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A B S T R A C T

The Leigh-Strassler theories are marginal deformations of the N = 4 SYM theory preserving
N = 1 Supersymmetry. As such they admit a Hopf algebra structure which is a quantum
group deformation of the SU(3) structure of the R-symmetry of N = 4 SYM. We reproduce
the β-deformed theory, a subset of the Leigh-Strassler theories, from the Hopf twist approach
and investigate how the twist manifests itself on the gravity dual by defining a star product
between chiral superfields of the β-deformed field theory. The treatment on the gravity side
is done in the Generalized Geometry framework. This star product is then used to deform
the pure spinors of six-dimensional flat space and from the deformed spinors we obtain an
N = 2 solution of Supergravity. The Lunin-Maldacena background dual to the β-deformed
theory is recovered when a stack of D3-branes is introduced in this N = 2 solution. Alongside
the β-deformed theory we consider a unitarily equivalent theory, which we refer to as a w-
deformed theory. In this approach the role of the twist is transparent from the field theory to
the gravity dual, making it useful in constructing backgrounds dual to the full Leigh-Strassler
family of theories.
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Part I

T H E G A U G E F I E L D T H E O RY S I D E
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1

S U P E R S Y M M E T RY

It is the aim of science to explain phenomena observed in nature, mainly by proposing plausi-
ble models whose predictions are tested against experimental data. Theoretical physics is not
an exception to this. Typically and historically, models have been invented to help understand
specific phenomena and usually they would be limited to that problem [52]. The need to
invent a model for every phenomenon may attest to a lack of understanding the underlying
principles of nature. So, a model which can explain many phenomena and do so in a simple
[and elegant] way, is most sought after. In no other science is this search more prevalent than
in particle physics. A concept of import to particle physicists in their quest for such models1

is one of symmetry.

1.1 symmetry

Symmetry can simply be described as the attribute of an ‘object’ to remain unchanged or in-
variant under a certain transformation. A rotation of a uniform sphere leaves it unchanged
and so does a reflection. Some symmetries are continuous, like the rotation of the sphere,
and others are discrete, the reflection of the sphere. In physics, symmetries of a system with
respect to a given transformation usually manifest themselves as invariances in the action of
that particular system. Our interests shall be on continuous symmetries because these kinds
of symmetries are related to conserved quantities or charges by the elegant Noether theorem
which we state here and prove in Appendix [A.2] [63]:

Theorem. Every continuous symmetry of the Lagrangian, L, gives rise to a conserved current jµ(x),
that is

∂µ jµ(x) = 0 (1–1)

1.2 external and internal symmetry

Another way to classify symmetries which will simplify our introduction to Supersymmetry
[SUSY] is whether the symmetry is internal or external. External symmetries are those that re-
sult from transformations which operate on spacetime coordinates, they are sometimes called
geometric symmetries. Internal symmetries, on the other hand, are associated with transfor-
mations that affect the objects defined on the spacetime and not on the spacetime itself. In the
case of field theory internal symmetries are observed in theories with more than one real field
such that these real fields appear symmetrically in the Lagrangian 2. These symmetries have a

1 Or ”The Model” in the case of Grand Unified Theory [GUT].
2 There need not be multiple fields in the case where the fields are complex.
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1.3 the lorentz group and poincaré group 12

property that they commute with Lorentz transformations and an outcome of this is that their
multiplets always contain particles of the same spin, either of bosonic kind or fermionic, not
both[10].

1.3 the lorentz group and poincaré group

1.3.1 Lorentz group

Now we turn to the Lorentz group, a group of linear transformations acting on four-vectors
xµ

x′µ = Λµ
νxν

such that the quadratic form

x2 = xµxµ = ηµνxµxν = (x0)2 − (x1x1 + x2x2 + x3x3)

is invariant. Here we understand ηµν to be the “mostly negative” Minkowski metric, ηµν =

(1,−1,−1,−1), (x0) to be the time component and (x1, x2, x3) the spatial components of space-
time respectively. From a geometric view point the elements Λµ

ν form a group of rotations
and boosts, which mathematically is SO(1, 3|R) 3. From Lie algebra theory, we know that an
element, Λµ

ν, of the group, SO(1, 3|R), can be written in the form

Λ = exp(iTi)

where Ti is a group generator, belonging to the Lie algebra so(1, 3|R). We will refer to Ji and
Ki as generators for rotations and boosts respectively. These generators satisfy the following
commutation relations

[Ji, Jk] = iεikl Jl

[Ji, Kl ] = iεilmKm

[Ki, Kj] = −iεijk Jk

where i, j, k = 1, 2, 3 and ε123 = 1

(1–2)

The boosts and rotations can be combined into a single anti-symmetric two-indexed tensor,
Jµν by choosing that

Ji0 = −J0i = −Ki , Jij = −Jji = εijk Jk

In matrix form J looks like this

J =


0 K1 K2 K3

−K1 0 J3 −J2

−K2 −J3 0 J1

−K3 J2 −J1 0


The commutation relations of the generators of the Lorentz group, (1–2), become

[Jµν,Jρσ] = i(ηµσJνρ − ηµρJνσ + ηνρJµσ − ηνσJµρ). (1–3)

3 This is because the Minkowski treats time and space differently. In the Euclidean metric the appropriate group is
SO(4).
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1.3 the lorentz group and poincaré group 13

1.3.2 Poincaré group

If we include spacetime translations, xµ −→ xµ + aµ to the Lorentz group, we obtain the
Poincaré group. This is the full group of isometries of the Minkowski spacetime. An isometry
is a transformation that preserves distances between points; rigid rotations, translations and
boosts are examples of isometries. This group extension implies an algebra extension with
momenta, Pµ - the generator of translations, and the resultant algebra is called the Poincaré
algebra and is presented below:

[Pµ, Pν] = 0

[Jµν,Jρσ] = i(ηµσJνρ − ηµρJνσ + ηνρJµσ − ηνσJµρ)

[Pµ,Jνσ] = i(ηµνPσ − ηµσPν)

(1–4)

1.3.3 Conformal group

Another yet important extension of the Poincaré group useful in field theory is the inclusion
of conformal transformations. Conformal transformations are coordinate transformations that
preserve the quantity

x · y√
(x · x) (y · y)

(1–5)

Just as isometric transformations preserves distances between points, conformal transforma-
tions preserve angles. Their effect on the metric is

gµν(xa)→ Ω2(xa)gµν(xa) (1–6)

and field theories that display this symmetry are called Conformal Field Theories [CFT]. In-
finitesimally these transformations are determined by vector fields ξµ that induce a change in
the metric by a scale factor. These vector fields must satisfy the conformal Killing equation

∂µξν + ∂νξµ −
2
d

gµν∂ρξρ = 0 (1–7)

d is the spacetime dimension4. At the algebra level this implies the introduction of two
generators : the dilation x′µ → αxµ with generator D = −ixµ∂µ and the special conformal
transformation [SCT]

x′µ → xµ − (x · x)bµ

1− 2(b · x) + b2x2 (1–8)

which is generated by Kµ = −i(2xµxµ∂ν − (x·)∂µ) and bµ is a translation. So the conformal
algebra is the Poincaré algebra with the inclusion of following relations:

[Kµ,Jνρ] = 2gµ[νKρ] [Pµ, Kν] = 2(gµνD + Jµν) (1–9)

[D, Pµ] = Pµ [D, Kµ] = −Kµ (1–10)

Eugene Wigner’s work [59] on representation theory ascertains that in (1–4) is all the infor-
mation needed to build representations and states. This is because in representation theory
particles are defined as elements of the representation space for a given representation of the
Poincaré representation. Put in another way, the object that transforms in a given representa-
tion of the Poincare group is a particle. Now we need only to find a good filing system which
we can use to order the various representations of the Poincaré group. A fruitful detour is a
turn to Casimir operators.

4 The case d=2 is very special because the conformal group is infinite.
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1.3 the lorentz group and poincaré group 14

1.3.4 Casimirs

For a given group G, a Casimir operator is c ∈ G such that xc = cx ∀ x ∈ G. A Casimir
operator is much like a central element of a group, which by definition is a member of the
group which commutes with all the other elements of that group. For the Poincaré group, the
first Casimir is C1 = PµPµ, momentum squared and here is why.

[Pν, PµPµ] = PνPµPµ − PµPµPν

= Pν(PµPµ − PµPµ)

= 0

(1–11)

This is simply because Pµ commutes with itself according to the first relation in (1–4). Now
for J , also with the help of (1–4), we have

[Jνρ, PµPµ] = JνρPµPµ − PµPµJνρ

= JνρPµPµ − PµJνρPµ + PµJνρPµ − PµPµJνρ

= [Jνρ, Pµ]Pµ + Pµ[Jνρ, Pµ]

= −i(ηµνPρ − ηµρPν)Pµ − iPτ(ητνPρ − ητρPν)

= 0

(1–12)

The purpose here is to obtain a good label to use in classifying the representations of the
Poincaré group. C1 helps us obtain this label. To demonstrate this, let us consider a massive
particle, mass m, with four-momentum, kµ, and boost to its rest frame. In this rest frame its
momentum becomes

kµ = (m, 0, 0, 0)

and applying C1, we have

C1 |kµ〉 = PµPµ |kµ〉 = kµkµ |kµ〉 = m2 |kµ〉

and m2 is an invariant of the state |kµ〉 because it is an eigenvalue of C1, thence a good label
for ordering 5. For massless particles, we have to adhere to the cosmic speed limit and cannot
boost to the rest frame, but we can boost to a frame where

kµ = (E, 0, 0, E)

and here the action of C1 is still
C1 |kµ〉 = kµkµ |kµ〉

but the Minkowski metric implies that the covariant momentum of the state is

kµ = (E, 0, 0,−E)

and we conclude that for massless particles the eigenvalue of C1 is 0. The second Casimir
requires that a definition of the Pauli-Lubanski pseudovector

Wµ = −1
2

εµνρσJ νρPσ (1–13)

Facts about this pseudovector which will prove to be useful later are that it is orthogonal to
and commutes with translation generators Pµ, that is

[Wµ, Pν] = 0 and WµPµ = 0. (1–14)

5 Since C1 is a Casimir, m2 will not change under any Poincaré transformation.
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1.4 N = 1 susy algebra 15

The second Casimir is given by C2 = WµWµ and this will give us another label with which to
classify the representations of the Poincaré group. Consider again a particle of mass m with
momentum kµ. In the particle’s rest frame the momentum is kµ = (m, 0, 0, 0). The spatial
components of momentum in this frame are zero, this then implies that the time component
of the pseudovector is also zero

W0 = −1
2

ε0ijkJ ijPk = 0

so that the spatial components of Wµ give

Wi = −
1
2

εijk0J jkP0

=
m
2

ε0ijkJ jk

= −m
2

εijkεjkl Jl

= −mJi

(1–15)

Here Ji is the rotation generator, thus spatial components of Wµ are proportional to the spin
matrices, Ji. So the action of C2 on a rest frame state kµ = (m, 0, 0, 0) is

WµWµ |kµ〉 = ηµνWµWν |kµ〉
= −WiWi |kµ〉
= −m2 J2 |kµ〉

(1–16)

From quantum mechanics we know that for a state with spin s, the eigenvalue of J2 is s(s +
1). Spin is therefore another label with which to order our representations of the Poincaré
group. This argument fails for massless particles so we recall from (1–14) that Wµ and Pµ

are orthogonal and for massless particles both W and P are light-like, thus they are linearly
dependent

Wµ = λPµ. (1–17)

The constant of proportionality λ is called helicity. We define helicity as the projection of the
spin of a particle along the direction of its momentum

λ =
P · J
P0

. (1–18)

Spin and mass, for massive particles, and helicity, for massless ones, are the useful label in
classifying representations. This is enough to embark into SUSY.

1.4 N = 1 susy algebra

In section 1.2 we pointed out that symmetries are either of the internal kind or of the external
kind. It is thus only natural to wonder if there exists another kind of symmetry which closes
the chasm, one that mixes both internal and external symmetries. To the Coleman- Mandula
”no-go theorem” [6] credit is due because it helped shed light on exactly how to search for
this new kind of symmetry. By listing the axioms needed for a plausible physical theory in
their proof, Coleman and Mandula exposed a silent assumption, namely that all continuous
symmetries are Lie algebraic. Haag, Lopuszanski and Sohnius [19] demonstrated that by
generalizing Lie Algebras to include algebraic systems whose defining relations incorporates
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1.4 N = 1 susy algebra 16

both commutators and anti-commutators, the new symmetry could exist and it would be
exempt from the no-go theorem. SUSY is simply then the symmetry that arises when we
extend the Poincaré group by adding an anti-commuting spin − 1

2 operator. We refer to the
generators of SUSY as supercharges, denote them by Qα and treat them as Weyl spinors. If
parity invariance is imperative then we include the conjugate supercharges, Q̄ α̇ , also. In the
latter setting it is meaningful to speak of the four-component Dirac spinors, QD , composed in
the following fashion,

QD =

(
Qα

Q̄α̇

)
(1–19)

We use N to denote the amount of SUSY, the number of supercharges, by which the Poincaré
algebra is extended. N = 1 SUSY means there is only one QD and cases where N > 1 are
said to have extended SUSY. To avoid unnecessary complexities we consider the N = 1 case
and specifically we look at the algebraic relations that the supercharges, Qα and Q̄α̇, have with
the Poincaré generators.

In 1965 O’Raifeartaigh, [46], demonstrated that translations commute with all generators be-
yond those of the Lorentz group. From this we conclude that

[Pµ, Qα] = 0 , [Pµ, Q̄α̇] = 0 (1–20)

The spinorial nature of the supercharges imposes the following commutation relations be-
tween the supercharges and Jµν:

[Qα,Jµν] = (σµν)α
βQβ and [Q̄α̇,Jµν] = −Q̄β̇(σ̄µν)

β̇
α̇ (1–21)

σµν and σ̄µν are 2x2 matrices, belonging to the group SL(2, C) and they give a representation
of the Lorentz group in the space of two-component left-moving and right moving spinors
respectively. Their components are given by

(σµν)α
β =

i
4
(σµ

αγ̇σ̄νγ̇β − σν
αγ̇σ̄µγ̇β) (1–22)

(σ̄µν)α̇
β̇ =

i
4
(σ̄µα̇γσν

γβ̇ − σ̄να̇γσµ
γβ̇) (1–23)

We now consider how the supercharges relate to one another by using anticommutators6,
because they are of fermionic nature. Thus in the left-moving representation{

Qα, Qβ

}
= 0 (1–24)

The same is true of the conjugates in the right-moving representation. The mixed case is
quiet interesting because supercharge, Q, is in the ( 1

2 , 0) representation while its conjugate, Q̄
is in the (0, 1

2 ) representation. Their product is therefore in the ( 1
2 , 1

2 ), which is nothing but
a spacetime vector. So their anticommutator must result in an object that transforms like a
spacetime vector; the only candidate is Pµ and by imposing consistency in the indices their
relation becomes {

Qα, Q̄α̇

}
= 2σµ

αα̇Pµ = 2Pαα̇ (1–25)

It turns out that by extending the Poincaré group to include the supercharges there is an
extra symmetry called the R-symmetry. To see it, let the Q’s to be charged under an internal
symmetry generated by R so that

[Qα, R] = Qα and [Q̄α̇, R] = −Q̄α̇ (1–26)

6 {A, B} = AB + BA.
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1.4 N = 1 susy algebra 17

It follows that [R, Pµ] = 0 and [R,Jµν] = 0 because such a symmetry is internal to the Poincaré
group. R-symmetry is scalar in nature and is simply the symmetry of the supercharges, Q,
under phase rotations. We will refer to it as U(1)R symmetry. In exponential form it is

Qα −→ e−iαQα , Q̄α̇ −→ eiα̇Q̄α̇ . (1–27)

In summary, below is a collection of the relations of the N = 1 super-Poincaré algebra [56]:

[Pµ, Qα] = 0 [Pµ, Q̄α̇] = 0,

[Pµ, Pν] = 0 [Pµ,Jρσ] = i(ηµρPσ − ηµσPρ),

{Qα, Q̄α̇} = 2σ
µ
αα̇Pµ {Qα, Qβ} = 0,

{Q̄α̇, Q̄β̇} = 0 [Qα, R] = Qα,

[Q̄α̇, R] = −Q̄α̇ [Jµν,Jρσ] = i(ηνρJµσ + ηνσJνρ − ηµρJνσ − ηνσJµρ),

[Qα,Jµν] = (σµν)α
βQβ [Q̄α̇,Jµν] = −Q̄β̇(σ̄µν)

β̇
α̇

(1–28)

It is to be noted that SUSY was obtained by extending the idea of Lie algebras to include
fermionic generators as well as anti-commutators, this algebra then is a graded Lie Algebra and
for consistency it is required to satisfy the graded Jacobi identities:

[b1, [b2, b3]] + [b2, [b2, b1]] + [b3, [b1, b2]] = 0

[b1, [b2, f ]] + [b2, [ f , b1]] + [ f , [b1, b2]] = 0

[b, { f1, f2}] + { f1, [ f2, b]} − { f2, [b, f1]} = 0

{ f1, { f2, f3}}+ { f2, { f3, f1}}+ { f3, { f1, f2}} = 0

(1–29)

bi and fi represent bosons and fermions respectively. Any three elements of the super-Poincaré
algebra satisfy these identities.

1.4.1 SUSY Multiplets

The two-fold question: What ”things” can live in a supersymmetric theory and how are these
”things” related to one another? Note that the s supercharges are fermionic, thus their action
on a bosonic (fermionic) state will change it to a fermionic (bosonic) state.

Q |boson〉 = | f ermion〉 and Q | f ermion〉 = |boson〉 (1–30)

This observation demands that the theory have a fermionic state for every bosonic state [56].
So the idea of a ”particle” is adjusted to one that contains both the bosonic component and
its fermionic counterpart and this generalized particle will be called a superparticle7. The
components of a sparticle belong to the same supermultiplet. This takes care of the first
part of our question. Sparticles, having boson components and fermionic components, are
the “things” that live in a supersymmetric theory. To answer the second part there’s need to
consider the Casimirs of the superalgebra. The first Casimir is

C1 = PµPµ

as it was for the Poincaré algebra and this follows from [Pµ, Qα] = 0 in (1–28). The second
Casimir C2 is given by

C2 = CµνCµν

7 or sparticle.
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1.4 N = 1 susy algebra 18

where
Cµν = BµPν − BνPµ and Bµ = Wµ −

1
4

Q̄α̇σ̄
α̇β
µ Qβ .

The irreducible representations of the N = 1 super-Poincaré algebra are characterized by
eigenvalues of these Casimirs.

1.4.2 N = 1 massless supermultiplets

In order to confirm the demand in (1–30) we consider the action of SUSY on a massless particle
and observe the changes in helicity. From (1–17) we have that

W0 = λP0

Let us now consider a state |E, λ1〉 of specific helicity λ1 in the frame where Pµ = (E, 0, 0, E).
We observe that W0

W0 |E, λ1〉 = λ1E |E, λ1〉 (1–31)

gives the helicity of the state. In this setting the anticommutation relation {Qα, Q̄α̇} becomes

{Qα, Q̄α̇} = 2σ
µ
αα̇Pµ = 2E(σ0 + σ3)αα̇ = 4E

(
1 0
0 0

)
αα̇

(1–32)

so that
{Q1, Q̄1̇} = 4E and {Q2, Q̄2̇} = 0 (1–33)

Finding the helicity of the state Qα |E, λ1〉 is what we are interested in, so we act on it with
W0

W0Qα |E, λ1〉 = QαW0 |E, λ1〉+ [W0, Qα] |E, λ1〉
= λ1EQα |E, λ1〉+ E[J 12, Qα] |E, λ1〉
= λ1EQα |E, λ1〉+ E(−σ12)α

βQβ |E, λ1〉

= E
(

λ1δα
β − 1

2
(σ3)α

β

)
Qβ |E, λ1〉

= E
[

λ1 − 1
2 0

0 λ1 +
1
2

]β

α

Qβ |E, λ1〉

We therefore have that

W0Q1 |E, λ1〉 = E(λ1 −
1
2
)Q1 |E, λ1〉 and W0Q2 |E, λ1〉 = E(λ1 +

1
2
)Q2 |E, λ1〉

and conclude that Q1 lowers the helicity by 1
2 while Q2 increases it by 1

2 . From (1–33) it follows
that Q̄1̇ increases helicity by 1

2 and Q̄2̇ lowers it by 1
2 . We then define a state of helicity λ0 to

be the highest weight state if the following is true

Q1 |E, λ0〉 = 0 (1–34)

Thus we can build our multiplet by applying Q̄1̇ to such a state and of course this action can
only be done once because the SUSY generators anticommute thus Q̄1̇Q̄1̇ |E, λ0〉 = 0. And the
second relation in (1–33) is not an option since it implies that the norm of every state |ψ〉 in
Hilbert space vanishes [8].

〈ψ|Q2Q̄2̇ + Q̄2̇Q2 |ψ〉 = 〈ψ|Q2Q̄2̇ −Q2Q̄2̇ |ψ〉 = 0 (1–35)
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1.5 extended susy 19

In a nutshell, multiplets of N = 1 supersymmetric theories only have two helicities {λ0, λ0 +
1
2} unless we are considering a CPT invariant theory then the allowed helicities are {−(λ0 +
1
2 ),−λ0, λ0, (λ0 +

1
2 )}. To make all these findings concrete we first note that theories without

gravity have fields whose spin is not larger than one, thus our sample space of helicities for
the highest weight state is narrowed down to just, λ0 = 0, 1

2 .

1.4.2.1 Example 1: Chiral Multiplet

If we begin with a highest weight state,|E, λ0〉 with helicity λ0 = 0, then the multiplet is given
by {− 1

2 , 0, 0, 1
2}. This multiplet has room for two scalars and two spinors and is referred to

as a chiral multiplet 8. The on-shell field content is then a complex scalar field φ and a Weyl
spinor ψα.

1.4.2.2 Example 2: Vector Multiplet

Now if our highest weight state has helicity λ0 = 1
2 then the resultant multiplet is called a

vector multiplet and looks like this {−1,− 1
2 , 1

2 , 1}. There are two vector and two spinor degrees
of freedom. The on-shell field content for this multiplet is a vector, Aµ, and a Weyl spinor,
ψα.

1.5 extended susy

At this point, we take a detour and insert a brief discussion on extended SUSY after which
attention will be placed on N = 4 SUSY specifically . Extended supersymmetry is nothing
but an extension of N = 1 SUSY in the following way:

Qα, Q̄α̇ −→ QA
α , Q̄α̇

A

with A = 1, ...,N . This extension has little effect on the SUSY algebra (1–28) except for the
following generalization and new relations:

{QA
α , Q̄α̇B} = 2σ

µ
αα̇PµδA

B

{QA
α , QB

β} = εαβZAB

{Q̄α̇A, Q̄β̇B} = −εα̇β̇Z∗AB

(1–36)

ZAB, an antisymmetric matrix, has been introduced in order to preserve the symmetry prop-
erties on both sides of the relation. Actually the algebra places another requirement on the
elements, ZAB and (ZAB)∗, and that is, they must commute amongst themselves and also
with every element of the algebra in order for the algebra to be closed and consistent; algebra
elements exhibiting such a property are called central charges.

8 or scalar.
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1.5 extended susy 20

1.5.1 Massless Multiplets

The massless multiplets in the extended SUSY case are similar to the N = 1 case in that, if we
boost to the frame Pµ = (E, 0, 0, E), we recover exactly what we found in (1–32)

{QA
α , Q̄β̇B} = 4EδA

B

(
1 0
0 0

)
αβ̇

(1–37)

We again can use QA
1 to define the highest weight state |E, λ〉

QA
1 |E, λ〉 = 0 (1–38)

and by applying Q̄A
1̇ to such a state we can build the multiplets. By the same token as before,

the case where A = B and α = β̇ = 2 will introduce zero norm states in the theory so we lay it
aside.

1.5.2 Massive Multiplets

Massive multiplets in the case of extended SUSY are slightly different, especially with the
central charges switched on. In the rest frame, Pµ = (m, 0, 0, 0), the relation

{QA
α , Q̄β̇B} = 2m

(
1 0
0 1

)
αβ̇

(1–39)

already points to new features. Previously the case where A = B and α = β̇ = 2 issued in zero-
norm states and in building the multiplets we excluded them. Here however they must be
included and this means massive multiplets will contain more states than the massless ones.
In order to handle the full SUSY algebra it is convenient to diagonalize the antisymmetric
matrix ZAB into blocks of 2× 2 and we do so by splitting the index A into two A = (a, i)
where a = 1, 2 and i = 1, ..., r with N = 2r 9. The outcome is

Z = diag(εZ1, ..., εZr, #) where ε12 = −ε21 = 1 (1–40)

In this basis, the only non-vanishing SUSY anticommutators are

{ai
α±, (aj

β±)
†} = δi

jδ
β
α (m± Zi) (1–41)

where a and a† are linear combinations givens by

ai
α± =

1
2

(
Q1i

α ± Q̄2iβ̇σ0
αβ̇

)
(1–42)

a†
iα̇± =

1
2

(
Q̄1iα̇ ± σ̄0

α̇β̇
Qβ̇

2i

)
(1–43)

Requiring that m ≥ Zi , ∀ m, drives away any ghost states. If m > Zi then we’re in the typical
massive multiplet case but if m = Zi then we have a multiplet shortening, because ai

− will give
zero-norm states hence ai

+ are to be employed in creating states. This means a lesser number
of states compared to the typical massive multiplet case. These special states have a special
name: BPS-saturated states.

9 Assuming N is even. In the case where it is odd we would append a zero in the # .
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1.5 extended susy 21

1.5.2.1 Example 3: N = 4 SUSY and its massless multiplet

Let us now consider a special SUSY case, N = 4, where we introduce four generators and
construct the massless multiplets of such a theory. As per custom in the massless multiplet
case, we exclude the generators carrying indices 2, 2̇ since they rise to zero-norm states and
build with generators with indices 1, 1̇ by applying Q̄A

1̇ to the highest weight state ,|λ〉, of
helicity λ defined by:

QA
1 |λ〉 = 0 (1–44)

And since A runs to 4, it is clear that the helicity can be raised to a maximum value of λ + 2.
If we steer clear from theories with gravity, then we need to take λ = −1. We then have the
following states in table (1)

λ State

1 Q̄1
1̇Q̄2

1̇Q̄3
1̇Q̄4

1̇ |λ〉
1
2 Q̄1

1̇Q̄2
1̇Q̄3

1̇ |λ〉 Q̄1
1̇Q̄3

1̇Q̄4
1̇ |λ〉 Q̄2

1̇Q̄3
1̇Q̄4

1̇ |λ〉 Q̄1
1̇Q̄2

1̇Q̄4
1̇ |λ〉

0 Q̄1
1̇Q̄2

1̇ |λ〉 Q̄1
1̇Q̄3

1̇ |λ〉 Q̄1
1̇Q̄4

1̇ |λ〉 Q̄2
1̇Q̄3

1̇ |λ〉 Q̄2
1̇Q̄4

1̇ |λ〉 Q̄3
1̇Q̄4

1̇ |λ〉
− 1

2 Q̄1
1̇ |λ〉 Q̄2

1̇ |λ〉 Q̄3
1̇ |λ〉 Q̄4

1̇ |λ〉
−1 |λ〉

Table 1.: N = 4 SUSY massless multiplet

This multiplet consists of four Weyl fermions, ψA,a
α , six real scalars, φI,a, which can be com-

bined to give 3 complex ones. It is the presence of a massless vector boson, Aa
µ, that makes

this multiplet really special; this theory is called the N = 4 super Yang-Mills (SYM) theory.
Its field content in a compact form is

(Aa
µ, ψA,a

α , φI,a) (1–45)

where a is the gauge index, A = 1, ..., 4 and I = 1, ..., 6. The presence N = 4 supercharges
means the U(1)R symmetry observed in N = 1 SUSY is enhanced in N = 4 SYM to SU(4)R.
The scalar fields can be combined into

Φj =
1√
2
[φj + iφj] where i = 1, 2, 3 (1–46)

The scalar fields transform in the 6 of SU(4) which is equivalent as SO(6). This fact becomes
useful later when we match global symmetries between two theories. Below is the action of
the theory where the SU(4) symmetry is evident [29].

S =
∫

d4x
[
(DµφAB)(Dµφ̄AB)−

1
2

i(ψαA)γµDµ
αα̇ψ̄α̇

A −
1
4

FµνFµν

− gψαA[ψB
α , φ̄AB]− gψ̄ᾱA[ψ̄

α̇
B, φAB] + 2g2[φAB, φCD][φ̄AB, φ̄CD]

]
(1–47)

Notice that the field content of N = 4 SYM can be decomposed to that of one N = 1 vector
multiplet and three N = 1 chiral multiplets:

V = (Aµ, ψ4
α) , Φ = (ψi

α, φi) (1–48)
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1.5 extended susy 22

1.5.3 Superspace and Lagrangians

The most logical way to proceed after obtaining the field content of a field theory is to con-
struct a Lagrangian and obtain the e.o.m. Historically, this procedure entailed much trial and
error simply because of the amount of freedom available to start with and it is thus best to
construct the Lagrangian by components. A well-known such construction is the Wess-Zumino
lagrangrian presented below

LWZ = Lkinetic + Lmass + Lint (1–49)

where
Lkin = ∂µ A∗∂µ A + i∂µψασ

µ
αα̇ψ̄α̇ + F∗F

Lmass = −mAF +
1
2

mψαψα −mA∗F∗ +
1
2

mψ̄α̇ψ̄α̇

Lint = −gAAF + gAψαψα − gA∗A∗F∗ + gA∗ψ̄α̇ψ̄α̇

(1–50)

with A and ψ being the scalar field and the Weyl spinor of the multiplet respectively, g a
dimensionless coupling constant and F an auxiliary field. It is auxiliary because it needs to
be supplied in order to have the right number of degrees of freedom because SUSY is not
closed off-shell. Thus F guarantees closure of the SUSY algebra off-shell and has zero on-shell
degrees of freedom, so it does not propagate [58]. Such a Lagrangian is invariant under the
following SUSY transformations

δξ A =
√

2ξαψα, δξ̄ A∗ =
√

2ξ̄α̇ψ̄α̇,

δξψα =
√

2ξαF + i
√

2σµ
αα̇ ξ̄ α̇∂µ A, δξ̄ ψ̄α̇ =

√
2ξ̄α̇F∗ − i

√
2ξασ̄µ

αα̇∂µ A∗,

δξ F = −i
√

2∂µψασµ
αα̇ ξ̄ α̇, δξ̄ F∗ = i

√
2ξασ̄µ

αα̇∂µψ̄α̇

(1–51)

ξ and its conjugate ξ̄ are anti-commuting variation parameters which ascertain consistency in
the statistics.

Computational technology has since been developed and allows us to not only construct
Lagrangians with ease but also to handle both the bosonic and fermionic part simultaneously.
Superspace is what we are referring to and it is an extension of the spacetime coordinates, xµ,
by including Grassmann coordinates as follows:

xµ → (xµ, θα, θ̄α̇)

This is thus called N = 1 superspace because the extension is by the addition of only one
Grassmann coordinate with its conjugate. In principle we can append any number of Grass-
mann coordinates but this formalism becomes cumbersome. We will thus consider the simple
case of N = 1. While this extension may seem arbitrary, a closer look at the algebra in (1–28)
shows signs that which may suggest otherwise. The relation

{Qα, Q̄α̇} = 2σ
µ
αα̇Pµ

implies that the action of two supercharges is as good as spacetime translation and further-
more indicates that superspace is not flat. In superspace, the supercharges,Qα and Q̄α̇, can be
represented as differential operators

Qα =
∂

∂θα
− iσµ

αα̇ θ̄α̇∂µ , Q̄α̇ = − ∂

∂θ̄α̇
+ iθασ

µ
αα̇∂µ
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1.5 extended susy 23

And since superspace is not flat, we define the covariant derivatives as

Dµ = ∂µ , Dα =
∂

∂θα
+ iσµ

αα̇ θ̄α̇∂µ, D̄α̇ = − ∂

∂θ̄α̇
− iθασ

µ
αα̇∂µ (1–52)

These derivatives act on superfields, χ(x, θ, θ̄), the superspace version of spacetime fields.
Superfields are functions of superspace and they are to be understood in terms of their power
expansion in the Grassmann coordinates, θ and θ̄. Thus, generally a superfield in N = 1
superspace will have the form

χ(x, θ, θ̄) = A(x) + θψ(x) + θ̄ξ̄(x) + θθB(x) + θ̄θ̄C(x)+

θσµ θ̄vµ(x) + θθ θ̄λ̄(x) + θ̄θ̄ θη(x) + θθ θ̄θ̄D(x) (1–53)

and all other higher order terms vanish because of the anticommuting nature of Grassmann
coordinates. We now have to impose some restriction on the superfield because its degrees
of freedom do not match those obtained in section (1.4.2), neither the chiral multiplet nor the
vector multiplet. The appropriate constraint for the chiral multiplet is

D̄α̇χ(x, θ, θ̄) = 0 (1–54)

and we shall use Φ(x, θ, θ̄) to designate a superfield that satisfies (1–54), thus referring to it as
a chiral superfield. To see the reason behind this nomenclature, we use a coordinate yµ defined
as

yµ = xµ + iθσµ θ̄ (1–55)

which satisfies the following condition

D̄α̇yµ = 0 (1–56)

It is clear that D̄α̇θα = 0. Any function Φ(yµ, θα) will satisfy the constraint (1–54) and solving
it gives

Φ(yµ, θα) = A(y) + θαψα(y) + θθF(y) (1–57)

There are two complex scalar fields, A(y) and F(y), and one Weyl spinor,ψ(y). In one super-
field is the entire field content of the chiral multiplet; the name is thus fitting. We can regain
the chiral superfield in terms of the original coordinate x by expanding the fermionic part of
y. The result is

Φ(x, θ, θ̄) = A(x) +
√

2θψ(x) + θθ F(x) + iθσµ θ̄ ∂µ A(x)

− i√
2

θθ ∂µψ(x)σµ θ̄ +
1
4

θθ θ̄θ̄ �A(x) (1–58)

The mixed product, Φ†Φ, constitutes the kinetic term of the superspace action from which we
can recover the Wess-Zumino lagrangian in (1–49). Let us first turn to dimensional analysis
and recall that the action must be dimensionless, so we require that the mass dimension
[L] = 4. The component fields, A, F, and ψ have the usual canonical mass dimensions
[A] = 1,[F] = 2 and [ψ] = 3

2 respectively. The mass dimension of the Grassmann coordinate
is [θ] = − 1

2 and corresponds to that of the anti-commuting parameter, ξ, introduced in the
transformation rules (1–51). The chiral superfield then has mass dimension [Φ] = 1. We
conclude that the measure over all of superspace must have mass dimension [dθ2dθ̄2] = 1

2
since [dθ] = [θ]−1 = 1

2 as observed from the Grassmann integral∫
dθ θ = 1 (1–59)
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1.5 extended susy 24

For a free massless theory the action is thus given by

S =
∫

dθ2 dθ̄2 ΦΦ̄ =
∫

d4x
[
∂µ A ∂µ A∗ − iψ̄σ̄µ∂µψ + FF∗

]
(1–60)

A useful fact in extending to a massive and interacting theory is that a product of chiral super-
fields, Φ and Γ is also a chiral superfield. The SUSY transformation rules when expressed in
superspace language will impose restrictions on the auxiliary F-term (the θ2 term) of the prod-
uct chiral field ΦΓ and the only way to extract it is to integrate over half of superspace. Since
the mass dimension, [L], must be 4 and [dθ2] = 1, it follows that the mass term and interaction
term of the theory must each be of mass dimension 3. A simple candidate is

W(Φ) = −1
2

mΦ2 − 1
3

λΦ3 (1–61)

λ is a coupling constant and m the mass. By putting all the results together we recover the
Wess-Zumino lagrangian/action

SWZ =
∫

d4θ Φ†Φ−
[∫

d2θ

(
1
2

mΦ2 +
1
3

gΦ3
)
+ h.c.

]
(1–62)

From (1–62) we see that part of the mass and interacting term is a holomorphic function of
Φ and the other part, denoted by h.c., an antiholomorphic function of Φ†. A feature which
persists even in general cases is that the kinetic term of a supersymmetric theory composed
only of fields from the chiral multiplet is integrated over all of superspace but the interacting
term over half. In general the action of such a theory will have the form

S =
∫

d4θ K(Φ†
i, Φi)−

[
d2θ W(Φi) + d2θ̄ W̄(Φ†

i )
]

(1–63)

here K is a general kinetic term, called the Kähler potential andW is the superpotential of the
theory, a general interacting term. This superpotential will be of import to us in the following
chapters. Imposing a reality constraint

V = V†

on the general superfield (1–53) gives rise to a different superfield whose field content matches
that of the vector multiplet we saw in section (1.4.2.2). Since this multiplet includes a vector vµ

and the reality constraint is not enough to adequately reduce the degrees of freedom either on-
shell or off-shell, gauge symmetry will feature. The procedure involves the promotion of the
gauge transformation parameter (α(x)) to a chiral field (Λ) and realizing that the superspace
version of the regular gauge transformation is

V → V + i(Λ−Λ†) (1–64)

Under this new gauge symmetry, the gauge field transforms as Aµ → Aµ + ∂µa(x), where
a(x) is a scalar. We capture this by covariantizing the derivative as follows:

Dµ = ∂µ + iAµ (1–65)

The different ways we can choose Λ is the superspace ”gauge fixing”. It turns out that the
proper way to define a superfield which will function as a field strength, Fµν = ∂µvν − ∂νvµ,
which ever present in gauge theories is

Wα = −1
4

D̄α̇D̄α̇ DαV(x, θ, θ̄) (1–66)
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And in the case of what is known as the vector superfield in the Wess-Zumino gauge

VWZ = −θσµ θ̄vµ(x) + iθ2θ̄ Λ̄(x)− iθ̄2θ λ(x) +
1
2

θ̄2θ2 D(x) (1–67)

In this gauge the prescribed superfield Wα in terms of the fields of the vector multiplet,
vµ, λ and D(x) takes the form

Wα = −iλα + θαD(y)− i
2
(σµσ̄ν)αFµν(y) + θ2σ

µ

αβ̇
∂µλ̄β̇(y) (1–68)

Here D is an auxiliary term supplied in order to balance the degrees of freedom on- and off-
shell. y is familiar coordinate used in (1–55). We are on the verge of obtaining the Lagrangian
because ∫

d2θWαWα = −2iλσµ∂µλ̄ + D2 − 1
2

FµνFµν − i
4

εµνρσFµνFρσ (1–69)

Now for the Lagrangian of the abelian theory in superspace we have:

L =
1

4g2

{∫
d2θWαWα +

∫
d2θ̄W̄α̇W̄ α̇

}
(1–70)

For the non-abelian theory we first convert the fields in the vector multiplet to matrices, that
is place them in the adjoint representation with the help of the non-abelian gauge group
generators Ta

Aµ = Aa
µTa, λα = λa

αTa and D = DaTa (1–71)

and then promote all derivatives to covariant ones. The end result is

L =
1
g2 Tr

{
−1

4
FµνFµν + iDµλσµλ̄ +

1
2

D2
}

(1–72)

which in the superspace formalism is given by

L =
1

8π
Im
{

τ
∫

d2θ Tr WαWα

}
(1–73)

where
τ =

θ

2π
+

4iπ
g2 .

The interacting Lagrangian for general gauge invariance in the non-abelian theory is

L = Tr
∫

d4θΦ†e2VΦ− Tr
∫

d2θ

{
1
2

mijΦiΦj +
1
3

λijkΦiΦjΦk + h.c.
}

(1–74)

and precise generalization of gauge invariance is

Φ→ e−i2ΛΦ, Φ† → Φ†ei2Λ†
, Wα → e−i2ΛWαei2Λ

Finally we present the superpotential of the N = 4 SYM theory in N = 1 superspace notation

W = g tr(Φ1[Φ2, Φ3]) (1–75)

The Φ fields are complex and they are constructed using the 6 scalar fields Xi of N = 4
SYM as Φj = 1√

2
(X j + iX j+1) so that j = 1, 2, 3. In this guise the superpotential exhibits

an SU(3)×U(1)R symmetry concerning which there will be much discussion in the light of
deformations.
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2

A D S / C F T C O R R E S P O N D E N C E A N D D E F O R M AT I O N S

2.1 ads/cft correspondence

An idea that has proved useful in physics research, especially since the advent of string theory,
is that of dualities or correspondences between theories. To have a duality that relates theories
of the same kind, (i.e. QFT’s→ QFT’s etc.), is sensible and is somewhat expected. In [39] a new
kind of duality was conjectured and this duality relates field theories without gravity to theo-
ries of gravity with a particular background geometry. In the finding example which inspired
this conjecture, on the field theory side was the maximally supersymmetric 4-dimensional
N = 4 SYM in Minkowski spacetime and on the gravity side was the 10-dimensional Type
IIB string theory in the AdS5 ⊗ S5 background geometry. More information was however ob-
tained by considering the low energy limit where Type IIB string theory is well approximated
by the 10-dimensional Type IIB Supergravity [SUGRA] [13]. The CFT is said to live in the
boundary of AdS where AdS is the bulk.

Let us briefly discuss how this conjecture can be arrived at and for simplicity we shall take
the D3-brane perspective. A detailed exposition on Dp-branes can be found in [48] [25]. Dp-
branes are massive objects found in Type IIB string theories, they serve as higher-dimensional
surfaces extending in (p+1) spacetime coordinates on which the ends of open strings attach.
When a Dp-brane is introduced in flat space the BPS bound (as discussed in chapter 1

1.) is
saturated. This implies that there will be a shortening of the supermultiplet of IIB SUGRA
(a low energy approximation of IIB string theory), thus Dp-branes are appropriately called
BPS objects. Only charged odd-dimensional (where p is odd) Dp-branes are found in Type
IIB string theory. An open string trapped on a D3-brane represents matter and its dynamics
are governed by a 4-dimensional U(1)-gauge theory. Closed strings on the other hand can
travel through the bulk; their massless excitations are spin-2 gravitons. Since a brane is a BPS
object it preserves only 16 of the 32 supersymmetries present in 10-dimensional SUGRA and
this means in the near-horizon limit (details of which are specified below) the induced gauge
theory must have N = 4 Poincaré supersymmetry at the low energy limit. In the case where
we have N D3-branes with the two string ends attached to different branes the induced gauge
theory has U(1)N symmetry. At the limit when the D3-branes coincide we end up with a full
U(N) = U(1)× SU(N) gauge theory. The U(1) describes the center of mass of the branes and
can be ignored since focus is toward on-brane dynamics [61]. The final outcome is an N = 4
supersymmetric gauge theory in 4 dimensions with gauge group SU(N) [57] [62].

1 see 1–41

26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



2.1 ads/cft correspondence 27

The spacetime metric of N coincident D3-branes is given by

ds2 = H(y)−
1
2 ηijdxidxj + H(y)

1
2
(
dy2 + y2dΩ5

2) (2–1)

H(y) =
(

1 +
L4

y4

)
and L4 = 4πgsN(α′)2

where L is the radius of the D3-brane, ηij – 4-dimensional Minkowski metric with mostly plus
signature, gs – the string coupling and α′ is related to the string length. In the regime where
y� L, H(y)→ 1 and the 10 dimensional flat spacetime is recovered. The regime where y� L
has a geometry whose one part is a 5-sphere with radius L and the other is the hyperbolic
space AdS5 also with radius L. A redefinition of coordinate to u ≡ L2

y makes this apparent. In

the new coordinate H(u) = (1 + u4

L4 ). The regime y � L corresponds to ’large’ u and in this
limit H(u)→ u2

L2 . This transforms the metric to

ds2 = L2
[

1
u2 ηijdxidxj +

du2

u2

]
+ L2 [dΩ5

2] (2–2)

The near-horizon limit corresponds to y → 0 (or u → ∞) with gs and N fixed. Now reducing
the ’string nature’, α′ → 0, Maldacena noticed that only the AdS5⊗S5 part of the D3-brane
geometry survives and the dynamics of the asymptotically flat region decouple from the
theory. In this way was the conjecture born. Explicit comparisons have been made in view of
the conjecture and these include matching the spectra of the theories [60] [18]. At present focus
will be on comparing the symmetries of the theories for this is a necessary condition,though
not sufficient.

2.1.1 Global Symmetries

2.1.1.1 Symmetries of N = 4 SYM

A D3-brane in 10-dimensional spacetime has SO(1, 3)× SO(6) global symmetry. The SO(1, 3)
part is associate with Lorentz invariance and while the SO(6) ∼ SU(4) part is associate to
the R-symmetry that relates the 6 scalar fields of N = 4 SYM (1–45); these 6 scalar fields
parametrize the 6 coordinates which are transverse to the D3-brane. The vanishing of the
β-function of the theory means it is a CFT. The presence of conformal symmetry extends the
superalgebra to a superconformal algebra and the Lorentz invariance SO(1, 3) is amplified
to SO(2, 4) which is homomorphic to SU(2, 2). The global symmetry of N = 4 SYM is thus
given by SO(2, 4)× SO(6) ∼ SU(2, 2)× SU(4).

2.1.1.2 Type IIB SUGRA on AdS5 ⊗ S5

Anti-de Sitter space is a vacuum solution to Einstein’s field equations with positive cosmo-
logical constant. By definition then AdS has constant negative curvature [47]. In a flat (d+2)-
dimensional manifold having coordinates Xi where i = 0, 1, ..., d+ 1 with a pseudo-Minkowski
signature2 metric

ds2 = −dX2
0 − dX2

d+1 +
d

∑
j=1

dX2
j (2–3)

2 or mostly plus = (-,+,...,+,-).
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2.1 ads/cft correspondence 28

AdSd+1 is defined as a solution to the constraint

−X2
0 − X2

d+1 +
d

∑
j=1

X2
j = −L2 . (2–4)

L is refered to as the radius of AdS. Our particular case has d + 1 = 5 and constraint becomes

−X2
0 − X2

5 + X2
1 + X2

2 + X2
3 + X2

4 = −L2 ⇐⇒ X2
5 = L2 − gµνXµXν (2–5)

gµν = diag(−,+,+,+,+). Contained in (2–5) is the fact that AdS5 has an isometry group
SO(2, 4). By solving the constraint (2–5) in what is usually referred to as global coordinates
given via [9]:

X0 = L cosh ρ cos τ

X5 = L cosh ρ sin τ

Xi = X̂i L sinh ρ, where the X̂i obey
4

∑
i=1

X̂2
i = 1

one obtains the metric

ds2 = L2
[
− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ3

2
]

(2–6)

where Ω3 is a 3-sphere. However in order to make conformal invariance apparent we ought
to rewrite the metric in Poincaré coordinates (u, xa) which are defined by

X0 =
1

2u

(
1 + u2

(
L2 + ηabxaxb

))
=

1
2u
(
1 + u2 (L2 +~x2 − t2))

X4 =
1

2u

(
1 + u2

(
−L2 + ηabxaxb

))
=

1
2u
(
1 + u2 (−L2 +~x2 − t2))

X5 = uLt

Xi = uLxi i = 1, 2, 3.

(2–7)

xa is a 4-vector which means ηab is the Minkowski metric diag(−,+,+,+) and the condition
on the fifth coordinate is u > 0. This reduces the form of the AdS5 metric to

ds2 = L2
(

du2

u2 + u2dxadxa
)
=

L2

u2

(
u2du2 + ηabdxadxb

)
. (2–8)

AdS5 is conformal manifold with an isometry group SO(2, 4) which happens to be equivalent
to SU(2, 2), the conformal group of a manifold with one dimension less. The isometry group
of S5 is SO(6) ∼ SU(4). The global symmetry group of AdS5× S5 is SU(2, 2)× SU(4) and
matches that of N = 4 SYM .

N = 4 SYM Type IIB SUGRA on AdS5× S5

Conformal group : SO(2, 4) ∼ SU(2, 2) Isometry group of AdS5 : SO(2, 4) ∼ SU(2, 2)
R-Symmetry group : SU(4) Isometry group of S5 : SO(6) ∼ SU(4)

Table 2.: Global symmetry match
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2.2 deformations 29

2.2 deformations

The N = 4 SYM is undeniably a remarkable theory possessing interesting features, one such
feature is finiteness. It however is removed from most theories which are of interest to physi-
cists in that it is too ideal. It is only natural to wonder if there are other theories that are
similar to N = 4 SYM but are closer to reality. A logical starting point in searching for such
theories is with the N = 4 SYM itself and make changes to it. These changes are called defor-
mations and the changes that preserve conformal invariance are referred to as marginal. It has
been known that N = 4 SYM is a member of a larger family of four-dimensional CFTs that
preserve only N = 1 supersymmetry and these N = 1 theories can be arrived at by a suitable
marginal deformation of the N = 4 superpotential as follows

WN=4 = gTr
(

Φ1[Φ2, Φ3]
)
→WLS = κTr

{
Φ1[Φ2, Φ3]q +

h
3

[
(Φ1)3 + (Φ2)3 + (Φ3)3

] }
(2–9)

This deformation of the superpotential is in the formalism of N = 1 superspace with chiral
superfields Φiand [Φi, Φj]q = ΦiΦj − qΦjΦi is a q-deformed commutator. Finiteness at the
quantum level of the N = 4 theory only extends to N = 1 theories whose superpotential is
parameterized by q and h [33]. The parameter choice (q, h) = (1, 0) restores the N = 4 theory
whose superpotential is invariant under SU(3) ×U(1)R in terms of N = 1 superspace but
switching on both parameters breaks the SU(3) part to a discrete Z3 ×Z3 symmetry so that
only the U(1)R-symmetry is continuous [41]. Having begun with a CFT whose gravity dual is
known, how then does the (q, h)-deformation manifest on the dual side? At the heart of this
paper is an attempt to answer this question. We know that this question is valid because (q, h)-
deformations are marginal and thus conformal symmetry is still present. With the presence
of conformal symmetry in the deformed field theory it is reasonable to anticipate that in dual
description the AdS5 part of the geometry will not be affected and thus expect the deformation
will manifest on the S5.

2.2.1 β-deformed theory and non-commutativity

In [36], a class of deformed field theories corresponding to the parameter choice (q, h) =

(eiπβ, 0) was studied and a solution-generating technique of obtaining the gravity duals was
devised. These field theories are referred to as β−deformed and their superpotential is given
by

WLS = κTr
[
eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2

]
(2–10)

An important consequence of the β-deformations is that the SU(3) part of the global symmetry
is broken to a subgroup U(1)×U(1). This is key because the solution-generating technique
developed requires that the field theory possess a global U(1) × U(1) symmetry and that
there be a 2-torus in the geometry of the parent gravity dual description, in other words, two
isometries associated with the two U(1) in the field theory. Then according to [36] the gravity
dual of the β-deformed field theory can be obtained by transforming the complexified Kähler
modulus, τ = B + i

√
g, of the original theory as follows

τ −→ τβ =
τ

1 + βτ
. (2–11)

The Kähler modulus is associated with the 2-torus whose volume is
√

g and B is the B-field. β

is the deformation parameter which in this work we restrict to real values only. The custom is
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2.2 deformations 30

to use γ as a parameter when β ∈ R but we will retain β, keeping in mind that it must be real.
The deformation can alternatively be viewed as a result of promoting the product between the
fields to a new one, called a star product. In this case we have

f ? g ≡ eiπβ(Q1
f Q2

g−Q2
f Q1

g) f g (2–12)

here f and g are fields belonging to the chiral/anti-chiral multiplets of the theory and the
Q’s are the U(1) charges associated with them. This prescription is not foreign in the context
of non-commutative gauge field theories where the field theory lives in a non-commutative
space. In order to maintain the validity of the usual differential geometric methods, the
non-commutativity of the spacetime is encoded by defining a star product on the spacetime
coordinates (which now commute) [50][7].

Thus while the star product in (2–12) might seem to appear purely from inspiration it ac-
tually has a good basis from the field theory. In [30] there is a demonstration of how it can
be obtained. Returning to the D3-brane picture in 10-dimensions with the 6 transverse coor-
dinates, C3, we now can introduce the deformation by making these transverse coordinates
non-commutative. Thus the D3-brane is surrounded by a six-dimensional non-commutative
space and this non-commutativity of these coordinates is taken to be

zIzJ = qzJzI , z̄I z̄J = qz̄J z̄I (2–13)

I and J are cyclically ordered and run from 1 to 3. The relations (2–13) are nothing more
than the constrains that the deformed superpotential (2–10) imposes on the F-term3 of the
Lagrangian, namely that

ΦIΦJ = qΦJΦI , Φ̄ ĪΦ̄ J̄ = qΦ̄ J̄Φ̄ Ī . (2–14)

This allows for the construction of an anti-symmetric contravariant 2-tensor in which the non-
commutativity of the coordinates is captured in the following way

[zI , zJ ]∗ = zI ∗ zJ − zJ ∗ zI = iΘI J

[z̄ Ī , z̄ J̄ ]∗ = z̄ Ī ∗ z̄ J̄ − z̄ J̄ ∗ z̄ Ī = iΘ Ī J̄ (2–15)

[zI , z̄ J̄ ]∗ = zI ∗ z̄ J̄ − z̄ J̄ ∗ zI = iΘI J̄

The holomorphic components are ΘI J = 2sinβzIzJ and by the same token the anti-holomorphic
components are Θ Ī J̄ = 2sinβz̄ Ī z̄ J̄ . The mixed components are ΘI J̄ = −2sinβzI z̄ J̄ . The non-
commutativity 2-tensor for the β-deformed theory in matrix form Θβ is

Θβ = a



0 z1z2 −z1z3 0 −z1z̄2 z1z̄3

−z1z2 0 z2z3 z̄1z2 0 −z2z̄3

z1z3 −z2z3 0 −z̄1z3 z̄2z3 0
0 −z̄1z2 z̄1z3 0 z̄1z̄2 −z̄1z̄3

z1z̄2 0 −z̄2z1 −z̄1z̄2 0 z̄2z̄3

−z̄3z1 z̄3z2 0 z̄1z̄3 −z̄2z̄3 0


, a ≡ 2sinβ (2–16)

ΘI J
β is coordinate independent; this fact evident when we change to a spherical coordinate

system [30]. The choice

z1 = r cos(α)eiφ1 , z2 = r sin(α) sin(θ)eiφ2 , z3 = r cos(θ) sin(α)eiφ3 including c.c. (2–17)

3 an auxillary term introduced into the supersymmetric lagrangian to ascertain the closure of the super-algebra,
both on-shell and off-shell.
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2.3 quantum algebra 31

results in

Θβ =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −a a
0 0 0 a 0 −a
0 0 0 −a 0 a


, where a = 2 sin(β) (2–18)

It must be emphasized that the holomorphic (top left block) and anti-holomorphic (bottom
right block) parts are determined from the F-term constrains which means as long as we have
the deformed superpotential we can always obtain them. The mixed components (top right
and bottom left blocks) however were obtained from the star product definition (2–12) and in
the absence of a star product prescription/definition one will have to rely on other constraints
(i.e. the reality of the entries of Θ and symmetries of the lagrangian) in order to narrow down
the possibilities for the mixed sectors.

2.3 quantum algebra

From the view point of quantum algebra the non-commutativity of coordinates follows natu-
rally. Quantum algebras are to classical (Lie) algebras what quantum mechanics is to classical
mechanics in the sense that classical quantities are promoted to operators (which do not nec-
essarily commute). So we can consider a non-commutative space V from which quantum
vectors x = (xi) and co-vectors u = (uj) source their components. Commutation relations
between quantum vector elements and quantum co-vector elements are given in terms of a
complex-valued matrix R belonging to the vector space V ⊗V as follows

λxbxa = Ra b
j lx

jxl , λuaub = ujul R
j l
b a (2–19)

where λ is an eigenvalue of the matrix R̂i k
j l = Rk i

l j. In quantum algebra linear transformations
are governed by quantum matrices t = (ti

j) where the entries ti
j are operators and linear

transformations that preserve the relations (2–19) will be associated with a quantum symmetry
[41] [27].
Proposition 1. The commutation relations in (2–19) are preserved by quantum linear transformations
of the form

x′i = ti
jxj and u′i = uj(t−1)j

i (2–20)

if the elements ti
j satisfy

Ri k
a bta

j tb
l = tk

bti
aRa b

j l (2–21)

Proof. Let ti
j commute with xi and ui

x′ix′j = Rj i
k lx
′kx′l(

ti
mxm

) (
tj
nxn
)
= Rj i

k l

(
tk

pxp
) (

tl
qxq
)

ti
mtj

n Rn m
p q xpxq = Rj i

k l tk
ptl

q xpxq

ti
mtj

n Rn m
p q xpxq = Rj i

k l tk
ptl

q xpxq

∴ ti
ktj

l Rk l
p q = Rj i

k l tk
ptl

q
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2.3 quantum algebra 32

The last equality is obtained by renaming the dummy indices (m, n) → (k, l) . The equations
(2–21) are called RTT relations [12]. For definiteness we rewrite the commutation relations
(2–15) in the language of quantum algebra4.

[zi, zj]∗ = iβΘ̃i j
k lz

kzl , [zi, z̄ j̄]∗ = iβΘ̃i j̄
k l̄z

kzl̄ , [z̄ī, z̄ j̄]∗ = iβΘ̃ī j̄
k̄ l̄ z̄

k̄ z̄l̄ (2–22)

In this light, the commutation relations for the mixed coordinates are easily obtained from the
mixed quantum planes defined by [27]

xjul = uiR
j i
k lx

k and ujxi = xkR̃ k j
i l ul (2–23)

where ui is a quantum co-vector to which the antiholomorphic coordinates are mapped x̄ī = ui
and R̃ is a second inverse matrix defined such that

R̃i n
m nRm k

l n = δi
lδ

k
j = Ri n

m jR̃
m k
l n. (2–24)

Now by choosing Θ̃i j
k l to be diag(0,−1, 1, 1, 0,−1,−1, 1, 0) we fully recover the holomorphic

part of Θβ (and in principle the anti-holomorphic part also), i, j, k, l = 1, 2, 3 [32]. Θ̃ is not just
chosen to make things work but rather comes from the matrix R ∈ V ⊗ V used to define the
commutation relations in quantum algebra (2–19). The matrix R for the β-deformed theory
is given by diag(1, q, 1

q , q, q, 1, 1
q , 1

q , q, 1) and its first order expansion around a small β, called a
classical R-matrix, is equal to Θ̃. The general R-matrix for a (q, h)-deformed theory is given
by [41]

R =
1

2d2



1 + qq̄− hh̄ 0 0 0 0 −2h̄ 0 2h̄q 0
0 2q̄ 0 1− qq̄ + hh̄ 0 0 0 0 2hq̄
0 0 2q 0 −2h 0 qq̄ + hh̄− 1 0 0
0 qq̄ + hh̄− 1 0 2q 0 0 0 0 −2h
0 0 2h̄q 0 1 + qq̄− hh̄ 0 −2h̄ 0 0

2hq̄ 0 0 0 0 2q̄ 0 1− qq̄ + hh̄ 0
0 0 1− qq̄ + hh̄ 0 2hq̄ 0 2q̄ 0 0
−2h 0 0 0 0 qq̄ + hh̄− 1 0 2q 0

0 −2h̄ 0 2h̄q 0 0 0 0 1 + qq̄− hh̄


(2–25)

where d2 =
1 + q̄q + h̄h

2
(2–26)

This matrix is arrived at when the SU(3)-invariant tensor εijk, appearing in the superpotential,
is deformed to Eijk. Eijk is invariant under a quantum deformed SU(3) [41]. This point about
the quantum deformation is important because the deformations which are of interest to
us deform the SU(3), much like the β-deformation. Whilst one might ”naively” expect the
general deformations to break the SU(3) symmetry to U(1)’s on the contrary they actually
deform to a Hopf algebra. This is true of the β-deformation. Notice that the parameter
choice (q, h) = (0, 0) gives the R-matrix for the undeformed N = 4 SYM while the choice
(q, h) = (eiβ, 0) gives the R matrix of the β-deformed theory. Admittedly our introduction
of quantum algebra was informal, necessity is laid upon us to take a more thorough and
somewhat in-depth look at the theory of Quantum Algebras.

4 Repeated indices imply summation.
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3

T H E L A N G U A G E O F H O P F A L G E B R A S

We devote this section to the formal discussion of the theory underlying Hopf (Quantum) 1

Algebras which we began to use in chapter 2. We shall also look at their properties pertaining
to our scope by using mainly the conventions and notations of [37].

3.1 definitions

3.1.0.1 Algebra

Definition 3.1.1. An algebra A is a vector space defined over a field k together with a compati-
ble associative map, m : A⊗ A→ A, and a unit element, 1A.

The map m, which sometimes is referred to as a “product” or “multiplication”, is associative
in the sense that (ab)c = a(bc) ∀ a, b, c ∈ A where ab = m(a⊗ b). And if

ab = m(a⊗ b) = m(b⊗ a) = ba ∀ a, b ∈ A

then A is commutative. The unit element 1A can be defined in terms of a map as follows
η : k → A as η(1) = 1A. It is customary to both compactly write all of the above as
(A,+, m, η; k) and also summarize with the help of commutative diagrams as we do below

A⊗ A⊗ A

A⊗ A A⊗ A

A

m⊗id id⊗m

m m

(a) Associativity of Algebra

k⊗ A A⊗ A A⊗ k

A A

∼

η⊗id

m m

id⊗η

∼

(b) The unit map η

Figure 1.: Commutative diagram for algebra A

3.1.0.2 Co-algebra

An unusual and somewhat novel structure is the coalgebra. Its formal definition is below.

1 In this section Hopf will be used instead of Quantum.
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3.1 definitions 34

Definition 3.1.2. A co-algebra C is a vector space defined over a field k coupled with a co-
product, a map ∆ : C → C⊗ C, which is co-associative and a co-unit, a map ε : C → k.

The co-product ∆ acts on an element c ∈ C so as to share it over C⊗ C,

∆(c) = ∑
i

c(1)i ⊗ c(2)i ≡ c(1) ⊗ c(2) where c(1),(2) ∈ C (3–1)

The last equality exhibits the use of the Sweedler notation in which the summation and indices
are suppressed to help simplify complicated expressions [26]. Co-associativity means that

(∆⊗ id) ◦ ∆(c) = (id⊗ ∆) ◦ ∆(c) (3–2)

(∆⊗ id)(∑ c(1) ⊗ c(2)) = (id⊗ ∆)(∑ c(1) ⊗ c(2)) (3–3)

∑ c(1)(1) ⊗ c(1)(2) ⊗ c(2) = ∑ c(1) ⊗ c(2)(1) ⊗ c(2)(2), ∀ c ∈ C (3–4)

hence it is of little import which vector space we share out first 2. The condition on the co-unit
map is that it obey

(ε⊗ id) ◦ ∆(c) = c = (id⊗ ε) ◦ ∆(c) (3–5)

The coalgebra parallel of algebra commutativity is co-commutativity and is defined via a
transposition map τ : C ⊗ C → C ⊗ C which reverses the order of the vector spaces, that is
τ(a⊗ b) = b⊗ a. Thus a co-algebra is co-commutative

τ ◦ ∆(c) = ∆(c) ∀ c ∈ C (3–6)

As we did for the algebra so also we compactly write (C,+, ∆, ε; k) and summarize by means
of commutative diagrams for the coalgebra.

C⊗ C⊗ C

C⊗ C C⊗ C

C

id⊗∆ ∆⊗id

∆ ∆

(a) Coassociativity of coalgebra C

k⊗ C C⊗ C C⊗ k

C C

∼

ε⊗id id⊗ε

∼
∆ ∆

(b) Co-unit map ε

Figure 2.: Commutative diagram for coalgebra C

The notion of a co-algebra parallels that of an algebra and is achieved by reversing the arrows
of a commutative diagram of an algebra. What the algebra takes away is brought back by
the co-algebra. One can then define extended structures which contain both the algebra and
coalgebra properties, that is they are invariant under an arrow-reversal operation of their
commutativity diagrams; such structures are called bi-algebras and they have built-in an “input-
output” symmetry.

3.1.0.3 Bialgebra and Hopf Algebra

Definition 3.1.3. A bialgebra (H,+, m, η, ∆, ε; k) over a field k is a vector space (H,+; k) defined
over a field k which is both an algebra and a co-algebra in a compatible way, where the maps
m and ∆ are co-algebra homomorphic and algebra homomorphic respectively.

2 ◦ found in 3–2 means composition i.e. ( f ◦ g)(x) = f (g(x)). So throughout this work.
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3.2 hopf twists 35

Compatibility means the product and unit maps m and η preserve the coalgebra structure
on the vector space and so do the co-product and co-unit maps ∆ and ε the algebra struc-
ture:

∆(hg) = ∆(h)∆(g), ∆(1H) = 1H ⊗ 1H, ε(hg) = ε(h)ε(g) and ε(1H) = 1 ∀ h, g, 1H ∈ H

We will be concerned with a particular class of bialgebras called Hopf Algebras. They have an
additional axiom, that is they have a linear map S : H → H, called an antipode. This map must
obey

m (S⊗ id) ◦ ∆ = m (id⊗ S) ◦ ∆ = η ◦ ε. (3–7)

Condition (3–7), at the level of elements, translates to [49]: S(h(1))h(2) = ε(a)1 = h(1)S(h(2))
and for this reason many view it as encapsulating the idea of an inverse3. The commutative
diagram of a Hopf Algebra will be a composition of (1) and (2) but will also include two
additional diagrams for the antipode S

H k H

H ⊗ H H ⊗ H H ⊗ H

∆

ε η

id⊗S id⊗id

m

H k H

H ⊗ H H ⊗ H H ⊗ H

∆

ε η

S⊗id id⊗id

m

Figure 3.: The antipode axioms of HA H

3.2 hopf twists

The existence of HA’s is certain but the task of constructing an one is not simple. One way
of constructing HA’s called Twisting 4 was presented in [11]. The core idea is: given an HA
(A, m, η, ∆, ε, S; k) and a counital 2-cocycle element χ ∈ A ⊗ A then a new HA Aχ can be
constructed by twisting the coproduct and the antipode as follows

∆χa = χ∆(a)χ−1 , Sχa = U(S(a))U−1 , ∀ a ∈ A (3–8)

and using the product map m and unit map η from A. U is given by m ◦ (id ⊗ S)(χ) =

∑ χ(1)(Sχ(2)) and must be invertible. To say that χ ought to be counital and 2-cocyclic respec-
tively means

(ε⊗ id)χ = 1

(1⊗ χ)(id⊗ ∆)χ = (χ⊗ 1)(∆⊗ id)χ. (3–9)

The benefit of the twist approach is that it preserves properties of the original HA which
depend on the coproduct and counit. This is useful because can one relax certain HA axioms
to obtain special kinds of HA’s with richer structure. The method of twisting will preserve
the extra structure on these special HA’s. A special HA that will be important in our case is
the Quasitriangular Hopf Algebra which arises when the co-commutativity of the HA is relaxed
up to conjugation with an invertible element upon which there are certain restrictions.

3 The antipode need not be an involution nor invertible.
4 Or twist construction, sometimes deformation.
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3.2 hopf twists 36

3.2.0.1 Quasitriangular Hopf Algebra

Definition 3.2.1. A Quasitriangular Hopf Algebra is the pair (H, R) where H is an HA and R
is an invertible element of H ⊗ H that satisfies

(∆⊗ id)R = R13R23 and (id⊗ ∆)R13R12 (3–10)

τ ◦ ∆(h) = R∆(h)R−1 ∀ h ∈ H (3–11)

In this notation the expression Rij means 1⊗ · · · ⊗ Ri⊗ · · · ⊗ Rj⊗ · · · ⊗ 1 where Ri is in the i-th
position of the chain and Rj in the j-th position. The quasitriangularity of HA H is preserved
by a twist χ, so the twisted HA (Hχ, Rχ) is also quasitriangular. The twisted co-product and
antipode are as in (3–8) and the twisted quasitriangular structure is

Rχ = χ21Rχ−1 (3–12)

Notice that the quasitriangular structure actually satisfies the Quantum Yang-Baxter Equation
(QYBE), R12R13R23 = R23R13R12, a consistency equation. This property will ascertain associa-
tivity when the non-commutativity of the coordinates is encoded via a star product.

3.2.0.2 Representation of Hopf Algebra

Hopf algebras can act on other sets, be they algebras, coalgebras or even other HA’s and
generally the side from which this action is applied matters. If the action of HA H is from
the left then A is called a left H-module algebra and the same can be said about the right action.
The left action5 is then a linear map α : H ⊗ A→ A.

α(h⊗ a) ≡ h . a ∈ A, where h ∈ H and a ∈ A (3–13)

The module is then a representation of the Hopf algebra. A desired property of the action of
HA’s on algebras is one of compatibility with structures already existing within the algebra
in question (i.e. multiplication and unit maps). So given an algebra A with product map
µ : A⊗ A→ A, the elements g, h ∈ H act on elements x, y ∈ A such that

g . (µ([x⊗ y])) = µ(∆(g) . [x⊗ y]) (3–14)

This means twisting an HA (which twists the co-product ∆) will translate to a twist in the
product µ of the module. To maintain the Leibniz property of products one observes that for
an F-twisted co-product ∆F = F∆F−1 the F-twisted module product ought to be [2]

µF(x⊗ y) = µ(F−1 . [x⊗ y]) (3–15)

5 The same definitions can be made for the right action and for coalgebras.
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3.3 twist construction of β-deformation 37

3.3 twist construction of β-deformation

In section (2.3) we saw that the deformation parameter choice (q , h) = (1, 0) in the general
(q , h)-deformed R-matrix (2–25) restores the N = 4 SYM with R-matrix, R0 = 19×9, and the
β-deformed theory arises by setting (q , h) = (e i β , 0) with the corresponding R-matrix

R β =



1 0 0 0 0 0 0 0 0
0 q−1 0 0 0 0 0 0 0
0 0 q 0 0 0 0 0 0
0 0 0 q 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 q−1 0 0 0
0 0 0 0 0 0 q−1 0 0
0 0 0 0 0 0 0 q 0
0 0 0 0 0 0 0 0 1


(3–16)

We observe that Rβ can be constructed from R0 with a suitable twist Fβ which is given by

Fβ = diag(1,
√

q,
1
√

q
,
√

q,
√

q, 1,
1
√

q
,

1
√

q
,
√

q, 1) (3–17)

using the twist construction Rβ = FβR0F−1
β. To see that Fβ is 2-cocyclic we first note that is

can be written in terms of the Cartan sub-algebra generators Hi of SU(3) as

Fβ = ei β
2 H1∧H2 , where H1 =

1 0 0
0 −1 0
0 0 0

 , and H2 =

0 0 0
0 1 0
0 0 −1

 (3–18)

and this means Fβ is a twist of a Abelian type [53]. Since the co-product acts on algebra
elements as

∆(Hi) = Hi ⊗ 1 + 1⊗ Hi (3–19)

its effect on Fβ exponentiates6 so that

(∆⊗ id)Fβ = (∆⊗ id)ei β
2 H1∧H2

= (∆⊗ id)ei β
2 (H1⊗H2−H2⊗H1)

= ei β
2 (∆⊗id)(H1⊗H2−H2⊗H1)

= ei β
2 (H1⊗1⊗H2+1⊗H1⊗H2−H2⊗1⊗H1−1⊗H2⊗H1)

= ei β
2 (H1⊗1⊗H2−H2⊗1⊗H1)ei β

2 (1⊗H1⊗H2−1⊗H2⊗H1)

= Fβ,13Fβ,23

By the exact same argument we arrive at (id⊗ ∆)Fβ = Fβ,13Fβ,12. This means then 2-cocycle
condition reduces to

Fβ,12Fβ,13Fβ,23 = Fβ,23Fβ,13Fβ,12. (3–20)

6 much like Lie group elements are obtained by the exponentiation of Lie algebra generators.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3.4 w-deformation and the twist 38

Let us first define the co-unit map ε such that ε(1) = 1 and ε(X) = 0 for any other algebra
element X [53]. It becomes clear that Fβ is counital because we can expand in the deformation
parameter β as

√
q = ei β

2 = 1 + i
β

2
− β2

8
− i

β3

48
+ . . . (3–21)

1
√

q
= e−i β

2 = 1− i
β

2
− β2

8
+ i

β3

48
+ . . . (3–22)

so that Fβ can be written as

Fβ = 13×3 ⊗ 13×3 + βF(1) + β2F(2) + . . . (3–23)

where F(1) is i
2 × diag(0, 1,−1, 1, 1, 0,−1,−1, 1, 0) and also for the higher order terms. Note,

however, that only the first term survives the action of the co-unit map and this implies that
(ε⊗ id)Fβ = 13×3. Thus Fβ is a legitimate twist.

It is easy to see that R0 satisfies the axioms in (3.2.1) and thus is actually a quasitriangular
structure of the SU(3) symmetry of N = 4 SYM. Twisting by Fβ produces a quasitriangular
structure Rβ and a twisted SU(3) symmetry SU (3)q. This is what motivates our view which
is that the β-deformation does not break the SU(3) symmetry, it only deforms it. And, as we
mentioned previously,the price: we must describe symmetry in terms of Hopf algebras rather
than Lie algebras.

By a Taylor expansion of Rβ in the β we obtain

Rβ = 1 + βR(1) +
β2

2
R(2) + . . . (3–24)

from which we isolate R(1) = r(1)β = diag (0, 1,−1, 1, 1, 0,−1,−1, 1, 0) — the β classical R-
matrix— employed to define the antisymmetric 2-tensor Θij which carries the information of
non-commutativity of the coordinates. Note that r(1)β is exactly the Θ̃i j

k l which appears in
(2–22).

3.4 w-deformation and the twist

In this work we considered a deformation which corresponds to parameter choice (q, h) =

(1 + w, w) where w ∈ R. We call it a w-deformation7. Since the q and h are not independent in
the w-deformation it follows that the w-deformed theory is a proper subset of Leigh-Strassler
theories. This means it possesses Z3×Z3 symmetry which all Leigh-Strassler theories possess.
We will extensively employ the Z3 symmetry which rotates the fields as Φi → Φi+1. It should
be noted that the w-deformed superpotential, can be obtained from the β-deformed one (3–16)
by a field redefinition Φi → (T†)i

jΦ
j where T is the SU(3) matrix

T = − i√
3

1 1 1
1 ei 2π

3 e−i 2π
3

1 e−i 2π
3 ei 2π

3

 . (3–25)

Although the w-deformed theory is the same as the β-deformed it obscures the familiar sym-
metries of the β-deformed theory, making it a good candidate on which to test Hopf algebraic

7 and hope this name choice has not been used before.
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3.4 w-deformation and the twist 39

approach to deformations. So the gravity background dual the w-deformed theory can be
compared against the known Lunnin-Maldacena background [36] in order to build confidence
in this approach for future work. The w-deformed theory has an R-matrix equal to

Rw =
1 + w

1 + w + w2



1 0 0 0 0 − w
w+1 0 w 0

0 1 0 − w
w+1 0 0 0 0 w

0 0 1 0 − w
w+1 0 w 0 0

0 w 0 1 0 0 0 0 − w
w+1

0 0 w 0 1 0 − w
w+1 0 0

w 0 0 0 0 1 0 − w
w+1 0

0 0 − w
w+1 0 w 0 1 0 0

− w
w+1 0 0 0 0 w 0 1 0
0 − w

w+1 0 w 0 0 0 0 1


(3–26)

and it can be viewed as a result of twisting R0. We first dismantle Rw in terms of the shift
matrix, its square and the identity matrix

U =

0 0 1
1 0 0
0 1 0

 , V = U2 =

0 1 0
0 0 1
1 0 0

 and U3 = 13×3. (3–27)

Thus Rw becomes

Rw =
1 + w

1 + w + w2

[
1⊗ 1 + w U ⊗V − w

1 + w
V ⊗U

]
. (3–28)

From this angle, the twist corresponding to the w-deformation is

Fw = C̃



1 + w 0 0 0 0 w 0 0 0
0 1 + w 0 w 0 0 0 0 0
0 0 1 + w 0 w 0 0 0 0
0 0 0 1 + w 0 0 0 0 w
0 0 0 0 1 + w 0 w 0 0
0 0 0 0 0 1 + w 0 w 0
0 0 w 0 0 0 1 + w 0 0
w 0 0 0 0 0 0 1 + w 0
0 w 0 0 0 0 0 0 1 + w


(3–29)

The coefficient C̃ serves as a normalization constant. Note that we have freedom to choose its
form. This is evident from the definition of the Rw-matrix ( Rw = Fw21 R0F−1

w12
= Fw21 F−1

w12
) that

the effect of C̃ is cancelled out since the twist and its inverse are

Fw = C̃
[
(1 + w)1⊗ 1 + w V ⊗U

]
(3–30)

F−1
w =

(1 + w)2

C̃(1 + 2w)(1 + w + w2)

[
1⊗ 1− w

(1 + w)
V ⊗U +

w2

(1 + w)2 U ⊗V
]

(3–31)

In order to choose the form of C̃ we first note that Fw satisfies the YBE, as can be confirmed by
explicit calculation. From this we know therefore that Fw is a 2-cocyle and thus the deformed
Rw-matrix is quasitriangular, as is the undeformed R0-matrix. The co-unitality of Fw is how-
ever not guaranteed, so we will choose the normalization constant C̃ so as to guarantee it. The
shift matrices possess properties

(V ⊗U)2 = (U ⊗V) and (V ⊗U)3 = 1⊗ 1 (3–32)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3.4 w-deformation and the twist 40

which allow for Fw to be written in terms of the exponential function

Fw = exp[a(w)V ⊗U + b(w)U ⊗V] (3–33)

where

aw := a(w) =
1
6

ln
[
(1 + 2w)2

1 + w + w2

]
+

1√
3

[
tan−1

(
1 + 2w√

3

)
− π

6

]
(3–34)

and

bw := b(w) =
1
6

ln
[
(1 + 2w)2

1 + w + w2

]
− 1√

3

[
tan−1

(
1 + 2w√

3

)
− π

6

]
. (3–35)

Using hypergoniometric cosine and sine functions C(x) and S(x) we fix the normalization
constant to be [35] [34]:

C̃ =
C(aw)

1 + w
. (3–36)

The result of substituting (3–34) into the hypergoniometric sine and cosine functions is

C(aw) =
1 + w

[(1 + 2w)(1 + w + w2)]
1
3

(3–37)

and
S(aw) =

w

[(1 + 2w)(1 + w + w2)]
1
3

. (3–38)

This means we can safely expand (3–33) to obtain

Fw = C(aw)
[
1⊗ 1

]
+ S(aw)

[
V ⊗U

]
(3–39)

= C(aw)

[
1⊗ 1 +

S(aw)

C(aw)
V ⊗U

]
(3–40)

= C(aw)

[
1⊗ 1 +

w
1 + w

V ⊗U
]

(3–41)

because the properties (3–32) mean that the higher-order terms in U ⊗ V will recollect and
cancel out. Thus (3–30) and (3–33) are equivalent. The exponential form, however, best high-
lights the counital property. Fw is therefore a proper twist and the twisted R-matrix Rw is a
quasitriangular structure of the twisted algebra.

The classical R-matrix, rw, associated with the w-deformed theory is given

rw =



0 0 0 0 0 −1 0 1 0
0 0 0 −1 0 0 0 0 1
0 0 0 0 −1 0 1 0 0
0 1 0 0 0 0 0 0 −1
0 0 1 0 0 0 −1 0 0
1 0 0 0 0 0 0 −1 0
0 0 −1 0 1 0 0 0 0
−1 0 0 0 0 1 0 0 0
0 −1 0 1 0 0 0 0 0


(3–42)

and from it we obtain holomorphic part of the non-commutativity 2-tensor Θw via the defini-
tion

Θi j
w = (rw)

i j
k lz

kzl =

 0 z2
3 − z1z2 z1z3 − z2

2
z1z2 − z2

3 0 z2
1 − z2z3

z2
2 − z1z3 z2z3 − z2

1 0

 (3–43)
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3.5 the star product 41

Using the map of antiholomorphic coordinates to co-vectors, x̄ī = ui, in conjunction with the
mixed plane relations in (2–23) we find that the full non-commutativity matrix is

ΘI J
w = w



0 (z3)2 − z1z2 z1z3 − (z2)2 z2z̄2 − z3z̄3 z2z̄3 − z̄1z3 z̄1z2 − z̄2z3

z1z2 − (z3)2 0 (z1)2 − z2z3 z̄2z3 − z1z̄3 z3z̄3 − z1z̄1 z̄1z3 − z1z̄2

(z2)2 − z1z3 z2z3 − (z1)2 0 z1z̄2 − z2z̄3 z1z̄3 − z̄1z2 z1z̄1 − z2z̄2

z3z̄3 − z2z̄2 z1z̄3 − z̄2z3 z2z̄3 − z1z̄2 0 z̄1z̄2 − (z̄3)2 (z̄2)2 − z̄1z̄3

z̄1z3 − z2z̄3 z1z̄1 − z3z̄3 z̄1z2 − z1z̄3 (z̄3)2 − z̄1 z̄2 0 z̄2z̄3 − (z̄1)2

z̄2z3 − z̄1z2 z1z̄2 − z̄1z3 z2z̄2 − z1z̄1 z̄1z̄3 − (z̄2)2 (z̄1)2 − z̄2z̄3 0


(3–44)

The radial independence of this non-commutativity matrix Θw is manifest in the spherical
coordinate system8 and this ascertains conformal invariance of the theory [32]. This matrix
will play a central role in encoding the deformation of the spacetime coordinates on the gravity
side.

3.5 the star product

Next we discuss the twist in module/representation of the HA. In accordance with section
(3.2.0.2) a compatibly twisted module product is µF(xi ⊗ xj) and this clearly means xi and xj

are no longer commutative. We transfer this non-commutativity of module the elements to a
star product so that xi and xj once again commute. The star product is defined as

xi ? xj = µFw(xi ⊗ xj) = (Fw)
j i
k lx

kxl (3–45)

with the last equality reminiscent of the quantum plane relations discussed in (2.3). In fact
this star product obeys the RTT relations (2–21) because

xi ? xj = Fj i
k lx

k xl = [ (F)j i
k l ][ (F−1)l k

m n ] xn ? xm = Rj i
n m xn ? xm (3–46)

The use of Fw rather than its inverse F−1
w may seem unorthodox but an attractive feature

sought after in a star product —especially with solution-generating techniques in mind—is
one that administers the deformation simply by promoting the products between fields of the
undeformed theory in order to obtain the deformed fields (up to a factor). The availability of
this luxury rests in that Fw satisfies the YBE, thus the star product it defines is associative. It
turns out that promoting the product in the superpotential of N = 4 SYM to a star product
defined via Fw gives the correct w-deformed superpotential, hence the choice.

The module of interest is parameterized by the coordinates zi thus it suffices to consider the
star product at the level of coordinates rather than that of [general] functions. For the β and w
deformations associativity of star product is ingrained since their respective twists satisfy the
YBE hence

(zi ? zj) ? zk = F12F13F23zizjzk = F23F13F12zizjzk = zi ? (zj ? zk) (3–47)

And in the matrix representation (where the map µ is matrix multiplication) the star product
corresponding to the w-deformation manifests as

zi ? zj = µ(Fw . zi ⊗ zj) = C̃
[
(w + 1)

(
1 zi ⊗ 1 zj

)
+ w

(
V zi ⊗U zj

) ]
(3–48)

8 The form of this said matrix is bulky hence it does not appear here.
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3.5 the star product 42

where C̃ = [(2w + 1)(w2 + w + 1)]
1
3 is the normalization constant. In the basis where

z1 =

1
0
0

 , z2 =

0
1
0

 and z3 =

0
0
1

 (3–49)

the star product on the coordinates is

z1 ? z2 = C̃
[
(1 + 2w) z1z2

]
(3–50)

z2 ? z1 = C̃
[
(1 + w) z2z1 + w z3z3

]
(3–51)

z3 ? z3 = C̃
[
(1 + w) z3z3 + w z2z1

]
. (3–52)

We conclude then that

[z1, z2]? = z1 ? z2 − z2 ? z1 = 2w z2 ? z1 −
(

1 + 2w
1 + w

)
z3 ? z3 (3–53)

Having an associative star product defined via the twist Fw and the 2-tensor ΘI J
w to capturing

commutation relations of coordinates we are ready to consider the w-deformation on the
gravity side.
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4

G E N E R A L I Z E D G E O M E T RY

Thematic of the AdS-CFT correspondence conjecture, the first part of this paper was devoted
to field theory [CFT], this point marks the second part, the gravity [AdS]. In treating the sym-
metries of the respective field theories Hopf Algebras were the language of choice; in under-
standing the corresponding gravity side: Generalized Complex Geometry [GCG]. This framework
is appealing in that it places spacetime metric and B-field on equal footing. This matches string
theory view that the metric and B-field are different excitation modes of the same string.

4.1 an overview

In order to properly place GCG it is meaningful to briefly consider the two [manifold] defini-
tions: symplectic and complex manifolds.

A symplectic manifold is a smooth manifold M of even dimension containing a non-degenerate
2-form ω which is both smooth and closed. ω is a linear map ω : T(M) → T∗(M), called
a symplectic form 1 and it satisfies ω∗ = −ω. Here T and T∗ are the tangent and co-tangent
bundles respectively.

Similarly if an even-dimensional smooth manifold N is equipped with J : T(N)→ T(N) such
that J2 = −1 then the pair (N, J) is an almost complex manifold and J is called an almost complex
structure. If J is compatible across coordinate systems then we drop the “almost” and the pair
is said to be a complex manifold [42]. This is where GCG enters the picture as it first replaces
tangent and cotangent bundles with a sum of the two

T(M) , T∗(M)→ T(M)⊕ T∗(M) (4–1)

whose sections are
X + ξ ∈ T ⊕ T∗ with X ∈ T and ξ ∈ T∗. (4–2)

Secondly it generalizes the two above-mentioned structures by replacing them with a Gener-
alized Complex Structure [GCS] in which symplectic and complex structures are contained as
special cases [17] [22] [23]. Thus a GCS on an n-dimensional manifold M is an endomorphism
J : T(M)⊕ T∗(M) → T(M)⊕ T∗(M) such that J 2 = −12n and J ∗ = −J . A GCS can be
constructed from a complex structure J in the following way

JJ =

(
−J 0
0 J∗

)
(4–3)

1 or structure.
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4.2 pure spinors 45

and also by means of a symplectic structure ω

Jω =

(
0 −ω−1

ω 0

)
(4–4)

The GCS J is also required to satisfy the hermiticity condition J tGJ = G where

G =

(
0 1
1 0

)
(4–5)

is a natural metric on T⊕ T∗. In flat C3 with coordinates zi, z̄j and i, j = 1, 2, 3, the holomorphic
volume form Ω and the Kähler form J will be needed to define a metric gi j̄ = −i Ji j̄. These
forms are given by

Ω = dz1 ∧ dz2 ∧ dz3 and J =
i
2 ∑

j
dzj ∧ dz̄ j̄ (4–6)

and since C3 is a six-dimensional manifold we know that it is spanned by a basis of polyforms
with maximum degree of 6. So then there is a unique form of dimension six, the volume form.
Thus the six dimensional forms J ∧ J ∧ J and Ω ∧Ω have to be individually proportional to
the volume form, hence to one another explicitly in the fashion:

J ∧ J ∧ J =
3i
4

Ω ∧ Ω̄. (4–7)

This manifold can be described from the generalized geometric view where the tangent bundle
T is replaced with a 12 dimensional generalized tangent bundle T ⊕ T∗, the space on which
we will define the corresponding GCS. We first note that the natural metric G which defines
the hermiticity condition for the GCS reduces natural SO(6, 6) structure on T ⊕ T∗ to O(6, 6)
thus spinors will transform under Cliff(6, 6). The Clifford map

C ≡∑
k

1
k!

C(k)
i1 ...ik

dxi1 ∧ · · · ∧ dxik ←→ /C ≡∑
k

1
k!

C(k)
i1...ik

γi1 ...ik
αβ (4–8)

allows a one to one relation between spinors to forms so that the chirality of spinors is manifest
as the degree [even or odd] of the forms. Thus to an element of T ⊕ T∗ a gamma matrix ΓI

will be assigned
ΓI = ιI and ΓI+6 = dzI with I = 1, 2, . . . , 6 (4–9)

under the set ordering {ιI , dzI} = {ι1, ῑ1, ι2, . . . , dz3, dz̄3}.

4.2 pure spinors

The missing ingredients to make a full transition to GCG are pure spinors. These are the special
forms used to define the conditions for a supersymmetric in GCG. More formally
Definition 4.2.1. A pure spinor Φ is a (poly-)differential form whose annihilator, LΦ ,in
T ⊕ T∗ ⊗ C has complex dimension 6 and whose inner product is nowhere vanishing on
the manifold, that is 〈Φ̄, Φ〉 6= 0

The annihilator of spinor A in T ⊕ T∗ ⊗C is the set defined as [16]

LA = {(X + ξ) ∈ T ⊕ T∗|(X + ξ) · A = 0}, (4–10)

here the action of a polyform (X + ξ) on a spinor Φ is understood as

(X + ξ) ·Φ = Xmι∂m Φ + ξmdxm ∧Φ. (4–11)
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4.2 pure spinors 46

On the other hand the inner product on polyforms, 〈 , 〉, in component form is given by

〈A, B〉 = ∑(−1)[
n
2 ]An ∧ B6−n (4–12)

where An and B6−n are components of the forms A and B corresponding to the degree2. The
existence of two closed pure spinors that also are compatible guarantees an N = 2 super-
symmetric background. A pair of pure spinors Φ±is compatible if it satisfies the following
[14]:

• 〈Φ−, XΦ+〉 = 〈Φ̄−, XΦ+〉 = 0 ∀ X ∈ T ⊕ T∗ — Mukai pairing

• 〈Φ̄+, XΦ+〉 = 〈Φ̄−, XΦ−〉 — Equal norms

• If they satisfy the first two requirements then they define a metric; this metric is required
to be positive definite.

For flat 6d space the spinors are

Φ0
− = Ω = dz1 ∧ dz2 ∧ dz3, (4–13)

Φ0
+ = e−i J = 1 +

1
2 ∑

i
dzi ∧ dz̄i +

1
4 ∑

i
dzi ∧ dz̄i ∧ dzi+1 ∧ dz̄i+1

+
1
8

dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ dz3 ∧ dz̄3 (4–14)

and the elements of their annihilator are respectively given by

L−i = dzi∧ , L−ī = ιī (4–15)

L+
i = dzi ∧+2ιī , L+

ī = dz̄ī ∧+2ιi (4–16)

The pure spinors Φ0
− and Φ0

+ are compatible and closed and thus define anN = 2 background,
hence flat space is a solution to SUGRA.

We now can consider the bosonic fields. By combining sections of T ⊕ T∗ we can construct
two-indexed anti-symmetric gamma matrices

ΓI J =
1
2
(ιI ι J − ι J ιI) = ιI ∧ ι J , ΓI,J+6 =

1
2
(ιIdzJ − dzJ ιI) (4–17)

ΓI+6 J+6 =
1
2
(dzIdzJ − dzJdzI) = dzI ∧ dzJ , ΓI+6,J =

1
2
(dzI ι J − ι JdzI) (4–18)

which are useful in obtaining the GCS through the Mukai pairing

J±MN = 〈Φ̄±, ΓMNΦ±〉. (4–19)

These GCS define a 12-dimensional generalized metric via

GMN = −J+MLJ L
−N (4–20)

We know that contained in the generalized metric are the 6-dimensional [complex] spacetime
metric g and B-field B [16] since

GM
N =

(
−g−1B g−1

g− Bg−1B−1 Bg−1

)
(4–21)

2 [.] selects the integer part.
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4.3 the twist 47

From g we obtain the dilaton e2φ =
√
|det(g)|; this is the complete NS-NS sector. The general-

ized metric defined from the flat pure spinors is

G =

(
0 g−1

g 0

)
with g =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


(4–22)

This is flat space in complex coordinates, with no B-field and no dilaton.

4.3 the twist

On the field theory side we used a 2-tensor non-commutativity parameter Θ as a container
for the deformation via a twist and defined a star product which transmits the deformation to
fields of the undeformed theory by simply replacing regular product. Here we propose that
Θ will play a similar role as on field theory side and also the star product will manifest on the
wedge product as a deformed wedge product ∧?3. Its action on polyforms is

dzI ∧? dzJ =

(
1− i

2
ΘKLιK ∧ ιL

)
dzI ∧ dzJ = dzI ∧ dzJ − iΘI J (4–23)

That this star wedge product does not anticommute is evident but the non-anticommutativity
is governed by ΘI J . This approach allows a transparent transition of the twist from the field
theory side on to the geometry on the gravity side. The deformations at hand are of the
bivector type hence they act to deform in the fashion Φ± = eβI J ιI∧ι J Φ0

±. The star wedge
product on mixed forms is understood to mean

dzI ∧? dz̄ J̄ = dzI ∧ dz̄ J̄ + ΘI J̄ (4–24)

4.3.1 β-deformed pure spinors

We now promote the anticommuting wedge product in the flat space pure spinors to the star
wedge product in order to deform them. The simplified result is

Φβ
− = Φ0

− + β d(z1z2z3) (4–25)

Φβ
+ = Φ0

+ −
β

4
[
z̄1z̄2 dz1 ∧ dz2 + z̄1z2 dz1 ∧ dz̄2 + z1z̄2 dz̄1 ∧ dz2 + z1z2 dz̄1 ∧ z̄2 + cyclic

]
(4–26)

and by following the GCG prescription of extracting the metric, B-field and dilaton from the
generalized metric one obtains an N = 2 background. It is from this background that we
recover the N = 1 real-β Lunin-Maldacena background [36] by introducing a stack of D3-
branes. Hence such an N = 2 background is said to be a precursor of the Lunin-Maldacena
background. A very simplistic viewpoint, the fact that the deformed spinors define an N = 2
background means that the deformation (star wedge product) commutes with the exterior
derivative.

3 or ”star wedge product”.
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4.3 the twist 48

4.3.2 w-deformed pure spinors

We again begin with the flat space pure spinors and promote the wedge product to the non-
anticommuting star wedge product to obtain

Φw
− = Φ0

− − iw[(z2z3 − (z1)2)dz1 ∧+(z3z1 − (z2)2)dz2 + (z1z2 − (z3)2)dz3] (4–27)

Φw
+ = Φ0

+ +
iw
4
[
(z3z̄3 − z2z̄2)dz1 ∧ dz̄1 + ((z̄3)2 − z̄1z̄2)dz1 ∧ dz2

+ (z1z̄3 − z̄2z3)dz1 ∧ dz̄2 + (z2z̄3 − z1z̄2)dz1 ∧ dz̄3 + (z1z2 − (z3)2)dz̄1 ∧ dz̄2 + cyclic
]

+
iw
8
[
(z1z̄1 − z2z̄2)dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 − (z̄2z̄3 − (z̄1)2)dz1 ∧ dz̄1 ∧ dz2 ∧ dz3

+ (z̄1z3 − z1z̄2)dz1 ∧ dz̄1 ∧ dz̄2 ∧ dz̄3 − (z1z̄3 − z̄1z2)dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄3

+ (z2z3 − (z1)2)dz1 ∧ dz̄1 ∧ dz̄2 ∧ dz̄3 + cyclic
]

(4–28)

These forms are still pure spinors because their inner product is no-zero and their annihilator
sets L± are of dimension 6. The elements of these sets are

L−
(1) = dz1 − iw

[
(z1z2 − (z3)2)ι2 − (z1z3 − (z2)2)ι3

]
(4–29)

L−
(1̄) = ι1̄ (4–30)

L+
(1̄) = dz̄1 +

[(
− 2 + iw(z3z̄3 − z2z̄2)

)
ι1 + iw(z2z̄3 − z1z̄2)ι3 (4–31)

− iw(z3z̄2 − z1z̄3)ι2 − iw(z̄1z̄3 − (z̄2)2)ι3̄ + iw(z̄1z̄2 − (z̄3)2)ι2̄

]
(4–32)

L+
(1) = dz1 +

[ (
2− iw(z3z̄3 − z2z̄2)

)
ι1̄ − iw(z3z̄2 − z2z̄1)ι3̄ (4–33)

+ iw(z2z̄3 − z3z̄1)ι2̄ + iw(z1z3 − (z2)2)ι3 − iw(z1z2 − (z3)2)ι2
]

(4–34)

together with their cyclic permutations. They have a vanishing exterior derivative and both
their Mukai norms are equal to 1. So they guarantee an N = 2 background. Since the star
wedge product ∧∗ was defined from the w-deformed field theory, we propose that this N = 2
background is the NS-NS precursor of the dual w-deform theory.
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5

W- D E F O R M E D B A C K G R O U N D

5.1 w-deformed gcs

From the two w-deformed pure spinors we define the two GCS which produce the 12-dimensional
generalized metric. The GCS corresponding to Φw

− is defined as

J M
− N =

(
J(ul)
− J(ur)

−
0 −J(ul)

−

)
(5–1)

and the one corresponding to Φ+ as

J K
+L =

(
J(ul)
+ J(ur)

+

J(ur)
+ (J(ul)

+ )T

)
(5–2)

The J blocks are presented explicitly in Appendix [B.1] where we have used (ul) = upper-left
and (ur) = upper-right to denote the respective blocks. The generalized metric is defined in
4–21 and from it we can extract the spacetime metric gw and B-field Bw of the NS-NS sector
precursor solution. The 10-dimensional metric is obtained by concatenating the 4-dimensional
Minkowski metric to gw, a metric of w-deformed C3. The 6-dimensional part of the 10d-
spacetime metric, in string frame and complex coordinates, takes the form

ds2 = G
[

gii dzidzi + giī dzidz̄ī + gi i+1 dzidz̄i+1 + gi i+1 dzidz̄i+1 + c.c.
]

(5–3)

where the G factor is given by

G−1 = 1+w2
[
z2

1z̄2
1 + z2

2z̄2
2 + z3

2z̄2
3 + z1z̄1z2z̄2 + z2z̄2z3z̄3 + z1z̄1z3z̄3 − z1z2z̄2

3

− z2z3z̄2
1 − z3z1z̄2

2 − z2
1z̄2z̄3 − z2

2z̄3z̄1 − z2
3z̄1z̄2

]
(5–4)

The components of the metric are stowed away in Appendix [B.2] as are those of the B-field,
which B-field has the form

B =
1
2

[
Bii dzi ∧ dz̄ī + Bi i+1 dzi ∧ dz̄i+1 + Bi i−1 dzi ∧ dz̄i−1 + c.c

]
(5–5)

and the dilaton is obtained eφ =
√

det(g) = G1. The full 10d-metric in real coordinates in the
Einstein frame is

ds2 =
1

4
√

G

[
− dt2 +

3

∑
i=1

dx2
i + G

[
grr

ij dridrj + grφ
ij dridφj + gφφ

ij dφidφj
]]

(5–6)

1 where G is given in (5–4).
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5.2 conclusion and future work 50

The metric and B-field components as expressed in terms of real coordinates are contained in
Appendix [B.2].

In probing the R-R sector we follow [39] [1] to take the near-horizon limit so that the back-
ground AdS5×S5

w arises where only the AdS5 part of the geometry has radial dependence.
That is to say the deformed S5

w is a sphere of constant radius. We thus denote the radius
of AdS5 by R. This means we truly are dealing with a 5-sphere. We use the coordinates
(α, θ, φ1, φ2, φ3) to parametrize the 5-sphere and thus obtain that the factor G is given by

G−1 = 1 + w2R4
[
1− s2

αc2
α − s4

αs2
θc2

θ − 2cαs3
αcθs2

θC2 − 2s2
αc2

αsθcθC1 − 2cαs3
αc2

θsθC3

]
(5–7)

and the metric can be written as
gµν = Gg̃µν (5–8)

where the components g̃µν are recorded in Appendix [B.3] together with all the R-R fields
which were computationally affordable to the resources available. Of course from the stand
point of GCG this is sufficient but as a confirmation the metric was tested and found to satisfy
the IIB SUGRA e.o.m in Appendix[A.3].

5.2 conclusion and future work

We have studied the role of the Hopf twist on the field theory side and its manifestation on
the gravity side in the Generalized Geometry framework and have found that this approach
it fruitful at least when the twist satisfies the YBE. No energy was expended in studying
the geometry which was produced from the w-deformation. The particular twist used herein
possesses features that by-pass the would-be pitfalls. The fact that Fw satisfies the quasitriangu-
larity axioms implied the YBE (at the level of the twist), which in turn guaranteed associativity
of the star product defined. One can consider twists that give rise to R-matrix which are qua-
sitriangular structures with the twists not being quasitriangular structures themselves. These
cases require that we either know the action of the co-product, ∆, at the group level or that
we express the twist in terms of the generators of the algebra. The latter approach has issues
with uniqueness. Is there a unique way to express the twist in terms of the generators of the
algebra? If not, how are they many ways related to one another? These questions are at the
forefront of future work.

We also narrowed our scope to real deformation parameter w. These cases were used as a
”controlled environment” on which to test the Hopf Twist-Generalized Geometry approach
since they are well-understood. Ultimately we would like to study the full (q, h)-deformed
theory and thus the full twist [45]. This would mean considering mathematical structures that
generalize Hopf algebras and quasi-Hopf algebras are suspected to make an appearance in
course of this endeavour. A useful starting point to test this approach is to study twists whose
deformation parameter is allowed to take on complex values.
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A
A P P E N D I X A

a.1 grassmann coordinates and integration

Grassmann coordinates are fermionic in nature and thus anticommute. The highest power of
a coordinate and its conjugate to not vanish is

θ2 = θαθα and θ̄2 = θ̄α̇ θ̄α̇ (A–1)

The combination (θ2 θ̄2) is legal and useful for notational brevity. It is to be understood by
means of (A–1). The rule for Grassmann integration in the case where α takes only one value,
a single coordinate θ1, is ∫

dθ1 θ1 = 1 and
∫

dθ1 1 = 0 (A–2)

Grassmann integration on the fermionic superspace coordinate has a similar effect that differ-
entiation has on regular spacetime coordinates. If α = 1, 2 then there are two coordinates, θ1

and θ2, and we define the measure of superspace to be

dθ2 = −1
4

εαβdθαdθβ (A–3)

here εαβ is

εαβ = εα̇β̇ =

(
0 −1
1 0

)
(A–4)

Then dθ1dθ2 = −dθ2dθ1 from which we deduce that∫
dθ2θ2 = 1 (A–5)

The conclusions arrived at above are true also for the conjugate coordinate(s) and this allows
us to be concise in our notation since we have the luxury of defining∫

d4θ ≡
∫

d2θ
∫

d2θ̄2 (A–6)

a.2 proofs

Noether’s theorem:
Theorem. Every continuous symmetry of the Lagrangian, L, gives rise to a conserved current jµ(x),
that is

∂µ jµ(x) = 0 (A–7)
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A.2 proofs 52

Proof. Let L(φi) be a Lagrangian which depends on a set of fields {φi} and also let δφi be a
combined transformation of the fields such that L is invariant. By varying the Lagrangian, we
obtain:

δL =
∂L
∂φi δφi +

∂L
∂(∂µφi)

δ(∂µφi) (A–8)

Using the Leibniz product rule of derivatives:

∂µ

(
∂L

∂(∂µφi)
δφi
)
= ∂µ

(
∂L

∂(∂µφi)

)
δφi +

∂L
∂(∂µφi)

∂µ(δφi) (A–9)

and invoking the action principle we reduce (A–8) to

δL =

[
∂L
∂φi − ∂µ

(
∂L

∂(∂µφi)

)]
δφi + ∂µ

[
∂L

∂(∂µφi)
δφi
]
= 0 (A–10)

From Lagrangian mechanics, the first term of (A–10) is the Euler-Lagrange equation and is
itself zero. Thus we have that second term is also zero. Thus

∂µ

[
∂L

∂(∂µφi)
δφi
]
= 0 (A–11)

This is exactly (A–7)

∂µ jµ = 0 with jµ =
∂L

∂(∂µφi)
δφi (A–12)

Hence the invariance of L with respect to δφi, the combined transformation of the fields φi

has led to a conserved current jµ. To this conserved current we associate a conserved charge
by noting that

∂µ jµ =
∂j0

∂t
+O ·~j = 0 (A–13)

and then we can define the conserved charge Q by

Q =
∫

R3
d3x

∂j0

∂t
= −

∫
R3

d3xO ·~j = 0

Preservation of Quasitriangularity in Twisting:
Theorem. If the pair (H, R) is a quasitriangular Hopf Algebra and χ is a twist - 2-cocyclic and counital
- then (Hχ, Rχ) , the twisted HA, is also quasitriangular having a co-product ∆χ(a) = χ∆(a)χ−1. And
Rχ = χRχ−1

Proof.

(∆χ ⊗ id)Rχ = Rχ13 Rχ23

= χ(∆⊗ id)χ−1Rχ

= χ(∆⊗ id)χ−1χRχ−1

= χ(∆⊗ id)Rχ−1

= χ(R13R23)χ
−1

= (χR13χ−1)(χR23χ−1)

= Rχ13 Rχ23
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A.3 iib sugra equations 53

a.3 iib sugra equations

The NS-NS sector field equations:

RMN =
1
2

∂MΦ∂NΦ +
1
4

e−ΦHMRSHRS
N −

1
48

e−ΦHRST HRST (A–14)

H = dB

1
2
∇M∂MΦ = − 1

24
√

G
HMNRHMNR (A–15)

and
DP(e−

Φ
2 HMNP) =

1
2
(DPΦ)e−

Φ
2 HMNP (A–16)

The R-R sector field equations [In string frame]:

• The 5-form field strength:

F(5) = ωAdS5 + ωS5
w

with ωS5
w
= Gs3

αcαsθcθ (A–17)

• Three-form field e.o.m:

FMNP = − R
24

DM
√

ge−2ΦεNPQRSHQRS (A–18)

and
HMNP =

R
24

DM
√

gεNPQRSHQRS (A–19)

• The Einstein equations:

RMN = −2DM∂NΦ− 1
4

gMN DP∂PΦ +
1
2

gMN∂PΦ∂PΦ +
1

96
e2ΦFMPQRSFPQRS

N

+
1
4
(HMPQHPQ

N + e2ΦFMPQFPQ
N )− 1

48
gMN(HMNPHMNP + e2ΦFMNPFMNP) (A–20)

• The dilaton equation:

DM∂Me−2Φ = −1
6
(FMNPFMNP − e−2ΦHMNPHMNP) (A–21)
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B
A P P E N D I X B

b.1 generalized complex structures

Here are the block matrices that constitute the GCS for the w-deformed pure spinors Φw
±

J(ul)
− = i



−1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1


(B–1)

J(ur)
− = w



0 0 ((z3)
2 − z1z2) 0 (z1z3 − (z2)

2) 0
0 0 0 ((z̄3)

2 − z̄1 z̄2) 0 (z̄1 z̄3 − (z̄2)
2)

−((z3)
2 − z1z2) 0 0 0 −(z2z3 − (z1)

2) 0
0 −((z̄3)

2 − z̄1 z̄2) 0 0 0 −(z̄2 z̄3 − (z̄1)
2)

−(z1z3 − (z2)
2) 0 (z2z3 − (z)2) 0 0 0

0 −(z̄1 z̄3 − (z̄2)
2) 0 (z̄2 z̄3 − (z̄1)

2) 0 0


(B–2)

J(ul)
+ =

w
2



(z3 z̄3 − z2 z̄2) 0 −(z2 z̄3 − z̄1z3) ((z3)
2 − z1z2) (z̄2z3 − z̄1z2) (z1z3 − (z2)

2)

0 (z3 z̄3 − z2 z̄2) ((z̄3)
2 − z̄1 z̄2) (z1 z̄3 − z̄2z3) (z̄1 z̄3 − (z̄2)

2) (z2 z̄3 − z1 z̄2)

(z1 z̄3 − z̄2z3) −((z3)
2 − z1z2) −(z3 z̄3 − z1 z̄1) 0 −(z̄1z3 − z1 z̄2) −(z2z3 − (z1)

2)

((z̄3)
2 − z̄1 z̄2) (z2 z̄3 − z̄1z3) 0 (z3 z̄3 − z1 z̄1) (z̄1 z̄3 − (z̄1)

2)

z2 z̄3 − z1 z̄2 −(z1z3 − (z2)
2) −(z1 z̄3− z̄1z2) (z2z3 − (z1)

2) (z2 z̄2 − z1 z̄1) 0
−(z̄1 z̄3 − (z̄2)

2) (z̄2z3 − z̄1z2) (z̄2 z̄3 − (z̄1)
2) −(z̄1z3 − z1 z̄2) 0 (z2 z̄2 − z1 z̄1)


(B–3)

J(ur)
+ = i



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


(B–4)
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b.2 ns-ns fields of w-deformed precursor solution

The 6d metric components in complex coordinates have the form

g i i+1 = w2
[
(z2

i − z i+1 z i−1 )( z̄2
i+1 − z̄ i+2 z̄ i )

]
g i i = w2

[
z i ( z̄3

i+1 + z̄3
i−1 ) + z̄ i (z i+1 z̄2

i−1 + z i−1 z̄2
i+1 )

− z̄ i+1 z̄ i−1 (z i−1 z̄ i−1 + z i+1 z̄ i+1 ) − 2z i z̄ i z̄ i+1 z̄ i−1

]
g i i = w2

[
2z2

i z̄2
i + z2

i−1 z̄2
i−1 + z2

i+1 z̄2
i−1 + 2z i+1 z̄ i+1 z i−1 z̄ i−1

+ z i z̄ i (z i−1 z̄ i−1 + z i+2 z̄ i+2 )

−
[

2 z2
i z̄2 z̄3 + z̄ i (z2

i+1 z̄ i−1 + z2
i−1 z̄ i+1 ) + c.c.

]]
g i ī = 2 + w2

[
2z2

i z̄2
i + z2

i+1 z̄2
i+1 + z2

i−1 z̄2
i−1 + 2z i+1 z̄ i+1 z i−1 z̄ i−1

+ z i z̄ i (z i−1 z̄ i−1 + z i+1 z̄ i+1 )

−
[

2z2
i z̄ i+1 z̄ i−1 + z2

i+1 z̄ i z̄ i−1 + z2
i−1 z̄ i z̄ i+1 + c.c.

]]
g ī j̄ =g i j and g j̄ i = g i j̄

while the B-field components assume the form

Bii = −B ī i =
iw
4

G(z i−1 z̄ i−1 − z i+1 z̄ i+1 )

Bii+1 = −Bi+1i =
iw
4

G( z̄ i z̄ i+1 − ( z̄ i−1 )
2 )

Bii+1 = −Bi+1i =
iw
4

G(z i z̄ i−1 − z i−1 z̄ i+1 )

Upon converting to real coordinates using

z j = r j e iφ j , , z̄ j = r j e− iφ j (B–5)

the 6d-metric components then become:

• rr-components

grr
11 = 1 +

w2

2

[
(2r4

1 + r4
2 + r4

3 + r2
1 r2

2 + r2
1 r2

3 + r2
2 r2

3 − C31 r1 r3
3 − C12 r1 r3

2

+ C1 (r2 r3
3 + r3

2 r3 − 2r2
1 r2 r3 ) − 3C2 r1 r2

2 r3 − 3C3 r1 r2 r2
3

]
(B–6)

grr
12 =

w2

2

[
r1 r3

2 + r2 r3
1 + C1,2 r2

1 r2
2 + C3 r4

3 − C2 (r3
2 r3 + r2

1 r2 r3 )

− C1 (r3
1 r3 + r1 r2

2 r3 )
]

(B–7)
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• rφ components [note that gφr = grφ]

grφ
11 = −w2

2
r1

[
S1 (r2 r3

3 + r3
2 r3 + 2r2

1 r2 r3 ) + S2 r1 r2
2 r3

+ S3 r1 r2 r2
3 + S3,1 r1 r3

3 − S1,2 r1 r3
2

]
(B–8)

grφ
12 = −w2

2
r2

[
S1 (r3

1 r3 − r1 r2
2 r3 ) − S3 r4

3 − S2 (r3
2 r3 + r2

1 r2 r3 ) − S1,2 r2
1 r2

2

]
(B–9)

grφ
13 = −w2

2
r3

[
S1 (r3

1 r2 − r1 r2 r2
3 ) − S2 r4

2 − S3 (r2 r2
3 + r2

1 r2 r3 ) + S3,1 r2
1 r2

3

]
(B–10)

• φφ-components:

gφφ
11 = r2

1 +
w2

2
r2

1

[
2r4

1 + r4
2 + r4

3 + r2
1r2

2 + r2
1r2

3 + 2r2
2r2

3 − C1(r2r3
3 + r3

2r3 − 6r2
1r2r3)

− C2r1r2
2r3 − C3r1r2r2

3 + C1,2r1r3
2 + C3,1r1r3

3

]
(B–11)

gφφ
12 =

w2

2
r1r2

[
2r1r2r2

3 − r1r3
2 − r3

1r2 − C3r4
3 + C2(r2

1r2r3 − r2
2r3)

+ C1(r1r2
2r3 − r3

1r3) + C1,2r2
1r2

2

]
(B–12)

The symmetry of the metric in its indices and Z3-cyclicity allows us to obtain the remaining
unrecorded components. For brevity the following short hand notation has been used

Ci = cos(2φi − φi+1 − φi−1) Ci,j = cos(3φi − 3φj) (B–13)

Si = sin(2φi − φi+1 − φi−1) Si,j = sin(3φi − 3φj) (B–14)

The B-field components:

Br1,r2 = −
Gw
2

r3[r1S1 + r2S2 + r3S3] (B–15)

Br1,φ1 =
Gw
2

r1[r2
3 − r2

2] (B–16)

Br1,φ2 =
Gw
2

r2[−r1r2 + C3r3
3 − C2r2r3 + C1r1r3] (B–17)

Br1,φ3 =
Gw
2

r3[r1r3 + C3r2r3 − C2r2
2 − C1r1r2] (B–18)

Bφ1,φ2 =
Gw
2

r1r2r3[r3S3 − r2S2 − r1S1] (B–19)
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b.3 r-r sector of w-deformed 5-sphere

Below is a record of the independent metric components, the rest can be obtain using the
symmetry in indices of the metric and B-field.

The S5
w real metric components

gαα =
w2R6

2

[
(4c3

α − 3cα)sαc2
θsθC3 − sθcαsαs2

θC21 + (4c4
α − 3c3

α + 1)cθsθC1

+ (4c3
α − 3cα)sαs2

θcθC2 − (cαsαc3
θ)C31 + 2c2

αs2
αc2

θs2
θ + 1

]
+ R6 (B–20)

gαθ =
w2R6

2

[
s2

αc2
αc2

θsθC31 − [(2s4
α − s2

α)c
2
θ − s4

α]sθC2 − s2
αc2

αs2
θcθC21 − s2

αc2
αs2

θcθC3

+ (2cαs3
αc2

θ + c3
αsα)C1 + sθcθcαs3

α(2c2
θ − 1)

]
(B–21)

gαφ1 =
w2R6

2

[
s2

αc2
αc3

θS31 + 2c2
αs2

αs3
θS21 + c2

αs2
αc2

θsθS3 + (c2
α + 1)cαsαcθsθs1 + c2

αs2
αs2

θcθ

]
(B–22)

gαφ2 =
w2R6

2

[
s2

αc2
αs3

θ − (s4
αcθs4

θ + s2
αc2

αcθs2
θ)S2 + (c2

α − s2
αs2

θ)cαsαsθcθS1 − s4
αsθc4

θ

]
(B–23)

gαφ3 =
w2R6

2

[
s2

αc2
αc3

θS31 − (s4
αc4

θ + s2
αc2

αc2
θ)S3 + cαcθs3

αs3
θS1 + s4

αs4
θcθs2

]
(B–24)

gθθ =
w2R6

2

[
(s2

αs2
θ + s2

θ − s2
α)cαs3

αsθC3 − c3
αs3

αsθc2
θC21 − c3

αs3
αcθs2

θC31 + (1− 2s2
αs2

θc2
θ)s

2
α

+ (cαs3
αc3

θ − cαs5
αcθs2

θ)C2 + (s4
α + c2

α + 1)s2
αcθsθC1 − s6

αcθsθC32

]
+ s2

αR2 (B–25)

gθφ1 =
w2R6

2

[
c3

αs3
αcθS21 − c3

αs3
αsθc2

θS31 + (c3
αs3

αsθc2
θ − cαs5

αs3
θ)S2

+ (c2
θ − s2

θ)cαs5
αcθS3 + (1− 2s2

θ)c
4
αs2

αS1

]
(B–26)

gθφ2 =
w2R6

2

[
cθs2

θc3
αs3

αS21 − s6
αs2

θc2
θS32 +

[
cαs5

αs3
θ(s

2
θ − 2)− cαs3

αsθc2
θ

]
S2

+ (1− s2
αs2

θ)c
2
αs2

αs2
θS1 − cαs5

αcθs4
θ

]
(B–27)

gθφ3 =
w2R6

2

[
cαs5

αc4
θsθS2 − s6

αc2
θs2

θS32 − c2
θsθc3

αs3
αS31 +

[
cαs3

αcθs2
θ − (c2

θ + 2)cαs5
αc3

θ

]
S3

+ (1− c2
θc2

αs2
α)s

2
αc2

αc2
θS1

]
(B–28)
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gφ1φ1 =
w2R6

2

[
s3

αc3
αs3

θC21 − (1 + 5c2
α)cθsθs2

αc2
αC1 − c3

αs3
αcθs2

θC2 + c3
αs3

αc3
θC31 − c3

αs3
αc2

θsθC3

+ (s2
α + 2c6

α)c
2
α

]
+ c2

αR2 (B–29)

gφ1φ2 =
w2R6

2

[
(c2

α − s2
αs2

θ)cαs3
αcθs2

θC2 + (s2
αs2

θ − c2
α)c

2
αs2

αcθsθC1 + c3
αs3

αs3
θC21

− cαsθs5
αc4

θC3 − (1 + s2
αs2

θ − 3s2
α)

]
(B–30)

gφ1φ3 =
w2R6

2

[
(c2

α − s2
αc2

θ)cαsθs3
αc2

θC3 + (s2
αc2

θ − c2
α)c

2
αs2

αcθsθC1 + c3
αs3

αc3
θC31

− cαs5
αcθs4

θC2 + (2s2
αs2

θ − s2
αc2

θ − c2
α)

]
(B–31)

gφ2φ2 =
w2R6

2

[
s6

αc3
θs3

θC32 + c3
αs3

αs3
θC21 − (1− 5s2

αs2
θ)cαs3

αcθs2
θC2 − cαs5

αc2
θs3

θC3 − c2
αs4

αcθs3
θC1

+ (2s4
αs4

θ + s4
αc2

θs2
θ + c2

αs2
αs2

θ + s4
αc4

θ + 2c2
αs2

αc2
θ + c4

α)

]
+ s2

αs2
θ R2 (B–32)

gφ2φ3 =
w2R6

2

[
(c2

θ − s2
θ)cαs5

αs2
θcθC2 + (s2

θ − c2
θ)cαs5

αsθc2
θC3 − s6

αc3
θs3

θC32 − c4
αs2

αcθsθC1

− (s2
αs2

θ + s2
αc2

θ − 2c2
α)s

4
αc2

θs2
θ

]
(B–33)

gφ3φ3 =
w2R6

2

[
s6

αc3
θs3

θC32 − (1 + 5c2
θs2

θ)s
3
αc2

θcαsθ − c3
θsθs2

αc2
αC1 − cαs5

αc3
θs2

θC2c3
αs3

αc3
θC31

+ (2s6
αc6

θ − s4
αs4

θ + s2
αs2

θ)

]
+ s2

αc2
θ R2 (B–34)

The real B-field components:

Bii = 0

Bαθ = wR4G[s2
αs2sθ + s2

αs3cθ + cαsαs1]

Bαφ1 = wR4G[2cαsαs2
θ − cαsα]

Bαφ2 = wR4G[(s2
αc2cθ + cαsα)s2

θ + (−s2
αc3c2

θ − cαsαc1cθ)sθ ]

Bαφ3 = wR4G[s2
αc2cθs2

θ + (cαsαc1cθ − s2
αc3c2

θ)sθ − cαsαc2
θ ]

Bθα = wR4G[−s2
αs2sθ − s2

αs3cθ − cαsαs1]

Bθφ1 = wR4G[(2c2
αs2

αcθ − cαs3
αc2)sθ − cαs3

αc3cθ + c2
αs2

αc1]

Bθφ2 = wR4G[−cαs3
αc2s3

θ + (cαs3
αc3cθ + (s2

α − s4
α)c1)s2

θ + (s2
α − 2s4

α)cθsθ ]

Bθφ3 = wR4G[(cαs3
αc2c2

θ + (s2
α − 2s4

α)cθ)sθ − cαs3
αc3c3

θ + (s2
α − s4

α)c1c2
θ ]

Bφ1α = wR4G[cαsα − 2cαsαs2
θ ]

Bφ1θ = wR4G[(cαs3
αc2 − 2c2

αs2
αcθ)sθ + cαs3

αc3cθ − c2
αs2

αc1]
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Bφ1φ2 = wR4G[(cαs3
αs3c2

θ − c2
αs2

αs1cθ)sθ − cαs3
αs2cθs2

θ ]

Bφ1φ3 = wR4G[(cαs3
αs3c2

θ + c2
αs2

αs1cθ)sθ − cαs3
αs2cθs2

θ ]

Bφ2α = wR4G[(−s2
αc2cθ − cαsα)s2

θ + (s2
αc3c2

θ + cαsαc1cθ)sθ ]

Bφ2θ = wR4G[cαs3
αc2s3

θ + (−cαs3
αc3cθ − c2

αs2
αc1)s2

θ + (s4
α − c2

αs2
α)cθsθ ]

Bφ2φ3 = wR4G[cαs3
αs2cθs2

θ + (c2
αs2

αs1cθ − cαs3
αs3c2

θ)sθ ]

Bφ2φ3 = wR4G[(c2
αs2

αs1cθ − cαs3
αs3c2

θ)sθ − cαs3
αs2cθs2

θ ]

Bφ3α = wR4G[−s2
αc2cθs2

θ + (s2
αc3c2

θ − cαsαc1cθ)sθ + cαsαc2
θ ]

Bφ1θ = wR4G[((s4
α − c2

αs2
α)cθ − cαs3

αc2c2
θ)sθ + cαs3

αc3c3
θ − c2

αs2
αc1c2

θ ]

Bφ3φ1 = wR4G[cαs3
αs2cθs2

θ + (−cαs3
αs3c2

θ − c2
αs2

αs1cθ)sθ ]

Bφ3φ2 = wR4G[cαs3
αs2cθs2

θ + (cαs3
αs3c2

θ − c2
αs2

αs1cθ)sθ ]

The End
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