
Multi-Objective Parallelization of

Efficient Global Optimization

by

Carla Grobler

A dissertation submitted in partial fulfillment
of the requirements of the degree

Master of Engineering

in the

Department of Mechanical and Aeronautical Engineering
Faculty of Engineering and Built Environment and Information Technology

University of Pretoria
South Africa

10 July 2016

© University of Pretoria

To my loving husband, Paul Grobler.

© University of Pretoria

Acknowledgments

During the process of research, there are often many people, whom without, the work
would not have been possible. The following list of people have been instrumental in
the completion of this research project, and for them, I am very grateful.

• I would like to thank the CSIR, who provided the funding a facilities for this
project and also give special thanks to my supervisors at the CSIR, John Monk,
and Kaven Naidoo. They offered help, expertise, and encouragement throughout
the year.

• I would also like to thank my colleges at the CSIR, and would like to make spe-
cial mention of Johan Heyns for intentionally following up on the progress of my
project. I am very appreciative of the advice you have given me throughout this
research.

• I would like to thank my office mates at the University of Pretoria, Paul, Amin,
and Suzanne, for the time that we could share, and for your emotional support.

• To my supervisors at the University of Pretoria, Prof. Schalk Kok, and Dr. Nico
Wilke, I have learnt an enormous amount from you. Thank you for your strong
intellectual contributions and guidance, not only in the project but also in my life
choices.

• I would like to thank my family for their support, and especially mention my
parents, Onno and Marike Ubbink. I am a product of the guidance, opportunities,
and encouragement you have given me.

• Paul, my husband, thank you for always being along for the ride. Thank you for
your love, support, and encouragement. I love you.

• Leaving the best for last, I would like to thank the Creator of everything. You
give meaning to everything I spend time doing. Let Your kingdom come.

i

© University of Pretoria

Abstract

Design optimization is a subject field where mathematical algorithms are used to im-
prove designs. Analyses of designs using computational techniques often require sig-
nificant computing resources, and for these problems, an efficient optimization method
is needed. Efficient Global Optimization (EGO), first proposed by Jones et al. [25] is
an optimization method which aims to use few function evaluations when optimizing a
design problem. In this study, we use a multi-objective strategy to parallelize EGO.

EGO is part of a set of algorithms called surrogate optimization methods. A set of initial
designs are analyzed and then a response surface is fitted to the evaluated designs. In
each iteration, EGO selects the set of design variables for which the next analysis will
be performed. It makes this decision based on two opposing criteria. EGO will either
decide to sample where the predicted objective function value is low, an exploitation
approach, or where there is high uncertainty, an exploration approach.

In each iteration, the classical EGO only selects one design per iteration. This selected
design vector is either a result of exploitation or exploration based on a measure referred
to as maximum Expected Improvement (EI). However, the modern day computing en-
vironment is capable of running multiple different analyses in parallel. Thus, it would
be advantageous if EGO would be able to select multiple designs to evaluate in each
iteration.

In this research, we treat EGO’s inherent selection criteria to either exploit or explore as
a multi-objective optimization problem, since each criterion can be defined by a separate
objective function. In general multi-objective optimization problems don’t only have one
solution, but a set of solutions called a Pareto optimal set. In our proposed strategy
multiple designs from this Pareto optimal set are selected by EGO to be analyzed in the
subsequent iteration. This proposed strategy is referred to as Simple Intuitive Multi-
objective ParalLElization of Efficient Global Optimization (SIMPLE-EGO).

ii

© University of Pretoria

We start our study by investigating the behaviour of classical EGO. During each iter-
ation of EGO, a new design is selected to be evaluated. This is performed by finding
the maximum of the Expected Improvement (EI) function. Maximizing this function
initially proved challenging. However, by exploiting information regarding the nature
of the EI function, the maximization problem is simplified significantly, and the robust-
ness of finding the maximum is enhanced. More importantly, solving this maximization
problem robustly, dramatically improves the convergence behaviour once a local basin
has been found.

We compare our SIMPLE-EGO method to a multi-objective optimization algorithm
(EGO-MO) published by Feng et al. [16]. We first investigate the behaviour of EGO,
EGO-MO, and SIMPLE-EGO. Thereafter the convergence performance of these meth-
ods is quantified.

As expected the parallelization of both SIMPLE-EGO and EGO-MO lead to faster
convergence on a range of test functions compared to classical EGO, which only sampled
one point per iteration. The convergence characteristics of SIMPLE-EGO and EGO-
MO are also markedly different. We conclude with a discussion on the advantages and
disadvantages of the investigated methods.

iii

© University of Pretoria

List of Symbols

Alpha Numeric Symbols

Symbol Description

1 Vectors of ones of length ns
a Scale Parameter used when selecting points on the Pareto front for EZ-EGO
b Distance parameter used when selecting points on the Pareto front for EZ-EGO
c Self contained variable used when selecting points on the Pareto front for EZ-

EGO
E Expected value
f Multi-objective cost function
f Cost function
fY Regression function
fYj Basis functions of the regression function fY (for Kriging this is often low order

polynomial terms)
g Inequality constraints in general optimization problem formulation
h Equality constraint in general optimization problem formulation
k Self contained parameter of Generalized Expected Improvement Function
kY Number of basis functions for the underlying regression function fY
m Number of inequality constraints in general optimization problem formulation
n Number of dimensions
nf Number of cost functions
ns Number of evaluated designs
ni Number of points per iteration
N Normal distribution
P Probability
ph Smoothness parameter of the Kriging spacial correlation function

iv

© University of Pretoria

p Number of equality constraints in general optimization problem formulation
r Spatial correlation vector
T Self contained variable of Generalized Expected Improvement Function
R Spatial correlation matrix
v Variable substituted in the derivation of Expected Improvement
w Weighting variable used in the Weighted Expected Improvement Function
we Variable substituted in the derivation of Expected Improvement
Xexp Vector of sampled design space values
x Design variable vector
yexp Vector of sampled Cost function values
yY Specific realization of the random variable Y
y Ordinary Kriging predicted function value
ymin Minimum sampled cost function value
Y Regression function (Random Variable)
Z Deviation from the underlying regression function

Greek Symbols

Symbol Description

α Multi-objective weighted sum parameter
αlin Multi-objective spacing vector used when selecting points on the Pareto front

for EZ-EGO
αscaled Multi-objective spacing vector used when selecting points on the Pareto front

for EZ-EGO
β Regression coefficients of basis functions of Kriging
εN Random error (noise) on sampled data
ε Tuning parameter in the Kushner infill sampling criteria
θ Curve fitting parameter of spacial correlation function of Gaussian Process.

(Importance or activity of variable)
µ Mean of Gaussian process
π Pi
σ Kriging local standard deviation also referred to as uncertainty
σz Kriging Process Variance
Φ Normal cumulative density function

v

© University of Pretoria

φ Normal probability density function

Subscripts

Symbol Description

h Gaussian process dimension index
i, j Element index of a vector
k Index used in the Generalized Expected Improvement function

Superscripts

Symbol Description

ˆ Refers to estimated values
* Refering to a general x∗ location in the design domain
** Refering to a general x∗∗ location in the design domain different to the location

of x∗

X(i)
exp Bracket superscript i indicating the ith sample in the experimented Xexp list

T Transpose

vi

© University of Pretoria

Abbreviations

Abreviation Description

CDF Cumulative Distribution Function
DACE Design and Analysis of Computer Experiments
DE Differential Evolution
DOE Design of Experiments
EGO Efficient Global Optimization
EGO-MO Efficient Global Optimization - Multi-Objective
EI Expected Improvement
EZ-EGO Elemental Simultaneous EGO
GA Genetic Algorithm
GEI Generalized Expected Improvement Function
LHS Latin Hypercube Sampling
MLE Maximum Likelihood Estimator
MSE Mean Square Error
NSGA-II Non-dominated Sorting Genetic Algorithm
PDF Probability Density Function
PI Probability of Improvement

vii

© University of Pretoria

List of Figures

1.2.1 Different Optimization Methods . 2

1.4.1 Multi-Objective Objective Functions in Design Space 5

1.4.2 Multi-Objective Objective Functions in Criterion Space 6

1.4.3 Pareto Front Design Vectors Mapped back into the Design Space 6

1.4.4 Portion of Pareto Front which is Non-Convex 7

2.1.1 EGO Method . 13

2.2.1 Latin Hypercube Sampling (LHS) Design of Experiments (DOE) 14

2.3.1 Regression of data with Random Errors 15

2.3.2 Regression of Noiseless Data . 16

2.3.3 Effect of θ on the Gaussian Correlation Function 17

2.3.4 Effect of the Underlying Correlation Function fY (x) 18

2.3.5 (a) Contours of the true Branin function, and (b) contours of the Kriging
Approximation of the Branin Function using a 21 sample DOE 19

2.3.6 Kriging Uncertainty Estimates . 20

2.4.1 EGO progressing using EI as infill sampling criterion 25

3.2.1 2D Rosenbrock Objective Function . 28

3.2.2 Styblinsky-Tang Objective Function . 29

3.2.3 Rastrigin Objective Function . 30

viii

© University of Pretoria

3.3.1 Domain Parameter Plots . 33

3.3.2 Legend . 33

3.3.3 Zoomed Section of EI . 33

3.3.4 Convergence Comparison for two Methods Used to Solve EI. The method
performing the additional search converged to a higher accuracy than the
method only performing the single DE search. 34

3.4.1 Legend for Figures . 35

3.4.2 Domain Parameter Plots after 41 iterations on the Rosenbrock function.
Legend is presented in Figure 3.4.1. 36

3.4.3 Criterion Space Plot . 38

3.4.4 Different Designs on the Pareto Front are Selected 39

3.4.5 Design Domain Plot of the Pareto Optimal Designs 39

4.2.1 EGO-MO Algorithm . 42

4.2.2 (y(x),−σ(x)) Criterion Space Plot . 43

4.2.3 NSGA-II unable to solve EI-Pareto Front 44

4.3.1 Criterion Space Plot . 46

4.3.2 Legend for Figures . 46

4.3.3 Criterion Space Plots of Different Options for Selecting Designs on Pareto
Front . 47

4.3.4 Unwise Choice for Explorative Design Vector Selection 48

4.3.5 Linearizing the Pareto Front . 49

4.3.6 Selecting Designs on the Linearized Pareto Front 50

4.3.7 Different Options for selecting ten designs on the Pareto Front 52

4.4.1 Design Space and Criterion Space Plots at Iteration 9 for the Unwise
Explore method . 53

4.4.2 Design domain plot of Pareto front and Selected Design Vectors 54

ix

© University of Pretoria

4.5.1 Convergence Plot of SIMPLE-EGO Exploit on the Styblinsky-Tang Ob-
jective Function . 56

4.5.2 Convergence Plot for SIMPLE-EGO Exploit, ten samples per iteration,
on the modified 3D Rastrigin objective Function 57

4.5.3 Convergence Plot for SIMPLE-EGO, three samples per iteration, on the
modified 2D Rastrigin objective Function 57

4.5.4 Convergence Plot for SIMPLE-EGO, ten samples per iteration, on the
modified 3D Rastrigin objective Function 57

4.5.5 Convergence Error versus Iteration Count Converging on the 2D Modi-
fied Rastrigin Function . 60

4.5.6 Convergence Error versus Number of Function Evaluations as Methods
Converge on the 2D Modified Rastrigin Function 60

4.5.7 Convergence Error versus Iteration Count as Methods Converge on the
3D Modified Rastrigin Function . 61

4.5.8 Convergence Error versus Number of Function Evaluations as Methods
Converge on the 3D Modified Rastrigin Function 61

4.5.9 Convergence Error versus Iteration Count as Methods Converge on the
4D Modified Rastrigin Function . 62

4.5.10 Convergence Error versus Number of Function Evaluations as Methods
Converge on the 4D Modified Rastrigin Function 62

4.5.11 Convergence Error versus Iteration Count as Methods Converge on the
2D Rosenbrock Function . 63

4.5.12 Convergence Error versus Number of Function Evaluations as Methods
Converge on the 2D Rosenbrock Function 63

4.5.13 Convergence Error versus Iteration Count as Methods Converge on the
3D Rosenbrock Function . 64

4.5.14 Convergence Error versus Number of Function Evaluations as Methods
Converge on the 3D Rosenbrock Function 64

x

© University of Pretoria

4.5.15 Convergence Error versus Iteration Count as Methods Converge on the
4D Rosenbrock Function . 65

4.5.16 Convergence Error versus Number of Function Evaluations as Methods
Converge on the 4D Rosenbrock Function 65

4.5.17 Convergence Error versus Iteration Count as Methods Converge on the
2D Styblinsky-Tang Function . 66

4.5.18 Convergence Error versus Number of Function Evaluations as Methods
Converge on the 2D Styblinsky-Tang Function 66

4.5.19 Convergence Error versus Iteration Count as Methods Converge on the
3D Styblinsky-Tang Function . 67

4.5.20 Convergence Error versus Number of Function Evaluations as Methods
Converge on the 3D Styblinsky-Tang Function 67

4.5.21 Convergence Error versus Iteration Count as Methods Converge on the
4D Styblinsky-Tang Function . 68

4.5.22 Convergence Error versus Number of Function Evaluations as Methods
Converge on the 4D Styblinsky-Tang Function 68

C.2.1 Latin Hypercube Design of Experiments 84

D.2.1 EGO-MO Algorithm . 87

D.3.1 EI Criterion Space . 88

D.3.2 Exploit Explore Criterion Space . 89

D.3.3 Design Space Plot . 90

D.3.4 EGO-MO selecting 10 designs per iteration on the Styblinsky-Tang test
function . 91

D.3.5 EI-Pareto Front Points not Practically Solvable 92

xi

© University of Pretoria

Contents

1 Introduction 1

1.1 Design optimization . 1

1.2 Optimization Strategies . 2

1.3 Standard design optimization formulation 3

1.4 Multi-objective optimization . 4

1.4.1 Set of Optimal Solutions . 4

1.4.2 Solving Pareto Optimal Sets . 7

1.5 Surrogate Optimization: Exploitation and Exploration 8

1.6 Parallel variants of EGO . 10

1.7 Research Aim . 11

1.8 Thesis overview . 11

2 Background on Efficient Global Optimiztion (EGO) 12

2.1 EGO Section Outline . 12

2.2 Initial Design of Experiments (DOE) . 12

2.3 Gaussian Process Regression (Kriging) 13

2.3.1 General Regression . 14

2.3.2 Kriging estimate of the mean response 15

2.3.3 Parameter Estimation . 17

xii

© University of Pretoria

2.3.4 Underlying Regression Function 18

2.3.5 Kriging Performance . 18

2.3.6 Numerical Instabilities . 19

2.3.7 Kriging Uncertainty Estimates: Standard Deviation 19

2.4 Infill Sampling Criteria . 20

2.4.1 Probability of Improvement (PI) 20

2.4.2 Expected Improvement (EI) . 21

2.4.3 Weighted Expected Improvement (WEI) 23

2.4.4 Generalized Expected Improvement (GEI) 23

2.4.5 Maximizing the Infill Criteria (Acquisition Function) 23

2.5 Stopping Criteria . 24

2.6 Computational Implementation . 24

2.7 EGO Problem Dimensionality . 26

2.8 Chapter Conclusions . 26

3 Classical EGO Characteristics and Behaviour 27

3.1 Introduction . 27

3.2 Test Functions . 27

3.2.1 Rosenbrock . 28

3.2.2 Styblinsky-Tang . 29

3.2.3 Modified Rastigrin Function . 29

3.3 Maximizing EI . 30

3.4 EGO Behaviour . 34

3.4.1 Visualization Method . 34

3.4.2 Results and Discussion . 40

xiii

© University of Pretoria

4 Multi-objective Parallelization of EGO 41

4.1 Introduction . 41

4.2 Comparison Method: EGO-MO . 41

4.3 SIMPLE-EGO . 45

4.3.1 Solving and selecting Pareto front designs 45

4.3.2 Design Selection . 45

4.3.3 Parameterization of Design Selection 47

4.3.4 Alternative design selection . 51

4.4 SIMPLE-EGO Visualization . 51

4.5 Convergence Comparison . 55

4.5.1 Method . 55

4.5.2 Individual Results and Discussion 55

4.5.3 Combined Results . 58

4.5.4 Discussion of Results . 59

5 Conclusion 70

A Derivation of Expected Improvement 78

B Electronic Results 80

B.1 Introduction . 80

B.2 Sequential EGO - Visual Results . 80

B.3 SIMPLE-EGO - Visual Results . 80

B.4 EGO-MO - Visual Results . 82

B.5 Convergence Runs - Individual Convergence 82

C Computational Implementation 83

xiv

© University of Pretoria

C.1 Introduction . 83

C.2 Latin Hypercube Sampling - R . 83

C.3 Gaussian Process - Sklearn . 84

C.4 Differential Evolution - Scipy . 85

C.5 Multi-Objective Optimizer - PyGMO . 85

C.6 k-means Clustering - Sklearn . 85

D EGO-MO Discussions 86

D.1 Introduction . 86

D.2 Overview of EGO-MO . 86

D.3 Visual Investigation . 88

D.3.1 Define plots . 88

D.3.2 EI-Pareto Front Designs are more tightly clustered 89

D.3.3 EI-Pareto Front Becomes difficult to solve 91

D.4 Conclusion . 92

xv

© University of Pretoria

Chapter 1

Introduction

1.1 Design optimization

Design optimization, the topic of the present study, is a field which pertains to improving
engineering solutions. The world we live in is full of significant accomplishments. For
instance, we have been able to design cars and aircraft, which can transport people
further and faster than ever before. We have managed to set up world wide networks
and produce wireless communication. However, the world’s resources are not unlimited
and with a growing population, there is a need for better utilization of these limited
resources.

Engineering problems are typically underspecified, resulting in a number of possible
solutions. Hence, there is a need to select the better solutions from these possible so-
lutions. To improve designs, engineers often manually iterate through different design
parameters. However, the present study pertains to mathematical design optimization.
Formally, this is defined as finding the best solution (design vector), from a set of fea-
sible solutions [49]. The best solution is the solution that minimizes a chosen objective
function, and feasibility is defined through a set of constraints that must be satisfied.
Optimization algorithms systematically improve the objective function for feasible de-
sign vectors until the algorithm is unable to improve on the best solution.

1

© University of Pretoria

1.2 Optimization Strategies

A number of different optimization strategies exist that can be classified in a number
of ways. Figure 1.2.1 depicts three popular classes of optimization algorithms. Clas-
sical gradient based approaches require both function value and gradient information
of the objective function and the constraint functions. The other classes, stochastic
optimization and surrogate methods, typically only require function values.

Figure 1.2.1: Different Optimization Methods

Gradient based optimizers proceed by computing the objective function value and the
gradient of the objective function for a specific design vector. It then uses this in-
formation to evaluate a subsequent design along a descent direction. Gradient based
optimizers are prone to converge to the minimum in the local basin of attraction in which
the algorithm was initialized. Hence, to use the methods to solve multi-modal problems
usually requires multiple random re-starts. Gradient based optimizers are sequential
algorithms that evaluate one design at a time within an optimization run. A potential

2

© University of Pretoria

speed-up when utilizing parallel computing architectures is to approximate the required
gradients using finite differences. In addition, independent optimization runs as part of
a re-start strategy can be run efficiently in parallel.

Stochastic optimization algorithms are methods which perform many function evalua-
tions in the design space to find the feasible design with the lowest function value. In
contrast to gradient based approaches, these algorithms are able to find minima outside
the local basin of attraction in which they were initialized. However, the number of
function evaluations required by these methods is orders of magnitude higher than gra-
dient based approaches [1]. Examples include Differential Evolution (DE) and Genetic
Algorithms (GA) [1].

The strategies discussed so far assume that a reasonable number of function evaluations
are practical to compute. However, in modern day design, computer aided analysis
has become commonplace. It is not unusual for a single analysis to take a couple of
hours to compute on a cluster of computers. To make such design problems tracktable
to solve, surrogate models or response surfaces are constructed that approximate the
objective and constraint functions of the actual problem. These surrogate models are
computationally efficient to evaluate. Another benefit of surrogate methods is that
designs can be evaluated independently and in parallel. Surrogate models only require
a limited number of function evaluations to construct an approximation of the actual
functions. The surrogate is then optimized instead of the expensive objective function.
The accuracy of the surrogate may then be improved by performing additional real
function evaluations. Optimization is performed again, and this cycle can repeat until
convergence. The curse of dimensionality does not effect all algorithms equally and
surrogate models are limited in the number of design variables they can handle. Despite
this limitation, surrogate optimization remains popular and is studied in this research.

1.3 Standard design optimization formulation

The standard mathematical formulation for an optimization problem is [1]:

Minimize the objective function

f(x) = f(x0, x1, x2, . . . , xn−1), (1.3.1)

3

© University of Pretoria

subject to p equality constraints

hi(x) = hi(x0, x1, x2, . . . , xn−1) = 0; i = 1, 2, . . . , p (1.3.2)

and subject to m to inequality constraints

gi(x) = gi(x0, x1, x2, . . . , xn−1) ≤ 0; i = 1, 2, . . . ,m, (1.3.3)

where x represents the n-dimensional vector of design variables, which we refer to as
the design vector in this study.

1.4 Multi-objective optimization

Many cases exist where the design problem can rather be formulated by simultane-
ous optimization of conflicting criteria. An unconstrained multi-objective optimization
problem is defined by the following vector-valued objective function

Minimize f(x) = (f1(x), f2(x), f3(x), ..., fnf
(x)), (1.4.1)

where f = (f1, f2, ..., fnf
) is the nf scalar valued objective functions or criteria. In this

study, the multi-objective optimization problem is encountered when deciding where to
sample the design domain. One obvious choice is to sample in the vicinity of the lowest
function value to date (behaviour described as exploitation in optimization literature).
The other obvious choice is to sample in locations where no functions evaluations have
been performed (behaviour described as exploration in the optimization literature). The
multi-objective optimization problem for these two objective functions is defined by

Minimize f1(x)−Optimize exploitation (1.4.2)

f2(x)−Optimize exploration. (1.4.3)

1.4.1 Set of Optimal Solutions

Multi-objective optimization problems generally have a set of optimal solutions. To
illustrate, consider the two objective functions depicted in Figure 1.4.1. The minima of
these functions are indicated with the triangles. Since the optimum of one function is
not the optimum of the other, we need a more sophisticated concept, Pareto optimality,
to define the solution.

4

© University of Pretoria

(a) Objective Function f1 (b) Objective Function f2

Figure 1.4.1: The figure presents the contour plots of the two objective functions of a multi-

objective optimization problem. The triangles indicate the minimum objective function value.

Notice how the optimum of these two bjective function do not lie in the same place. The

gridlines indicated are used to generate the criterion space plot presented in Figure 1.4.2.

The Pareto optimal set is a set of design solutions, which occur if there is no other
design in the design space which reduces at least one of the objective functions, without
increasing another [1]. Formally this is defined as:

A design x∗ in the feasible design space S is Pareto optimal if and only
if there does not exist another design x in the set S such that f(x) ≤ f(x∗)
1 with at least one fi(x) < fi(x

∗).

Reconsider Figure 1.4.1, which also contains fine gridlines. Both functions are evaluated
at each of these gridline intersections. The functions values are then plotted against each
other in Figure 1.4.2 (a), for each of the gridline intersections. The definition of Pareto
optimality is then applied, and the Pareto optimal designs are plotted using square
symbols in Figure 1.4.2 (b). The extreme locations of the Pareto optimal curve coincide
with the global minima of each of the objective functions, again indicated using triangles.
Since the two axes of this plot are the two objective functions (the optimization criteria),
this is known as the Pareto optimal set plotted in criterion space.

1Where vector inequalities are applied between each corresponding vector element, for instance
f(x) ≤ f(x∗) implies f1(x) ≤ f1(x∗) and f2(x) ≤ f2(x∗)

5

© University of Pretoria

(a) Pareto Front not Indicated (b) Pareto Front Indicated

Figure 1.4.2: Using the gridlines plotted in Figure 1.4.1 the value the two objective functions

at the gridline intersections are plotted against each other. (a) indicates only the values gen-

erated using the gridlines, while (b) also indicates the Pareto front found with NSGA-II. The

triangles indicate the minimum function value for each of the two objective functions.

The Pareto optimal set can also be plotted in the design space. Figure 1.4.3 plots all
the Pareto optimal designs from Figure 1.4.2 (b) in the design space, superimposed with
the objective function contours of f1 and f2.

(a) Objective Function f1 (b) Objective Function f2

Figure 1.4.3: The Pareto optimal set from Figure 1.4.2 can be mapped back to the design

space the Pareto optimal designs are indicated.

6

© University of Pretoria

1.4.2 Solving Pareto Optimal Sets

An intuitive method to solve a multi-objective optimization problem is to rewrite the
multi-objective problem as a single objective problem. This is called scalarization. One
such method is called the weighted sum method. Consider the multi-objective opti-
mization problem formulation stated in Equations (1.4.2) and (1.4.3). The weighted
sum formulations is written as

Minimize fWeighted Sum = αf1(x) + (1− α)f2(x), (1.4.4)

where α now is a trade-off between the two objective functions. If α = 1 only the
objective function f1 is optimized, while if α = 0 only objective function f2 is optimized.
If the user selects values for α, different solutions along the Pareto front are found.

A limitation of the weighted sum method is that it cannot find Pareto optimal designs
that lie on the non-convex parts of the Pareto front. Figure 1.4.4 illustrates a large
non-convex part on the Pareto front. Mathematical details about this limitation can be
found in Caramia and Dell’Olmo [7].

Figure 1.4.4: A portion of Pareto front which is non-convex and cannot be solved by the

weighted sum method is indicated.

Given the limitations of the weighted sum method, other methods have been devel-
oped. Arora [1] lists a number of methods for multi-objective optimization, such as a
Multi-objective Genetic Algorithm, a weighted max-min method, and a weighted global
criterion method.

7

© University of Pretoria

Genetic algorithms are iterative optimization algorithms that fall into the catagory of
evolutionary optimization discussed in Section 1.2. The advantages of evolutionary algo-
rithms are that they are able to solve continuous, non-continuous, and discrete optimiza-
tion problems. Furthermore, evolutionary algorithms not only exploit the information
they have available, they also explore the domain. This generally prevents them from
getting stuck in the closest local basin of attraction like a gradient based optimization
method would have done. The disadvantages of evolutionary algorithms include that
they require many function evaluations to solve a problem, and they generally do not
reach the same accuracy as gradient based optimization methods.

In this research, at least one of the objective functions for the multi-objective problem
we routinely want to solve is highly multi-modal. Both objective functions are cheap
to evaluate. Therefore the genetic multi-objective algorithm NSGA-II [13] is suitable to
solve the multi-objective problems in this thesis. We use an implementation available
in the computational package PyGMO [5]. NSGA-II aims to ensure that designs are
evenly spread out over the Pareto front.

1.5 Surrogate Optimization: Exploitation and Exploration

As discussed in Section 1.2, surrogate based optimization strategies aim to use few
function evaluations in order to find the global optimum of a objective function [3, 10,
14, 22, 23, 28, 33, 46, 58]. Surrogate optimization methods start with an initial sample
of designs that are first evaluated and then used to construct a response surface. The
accuracy of the response surface is improved by evaluating additional designs and using
these responses to update the response surface. Subsequent designs are selected based on
two criteria; exploitation and exploration. The surrogate optimization method can select
the subsequent design vector where the response surface predicts low function values.
This is called an exploitation approach. Or alternatively, it can select the subsequent
design where the response surface is uncertain about the value of the actual function
value. This is called an exploration approach.

This exploitation versus exploration approaches can be explained by using an analogy
of a family vacation. A family has previously had a few family vacations at a range
of different destinations. They had good experiences at certain vacation locations and
bad experiences at other locations. There are also a number of locations where they

8

© University of Pretoria

have never been. The family has to plan their next vacation. They can go back to a
location with known good experiences, hence they exploit previous knowledge and the
risk of having a bad experience is low. Alternatively, they can decide to visit a new
destination, to explore new possibilities. In this case, they have a higher risk of having a
bad experience, but there is also the potential of a much better experience than previous
holidays.

Traditional surrogate optimization methods are exploitation based. Usually, an initial
sample of designs is selected, and a response surface is then fit to the actual responses
computed at these designs. An optimization algorithm is then used to find the mini-
mum of the response surface. The actual function is then evaluated at the design that
corresponds to the minimum of the response surface. This conventional method does
not explore beyond the designs evaluated initially. If the global minimum basin is not
described adequately by the current response surface, it is unlikely that this method will
find the global minimum.

Efficient Global Optimization (EGO) is a specific surrogate optimization method that
was first proposed by Jones et al. [25]. It falls into the class of Bayesian Optimization
first coined by Mockus et al. [34]. EGO uses a Kriging model to interpolate between
the responses of the evaluated designs. Kriging is a unique regression method, which
not only predicts the function value at unsampled design vector, but also gives an esti-
mation of the uncertainty at any design vector in the domain. It was named after Danie
Krige, a South African mining engineer and is also called Gaussian process regression
[35]. EGO takes both exploration (low predicted function values) and exploitation (high
uncertainty) into account when deciding where to sample next. The function used to
quantify where to sample next is known as an infill sampling criterion (also known as
an acquisition function). The EGO infill sampling criterion is known as Expected Im-
provement (EI), and this function quantifies the likelihood of finding a design with a
lower functions value than the current best design. The infill sampling criterion, EI, was
extended by Schonlau et al. [45] to Generalized Expected Improvement (GEI), which
allows the user to tune to emphasis on exploitation and exploration. Since this study
focuses on EGO, a detailed background on Kriging and EGO is given in Chapter 2.

9

© University of Pretoria

1.6 Parallel variants of EGO

Since the development of EGO, the objective of computers has decreased, and their
capabilities have increased. Many laptops have 8 processors and are able to perform
multiple computational analyses simultaneously. Computing clusters have many more
cores and are able to perform even more simultaneous analyses. The traditional EGO
approach only selects one design per iteration to sample next. Strategies where EGO is
adapted to select multiple designs per iteration are called parallelization strategies.

The first variant of parallel EGO algorithms selects a new design by maximizing the
infill sampling criterion. The response surface is then updated by assuming the function
value returned by the actual function will equal the response surface function value. The
updated infill sampling criterion is maximized yet again, and this process repeats until
the required number of new designs for this iteration is found. These designs are then
evaluated in parallel. Examples of such EGO parallelization strategies are the Kriging
Believer strategy proposed by Schonlau et al. [44, 45] and variations of this method by
Ginsbourger et al. [18].

Sóbester et al. [47] proposed another parallel sampling strategy where the multiple local
maxima of the EI function are found and selected to sample in the current iteration.
Ponweiser et al. [38] developed this method further by adding clustering to determine
how design vectors are selected.

Viana et al. published a series of papers which proposes using multiple different surro-
gates when running EGO [53, 54, 55, 56]. Each surrogate would use a different model
with a different minimum. They used Gaussian Process Regression, a Radial Basis
Neural Network, a Linear Shepard model, and a variety of Support Vector Regression
models. Only Gaussian Process Regression directly provided a measure of uncertainty
and therefore the uncertainty measure of the Gaussian Process Regression was used
throughout. The number of samples which can be added in each iteration is limited by
the number of surrogates selected.

Of particular interest in this study, is the multi-objective parallelization of EGO. The EI
function has two terms, and many papers have labeled these two terms as exploitation
and exploration terms respectively [24, 38, 43, 47]. Sóbester [48] therefore argued that if
a linear weighting of these two terms is introduced (Weighted Expected Improvement),
it should give the user control over biasing the search towards exploration or towards

10

© University of Pretoria

exploration. As a future endeavor, he suggested using this weighted EI function to
perform multi-objective optimization. This idea was furthered in the works of Feng
et al. [15, 16]. They treated the two terms of the EI function as a multi-objective
optimization problem. They then selected some of the Pareto optimal designs to sample
in the subsequent iteration. This method is called EGO-MO.

1.7 Research Aim

The research aim in this thesis is to develop a new parallel EGO algorithm that is
also inspired by the multi-objective nature of exploitation and exploration. Primarily
we would like to investigate the behaviour of this algorithm, and also compare our
new algorithm to a recently published method. The new algorithm simplifies parallel
EGO to its bare essentials by using predicted function value as exploitation indicator,
and the Kriging standard deviation as exploration indicator. The new algorithm is
called Simple Intuitive Multi-objective ParalLElization of Efficient Global Optimization
(SIMPLE-EGO).

1.8 Thesis overview

Chapter 2 gives background on Kriging and the classical EGO algorithm. A reader who
is familiar with EGO may choose to skip ahead to Chapter 3 where we investigate and
discuss the behaviour of EGO. In Chapter 4 we investigate multi-objective optimization
of EGO and compare our SIMPLE-EGO method with a multi-objective parallelization
strategy proposed by Feng et al. [16]. We also present a short discussion of EGO-MO
in Chapter 4. Finally in Chapter 5 we conclude this report.

11

© University of Pretoria

Chapter 2

Background on Efficient Global Optimiztion
(EGO)

2.1 EGO Section Outline

The steps associated with the EGO algorithm are outlined in Figure 2.1.1. This chapter
details the steps that respectively address the initial design of experiments, the fitting of
the Kriging surrogate, different infill sampling criteria and finally the stopping criteria
of the algorithm. A reader familiar with these topics may continue reading in Chapter 3.

2.2 Initial Design of Experiments (DOE)

The first step of EGO is to select an initial set of designs to sample. Ideally the design
vectors should be distributed evenly over the design space and space filling designs
are used. A variety of design of experiment (DOE) methods are available and include
factorial, fractional factorial, central composite, latin hypercube sampling (LHS) and
LPτ [48]. Jones et al. [25] recommended using LHS [32], while a more recent source [2]
suggested using Centroidal Voronoi Tessellation.

Jones et al. [25] proposed an initial sample size of 11n−1 designs, where n is the number
of dimensions of the design space. In 2005, Sóbester et al. [48] investigated the impact
of initial sample size. They found that the ideal sample size varies depending on the
nature of the objective function.

12

© University of Pretoria

Figure 2.1.1: EGO Algorithm

To generate a LHS design we used the optimumLHS function in the lhs package [8]
implemented in the R-Project [39]. Figure 2.2.1 shows a LHS DOE for a 2D problem.
The selected design vectors are plotted as black dots. Figure 2.2.1 (a) shows a DOE for
10 design vectors while Figure 2.2.1 (b) shows a DOE for 50 design vectors. As shown,
the designs vectors are approximately equispaced, and cover the design space uniformly.
Additional information on the settings we used is available in Appendix C.

2.3 Gaussian Process Regression (Kriging)

In EGO, Kriging is used to approximate the objective function from the DOE evaluated
designs. Kriging [11, 12, 20, 30, 40, 50] is a powerful regression method, which was first
used in geology and named after Danie Krige, a South African Mining Engineer. Later
the method was also published by Matheron [31]. This field then became known as
geostatistics.

At the end of 1980 Sacks et al. [41] took Kriging into a new direction, when they applied

13

© University of Pretoria

(a) 10 Design Vectors (b) 50 Design Vectors

Figure 2.2.1: Latin Hypercube Sampling (LHS) Design of Experiments (DOE)

it to Computer Experiments and called this Design and Analysis of Computer Exper-
iments (DACE) [42]. DACE applications differ fundamentally from Geostatistics since
computer experiments are deterministic. This means if the same design is evaluated
twice by a computer, the same result is expected, where with geostatistical experi-
ments, measurement noise exists. In addition the nature of the gold deposit landscape
is vastly different to a typical objective function for a design optimization problem. This
section first describes the general regression method, then it outlines how Kriging works
following the presentation of Sasena [43].

2.3.1 General Regression

In general, regression methods take on the form Y (x) = fY (x) + εN(x) where fY (x)

is some trend function, and εN(x) is the random error associated with the output.
The capital letter Y (x) refers to a stochastic function where yY (x) refers to a specific
realization of Y (x). The random error is usually assumed to be normally distributed
N(0, σ2) for all x. Figure 2.3.1 shows a noisy dataset with a regression function fit
through the data.

Kriging makes the same root assumption, i.e. function can be decomposed into the

14

© University of Pretoria

Figure 2.3.1: Example of Regression of data with Random Errors

sum of some trend function and a deviation from that trend. A dataset generated by
deterministic computer experiments is not stochastic but deterministic. Therefore a
deterministic function is now decomposed as Y (x) = fY (x) +Z(x), where fY (x) is the
mean response with Z(x) the deviation from the mean response.

Kriging makes the assumption that deviations from the mean, Z(x), are correlated. If
two x values are close together, then their deviation from the regression function, fY (x),
should also be similar, as illustrated in Figure 2.3.2.

Hence, in Kriging the predicted function value, yY (x∗), for a specific design is influenced
significantly by analyzed designs that are close to it, and lesser influenced by sampled
designs further away. The next section describes how Kriging estimates fY (x) and Z(x).

2.3.2 Kriging estimate of the mean response

In Kriging the mean function fY (x) is a low order polynomial. The response Y (x is
given by

Y (x) =

kY∑
j=1

βjfYj(x) + Z(x), (2.3.1)

where fYj are the kY polynomial terms (or basis functions) of the mean function fY (x)

and βj are the corresponding regression coefficients. Z(x) is assumed to be a Gaussian

15

© University of Pretoria

Figure 2.3.2: Kriging is based on the assumption two data points which are close together

will have a correlated deviation from a trendline. The figure illustrates how the data points

that close together have similar deviation from the trendline εN .

process with zero mean i.e. E(Z(x)) = 0.

EGO assumes the regression function fY (x) is a constant, which is also known as or-
dinary Kriging. For the remainder of this report we refer to this constant regression
function as the process mean, µ̂. The process mean, µ̂, and variance, VAR, are given by

µ̂ =
1TR−1yexp

1TR−11
(2.3.2)

VAR = σ̂2
z =

(yexp − 1µ̂)TR−1(yexp − 1µ̂)

ns
. (2.3.3)

Here the ˆ distinguishes the true process mean µ and variance σ from the estimated
process mean µ̂ and estimated process variance σ̂. The number of sampled design
vectors is given by ns, 1 is a vector of ns ones, yexp is the vector of sampled function
values and R is the spatial correlation matrix of size ns×ns. The (i, j) entries of R are
given by

R[(Xexp)(i), (Xexp)(j)] =
n−1∑
h=0

exp (−θh|(Xexp)
(i)
h − (Xexp)

(j)
h |

ph), (2.3.4)

where n is the number of dimensions of x andXexp contains the sampled design vectors.
The parameters θh > 0 and 0 < ph < 2. r(x) is the spatial correlation vector where

16

© University of Pretoria

ri(x) = R[x, (Xexp)(i)]. The predicted function value, ŷ(x) is computed using

ŷ(x) = µ̂+ rTR−1(y − 1µ̂), (2.3.5)

while the mean square error (MSE) is given by

MSE[ŷ(x)] = σ̂2(x) = σ̂2
z(1− rTR−1r). (2.3.6)

Figure 2.3.3 shows the effect of different θ on the correlation function. The larger θ the
larger the radius of designs which effect each other. The parameter, ph, is a measure of
how smooth the function is. For DACE and EGO, an Gaussian correlation function is
used, meaning ph is chosen as two for all h. In general, a different choice of θh and ph
are possible for each dimension of x.

Figure 2.3.3: Effect of θ on the Gaussian Correlation Function. The larger θ is the larger the

radius of influence of a specific data point.

For the remainder of the report, we will not refer to ŷ(x), σ̂(x) and µ̂(x), but to y(x),
σ(x) and µ(x) as we assume our estimation of these parameters are correct.

2.3.3 Parameter Estimation

The range parameters θ are usually estimated by the Maximum Likelihood Estimator
(MLE), that is given by

MLE(θ) =
1

(2π)n/2((σz(θ))2)n/2|R(θ)|1/2
exp

(
−

(yexp − 1µ(θ))TR(θ)−1(yexp − 1µ(θ))

2(σz(θ))2

)
.

(2.3.7)

17

© University of Pretoria

Sasena [43] noted that in some cases the MLE may not converge and they opted to min-
imize the cross validation error to estimate θ. Although the MLE statistical assumption
of zero mean variance is not always true for optimization functions, we would like our
computational implementation to be the comparable to Jones et al. [25] and Feng et al.
[16]. For this reason we use MLE in this research.

2.3.4 Underlying Regression Function

In Figure 2.3.4 two different underlying regression functions, fY (x), are used to approx-
imate the data points. Both a constant and a quadratic underlying regression function
are shown. The figure shows that for interpolation the underlying regression function
does not have a significant impact. However, in the extrapolated regions the two meth-
ods differ significantly, and thus EGO should not be used to extrapolate data.

Figure 2.3.4: Effect of the Underlying Correlation Function fY (x), showing how Kriging

performs well for interpolation, but should not be used for extrapolation.

2.3.5 Kriging Performance

At the time when EGO was published, Kriging was compared to other regression meth-
ods, such as a quadratic surface, and a thin plate spline. Kriging outperformed these
two methods by far. However, with recent advances in the field of Machine Learning,
many robust regression methods are available. Examples are Radial Basis Functions

18

© University of Pretoria

and Support Vector Regression. Figure 2.3.5 shows how well Kriging can approximate
the Branin Function while using a DOE consisting of 21 design vectors.

(a) (b)

Figure 2.3.5: (a) Contours of the true Branin function, and (b) contours of the Kriging

Approximation of the Branin Function using a 21 sample DOE

2.3.6 Numerical Instabilities

One of the challenges faced in implementing EGO is the ill-conditioning of the correlation
matrix R. There are two reasons for the ill-conditioning. The first happens as a result
of approximating a smooth function. In such a case the design vectors will be highly
correlated, which implies that each column in the correlation matrix will be a column of
ones. Thus the matrix R will be excessively collinear. The second takes place when two
sampled design vectors are close together. Then two columns in the correlation matrix,
R, are almost the same making R highly ill-conditioned.

Jones et al [25] suggested using singular value decomposition as discussed in the book
Numerical Recipes. Sasena [43] use a nugget to get rid of this ill-conditioning. A nugget
is also what is used to fit Kriging to noisy data. As discussed in Sasena [43], we use a
nugget of 10−12 to treat numerical instabilities in this thesis.

2.3.7 Kriging Uncertainty Estimates: Standard Deviation

Kriging allows the standard deviation of an interpolated function value to be estimated.
It serves as a measure of uncertainty and is leveraged by EGO. Figure 2.3.6 shows an

19

© University of Pretoria

example of the Kriging standard deviation estimates. The Kriging function closely fits
the true function. Note that where the design vectors are further apart, the standard
deviation estimate is higher. Some authors have noted that Kriging underpredicts the
standard deviation [18] [25].

Figure 2.3.6: Kriging Uncertainty Estimates in the form of Standard Deviation. The graph

shows the 95% confidence interval based on the Kriging standard deviation.

2.4 Infill Sampling Criteria

Recall from Section 1.5 that the two criteria of exploitation and exploration are used
by EGO to select the next design. The mechanism that EGO utilizes to achieve this, is
to maximize the infill sampling criteria, which is also often referred to as an acquisition
function [29]. Infill sampling criteria are scalarized functions indicating where to select
the next design sample. In Sections 2.4.1 to 2.4.4 we discuss some of the prominent
infill sampling criteria, and in Section 2.4.5 we describe how we find the maximum and
provide a visual example of how EGO progresses.

2.4.1 Probability of Improvement (PI)

The probability of improvement infill sampling criterion was first published by Harold
Kushner in 1964 [28]. At the stage it was named the Kushner Criterion. The mathe-
matical expression for the Kushner Criterion is given by

20

© University of Pretoria

Kushner(x) = P(y < ymin − ε) (2.4.1)

= Φ

(
(ymin − ε)− y(x)

σ(x)

)
, (2.4.2)

where P is the probability, ymin refers to the current lowest sampled value, Φ is the
cumulative distribution function (CDF) of a normal distribution, and ε is a tolerance. ε
determines how much lower than ymin the predicted objective function value, y(x), must
be before the difference is considered significant. In each iteration the aim is to find x∗,
that maximizes Kushner(x).

A special case of the Kushner criterion is when ε = 0. Watson and Barnes [57] refer to
this criterion as Locating the threshold-bounded extremes, while other authors refer to it
as Probability of Improvement [44, 52]. For the remainder of this report, this sampling
criterion will be named Probability of Improvement (PI) defined as

PI(x) = P(y(x) < ymin) (2.4.3)

= Φ

(
ymin − y(x)

σ(x)

)
. (2.4.4)

This criterion can be classified as an exploitation infill sampling criterion as it puts more
emphasis on sampling where the response surface predicts low function values [44].

2.4.2 Expected Improvement (EI)

Expected Improvement (EI) is the acquisition criterion on which EGO is built. The
maximum of EI defines the next design to be evaluated. The EI criterion considers both
exploitation and exploration. EI is defined by

E[I(x)] = E[max(ymin − y(x), 0)], (2.4.5)

where E is the expected value. Using Equation (2.4.5), it can be shown (Appendix A,
[4, 44]) to be equivalent to

EI(x) = (ymin − y(x))Φ

(
ymin − y(x)

σ(x)

)
+ σ(x)φ

(
ymin − y(x)

σ(x)

)
, (2.4.6)

where φ and Φ are the probability density function (PDF) and cumulative distribution
function (CDF) of the standard normal distribution respectively. EI expresses the like-
lihood that a function value at an unknown sample location will be less than the best

21

© University of Pretoria

function value sampled to date. EI elegantly combines two locations where this is likely
to occur: in the vicinity of the current best sampled location, or where there has been
no sampling (hence large standard deviation) but reasonably low function values are
predicted there.

Although the original derivation of EI does not depart from a perspective of exploitation
and exploration, it is seemingly attractive to interpret each of the EI terms as such.
Many authors have labeled the two terms as an exploitation term and an exploration
term [24, 38, 43, 47].

The first term in Equation (2.4.6) contains the quantity (ymin − y(x)), which measures
how much the predicted function value is smaller than the best function value sampled
to date. Hence the first EI term is positive if the predicted objective function value
is smaller than the best function value sampled to date. Hence it seems reasonable to
interpret term one of EI as an exploitation measure.

The second term in Equation (2.4.6) is proportional to the product of the uncertainty
(σ(x)) and φ. In locations where the standard deviation is large and the predicted
function value is reasonably low, this second term is positive. Again, it seems reasonable
to interpret term two of EI as an exploration measure.

Note, however, that Jones et al. [24] reported the following relationships for EI:

∂EI
∂y

= −Φ

(
ymin − y(x)

σ(x)

)
< 0, (2.4.7)

∂EI
∂σ

= φ

(
ymin − y(x)

σ(x)

)
> 0. (2.4.8)

This means that EI increases when y(x) decreases, and increases when σ(x) increases.
The implication of Equations (2.4.7) and (2.4.8) is that the maximum of EI lies in
the (y(x),−σ(x)) Pareto optimal set. This intuitive result is also formally proven by
Ginsbourger [18].

Although this result has been known for some time, it seems that its significance has
been overlooked. The fact that the maximum EI design lies in the (y(x),−σ(x)) Pareto
optimal set, directly suggests two objective functions for a multi-objective EI formula-
tion. The first objective is to minimize the predicted objective function value y(x). The
second objective is to minimize −σ(x), i.e. maximize the uncertainty. Hence the first
objective exploits, and the second objective explores. This is an intuitive result, and
presents a simpler multi-objective formulation as compared to the two EI terms. The

22

© University of Pretoria

new parallel EGO algorithm proposed in this thesis, SIMPLE-EGO, is based on this
simpler multi-objective formulation.

2.4.3 Weighted Expected Improvement (WEI)

An extension to EI was suggested by Sóbester et al. [48] called Weighted Expected
Improvement (WEI). Since numerous authors have labeled the two EI terms as ex-
ploitation and exploration respectively, the idea behind the WEI criterion was to give
the user additional control over the importance of each term. This criterion is given by

WEI(x) = w(ymin − y(x))Φ

(
ymin − y(x)

σ(x)

)
+ (1− w)σ(x)φ

(
ymin − y(x)

σ(x)

)
, (2.4.9)

where w is a user selected weight between zero and one. If w = 1 is selected the resulting
infill criteria is somewhat similar to the Probability of Improvement criterion. Note that
WEI can be directly interpreted as the weighted sum formulation of a multi-objective
formulation, as discussed in Section 1.4.2. Here the multi-objective formulation would
contain the two EI terms as the two objective functions. This is precisely the multi-
objective formulation of EGO proposed by Feng et al. [16], EGO-MO.

2.4.4 Generalized Expected Improvement (GEI)

In the original EGO paper, Jones et al. [25] noted that Kriging underpredicts the
standard deviation. This leads to EGO first exploiting close to the current predicted
objective function minimum, until the uncertainty in the region becomes very low. Then
only does EI perform a global search [25]. To address the problems associated with
the under prediction of standard deviation, Schonlau [44] suggested the Generalized
Expected Improvement (GEI) function. This function has a tuning parameter, which
allows the user to decide to put more emphasis on global exploration or local exploitation.
The derivation can be found in Schonlau [44]. Since GEI is not used in this thesis, it is
not detailed any further.

2.4.5 Maximizing the Infill Criteria (Acquisition Function)

In each iteration the infill sampling criterion maximum must be found. To find this
maximum can prove challenging. Most of the infill criteria are multi-modal, and have

23

© University of Pretoria

large areas with value of zero. These two characteristics render gradient based optimizers
unsuitable, unless a multi-start method is used. Jones et al. [25] suggested using a
branch and bound algorithm. Sasena [43] decided to use the DIRECT [24] algorithm.
Finding the maximum of EI is more challenging than we expected. We give details of
how we found the maximum of EI in Section 3.3.

Figure 2.4.1 shows how EGO progresses by maximizing the EI function. In the first
iteration, a random initial sample is selected and a Kriging surface is fit. Both the
true function and the predicted function are plotted. The infill sampling criterion value
is shown in green. The first three iterations are shown. In each iteration, the design
vector with the maximum infill sampling criterion value is selected and the true objective
function value for this design is evaluated.

2.5 Stopping Criteria

Different authors have different perspectives about how and when EGO should termi-
nate. Jones et al. [25] terminated when the maximum EI fell below a certain value,
while Sóbester et al. [47] recommended to run EGO for the available time budget.

Jones et al. [25] proposed terminating EGO when the maximum EI reaches 1% of the
maximum sampled value. Schonlau [44] proposed terminating algorithms using GEI as
when GEI1/g reaches 1% of the maximum sampled value.

Henkenjohann and Kunert [21], and Bichon [4] noted this stopping criteria does not take
the range of sampled values into account. Due to this phenomena, for this research, both
the domain x, and the sampled yexp values are scaled between zero and one.

In this research, we are specifically interested in what happens to EGO if it is run for an
extended amount of time as one would if following Sóbester et al. [47] recommendation
and we do not use termination criteria.

2.6 Computational Implementation

For this research, we have implemented the surrogate methods as described above in
Python. Scikit-learn [36] provides a computationally efficient Kriging implementation.

24

© University of Pretoria

(a) First Iteration

(b) Second Iteration

(c) Third Iteration

Figure 2.4.1: EGO progressing using EI as infill sampling criterion (also known as an acqui-

sition function). In each iteration the design which maximizes the infill sampling criterion is

selected. Kriging is refit, and the process repeats.

25

© University of Pretoria

Furthermore, optimization of the infill sampling criteria is preformed using DE [1] as
provided by the Scipy toolbox [26]. More on the computational implementation of this
project can be found in Appendix C.

2.7 EGO Problem Dimensionality

As briefly mentioned in Section 1.2 EGO is limited by the number of design variables it
can compute and authors typically recommend using not more than 10 design variables
[43]. Many recent works benchmarked their adaptations of EGO on mostly 2D to 6D
objective functions [2, 9, 16, 56]. However, Boukouvala and Ierapetritou [6] included
a test problem with 9 design variables and Feng et al. [15] applied EGO to an Aero-
dynamic optimization problem with 14 design variables. Although it falls outside the
scope of the current research, strategies to extend EGO to higher dimensional space
include performing sensitivity studies to reduce the number of design variables, and de-
composition of a problem into a series of smaller problems which are more tractable to
solve. An interested reader may find a further discussion of how EGO can be adapted
for higher dimensional space in Sasena [43].

2.8 Chapter Conclusions

In this chapter we discussed all of the building blocks necessary to implement EGO.
We can see that in each iteration EGO performs a trade-off between exploitation and
exploration.

We would like to use the inherent multi-objective characteristics of EGO to suggest
a parallelization strategy based on the multi-objective nature of EGO. But first we
investigate the behavior of classical EGO in the next chapter.

26

© University of Pretoria

Chapter 3

Classical EGO Characteristics and
Behaviour

3.1 Introduction

The aim of this research is to investigate a multi-objective parallelization strategy for
EGO. Before this is done, the characteristics and behaviour of EGO are investigated on
three scalable unconstrained test functions.

At each iteration of EGO, EI is maximized to determine the next design to be evaluated.
We demonstrate that this EI maximization problem is more challenging than literature
suggests. Heuristics are suggested to solve the EI maximization problem more robustly.

The chapter is concluded by investigating the exploitation and exploration behaviour of
EGO.

3.2 Test Functions

EGO is designed to optimize problems where objective function evaluations are expen-
sive to evaluate. However, in this study we use computationally cheap test functions
to allow a detailed study of EGO. By reporting the number of required function eval-
uations (hypothetical sequential implementation) or the number of required iterations
(hypothetical parallel implementation) it gives the reader an indication of how EGO

27

© University of Pretoria

would perform on realistic objective functions. Hence the computational cost of the
EGO algorithm is ignored in comparison to the computational cost required to evaluate
designs.

The three test functions are the n-dimensional Rosenbrock, Styblinsky-Tang, and Ras-
trigin functions. Each test function is considered in 2D, 3D, and 4D.

3.2.1 Rosenbrock

The Rosenbrock Function [51] is often referred to as a banana or valley function and is
given by

fRosen(x) =
n−2∑
i=0

[
100(xi+1 − x2i)2 + (xi − 1)2

]
, (3.2.1)

where n is the number of dimensions. We evaluate this objective function on xi ∈
[-2.048, 2.048]. It has one global minimum of fRosen(1., ..., 1.) = 0. It is a unimodal
objective function in 2D and 3D, and it is multi-modal for n > 3 [27]. The valley is
easy to find, but progress along the valley to locate the global minimizer is difficult for
some algorithms [37]. The 2D version of the Rosenbrock objective function is presented
in Figure 3.2.1.The yellow star shows the location of the global optimum.

(a) Contour Plot (b) Plot

Figure 3.2.1: 2D Rosenbrock Objective Function. Yellow star indicates the global minimum.

28

© University of Pretoria

3.2.2 Styblinsky-Tang

The Styblinsky-Tang Function [51] is a multi-modal objective function and has 2n local
minimums, where n is the number of dimensions. The function is given by

fStyb-Tang(x) =
1

2

n−1∑
i=0

(
x4i − 16x2i + 5xi

)
. (3.2.2)

This objective function is evaluated in the hypercube xi ∈ [-5,5]. It has one global
mimimum of fStyb-Tang(x

∗) = −39.16616570377016n, where x∗i = −2.90353375790172752

for all dimensions. This objective function is presented in Figure 3.2.2. The yellow star
shows the location of the global optimum.

(a) Contour Plot (b) Plot

Figure 3.2.2: Styblinsky-Tang Objective Function. Yellow star indicates the global minimum.

3.2.3 Modified Rastigrin Function

The Rastrigin function [51] is a highly multimodal function with many local minima,
but only one global minimum. We decided to modify the function slightly, by reducing
the domain and increasing the intensity of the parabola. Our modified version of the
Rastrigin function is given by

fRast(x) = 10 +
n−1∑
i=0

[
5x2i − 10 cos(2πxi)

]
. (3.2.3)

The modified Rastrigin function has 5n local minima, where n is the number of dimen-
sions. This objective function is evaluated in the hypercube of xi ∈ [-2,2]. It has one

29

© University of Pretoria

global mimimum of fRast(0, 0) = 0. This objective function is presented in Figure 3.2.3.
The yellow star shows the location of the global optimum.

(a) Contour Plot (b) Plot

Figure 3.2.3: Rastrigin Objective Function. Yellow star indicates the global minimum.

3.3 Maximizing EI

Finding the maximum of the EI function is required at each iteration, to locate the next
sample design to be evaluated. This maximization problem is much more challenging
than suggested in literature, due to

1. the highly multi-modal nature of EI [48],
2. the small basins of attraction of potential maximizers, and
3. for a significant portion of the design domain, the EI function value is close to

zero.

Different authors have used different strategies to find the maximum of EI. Jones et al.
[25] used a branch and bound algorithm and the definitions

∂EI
∂y

= −Φ

(
ymin − y(x)

σ(x)

)
< 0 (3.3.1)

and
∂EI
∂σ

= φ

(
ymin − y(x)

σ(x)

)
> 0. (3.3.2)

30

© University of Pretoria

Knowing that the decrease of y(x) and increase of σ(x) leads to higher values of EI,
Jones et al. [25] used these two values as proxies for EI. They implemented a branch
and bound algorithm. In each bounded region, they found the minimum of y(x) and
the maximum of σ(x). They used the location of these minimums and maximums and
computed EI at these locations. They compared the values and selected the maximum
EI value.

Subsequent authors have opted not to use the proxies Jones et al. [25] proposed, but
rather opted to use a brute force optimization approach using EI as the objective func-
tion. Recognizing the difficulties, Sóbester et al. [48] used a gradient based optimizer
with 1000 restarts. Feng et al. [16] used Differential Evolution (DE) with a population
size of 20 for 2D test problems. (Typically DE requires population sizes between 10 and
20 for a 2D problem.) We downloaded a EGO code by Muller [35] and found they use
a Genetic Algorithm to maximize EI.

Before we ran EGO with the intent to generate data, we wanted to make sure that our
implementation of EGO is able to find the maximum of EI. Our initial instinct was
to use DE. We used the Scipy [26] computational implementation of DE. The benefit
of this implementation is that is allows for a BFGS gradient-based approach to refine
the best solution obtained by DE by setting a “polish” argument. The aim is to find
the population size that would be sufficient to robustly find the maximum, however we
learned that only using DE to optimize EI is not sufficient. The reason is that there is
a small basin of attraction for a maximizer of EI (local or global) around the evaluated
design with the lowest function value. The difficulty of finding this solution is alleviated
by directly using this information.

To illustrate, consider the modified 2D Rastrigin function we defined in Section 3.2.3.
We would like to investigate the characteristics of EI after EGO has been run for some
iterations, and test whether a given maximization strategy is capable of finding the
maximum EI. Therefore we run EGO on this objective function for 44 iterations using
DE with a population size of 100 to find the maximum EI in each iteration. After the 44
iterations we are left with a set of sampled designs, Xexp and yexp. This set of sampled
design vectors, is used to set up a EI maximization benchmark problem.

Figure 3.3.1 shows the predicted objective function values, standard deviation, and
the EI values plotted in 2D. A legend is presented in Figure 3.3.2. To generate these
figures we used a find grid of 120 by 120 points. Note the areas where EI are at

31

© University of Pretoria

its largest, are in the regions where standard deviation are also large. There is no
perceivable spike in EI function in the region where the objective function is at its
minimum (x ≈ (0.5; 0.5)). However, when we zoom in around this predicted global
minimum, depicted in Figure 3.3.3, the global maximum of the EI function is in fact
located here.

As depicted the basin where EI has a value higher than that of the exploration basins
is less than 0.01% of the domain’s surface area, while the region around the basin has
EI values approaching zero. It is this characteristic which renders EI near impossible to
optimize without using additional information.

Since the exploitation basins are located at the global minimum of the Kriging function,
we can use this additional information to augment the search for the maximum of EI.
In addition, the EI basins of attraction based on exploration are relatively large. Hence
an evolutionary strategy using a large population size, many iterations and multi-start
should be able to locate these maximizers. The following strategy is therefore proposed
to find the maximum of EI:

1. Use DE (population size = 20×n) to find the minimum predicted objective function
value. Use a gradient-based method to refine the final result.

(a) Reduce each one of the design variable’s range to the 2% around the minimum
predicted objective function value.

(b) Run DE (population size = 20×n) on EI in this reduced design domain. Use
a gradient-based method to refine the final result.

2. Run DE (population size = 50×n) on EI in the full design domain. As before, use
a gradient-based method to refine the final result.

3. Compare the results from 1(b) and 2 and select the result with the maximum EI
value.

We tested two methods on the problem described above. Only using DE (population
size = 100) found this maximum one out of ten times, but the method described in the
list above found the maximum of EI ten out of ten times.

Additionally a convergence comparison of EGO is performed on our 3D modified Ras-
trigin test function, using only DE (population size = 150) to maximize EI or using
our proposed method to maximize EI. The results are averaged over the same set of

32

© University of Pretoria

(a) y(x) (b) σ(x) (c) EI

Figure 3.3.1: Domain Parameter Plots at the 44th iteration of EGO optimizing the modified

Rastrigin function. Note that in this figure, where IE is at its highest the uncertainty is also

high. However, (c) does not capture all of the characteristics of EI, therefore Figure 3.3.3

presents a zoomed in section of EI. A legend is presented in Figure 3.3.2.

Figure 3.3.2: Legend

Figure 3.3.3: Zoomed Section of EI in the vicinity of the minimum Kriging value. The

maximum EI value in this small basin of attraction is higher than that of the relatively larger

basins in Figure 3.3.1.

33

© University of Pretoria

20 DOEs and are depicted in Figure 3.3.4. The depicted average convergence error is
defined by

Average (log10(∆ymin)) = Average
[
log10

(
ymin − ftrue min

ftrue max − ftrue min

)]
. (3.3.3)

Figure 3.3.4: Convergence Comparison for two Methods Used to Solve EI. The method per-

forming the additional search converged to a higher accuracy than the method only performing

the single DE search.

(We give a more in depth overview of our definitions of convergence in Section 4.5).
EGO using only one DE run per iteration to maximize EI was only converged to an
accuracy of 10−5 in the 480 function evaluations, while our proposed method converged
to an accuracy of 10−7. This clearly demonstrates the impact that robust maximization
of EI has on the performance of EGO.

3.4 EGO Behaviour

3.4.1 Visualization Method

A visual study is now used to investigate the exploitation and exploration behaviour of
EGO. We ran EGO on three different 2D objective functions described in Section 3.2.

34

© University of Pretoria

In each iteration we plot the predicted objective function, the standard deviation, the
EI, and the Pareto front. We also map the Pareto optimal designs back to the design
domain.

To make the figures more recognizable, we plot each one of the design domain parameters
in a different color scheme. Figure 3.4.1 presents a legend to the figures. These color
schemes are used throughout this report.

Figure 3.4.1: Legend for Figures

We have compiled the complete visualization of EGO’s progression, and all these fig-
ures are included in an electronic appendix (See Appendix B). Here we summarize the
essential details.

Figure 3.4.2 (a) depicts the predicted objective function, (b) the standard deviation, (c)
the EI, and (d) the log10(EI), all for the 41st iteration. In each figure, the small black
circles represent previously sampled designs.

Each function has a maximum or minimum which is represented by a triangle. In Figure
3.4.2 (a), the gray triangle indicates the minimum of the predicted objective function.
The blue triangle in the bottom left corner of Figure 3.4.2 (b) indicates the maximum
standard deviation (σ(x)). The green triangles in Figures 3.4.2 (c)-(d) indicates the
maximum of the EI function, and this becomes the next design to be evaluated.

35

© University of Pretoria

(a) Objective Function Approximation (b) Uncertainty

(c) EI (d) log10(EI)

Figure 3.4.2: Domain Parameter Plots after 41 iterations on the Rosenbrock function. Legend

is presented in Figure 3.4.1.

36

© University of Pretoria

The global optimum of the Rosenbrock function is indicated with a yellow star. In
Figure 3.4.2 (a) sampled designs in the vicinity of the global optimum are evident. We
also observe that EGO has not sampled extensively in the areas where the predicted
function values are high, but it has sampled extensively in the valley. Figure 3.4.2
(b) demonstrates that the standard deviation is very low close to previously sampled
designs, and higher when further away.

As we have discussed in Section 2.5, in each iteration we rescale sampled values, yexp, to
fit between zero and one. Thus in Figure 3.4.2 (a) the predicted objective function values
range between 0 and 1.4. (Rescaling the sampled values between certain bounds before
the response surface is fit does not necessarily mean the predicted function values will
also fall in these bounds). We also scaled the design domain of each objective function
to fall inside the hypercube between zero and one.

As discussed in Section 1.5, we know that in each iteration EGO must perform a trade-
off between exploitation and exploration. For this reason, it is helpful to also visualize
the design space information in the criterion space. The two objective functions used
to construct the criterion space plot are

fexplore(x) = y(x) (3.4.1)

fexploit(x) = −σ(x). (3.4.2)

We use the negative of the standard deviation, −σ(x), because exploration would mean
to sample at the maximum of the standard deviation. Figure 3.4.3 shows the criterion
space plot for the two objectives defined in Equations (3.4.1) and (3.4.2). As indicated on
the plot, the two extremes of the Pareto front represent the minimum of the predicted
function and the maximum standard deviation respectively. All the criterion space
design vectors which do not fall on the Pareto front are also plotted in the background.
The square markers with the dark border constitute the Pareto front, while the markers
without a border constitute the design vectors and criterion space values generated with
the fine grid in the design domain.

The green triangle in Figure 3.4.3 indicates the maximum EI value, which must fall on
the Pareto front [18]. It is this design that will be sampled in the subsequent iteration
and it is depicted on the Pareto front to get a sense of the exploit or explore behaviour
of EGO in the current iteration.

Differentiating between exploitation or exploration is not trivial. Qualitatively we would

37

© University of Pretoria

like to know when EGO exploits, and when EGO explores. We decided to label iterations
that select designs with a predicted function value approximately coinciding with the
predicted minimum function value, y(x), as exploitation iterations. The other iterations
are considered to be exploration iterations.

Figure 3.4.3: Criterion space plot of y(x) and −σ(x). As in Figure 1.4.2 a fine grid is used

to plot the spread of the points, while the Pareto Optimal set is plotted as outlined squared.

Indicated on the figure are the maximum standard deviation (as measure of uncertainty), the

minimum of the predicted function, and the maximum EI value.

Figures 3.4.4 (a)-(c) depict three Pareto fronts generated using EGO, and these are
used to illustrate our reasoning. In Figure 3.4.4 (a) we display an iteration where
EGO selected a design approximately coinciding with the minimum of y(x). This we
label as exploitation. In Figure 3.4.4 (c) the selected design almost coincides with the
maximum standard deviation and we labeled this as strong exploration. In Figure 3.4.4
(b) the selected design lies approximately in the middle of the Pareto front. We decide
to label these design selections as weak exploration. Note that the design selected in
Figure 3.4.4 (b) has a predicted function value of 0.3. In the case of Figure 3.4.4 (b)
the predicted function values range between approximately zero and one. The selected
design is a third of the objective function range from the current predicted minimum,
therefore categorizing it as an exploration iteration.

38

© University of Pretoria

(a) Exploitation (b) Exploration (c) Strong Exploration

Figure 3.4.4: Using the same topography as Figure 3.4.3, sub-figures (a), (b), and (c) indicate

three different cases where designs are selected.

In Figures 3.4.3 and 3.4.4 we color-scaled the markers on the Pareto front to match
the color scaling of the predicted function values. In Figure 3.4.5 we plot the Pareto
front designs in the design domain. The color scaling is intended to help the reader to
relate the designs from the criterion space to design space. We also indicate the selected
designs with a large white circle. For classical EGO the selected design corresponds
with the maximum EI. However, when more design vectors are selected per iteration, it
depends on how the algorithm developer decides select the designs.

Figure 3.4.5: Exploitation Exploration Pareto Optimal Designs can be mapped back to the

Design Domain as illustrated in Section 1.4.

39

© University of Pretoria

3.4.2 Results and Discussion

The qualitative numerical experiments conducted in this chapter has indicated that
EGO has the following behaviour:

1. Phase 1: Objective function is not yet well approximated. Exploitation designs are
added, but because the additional sample contributes to the accuracy of objective
function, the location of the predicted objective function changes in each iteration.
The result is exploitation design vectors which help with the overall accuracy of
the response surface.

2. Phase 2: The predicted objective function has become more accurate, and EGO
has found a local basin and exploits this basin for a few iterations.

3. Phase 3: EGO has explored this local basin sufficiently, and if the standard devi-
ation in the rest of the domain is still high, EGO now starts to explore. If EGO
finds another basin with low predicted objective function values, EGO repeats
phase 2 for the new basin.

Our qualitative assessment corresponds with Schonlau’s [44] assessment that EGO will
usually first exploit then explore. Furthermore, it occurs often that in one iteration EGO
will exploit followed immediately with an iteration where EGO explores. In general, the
transition in EGO between exploitation and exploration is abrupt. In Chapter 4 we use
our understanding of the bare basics of EGO to propose a parallel sampling strategy for
EGO.

40

© University of Pretoria

Chapter 4

Multi-objective Parallelization of EGO

4.1 Introduction

Classical EGO only selected one set of design parameters to sample in each iteration.
In general, the modern day computing environment allows simultaneous evaluation of
different sets of design parameters. For instance, clusters can run several simultaneous
function evaluations, while even some laptops have 8 or 16 cores and are also capable
of doing parallel runs.

Additional sampling is the method which EGO employs to increase its knowledge about
the problem. The rate at which EGO’s knowledge about the problem increases would
also increase if EGO were to select multiple samples per iteration.

In this chapter an existing multi-objective parallelization of EGO, EGO-MO [16] is
first discussed to provide a reference point. We then propose our own parallelization
strategy for EGO, that is based on the exploitation and exploration objective funtions
on which EI is based. The proposed algorithm is named Simple Intuitive Multi-objective
ParalLElization of Efficient Global Optimization (SIMPLE-EGO).

4.2 Comparison Method: EGO-MO

EGO-MO [16] uses the speculated exploitation-exploration characteristics of the two
terms of the EI function. The algorithm starts by solving the Pareto front of the multi-

41

© University of Pretoria

objective optimization problem defined by:

Minimize fEI1(x) = −(ymin − y(x))Φ

(
ymin − y(x)

σ(x)

)
, (4.2.1)

fEI2(x) = −σ(x)φ

(
ymin − y(x)

σ(x)

)
. (4.2.2)

Figure 4.2.1 gives a summary of the EGO-MO algorithm. EGO-MO uses a Multi-
Objective Evolutionary Algorithm to find a Pareto front. Having found the Pareto
optimal set, designs on the Pareto front that are closer than some Euclidean distance
to previously sampled designs are discarded. Thereafter, EGO-MO starts selecting the
Pareto front designs to sample. EGO-MO first selects the two extreme Pareto front
designs. To select the remaining designs, EGO-MO uses c-means clustering. Once the
Pareto front designs have been clustered, EGO-MO selects a design from each cluster
that maximizes the Euclidean distance from the other designs in the domain.

Figure 4.2.1: EGO-MO Algorithm

42

© University of Pretoria

In our implementation of EGO-MO, we followed this same procedure. However, in-
stead of c-means clustering, we use k-means clustering as implemented by the Sklearn
toolbox [36].

We present a more in depth analysis of the behaviour and characteristics of EGO-MO
in Appendix D, but we present a short summary of our results here.

In each iteration EGO intelligently selects a design to sample which lies on the
(y(x),−σ(x)) Pareto front. For the most part, EGO-MO follows this behaviour. To
differentiate between the (y(x),−σ(x)) and the Pareto front solved by EGO-MO this
text refers to the EGO-MO Pareto front as the EI-Pareto front. The EI-Pareto front
usually also lies on the (y(x),−σ(x)) Pareto front, but covers a smaller portion of the
(y(x),−σ(x)) Pareto front. Figure 4.2.2 (a) illustrates the EI-Pareto front, while (b)
illustrates the (y(x),−σ(x)) Pareto front for the same response surface. Both the plots
are in the (y(x),−σ(x)) criterion space. Note the EI-Pareto optimal designs covers a
reduced section of the (y(x),−σ(x)) Pareto front.

(a) EI-Pareto Optimal Set (b) Exploit-Explore Pareto Optimal Set

Figure 4.2.2: (y(x),−σ(x)) Criterion Space Plot. It can be seen that the EI-Pareto front

only covers a small portion of the (y(x),−σ(x)) Pareto front. Also plotted on the figure are

the function values generated by a find grid as explained in Figure 1.4.2.

As a result the design vectors selected by EGO-MO are often clustered. We discuss and
illustrate this in Appendix D. Clustering can be a desirable feature, but in some cases
the selected design vectors are clustered where the predicted objective function values
are high. Such behaviour is typically is not desirable.

43

© University of Pretoria

In Section 3.3 we discussed the difficulties associated with finding the Maximum of
EI. EGO-MO encounters the same challenges. As the algorithm progresses the EI terms
reduce to zero and towards the later stages, the EI-multi-objective optimization problem
becomes difficult to solve. Figure 4.2.3 illustrates a criterion space plot after EGO-MO
has sampled 220 designs. In this case NSGA-II was unable to solve the EI-Pareto
optimal set (yellow-green color scaling), but was able to find the (y(x),−σ(x)) Pareto
front (blue-red color scaling). More details are presented in Appendix D.

Figure 4.2.3: NSGA-II unable to solve EI-Pareto Front: The outlined blue and red colour

scaled squares indicate the (y(x),−σ(x)) Pareto front which was solved by NSGA-II. The

outlined yellow and green colour scaled squares indicate the output from NSGA-II trying to

solve the EI-Pareto front. It is evident NSGA-II is no longer capable of solving the EI-Pareto

front. Also plotted on the figure are the function values generated by a find grid as explained

in Figure 1.4.2.

To summarize, both the EI-Pareto front and the (y(x),−σ(x)) Pareto front include the
maximum EI design. The major differences between the two criterion spaces, is that
the EI-Pareto front covers small region of the (y(x),−σ(x)) Pareto front. Furthermore,
towards the end of an optimization run, the EI Pareto front becomes difficult to solve,
while the (y(x),−σ(x)) Pareto front can still be solved. Despite these drawbacks EGO-
MO performs well as an optimization algorithm and is used as a comparison for SIMPLE-
EGO.

44

© University of Pretoria

4.3 SIMPLE-EGO

Recall from Section 2.4.2 that Ginsbourger [18] proved that the maximum EI design is
in the (y(x);−σ(x)) Pareto optimal set. This result directly suggests the two objective
functions for a multi-objective EGO algorithm: minimize the predicted function value
y(x) while maximizing the uncertainty σ(x). It is intuitive to label these two objec-
tive functions as explore and exploit objective functions. Compared to the EGO-MO
objectives (the two terms of the EI function), the exploit-explore interpretation is more
direct. Our proposed objective functions are also directly available from any standard
Kriging implementation.

4.3.1 Solving and selecting Pareto front designs

The Pareto optimal set is solved using a multi-objective optimization algorithm called
Non-dominated Sorting Genetic Algorithm (NSGA-II) [13]. In each iteration of SIMPLE-
EGO, we solve for 200 Pareto optimal designs approximately equispaced along the Pareto
front in criterion space.

The next step is to develop a strategy to select designs from the Pareto optimal set,
to be evaluated in the subsequent iteration. Consider the Pareto front depicted in
Figure 4.3.1 (a reprint of Figure 3.4.3). For convenience the legend explaining the
colour scheme is reprinted in Figure 4.3.2. Notice that the two extremes of the Pareto
front are the minimum predicted function value, and the maximum standard deviation.
The maximum EI design is also indicated. For SIMPLE-EGO, we always select the
designs associated with the minimum predicted function value, the maximum standard
deviation, and the maximum of EI. In Sections 4.3.2 and 4.3.3 we discuss how the
remainder of the designs are selected.

4.3.2 Design Selection

Often users will have in depth knowledge about the problems they are optimizing. Their
different objective functions will require algorithms with different characteristics. It
would be ideal from a user’s perspective to be able to control the main characteristics
of the chosen algorithm using simple tuning parameters. This section discusses how
we biased SIMPLE-EGO to have more explorative or exploitative characteristics, using

45

© University of Pretoria

Figure 4.3.1: Reprint of Figure 3.4.3: Criterion space plot of y(x) and −σ(x). As in Figure

1.4.2 a fine grid is used to plot the spread of the points, while the Pareto Optimal set is plotted

as outlined squared. Indicated on the figure are the maximum standard deviation (as measure

of uncertainty), the minimum of the predicted function, and the maximum EI value.

Figure 4.3.2: Legend for Figures

46

© University of Pretoria

tuning parameters.

Presume that a Pareto optimal set of designs have been found. We can either select
designs close to the minimum predicted function value, close to the maximum standard
deviation, or evenly spread out over the Pareto front. Figure 4.3.3 shows two different
options we consider reasonable to select the designs. Figure 4.3.3 (a) selects the designs
on the Pareto front that are close to the predicted minimum function value. Thus this
method for design selection we classify as exploitative. Figure 4.3.3 (b) selects designs
evenly spread out over the Pareto front, hence this method is labeled as explorative.

(a) Exploitative Selection (b) Explorative Selection

Figure 4.3.3: Criterion space plots of different options for selecting designs on Pareto front.

The selected designs are plotted in large white or gray circles The spread of the design selection

can bias the search towards (a) exploitation or (b) exploration. The rest of the figure follows

the typology of Figure 3.4.3.

In Figure 4.3.4 we show a selection of designs biased towards maximum standard devia-
tion. At first glance one would expect this method to have good explorative character-
istics. However, this is not the case and Section 4.4 provides details why this selection
is not wise.

4.3.3 Parameterization of Design Selection

In this section we define the parameters we used to tune the design selection to be more
explorative or exploitative. The NSGA-II method used to solve the Pareto front, utilizes

47

© University of Pretoria

Figure 4.3.4: Unwise Choice for Explorative Design Vector Selection when compared to

Figure 4.3.3 (b).

crowding to ensure an even spread of Pareto front designs in the criterion space. We use
an ordered list of the Pareto optimal designs to “linearize” the Pareto front, as depicted
in Figure 4.3.5. The selection of Pareto optimal designs then reduces to selecting indices.

Once we have linearized the Pareto front, Figure 4.3.6 illustrates the method we used to
decide which of the Pareto optimal designs to select. We use a transfer function which
maps linearly spaced input to a log-spaced output. Both input and output are scaled
between zero and one. By parameterizing the transfer function, the selected designs can
be biased towards exploration or exploitation.

48

© University of Pretoria

Figure 4.3.5: NSGA-II solves a Pareto Optimal set of designs approximately equally spaced

on the Pareto Front. We use this structure, and linearizing the Pareto front in order to select

the designs to sample.

49

© University of Pretoria

Figure 4.3.6: By using a tuning parameter, the selection can be biased towards the exploita-

tion or exploration end of the Pareto front. The transfer function depicted defines our method

of biasing the selection.

We define the linear spaced input as αlin = [α0, α1, . . . , αni
], where ni is the number

of designs sampled per iteration. α0 is zero, while αni
is one. The Pareto optimal

designs are equally spaced in the criterion space. We introduce two parameters, the
scale parameter a and the distance parameter b. The scale parameter controls the
crowding of points towards one side of the Pareto front. For instance, if a = 0.01 is
selected, the output of the transfer function is linearly spaced, while if a is much larger,
such as a = 60, the output of the transfer function is clustered to one side of the Pareto
Front. The distance parameter, b, controls whether the furthest endpoint of the Pareto
front is included or not. As indicated on Figure 4.3.6, b is the distance between the
furthest selected design and the endpoint of the Pareto front.

The transfer function is defined as

αscaled =

(
log10(a(αlin) + 1)

log10(a+ 1)
+ c

)
× 1

1 + c
, (4.3.1)

50

© University of Pretoria

where c is based on the distance parameter, c = b/(1−b). To switch between exploitation
and exploration biased selection, we reverse the values of αscaled, using

Reverse(αscaled) = −(αscaled − 1). (4.3.2)

To use the αscaled values to select designs from the Pareto front, the Pareto front indices
are given by

round(αscaled × Number of Pareto front designs). (4.3.3)

To illustrate the effect these two parameters have, we consider three cases. We generate
a method which exploits more than it explores, a method which samples uniformly over
the Pareto front, and a method which selects designs close to the maximum standard
deviation design. Figure 4.3.7 depicts the three Cases, when ten designs must be selected
from the Pareto front. The three designs which are always selected are indicated in white
on the figures (the end-points and the maximum EI design). The grey markers are the
additional selected designs.

4.3.4 Alternative design selection

The methods considered in this thesis select designs from the Pareto optimal set, us-
ing metrics defined in the criterion space. Sampling methods defined in the design
space should also be considered in future work, such as the clustering selection method
employed by EGO-MO.

4.4 SIMPLE-EGO Visualization

We ran the three SIMPLE-EGO methods depicted in Figure 4.3.7 on the 2D objective
functions we described in Chapter 3. We ran these methods for three and ten additional
designs per iteration. The results from these runs are summarized graphically and are
available in the electronic appendix (See Appendix B).

The behaviour of the SIMPLE-EGO Exploit and the SIMPLE-EGO Explore methods
is as desired. These methods result in designs that cover the design domain, and when
designs are added in clusters, they are generally added close to the predicted objective
function minimum. However, the characteristics of the SIMPLE-EGO Unwise Explore
method are undesirable. As an example of this unwanted behaviour, Figure 4.4.1 shows

51

© University of Pretoria

(a) SIMPLE-EGO Exploit (a=60, b=0.5)

(b) SIMPLE-EGO Explore (a=0.01, b=1/(Number of Points per Stage))

(c) SIMPLE-EGO Unwise Explore (a=60, b=0.5, reversed)

Figure 4.3.7: Different Options for selecting ten designs on the Pareto Front. The left side of

the figures above represents exploitation, while the right side represents the exploration. The

circles represent the designs selected to sample. The more the designs are selected towards the

left, the more the algorithm exploits. However, selecting designs towards the right of does not

lead to desirable exploitation characteristics (Section 4.4). The endpoints are always included

for sampling, as well as the design which maximizes EI.

52

© University of Pretoria

the design domain plots as well as the criterion space plots for the SIMPLE-EGO Unwise
Explore method’s 9th iteration. In this case 10 designs are added per iteration. Figure
4.4.2 displays the design space plot of where the selected designs lie in the design domain.
The selected designs lie in a tight cluster in the corner of the domain. Tight clustering is
acceptable if these designs lie close to the minimum predicted objective function value.
When designs are sampled close to the minimum predicted objective function value, this
increases the accuracy of the Kriging surface in this important region. The aim of the
exploration designs is to locate new local basins. The same information provided by
the eight designs added in a tight cluster in Figure 4.4.2 could have been provided by a
single design, thus wasting valuable computational resources. Therefore we would not
recommend using such a method, and we discard this method of selecting designs for
the remainder of this report.

(a) Predicted Objective Func-

tion
(b) Uncertainty (c) Criterion Space Plot

Figure 4.4.1: Design space and criterion space plots at iteration 9 for the Unwise Explore

method running on the Styblinsky-Tang function. Notice how designs are selected towards the

exploration side of the Pareto front in (c).

Now that we have visually studied the different methods, we would also like to investigate
their convergence characteristics. Section 4.5 discusses our methodology and results.

53

© University of Pretoria

Figure 4.4.2: Design domain plot of Pareto front and selected design vectors. The small

black circles represent the previously sampled designs, while the large white and gray circles

represent the designs selected to sample in this iteration. In this case the selected designs

are tightly clustered around the area of maximum uncertainty, at a high function value. Such

behaviour is not favourable.

54

© University of Pretoria

4.5 Convergence Comparison

4.5.1 Method

In this section we compare their convergence performance of EGO, EGO-MO [16], and
the two SIMPLE-EGO methods.

As any algorithm progresses the difference between the true minimum and the mini-
mum sampled value should decrease. This decrease of error as the number of iterations
increases, is referred to as the convergence of the function, and it is defined as

Convergence Error = log10(∆ymin) = log10

(
ymin − ftrue min

ftrue max − ftrue min

)
. (4.5.1)

Because each LHS DOE is based on a randomized design, the convergence results for a
certain method on a certain objective function will be different if a different LHS DOE
is used. Thus we average the convergence error over 20 runs for each method, using the
same set of initial DOEs for the different methods. The methods were run on the nine
different test functions, for the 2D, 3D and 4D instances. Using the same test functions
in varying dimensions should give us an indication of how the methods scale. The initial
DOE sizes were 10, 32, and 43 for the 2D, 3D, and 4D cost functions respectively.

The classical EGO algorithm proceeded sequentially, selecting one new design per it-
eration. EGO-MO and SIMPLE-EGO proceeded in parallel and selected three or ten
additional designs per iteration.

4.5.2 Individual Results and Discussion

Before we present averaged results, we first wanted to check whether the average is
indicative of the convergence of the method. For each one of the methods, on each one
of the test functions we constructed an individual convergence plot.

Figure 4.5.1 shows an example of an individual convergence plot. We plot the mean,
maximum and minimum error as the method progresses. Furthermore, at each iteration,
the standard deviation can also be computed for the 20 runs. In the plot, we shade one
standard deviation around the mean. If the difference between the minimum and the
maximum, and the standard deviation are small, it would be safe to assume that the
mean is a good indication of the convergence characteristics of that method on that test

55

© University of Pretoria

function.

Figure 4.5.1: Convergence Plot of SIMPLE-EGO Exploit on the Styblinsky-Tang Objective

Function

In Figure 4.5.2 we present the case with the most variation: SIMPLE-EGO, three designs
per iteration, on the 3D Modified Rastrigin test function. As a comparison we also
present the results for the same method, on the 2D version of the same test function
in Figure 4.5.3), and the results from running SIMPLE-EGO Explore with ten samples
per stage on the 3D modified Rastrigin test function in Figure 4.5.4. We encountered
large variances specifically for the SIMPLE-EGO method, selecting three designs per
iteration on both the 3D and 4D Rastrigin objective functions.

We assume we encounter the large variances on the three samples per iteration SIMPLE-
EGO methods, because this method is not guaranteed to sample in the middle of the
Pareto front. The higher the number of dimensions, the larger the design domain, and
the larger the surface area of the edges. The standard deviation function tends to be
highest along the edges and in the corners, until these regions have been been explored
sufficiently. The SIMPLE-EGO method’s selection of designs, which always includes the
two extremes of the Pareto front, would imply that SIMPLE-EGO is adding one design at
the current predicted objective function minimum, one design at the current maximum
standard deviation, and one design at the maximum EI value. This maximum EI design
is likely close to the current predicted objective function minimum. This implies that
the SIMPLE-EGO method is probably exploiting a local basin, and exploring the edges.

In contrast to this, when adding ten designs per iteration the SIMPLE-EGO method
selects the same three designs as the three designs per iteration method, but also adds 7

56

© University of Pretoria

Figure 4.5.2: Convergence Plot for SIMPLE-EGO Exploit, ten samples per iteration, on the

modified 3D Rastrigin objective Function

Figure 4.5.3: Convergence Plot for SIMPLE-EGO, three samples per iteration, on the mod-

ified 2D Rastrigin objective Function

Figure 4.5.4: Convergence Plot for SIMPLE-EGO, ten samples per iteration, on the modified

3D Rastrigin objective Function

57

© University of Pretoria

other designs from the Pareto front. These designs are likely to be distributed through-
out the design domain, rather than biased towards the edges and corners. These designs
assist SIMPLE-EGO, selecting 10 designs per iteration, to find the global basin in fewer
function evaluations as compared to the three designs per iteration method. This be-
haviour is deduced by comparison of Figure 4.5.2 to Figure 4.5.4.

The 2D Rastrigin function has a smaller design domain, and relatively less area around
the edges. The 2D problem only has 25 local minima, where the 3D and 4D problems
have 125 and 625 local minima respectively. For these two reasons, in 2D the convergence
problem is not as pronounced as in 3D and 4D. Figure 4.5.3 shows the convergence
behaviour of SIMPLE-EGO, adding three designs per iteration, on the 2D modified
Rastrigin function.

With the exception of the Rastrigin function, the other individual convergence plots are
similar to Figure 4.5.1, which has small variance. The 63 individual convergence graphs
are available in the electronic appendix (See Appendix B).

4.5.3 Combined Results

To compare the different methods with each other, we plot the average convergence
error in Figures 4.5.5 to 4.5.22. The average plotted convergence error is defined as

Average (log10(∆ymin)) = Average
[
log10

(
ymin − ftrue min

ftrue max − ftrue min

)]
. (4.5.2)

Classical EGO is represented by a solid gray line. The methods selecting three designs
per iteration are plotted using a short dashed line, while the methods selecting ten
designs per iteration are plotted using a longer dashed line.

For each objective function we present two plots. The first plot is the convergence
error versus the iteration count. This plot serves as a measure of how the different
methods performed on wall clock time. Wall clock time is the time it takes from when
the method is started till when the method is finished. Therefore it is assumed that the
computational device used has sufficient parallel capacity that it takes the same amount
of time to perform one, three, or ten design evaluations.

The second plot shows convergence error versus the number of function evaluations. We
would expect that there could be a negative consequence when running EGO in parallel.
When running sequentially, EGO has the knowledge of all the previous designs before

58

© University of Pretoria

it makes the current selection. However, when running in parallel, the method also has
the knowledge of all the previously sampled designs, but it does not have the knowledge
about the results from the designs selected in the current iteration. Thus we expect that
some of the selections made by the parallel methods will be naive. Parallelization should
reduce wall clock time, but is likely to increase the total number of function evaluations.
The convergence error versus number of function evaluation plots attempt to quantify
this impact.

4.5.4 Discussion of Results

From the convergence error versus iteration count results, we can see that an increase
in the number of samples per iteration, leads to a reduction in the number of iterations
necessary to reach a certain accuracy. For a computational optimization problem this
would imply parallelization leads to a reduction of wall clock time.

In contrast to parallelization leading to a reduction in wall clock time, in most cases
parallelization leads to an increase in the number of function evaluations required to
reach a certain accuracy. The implication of this is that parallelization causes an increase
in total CPU time. The exception was the modified Rastrigin function in 3D and 4D.
In these cases, EGO, which only samples one design vector per iteration, required more
function evaluations to reach convergence than the SIMPLE-EGO methods. This is
because Kriging underpredicts the standard deviation and EGO is known to be an
exploitative method [25]. Because SIMPLE-EGO is more explorative than EGO, it
is able to converge in less function evaluations than EGO on the modified Rastrigin
function.

In Section 4.2 we mentioned that EGO-MO has similar behaviour to EGO. We men-
tioned that both methods are more geared toward exploitation than exploration. We
can see this to be true by how fast EGO-MO initially converges on the less multi-
modal Styblinsky-Tang and Rosenbrock functions, while EGO-MO has more difficulty
converging on the highly multi-modal 3D and 4D modified Rastrigin functions.

Another prominent feature of EGO-MO is that it appears to have an initial exploit
phase, where it converges quickly, followed by an explore phase where its convergence
slows. This could be due to numerical aspects of EI reducing to zero as the iteration
count increases. In Chapter 3 we investigated EI and discussed the challenges associated

59

© University of Pretoria

Figure 4.5.5: Convergence Error versus Iteration Count Converging on the 2D Modified

Rastrigin Function

Figure 4.5.6: Convergence Error versus Number of Function Evaluations as Methods Con-

verge on the 2D Modified Rastrigin Function

60

© University of Pretoria

Figure 4.5.7: Convergence Error versus Iteration Count as Methods Converge on the 3D

Modified Rastrigin Function

Figure 4.5.8: Convergence Error versus Number of Function Evaluations as Methods Con-

verge on the 3D Modified Rastrigin Function

61

© University of Pretoria

Figure 4.5.9: Convergence Error versus Iteration Count as Methods Converge on the 4D

Modified Rastrigin Function

Figure 4.5.10: Convergence Error versus Number of Function Evaluations as Methods Con-

verge on the 4D Modified Rastrigin Function

62

© University of Pretoria

Figure 4.5.11: Convergence Error versus Iteration Count as Methods Converge on the 2D

Rosenbrock Function

Figure 4.5.12: Convergence Error versus Number of Function Evaluations as Methods Con-

verge on the 2D Rosenbrock Function

63

© University of Pretoria

Figure 4.5.13: Convergence Error versus Iteration Count as Methods Converge on the 3D

Rosenbrock Function

Figure 4.5.14: Convergence Error versus Number of Function Evaluations as Methods Con-

verge on the 3D Rosenbrock Function

64

© University of Pretoria

Figure 4.5.15: Convergence Error versus Iteration Count as Methods Converge on the 4D

Rosenbrock Function

Figure 4.5.16: Convergence Error versus Number of Function Evaluations as Methods Con-

verge on the 4D Rosenbrock Function

65

© University of Pretoria

Figure 4.5.17: Convergence Error versus Iteration Count as Methods Converge on the 2D

Styblinsky-Tang Function

Figure 4.5.18: Convergence Error versus Number of Function Evaluations as Methods Con-

verge on the 2D Styblinsky-Tang Function

66

© University of Pretoria

Figure 4.5.19: Convergence Error versus Iteration Count as Methods Converge on the 3D

Styblinsky-Tang Function

Figure 4.5.20: Convergence Error versus Number of Function Evaluations as Methods Con-

verge on the 3D Styblinsky-Tang Function

67

© University of Pretoria

Figure 4.5.21: Convergence Error versus Iteration Count as Methods Converge on the 4D

Styblinsky-Tang Function

Figure 4.5.22: Convergence Error versus Number of Function Evaluations as Methods Con-

verge on the 4D Styblinsky-Tang Function

68

© University of Pretoria

with finding the maximum of EI. The two objectives used by EGO-MO tend towards
zero as the optimization progresses and it becomes increasingly harder to find the Pareto
front. We present a more in depth discussion of EGO-MO in Appendix D.

In reality, the SIMPLE-EGO Explore and SIMPLE-EGO Exploit methods are the same
for three samples per iteration, because both of them are selecting the two Pareto front
extremes, and the maximum EI design. Thus we would expect the same convergence
characteristics. However, for SIMPLE-EGO that adds ten designs per iteration, we
expect that the tuning parameter will have an effect. We notice the convergence char-
acteristics for the explorative and the exploitative methods match closely throughout.
Although the parameterization we have put forward does not seem to have a large im-
pact on these highly multi-modal test problems, we do believe that design selection is
important and future research opportunities include investigating different design vector
selection methods.

To conclude, both the parallelization methods EGO-MO and SIMPLE-EGO decrease
the number of iterations to reach a certain accuracy. Similar to EGO, EGO-MO is
geared towards exploitatation, while the SIMPLE-EGO methods we have defined have
more explorative characteristics. Therefore for highly multi-modal problems, SIMPLE-
EGO should be preferred. If a user would like to use EGO-MO we would recommend
also including the design vector which maximizes the EI function. Then at least one
sensible new design is evaluated when the EGO-MO Pareto front becomes difficult to
find. We expect such a strategy would perform well on unimodal problems.

69

© University of Pretoria

Chapter 5

Conclusion

In this thesis we have investigated the characteristics and behaviour of EGO. A further
focus of this research is the multi-objective parallelization of EGO.

In each iteration EGO fits a Kriging surface to the response of evaluated designs. Then,
using the objective function value and the standard deviation (as measure of uncertainty)
predicted by the Kriging surface, EGO selects a subsequent design. In each iteration
EGO must decide if it will exploit or explore. The method EGO uses to make this
decision is to maximize the EI infill sampling criterion.

Part of our investigation included how to find the maximum of EI. We were surprised at
the difficulty of this optimization problem. We found that after a few iterations, EI has
small basins which have higher EI values than some of the larger basins. These small
basins are difficult to find using most optimization algorithms. In 2D, the basin covered
approximately 0.01% of the design domain. However, we know that this basin must
be located close to the minimum predicted objective function value. We thus propose
a two-step heuristic to find the maximum EI value. We recommend using a stochastic
optimization method localized around the predicted objective function minimum, as well
as using a stochastic method in the rest of the domain. The results can be compared
and the highest EI value selected.

In each iteration EI selects on design to sample. Since Jones et al. [25] suggested the
EGO method in 1998, the objective of computational resources have decreased, while
their capabilities have increased. We expected EGO would converge to the minimum
faster if EGO selects more designs per iteration. We proposed a parallelization strategy

70

© University of Pretoria

called SIMPLE-EGO, which uses the multi-objective characteristics of EGO. In each
iteration we find the Pareto optimal set of the objective function pair (y(x),−σ(x)).
We then select designs from the Pareto optimal set to evalute in the subsequent iteration.

We compared our SIMPLE-EGO method to a method from literature, EGO-MO [16].
We found that both SIMPLE-EGO and EGO-MO reduce the number of iterations till
convergence is reached. We noticed some detrimental behaviour of EGO-MO, such as
difficulties solving the Pareto front.

In our three samples per iteration method, we noticed that the method for design se-
lection we proposed may not yet be optimal, and there is scope for research comparing
different methods of design vector selection. Specifically, we anticipate that selecting
designs from the Pareto optimal set should use criteria defined in the design domain.

We have also identified another area for future research opportunity. In this study
we did not exceed ten new designs per iteration. We suspect that if more designs are
added per iteration, exploration clustering would occur, essentially wasting CPU time.
A possible solution would be to use a Kriging believer strategy [44, 19] and SIMPLE-
EGO together. Furthermore, in this study we limited the test problems to 4D. In future
work we would also like to include a demonstration of SIMPLE-EGO solving higher
dimensional problems, or real world engineering problems.

To conclude, EGO is an efficient optimization algorithm which aims to use few function
evaluations to reach an optimal solution. We would recommend using multi-objective
optimization as a parallelization strategy for EGO.

71

© University of Pretoria

Bibliography

[1] J. S. Arora. Introduction to Optimum Design. Academic Press, 2012.

[2] A. Basudhar, C. Dribusch, S Lacaze, and S. Missoum. Constrained efficient global
optimization with support vector machines. Structural and Multidiscplinary Opti-
mization, 46:201–221, 2012.

[3] B. Betrò. Operations Research ’91: Extended Abstracts of the 16th Symposium
on Operations Research held at the University of Trier at September 9–11, 1991,
chapter Bayesian Methods in Global Optimization, pages 16–18. Physica-Verlag
HD, 1991.

[4] B. J. Bichon. Efficient Surrogate Modeling for Reliability Analysis and Design. PhD
thesis, Vanderbilt University, 2010.

[5] F. Biscani, D. Izzo, and C.H. Yam. Parallel global multiobjective optimizer. Re-
trieved July 1, 2015, from http://esa.github.io/pygmo/.

[6] F. Boukouvala and M. G. Ierapetritou. Derivative-free optimization for expen-
sive constrained problems using a novel expected improvement objective function.
AIChE Journal, 60(7):2462–2474, 2014.

[7] M. Caramia and P. Dell’Olmo. Multi-objective Management in Freight Logistics: In-
creasing Capacity, Service Level and Safety with Optimization Algorithms. Springer,
2008.

[8] R. Carnell. Latin hybercube samples. Retrieved 5 February, 2015, from https:

//cran.r-project.org/web/packages/lhs/lhs.pdf, 2016.

[9] A. Chaudhuri and R. T. Haftka. A stopping criterion for surrogate based opti-
mization using ego. In 10th World Congress on Structural and Multidisciplinary
Optimization.

72

© University of Pretoria

http://esa.github.io/pygmo/
https://cran.r-project.org/web/packages/lhs/lhs.pdf
https://cran.r-project.org/web/packages/lhs/lhs.pdf

[10] D. D. Cox and S. John. Multidisciplinary Design Optimization: State of the Art,
chapter SDO: A statistical method for global optimization, pages 315–329. SIAM,
1997.

[11] N. A. C. Cressie. The origins of kriging. Mathematical Geology, 22(3):239–252,
1990.

[12] N. A. C. Cressie. Statistics for Spatial Data. John Wiley and Sons, 1991.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Maeyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182–197, 2002.

[14] J. F. Elder IV. Global Rd optimization when probes are expensive: the GROPE
algorithm. In Proceedings of the 1992 IEEE International Conference on Systems,
Man, and Cybernetics, 1992.

[15] Z. Feng, T. Yang, J. Ge, Q. Tang, and Y. Ma. Efficient aerodynamic optimization
using a multiobjective optimization based framework to balance the exploration
and exploitation. In 11th World Congress on Structural and Multidisciplinary Op-
timisation, 2015.

[16] Z. Feng, Q. Zhang, Q. Zhang, Q. Tang, T. Yang, and Y. Ma. A multiobjective opti-
mization based framework to balance the global exploration and local exploitation
in expensive optimization. Journal of Global Optimization, 61:677–694, 2015.

[17] L. Gautier. rpy2. Retrieved 5 February 2015, from http://rpy2.readthedocs.

io/en/version_2.7.x/, 2016.

[18] D. Ginsbourger, R. Riche, and L. Carraro. A multi-points criterion for deterministic
parallel global optimization based on gaussian processes. HAL, 2008.

[19] D. Ginsbourger, R. Riche, and L. Carraro. Kriging is well-suited to parallelize
optimization. In Y. Tenne and Goh C., editors, Computational Intelligence in
Expensive Optimization Problems, volume 2. Springer, 2010.

[20] T. Hengl. A Practical Guide to Geostatistical Mapping. University of Amsterdam,
2009.

73

© University of Pretoria

http://rpy2.readthedocs.io/en/version_2.7.x/
http://rpy2.readthedocs.io/en/version_2.7.x/

[21] N. Henkenjohann and J. Kunert. An efficient sequential optimization approach
based on the multivariate expected improvement criterion. Quality Engineering,
19:267–280, 2007.

[22] T. Ishikawa and M. Matsunami. An optimization method based on radial basis
functions. IEEE Transactions on Magnetics, 33(2), 1997.

[23] T. Ishikawa, Y. Tsukui, and M. Matsunami. A combined method for the global
optimization using radial basis function and deterministic approach. IEEE Trans-
actions on Magnetics, 35(3):1730–1733, 1999.

[24] D. R. Jones. A taxonomy of global optimization methods based on response sur-
faces. Journal of Global Optimization, 21:345–383, 2001.

[25] D. R. Jones, M. Schonlau, and W. J Welch. Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization, 13:455–492, 1998.

[26] E. Jones, T. Oliphant, Peterson. P., et al. SciPy: Open source scientific tools for
Python. Online, 2001.

[27] S. Kok and C. Sandrock. Locating and characterizing the stationary points of the
extended Rosenbrock function. Evolutionary computation, 17(3):437–453, 2009.

[28] H. J. Kushner. A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. Journal of Basic Engineering, 86(1):97–
106, 1964.

[29] D. J. Lizotte. Practical Bayesian Optimization. PhD thesis, University of Alberta,
2008.

[30] J. D. Martin and T. W. Simpson. Use of kriging models to approximate determin-
istic computer models. AIAA Journal, 43(4):853–863, 2005.

[31] G. Matheron. Kriging or polynomial interpolation procedures. CIMM Transactions,
70:240–244, 1967.

[32] M. D. Mckay. Latin hypercube sampling as a tool in uncertainty analysis of com-
puter models. In Proceeding WSC ’92 Proceedings of the 24th conference on Winter
simulation, pages 557–564, 1992.

74

© University of Pretoria

[33] J. Mockus. Application of bayesian approach to numerical methods of global and
stochastic optimization. Journal of Global Optimization, 4(4):347–365, 1994.

[34] J. Mockus, V. Tiesis, and A. Zilinskas. The application of bayesian methods for
seeking the extremum. Towards global optimization, 2(117-129):2, 1978.

[35] J. Muller. User guide for modularized surrogate model toolbox. Tampere University
of Technology Department of Mathematics, 2012.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[37] V. Picheny, T. Wagner, and D. Ginsbourger. A benchmark of kriging-based in-
fill criteria for noisy optimization. Structural and Multidisciplinary Optimization,
48(3):607–626, 2013.

[38] W. Ponweiser, T. Wagner, and M. Vincze. Clustered multiple generalized expected
improvement: A novel infill sampling criterion for surrogate models. In IEEE
Congress on Evolutionary Computation, 2008.

[39] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2014.

[40] C. E. Rasmussen and K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[41] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of
computer experiments. Statistical Science, 4(4):409–435, 1989.

[42] T. J. Santner, B. J. Williams, andW. I. Notz. The Design and Analysis of Computer
Experiments. Springer Series in Statistics. Springer, 2003.

[43] M. J. Sasena. Flexibility and Efficiency Enhancements for Constrained Global De-
sign Optimization with Kriging Approximations. PhD thesis, University of Michi-
gan, 2002.

[44] M. Schonlau. Computer Experiments and Global Optimization. PhD thesis, Uni-
versity of Waterloo, Waterloo, Ontario, Canada, 1997.

75

© University of Pretoria

[45] M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in con-
strained optimization of computer models. Technical Report 83, National Institute
of Statistical Sciences, 19 T. W. Alexander Drive PO Box 14006 Research Triangle
Park, NC 27709-4006, March 1998.

[46] T. W. Simpson, J. J. Korte, T. M. Mauery, and F. Mistree. Comparison of response
surface and kriging models for multidisciplinary design optimization. In Proceedings
of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, 1998.

[47] A. Sóbester, S. J. Leary, and A. J. Keane. A parallel updating scheme for approx-
imating and optimizing high fidelity computer simulations. Structural Multidisci-
plinary Optimization, 27:371–383, 2004.

[48] A. Sóbester, S. J. Leary, and A. J. Keane. On the design of optimization strate-
gies based on global response surface approximation models. Journal of Global
Optimization, 33:31–59, 2005.

[49] INFORMS Computing Society. The nature of mathematical program-
ming - mathematical programming glossary. Retrieved 6 May 2016, from
http://glossary.computing.society.informs.org/index.php?page=nature.html, 2014.

[50] M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer
Series in Statistics. Springer, 1999.

[51] S. Surjanovic and D. Bingham. Virtual library of simulation experiments: Test func-
tions and datasets. Retrieved May 6, 2016, from http://www.sfu.ca/~ssurjano/

hart3.html, 2013.

[52] A. Torn and A. Žilinskas. Global optimization. Springer-Verlag New York, Inc.,
1989.

[53] F. A. C. Viana and R. T. Haftka. Importing uncertainty estimates from one sur-
rogate to another. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, 2009.

[54] F. A. C. Viana, R. T. Haftka, and V. Steffen. Multiple surrogates: how cross-
validation errors can help us to obtain the best predictor. Structural Multidisci-
plinary Optimization, 39:439–457, 2009.

76

© University of Pretoria

http://www.sfu.ca/~ssurjano/hart3.html
http://www.sfu.ca/~ssurjano/hart3.html

[55] F. A. C. Viana, R. T. Haftka, and L.T. Watson. Why not run the efficient global op-
timization algorithm with multiple surrogates? In 51st AIAA/ASME/ASCE/AH-
S/ASC Structures, Structural Dynamics, and Materials Conference, 2010.

[56] F. A. C. Viana, R. T. Haftka, and L.T. Watson. Efficient global optimization al-
gorithm assisted by multiple surrogate techniques. Journal of Global Optimization,
56:669–689, 2013.

[57] A. G. Watson and R. J. Barnes. Infill sampling criteria to locate extremes. Math-
ematical Geology, 27(5):589–608, 1995.

[58] A. Žilinskas. A review of statistical models for global optimization. Journal of
Global Optimization, 2(2):145–153, 1992.

77

© University of Pretoria

Appendix A

Derivation of Expected Improvement

Here follows a derivation of Expected Improvement (EI), as presented in Bichon [4]. EI
is defined as

EI(x) = E[max(ymin − y(x), 0)], (A.0.1)

which can be split up into:

max(ymin − y) = ymin − y for −∞ < y < ymin, (A.0.2)

= 0 for ymin < y <∞. (A.0.3)

For the remainder of this derivation we omit the dependance on x because we perform
the derivation as if we are at a single design space location.

The expected value, E, can be computed by integrating over the interval where the
function is nonzero

EI =

∫ ymin

∞
(ymin − y)Y (y)dy (A.0.4)

=

∫ ymin

∞
yminY (y)dy −

∫ ymin

∞
yY (y)dy (A.0.5)

= yminΦ

(
ymin − µ

σ

)
−
∫ ymin

∞
yY (y)dy. (A.0.6)

Taking the second term of Equation (A.0.6) we can show∫ ymin

−∞
yY (y)dy =

∫ ymin

−∞

y

σ
√

2π
exp

[
−1

2

(
y − µ
σ

)2
]
dy. (A.0.7)

Use the variable transformation v = y−µ
σ

which gives dy = σdv. Substituting these gives∫ ymin

−∞
yY (y)dy =

∫ νmin

−∞
(vσ + µ)

y√
2π

exp

[
−ν2

2

]
dv (A.0.8)

78

© University of Pretoria

where vmin = ymin−v
σ

. The equation can be broken up into two parts, giving∫ ymin

−∞
yY (y)dy =

σ√
2π

∫ vmin

−∞
v exp

[
−v

2

2

]
dv + µ

∫ vmin

−∞

1√
2π

exp

[
−v

2

2

]
dv. (A.0.9)

The second term is the integral of the standard normal PDF, which can be expressed
using the CDF, giving:∫ ymin

−∞
yY (y)dy =

σ√
2π

∫ vmin

−∞
v exp

[
−v

2

2

]
dv + µΦ(vmin). (A.0.10)

For the first term in the equation above, we introduce the change of variables wc = v2

2
,

which gives dv = 1
v
dwc. This reduces the integral to:∫ vmin

−∞
v exp

[
−v

2

2

]
dv =

∫ wmin

∞
exp(−wc)dwc, (A.0.11)

where wmin = 1
2

(
ymin−µ

σ

)2. The lower bound has been changed from −∞ to ∞ because
the transformation involves a square. This gives:∫ vmin

−∞
v exp

[
−v

2

2

]
dv = − exp[−wc]|wmin

∞ = − exp[−wmin]. (A.0.12)

We back substitute ∫ ymin

−∞
yY (y)dy = − σ√

2π
exp[−wmin] + µΦ(vmin) (A.0.13)

which can be written in terms of the standard normal PDF as∫ ymin

−∞
yY (y)dy = −σφ(vmin) + µΦ(vmin) (A.0.14)

= −σφ
(
ymin − µ

σ

)
+ µΦ

(
ymin − µ

σ

)
. (A.0.15)

We finally back substitute

EI = yminΦ

(
ymin − µ

σ

)
+ σφ

(
ymin − µ

σ

)
− µΦ

(
ymin − µ

σ

)
, (A.0.16)

which can be rearranged to give

EI = (ymin − µ)Φ

(
ymin − µ

σ

)
+ σφ

(
ymin − µ

σ

)
. (A.0.17)

79

© University of Pretoria

Appendix B

Electronic Results

B.1 Introduction

Throughout this document we refer to visual results available in an electronic appendix.
In this Section we present details to what is available in the electronic appendix, and
how it can be accessed.

The electronic appendix is available online on the University of Pretoria Library catalog.

B.2 Sequential EGO - Visual Results

For EGO we include the visual results for EGO progressing on the following test func-
tions:

1. Modified Rastrigin
2. Rosenbrock
3. Styblinsky-Tang

B.3 SIMPLE-EGO - Visual Results

We ran three variations of SIMPLE-EGO. The following results are presented online:

1. SIMPLE-EGO Exploit

80

© University of Pretoria

(a) Modified Rastrigin

i. 3 Designs per iteration
ii. 10 Designs per iteration

(b) Rosenbrock

i. 3 Designs per iteration
ii. 10 Designs per iteration

(c) Styblinsky-Tang

i. 3 Designs per iteration
ii. 10 Designs per iteration

2. SIMPLE-EGO Explore

(a) Modified Rastrigin

i. 3 Designs per iteration
ii. 10 Designs per iteration

(b) Rosenbrock

i. 3 Designs per iteration
ii. 10 Designs per iteration

(c) Styblinsky-Tang

i. 3 Designs per iteration
ii. 10 Designs per iteration

3. SIMPLE-EGO Unwise Explore

(a) Modified Rastrigin

i. 3 Designs per iteration
ii. 10 Designs per iteration

(b) Rosenbrock

i. 3 Designs per iteration
ii. 10 Designs per iteration

(c) Styblinsky-Tang

i. 3 Designs per iteration
ii. 10 Designs per iteration

81

© University of Pretoria

B.4 EGO-MO - Visual Results

We present the following visual results for EGO-MO

1. Modified Rastrigin

(a) 3 Designs per iteration
(b) 10 Designs per iteration

2. Rosenbrock

(a) 3 Designs per iteration
(b) 10 Designs per iteration

3. Styblinsky-Tang

(a) 3 Designs per iteration
(b) 10 Designs per iteration

B.5 Convergence Runs - Individual Convergence

We present two sets of PDF files containing the individual convergence graphs. The
one PDF file contains the convergence versus the function evaluations, while the second
contains the convergence versus the number of iterations.

82

© University of Pretoria

Appendix C

Computational Implementation

C.1 Introduction

In this appendix we present the details of our computational implementation, so that
any reader may independently reproduce these results.

We have programmed these methods using Python. Python is user friendly and many
pre-packaged methods are available. We have aimed to, where possible, use well estab-
lished packages.

C.2 Latin Hypercube Sampling - R

To generate the initial Latin Hypercube Sampling (LHS) design of experiments (DOE),
we used an implementation in R [39]. R has a LHS implementation in the lhs [8]
package. We experimented with the different methods and settings in this package. We
decided to use the optimumLHS method. We set the maxSweeps parameter equal to the
number of initial function evaluations. These settings gave us designs as presented in
Figure C.2.1. We coupled R to Python using RPy2 [17].

83

© University of Pretoria

(a) 10 Samples (b) 50 Samples

Figure C.2.1: Latin Hypercube Design of Experiments

C.3 Gaussian Process - Sklearn

Sklearn, (also referred to as Scikit-Learn) [36] is the method we used to fit the Gaussian
Process as presented in Chapter 2. Initially we used our own implementation in Python,
which follows exactly the methodology described in Chapter 2. However, for better
computational efficiency, we decided to switch to the Sklearn implementation.

We used the following settings:

• Regression: Constant
• Correlation Function: Squared Exponential
• Nugget: 1e-12
• ThetaLB: 0.1
• ThetaUB: 100
• Theta Starting Value: 10
• Normalize: False

This method uses MLE to fit the Gaussian Process. Any theta between 0.1 and 100 can
be selected. We found these settings to best represent our own implemented method.

84

© University of Pretoria

C.4 Differential Evolution - Scipy

Because EI is highly multi-modal we decided to use a Stochastic Optimizer to find the
global maximum of the function. We used the Differential Evolution (DE) implementa-
tion in scipy.optimize [26]. We used the following settings:

• popsize: 50 (which is interpreted by the DE as 50n individuals, where n is the
number of dimensions)

• Tolerance: 0.01
• Polish: True (Default)

C.5 Multi-Objective Optimizer - PyGMO

As there is no built in multi-objective optimization algorithm in Python we used a
package called PyGMO [5]. We found our Pareto front using a Non-dominated Sorting
Genetic Algorithm (NSGA-II) [13]. Our population size was 200 and we ran it for 150
generations, using the default settings. We found that these settings could repeatably
find the Pareto front.

C.6 k-means Clustering - Sklearn

EGO-MO requires the use of a clustering algorithm. We used the k-means clustering
available in the Sklearn toolbox (also referred to as Scikit-Learn) [36]. We select the
number of clusters we require. We use the default settings.

85

© University of Pretoria

Appendix D

EGO-MO Discussions

D.1 Introduction

Feng et al. [16] proposed a method in 2015, named EGO-Multi-Objective (EGO-MO).
EGO-MO uses the exploitation exploration characteristics of the two terms of the Ex-
pected Improvement (EI) function. They find the Pareto optimal set by treating the
two EI terms as a multi-objective optimization problem. In this Appendix we present
an overview of the method. We also present a visual study, discussing the behaviour of
EGO-MO.

D.2 Overview of EGO-MO

Figure D.2.1 gives a summary of the EGO-MO algorithm. EGO-MO uses a Multi-
Objective Evolutionary Algorithm to find a Pareto front for the following optimization
problem:

MinimizefEI1andfEI2 : fEI1(x) = −(ymin − y(x))Φ

(
ymin − y(x)

σ(x)

)
, (D.2.1)

fEI2(x) = −σ(x)φ

(
ymin − y(x)

σ(x)

)
. (D.2.2)

Thereafter, certain designs on the Pareto front are selected. They discard any design
vector on the Pareto front which are closer than an Euclidean distance to previously
sampled design vectors. Thereafter, they select the Pareto optimal designs to sample.

86

© University of Pretoria

Figure D.2.1: EGO-MO Algorithm

They select the two Pareto front edge points. To select the remaining design vectors they
used c-means clustering. Once the Pareto optimal design vectors have been clustered
they select a design from each cluster which maximizes the Euclidean distance from the
other design vectors in the domain. We followed this same procedure, however instead
of c-means clustering, we use k-means clustering as implemented by the Sklearn toolbox
[36].

87

© University of Pretoria

D.3 Visual Investigation

D.3.1 Define plots

To investigate and understand the behaviour of EGO-MO we followed a visual study as
discussed in Chapter 3. In Chapter 3 we plotted a Pareto front using (y(x),−σ(x)). For
EGO-MO, the Pareto front is determined by using fEI1 and fEI2. We name this Pareto
front the EI-Pareto front, while we name the Pareto front using the predicted function
value f(x) and the uncertainty σ(x) the (y(x),−σ(x)) Pareto front.

The EI criterion space plot is shown in Figure D.3.1. The colors selected in the legend
for EI are green and yellow, and thus for effortless recognition, we plot the EI-Pareto
front in green. The selected designs are indicated as white and gray circles, while the
maximum EI design is indicated with a green triangle. We solved the EI-Pareto front,
and the (y(x),−σ(x)) Pareto front. Figure D.3.1 (a) shows the EI-Pareto front, plotted
in the EI criterion space, while Figure D.3.1 (b) indicates the (y(x),−σ(x)) Pareto front
designs. We consider it important to understand the mapping which exists between the
two criterion space plots. When we map the designs between the different criterion
spaces, and the design space, we maintain the same coloring and symbols.

(a) EI-Pareto Optimal Set (b) Exploit-Explore Pareto Optimal Set

Figure D.3.1: EI Criterion Space

The (y(x),−σ(x)) criterion space plot is shown in Figure D.3.2. In this plot we can see
that for the plotted case, the EI-Pareto front designs lie on the (y(x),−σ(x)) Pareto

88

© University of Pretoria

front. But we can also see that the EI-Pareto front covers a smaller section of the
(y(x),−σ(x)) Pareto front range.

(a) EI-Pareto Optimal Set (b) (y(x),−σ(x)) Pareto Optimal Set

Figure D.3.2: Exploit Explore Criterion Space

It is also possible to map both the EI-Pareto front designs, as well as the (y(x),−σ(x))

Pareto front designs back to the design domain. We show an example of such a plot in
Figure D.3.3. The design domain range for the EI-Pareto front is much smaller than
the design domain range for the (y(x),−σ(x)) Pareto front.

We ran EGO-MO on three different test functions listed in Chapter 3, using three and ten
designs per iteration. These figures are listed in the electronic appendix (See Appendix
B). In Section D.3.2 and D.3.3 we discuss some of the behaviour we noticed.

D.3.2 EI-Pareto Front Designs are more tightly clustered

In Figure D.3.3 we can see that the designs on the EI-Pareto front are tightly clustered.
We found that this is the case for many of the iterations.

EGO intelligently decides in each iteration whether it will exploit or explore. This
characteristic of a method intelligently deciding when to exploit and when to explore is
in general a positive characteristic. We found that EGO-MO also follows this behaviour
but selects designs quite tightly clustered.

This behaviour is favourable in certain circumstances, and less favourable in others. It

89

© University of Pretoria

Figure D.3.3: Design Space Plot

is especially favourable on unimodal objective functions when only three designs are
selected per iteration. EGO-MO, like EGO, is a exploitative method. When EGO-MO
selects three designs per iteration and selects three designs close to the current predicted
minimium objective function value, the response surface accuracy is improved around
the minimum, and EGO-MO will converge quite fast.

However, when ten designs are added around the current predicted minimium objective
function value and the surface is not yet very accurate, ten designs are added in a cluster,
where one design would have provided the same amount of information.

The worst case is when all the EI-Pareto front designs are clustered where the objective
function value is high. In such a case, EGO-MO will select ten designs in an area where
the predicted objective function value is high. This is the same unwanted behaviour we
encountered on the SIMPLE-EGO Unwise Explore method (discussed in Section 4.4).

In Figure D.3.4 we present an example of EGO-MO selecting ten designs on the Styblinsky-
Tang function. In Figure D.3.4 (a) we present the (y(x),−σ(x)) criterion space plot. In
this figure we can see the EI-Pareto front designs are all located towards the exploration
side of the (y(x),−σ(x)) Pareto front. In Figure D.3.4 (b) we can see the selected

90

© University of Pretoria

designs are clustered in the corner of the design domain, where the predicted function
values are between 0.8 and 1.2. This behaviour is not favourable. It could be because of
this clustering issue that Feng et al. [16] reported linear speedup for EGO-MO selecting
3 designs per iteration, but worse speedup when EGO-MO selected more designs per
iteration.

(a) Exploit-Explore Criterion Space Plot,

Indicating the EI-Pareto Front Designs

(b) Design Space Plot for EGO-MO Selected

Designs

Figure D.3.4: EGO-MO selecting 10 designs per iteration on the Styblinsky-Tang test func-

tion

D.3.3 EI-Pareto Front Becomes difficult to solve

In Section 3.3 we discussed the difficulty in finding the maximum of the EI function.
As an optimization run progresses, both the value of the best predicted function value
yx, and the design domain uncertainty σ(x) decrease. This reduces EI to zero in large
sections of the design domain.

Furthermore, designs become clustered around the minimum predicted objective func-
tion value, driving the standard deviation in that region even lower. These character-
istics make the maximum of EI very difficult to find after EGO has been run for a few
iterations, since it occurs often that the maximum EI value is located in a very small
basin.

EGO-MO encounters these same problems, and the Pareto front becomes difficult to

91

© University of Pretoria

solve as the optimization progresses. After 20 iteration we are no longer able to solve
the EI-Pareto front. In Figure D.3.5 we plot the EI-Pareto front designs (in green) in
the (y(x),−σ(x)) criterion space. As a result the EI-Pareto front designs are scattered.
The (y(x),−σ(x)) Pareto front can still be solved, indicated using the red-blue scaled
squares.

Figure D.3.5: EI-Pareto Front Points not Practically Solvable

D.4 Conclusion

EGO-MO is a multi-objective parallelization algorithm for EGO. EGO-MO mimics the
behaviour of EGO, by intellegently selecting whether to exploit or explore, based on the
information it has in an iteration. However, this intelligent decision making has some
drawbacks. The designs EGO-MO selects in each iteration are often tightly clustered,
which is not a good characteristic when many designs are added per iteration. Sec-
ondly, as EGO-MO progresses, the EI-Pareto front becomes very difficult to find. This
characteristic makes it difficult for EGO-MO to continue converging.

92

© University of Pretoria

	Introduction
	Design optimization
	Optimization Strategies
	Standard design optimization formulation
	Multi-objective optimization
	Set of Optimal Solutions
	Solving Pareto Optimal Sets

	Surrogate Optimization: Exploitation and Exploration
	Parallel variants of EGO
	Research Aim
	Thesis overview

	Background on Efficient Global Optimiztion (EGO)
	EGO Section Outline
	Initial Design of Experiments (DOE)
	Gaussian Process Regression (Kriging)
	General Regression
	Kriging estimate of the mean response
	Parameter Estimation
	Underlying Regression Function
	Kriging Performance
	Numerical Instabilities
	Kriging Uncertainty Estimates: Standard Deviation

	Infill Sampling Criteria
	Probability of Improvement (PI)
	Expected Improvement (EI)
	Weighted Expected Improvement (WEI)
	Generalized Expected Improvement (GEI)
	Maximizing the Infill Criteria (Acquisition Function)

	Stopping Criteria
	Computational Implementation
	EGO Problem Dimensionality
	Chapter Conclusions

	Classical EGO Characteristics and Behaviour
	Introduction
	Test Functions
	Rosenbrock
	Styblinsky-Tang
	Modified Rastigrin Function

	Maximizing EI
	EGO Behaviour
	Visualization Method
	Results and Discussion

	Multi-objective Parallelization of EGO
	Introduction
	Comparison Method: EGO-MO
	SIMPLE-EGO
	Solving and selecting Pareto front designs
	Design Selection
	Parameterization of Design Selection
	Alternative design selection

	SIMPLE-EGO Visualization
	Convergence Comparison
	Method
	Individual Results and Discussion
	Combined Results
	Discussion of Results

	Conclusion
	Derivation of Expected Improvement
	Electronic Results
	Introduction
	Sequential EGO - Visual Results
	SIMPLE-EGO - Visual Results
	EGO-MO - Visual Results
	Convergence Runs - Individual Convergence

	Computational Implementation
	Introduction
	Latin Hypercube Sampling - R
	Gaussian Process - Sklearn
	Differential Evolution - Scipy
	Multi-Objective Optimizer - PyGMO
	k-means Clustering - Sklearn

	EGO-MO Discussions
	Introduction
	Overview of EGO-MO
	Visual Investigation
	Define plots
	EI-Pareto Front Designs are more tightly clustered
	EI-Pareto Front Becomes difficult to solve

	Conclusion

