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Bedaquiline and delamanid, novel classes of anti-tuberculosis drugs, have been recently
approved for the treatment of multidrug-resistant tuberculosis.* Antimicrobial resistance
invariably follows the introduction of new drugs, and appropriate drug-susceptibility testing
assays are needed to detect resistance and tailor treatment regimens that contain new
agents.?® Given that phenotypic drug-susceptibility testing is slow, technically demanding,
and, in some cases, unreliable, future assays are likely to be based on rapid molecular
techniques. To design such assays, research to unravel the genetic basis of resistance is
urgently required (appendix).? The question is how to ensure that this research occurs in a
timely way, before the emergence and spread of resistance.

A potential solution is to link the elucidation of resistance mechanisms to the approval
process for new antibiotics, as is already the case for resistance to antivirals.*® Where
appropriate, this approach should also include the resistance mechanisms of older antibiotics
that will be included in new regimens. For many bacteria and antibiotics it is not feasible to
identify resistance before market release because of horizontal transfer of resistance genes
between bacteria. By contrast, resistance in the Mycobacterium tuberculosis complex
(MTBC) arises exclusively by chromosomal changes.” Therefore, mechanisms of resistance
can be studied by multiple methods, including the selection of drug-resistant mutants in vitro
and in-vivo animal infection models, and by examining drug-resistant mutants from clinical
trials.?

Next-generation sequencing showed that bedaquiline resistance arises through mutations in
the ATP synthase.’*® Yet it was only after regulatory approval of bedaquiline—and more than
8 years after the identification of the target of bedaquiline—that it was shown that resistance
can also arise through the mutational upregulation of an efflux pump.2**** Importantly, this
mechanism also confers cross-resistance to clofazimine.*®!* As a result, regimens that contain
both drugs might have to be reconsidered if these mutations are found to be common and to
increase the minimum inhibitory concentrations significantly to reduce treatment

success.™® It is questionable whether these regimens would have been evaluated at all, had
the bedaquiline resistance mechanisms been elucidated comprehensively in the early stages
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of drug development. Moreover, had this genetic information been available at the time of
approval of bedaquiline, regulators might have required for this cross-resistance to be
formally labelled.?%

The early identification of resistance mechanisms would also minimise the chance of
developing antibiotics that are not effective across the world.” Clinical trials only include
patients infected with a limited number of MTBC genotypes, which raises the possibility that
intrinsic antibiotic resistance could be missed.” By contrast, intrinsically resistant strains
could be screened for by assessing the conservation of resistance genes in the genomes of the
thousands of phylogenetically diverse MTBC isolates that have been sequenced to date.” This
approach has already raised the possibility that Mycobacterium canettii, which causes
tuberculosis in the Horn of Africa and is intrinsically resistant to pyrazinamide, might also be
intrinsically resistant to PA-824."** Consequently, the regimen of PA-
824/pyrazinamide/moxifloxacin, which is about to be assessed in phase 3 clinical trials,
might lead to monotherapy of patients with M canettii infection.

The development and periodic revision of guidelines to determine resistance mechanisms as
part of drug development would benefit from close cooperation between academic experts,
funding agencies, pharmaceutical companies, and regulatory authorities, as has occurred for
antivirals in the past.>**> Such work would require a flexible approach, depending on the
properties of the particular antibiotic. For example, it might not be readily possible to select
for in-vitro resistance to some agents.*® An analysis of the detailed mechanism of resistance
would be desirable but not essential for the approval of new agents.

There would be many advantages in sharing the resulting strain collections, sequence data,
markers of resistance, and drug-susceptibility testing results, as is standard practice in HIV
research.”” We, therefore, have serious concerns about the patenting of resistance
mechanisms, which has already occurred for several tuberculosis resistance mechanisms. For
example, a university patented the “isolated” nucleic acid sequence of pncA (patent number
US5846718), mutations in which confer resistance to pyrazinamide. This claim was probably
invalidated by the US Supreme Court ruling in Association for Molecular

Pathology v.Myriad Genetics in 2013, which found that a “naturally occurring DNA segment
is a product of nature and not patent-eligible merely because it has been isolated”.*® This
ruling has no direct bearing on the equivalent pncA patents granted in Canada (CA2254828)
and Europe (EP0904410), all of which have lapsed for other reasons.

The patenting of isolated genes remains legal in many countries, as affirmed most recently by
the Federal Court of Australia.’*® More recently, the same university filed a patent for the
detection of rpsAmutations as a marker for pyrazinamide resistance that could potentially
cover any molecular method to detect mutations in this gene.? In light of the ruling by the US
Supreme Court in Mayo v. Prometheus, however, a biomarker patent of this kind is unlikely
to be valid in the USA because the correlation betweenrpsA mutations and pyrazinamide
resistance would be regarded as a law of nature.’® Whether similar biomarker patents could be
refused or invalidated in other jurisdictions is less clear.

Irrespective of the legality of such patents, we are concerned by attempts to monopolise
knowledge about resistance mechanisms, including through the use of trade secrets in relation
to clinical data.??Understanding resistance mechanisms is vital for the safe and effective
treatment of patients, as well as for long-term antibiotic stewardship. The early and
comprehensive elucidation of resistance mechanisms to drugs for tuberculosis during drug
development is in the common interest of patients, clinicians, academics, and pharmaceutical
companies. Moreover, the resulting knowledge should be made publicly available at no cost.
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This needs appropriate regulatory and business models for antibiotic drug development that
promote or mandate public sharing of knowledge about resistance and its mechanisms,*’ as
well as addressing the many other tensions in antibiotic innovation.”
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Supplementary Appendix

Depending on the nature of the resistance mechanism(s) to a novel antibiotic, not all
technologies may be appropriate to detect them. Rapid molecular assays, such as the
Cepheid GeneXpert system, can be used directly on clinical samples but only interrogate
short stretches of bacterial DNA." In the case of PA-824 (pretomanid) resistance can arise
through mutations in five non-essential genes (fgd1, fbiC, fbiA, fbiB and ddn) with a total
length of 6.4 kilobase pairs.”* Therefore phenotypic drug-susceptibility testing or rapid
whole-genome sequencing might be the only diagnostic option to detect resistance to this
agent,” ® unless one particular set(s) of mutations are found to be dominant in clinical
isolates, as is the case with katG mutations and high-level isoniazid resistance.”® Irrespective
of the technology used, a comprehensive understanding of the natural diversity in the
resistance gene(s) for each antibiotic is crucial to avoid systematic false-positive results due
to polymorphisms that do not cause resistance.”*?

The study of large collections of in vitro and in vivo mutants to correlate different mutations
with minimum inhibitory concentrations (MICs) might inform the design of pre-clinical and
clinical trials and, subsequently, improved diagnostic and screening tests."” If certain
mechanisms or mutations led to only marginally elevated MICs (as is the case with inhA
mutations and isoniazid® or with certain rpoB mutations and rifampicin®®), higher doses or
more frequent dosing of the novel therapeutic agent to overcome this low level of
resistance could be evaluated.' This would benefit patients, clinicians and pharmaceutical
companies by increasing the number of TB cases that could be treated with that particular
drug. The resulting knowledge could also be used to determine appropriate breakpoints for
phenotypic assays — which is not straightforward for MTBC™ ® — and to validate the
reliability of these assays.'’ Finally, individual mutants could be used to quantify the risk of
developing further resistance, as certain low-level resistance mechanisms have been found
to increase the chance of developing high-level resistance.™" *®
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