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Summary

In Mathematical Epidemiology disease free states are commonly represented as equi-
libria of dynamical systems which model the respective epidemiological processes.
However, in cases when the equilibrium is zero and is related to extinction (of the
population), due to the uniqueness property of a complete dynamical system, so-
lutions may converge to an equilibrium but never reach it. This may give rise to
qualitatively unrealistic behaviour such as a population that is practically extinct
but is able to grow. An example of a case when this problem may arise is when
modelling the dynamics of African Swine Fever (ASF), a contagious disease affecting
both domestic and wild pigs, in the Mkuze Game Reserve. In the paper by Arnot
et. al.[3] it was established that although an increase in burrow infestation rates
was observed, the disease was not detected within the game reserve. This situation
cannot be captured using a model with exponential decay. In the following research
project, we study various ODE and PDE models with the property that solutions
approaching the disease free equilibrium 0, will reach it within finite time and re-
main at 0 thereafter. These include basic population models and epidemiological
models with age and state structure. We then construct a model for ASF in order
to accurately illustrate the phenomenon observed at the game reserve.
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Chapter 1

Introduction

African Swine Fever (ASF) is a contagious viral disease that affects both domes-
tic and wild pigs. The virus originally remained restricted within Africa amongst
its natural hosts, namely the common warthog Phacochoerus africanus, bush pigs
Potamochoerus spp. and soft ticks Ornithodoros pornicus pornicus [15]. As a result
of the admittance of domestic pigs into Africa, ASF was transmitted into a pop-
ulation that is susceptible to the disease in which the virus manifests as an acute
haemorrhagic disease [20] with mortality rates as high as 100% [14]. In particular,
the disease is characterized by high fever, loss of appetite, vomiting, bleeding from
the nose or rectum and death within 2-10 days.

ASF outbreaks in Portugal in 1957 and 1960 allowed the disease to become well es-
tablished within the swine population of the Iberian Peninsula [20]. Successive out-
breaks also took place in many European countries, Cuba, the Dominican Republic,
Brazil and Haiti. As these outbreaks significantly affected the porcine production
in countries with leading commercial pig industries and since disease extermination
proved tedious and costly, ASF amassed international attention for the first time and
triggered many research endeavours towards finding a vaccine. Unfortunately, these
efforts have proven to be fruitless[20]. However, the studies conducted in Europe
identified that argasid ticks from the genus Ornithodoros were able to maintain the
virus for extended periods of time and were able to transmit ASFV (African Swine
Fever Virus) to pigs. The following chapter provides an overview of the epidemiology
of the disease and its significance within Africa as well as worldwide.

1.1 ASF in Africa

The FAO Yearbook for 1995 states that pig production in Africa accounts for less
than 1% of the world’s pork[20]. Although this industry has very little commercial
value, it is of great importance locally in both urban and rural areas. Firstly, there
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12 CHAPTER 1. INTRODUCTION

is a need to increase in pork production in order to meet the needs of a fast grow-
ing urban population within African countries. Furthermore, in rural areas where
cattle production is not possible due to insufficient grazing area, pigs serve as the
predominant source of animal protein. Pork is the cheapest source of high-quality
protein and can be produced using nutritional sources of low value[20]. On a social
level, pigs have become the traditional animal for numerous cultural practices and
act as a mobile bank that can provide funds in order to meet basic needs for the
poor. Hence, ASF is a crucial constraint for porcine production in sub-Saharan
Africa and recent outbreaks of the disease have brought to light the need for new
control measures that will be conducive to sustaining an inexpensive pig production
in poverty-stricken countries.

In Africa, ASFV is maintained in at least three distinct cycles:

1. in the sylvatic cycle between wild pigs and soft ticks,

2. a cycle between domestic pigs and soft ticks that live in pig houses in Malawi;
and

3. maintenance of ASFV independent of soft ticks and wild pigs, in domestic pig
populations.

1.2 The sylvatic cycle between wild suids and ar-

gasid ticks

1.2.1 Warthogs

Warthogs play a vital role in the maintenance of ASFV in eastern and south-
ern Africa since they inhabit burrows that are often infested with soft ticks[20].
Transmission of the virus occurs when ticks ingest a blood meal from an infected
host (warthog) and then pass it on when feeding on susceptible animals. Infected
warthogs are asymptomatic and virus levels in their blood are low. Neonatal
warthogs, born in the burrows, develop high blood virus levels lasting upto two
to three weeks [14] and hence are capable of infecting ticks when a blood meal is
taken [19]. After this three week period, the blood virus levels drop abruptly and
become too low for detection[20]. It has been established that vertical transmission
of ASFV from a female warthog to her offspring in the womb is unlikely. Owing to
the fact that warthog farrowing is seasonal (November to December)[3], the viral
transmission between these two natural hosts also follows a cyclical pattern [14].
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1.2. THE SYLVATIC CYCLE BETWEENWILD SUIDS ANDARGASID TICKS13

1.2.2 Bushpigs

Blood virus levels of six month old bushpigs were reportedly higher than those of
experimentally infected warthogs within the same age range. However, since bush-
pigs exist in smaller numbers, do not inhabit burrows, and do not frequently come
into contact with domestic pigs since they are nocturnal, there are very few circum-
stances under which they could encounter soft ticks[20]. Experimentally infected
bushpigs are able to transmit ASFV to domestic pigs if there has been contact
between them. Despite this, in areas where bush pigs are common, such as the
Eastern Cape Province of South Africa, no outbreaks of the disease in domestic pigs
has been reported [25] and they have low infection rates of ASF and hence their
role in the spread of the ASF currently has not been established [14]. Therefore,
in this research project, the warthog is considered to be the more significant of the
free-living vertebrate hosts of the virus. Lastly, bushpigs are also asymptomatic to
the disease.

1.2.3 Soft ticks

Ornithodoros porcinus porcinus are eyeless, soft-shelled ticks that occur in the savan-
nah regions of eastern and southern Africa inhabited by warthogs[20]. Specifically,
the species has been found predominantly within wildlife reserves in South Africa,
Zimbabwe, Zambia, Tanzania, Kenya, Namibia and Uganda. It should be noted
that the proportion of infested burrows as well as the number of ticks found per
burrow tends to differ and may depend on the age of the burrow and how frequently
the burrow was used. Due to their common habitat, O.porcinus porcinus are mostly
dependant on warthogs for blood meals. However, they also feed on other verte-
brate hosts that enter their burrows [6] such as porcupines, spotted hyaenas and
aardvarks[20]. The availability of a food source affects the ageing process of the tick
population since, with each blood meal the ticks engorge to their next life stage and
hence when a blood meal is readily available more often, the time taken for the ticks
to engorge to adulthood is shortened. If no animals enter the burrow for extended
periods of time, then the ticks will remain at their current life stage indefinitely
until their next blood meal and hence the ageing of the ticks becomes a discontin-
uous process. However, in this research project it was assumed that other sources
of food were always available and hence, the ticks age continuously. Furthermore,
this implies that when a warthog family inhabits a burrow, there ought to be an
acceleration in the ageing of the tick population as well as higher infection rates of
ASFV. This hypothesis was investigated with the aim of determining its effect on
the spread of ASF.

The Ornithodoros tick population is able to maintain ASF and transmit the disease
for many years[19]. In particular, transmission of the virus occurs in three ways [15]:
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14 CHAPTER 1. INTRODUCTION

1. transtadially (from one life stage to another)

2. transovarially (parent to offspring)

3. sexually

In the paper by Plowright et al [21] it is established that sexual transmission of
ASFV is unidirectional from infected males to females. Transmission from infected
females to clean males was observed in only one of 35 observed mating instances and
hence this is a rare occurrence that probably does not have any significant effect on
the spread of ASF. This is possibly why the observed infection rates for female ticks
is substantially higher than that of male ticks[20]. Additionally, the virus present
in the seminal fluid of a tick may produce infected offspring following an extrinsic
incubation period of 8-48 days.

Transovarial transmission occurs when the ovarian tissue of the female Ornithodoros
tick is infected [23]. This provides a process by which the virus is maintained within
the tick population when unfavourable conditions are experienced. For example
during extended periods of time when the warthogs (or other vertebrate hosts) may
be absent from the burrow [23]. The tick colony can maintain the disease for up
to 15 months under these conditions [3]. Rates of transovrial transmission observed
under experimental conditions are higher than those observed in nature [15] [23]. In
the investigation conducted by Plowright et al in 1970 it was found that among nat-
urally infected female ticks, infection rates from parent to offspring of up to 55-81%
were reported [21]. However, studies conducted with higher numbers of infected
females did not yield the same results.

Transtadial transmission ensures that the ticks remain infected with the virus from
one life stage to the next. This is of particular significance with regards to mainte-
nance of the disease within the tick population. Under experimental conditions, very
high transtadial transmission rates (almost 100%) have been reported [15]. There-
fore, regardless of the life stage at which initial infection takes place, most ticks will
remain infected for the remainder of their lifetime. However, there is insufficient
data in this regard for infected ticks in the field.

It has been observed that the rates of infection of ticks increases gradually with
each life stage except between the last nymphal stage and adults, where a sudden
six fold increase in infection rate occurs [20]. It should be noted that with each
developmental stage the size of the blood meals increases considerably is possibly
why the infection rates increase as the ticks age. In the paper by Rennie et al [22] ,
it is suggested that mortality rates of adult ticks that ingested a blood meal from an
infected host were comparatively higher than the mortality rates observed for ticks
that fed on an uninfected blood meal. This is an important result since it reduces
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1.3. CONTROL MEASURES 15

the probability of maintaining the disease within the tick population through biting
alone and hence, places greater significance on transovaraial, transtadial and sexual
transmission. It was also established that if the female ticks are able to ingest blood
meals on a relatively regular basis, the number of female ticks that lay infected eggs
increased. Therefore, it is possible that the warthogs play a role in the escalation
and, to some extent, the maintenance of the disease within the tick population. It
is important to note, however, that the joint presence of warthogs and soft ticks
in a common locality does not always imply that ASF is prevalent in the region.
Similarly, warthogs that inhabit areas that are tick-free are not necessarily free of
ASF [14].

Transmission of ASFV between warthogs and domestic pigs or between warthogs as
a result of direct contact is unlikely[15]. However, in a study Horak et. al. large
numbers of soft ticks have been found on captured warthogs, as well as on warthog
carcases located outside their burrows [11]. In particular it was found that a single
individual carried 97 nymphal ticks and 107 others. It is suggested that the feeding
of the ticks on the warthog was interrupted by the fact that the warthog left the
burrows in the mornings and would remain attached to them until the warthog re-
turned to its burrow in the evening. Therefore, despite the fact that soft ticks are
burrow-dwelling, it is possible for them to be transported outside the burrow while
attached to a host. This implies that indirect warthog to warthog transmission is
possible (even outside the burrow). Infected ticks may come into contact with do-
mestic pigs when attached to warthogs that graze in areas adjacent to land occupied
by domestic pigs or while attached to infected warthogs that are transported back
to pig farms for slaughter. Feeding ASFV contaminated garbage to domestic pigs is
a possible but unlikely scenario leading to the infection of domestic pigs [14].

1.3 Control measures

As there is currently no vaccine for ASF, the disease is controlled by means of slaugh-
ter, separation of wild and domestic pigs using double fencing and strict quarantine
procedures [15] [14]. However, the slaughter of large numbers of pigs is unethical and
is difficult to implement successfully in countries where adequate funding and vet-
erinary services are scarce [19]. Furthermore, since ASFV can be isolated in certain
pork products,(e.g. Parma hams), for up to 300 days after processing [15], countries
that are ASF free employ stringent import policies that ensure that no infected pigs
or pork products are introduced into the region. These measures (particularly trade
bans) directly result in major economic losses in the affected countries.

Owing to the fact that the virus is able to adapt and spread across borders easily,
ASF poses a significant threat to porcine production worldwide. Furthermore, the
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16 CHAPTER 1. INTRODUCTION

disease is endemic in sub-Saharan countries and since this region will remain a
potential starting point of infection, it is important that an accurate understanding
of the epidemiology of the disease in Africa is established, in order to further improve
international control of ASF[25]. In the paper by Arnot et al.(2009) the prevalence of
ASF in the Mkuze Game Reserve (MGR), which is an ASF controlled area in South
Africa, is investigated. It was established that in comparison to a study conducted in
1978, a higher proportion of adult ticks was sampled and that the burrow infestation
rate had increased by 27%. This would ideally suggest a high prevalence of ASF
within the game reserve, however the disease was not detected within the 98 burrows
that were sampled. Hence, the disease has either been eradicated from the game
reserve or is only present in a few isolated areas of MGR.

In order to gain some insight into the situation at MGR, investigation of the be-
haviour of ASFV was done with the aim of finding conditions under which this
situation may arose. One of the research questions that could possibly be answered
through this project is if the conditions in the Mkuze Game Reserve can be repli-
cated in other wildlife sites or areas in order to minimize or eliminate their effects
on another swine population.

The organization of the thesis is as follows. Chapter 2 introduces mathematical
concepts used to construct and analyse the model and includes a study of exist-
ing population models with significant features such as age structure and impulses.
Chapter 3 investigates population models with extinction of the population in fi-
nite time. In Chapter 4, the ASFV model is formulated and analysed. Chapter 5
concludes and discusses some possible future work.
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Chapter 2

Mathematical Introduction

In this chapter we provide mathematical preliminaries related to continuous dynam-
ical systems defined via differential equations by following the book [24]. Addition-
ally, we extend the standard theory by giving special consideration to forward (only)
uniqueness, derived from the one-sided Lipschitz condition.

Consider the initial value problem

du

dt
= f(u) (2.1)

u(0) = u0 (2.2)

where f ∈ C(W,Rp), C is the continuous function space, Rp is the real coordinate
space of dimension p, W ⊂ Rp and W is an open set.

A solution of the problem (2.1))-(2.2)) is a continuously differentiable function u :
I(u0)→ W satisfying (2.1)) and (2.2)), where I(u0) is a real interval containing the
origin.

2.1 Dynamical systems defined by ODE’s

Definition 2.1.1. Dynamical system

(i) Equation (2.1) is said to define a positive dynamical system on W ⊆ Rp

if for every u0 ∈ W there exists a unique solution u of (2.1)-(2.2) which is
defined for all u(t) ∈ W, t ∈ [0,∞).

(ii) Equation (2.1) is said to define a negative dynamical system on W ⊆ Rp

if for every u0 ∈ W there exists a unique solution u of (2.1)- (2.2) which is
defined for all u(t) ∈ W, t ∈ (−∞, 0] .

17
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18 CHAPTER 2. MATHEMATICAL INTRODUCTION

(iii) Equation (2.1) is said to define a complete dynamical system on W ⊆ Rp

if it defines both a positive and negative dynamical system on W .

We recall here several theorems, from the book by Stuart and Humphries [24], that
are relevant to the existence and uniqueness of the solutions of (2.1)-(2.2).

Theorem 2.1.2. Existence
Let W ⊆ Rp be open and let f ∈ C(W,Rp). Then for any u0 ∈ W there exists a
real interval I(u0) containing the origin and a continuously differentiable function
u : I(u)→ W which satisfies (2.1)-(2.2).

Theorem 2.1.3. Global Existence
Let K be a compact subset of W ⊆ Rp and u0 ∈ K. If every solution of (2.1)-
(2.2) that is of the form u : [0, β] → W satisfies u(t) ∈ K, t ∈ [0, β] then there
exists a solution u : [0,∞) → W . Similarly, if every solution of (2.1)-(2.2) in the
form u : [−β, β] → W satisfies u(t) ∈ K, t ∈ [−β, β] then there exists a solution
u : (−∞,∞)→ W .

Theorem 2.1.4. Uniqueness
If f is locally Lipschitz on W , then any solution of (2.1)-(2.2) is unique on its
domain.

Definition 2.1.5. One-sided Lipschitz condition
A function f : Rp → Rp is called one-sided Lipschitz on Rp if

< f(y1)− f(y2), y1 − y2 > ≤ L‖y1 − y2‖2 (2.3)

for some real positive constant L and all y1, y2 ∈ Rp.

In the special case where p = 1, condition (2.3) can be written as follows:

f(y1)− f(y2)

|y1 − y2|
≤ L (2.4)

for some real positive constant L and all y1, y2 ∈ R such that y1 6= y2.

The application of the Lipschitz condition in proving the uniqueness of solutions
often utilizes the following result [24].

Theorem 2.1.6. Gronwall’s Inequality
If y(t) satisfies

yt ≤ ay + b, y(0) = y0,

where a and b are constant, then for t ≥ 0

y(t) ≤ eaty0 +
b

a
(eat − 1), a 6= 0

and
y(t) ≤ eat + y0, a = 0
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2.1. DYNAMICAL SYSTEMS DEFINED BY ODE’S 19

Theorem 2.1.7. Forward Uniqueness
If f is one-sided Lipschitz on W ⊂ Rp, then any solution u : [0, β) → W of (2.1)-

(2.2) is unique on its domain.

Proof. Let v1, v2 : [0, β)→ W be two distinct solutions of (2.1)-(2.2).

If Q(t) = ‖v1(t)− v2(t)‖2 then using (2.4) we obtain

Q′(t) =< v′1(t)− v′2(t), v1(t)− v2(t) >

=< f(v1(t))− f(v2(t)), v1(t)− v2(t) >

≤ L‖v1(t)− v2(t)‖2

= LQ(t) ∀t ∈ [0, t̂]

From Theorem 2.1.6 and using the fact that Q(0) = ‖v1(0)− v2(0)‖2 we have,

Q(t) ≤ Q(0)eLt = 0 ∀t ∈ [0, t̂]

Hence, v1(t) = v2(t), ∀t ∈ [0, β).

Let (2.1) define a dynamical system on W . Below we define a few concepts related
to this dynamical system.

For every t ≥ 0 we define the operator S(t) : W → W as follows:

S(t)u0 = u(t)

where u(t) is the solution of (2.1)-(2.2). It is clear that S satisfies the following
properties:

S(t) ◦ S(r) = S(t+ r) (2.5)

S(0) = I (2.6)

Due to properties (2.5)-(2.6) S is called an evolution semigroup[24].

Definition 2.1.8. Action of evolution semigroups
Consider the evolution semigroup S associated with dynamical system (2.1). Given
B ⊂ Rp, the set

S(t)B = ∪u0∈BS(t)u0 (2.7)

is called action of S on B.

Definition 2.1.9. Orbits

(i) A positive orbit, of the point u0 ∈ W , is the set Γ+(u0) = {S(t)u0 : t ≥ 0}.

(i) A negative orbit, of the point u0, is the set Γ−(u0) = {u(t) : t ≤ 0}.

(iii) Γ(u0) = Γ−(u0) ∪ Γ+(u0) is called a complete orbit of u0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



20 CHAPTER 2. MATHEMATICAL INTRODUCTION

2.2 Existence and uniqueness under one-sided lo-

cal Lipschitz condition

In existing literature, the Lipschitz condition has been widely used in order to es-
tablish uniqueness of a solution. In the following section, we intend to show that
existence and uniqueness can be attained using the 1-sided local Lipschitz condition.
This will allow a less stringent condition to be imposed on the function f .

Definition 2.2.1. Convex Set
A set W ⊂ Rp is said to be convex if for every x, y ∈ W , W contains all closed
segments joining x and y. That is,

M = {z ∈ X : z = αx+ (1− α)y, 0 ≤ α ≤ 1} ⊂ W (2.8)

where M is a closed segment with boundary points x and y and z ∈M is an interior
point of M [24].

Definition 2.2.2. Convex Hull Let Q be a subset of a linear space. Then the
convex hull co(Q) of Q is the smallest convex set containing Q [24]. One can also
write

co(Q) =
⋂

P−convex Q⊂P

P. (2.9)

Theorem 2.2.3. Carathéodory
Every element of the convex hull of a set Q ⊂ Rp is a convex linear combination

of at most p elements of Q. That is, for every y ∈ co(Q) there exist x1, x2, . . . , xm
for m ≤ p+ 1 and µ1, µ2 . . . µm with

∑m
j=1 µj = 1, µj ≥ 0 such that y =

∑m
j=1 µjxj

[24].

Definition 2.2.4. Locally Lipschitz
f is said to be locally Lipschitz on W ⊂ Rp if for every x ∈ W there exists δ such
that f is Lipschitz on {y ∈ W : ‖x− y‖ < δ} [24].

Similarly, in the case when f is said to be locally one-sided Lipschitz on W ⊂ Rp

if f is one-sided Lipschitz on every neighbourhood of W .

Lemma 2.2.5. Let Q be a compact subset of Rp. Then co(Q) is also compact.

Proof. Let M =
{
µ1, µ2, . . . µp : µj ≥ 0,

∑p
j=1 µj = 1

}
. It is clear that M is a

compact subset of Rp+1. Consider the mapping Φ defined by Φ(x1, x2, . . . , xp, µ) =∑p+1
j=1 µjxj. Using the result of Theorem 2.2.3, it is clear that co(Q) = Φ(Q×· · ·×µ).

Further we infer that Φ is continuous. Then it maps a compact set onto a compact
set. The set {Q×Q× · · · ×Q×M} is a compact subset of the domain of Q.
Therefore, co(Q) = Φ(Q×Q× · · · ×Q×M).
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Theorem 2.2.6. If W is convex and f is locally Lipschitz on W , then f is Lipschitz
on every compact subset of W .

Proof. Let K be a compact, proper subset of W . It then follows from Lemma 2.2.5
that co(K) ⊂ W is compact. For every x ∈ co(K) there exists δx such that f is
Lipschitz on

Vx = {y ∈ W : ‖x− y‖ < δx} . (2.10)

Then {Vx : x ∈ co(K)} is an open cover of co(K). Since co(K) is compact, it can
be deduced that there exists a sequence x1, x2 . . . xm ∈ co(K) such that co(K) ≤⋃m
i=1 Vxi .

Denote by L1, L2 . . . Lm the Lipschitz constant of f on each of the sets Vx1 , Vx2 . . . Vxm
respectively and let L = max {L1, L2 . . . Lm}. Suppose y, z ∈ K. It then follows
that the line segment connecting y and z, denoted by ȳz, lies entirely in co(K). Now,
using geometrical arguments, yz can be partitioned into individual line segments,
such that each segment lies entirely in one of the sets Vxi , i = 1, 2, . . . ,m. Denote
each line segment by ξjξj+1, j = 0, . . . , q − 1, where ξ0 = y and ξq = z.

Then

‖f(z)− f(y)‖ = ‖
q−1∑
j=1

(f(yj+1)− f(yj)) ‖

≤
q−1∑
j=1

‖f(yj+1)− f(yj)‖

≤
q−1∑
j=1

L‖yj+1 − yj‖.

Due to the fact that all points yj, j = 0, , 1 . . . , q lie on the line segment ȳz and since
yj is between yj−1 and yj+1 (i.e. the points yj are consecutive) we can conclude that

q−1∑
j=1

‖yj+1 − yj‖ = ‖z − y‖.

The result follows.

In the case where f is locally one-sided Lipschitz the following result holds true.

Theorem 2.2.7. If W is convex and f is locally one-sided Lipschitz on W , then f
is one-sided Lipschitz on every compact subset of W .

Proof. Let K be a compact, proper subset of W . It then follows from Lemma 2.2.5
that co(K) ⊂ W is compact. For every x ∈ co(K) there exists δx such that f is
Lipschitz on

Vx = {y ∈ W : ‖x− y‖ < δx} . (2.11)
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22 CHAPTER 2. MATHEMATICAL INTRODUCTION

Then {Vx : x ∈ co(K)} is an open cover of co(K). Since co(K) is compact, it can
be deduced that there exists a sequence x1, x2 . . . xm ∈ co(K) such that co(K) ≤⋃m
i=1 Vxi .

Denote by L1, L2 . . . Lm the Lipschitz constant of f on each of the sets Vx1 , Vx2 . . . Vxm
respectively and let L = maxL1, L2 . . . Lm. Suppose y, z ∈ K. It then follows that
the line segment connecting y and z, denoted by ȳz, lies entirely in co(K). Now,
using geometrical arguments, ȳz can be partitioned into individual line segments,
such that each segment lies entirely in one of the sets Vxi , i = 1, 2, . . . ,m. Denote
each line segment by ¯yjyj+1, j = 0, . . . , q − 1, where y0 = y and yq = z.

Using the fact that z−y = ‖z−y‖
‖yj+1−yj‖ .(yj+1−yj), since the vectors z−y and yj+1−yj

have the same direction, the following can be obtained:

< f(z)− f(y), z − y > =<

q−1∑
j=0

(f(yj+1)− f(yj)) , z − y >

=

q−1∑
j=0

< f(yj+1 − f(yj), z − y >

=

q−1∑
j=0

< f(yj+1 − f(yj),
‖z − y‖
‖yj+1 − yj‖

.(yj+1 − yj) >

=

q−1∑
j=0

‖z − y‖
‖yj+1 − yj‖

< f(yj+1 − f(yj), (yj+1 − yj) >

≤
q−1∑
j=0

‖z − y‖
‖yj+1 − yj‖

L‖yj+1 − yj‖2

= L‖z − y‖

Once again, equality was achieved in the final step since the points yj, j = 0, , 1 . . . , q
lie consecutively on the line segment ȳz.

Theorem 2.2.8. Lipschitz continuity with respect to the initial condition

Suppose that W is a convex open set, f : W → Rp is locally one-sided Lipschitz on
W and u = u(t), v = v(t) are two solutions of (2.1) which exist on [0, T ], T > 0.
It then follows that there exists L > 0 such that

‖u(t)− v(t)‖ ≤ eLt‖u(0)− v(0)‖. (2.12)

Proof. Let K = {u(t) : t ∈ [0, T ]}
⋃
{v(t) : t ∈ [0, T ]}. Since both u and v are

continuous the set K is compact. From Theorem 2.2.7 it follows that f is one-sided
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Lipschitz on K. Let L be the Lipschitz constant of f on K. Then we obtain the
following:

d

dt
‖u(t)− v(t)‖2 = 2 < ut − vt, u(t)− v(t) >

= 2 < f(u(t))− f(v(t)), u(t)− v(t) >

≤ 2L‖u(t)− v(t)‖2

From (2.1.6),

‖u(t)− v(t)‖2 ≤ e2Lt‖u(0)− v(0)‖2 (2.13)

Taking the square root on both sides of the equation yields the desired result.

Corollary 2.2.9. Let (2.1) define a dynamical system on Ω ⊂ W . Then for every
T there exists L such that

‖S(t)u0 − S(t)v0‖ ≤ eLt‖u0 − v0‖ (2.14)

Corollary 2.2.10. If f is locally one-sided Lipschitz on W ∈ Rp, then any solution
u : [0, β)→ W of (2.1)-(2.2) is unique on its domain.

2.3 Limit sets

Definition 2.3.1. Invariant Sets
Consider an arbitrary set B.

(i) B is positively invariant under S() if S(t)B ⊆ B for all t ≥ 0.

(ii) B is negatively invariant under S() if B ⊆ S(t)B for all t ≥ 0

(iii) If B satisfies both (i) and (ii) (i.e. S(t)B ≡ B for all t ≥ 0), then B is
invariant under S.

Theorem 2.3.2. Conditions for set Invariance

(i) A set B is positively invariant if and only if there exists a positive orbit Γ+(u0)
such that Γ+(u0) ⊆ B for all u0 ∈ B.

(ii) B is negatively invariant if and only if for every u0 ∈ B there exists a negative
orbit Γ−(u0) such that Γ−(u0) ⊆ B.

(iii) B is invariant if and only if for every u0 ∈ B there exists a complete orbit
Γ(u0) such that Γ(u0) ⊆ B.
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24 CHAPTER 2. MATHEMATICAL INTRODUCTION

Definition 2.3.3. Let x ∈ Rp and suppose that there exists a sequence {ti}∞i=1 , ti →
∞, such that S(ti)u

0 → x as i → ∞. Then x is an ω-limit point of u0. For a
given u0, the set, ω(u0), containing all such points is called the ω-limit set of u0

and

ω(u0) =
{
x ∈ Rp : ∃k →∞, S(tk)u

0 → x
}
. (2.15)

In the same manner, the ω-limit set of a bounded set B is defined as follows:

ω(B) = {x ∈ Rp : ∃tk →∞, yk ∈ B, S(tk)yk → xk} (2.16)

Theorem 2.3.4. Properties of Limit Sets
Suppose that S(t) is continuous. The ω-limit set of any bounded set B ⊂ Rp, ω(B),
is a closed positively invariant set. Furthermore, if ∪t≥0S(t)B is bounded then ω(B)
is invariant. Lastly, if ω(B) is bounded for some u0 ∈ Rp then it is connected.

2.4 Structured population models

Population models for biological species have been traditionally constructed with the
assumption that the populations are homogeneous with respect to physical charac-
teristics such as age, size, maturity etc. However, this assumption is not valid in the
case of organisms where natural processes influencing the chance of an individuals
survival are directly affected by these characteristics [1]. In this section we undertake
a brief historical recollection of how continuous time structured population models
were formulated and rose to prominence in population biology.

2.4.1 Early population models

In 1992 the simplest model to capture population dynamics was developed by
Malthus, who speculated that the human population would grow exponentially with
time [1]. This model was formulated under the following assumptions:

1. individuals in the population are physiologically indistinguishable,

2. the population inhabits a fixed and secluded location,

3. individuals have access to limitless resources.

Hence, the model only takes into account the size of the population at time t, denoted
by P (t). The following linear ordinary differential equation is known as Malthus’
Law:

d

dt
P (t) = δP (t) (2.17)
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2.4. STRUCTURED POPULATION MODELS 25

for δ = α − µ, where α and µ are constant birth and death rates respectively.
However, this law does not apply in instances when the population competes for
resources, since in these cases δ would depend on the size of the population, which
would give rise to a non-linear model.

Verhulst endeavoured to amend this shortcoming by enforcing a maximum popula-
tion size K, also known as the carrying capacity.

d

dt
P (t) = r

(
1− P (t)

K

)
P (t) (2.18)

This model is analogous to the Malthusian model with fixed birth rate and death
rate proportional to the ratio of the total population size to the carrying capacity.
That is, α = r and µ = rP (t)

K
in (2.17). The validity of the logistic model was

verified by using laboratory experiments on simple organisms, such as bacteria and
yeast, where the populations are subject to invariable environmental conditions, no
predators and have an adequate supply of food [1]. Growth curves that were obtained
from conducting these experiments were found to be consistent with the predictive
results of the logistic equation. However, these results could not be replicated in the
case of organisms with intricate life cycles(e.g. flies, ticks, beetles), with multiple
life stages where the dynamics of the population greatly changes subject to an
individuals physiological characteristics. It was found that proceeding a length of
time where the population grows logistically, these populations display fluctuations.

The inability of these models to replicate biological actuality lead to the develop-
ment of more mathematically complex models where individuals are differentiated
with respect to characteristics such as age, size, epidemiological state etc [1]. These
models are formulated under the fundamental assumption that the dynamical be-
haviour of the population is solely determined by the structure of a population with
respect to these individual characteristics at a specified time, together with time
dependant environmental factors.

The Sharpe-Lotka-McKendrick model

Structured population models in continuous time were first pioneered by Sharpe
and Lotka (1911), where age was considered to be the sole structuring variable for
the population [27]. Furthermore, an integral formulation where the birth and death
rates for the population are age-dependant was also developed. In 1926 McKendrick
devised an age-structured population model using the following first-order, linear
partial differential equation , where u(t, a) represents the density of the distribution
of individuals in the population at time t > 0 and age a > 0.

ut(a, t) + ua(a, t) = −µ(a)u(a, t) (2.19)
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26 CHAPTER 2. MATHEMATICAL INTRODUCTION

Hence, the total number of individuals in the population between the ages of a1 and
a2, at time t is given by: ∫ a2

a1

u(a, t)da (2.20)

and

P (t) =

∫ ∞
0

u(a, t)da , t > 0 (2.21)

is the total population at a specific point in time. Furthermore, µ(a) is a non-
negative age-dependant function referred to as the ’age-specific mortality modulus’
[27] and hence the number of individuals leaving the population due to death is
given by µ(a)u(a, t). Moreover, the number of individuals entering the population
at age 0 (i.e. birth process) satisfies the integral equation

u(0, t) =

∫ ∞
0

β(a)u(a, t)da , t > 0 (2.22)

where β(a) is a non-negative, age-dependant function referred to as the ’age specific
fertility modulus’ [27]. Equation (2.22) is the non-local boundary condition for the
model [1]. Lastly,

u(a, 0) = u0(a), a ≥ 0 (2.23)

is the initial age distribution of the population, where u0(a) is a non-negative func-
tion of age. Observe that it is not necessary for the boundary condition (2.22) to
be satisfied at t = 0. However, if (2.22) holds at t = 0 then, it is required that the
compatibility condition ∫ ∞

0

β(a)u0(a)da = u0(0) (2.24)

is met. Equation (2.19) was used by Von Förster in 1959 to model the dynamics of
cell populations. It is realistic to assume that there exist situations where conditions
within a population are not conducive to survival (i.e. high death rate and low
fertility rate) which are attained when the population size reaches a certain threshold
value[1]. However, since the functions governing vital dynamics in the McKendrick-
von Förster model do not depend on the total population, such situations cannot be
reproduced mathematically by this model. In order to counter this problem, in 1974
Gurtin and MacCamy [10] and Hoppensteadt [12] formulated the first non-linear
continuous age-structured models.

2.4.2 Non-linear structured models

Gurtin-MacCamy Model

In 1974 Gurtin and MacCamy [10] proposed the first continuous time non-linear age-
structured models where the vital processes were non-linear functions of the total
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2.4. STRUCTURED POPULATION MODELS 27

population P (t). The model consists of the following non-linear partial differerential
equation where the age-specific mortality modulus µ(a, P (t)) is non-negative.

ut(a, t) + ua(a, t) = −µ(a, P (t))u(a, t), a > 0, t > 0 (2.25)

The renewal equation plays the role of a non-local boundary condition with non-
negative age-specific fertility modulus α(a, P (t)).

u(t, 0) =

∫ ∞
0

α(a, P (t))u(a, t)da t > 0 (2.26)

Lastly, after taking the initial state of the population (given by (2.23)) into account,
the age-density function is determined. Gurtin and MacCamy also carried out a
theoretical study of this model and provide existence, uniqueness and stability re-
sults which further emphasize the abundance in dynamics of non-linear models in
comparison to their linear counterparts.

We will now briefly outline the approach used in [10] to show existence of a unique
solution. Consider,

∂u

∂t
+
∂u

∂x
+ µ(a, P )u = 0, a > 0, 0 < t < T (2.27)

u(0, t) =

∫ ∞
0

α(a, P )u(a, t)da, 0 < t ≤ T (2.28)

u(a, 0) = φ(a), a ≥ 0 (2.29)

where,

P (t) =

∫ ∞
0

u(a, t)da. (2.30)

As in [10], we will commence by reducing problem (2.27)-(2.29) into non-linear func-
tional equations for P (t) (total population) and B(t) = u(0, t) (birth rate).

Observe that equations (2.27)-(2.29) will only be physically meaningful in the con-
text of modelling a population if α(a, P ), µ(a, P ) as well as the initial condition
φ(a) are non-negative. in order to ensure that the initial total population is finite,
it is assumed that φ ∈ L1(R+), where L1 is as defined below.

Definition 2.4.1. L1 Space: The L1 space is a functional space where each element
is Lebesque integrable [15].

‖f‖1 =

∫
R+

|f(t)|. (2.31)

A solution for (2.27)-(2.29) is defined up to some arbitrary time T > 0 as a non-
negative function u on R+ × [0, T ] such that:
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(i) the terms ∂u
∂t

and ∂u
∂x

exist on R+ × [0, T ],

(ii) u(., t) ∈ L1(R+) ,

(iii) (2.30) is continuous for all 0 ≤ t ≤ T ,

(iv) (2.27)-(2.29) are satisfied.

Now, let (a0, t0) ∈ R+ × [0, T ] and suppose that

ū(h) = u(a0 + h, t0 + h), µ̄(h) = µ(a0 + h, t0 + h).

This allows us to rewrite (2.27) as

dū

dh
+ µ̄(h)ū = 0. (2.32)

Through separation of variables, (2.32) has a unique solution in the form,

ū(h) = ū(0)e−
∫ h
0 µ̄(ξ)dξ.

That is,

u(a0 + h, t0 + h) = u(a0, t0)e−
∫ h
0 µ̄(ξ)dξ. (2.33)

This allows us to determine the values of the solution u at all points along the
characteristic starting at (a0, t0), in terms of the value of u at (a0, t0). Without loss
of generality, setting (a0, t0) = (a− t, 0), h = t and substituting into (2.29) yields,

u(a, t) = φ(a− t)e−
∫ t
0 µ(a−t+τ,P (τ))dτ for a ≥ t. (2.34)

Similarly, setting (a0, t0) = (0, t− a), h = a and substituting into (2.33) yields,

u(a, t) = B(t− a)e−
∫ a
0 µ(k,P (t−a+k))dk for t < a. (2.35)

Therefore, substituting (2.34) and (2.35) into (2.29) and (2.28), respectively, we
obtain

P (t) =

∫ ∞
0

u(a, t)da =

{∫∞
0
B(t− a)e−

∫ a
0 µ(k,P (t−a+k))dkda for a < t,∫∞

0
φ(a− t)e−

∫ t
0 µ(a−t+τ,P (τ))dτda for a ≥ t,

and

B(t) =

∫ ∞
0

u(a, t)da =

{∫∞
0
α(a, P (t))B(t− a)e−

∫ a
0 µ(k,P (t−a+k))dkda for a < t,∫∞

0
α(a, P (t))φ(a− t)e−

∫ t
0 µ(a−t+τ,P (τ))dτda for a ≥ t.

Now,

P (t) =

∫ t

0

B(a)F (t− a, t;P )da+

∫ ∞
0

φ(a)G(a, t;P )da

B(t) =

∫ t

0

α(t− a, P (t))B(a)F (t− a, t;P )da

+

∫ ∞
0

α(t+ a, P (t))φ(a)G(a, t;P )da
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2.4. STRUCTURED POPULATION MODELS 29

where

F (k, t;P ) = e−
∫ t
t−k µ(k+τ−t,P (τ))dτ

G(k, t;P ) = e−
∫ t
0 µ(k+τ,P (τ))dτ for 0 ≤ k ≤ t.

Existence is then established in [10] within the time interval [0, T ] resulting in the
following theorem.

Theorem 2.4.2. There exists a T > 0 such that the population problem has a unique
solution up to time T .

It is also proven that if the fertility modulus α is uniformly bounded, then the
existence and uniqueness result can be extended to include all possible values of t.

Theorem 2.4.3. Assume that

α = sup
a≥0,P≥0

α(a, P ) <∞ (2.36)

holds. Then the population problem has a unique solution for all time.

Lastly global existence is established in the following theorem.

Theorem 2.4.4. Assume that φ ∈ C1(R+) with φ̇ ∈ L1(R+). Additionally, assume
that µ, α ∈ C1(R+ × R+) and that the mappings carrying (t, P ) into the functions
a → αa(a + t, P ) and a → αp(a + t, P ) belong to C1(R+ × R+ : L∞(R+)). Let ρ be
a solution of the population problem upto time T . Then ρ ∈ C1(R+ × [0, T ]) if and
only if φ satisfies the compatibility conditions

φ(0) =

∫ ∞
0

α(a, ψ)φ(a)da

and

˙φ(0) = [µ(0, ψ)− α(0, ψ)]φ(0) −
∫ ∞

0

[αa(a, ψ) + αp(a, ψ)ψ̇ − α(a, ψ)µ(a, ψ)]φ(a)da

where

ψ̇ = φ(0)−
∫ ∞

0

µ(a, ψ)φ(a)da, ψ =

∫ ∞
0

φ(a)da.

In our case the compatibility condition above is not enforced, hence an alternative
theorem is proposed for existence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



30 CHAPTER 2. MATHEMATICAL INTRODUCTION

Hoppenstead Model

Frank Hoppenstead developed an age-structured population model where the popu-
lation on which the infectious disease is acting is partitioned into four non-overlapping
compartments [12], namely: (S) susceptibles, (Q) quarentined infectives, (I) infec-
tives, (R) recovered. The distinguishing feature of this model is that together with
an individuals chronological age a, the amount of time an individual has spent in a
specific compartment is tracked for each of the four compartments is tracked. Hop-
pensteadt refers to this variable as the ’class age’ c of the compartment. Essentially
this variable describes an individuals current epidemiological state. The resulting
model is given by the following set of non-linear structured partial differential equa-
tions,


∂S
∂t

+ ∂S
∂a

+ ∂S
∂c

= m(a, c, t)− S(a, c, t)
∫∞

0

∫ σ
0
r(a, c, t, a′, c′)I(a′, c′, t)dc′da′

∂I
∂t

+ ∂I
∂a

+ ∂I
∂c

= −[q(a, c, t) + ∆(a, c, t)]I
∂Q
∂t

+ ∂Q
∂a

+ ∂Q
∂c

= q(a, c, t)I
∂R
∂t

+ ∂R
∂a

+ ∂R
∂c

= 0
(2.37)

with initial age distribution,{
S(a, c, 0) = S0(a, c), I(a, c, 0) = I0(a, c),
Q(a, c, 0) = Q0(a, c), R(a, c, 0) = R0(a, c), t > 0.

(2.38)

and boundary conditions,
S(0, 0, t) =

∫∞
0

∫∞
0

[β1(a, c, t)S(a, c, t) + β2(a, c, t)I(a, c, t)
+ β3(a, c, t)Q(a, c, t) + β4(a, c, t)R(a, c, t)]dadc

I(0, 0, t) = Q(0, 0, t) = R(0, 0, t) = 0, t > 0.
(2.39)

This model assumes that all newly born individuals are susceptible to the disease
and hence enter into S. Each group S, I, Q, R has known reproductive measures
denoted by βi, i = 1, 2, 3, 4, which then contribute to the birth rate in the susceptible
compartment. Furthermore, migration into S occurs at a rate of m. Q is a subclass
of the group of infectives and the rate at which individuals are quarantined is given
by q. Moreover, individuals who are infective may die at rate ∆. Individuals may
remain infective for a fixed period of time σ, after which they are immune to the
disease permanently. The rate at which individuals become immune (transition from
I to R) is given by I(a, σ, t) +Q(a, σ, t).

The term

S(a, c, t)

∫ ∞
0

∫ σ

0

r(a, c, t, a′, c′)I(a′, c′, t)dc′da′ (2.40)

in (2.37) describes the rate at which susceptible individuals exit the compartment
S and become infective (enter I) due to mixing with other infective individuals in
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2.5. IMPULSIVE DIFFERENTIAL EQUATIONS 31

the population. This is akin to the law of mass action, where r is the sufficient rate
of contact between susceptible organisms of age (a, c) and the infective organisms
of age (a′, c′), required to cause the transition from S to I. Observe that in this in-
stance ’age’ is interpreted as the pair of variables for class age and chronological age.

In order to ensure that individuals do not reach age older than their chronological
age, an additional condition is introduced.

S(0, c, t) = I(0, c, t) = Q(0, c, t) = R(0, c, t) = 0 (2.41)

Hoppensteadt concludes that despite being a very general model it is also difficult
and impractical since the tracking of class ages of susceptibles and recovereds may
not be necessary. Furthermore, in practice it observing the dependence of the pop-
ulation on class age might not be possible and hence reducing the dependence of
variables r, ∆, q and βi (for i = 1, 2, 3, 4) to time and chronological age.

Other significant structured models

It should be noted that the models considered thus far have provided a foundation
for problems in various areas of study. For example, in 1975 Hoppensteadt[13] pro-
posed a population model with gender differentiation, Busenberg et al [7] modelled
situations in epidemiology, Venturino [26] formulated models that capture interac-
tions between many species such as predators and prey and parasitism and Langlais
[18] studied models with space diffusion.

In this research project, we consider non-linear continuous time models with age
and epidemiological state structure, that were formulated using approaches similar
to that of Gurtin and MacCamy and Hoppensteadt. This is done with the objective
of developing structured models for vector-borne diseases such as ASFV. Instead of
tracking class ages of susceptibles and recovereds as in [12], we will construct models
where only the class age of infectives is tracked. In other words,the infectives will
be structured with respect to their current epidemiological state.

2.5 Impulsive Differential Equations

There exist evolutionary processes with dynamics characterized by the occurrence
of sudden and short-lived perturbations at specific moments in time. These per-
turbations are brief in duration in comparison to the duration of the process itself.
Therefore it may be assumed that they occur instantaneously and hence are referred
to as ’impulses’. Mathematically this causes certain model parameters to remain
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32 CHAPTER 2. MATHEMATICAL INTRODUCTION

smooth in variation for prolonged periods of time, followed by rapid short-term
changes in values. These abrupt changes can take on the form of harvesting, natu-
ral disasters, shocks etc.

Consider an arbitrary evolution process described by the following:

(i) a system of differential equations

d

dt
= f(x, t) (2.42)

where f : R+ × Ω→ Rp, and Ω ⊂ Rp is an open set.

(ii) operator A(t) : M(t)→ N(t) where M(t), N(t) ⊂ Ω, for all t ∈ R+.

Suppose that x(t) = x(t, t0, x0) is a solution for (2.42) with starting point (t0, x0).
Moments of impulsive effect are denoted by τk and can be chosen in numerous ways
to suit practical purposes.

The process defined by the system of impulsive differential equations (i) − (ii) be-
haves as follows: the point denoted by Pt = (t, x(t)) commences its motion at point
(t0, x0) and travels along the curve {(t, x) : t ≥ t0, x = x(t)} until time τ1 > t0 when
Pt encounters set M(t). At time t = τ1 operator A(t) maps Pτ1 = (τ1, x(τ1)) to the
point Pτ+1 = (τ1, x

+
1 ) on set N(τ1), where x+

1 = A(τ1)x(τ1). P (t) continues travel-

ling along the curve with x(t) = (t, τ1, x
+
1 ) as the solution to (2.42) with starting

point Pτ1 , until the set M(t) is met at the next instant τ2 > τ1. Once again, Pτ2 =
(τ2, x(τ2)) is shifted to the point Pτ+2 = (τ2, x

+
2 ) ∈ N(τ2), where x+

2 = A(τ2)x(τ2)

and Pt continues its trajectory along the curve with x(t) = (t, τ2, x
+
2 ) as the solution

to (2.42) with starting point Pτ2 . The evolution process continues thus for as long
as the solution of (2.42) exists.

The curve described by the point Pt is referred to as the integral curve. The solutions
x(t) of the impulsive differential system are assumed to be left continuous at the
moments of impulsive effect τk, k = 1, 2, . . . . That is,

x(τ−k ) = lim
h→0+

x(τk − h) = x(τk). (2.43)

The theory of impulsive differential equations has been explored extensively in many
literature sources ( see[4] and [17]) and hence the existence and uniqueness of these
equations will not be discussed in this dissertation. τk can be chosen in various ways,
some of which are discussed here.
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2.5. IMPULSIVE DIFFERENTIAL EQUATIONS 33

1. Fixed moments of impulsive effect
These equations are of the following form:{

dx
dt

= f(x, t), t 6= τk
∆x = Ik, t = τk.

(2.44)

Define a sequence τk : τk < τk+1, k ∈ B ⊂ Z. Clearly, when t ∈ (τk, τk+1], the
solution x(t) of (2.44) satisfies dx

dt
= f(x, t), while at the moment of impulsive

effect t = τk, x(t) satisfies x(τ+
k ) = ψk(x(τk)) = x(τk) + Ik(x(τk)).

2. Unfixed moments of impulsive effect
Equations belonging to this class are written as follows:{

dx
dt

= f(x, t), t 6= τk
∆x = Ik(x), t = τk.

(2.45)

where τk : Ω→ R, τk(x) < τk+1(x), k ∈ B ⊂ Z, x ∈ Ω. In this case moments
of impulsive effect occur when (x, t) touches an arbitrary set of hypersurfaces
denoted by σk, when t = τk(x(t)) for some k ∈ B.

3. Autonomous impulsive equations
Let σ ∈ Ω ⊂ Rn be an (n − 1) dimensional manifold. Autonomous impulsive
equations are written as follows.{

dx
dt

= f(x), x 6= σ
∆x = I(x), x ∈ σ (2.46)

The instances of impulsive effect can be characterised by the moments when
the point x(t) ∈ Ω meets σ.

4. Random moments of impulsive effect
Instantaneous changes at moments that cannot be predetermined occur in
many real world processes [2]. In order to model these random changes, prob-
ability laws are utilised to determine moments of impulsive effect. In such
cases, random variables must be incorporated into jump conditions and im-
pulsive differential equations occurring at random moments.

Consider the probability space (Ω,F , P ) and define a sequence of random vari-
ables, {ηk}∞k=1. Let {ξk(ω)}∞k=0 be an increasing sequence of random variables
where ξk = T0 + Σk

i=1ηi, k = 1, 2, 3, . . . , ξ0 = T0 and T0 is a positive fixed
point. ηk denotes the time between the occurrence of two consecutive impulses
and it is assumed that

∑∞
k=1 ηk =∞ with probability 1. Suppose that t ≥ T0

is a fixed point and the events Sk(t) for k = 1, 2 . . . are defined as follows [2],

Sk(t) = {ω ∈ Ω : ξk(ω) < t < ξk+1(ω)} .
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34 CHAPTER 2. MATHEMATICAL INTRODUCTION

For each fixed k = 1, 2, . . . the points tk denote random values of ηk. In the
same manner, the points Tk =

∑k
i=0 ηi, k = 1, 2, . . . denote the values of ξk

. This then yields the following initial value problem for the scalar impulsive
differential equation with fixed points of impulses,

dx
dt

= f(t, x(t)) for t ≥ T0, Tk < t < Tk+1,
x(Tk + 0) = Ik(ηk, x(Tk − 0)) for k = 1, 2, . . . ,
x(T0) = x0

(2.47)

where x ∈ Rp, f : [0,∞)× Rp → Rp and x0 ∈ Rp.

The solution of (2.47), denoted by x(t;T0, x0, {tk}), is dependant on the ini-
tially chosen random values tk for ηk, k = 1, 2, . . . . It is assumed that
x(Tk;T0, x0, {tk}) = limt→Tk−0 x(t;T0, x0, {tk}). Now, x(t;T0, x0, {tk}) gener-
ates a stochastic process in Rp for any arbitrary values tk for ηk, k = 1, 2, . . .
and is a solution to the following impulsive differential equation with impulses
at random moments.

dx
dt

= f(t, x(t)) for t ≥ η0, ηk < t < ηk+1,
x(ηk + 0) = Ik(ηk, x(ηk − 0)) for k = 1, 2, . . . ,
x(η0) = x0

(2.48)

Solutions of impulsive differential equations are piecewise continuous functions where
instances of impulsive effect create points of discontinuity. All solutions of (2.44) will
share the same points of discontinuity since all impulses will occur at the same in-
stance. However, solutions of (2.45) and (2.46) have varying points of discontinuity.
This makes the analysis of such equations complex [4].

It is hypothesized in this research project that warthogs act as an amplifying factor
of ASF in the tick population. That is, the event of a warthog family inhabiting a
burrow is assumed to cause a spike in the number of infected ticks within the burrow
due to the abrupt availability of blood meals. Furthermore, since it is known that
the time spent by the warthogs in the burrow during farrowing season makes up a
very short portion of a ticks lifespan, we can interpret this event as an impulse.

In order to simulate reality, ideally random moments of impulsive effect should
be used. However, since the introduction of stochastic variables would complicate
the model and would be more difficult to implement, this possibility was excluded.
Instead, fixed instances of impulsive effect were imposed on the ASFV model.
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Chapter 3

Population and epidemiological
models with extinction in finite
time

It is common in differential equation models that solutions approach a stable equi-
librium without actually reaching it. In many situations this is not a problem since
the solutions are treated as approximations. However, in instances when the equilib-
rium is zero, qualitatively unrealistic behaviour may be obtained. In Mathematical
Epidemiology disease free states are typically represented as equilibria of dynam-
ical systems which model the respective epidemiological process. In other words,
asymptotic stability of disease free equilibria is interpreted as disease extinction. In
the case of a complete dynamical system, the uniqueness property ensures that no
two solutions of the initial value problem may meet. Hence a solution that tends
towards the disease free equilibria and the steady state solution at 0 cannot meet
which implies that disease extinction can never occur. Despite the fact that in
constant conditions this may not be problematic, when epidemiological factors are
varied this will lead to significant modelling errors. The time taken to eradicate
a disease from a population is a significant factor that will assist in determining
appropriate conservation strategies.

As an illustrative example, we consider the generalised logistic model given by,

dP

dt
= rP 1−α(Pα − λ)(M − P ) r > 0, M > 0, α ∈ [0, 1], λ ∈ R (3.1)

The following observations can be made:

(i) If α = 0 or λ = 0 equation (3.1) is a logistic model.

(ii) For large P equation (3.1) is an approximately logistic model
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36 CHAPTER 3. MODELS WITH EXTINCTION IN FINITE TIME

(iii) If λ < 0 equation (3.1) is an approximately logistic model

(iv) If α > 0 and λ > 0, equation (3.1) has a second positive equilibrium repre-

senting Alee effect (P̂ = λ
1
α ). If P (0) < P̂ ≤ M extinction occurs in finite

time.

Figure 3.1: General logistic model

Zero is an attractive equilibrium when λ > 0 or a repelling equilibrium when λ < 0.
We will consider (3.1) when λ is a function of t given by

λ(t) = 0.6− 2 cos(t)− 2 cos(t/6).

Due to properties (iii) and (iv), given that λ remains positive long enough, the pop-
ulation becomes extinct and will remain extinct irrespective of any future changes
of λ. This phenomenon is clearly illustrated in Figure 3.1 for the parameters
M = 2, r = 0.1, α = 0.5. Observe the solution trajectories indicated in red where
extinction occurs in finite time. The trajectories indicated in blue tend towards the
non-zero equilibrium M = 2 due to property (ii) above.

Remark
It is clear that P ≡ 0 is a solution of (3.1). Then, it follows from (iv) that in general
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3.1. BASIC POPULATION MODELS 37

the solution of (3.1) is not unique. However, we can prove forward uniqueness thus
showing that (3.1) defines a positive dynamical system on R+. We apply Theorem
2.1.7 with f being the right hand aside of (3.1). It is easy to see that f ′(P ) is
bounded above on (0,+∞). Hence, f is one-sided Lipschitz. Then the forward
uniqueness follows from Theorem 2.1.7.

Our objective is to find favourable conditions that will persist for a sufficiently long
period of time, so that extinction of a disease or host population can occur and the
disease/host population will remain extinct even if the conditions change. In the
following chapter ODE and PDE models with suitable conditions under which ex-
tinction can occur will be investigated. These include basic population models, state
and age structured epidemiological models and models of vector borne diseases and
these tools will be used to model the dynamics of ASFV and capture the situation
in Mkuze Game Reserve where unexplained cases of extinction have been observed.

3.1 Basic population models

Consider models of the form
dN

dt
= g(N).N (3.2)

where N is the size of the population and g is a demographic function such that

g(N) ≤ −cN−α (3.3)

for c > 0, α > 0, ε > 0 and 0 < N < ε.

Theorem 3.1.1. If a solution of (3.2) satisfying (3.3) is such that limt→∞N(t) = 0
then there exist t∗ such that N(t) = 0 for t ≥ t∗.

Proof. Let N be a non-repetitive solution of (3.2) such that limt→∞N(t) = 0. Hence,
there exists t = t1 such that N(t1) < ε. Since g(N) < 0 for N < ε we have N(t) < ε
for t > t1. Hence, N satisfies

dN

dt
= g(N) ≤ −cN−α for t > t1

Consider
dy

dt
= −cy−α

Solving for y using separation of variables, we obtain

y(t) = [(K − ct)(1− α)]
−1
1−α , K ∈ R

Now y(t) ≤ 0 ⇐⇒ K ≤ ct, i.e. K
c
≤ t. Hence, y(t) = 0 ⇐⇒ t ≥ t∗ for t∗ = K

c
.

Since 0 ≤ N(t) ≤ y(t), it then follows that N(t) = 0 for t ≥ t∗.
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38 CHAPTER 3. MODELS WITH EXTINCTION IN FINITE TIME

This result implies that under assumption (3.3), if the population decreases to 0
eventually, then it reaches 0 in some finite time. The following example illustrates
this result for a specific choice of function g.

Example

For 0 < θ < 1, 0 < β < 1 and 0 < m < M consider

g(N) =

(
1−

(
N

M

)β)(
1−

(
N

m

)−θ)
(3.4)

Figure 3.2: The relationship between extinction times t∗ and N0

The first factor models overcrowding with M being the carrying capacity. The sec-
ond factor represents a strong Allee effect with minimum survival level m. Clearly,
g satisfies the assumption (3.3). Therefore, all solutions with N(0) < M equal zero
in finite time.
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3.1. BASIC POPULATION MODELS 39

Observe that f(N) = g(N).N (where g is (3.4))and

f ′(N) =

(
1−

(
N

M

)β)(
1−

(
N

m

)−θ)
+N

(
−β
(
N

M

)β−1
1

M

)(
1−

(
N

m

)−θ)

+
Nθ

m

(
1−

(
N

M

)β)(
N

m

)−θ−1

=

(
1−

(
N

M

)β)(
1−

(
N

m

)−θ)
− β

(
N

M

)β (
1−

(
N

m

)−θ)

+ θ

(
N

m

)−θ(
1−

(
N

M

)β)
.

Now,

lim
N→0

f ′(N) = lim
N→0

(
N

m

)−θ [
−1 +

(
N

M

)β
+ β

N

M

β

+ θ − θ
(
N

M

)β]
=∞.

Therefore, f ′ is locally bounded above on [0,∞) and hence the solution is forward
unique by Corollary 2.2.10.

Figure 3.2 represents the relationship between extinction times t∗ and N0 for pa-
rameters θ = β = 0.5, m = 1, M = 2. Additionally, observe that

g(N) =

(
1−

(
N

M

)β)(
1−

(
N

m

)−θ)

= −
(
N

m

)−θ(
1−

(
N

M

)β)
+

(
1−

(
N

M

)β)
.

Now,

g(N) ≤ 1−
(
N

m

)−θ
= 1− 1

2

(
N

m

)−θ
− 1

2

(
N

m

)−θ
.

Let N ≤ m. Then limN→0−1
2

(
N
m

)−θ → −∞. Therefore, there exists ε such that

−1
2

(
N
m

)−θ
< −1. Hence, for N < ε we have, 1− 1

2

(
N
m

)−θ
< 0. Then for 0 < N < ε

we have

g(n) ≤ −1

2

(
N

m

)−θ
.

Hence condition (3.3) holds and we have extinction in finite time. We will now extend
this concept to epidemiological models that consist of systems of equations. In the
next section, we will study the importance of utilising a nonstandard interaction
term in order to construct a model where disease extinction occurs within finite
time.
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40 CHAPTER 3. MODELS WITH EXTINCTION IN FINITE TIME

3.2 Significance of nonlinear force of infection

In epidemiological models the force of infection takes into account two factors that
determine how a disease is transmitted: unique population behavioural patterns
and the disease itself [9]. Standard force of infection which linearly depends on the
number of individuals who have been infected is unrealistic when modelling certain
diseases. In the paper by Capasso and Serio [8] it is suggested that a nonlinear,
saturating force of infection is more appropriate, as it will accurately reflect the
saturation phenomena for large numbers of infective individuals. To illustrate the
relevance of using a nonlinear force of infection in order to ensure disease eradication,
we begin by considering the classical SIR model.

The disease spreads with respect to the following system of differential equations:
dS
dt

= −βIS
dI
dt

= βIS − γI
dR
dt

= γI
(3.5)

with initial conditions

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = 0 (3.6)

such that S0 +I0 = N . That is, the sum of the initial number of individuals who are
infected and the individuals who can contract the disease is equal to the total size
of the population N . Furthermore, β > 0 denotes the rate at which the infection is
transmitted, while γ > 0 denotes the rate of recovery. Kermack and McKendrick [8]
derived a threshold theorem for (3.5), which states that all points along the S-axis
(refer to Figure 3.3)are equilibrium points, where all points S > γ

β
are unstable and

S < γ
β

are stable.

The theorem also states that if S0 <
γ
β
, then I(t) decreases to zero as t tends to

positive infinity. Additionally number of susceptible individuals S(t) is always a
decreasing function of t and attains a limit limt→∞ S(t) = S∞ > 0. This is clearly
illustrated in Figure 3.3 where γ

β
= 0.3. It is clear that this implies that the although

the solution tends to 0 asymptotically, it does not actually reach S = 0 within finite
time and so the disease is never fully eradicated from the population.

In order to counter this problem, following the approach in [8], model (3.5) can be
extended as follows:


dS
dt

= −βg(I)S
dI
dt

= βg(I)S − γI, t > 0
dR
dt

= γI
(3.7)

where g : R+ → R+ is a continuous, bounded function such that

(i) g(x) ≥ 0, ∀x ∈ R+,
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3.2. SIGNIFICANCE OF NONLINEAR FORCE OF INFECTION 41

Figure 3.3: SIR epidemic model with nonlinear force of infection

(ii) g(0) = 0,

(iii) g(x) ≤ c, ∀x ∈ R+ where c ∈ R+,

(iv) the derivative of g exists and is bounded on any compact interval of R+ and
g′(0) > 0,

(v) g(x) ≤ g′(0)x, ∀x ∈ R+.

Observe that the introduction of a nonlinear bounded function g alters the inter-
action term so that there is nonlinear dependence on the number of infective indi-
viduals. Additionally, for very large numbers of infectives, function g will tend to
a ”saturation level” C (refer to Figure 3.4). This ensures that the disease will not
spread without a bound. In [9] the authors further expand this idea and propose a
transmission rate of the form

g(I; t)Sr(t), r > 0. (3.8)

Clearly, only when r = 1 can we refer to g as a force of infection.

In the following sections we will use similar nonstandard forces of infection in order
to construct structured epidemiological models with finite time disease extinction.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



42 CHAPTER 3. MODELS WITH EXTINCTION IN FINITE TIME

Figure 3.4: Example of an asymptotically saturating g

3.3 Structured population models with finite time

extinction

3.3.1 State structured epidemiological models

Here we consider a classical epidemic SIR model with no vital dynamics, where the
force of infection is βIα and β > 0, 0 < α < 1. The infectives are structured
with respect to epidemiological state x (e.g. time since infection took place), where
x ∈ (0, x̄) and x̄ <∞ is the state of transition to recovery.

As in [8], the equation for recovered can be decoupled so that the model is as follows:
dS(t)
dt

= −βIαS(t)
∂J(t,x)
∂t

+ ∂J(t,x)
∂x

= 0
J(t, 0) = βIα(t)S(t)
dR(t)
dt

= J(t, x̄)

(3.9)

where,

I(t) =

∫ x̄

0

J(t, x)dx

• S: Susceptibles at time t.

• J : Density of the distribution of infectives at time t over the epidemiological
state x .

• I: Number of infectives at time t.
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3.3. STRUCTURED POPULATIONMODELSWITH FINITE TIME EXTINCTION43

S I R

Theorem 3.3.1. If a solution of the model (3.9) is such that

I ′(t) ≤ −cI(t), t ≥ t̂ (3.10)

for some c > 0 and t̂ > 0, then there exists t∗ such that I(t) = 0 for t > t∗.

Proof. We have

dI(t)

dt
=

∫ x̄

0

Jt(t, x)dx

=

∫ x̄

0

−Jx(t, x)dx

= J(t, 0)− J(t, x̄)

= βI(t)αS(t)− J(t− x̄, 0)

= I(t)αφ(t),

where

φ(t) = β

{
S(t)− I(t− x̄)αS(t− x̄)

I(t)α

}
.

We must show that there exists k > 0 such that

φ(t) ≤ −k

for all sufficiently large t. For t > t̂+ x̄ we have

I(t− x̄)α

I(t)α
≥ I(t− x̄)α

I(t− x̄)α exp−αcx̄
= eαcx̄

Therefore,
φ(t) ≤ β {S(t)− eαcx̄S(t− x̄)}

Hence,
lim sup
t→∞

φ(t) ≤ β {S∞ − S∞eαrx̄} = −(eαrx̄ − 1)S∞β

Let k = β
2
(expαrx̄−1)S∞ > 0, so that lim supt→∞ φ(t) ≤ −2k < −k. Then there

exists t1 > t̂+ x̂ such that φ(t) < −k for t > t1. Now I(t) satisfies

dI(t)

dt
≤ −kI(t)α, t > t1.

Therefore I(t) ≤ y(t) for t ≥ t1, where y(t) satisfies the following

dy(t)

dt
= −ky(t)α and y(t2) = I(t2)
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44 CHAPTER 3. MODELS WITH EXTINCTION IN FINITE TIME

By separation of variables,

y(t) =

{
{(C − kt)(1− α)}

1
1−α for t ≤ C

k
,

0 for t ≥ C
k

where

C =
I(t2)1−α

1− α
+ kt2.

Therefore, since 0 ≤ I(t) ≤ y(t), we have I(t) = 0 when t ≥ t∗ = C
k

.

Remark
Condition (3.10) stipulates that the number of infectives must tend to 0 atleast
exponentially in order to ensure finite time extinction.

3.3.2 Age structured epidemiological models

Here we consider an SI endemic model, with vital dynamics, where the force of
infection is βIα and β > 0, 0 < α < 1. Individuals are distinguished by age a,
where a ∈ (0, ā) and ā <∞ is the maximum age. In this model individuals cannot
attain an age higher than ā.


∂S(t,a)
∂t

+ ∂S(t,a)
∂a

= −βI(t)S(t, a)− µS(t, a),
∂J(t,a)
∂t

+ ∂J(t,a)
∂a

= βI(t)S(t, a)− µJ(t, a)− δ(I)J(t, a),
J(t, 0) = 0,
S(t, 0) = Λ,

(3.11)

where

I(t) =

∫ ā

0

J(t, a)da

and
δ(I) = δ1 + δ2I(t)−α, α ∈ (0, 1).

• a: Age of reproductive maturity.

• S: Density of the distribution of susceptible vectors at time t over age a.

• J : Density of the distribution of infective vectors at time t over age a.

• I: Number of infectives at time t.

• δ1, δ2: Disease induced death rates.

• β: Birth rate.
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3.3. STRUCTURED POPULATIONMODELSWITH FINITE TIME EXTINCTION45

• µ: Natural death rate.

• Λ: Recruitment function.

S I

ā ā

Figure 3.5: Diagram of dynamics for an age structured epidemiological model

Theorem 3.3.2. If a solution of the model (3.11) is such that limt→∞ I(t) = 0 then
there exists t∗ such that I(t) = 0 for t > t∗.

Proof. Consider

dI(t)

dt
=

∫ ā

0

Jt(t, a)dt

=

∫ ā

0

−Ja(t, a) + βI(t)S(t, a)− µJ(t, a)− δ(I)J(t, a)da

= J(t, 0)− J(t, ā) + βI(t)

∫ ā

0

S(t, a)da−
∫ ā

0

J(t, a)da
(
µ+ δ1 + δ2I

−α(t)
)

≤ βI(t)

∫ ā

0

S(t, a)da− I(t)
(
µ+ δ1 + δ2I

−α(t)
)

Observe that,

∂S(t, a)

∂t
+
∂S(t, a)

∂a
≤ −µS(t, a)

Hence,

d

dt

{∫ ā

0

S(t, a)da

}
≤ Λ− µ

∫ ā

0

S(t, a)da (3.12)

Letting y(t) =
∫ ā

0
S(t, a)da and assuming equality in (3.12), we need only solve the

initial value problem given by

dy(t)

dt
= Λ− µy(t)

y(0) = y0
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46 CHAPTER 3. MODELS WITH EXTINCTION IN FINITE TIME

using the integrating factor method:

eµt
dy(t)

dt
+ µeµty(t) = Λeµt

d

dt

(
eµty(t)

)
= Λeµt

eµty(t)− y0 =
Λ

µ

(
eµty(t)− 1

)
y(t) = y0e

−µty(t) +
Λ

µ

(
1− e−µty(t)

)
Hence ,

y(t) ≤ max

{
Λ

µ
, y0

}
.

That is, ∫ ā

0

S(t, a)da ≤ max

{
Λ

µ
,

∫ ā

0

S(0, a)da

}
= κ.

and

dI(t)

dt
≤ βI(t)κ− I(t)

(
µ+ δ1 + δ2I

−α(t)
)

= I1−α(t) (AIα(t)− δ2)

where A = βκ− µ− δ1 is a constant. We now observe that the ODE

dI(t)

dt
= I1−α(t) (AIα(t)− δ2)

has 2 constant solutions, namely 0 and
(
δ2
A

) 1
α . Furthermore, since we know that

limt→∞ I(t) = 0, 0 is an attractive equilibrium, and so there exists a point t > t1
such that

AI(t)− δ2 < −
δ2

2
.

That is,

dI(t)

dt
≤ −δ2

2
I(t)1−α for t > t1.

Therefore, by separation of variables,

I(t) ≤

{
(αC − α δ2

2
t)

1
α t1 < t ≤ 2C

δ2

0 t > 2C
δ2

where C = Iα(0)
α
− δ2t0

2
, t0 > t1. It is clear that for t∗ ≥ 2C

δ2
> t1, I(t) = 0.
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3.3. STRUCTURED POPULATIONMODELSWITH FINITE TIME EXTINCTION47

3.3.3 A generic model of a vector borne disease

Vector-borne diseases are infections transmitted by the bite of infected arthropod
species (e.g. mosquitoes, ticks).The following two sets of equations model the dy-
namics of an infectious disease between a vector and a host. Both the vector and the
host are divided into compartments on the basis of whether they are susceptible or
infectious. Age structure is taken into account in the case of the vectors, due to their
short lifespan, as in model (3.11). State structure is used to model the infectives in
the host population as in (3.9).

Sh Ih

Sv Iv

ā ā

µ µ

Figure 3.6: Diagram of dynamics for vector borne disease model

Vector



∂Sv
∂t

+ ∂Sv
∂a

= −βhvIαhSv
∂Jv
∂t

+ ∂Jv
∂a

= βhvI
α
hSv

Jv(t, 0) = 0

Sv(t, 0) =
∫ ā
a
f(a) (Sv(t, a) + Jv(t, a)) da

Iv(t) =
∫ ā

0
Jv(t, a)da

(3.13)

• Sv: Density of the distribution of susceptible vectors at time t over age a ∈
(0, ā).

• Jv: Density of the distribution of infective vectors at time t over age a ∈ (0, ā).

• Iv: Infective vectors at time t.

• βhvIαh : Force of infection from host to vector where 0 < α < 1.

• f : Fertility function.
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48 CHAPTER 3. MODELS WITH EXTINCTION IN FINITE TIME

Host


dSh
dt

= −βvhIγvSh + ψ(Sh, Jh, t)
∂Jh
∂t

+ ∂Jh
∂x

= 0
Jh(t, 0) = βvhI

γ
vSh

Ih(t) =
∫ x̄

0
Jh(t, x)dx

(3.14)

• Sh: Susceptible hosts at time t.

• Jh: Density of the distribution of infective hosts at time t over epidemiological
state x ∈ (0, x̄).

• Ih: Infective hosts at time t.

• βvhIγv : Force of infection from vector to host where 0 < γ < 1.

• ψ: Auxiliary function of Sh, Jh and t that may be used to incorporate vital
dynamics into this model.

Theorem 3.3.3. If a solution of the model given by (3.14) and (3.13) is such that

1. limt→∞ Sh(t) = S∞h > 0 ,
limt→∞ Sv(t, a) = S∞v (a) > 0 uniformly on a,

2. I ′h(t) ≤ −cIh(t),
I ′v(t) ≤ −cIv(t)

for c > 0 and t ≥ t̂, then there exists t∗ such that Ih(t) = 0 and Iv(t) = 0 for t > t∗.

Proof. Consider

dIh(t)

dt
=

∫ x̄

0

∂Jh(t, x)

∂t
dx

=

∫ x̄

0

−∂Jh(t, x)

∂x
dx

= Jh(t, 0)− Jh(t, x̄)

= βIv(t)
γSh(t)− Jh(t− x̄, 0)

= βIv(t)
γ

{
Sh(t)−

Iv(t− x̄)Sh(t− x̄)

Iv(t)γ

}

Using a similar approach to that of the proof for Theorem 3.3.1 it can be show that
∃ k > 0 such that

Sh(t)−
Iv(t− x̄)γSh(t− x̄)

Iv(t)γ
≤ −k (3.15)
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3.3. STRUCTURED POPULATIONMODELSWITH FINITE TIME EXTINCTION49

Therefore
dIh(t)

dt
≤ −kIv(t)γ , t > t2.

dIv(t)

dt
=

∫ ā

0

∂Jv(t, a)

∂t
da

= −
∫ ā

0

∂Jv(t, a)

∂a
da+ βhvIh(t)

α

∫ ā

0

Sv(t, a)da

= − [Jv(t, ā)− Jv(t, 0)] + βhvIh(t)
α

∫ ā

0

Sv(t, a)da

= −
[
Jv(t− ā, 0) + βhv

∫ ā

0

Ih(t− ā+ θ)αSv(t− ā+ θ, θ)dθ

]
+ βhvIh(t)

α

∫ ā

0

Sv(t, a)da

≤ βhv

∫ ā

0

Ih(t)
αSv(t, a)− Ih(t− ā+ θ)αSv(t− ā+ θ, θ)da

≤ βhvIh(t)
α

∫ ā

0

Sv(t, a)− e−cα(ā−θ)Sv(t− ā+ θ, θ)da

since Ih(t)
α ≤ Ih(t− ā+ θ)αe−cα(ā−θ).

Denote

ω(t, θ) = Sv(t, θ)− eαc(ā−θ)Sv(t− ā+ θ, θ).

Then

lim
t→∞

ω(t, θ) = S∞(θ)(1− eαc(ā−θ))

uniformly on θ. Let

k(θ) = −S∞(θ)

2
(1− ec(ā−θ)) > 0

Hence

lim
t→∞

ω(t, θ) = −2k(θ) < −k(θ)

Hence there exists t = t3 such that ω(t, θ) < −k(θ) for t > t3, which implies that

dIv(t)

dt
≤ −rIh(t)α for t > t3 and r = β

∫ ā

0

k(θ)dθ.

Now, for t > t̄ = max(t2, t3), let us consider

dIh(t)

dt
≤ −kIv(t)γ

dIv(t)

dt
≤ −rIh(t)α.
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50 CHAPTER 3. MODELS WITH EXTINCTION IN FINITE TIME

Suppose s = min(k, r) and λ = max(γ, α), then

d(Iv + Ih)

dt
≤ −s(Iγv + Iαh )

≤ −s(Iλv + Iλh )

≤ −s(Iv + Ih)
λ.

That is,
d(Iv(t) + Ih(t))

dt
≤ −s(Iv + Ih)

λ, t > t3.

Therefore Iv(t) + Ih(t) ≤ y(t) for t ≥ t3, where y(t) satisfies the following

dy(t)

dt
= −sy(t)λ and y(t3) = Iv(t3) + Ih(t3).

By seperation of variables,

y(t) =

{
{(C − st)(1− λ)}

1
1−λ for t ≤ C

s
,

0 for t ≥ C
s

where

C =
(Iv(t3) + Ih(t3))1−λ

1− λ
+ st3.

Therefore since 0 ≤ Ih + Iv ≤ y(t), we have Ih(t) + Iv = 0 (i.e.Ih = Iv = 0) when
t ≥ t∗ = C

s
.

Clearly this result is valid regardless of the choice of function ψ, as long as the
conditions of Theorem 3.3.3 are met.

Furthermore, it should be noted that the condition in all three theorems, that the
solutions tend to 0 with time at least exponentially, is central to ensuring this
result. Further mathematical analysis can possibly lead to relaxing the condition
for convergence of infectives to 0 at least exponentially. This work provides useful
mathematical tools for modelling extinction and characterizing possible pathways
to extinction.
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Chapter 4

African swine fever virus model

In this chapter we formulate and analyse a proposed model for African Swine Fever.
It is our primary objective to accurately simulate and study the situation in the
Mkuze Game Reserve, where ASF could only be traced in remote areas of the game
reserve despite the following two observations [3]:

1. a higher proportion of adult ticks were sampled in each burrow and,

2. a significant increase in the number of burrows that were infested with soft
ticks.

Firstly, since soft ticks engorge to their next state with each bloodmeal, and also
since they prefer to feed on warthogs, it can be inferred that a larger number of adult
ticks are present due to the fact that bloodmeals were more readily available. That
is, warthog families had frequently visited the burrows that were sampled. Secondly,
we have established that warthogs play a role in the maintenance of ASF within the
tick population (see section 1.2.1) and the increased access to their preferred host
should cause an increase in the infection rate. Hence, these observations indicate
that conditions are ideal for the virus to spread throughout the tick population; but
despite this the disease has been practically eradicated from the game reserve within
the space of approximately 3 decades.

4.1 Model formulation

We will utilise two sets of equations to model the dynamics of ASFV between the
tick and warthog population.

Owing to the fact that ticks age based on each engorgement and since the age of the
tick or ‘current stage of engorgement’ dictate the way in which the disease is spread,

51
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52 CHAPTER 4. AFRICAN SWINE FEVER VIRUS MODEL

it is clear that age structure must be utilised. Let ρv(t, a) denote the distribution of
the tick population at time t over the age interval [0, ā] where ā <∞ is the maximum
age. Observe that although we established that ticks can effectively ”stop ageing”
when bloodmeals are not readily available (see section 1.2.3) and survive for many
years, we make the assumption that the ticks die of natural causes and are removed
from the population once they reach age ā and at death rate µ.

The following model is used to model the dynamics of the tick population, under
the assumption that the tick population is at equilibrium:

∂ρv(t, a)

∂t
+
∂ρv(t, a)

∂a
= −µPv(t), ρv(t, 0) = ψ(ρv(t, .)). (4.1)

Note that,

Pv(t) =

∫ ā

0

ρv(t, a)da

is the total tick population at time t. Then,

dPv(t)

dt
=

∫ ā

0

∂ρv(t, a)

∂t
da

= −
∫ ā

0

∂ρv(t, a)

∂a
da− µPv(t)

= ρv(t, 0)− ρv(t, ā)− µPv(t).

Clearly, if the tick population is at equilibrium, then

ρv(t, 0) = ρv(t, ā) + µPv(t).

Hence,
ψ(ρv(t, .)) = ρv(t, ā) + µPv(t). (4.2)

We partition the tick population into two compartments, namely susceptible S and
infectious J . Note that soft ticks do not develop immunity to ASF and transtadial
transmission from one life stage to the next ensures that once they are infected they
cannot recover.

Tick population

{
∂Sv
∂t

+ ∂Sv
∂a

= −βhvIhSv − µSv
∂Jv
∂t

+ ∂Jv
∂a

= βhvIhSv − (µ+ δ1 + δ2I
−γ
v )Jv

(4.3)

where

Iv(t) =

∫ ā

0

Jv(t, a)da. (4.4)

• Sv: Density of the distribution of susceptible ticks at time t over age a ∈ (0, ā).
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4.1. MODEL FORMULATION 53

• Jv: Density of the distribution of infective ticks at time t over age a ∈ (0, ā).

• Iv: Infective ticks at time t.

• δ1: Disease induced death rate.

• δ2: Disease induced death rate.

• µ: Natural death rate.

• γ: Constant between 0 < γ < 1.

• βhvIh: Force of infection from warthog to tick.

The recruitment rate into the population (i.e. eggs hatched per unit in time) is
ψ(ρv(t, .)). We assume that the proportion of new recruits entering due to the
infective part of the population is the same as the proportion of the infectives in the
current population of the infectives in the current population. Then using (4.2) the
boundary conditions are{

Jv(t, 0) = c(Jv(t, ā) + µIv(t))
Sv(t, 0) = ψ(ρv(t, .))− c(Jv(t, ā) + µIv(t)),

(4.5)

where c ∈ (0, 1) is the probability of vertical transmission. Due to the fact that low
transovarial transmission rates have been observed in the field and in laboratory
situations (see section 1.2.3), we will take this into account when accounting for the
recruitment of new born ticks into the infective class by introducing a probability
of transovarial transmission c. Additionally, if it is chosen that c = 0 (i.e. no new
born ticks are born with ASF or Jv(t, 0) = 0), then vertical transmission of the
disease from female ticks to their offspring (transovarial transmission) is eliminated
from the model. Lastly, note that due to the fact that this model does not take into
account the gender of soft ticks, one directional sexual transmission is not explicitly
taken into account.

The following model describes the dynamics of the warthog population.

Warthog population


dSh
dt

= −βvhIvSαh
∂Jh
∂t

+ ∂Jh
∂x

= 0
Jh(t, 0) = βvhIvS

α
h

Ih(t) =
∫ x̄

0
Jh(t, x)dx

(4.6)

• Sh: Susceptible warthogs at time t.

• Jh: Density of the distribution of infective warthogs at time t over epidemio-
logical state x ∈ (0, x̄).
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54 CHAPTER 4. AFRICAN SWINE FEVER VIRUS MODEL

• Ih: Infective warthogs at time t.

• α: Constant between 0 < α < 1.

• βvh: Rate of infection from ticks to warthogs.

Warthogs are partitioned into three compartments on the basis of whether they
are susceptible S, infectious J or recovered R. This is due to the fact that, unlike
ticks warthogs gain immunity to ASFV as soon as they enter the burrow. Since
only neonatal warthogs have blood virus levels that are high enough to spread the
disease into the tick population, we need only to take into account the dynamics of
these individuals and we are only interested in the short interval of time between the
initial infection and recovery. Hence, using the approach suggested by Hoppensteadt
[13](see section 2.4.2) only the infective compartment will be state structured with
respect to epidemiological state x, which is the time since infection took place (i.e.
time since the infective bloodmeal), where x ∈ (0, x̄) and x̄ <∞ is the final infective
state. Therefore, the warthogs transition to the recovered compartment after x̄.

Impulses are inserted into the model in order to signify that a warthog family has
entered the burrow. For k = 1, 2, 3, . . . ,at time Tk a warthog family enters the
burrow to rear its young. Hence the number of warthogs in the burrow increases
sharply from 0 to Γ at time Tk. After δ units in time(impulse termination), the
number of susceptible hosts is once again 0 and same goes for number of infected
hosts, since warthogs develop immunity. Also, after time Tk + ∆, the warthogs
family exits the burrow and the number of susceptible hosts is 0.


Sh(Tk) = Γ
Sh(Tk + ∆) = 0
Jh(Tk + ∆, a) = 0, a ∈ [0, ā]

(4.7)

In order for a mathematical model to accurately portray the MGR situation, it is
required that extinction of the infective compartment Iv occurs within finite time.
Therefore, we have incorporated similar techniques to those studied in Chapter 3
such as using a saturating force of infection −βhvIh and −βvhIv (refer to Figure
4.1) and using disease dependant death rates δ1 and δ2 to ensure that the infective
vectors will reach 0. Figure 4.1 illustrates the dynamics of the model for ASF.

Remark
Observe that when α = 1, this is a classic SIR model with mass action. In our
numerical simulations we found that if α < 1 and δ is sufficiently large, then the
warthog population is disease free by the time it leaves the burrow. However, taking
into account the impulsive conditions this fact does not play a role in this model.
Indeed at time Tk + ∆ there are no susceptible or infective hosts.
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4.2. FINITE TIME EXTINCTION IN ASFV MODEL 55

IhSh Rh

Sv Iv

Impulsive Recruitment
Impulsive Removal

Recruitment Disease-Induced Deaths

(vertical transmission)

Deaths
Deaths

Figure 4.1: Diagram of dynamics for the ASFV model

4.2 Finite time extinction in ASFV model

Our objective is to prove that in the absence of warthogs, ASF becomes extinct
within the tick population in finite time.

Theorem 4.2.1. If Tk+1 − Tk is sufficiently large then there exists t∗ ∈ [Tk, Tk+1]
such that Iv(t) = 0 for t ≥ t∗.

Proof. In the interval [Tk, Tk+1] the equation for the infective class of the tick pop-
ulation is developed using the rest of the system and is given by,

∂Jv(t, a)

∂t
+
∂Jv(t, a)

∂a
= −

(
µ+ δ1 + δ2I

−γ
v

)
Jv(t, a),

Jv(t, 0) = c (Jv(t, ā) + µIv(t)) .

Then,

dIv(t)

dt
= −

∫ ā

0

∂Jv(t, a)

∂a
da−

(
µ+ δ1 + δ2I

−γ
v

)
Iv(t)

= Jv(t, 0)− Jv(t, ā)−
(
µ+ δ1 + δ2I

−γ
v

)
Iv(t)

= −(1− c)Jv(t, ā)− ((1− c)µ+ δ1) Iv(t)− δ2I
1−γ
v (t)

≤ − ((1− c)µ+ δ1) Iv(t)− δ2I
1−γ
v (t).

Now,
dIv(t)

dt
≤ − ((1− c)µ+ δ1) Iv(t)

Iv(t) ≤ Iv(0)e−((1−c)µ+δ1)
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56 CHAPTER 4. AFRICAN SWINE FEVER VIRUS MODEL

implies
lim
t→∞

Iv(t) = 0.

Furthermore from,

dIv(t)

dt
≤ −δ2Iv(t)

1−γ = −δ2I
−γ
v (t).Iv(t)

and Theorem 3.1.1 it follows that there exists t∗ such that Iv(t) = 0 for t ≥ t∗.
Note that irrespective of further impulses of Tk+1, Tk+2, . . . the system remains in a
disease free state.

4.3 Numerical simulation and analysis

In the following section we investigate the role played by warthogs in the mainte-
nance and spread of ASF. All simulations were executed using the following pa-
rameter values: βvh = 0.5, βhv = 0.05, µ = 0.005, γ = 0.5, δ1 = 0.0001, δ2 =
0.005, α = 0.5, ā = 50, Γ = 10 which were chosen in order to best illustrate an
arbitrary scenario.

4.3.1 ASFV model without vertical transmission

In order to understand the role of vertical transmission we consider first the case
when there is no such transmission, that is c = 0. Figure 4.2 demonstrates the effect
of a solitary impulse (4.7) representing the event of a warthog family entering an
infested burrow with low prevalence of ASFV in the tick population. It is clear from
Figure 4.2(b) that the introduction of warthogs at t = 16 results in a sharp increase
of infective warthogs and reaches its peak at around t = 40. The corresponding
increase of infective ticks peaking at t = 40 (see Figure 4.2(a))is as a result of the
availability of infective hosts. Observe that this is consistent with the biological
scenario when a warthog family enters a burrow and neonatal warthogs become
infected. As they develop immunity the number of infective hosts declines. At
the time of exit (t = 46) the warthog population is fully immune (Sh = Ih = 0).
This then causes the number of infective ticks to decrease steadily, from that time
onwards.

Now we consider the effect of multiple impulses each representing a warthog family
entering the burrow (Figure 4.3). Observe that at each entry into the burrow the
infective ticks sharply increase to a peak and steadily decline when the warthog
family exits. The repeated entry of warthogs into the burrow has resulted in a
periodic ‘pulse-like’ oscillations of infective ticks. This implies that the time between
impulses Tk+1 − Tk is not sufficiently large enough for Theorem 4.2.1 to hold and
hence ASFV persists.
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4.3. NUMERICAL SIMULATION AND ANALYSIS 57

(a)

(b)

Figure 4.2: (a) The amplification of ASF within the tick population in the presence
of warthogs. (b)The dynamics of the warthog population that inhabits an infested
burrow.

Lengthening the distance between impulses or in other words the warthog families
visit the burrow less frequently, we obtain Figure 4.4(a). Observe that unlike Fig-
ure 4.3(a), the infective tick population never recovers once the warthogs exit the
burrow the first time (Figure 4.4(a)). In this case Theorem 4.2.1 is validated and
no matter how many times the warthog family re-enters the burrow, the infective
tick population will remain at 0 resulting in disease extinction in finite time.

We can conclude that the numerical simulations are consistent with the findings of
Theorem 4.2.1 as the waiting time between subsequent entries into a burrow plays
a key role in whether ASF will persist or become extinct within the tick population.
This could possibly imply that the warthogs of Mkuze Game Reserve do not inhabit
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58 CHAPTER 4. AFRICAN SWINE FEVER VIRUS MODEL

the sampled burrows frequently enough for the disease to be maintained consistently
within each burrow.

4.3.2 Vertical transmission

Let us now investigate the effects of vertical transmission (i.e. c ∈ (0, 1)) on disease
extinction. Consider the following two scenarios: one where the warthogs are absent
from the burrows for longer periods of time (Figure 4.4(b)) and another where
the interval length between visits are relatively short (Figure 4.5(b)). Notice that
our results once again support the findings of Theorem 4.2.1. However, comparing
Figure 4.6(a) and Figure 4.4(a) it is clear that the time taken to reach extinction is
considerably lengthened when vertical transmission is included into the model. This
is due to the influx of infected newborns entering the infective population.

It is clear that two mechanisms play a role in ensuring the persistence of ASF in the
tick population. The first is warthogs inhabiting burrows frequently at short time
intervals, which results in the amplification of the number of infections within the
tick population. Secondly, vertical transmission plays a crucial role in prolonging
the time to disease extinction and increasing the low level prevalence of the disease.
This allows the disease to be maintained within the population at a low level for
extended periods of time until a warthog family inhabits the burrow again.

We then infer that it is possible that warthog families do not visit the burrows
within the Mkuze Game Reserve frequently enough to allow the virus to persist.
Furthermore, due to vertical transmission it is possible that the virus may still be
present in isolated areas of the game reserve at levels that were too low to detect and
a resurgence of the disease could occur within the game reserve should these burrows
be used more often by warthogs during farrowing season. Clearly, an increase in
burrow infestation rates alone is not sufficient to increase the prevalence of ASF.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



4.3. NUMERICAL SIMULATION AND ANALYSIS 59

(a)

(b)

Figure 4.3: (a) The persistence of ASF within the tick population. (b) The dynamics
of the warthog population as it frequently visits an infested burrow.
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(a)

(b)

Figure 4.4: (a) Extinction of ASF within the tick population.(b) The dynamics of
the warthog population as the length between visits to the burrow are increased.
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(a)

(b)

Figure 4.5: (a) Persistence of ASF within the tick population with vertical trans-
mission.(b) The dynamics of the warthog population.
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(a)

(b)

Figure 4.6: (a) Extinction of ASF within the tick population with vertical trans-
mission.(b) The dynamics of the warthog population as the length between visits to
the burrow are increased.
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Chapter 5

Conclusions and future work

African Swine Fever is a viral disease that poses a significant threat to porcine
production worldwide. In order to identify ideal conditions under which the virus
can be eradicated from a domestic pig population, we studied a unique situation
where extinction of African Swine Fever Virus occurred at the Mkuze Game Reserve.

Owing to the fact that such a situation cannot occur in a complete dynamical system,
we proved existence and uniqueness for a system of ODE’s in Chapter 2 (Theorem
2.2.10 and Theorem 2.2.9) using the one-sided local Lipschitz condition. This result
allows us to obtain positive dynamical systems with forward uniqueness.

In order to mathematically replicate extinction within finite time, through the analy-
sis of various ODE and PDE epidemiological models, a mechanism leading to disease
eradication was identified. We observed that using a nonlinear force of infection and
disease induced death rate played a crucial role in ensuring extinction within finite
time. Additionally, we proved that finite time extinction for the proposed struc-
tured population models can be attained if their solutions tend to 0 with time at
least exponentially. Owing to the fact that this is a stringent condition that would
be challenging to implement in practice, further mathematical analysis can be un-
dertaken in the future with the objective of relaxing this condition.

Incorporating the findings of Chapter 3, a structured PDE model for ASFV was
formulated. We prove that if the time duration between a warthog family’s suc-
cessive inhabitation of the burrow are sufficiently long enough, then ASF becomes
extinct within the tick population in finite time and will remain extinct thereafter.
Moreover, our numerical simulations support this result. Lastly, it was found that
vertical transmission strongly affects the length of this period.

We believe that the model for ASF can be improved by altering the model equations
for the tick population to include the variable q representing how fast the tick
population ages (e.g. depending on the availability of food). Then the model is
given by:
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{
∂Sv
∂t

+ q ∂Sv
∂a

= −βhvIhSv − µSv
∂Jv
∂t

+ q ∂Jv
∂a

= βhvIhSv − (µ+ δ1 + δ2I
−γ
v )Jv.

Altering q enables us to control how rapidly the tick population ages. Since the
sampled burrows at the Mkuze Game Reserve were infested with a higher proportion
of adult ticks, this will allow us to investigate this unique phenomenon further.

Secondly, by developing a model whereby the gender of the ticks is taken into account
in order to study the impact of unidirectional sexual transmission of ASFV from
males to females.

Lastly, future work will deal with modelling the dynamics of ASFV on infected pig
farms. The model would possibly have to be altered to incorporate the varying
characteristics of different tick species depending on the geographical location of the
farms. For example, in Europe ASFV is transmitted through the Ornithodoros, O.
erraticus ticks [16]. This line of research will provide important insights into the
mechanisms that aid disease eradication for commercial pig farming.
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