scaling and 

shifting of the wavelet functions. He worked on the idea of transforming the signals using 

wavelets without any change in information with the help of Alex Grossmann, which led 

to proposing the continuous wavelet transform (Gao & Yan, 2011). 
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Unlike a time-frequency distribution that includes a fixed time and frequency resolution, 

WT represents a time scale of a signal. Wavelet analysis has improved in the recent decade 

and has broad applications nowadays (Jardine et al., 2005). WT provides scale-varying 

functions for the analysis of different frequency component in a signal. WT uses non-

stationary functions (wavelets) with variable window sizes, which can be moved along 

signals to generate an individual time-frequency map. 

A number of wavelet transform methods have been introduced including the continuous 

wavelet transform (CWT), the discrete wavelet transform (DWT) and the wavelet packet 

transform. Sifuzzaman et al. listed a wide range of applications that WT can effectively 

be used, namely (Sifuzzaman et al., 2009): 

 “Signal analysis 

 Data compression 

 Image denoising 

 Verification of fingerprint  

 Biology for cell membrane recognition, to distinguish the normal from the 

pathological membranes 

 Analysis of DNA  

 Blood-pressure and heart rate analyses 

 Finance, for detecting the properties of quick variation of values 

 In internet traffic description, for designing the services size 

 Industrial supervision of gear-wheel 

 Speech recognition 

 Computer graphics and multifractal analysis” 

The continuous wavelet transform (CWT) is given by: 







 dt
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t
tX

s
sXWT )()(

1
),(


                                         (1.19) 

where  moves the scaled wavelet over the time axis, s  denotes the scaling parameter that 

defines the resolution of time and frequency of the mother wavelet )/( st   . Also   

denotes the complex conjugation of the mother wavelet (Gao & Yan, 2011).  
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CWT consists of three main steps: (i) Comparison of the selected wavelet with a segment 

at the initial signal and compute the correlation parameter C. (ii) Moving the wavelet along 

the signal and repeat the previous step until the signal is covered. (iii) Scale (stretch) the 

wavelet and repeat the previous steps (one and two). (iv) Repeat steps 1 to 3 for all scales 

(Berkouk & Sadmi, 2014). The shifting and scaling process of the mother wavelet in CWT 

is depicted in figure 1.4. 

 

Figure 1.4. Illustration of CWT (Gao & Yan 2011)  

Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is a form of wavelet transform that uses a discrete 

series of wavelet scales and dilations based on power of two rather than each set of scale 

and dilations in CWT. In other words this method breaks down the signal into orthogonal 

series of wavelets (Klapetek et al., 2015). 






 dttftfnmX nmnmDWT )()(,),( ,,                                  (1.20) 

For a given mother wavelet: 

)
2

2
(

2

1
)(, m

m

m
nm

nt
t


                                               (1.21) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



       Chapter 1 

18 

 

where )(, tnm is called the DWT basis. The signal is analysed by DWT over various 

frequency ranges and resolutions by breaking down the signal into series of information  

called approximation and detail (Zhang et al., 2010). The DWT decomposition process 

can be illustrated as a tree including two complementary filters which decompose the 

vibration signal into low and high frequency components. It can be repeated through other 

levels to decompose the low frequency components, since the high frequency components 

are not decomposed further. (Mesbah et al., 2003). The structure of DWT is shown in the 

figure below.  

 

Figure 1.5. Discrete wavelet decomposition diagram 

In contrast with CWT which represents more information and requires a very large 

computational time, DWT reveals efficient details with fewer parameters and less 

computational time (Chebil et al., 2009). However, one of the significant drawbacks of 

the DWT is the decomposition process. In this process only the approximation coefficients 

are decomposed to next level and can cause improper frequency resolution. Hence, 

wavelet packet transform (WPT) was introduced to alleviate this weakness by 

decomposing both low and high frequency components simultaneously at each level. 

Figure 1.6 shows the structure of WPT decomposition. 
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Figure 1.6. Wavelet packet decomposition diagram 

Jardine et al. discussed one main advantage of the WPT as its capability to present high 

time and frequency resolutions for non-stationary signals containing a large number of 

frequency range. It is also capable to alleviate the noise in signals (Jardine et al., 2005).  

Wavelet based analysis methods have been successfully applied to process signals in 

machine fault diagnosis. In the recent decade, several researches on WT have been carried 

out to examine signals where the FFT was not efficient. Toth compared the performance 

of Meyer and Morlet wavelets in WPT for bearing fault diagnosis. The Morlet wavelet 

was found to be superior to Meyer in representing transient signals of bearing vibration 

(Toth, 2013). Kankar et al. used CWT as feature extraction methods and classified them 

using machine learning methods. Comparison of two wavelet selection methods are 

provided to choose the superior wavelet for feature extraction, namely maximum energy 

to Shannon entropy ratio and the maximum relative wavelet energy. It is concluded that 

wavelets selected using maximum energy to Shannon entropy ratio criterion (Meyer 

wavelet) provide a better classification result (Kankar et al., 2011). Loughlin et al. 

introduced a group of time- frequency parameters as features and applied these parameters 

to helicopter test data for fault diagnosis. These conditional parameters are mean, median 

and mode frequencies at a given time. This research showed the capability of these 

features to characterize the faults which can differentiate between different fault classes 

(Loughlin et al., 2000). 
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According to Lauro et al. CWT among different wavelet features in condition monitoring, 

is recognized as an effective tool in both stationary and non-stationary conditions, 

however they include much redundant information in comparison to DWT, which has a 

fast algorithm based on conjugate quadratic filters (Lauro et al., 2014). Chen et al. 

investigated the WPT method on piston fault detection in water hydraulic motors. In this 

paper the impulsive energy of the vibration is extracted from the reconstructed signals 

after three level of decomposition. The results proved the ability of WPT to detect the 

piston defects in the water hydraulic motor (Chen et al., 2008). 

Moreover, energy entropy is introduced as a good indicator that presents the behaviour of 

non-stationary vibration of frequency subbands. Zhang et al. introduced the wavelet 

packet based energy as a reliable method that is more appropriate to be used in fault 

detection in comparison to other methods, which can presents the signal energy in various 

frequency bands (Zhang et al., 2010). Therefore, the energy entropy of different nodes of 

the signals after decomposition can be useful in revealing convenient information 

regarding the impeller condition for the purpose of this study. 

There are several definitions of energy entropy, Zhang et al. introduced the energy entropy 

and the Shannon entropy. The wavelet packet energy entropy 
nEnt  at a specified node n  

in the wavelet decomposition tree can be computed using the equation below, where jnC ,  

presents the wavelet packet coefficients at time j  and node n . 

(Zhang et al., 2010): 

2

, || n jnn CEnt                                                          (1.22) 

In addition, log-energy entropy is also introduced as useful parameter, the following 

equation presents log-energy entropy of a signal
nEntl : 

 j jnn CEntl )log( 2

,                                                     (1.23) 
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1.3.5. Intelligent Systems and Failure Prognostic Tools 

Intelligent learning systems iteratively learn patterns from features and can understand 

how to implement significant tasks by building analytical models from samples. In the 

past recent years the use of intelligent systems has rapidly increased. Intelligent learning 

systems are used in “web searches, spam filters, ad placement, credit scoring, fraud 

detection, stock trading, drug design and many other applications”. Many various types of 

intelligent systems are existed, but the most well-known and widely used is classification 

(Domingos, 2012). A classifier is a system that assigns a group of feature values and 

outputs a value as the predicted class. Domingos presented three main components for an 

efficient learning process:  

Learning = Representation + Evaluation + Optimization 

where the “representation” step consists of the input data. The classifier includes the 

process and selection of the most appropriate one for the problem in order to get the best 

result. An “evaluation function” is needed to distinguish how effective the performance 

of a classifier is. “Optimization” is a method to search among the classifiers for the highest 

performance rate (Domingos, 2012).  

There are different ways for an algorithm to model a problem based on input information. 

It is popular in machine learning and the artificial intelligence field to consider the learning 

methods that an algorithm can adopt. There are only a few main learning methods or 

learning models, namely supervised learning (SL), unsupervised learning (USL), semi-

supervised learning (SSL) and reinforcement learning.  

Supervised learning is a model that is created through a training process using labelled 

data (inputs and outputs are available), where it is required to make predictions and apply 

corrections when the predictions are wrong. The training process continues until the model 

achieves an acceptable level of accuracy on the training data. However, in the 

unsupervised learning method, the input data is not labelled and does not have a known 

output. This model is prepared by clustering the given input data in classes based on their 

properties. 

Semi-supervised learning algorithm is a model, in which the input data is a mixture of 

labelled and unlabelled examples. This model must learn the patterns to cluster the data 

as well as make predictions.  
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On the other hand, reinforcement learning is a model in which the input data is provided 

from an environment and the model must respond and react. Feedback is provided not 

from of a teaching process as in supervised learning, but as penalty and reward in the 

environment. Example problems are systems and robot control (Brownlee, 2013). It 

allows the model to automatically predict the ideal output within a specific background in 

order to maximize the performance. 

The fault diagnosis task comprises the detection of detailed fault categories such as the 

size and location of defects. On the other hand, diagnosis of machine condition typically 

needs technical experience and skills due to having several components and complexity 

of equipment. Also it requires specific expert with the appropriate background and 

maintenance knowledge regarding to the machine structure and general concepts of fault 

detection, which the expert might not be available. Hence, some automatic fault diagnosis 

methods are introduced to speed up the detection process and to make decisions about the 

machine conditions, such as artificial neural networks (ANN), expert systems, fuzzy logic, 

support vector machine (SVM), nearest neighbour algorithms, and model-based methods 

(El-Thalji & Jantunen, 2015). Due to the intention of this study which is the evaluation of 

ANN methodology in impeller fault detection, it is further explored in more details as 

follows. 

Artificial Neural Networks  

An artificial neural network (ANN) is an effective processing tool for nonlinear problems 

that is inspired by the biological neural networks, such as the data processing mechanism 

in brain. An ANN is designed for specific purposes like pattern recognition or data 

classification through learning procedures in order to achieve fault diagnosis. Learning in 

biological neural networks include adjustments to the synaptic links, where this is the 

same process for an ANNs as well (Maind & Wankar, 2014). ANNs are the most 

extensively used intelligent systems in different fields for a number of advantages such as 

high learning speeds, better approximation ability and stronger tolerance to input noise 

(Qu et al., 2015). ANN applications use a simple multi-layer perceptron (MLP) as the 

network common architecture. 
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The operation in this type of MLP network is based on two stages, feedforward and back-

propagation, respectively. The network is propagated by inputs and results to an output. 

In the second stage, a comparison is provided between the output and the expected value 

for the output. Subsequently, the error value corresponding to each output node is 

computed in order to be transmitted backwards and adjust the network weights. A typical 

MLP network architecture is depicted in figure 1.7. Each layer is formed by a number of 

neurons, where each neuron includes a sum of inputs x . Afterwards, the neuron values are 

normalized to a specific range by passing through an appropriate activation function f . 

The output of the network y is described in a matrix form as the equation 1.24 (Unal et al., 

2014).  

))(( 211112 fbxwfwfy                                       (1.24) 

where w denotes the weight matrix, b  is the bias vector, and f  is the activation function. 

1f is a hyperbolic tangent sigmoid function and 2f  a linear function. Also, jiw , presents 

weight between thi  output and thj  input layer. 

The back-propagation in ANN is considered as a simple method in mapping the non-linear 

relationship between inputs and the outputs of networks, and provides supervised training 

of MLP networks. It generalizes the least squares algorithm and updates the network 

weights in order to reduce the mean square error e  described in the equation below: 
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                                     (1.25) 

where y  is the network output, trg  is the target, N  is the sample size and i  is the sample 

number (Unal et al., 2014). 
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Figure 1.7. Neural network architecture 

The back propagation algorithm applies a gradient descent technique on the error 

considered as function of the weights. There will be a gradient for weights that aid in 

finding the desired value for weight in each neuron to minimize the error by moving the 

weight along the negative gradient of performance function. The back propagation 

algorithms consist of two main steps, namely training and testing. In training step the 

network is given the sample features and the correct classification to define the network 

architecture. Then the network will be tested in the second step using new data sets against 

the correct output to evaluate the accuracy of network.  

Moreover, sums of weighted inputs of nodes are needed to pass through a non-linear 

function known as an activation function in order to calculate threshold value and yielding 

the nodes outputs. There are a number of popular activation functions for ANNs. Common 

activation functions are linear functions, threshold functions, unipolar sigmoid function 

and bipolar sigmoid functions (Karlik & Olgac, 2010). In this study a unipolar sigmoid 

function as a differentiable function, will be used for hidden layer output (equation 1.26). 

xj
e

y



1

1
                                                    (1.26) 

This function is a common function in neural networks and has particular advantages for 

networks trained by backpropagation algorithms, due to its simplicity to differentiate 

which can strongly reduce the computation time in training (Karlik & Olgac, 2010), it is 

suitable for pattern recognition networks with output values between 0 and 1. 
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There are important aspects to consider in designing a reliable network architecture, such 

as the number of hidden nodes and hidden layers. The number of nodes in the processing 

layer (hidden) has a great impact on the accuracy of an ANN performance. A large number 

of input nodes in hidden layer gives the ability to map complex data sets, but it can also 

lead to an under-trained or an over-trained network. Under-training occurs when hidden 

nodes are not sufficient enough to map the complex data sets. On the other hand, if the 

number nodes in hidden layer are more than required, over training can occurs and training 

time will significantly increases. Hence, both conditions cannot present patterns regarding 

the complexity of data sets. The number of nodes in a hidden layer is generally difficult 

to define. It can be estimated by the empirical equation 1.27 (Xing et al., 2015). 

 NML                                                             (1.27) 

where M  and N denote the node number in input and output layer and  is a constant 

value between 1 and 10. 

ANNs have been utilized as intelligent fault diagnosis of rotary machinery in order to 

classify conditions based on feature patterns extracted from experimental vibration signals 

(Samanta, 2004). Zouari and Menad presented a fault diagnosis procedure using an ANN. 

They investigated the ability of ANNs to detect and classify some specific faults such as 

“partial flow rates, loosening of rear pump attachments, misalignment, cavitation and air 

injection on the inlet”. The features are computed from the time domain and frequency 

spectrum respectively (Zouari & Menad, 2005). Maind and Wankar have reviewed the 

applications and advantages of ANNs. They mentioned some advantages for ANN 

systems such as: pattern extraction and trend detection from complex data, the ability to 

learn how to predict the output classes based on the input features (adaptive learning), 

generating its own prediction of the information that receives as inputs during learning 

period (self-organisation) (Maind & Wankar, 2014).  

Xing et al. presented a method which combines wavelet packet transform and artificial 

neural network in order to analyse the quality of sounds (Xing et al., 2015). A WPT with 

21 critical bands is utilized to extract sound features, a three-layer ANN model with back-

propagation is used for sound quality recognition. The WPT–ANN is also used on vehicle 

noises under various conditions to illustrate its effectiveness in showing a time varying 

energy pattern. The extracted features were used as the ANN input, and the calculated 

loudness and sharpness from Zwicker-model (Zwicker developed a method for the 

computation of noise levels, ISO 532B) used as ANN output.  
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Samanta compared the ANN performance with SVM in terms of accuracy of results and 

training time. He used the time domain signal under different operating speeds and bearing 

conditions for feature extraction in order to train both classifiers. Also a genetic algorithm 

(GA) is applied in feature selection and network optimization. In addition, he has 

mentioned over-fitting of training data as a drawback for ANNs, which is due to the 

optimisation algorithms used in ANNs for selection of parameters (Samanta, 2004). 

1.4. Scope 

The required performance of assets has received more attention during recent years. 

Nowadays business policies of organizations are structured to achieve top performance in 

order to maximize their capabilities, operations and customer satisfaction. Since, the 

majority of total life cycle costs is derived from operation and maintenance, fault detection 

can assist during the operational period and keep assets at the required performance levels. 

It causes a reduction in unscheduled shutdowns and maintenance costs by provision of 

preventive maintenance, optimal replacement decisions and scheduled shutdowns that 

allow maintenance teams to order parts in advance, schedule manpower, or plan other 

repairs during the downtime.  

As mentioned previously, a successful condition monitoring system helps to detect the 

potential failures before functional failures occur. An efficient CM includes a continuous 

periodic monitoring, data processing and diagnosis that leads to updated machine 

condition information. These concepts are known as “diagnosis and prognosis 

procedures”. The role of effective condition monitoring is undeniable in maintenance 

strategies. Various monitoring methods are used to identify failure signs in equipment 

during the operation period to monitor machine health state.  

This dissertation proposes an investigation of the neural networks methodology in 

condition monitoring of centrifugal pump impeller under fluctuating flow conditions using 

vibration signals. Impellers are perhaps the most critical components in pumps and their 

condition is usually important to satisfy the required performance. Therefore, there is a 

great need for a monitoring tool to identify the health state of impeller conditions. 

Generally, machine condition monitoring determines the component's health states based 

on data collection, processing and prediction in order to identify the sources of problems. 

Figure 1.8 depicts the flowchart of fault diagnosis procedure. 

For this research a pump system was designed and constructed to simulate different types 

of defects in a pump impeller such as cavitation, unbalance and cracks. A small centrifugal 

pump was utilized to simulate common failure and the corresponding vibration was 
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monitored. Information regard to the impeller condition was collected from acceleration 

measurements of the vibration in three dimensional coordinate axes (triaxial 

accelerometer was used), in order to provide more reliable data and observe vibration 

intensity in all three axes. 

Signal processing is performed in time, frequency and time-frequency domains 

respectively. The time domain signals are evaluated by statistical parameters, namely 

RMS, peak value, crest factor, kurtosis, skewness, standard deviation, impulse factor, 

shape factor and signal energy, in order to observe the influence of defects on vibration 

and extract the relevant indicators. In addition, results of the frequency analyses are used 

to interpret the effect of defects on the frequency spectrum. Although an attempt is made 

to illustrate the possibilities and advantages of utilizing a time-frequency analysis. 

Wavelet packet analysis is therefore applied to the vibration signal to extract the effective 

features due to flow fluctuation. 

Finally, an investigation of the neural network toolbox in Matlab R2015a is provided. The 

system is used to extract desired fault features and measure the effects of fault vibration 

characteristics on pump performance. These results are used to design an artificial neural 

network capable of impeller fault detection in any pump from measured on-line vibration 

signals. The flowchart below gives a basic run through of the proposed methodology, 

beginning with the unprocessed time domain vibration signal. 

1.5. Report Layout 

This dissertation is structured under the following chapters: 

Chapter two describes development of the experimental rig. A review of the design of the 

pumping system, including the data acquisitioning system, the required equipment and 

system characteristics is presented. Also common types of damage in centrifugal pump 

impellers and the relevant severity of damage and their influence on pump vibration are 

discussed. 

Chapter three presents signal processing techniques, feature detection, selection, 

extraction and classification. The vibration signals of the simulated conditions are 

analysed in three domains, namely time, frequency and time-frequency domains. Signal 

characteristics are extracted from each domain under the various flow rates, in order to 

evaluate the signal characteristics over flow fluctuation. The intention of this chapter is to 

select the appropriate parameters and eliminate the redundancies. 
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Chapter four presents a review of the fundamentals of artificial neural networks as 

machine learning systems, such as number of nodes in hidden layer, transfer functions and 

training algorithms. Based on data features extracted from simulated signals in chapter 

three, ANNs capable of pattern recognition are trained. Furthermore, comparison of ANNs 

performances are provided to evaluate the effectiveness of signal processing methods on 

the output of each trained network. Finally, each developed ANN is evaluated by new 

testing data sets. 

Chapter five presents a discussion of the results of the proposed methodology when 

applied to the generated signals from pumping system. Also, some suggestions are made 

in chapter six in order to extend the present research. 
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Figure 1.8. Flowchart of fault diagnosis procedure 
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2. Experimental Development 

2.1. Introduction and Overview 

The aim of this chapter is to review the system design for the purpose of condition 

monitoring studies using vibration characteristics of a pumping system. A test setup that 

contains a centrifugal pump and a closed loop piping system for water flow is designed. 

According to the general approach discussed in chapter one, the present chapter concerns 

developments on the experimental setup. The important aspects of the setup and review 

in designing a pumping system are presented. Moreover, data acquisition, experimental 

equipment and the required procedures on this research are illustrated in detail. This 

chapter covers two different impeller damage scenarios, cracked and imbalance, 

respectively. In addition, effects of cavitation on impeller performance are of concern due 

to the fluctuating flow conditions. Each type of damage comprises three different sizes 

indicating the damage severity. Analysis of vibration signals are studied in order to 

determine the condition of impeller and severity of defects. Finally the experiment is 

conducted on a small CM 50 Pentax centrifugal pump. 

2.2. Experimental Setup  

Data for this research is obtained from an experimental setup that contains a centrifugal 

pump and closed loop water piping system for water circulation. A single suction pump 

with top discharge, operating at 2700 rpm, with a single phase electrical motor is used in 

this work. The pump is a CM-50 Pentax series single impeller centrifugal pump with the 

following construction features: Cast iron body and motor bracket, Noryl impeller, 

ceramic-graphite mechanical seal, allowance temperature 0 to 90 for brass impellers and 

0-50 Celsius for Noryl impellers, which can deliver water at a rate of up to 90 l/min and 

at a head of up to 21m. 

The closed loop water system is shown in figure 2.1. It is designed with the shortest 

possible pipe line in order to reduce the friction pressure loss.  
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Figure 2.1. The schematic diagram of the experimental setup 

Two flow valves are designed to be installed in the inlet line of pump and discharge of the 

tank in order to control and modify flow rate in the suction pipe as well as water height in 

the tank. In addition, two pressure gauges are installed to measure the suction and 

discharge pressure.  

The tank size is chosen to allow the maximum allowable flow rate with the height of 4m 

to provide the required inlet pressure in the system. The outlet flow of the tank in terms 

of velocity and volume can be calculated as shown in figure 2.2. 

 

Figure 2.2. A Schematic water tank 
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Fluid flows from the tank through an orifice close to the bottom, where the Bernoulli 

equation can be adapted to obtain the tank outlet parameters as below (White, 2011): 

The velocity V of fluid flowing past a point per unit time [m/s], which depends on the 

depth of fluid h , acceleration of gravity g  and velocity coefficient Cv , can be calculated 

using equation 2.1. 

ghCV d 2                                                        (2.1) 

Moreover, the volumetric flowrate Q of fluid flowing past a point per unit time [m3/s] 

depends on the velocity of fluid and the cross-sectional area of orifice. 

ghACQ d 2                                                      (2.2) 

Where the discharge coefficient 
dC  is a dimensionless number representing the ratio of 

actual discharge to the ideal discharge, and also depends on the velocity coefficient 
vC , 

(0.97 for water) and the orifice contraction coefficient 
cC , (sharp edge orifice 0.61, well 

rounded orifice 0.97). 

vcd CCC                                                            (2.3) 

Therefore, for the specified parameters of the designed tank on this study with the height 

of 4m and the outlet orifice diameter of 0.02m, considering the contraction coefficient

)75.0( cC  and the velocity coefficient of water )97.0( vC , the volume and velocity for 

the water entering to the system can be achieved as table 2.1. 

Table 2.1.Estimation of the maximum outlet flow rate for the designed tank 

Parameter Estimation 

Discharge coefficient )( dC  0.72 

Velocity )(V  6.37 m/s 

Volumetric flowrate )(Q  0.002 m3/s = 120 l/min 

The above results show that the flow rate at the outlet of tank is much higher than the 

required flow rate for the specified pump in this study which operates in flow range of 20 

to 90 l/min. 
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2.3. Performance Measurement 

2.3.1. Pressure Measurement 

In order to monitor and control the system, measurements are performed after setting up 

the pumping system. The system pressure and effects on pump performance are measured 

using pressure gauges in the suction section as well as discharge section. Pump relevant 

head h  can be determined using the measured pressure by equation 2.4. 

g

P
or

SG

P
h








                                                           (2.4) 

Where P  is the discharge pumping pressure in the unit of [Bar], SG  is specific gravity 

(water = 1) and   is a constant factor which is calculated using the equation above to be 

0.0001037 for water. 

In addition, Tacket et al. introduced parameters such as actual suction pipe length, flow 

velocity in suction line and the properties of fluid as key factors influencing the suction 

conditions. If sufficient energy is not available, problems such as cavitation and vibration 

will appear in the system. It is therefore critical to supply the required pressure at the pump 

inlet in order to overcome these problems. Hence, the equation 2.5 is being introduced to 

determine the essential available head 
aH  in [m] to produce the required acceleration 

(H.Tackett et al., 2008). 

gk

LVNC
Ha                                                                (2.5) 

where L is the actual suction pipe length [m], V presents the velocity of flow, N is pump 

speed (rpm), C is pump constant factor (0.115), g is the acceleration of gravity (9.81 

m/s2) and k  is the liquid factor (1.4 for water). 

Therefore, the required head at the inlet of pump using the equation above considering 

pump speed at a constant speed of 2700 rpm is 3.23m, which due to height of the designed 

tank (4m), the required pressure will be provided at the inlet of the pump.  

Moreover, as flow rate changes, the pump output pressure gives the ability to check the 

discharge head. It is also applicable to control if the pump operates in the expected head 

according to the standard performance curve. The discharge head for the CM50 Pentax 

pump on this study is estimated to vary between 20.1m and 12m. Pump specifications and 
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the performance curve obtained from Pentax product catalogue, are presented in figures 

2.3 and 2.4. 

 

Figure 2.3. Variation of CM50 Pentax pump head against flow rate (Pentax Co. 2013) 

 

 

Figure 2.4. CM50 Pentax specification, head variation vs flow variation (Pentax Co. 2013) 

2.3.2. Flow Measurement 

Positive displacement flow meters measure a fixed volume of fluid and count the number 

of times that the volume will fills the measurement volume. On the other hand, the other 

methods are based on force measurement that are produced by the movement of fluid and 

are known as pressure based meters. 

Several methods exist in order to measure the flow rate and are based on Bernoulli’s 

principle. Venturi and Orifice meters are the most common flow meters that rely on 

differential pressure measurement of the fluid flowing through the pipe. In this study a 

venturi meter as a reliable differential head meter was designed to measure the system 

flow rate. 
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The venturi meter was designed based on standard ISO 5167 (figure 2.5). The exact 

dimensions used may be found from a SolidWorks drawing given in Appendix A. 

According to ISO 5167 the venturi walls should converge at about 20° and diverge on the 

downstream side at about 5 to 7°. In addition, the flow rate vQ  can be calculated as 

equation 2.6.(Gill et al., 2011). 

)(
2

22
tp

tp

tp

dv PP
g

AA

AA
CQ 





                                        (2.6) 

where  denotes the discharge coefficient (for standard venturi meters is between 0.96 

to 0.99),  presents the area of approach piping (upstream),  is the area of throat 

section, g  is the acceleration of gravity (9.81 m/s2),   is velocity distribution coefficient 

(1.02),  is the upstream pressure (in unit Bar) and   is the throat pressure. 

Therefore, the above equation can be used in this study to determine the system flow rate 

using pressure drop measurements obtained from the venturi meter. 

 

Figure 2.5. The schematic diagram of a venturi meter (ISO 5167) 

2.4. Fault Simulation 

Corrosion and external solid materials in fluids are major factors that can lead to impeller 

damages. Two main faults are simulated in this study, namely cracking and imbalance. 

Each defect consists of three severity levels of damage staged on the pump impeller (low, 

medium and high). A series of damages are simulated from small to the large in terms of 

damage size to test the effectiveness of the automated health monitoring method. The 

photograph in figure 2.6 depicts the type of closed impeller used on this study. As it is 

shown, the location of cracks are on the plate close to the impeller eye and the imbalances 

are located at the top plate close to the end of impeller vane. 
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Figure 2.6. An illustration of common damages induced to an impeller (left) Unbalanced 

impeller, (right) Impeller with crack 

As the size of damage increases, the severity of the damage increases as well. Impeller 

cracking was simulated on the plate close to the impeller eye by using a hammer blow. 

There are eight operational conditions in this study, namely the normal condition (N), 

cavitation and six faulty conditions with six different severity of damages. 

In order to detect the different impeller faults as shown in figure above, six kinds of cracks 

and imbalances are induced as follows: (1) The lengths of crack are approximately 10 to 

50 mm and located in the side of impeller. These damage states are denoted as Fault 1, 

Fault 2 and Fault 3, respectively. (2) The lengths of imbalances were 4, 8 and 12 mm, and 

located close to the gap between two plates. These damage states were denoted as Fault 4, 

Fault 5 and Fault 6, respectively. Table 2.2 outlines the fault types and the relevant 

dimensions staged on the pump impeller. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



      Chapter 2 

37 

 

Table 2.2.Specifications of the impeller damages 

Fault No. Fault Type 

Fault 1 )1(C  Crack size ≃ 10 mm 

Fault 2 )2(C  Crack size ≃ 20 mm 

Fault 3 )3(C  Crack size ≃ 30 mm 

Fault 4 )1(U  Unbalance size ≃ 4 mm 

Fault 5 )2(U  Unbalance size ≃ 8 mm 

Fault 6 )3(U  Unbalance size ≃ 12 mm 

Moreover, a clear PVC pipe is utilized in input and output of the experimental pump to 

visually observe cavitation phenomena in the system. 

2.5. Summary  

The main purpose of developing a pumping system in this study is to: (i) Simulate the 

various failure modes on a centrifugal pump impeller under varying conditions. (ii) To 

observe the performance of condition monitoring tools on the evaluation of vibration 

signals. (iii) Identifying the relation of different impeller damages for the purpose of 

intelligent fault diagnosis as shown in figure 2.7. 

Furthermore, the structure of the experimental setup and the details of instruments are 

elaborated on and the following topics are contributed in this chapter: 

 Required specifications of pumping system  

 Numerical procedures on flow and pressure measurement  

 Details on design of a venturi meter based on the measurement of pressure 

difference in the system according to the standard ISO 5167 

 Simulation of the impeller common defects 
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Figure 2.7. Intelligent fault diagnosis procedure 
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3. Signal Analysis (Data Analysis) 

3.1. Introduction 

This chapter presents the analysis of vibration signals generated by the experimental setup 

using types of faults with varying severities in impellers. Measurements are made to 

identify the fault type and characterise the system condition. In order to provide a visual 

presentation of the vibration signature, the collected data is examined using time, 

frequency and time-frequency analysis methods, respectively. 

According to the effect of faults on the performance of centrifugal pumps, the significant 

vibration frequencies that contain useful information related to the impeller conditions are 

explored. These frequencies are the pump frequency (rpm), its harmonics (mostly second, 

third, and fourth harmonics) and the vane passing frequency (Taneja, 2013). This chapter 

also covers the evolution of signal characteristics over different flow rates. In addition, in 

the last section a comparison of all three analysis methods is provided.  

3.2. Data Collection Procedure 

The experimental data on this research work is collected as the illustrated procedure in the 

figure below: 

 

Figure 3.1. The experimental procedure 

The experimental setup of the water centrifugal pump system is shown in figure 3.2. A 

two pole induction motor drives the pump and allows the pump to operate up to 2700 rpm. 

A control valve is used to control flow at the inlet of pump. In addition, an inlet valve is 

used to create pressure drop between the suction and at the eye of impeller to simulate 

flow fluctuation. 
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Figure 3.2. Experimental apparatus 

Moreover, a triaxial accelerometer with sensitivity of 10 mV/g is used to collect the 

vibration signals, which is mounted on top of the impeller casing. A Quantum X - 4 

channel data acquisition system is used to collect data from the accelerometer and pressure 

transducers, which is controlled by the Catman professional data acquisition software. 

For the purpose of this study, the digital data is collected at 9600 samples per second to 

obtain the influence of defects and cavitation over a wide frequency range. It was later 

downsampled to 4800 samples per second which is a sufficient frequency range for the 

signals considered in this research. 

Additionally, a tachometer is installed to detect the exact rotational speed due to the fact 

that impeller defects under consideration in the present study, have significant effects on 

the pump rotational speed. The tachometer is positioned along the end of rotor shaft of the 

electric motor that is extended by adding a nylon shaft. Figure 3.3 depicts the location of 

tachometer and accelerometer. The coordinate system used in this study is shown in figure 

3.3.b, where X and Z directions denote the measured radial vibration, and Y denotes the 

axial vibration. Also the designed venturi meter is used to measure the flow rate of the 

system. Therefore, two pressure sensors were installed to measure water pressure 

simultaneously.  
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Figure 3.3. Location of (a) Tachometer, (b) Accelerometer 

In order to collect the signals regarding the induced conditions, faulty impellers were 

installed in the test setup and vibration data was acquired using the accelerometer. The 

experiment was run under two circumstances. Firstly, data samples were collected at a 

constant flow rate of 60 l/min. A time signal of 576000 of data samples was collected in 

each experimental run, and the rotational speed of the motor was in range of 2700 to 2800 

rpm. Secondly the data points were collected under flow variation in between 0 to 90 l/min 

in order to investigate on flow fluctuation to demonstrate the repeatability and to obtain 

statistically significant results. A total number of 4 measurements for each simulated 

condition each containing a data set of 259200 samples, are conducted over 27 seconds. 

Among seven impeller damage conditions, there are 12 vibration signals for each 

condition, hence 84 raw vibration signals are measured in total.  

3.3. Data Analysis  

In the present section, the results obtained from the time domain analysis (TDA) will first 

be discussed. The section then discusses the results obtained from frequency analysis (FA) 

and finally the results from time-frequency analysis (TFA) are evaluated. The last section 

presents the parameter extraction to determine the seven impeller scenarios. All three 

methodologies are complemented by comparison of extracted features for an over view of 

fault indicators in each signal. 

3.3.1. Time Domain Analysis 

As noted in chapter one (section 1.3.4.1), TDA computes statistical parameters from the 

vibration data and applies a comparison process in order to identify signs of faults. In this 

section an evaluation process on overall vibration measurement is being provided. This 
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evaluation depicts the evolution of statistical parameters over the period of measurement, 

and also describes the amount of vibration energy being created by impeller. 

Vibration signal data has been measured over 60 and 27 seconds under two conditions: 

(a) a constant flow rate of 60 l/min and (b) flow variation, respectively. Eight statistical 

features are extracted from each signal to form a pattern with regard to the impeller 

condition. According to the approach discussed in the literature study (section 1.3.4.1) 

mean  , root mean square RMS , kurtosis , skewness , energy , crest factor , 

standard deviation  and impulse factor  are the eight statistical parameters used for 

TDA in this section. These features are therefore normalized by dividing data sets with 

the corresponding maximum values.  

Thereby, for seven conditions of impeller, figure 3.4 shows the normalized features for a 

constant flow rate of 60 l/min over a period 60 seconds. Each plot represents a specific 

feature in the measured axis (vertical, horizontal and axial). It should be noted that 

referring to the table 2.2 (chapter two), the parameters 2,1,3,2,1, UUCCCN and 3U  

denote the seven conditions of impeller as follow: normal impeller N  with no prior defect, 

impeller 1C with the crack size of 10 mm, impeller 2C with the crack size of 20 mm, 

impeller 3C with the crack size of 30 mm, impeller 1U  with the imbalance size of 4 mm, 

impeller 2U with the imbalance size of 8 mm and the impeller 3U with the imbalance size 

of 12 mm. 

 

Figure 3.4. Time domain features over 60 seconds for a constant flow rate 
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Figures 3.5 and 3.6 show the time domain features (TDF) over flow variation for both normal and 

crack level one.  

 

Figure 3.5. Evolution of TDF under variable flowrate for a normal impeller 

 

Figure 3.6. Evolution of TDF under variable flowrate for a damaged impeller – C1 

A careful consideration of the figures above indicates apparent difference in vibration 

level for axial direction (Y axis) except in kurtosis, skewness and crest factor. It is due to 

the applied defects on the impellers which led to asymmetric flow in the system and caused 
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larger flow impacts and higher level of vibration in axial direction. Figures below illustrate 

features of all conditions against each other over flow variation.  

 

Figure 3.7. Crest factor evolution under variable flowrate 

 

Figure 3.8. Impulse factor evolution under variable flowrate 
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Figure 3.9. Kurtosis evolution under variable flowrate 

 

Figure 3.10. Mean value evolution under variable flowrate 
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Figure 3.11. RMS value evolution under variable flowrate 

 

Figure 3.12. Skewness evolution under variable flowrate 
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Figure 3.13. Standard deviation evolution under variable flowrate 

 

Figure 3.14. Standard deviation evolution under variable flowrate 

From the figures 3.7 to 3.14, it can be stated that signals from axial direction provide more 

reliable information regarding to the operating condition. It is also clear that the vibration 
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characteristics have higher magnitude for the flow rates lower than 20 l/min which is due 

to the cavitation in the system. On the other hand, some features such as crest factor and 

mean value do not exhibit an explicit pattern. Also it can be seen that the crack has higher 

impact on the vibration magnitude, while C3 has higher energy value compare to 

imbalance. This is due to the fact that cracks have made changes in impeller geometry and 

resulted in a significant change of flow path. Thereby, RMS and standard deviation 

features display more reliable features than others.  

Thus, it can be deduced that some features do not contain detectable information, since 

the analysis is being performed for more measurements and ambiguous patterns were 

observed. Hence, it is very important to choose the right features with the lowest 

uncertainties. 

3.3.2. Spectrum Analysis 

As mentioned in section 1.3.4.2, the pump frequency and the corresponding harmonics 

and the vane pass frequency are to be considered as valuable and indicative parameters. 

Also it is mentioned that the influence of cavitation, which may occur at the impeller eye, 

emerge as higher level of energy in high frequencies. 

Vibration signals are therefore analysed in frequency domain to identify efficient features 

for the seven data sets collected from the impeller under various conditions. Spectrum 

analysis helps to achieve a better understanding on impeller vibration responses. It also 

displays a more detailed view of significant components on frequency domain such as 

rotational speed frequency, related harmonics and vane passing frequency. Figure 3.15 

shows the frequency spectra of a normal impeller in axial and radial directions.  
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Figure 3.15. Frequency spectra of an impeller with normal condition in axial and radial 

directions 

Figure 3.15 presents the vibration response for the impeller with no prior damage at a 

constant flow rate. A comparison of amplitude in all directions, indicates that the 

frequency components on axis Y show higher levels of energy. This can be due to the 

fluctuating pressure from the interaction of flow and impeller, flow turbulences, cavitation 

and hydraulic pulsation. As marked in the figures above, the pump rotational speed (rpm), 

the sixth harmonic of the pump rotational speed (6×rpm) which corresponds to the 

impeller vane pass frequency (VPF) and the second harmonic of the VPF (2×VPF) can 

easily be identified with high amplitudes. 
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Figure 3.16. Frequency spectra of the three vibration signals 

Figure 3.16 shows an impeller with normal condition over varying flow rate. The flow 

variation helped to simulate zero flow rate, low flow rate (cavitation) and flow at pump 

BEP (best efficiency point), which is expected the system to have the highest performance 

at BEP. 

An examination of figure 3.15 and figure 3.16 indicates a significant increase of noise 

level in Y and Z directions under the flow fluctuation. However the direction X shows 

almost a constant level of noise. Moreover, the frequency components (1 ×rpm, VPF and 

2×VPF) in figure 3.15 have lower amplitude. 

Figure 3.17 presents frequency spectra of two induced damages with the relevant severity 

over varying flow rates in radial direction. It can be stated that crack C influences the 

higher harmonics of rpm. However, unbalanced condition U affects the first rpm and VPF. 
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Figure 3.17. Frequency spectra of the induced defects 

(Top to bottom: C1, C2, C3, U1, U2 and U3)  
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As described in chapter one, vibration characteristics are propagated over a wide range of 

frequencies. Hence in this section, signals are studied over two frequency ranges, low (1 

Hz to 1kHz) and high (1kHz to 2.4kHz) frequency ranges, respectively. Furthermore, as 

it was discussed in the literature (section 1.3.4.2) a higher vibration amplitude can be 

observed for the measured data in axial direction. Thus, the vibration data of axial 

direction is chosen for the further analysis due to its high sensitivity to the impeller 

condition. 

a) Spectrum Characteristics of Low Frequency Range: 

Figure 3.18 captures the spectra of three vibration signals corresponding to impeller 

conditions, namely no damage (N), crack (C1, C2, C3) and unbalanced impeller (U1, U2, 

U3) with the correlated severities (table 2.2-chapter 2) in frequency domains. The low 

frequency range plot depicts nearly the same broad band which is influenced by the flow 

turbulence. Also fundamental frequency components are visible with higher amplitude. 

These components are due to the interaction between flow and impeller vanes.  

Figures 3.18 (a) and (b) present a comparison between unbalanced condition and crack 

with increasing damage severity (U1 to U3 and C1 to C3) against the impeller with normal 

condition. It indicates that the 1×rpm amplitude increases as severity of the damage 

increases. However, imbalance effects appear in higher amplitude than crack, while the 

second to fifth harmonics of the rpm frequencies are excited. On the other hand, crack 

excitation appear more visible in the 8th to 11th harmonics with higher amplitudes.  

In addition, both figures display a significant difference in frequency location for each 

damage severity. The pump speed and the severity of damage appear to be inversely 

proportional, which the pump rotational speed for a normal condition is appeared at 45 Hz 

(2700 rpm), while the rpm for U3 condition is presented in 41.33 Hz (2480 rpm).  
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Figure 3.18. Vibration spectra of low frequency range, (a) Unbalanced impeller vs normal (b) 

Impeller with crack vs normal 

b) Spectrum Characteristics of High Frequency Range: 

Figure 3.19 presents the frequency spectra of the introduced conditions (table 2.2). 

Comparing the spectral differences between N, C and U with corresponding severities, it 

can be identified that the broadband in damaged conditions has higher amplitude. In 

addition, the high orders of rpm are excited more in crack conditions than in imbalance. 

Also spectral energy is increased significantly in frequencies over 2000 Hz, where it can 

be due to the pressure drop in the suction of the pump while the flow rate was restricted 

by closing the suction valve. Moreover, as U3 has higher amplitude in comparison to U2, 

U1 and N in figure 3.19 (b), it indicates increasing vibration energy in the harmonics of 

rpm by increasing the severity of defects. 
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Figure 3.19. Vibration spectra of high frequency range, (a) Unbalanced impeller vs normal (b) 

Impeller with crack vs normal 

As shown in previous figures, it can be seen that the amplitudes of the normal impeller at 

the shaft rotational frequency, its harmonics and broad band energies in higher frequency 

ranges are different from the impellers with faulty condition. Considering the fact that the 

amplitudes and energy bands may contain prominent information associated to the degree 

of defects or the conditions of impeller; and since the system is considered to be run under 

fluctuating flow conditions, it is adequate to study the fundamental frequency amplitudes 

and broadband energies over variation of flow.  

Figure 3.20 illustrates the evolution of five frequency components against the varying 

flow rates (zero to 80 l/min) and the impeller conditions. The pump frequency, its sixth, 

12th (2×VPF), 18th, and 36th harmonics are extracted as valuable information in axial 

direction, and all the other higher frequencies are considered as broadband frequencies. 

As mentioned before, running under required flow rate of a pump, will influence the 

frequency amplitudes. Figure 3.20 (a) shows the 1×rpm amplitude against flow rate, 

indicating higher imbalance amplitudes in compare of cracks. It is also apparent in figure 

3.20 (b) that imbalance effects are remarkable, which the lower flow rates caused 

amplitude drops. However, it does not show any specific behaviour between defects and 

flow rate. 

It can be deduced from Figures 3.20 (c), (d) and (e) that the influence of crack damages 

become more explicit as the number of harmonic orders increases. In addition, the 
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frequency component at pump vane passing frequency and high orders of harmonics 

indicate lower amplitude for unbalance condition, which may be due to the less contact 

between vanes and flow. 

 

Figure 3.20. Amplitude evolution of frequency components against flow rate, (a) 1×rpm, (b) 

VPF, (c) 2×VPF, (d) 18× rpm, (e) 36×rpm 

3.3.3. Time-Frequency Analysis 

In this section, the objective is to decompose a time series into time-frequency space. 

Therefore, the same vibration data used in TA and FA is being used. Initial data is 

collected in sampling rate of 9600 Hz. In order to increase frequency resolution and be 

able to observe fault effects, the measured signals are resampled in sampling frequency of 

4800 Hz. Afterwards, wavelet packet transform (WPT) mentioned in chapter one section 

1.3.4.3, is applied on the measured signals.  

WPT requires prior information such as level of decomposition and the appropriate type 

of mother wavelet, which determines the accuracy of the decomposed data. Considering 

the fact that there is no universal wavelet to perform for all types of signals (Phinyomark 

et al., 2009), hence the Daubechies wavelets such as db2 to db35 which are more 

preferable for WPT (Wang et al., 2015) are used to apply on the signals in this section. 
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For the purpose of this study, the db20 wavelet shows a better convergence with the 

generated signals. This wavelet has a better expansion performance and eases the handling 

of border issues. It also enhances the concentration degree of energy (Liao et al., 2009). 

Scaling function and wavelet function of db20 wavelet are shown in figure 3.21. 

 

Figure 3.21. Scaling function and wavelet function of db 20 (Plotted using Matlab R2015a) 

Wavelet based coefficients are created into different frequency subbands by applying 

WPT to the generated signals with regard to the level of decomposition. Vibration signals 

are decomposed up to 5 levels in order to obtain 32 frequency subbands in the present 

work. In order to increase the frequency resolution, each frequency subband covers only 

75 Hz of frequency length. The corresponding frequency intervals are shown as in table 

3.1. 

Table 3.1. The frequency bandwidth of subbands 

Subband Frequency 

range (Hz) 

Subband Frequency 

range (Hz) 

Subband Frequency 

range (Hz) 

Subband Frequency 

range (Hz) 

S1 0-75 S2 75-150 Hz S3 150-225 S4 225-300 

S5 300-375 S6 375-450 S7 450-525 S8 525-600 

S9 600-675 S10 675-750 S11 750-825 S12 825-900 

S13 900-975 S14 975-1050 S15 1050-1125 S16 1125-1200 

S17 1200-1275 S18 1275-1350 S19 1350-1425 S20 1425-1500 

S21 1500-1575 S22 1575-1650 S23 1650-1725 S24 1725-1800 

S25 1800-1875 S26 1875-1950 S27 1950-2025 S28 2025-2100 

S29 2100-2175 S30 2175-2250 S31 2250-2325 S32 2325-2400 
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The reconstructed signals acquired from the WPT decomposition, correspond to various 

frequency intervals. Figure 3.22 illustrates the decomposition process of a signal with 

WPT in this study. It represents WPT as a tree of low and high pass filters with five levels 

of decomposition. Each level consists of discrete frequency intervals (equal to 2N). The 

original signal with sampling frequency of 4800 Hz is decomposed to low and high 

frequency components, namely approximations and details. In figure below  denotes 

the frequency band )2400
2

( Hz
f

f s
N  . Also )(0,5 nX to )(31,5 nX  are the reconstructed 

signals in level 5 with frequency length of 75 Hz. 

 

Figure 3.22. Wavelet package tree 

Afterwards, signals are reconstructed from the wavelet coefficients relevant to each 

frequency band, and taken to the frequency domain. Figure 3.23 presents signal 

waveforms of all frequency bands after reconstruction for an impeller with normal 

condition. Moreover, a comparison between wavelet db10 and db20 is provided by figures 

3.24 and 3.25. 

From figure 3.25 it can be stated that the frequency bandwidths of the subbands obtained 

by the db10 implies the occurrence of frequency overlapping between different 

components. However, from figure 3.24 it can be found that the frequency ranges of the 

1th to 30th components are about the mentioned frequency ranges, which satisfy the 

significant bandwidths. Therefore due to the observations, the db20 wavelet appears to be 

more reliable and can be used to transform the signals in to 5 level frequency bands.  
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Figure 3.23. Reconstructed signals using db20 wavelet in level five - condition N 

 

Figure 3.24. Fourier transform of reconstructed signals using db20 wavelet in level five - 

condition N 
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Figure 3.25. Fourier transform of reconstructed signals using db10 wavelet in level five - 

condition N 

Figure 3.26 presents feature maps of impeller vibration in frequency and time 

simultaneously. It can be seen that flow rate affected the vibration energy, where the 

fundamental frequency components 1×rpm and BPF are clear in frequency range of below 

300 Hz. The rpm and VPF frequencies, and other harmonics (like 18th rpm harmonic) are 

excited and significantly increased in low flow rates. In addition, in flow rates higher than 

20 l/min, the minimum noise energy can be seen which only the 1×rpm and 5×rpm (VPF) 

are excited.  

Crack and unbalance conditions with corresponding severities are presented in left and 

right columns of figure 3.27. The influences of cracks are appeared more in higher rpm 

harmonics, however unbalance effects are shown more in 1×rpm energy. Also, the 

background noise is increased in both defects for low flow ranges. However, despite of 

the normal condition, the noise energy is not seen to be minimum in faulty condition for 

flow rates over 20 l/min anymore. 
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Figure 3.26. Time-frequency plot of an impeller with normal condition 

 
 

 
 

  

Figure 3.27. Time-frequency plot for impellers with faulty conditions: crack (left column), 

unbalanced impeller (right column) 
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As introduced in literature (section 1.3.4.3), the energy entropy is known as a good 

indicator to the behaviour of non-stationary vibrations in frequency subbands. Therefore, 

the energy entropy (equation 1.22) of various nodes of the decomposed signals are 

extracted to be used in determining the impeller condition. 

 

  

Figure 3.28. Comparison of two wavelet energy entropy of the signals in: Wavelet packet 

Shannon energy entropy (left); Wavelet packet log-energy entropy (Right) 

Figure 3.28 depicts sample results of log-energy and Shannon energy distribution of 

frequency subbands 1 to 32 for vibration signals of normal and damaged impeller. From 

the figure it can be stated that the amount of energy held in the higher frequencies is high 

if crack is the impeller damage, while imbalance effects appear more in lower frequencies. 

Also log-energy represents the energy distribution of data more explicit than Shannon 

energy entropy.  

Moreover, it can be seen that both energy distributions have interactions specifically in 

high frequency bands. However, log energy distribution emerge a more convenient 

information than Shannon distribution, and the lowest frequency bands are difficult to 

distinguish the fault severities. It must be noted that the data are being smoothed in Matlab 

software in order to be able to capture efficient patterns in each condition and reduce the 

influence of noisy data. 
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3.4. Summary  

Fault detection as a critical step in condition monitoring requires a highly accurate method. 

In this section, three methods were studied, namely time domain analysis, frequency 

analysis and time frequency analysis.  

The first method (TA) was based on a comparison of the computed statistical parameters 

of vibration in order to identify those parameters, which can endure the influence of flow 

fluctuation and can reveal valuable information corresponding to the impeller behaviour. 

Among the 8 statistical features that were investigated on this chapter, only a few 

parameters were capable to reveal less ambiguous patterns. Referring to figures 3.7 to 

3.14, RMS, kurtosis, skewness and standard deviation showed a better performance than 

other features.  

The second method (FA) studied on frequency components due to the condition of 

impeller and the fault severity. The location of the frequency peaks were utilized to 

identify between normal and faulty conditions. Signals are studied in low and high 

frequency ranges, respectively. The results (figures 3.18 and 3.19) proved that imbalance 

effects appear more in low frequency peaks, while the crack influence appear in higher 

frequency harmonics. Therefore, the amplitudes of the five dominant frequency 

components collected from the signals are used as conditional parameters to determine the 

health status of impellers (figure 3.20). 

Finally WPT was applied in order to visualize system behaviour under time and frequency 

simultaneously. Vibration signals using db20 wavelet were decomposed up to 5 levels 

including 32 frequency bands with the length of 75Hz. Wavelet packet energy was used 

to evaluate the TFA method in this study (figure 3.28), which displayed that the WP 

energy has more potential to be used in condition classification compare to the other 

methods in this study. 
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4. Intelligent Diagnostics: Artificial Neural Networks (ANNs) 

4.1. Introduction  

This chapter presents fault detection methods. An artificial neural network is applied to 

the features, which are extracted from TA, FA and WPT techniques as described in 

previous chapter. 

Feed forward neural network using backpropagation algorithm, is known as a well-known 

developed method in mapping the relationship between data sets. Hence, a three-layer 

feedforward ANN as proposed in chapter 1, is applied as an intelligent classification tool 

to identify and recognize the patterns between features and condition of system due to the 

data complexity. Also, ANN based condition estimation algorithm is elaborated, then it is 

verified with the extracted data from experimental system.  

Four statistical parameters are selected as features in time domain signals, prominent 

frequency peaks in FA and finally energy of frequency subbands in WPT are chosen as 

significant data that characterise the corresponding system behaviour.  

4.2. ANN Design and Performance  

A three-layer feedforward ANN with an input layer, processing units (hidden layer) and 

an output layer is applied for the present study. A typical MLP network architecture is 

presented in chapter one, figure 1.7. Referring to equation 1.25, back-propagation in an 

ANN is considered as a simple method in mapping the non-linear relationship between 

inputs and the outputs of networks, and provides a supervised training for MLP networks. 

It applies a gradient descent technique on the error considered as function of the weights. 

Hence, there will be a gradient for weights to find the optimum value and minimize the 

error by moving the weight along the negative gradient of performance function. Back 

propagation algorithms comprise two steps, training and testing, respectively. Where, the 

network is to be trained by set of sample features, and tested in the second step using new 

data sets against the correct output to evaluate the accuracy of the network.  

Therefore, in this chapter twelve measurements including 129600 sample points (data per 

each experiment) are collected from each condition under the fluctuating flow conditions. 

The required features are extracted from signals in three different domains, time, 

frequency and time-frequency domains, respectively. 
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The impeller feature set containing seven subsets of features represents impeller condition 

regarding to the 7 types of operating conditions (table 2.2). In addition, the data sets are 

divided into three independent subsets in order to be used for training, validating and 

testing the networks. 

In order to train a MLP neural network, the first step is to define the number of inputs and 

outputs. Hence, three ANN structures are designed to study the performance of ANNs 

using features extracted from TDA, FA and TFA. Four features are selected from chapter 

3 from the TA, representing impeller behaviour are RMS, kurtosis, skewness and standard 

deviation. Five frequency peaks corresponding to pump rotational speed (rpm) are 

selected from the FA representing as spectral features, and finally 32 features including 

frequency subband energy are selected from the TFA. Despite the fact that the input 

number varies in each domain, the number of outputs for the ANNs are the same based of 

the impeller condition. Therefore, seven outputs represent impeller condition (N, C1, C2, 

C3, U1, U2, and U3).  

Furthermore, a binary format is used to define the defect types and severity levels in a 7 

word binary format as shown in table 4.1. The output of the ANNs had to be one of the 

values as expressed in table below depending on the type of fault and severity level under 

consideration, hence, any other outcome not shown in the table are taken as an incorrect 

classification. 

Table 4.1. Description of the ANN target output 

Defect Description Binary Code 

Normal impeller 1000000 

Crack level one (low) 0100000 

Crack level two (medium) 0010000 

Crack level three (high) 0001000 

Unbalanced level one (low) 0000100 

Unbalanced level two (medium) 0000010 

Unbalanced level three (high) 0000001 

The preliminary number of nodes in hidden layer can be estimated by equation 1.27 in 

section 1.3.5. Thereby, the hidden node number of the designed ANNs for TA feature sets 

(four features) must include 4 to 14 nodes, for FA features (5 features) the required hidden 

node number is 5 to 15, and for the features from WPT (32 features) the ANN must have 

8 to 18 hidden nodes.   
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It is obvious that the node numbers and transfer function have a great impact on ANN 

performance. Non-linear and linear functions are suggested to be used in the hidden layer 

and the output layer respectively, however, there is no proof to identify the optimal 

number of nodes. Therefore, a set of training tests for different numbers of nodes in the 

specified range and three popular transfer functions such as, pure linear, hyperbolic 

tangent and logarithmic sigmoid functions, are carried out to evaluate the data in this 

study. Table 4.2 presents the ANN mean square error (MSE) based on WPT features. 

From the table it can be seen that logarithmic sigmoid function in hidden layer and linear 

function in output layer indicate the lowest MSE for the designed ANNs.  

 

Table 4.2. Mean square error using different transfer function 

Node number Transfer function 

(tansig,tansig) (tansig,purelin) (logsig,tansig) (logsig,purelin) 

4 0.01158 0.0886 0.1128 0.0861 

6 0.0900 0.0765 0.1117 0.0628 

8 0.0730 0.0847 0.1309 0.0624 

10 0.0991 0.0430 0.109 0.0388 

12 0.0686 0.1102 0.1581 0.0982 

14 0.1425 0.1395 0.1608 0.0832 

16 0.1182 0.0670 0.088 0.0311 

18 0.0681 0.0985 0.0771 0.0315 

Mean of 

RMS error 

0.0969 0.0885 0.1185 0.0617 

Also, a few more tests are performed to choose the most efficient number of nodes in 

hidden layer. Figure 4.1 and table 4.3 present the ANN performance in terms of prediction 

accuracy regarding the different node numbers. This process is being repeated 10 times 

for new testing data sets and the average of results are shown as below. 
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Figure 4.1. Performance comparison for different numbers of nodes in the hidden layer 

Table 4.3. ANN accuracy with different numbers of nodes in the hidden layer 

TA Features 

No. of 

nodes 

4 6 8 10 12 14 16 18 

Accuracy 

% 

55.33 59.5 61.15 63.45 60.01 61.01 52.8 56.2 

FA Features 

Accuracy 

% 

33 58.64 73.84 68.22 65.45 65.56 58.25 60.9 

WPT Features 

Accuracy

% 

51.74 55.29 59 61.30 90.51 63.82 75.81 96 

The comparison results from table 4.3 suggest the efficient number of nodes in hidden 

layer to be selected as 10, 8 and 18 for features from signals in time, frequency and time-

frequency domains respectively, which show the best estimations. Also, it can be seen that 

WPT features are more capable of training ANNs with higher performance accuracy, 

where, the testing accuracies of eight individual number of nodes vary from 51 to 96 %. 
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In addition, the average value of ANNs performance shows 12 % drop for frequency based 

features and 15 % drop of the network accuracy for features based on time signals. 

Moreover, an investigation is provided to find the most effective learning algorithm that 

accelerates the learning process in neural networks. It is known as a difficult task which 

can be affected by various factors, such as complexity of networks, number of training 

sets and the target error or the required accuracy for outputs. The effectiveness of a 

learning algorithm is compared in terms of the time of training, optimum weights and the 

accuracy of network output. A comparison between three learning algorithm is provided 

using three different feature categories. Table 4.4 shows the averaged value of the network 

accuracy of new testing, the required time to train ANNs and the error of networks over 

10 iteration with random initial weights. The learning algorithms in this comparison are 

Levenberg-Marquardt (LM), gradient descent and quasi Newton.  

Table 4.4. Comparison of different learning algorithms on performance of ANNs  

Learning 

algorithm 

TA feature sets FA feature sets WPT feature sets 

Time [s] Accuracy

% 

Error Time [s] Accuracy 

% 

Error Time [s] Accur

acy% 

Error 

LM 

algorithm 

7.64 91.02 0.0296 1 90.67 0.0306 2.51 95.32 0.0264 

Gradient 

descent 

1.7 61.39 0.0832 2.06 81.8 0.0578 1.58 92.97 0.0568 

Quasi 

Newton 

2.05 53.11 0.109 1.37 59.73 0.0802 74.54 93.35 0.0368 

From the table above it can be seen that LM algorithm is the optimum algorithm for all 

three trained networks. LM algorithm results show lowest mean square error and highest 

output accuracy for new testing data sets.  

Furthermore, there are some prominent facts that must be considered in an ANN design, 

such as data collection, data processing, normalization, network design, determination of 

the weights and bias values, network training and network validation. Two main issues 

are consider in validation process, first the required time to train a network and second is 

the network accuracy corresponding to the selected number of hidden layer nodes.  

Hence, in order to verify the superiority of ANN based on WPT features, new data sets 

are provided to train, validate and test the ANNs. The backpropagation algorithm is 

implemented on data sets using LM algorithm as the base learning algorithm. Also the 

network performance and classification accuracy for each feature set from each 

methodology are examined.  
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Error plots and a confusion matrix that comprise convenient information, are used to 

evaluate the ANN performance. The following table 4.5 and figure 4.2 demonstrate the 

error plot and confusion matrix for each network. The maximum number of training epoch 

is set to 1000 for each training process. A sigmoid function is utilized as a nonlinear 

transfer function for hidden layer output and a linear function for the ANN output.  

The error plot for each trained network shows how the network converged to the lowest 

output error over epochs of training. The training process stops at the point which is known 

as the best performance or the point before validation error starts to increase, which is an 

indication that the network starts overfitting the training data. In addition, confusion 

matrix tabulates the proportion of correct prediction for each seven possible classes (the 

impeller conditions) and shows the percentage of classes that are properly classified. It 

also shows the percentage of classes that are classified improperly. The correct 

classifications and the overall accuracy are shown in blue rectangles.  

 

Figure 4.2. Training error curve of an ANN using TA features versus time 
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Table 4.5. Confusion matrix of an ANN trained using TA features 

Output 

Target 

1 2 3 4 5 6 7 Accuracy 

1 14.3 

% 

0 0.5 % 0 0 0.5 % 0 93.1 % 

2 0 13.8 

% 

2.6 % 1.1 % 0 0.5 % 0 76.5 % 

3 0 0 14.3% 1.1 % 0 0.5 % 0 87.5 % 

4 0 0 0 10.6 

% 

0 0 0 100 % 

5 0 0.5 % 0 1.6 % 14.3 

% 

0 0 87.1 % 

6 0 0 0 0 0 12.7 

% 

0 100 % 

7 0 0 0 0 0 0 14.3% 100 % 

Accuracy 100 % 96.3 

% 

77.8 % 74.1 

% 

100  88.9 

% 

100 % 91 % 

The first ANN is trained by applying statistical data derived from time domain signals. 

Figure 4.2 shows the error reduction over iteration of training. The mean square error at 

the lowest validation error is measured as 0.017 for the 26th iteration. The table 4.5 

includes individual accuracy for each classes determined by the ANN, and also the 

percentage of correct and incorrect classifications are displayed. Nine misclassifications 

appeared in the table above and are individually presented in table 4.6.  

Table 4.6. Incorrect classification of an ANN trained using TA feature sets 

Correct class number Misclassified class number 

1 3 7 

2 3 4 6 

3 4 6 

5 2 4 
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Figure 4.3. Training error curve of ANN using FA features versus time 

Table 4.7. Confusion matrix of an ANN trained using FA features 

Output 

Target 

1 2 3 4 5 6 7 Accuracy 

1 14.3 % 0 0 0 0 0 0 100% 

2 0 14.3% 0 0 2.4 0 0 85.7% 

3 2.4% 0 9.5% 0 0 0 0 100% 

4 0 0 0 14.3% 0 0 0 100% 

5 0 0 4.8 0 11.9% 0 0 71.4% 

6 0 0 0 0 0 14.3% 0 100% 

7 0 0 0 0 0 0 14.3% 100% 

Accuracy 100% 100% 66.7% 100% 83.3 100% 100% 92.9% 

The second ANN is trained using features derived from signals in frequency domain. Five 

frequency peaks corresponding to rotational speed of the impeller and the vane passing 

frequency are selected and applied as input of the designed ANN. Figure 4.3 displays the 

lowest validation error in iteration range of 12 to 20 and the minimum value of 0.0165. 

Also table 4.7 shows 92.9% accuracy of the overall network performance. The 

misclassified classes are given as table 4.8.  

Table 4.8. Incorrect classification of an ANN trained using FA feature sets 

Correct class number Misclassified class number 

2 5 

3 1 

5 3 
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Figure 4.4 presents the behaviour of network error during training, validation and testing 

process. Thirty two energy values are extracted from different frequency bands after 

decomposition using wavelet analysis. Table 4.9 indicates an overall accuracy of 97.6% 

with only one misclassification, which class 7 (unbalanced impeller with severity of level 

3) is being misclassified to class 2 (crack level 2). 

 

 

Figure 4.4. Training error curve of ANN using WPT features versus time 

 

Table 4.9. Confusion matrix of an ANN trained using WPT features 

Output 

Target 

1 2 3 4 5 6 7 Accuracy 

1 14.3 % 0 0 0 0 0 0 100 % 

2 0 11.9 % 0 0 0 0 0 100 % 

3 0 0 14.3 % 0 0 0 0 100 % 

4 0 0 0 14.3 % 0 0 0 100 % 

5 0 0 0 0 14.3 % 0 0 100 % 

6 0 0 0 0 0 14.3 % 0 100 % 

7 0 2.4 % 0 0 0 0 14.3 % 85.7 % 

Accuracy 100 % 83.3 % 100 % 100 % 100 % 100 % 100 % 97.6 % 

By examining the results of above figures and tables, it can be stated that utilizing WPT 

feature sets to design and train artificial neural networks enhance the prediction accuracy 

of networks in compare to TA and FA feature sets. It also shows lower required time for 

training which is reasonable due to the lower iteration process of ANNs. In addition, the 

results denote a strong correlation between features due to rapid convergence of network 

while training progress.  
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4.3. Summary 

In this chapter, some investigations were conducted in order to select the most accurate 

parameters and improve the performance of the designed ANNs. The most efficient 

transfer functions, learning algorithms and effective number of nodes in hidden layer were 

explored in these investigations; and the optimum number of nodes in the hidden layer 

corresponding to the network input features were determined. The performance of ANNs 

were found to be substantially better using logarithmic sigmoid function for hidden layer 

and linear function for output layer. In addition, the Levenberg-Marquardt was found to 

be the best algorithm for all three trained networks with rapid convergence, lowest mean 

square error and highest output accuracy. 

Therefore, in order to investigate the effects of features on the ANNs performance, feature 

sets were taken out directly from experimental data from three types of signal analysis 

(time, frequency and time-frequency analysis). The extracted features were, namely 

statistical parameters, frequency peak ratios and subband energies. The results depict that 

ANNs are fairly reliable in impeller condition monitoring. The ANN performance 

improved considerably when WPT features are used (97.6%), whereas the ANN 

performance for the TA and FA based features achieved to 91% and 92.9% classification 

accuracy, respectively.  
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5. Conclusion 

Maintaining equipment at the required condition and assuring reliable performance as well 

as improvement of safety are major concerns in asset integrity management field. 

Condition monitoring is a procedure that allows to identify signs of failures and perform 

efficient maintenance plans to eliminate the uncertainties in machine operation. In 

addition, vibration monitoring is known as an early detection tool in order to distinguish 

degradation from expected performance, which is superior to other CM techniques due to 

its high sensitivity and simplicity of implementation (P-F curve, chapter one). Vibration 

analysis provides substantial information regarding the operating condition of components 

and aid to remedy the problem. Therefore, it can be used to detect a wide range of fault 

conditions in rotating machinery such as imbalance, misalignment of internal shafts, 

looseness, cracked shaft, gear failures, rolling element bearing damages, motor faults and 

impeller issues. 

The primary intention of the research reported on this dissertation was the investigation 

of the applicability of artificial neural network methodology on prognostics of mechanical 

defects and identification of fault categories of impeller in centrifugal pumps. The study 

focused on the contribution of feature extraction methods of vibration signals from pump 

impellers and the ANN performance of the extracted features. The second intention was 

to aid making maintenance decisions regarding the actual impeller condition. This leads 

to a transition from preventive maintenance to condition based maintenance, and also to 

improving the safety and reliability of pumping systems by reducing unexpected and 

catastrophic failures. Therefore, vibration analysis techniques are used as a principal tool 

to discriminate the impeller conditions under fluctuating flow conditions with the 

requirements of data collection, data processing, transformation and selection of essential 

features corresponding to the running condition.  

This dissertation presents a study of current vibration analysis techniques to extract the 

required features, namely time, frequency and wavelet based features, respectively. 

Hence, a review was provided on the literature as below: 

a) Vibration analysis aspects in condition monitoring of rotating machinery and the 

role of vibration analysis in fault diagnosis of pumping systems 

b) Common potential failure modes of pumping systems and the related sources as 

well as the mechanisms involved in production of vibration 
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c) Common techniques in signal analysis such as time, frequency and time-frequency 

analysis with the particular attention being paid to non-stationary system 

conditions 

d) Review of past research on the contribution of vibration based features and the 

intelligent interpretation, in order to study the vibration characteristics and define 

an efficient diagnostic feature regarding the impeller damage type 

e) A detailed study on artificial neural networks and wavelet analysis methodology 

as well as common prominent parameters in each analysis method 

Moreover, an experimental setup was developed to experimentally measure the impeller 

vibration. The experiment was performed using seven impeller conditions under 

fluctuating flow conditions which the pumping system was run for about 27 seconds over 

a range of varying flow rates (0 to 80 l/min). The variable flow rate caused different water 

impacts in the system and also simulated the cavitation phenomenon by reducing the water 

pressure at the pump inlet. In addition, cracks and imbalance were applied to the impellers 

including three level of severity as the artificial faults.  

Subsequently, signal analysis techniques were applied on the measured vibration signals 

in order to identify the appropriate features corresponding to the conditions. The results 

from the time domain analysis denoted that only a few parameters follow a specific 

pattern. However, all the features did not necessarily expose individual and 

distinguishable information of the operating condition, some of the features gave 

ambiguous results due to the high interaction with the other features. Hence four 

parameters were selected from the graphical method that contained discernible 

information and represented the simulated conditions. These features were RMS, kurtosis, 

skewness and standard deviation. 

Due to the fact that frequency spectra can render better visualization of the influence of 

damage and flow variation on the pump performance, the vibration signals were 

transformed to the frequency domain in the second step. The results stated that the 

imbalance defects excite the pump rotational frequency and its next four harmonics 

significantly. Conversely, crack effects appeared more on high order of harmonics of 

rotational speed frequency. Also, the results from flow fluctuation showed that the system 

was running under non-stationary conditions by changing the pump rotational frequency 

that made feature extraction in frequency domain difficult.  

In the third step, wavelet analysis as a time-frequency decomposition method was applied 

in order to analyse the signals in both time and frequency domains. Since the WPT gives 
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high time and frequency resolutions for non-stationary signals, it was used in this study to 

decompose the signals up to level 5. Afterwards, each signal is divided into 32 frequency 

subbands covering 75 Hz of frequency length and the wavelet energy entropy of different 

frequency subbands were calculated to be used as the feature vector of each signal. The 

results therefore proved that the WPT method maps the pump vibration responses more 

accurately than other methods in diagnosis of impeller defects. It was also shown that the 

WPT reveals more detailed presentation of characteristic components such as the 

rotational speed frequency and the vane passing vibration. 

Finally the efficiency of each method in feature extraction, which contains fundamental 

fault characteristic information, is evaluated. The collected data formed non-dimensional 

training data sets, were used to train the artificial neural networks (ANNs). The 

comparisons of different training algorithms, network hidden nodes and effectiveness of 

different transfer functions are also performed to select the most appropriate parameters. 

The results stated that the Levenberg-Marquardt algorithm with the aid of logarithmic 

sigmoid function in input hidden layer and pure linear function in output layer can provide 

more accurate predictions on impeller conditions. Moreover, a comparison of Daubechies 

wavelet in different ranges (2 to 35) was provided that the wavelet db20 was found to 

cover the frequency subbands more desirably due to less occurrence of frequency 

overlapping between different subbands. 

Furthermore, a three layer feed forward ANN was trained off-line using Levenberg-

Marquardt algorithm with logarithmic sigmoid and pure linear functions to validate the 

extracted features. Afterwards, the trained ANNs from each feature sets were applied to 

new experimental data to verify the feasibility of trained networks. The verifications 

showed that ANN prediction accuracy improved considerably using the energy based 

features of decomposed vibration signals. In addition, the comparison of the network 

accuracy based on WPT features with TA and FA based features pointed out lower mean 

square error, higher correlation between coefficients and faster training time for the ANNs 

based WPT features (WPT-ANNs). Thus it was concluded that the WPT-ANN models 

can save computational time and provide better diagnostic information, which can be 

effectively use for classification of impeller conditions under non-stationary conditions. 
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6. Future Work 

Academic studies into how effective intelligent prognostic tools are at various levels of 

expertise, are in order. A great deal of work has been done on developing the technologies; 

however, more work needs to be done on how effective they really are. 

The feature based ANN method developed and applied in this research. It has been shown 

the potential application of an ANN based wavelet analysis, and its superiority over 

current techniques for condition monitoring under non-stationary conditions.  

However, this work has been concerned with off-line training networks and the presented 

methodology has been applied to the impeller fault diagnosis, which can be optimized as 

follow: 

 More investigation of the other training algorithms to optimize the ANN 

performance, such as genetic algorithms and evolutionary algorithms. 

 Applicability of feature selection techniques on reducing the redundancy of input 

features and chose the appropriate features and reducing the network computation 

time such as matching pursuit analysis and basis pursuit analysis. 

 Comparison of WPT-ANN performance by other artificial intelligence methods 

for classification such as supervised machine learning method and unsupervised 

machine learning method. 

 A deep exploration in other wavelet techniques and the relevant performance like 

short-time Fourier transform, Winger-Ville distribution and Hirbert-Huang 

transform.  

 Performance on Daubechies wavelet on fault identification of other components 

and comparison with other wavelets, such as Meyer and Morlet wavelets. 
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Appendix A: Solidworks Drawing of Venturi Meter  
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