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Abstract

In this paper, the consensus problem of multi-agent following a leader is studied. An adaptive design method is presented for
multi-agent systems with non-identical unknown nonlinear dynamics, and for a leader to be followed that is also nonlinear and
unknown. By parameterizations of unknown nonlinear dynamics of all agents, a decentralized adaptive consensus algorithm is
proposed in networks with jointly connected topologies by incorporating local consensus errors in addition to relative position
feedback. Analysis of stability and parameter convergence of the proposed algorithm are conducted based on algebraic graph
theory and Lyapunov theory. Finally, examples are provided to validate the theoretical results.
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1 Introduction

Distributed coordination of a group of dynamical agents
is of interest in control and robotics. This is due to the
broad applications of multi-agent systems in many ar-
eas, e.g., in multi-vehicle rendezvous, formation control
of multi-robots, flocking, swarming, distributed sensor
fusion, attitude alignment, and congestion control in
communication networks. An important problem in dis-
tributed coordinated networks of dynamical agents is to
find a distributed control law so that all agents can reach
consensus on a common decision value. This problem is
the so-called consensus problem.

Early well-known works on consensus coordination for
networks of dynamical agents have been done in the
context of control theory in Jadbabaie et al. (2003); Fax
and Murray (2004); Lin et al. (2004); Olfati-Saber and
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Murray (2004); Savkin (2004); Ren and Beard (2005);
Moreau (2005); Hatano and Mesbahi (2005), to name
just a few. In recent years, relevant topics on consen-
sus problem have been extensively further investigated
in different situations, for example, consensus in net-
works with time-delays (Sun and Wang, 2009; Zhu and
Cheng, 2010), finite-time consensus (Khoo et al., 2009),
consensus in stochastic networks (Tahbaz-Salehi and
Jadbabaie, 2008), quantized consensus (Kashyap et al.,
2007), etc.

Recently, an interesting topic is the consensus problem
of a group of agents with unknown information. In Hong
et al. (2006), the authors proposed a consensus algorithm
of agents with an active leader with unmeasurable state
and variable interactive topology. The algorithm is also
extended to the case that the interconnected graphs of
agents are not always connected in intervals with identi-
cal length. In Bai et al. (2008, 2009), the authors studied
a coordination problem steering a group of agents to a
formation that translates with a prescribed reference ve-
locity. Decentralized adaptive designs are proposed for
reference velocity recovery using relative position feed-
back in Bai et al. (2008) and tracking of the reference ve-
locity by incorporating relative velocity feedback in ad-
dition to relative position feedback in Bai et al. (2009).
In Hou et al. (2009), the authors proposed a robust de-
centralized adaptive control approach using neural net-
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work to solve consensus problem ofmulti-agents with un-
certainties and external disturbances in undirected net-
works. In Das and Lewis (2010), the authors presented a
design method for adaptive synchronization controller-
s for distributed systems having non-identical unknown
nonlinear dynamics, and for a target dynamics to be
tracked that is also nonlinear and unknown. Under some
assumptions, the authors proved that the overall local
cooperative error vector and the neural network weight
estimation errors are both uniformly ultimately bound-
ed. In Yu et al. (2009b), for an unknown regulatory net-
work with time delay and uncertain noise disturbance,
an adaptive filtering approach is proposed to ensure the
stochastic stability of the error states between the un-
known network and the estimated model. Other kinds of
adaptive synchronization design of complex dynamical
networks are by using adaptive tuning of the coupling
strength (Yu et al., 2009a), network weights, etc.

In this paper, we consider the adaptive consensus coor-
dination problem of a group of agents with non-identical
unknown nonlinear dynamics in networks with jointly
connected topologies following a leader with also un-
known nonlinear velocity dynamics. By parameterizing
the unknown nonlinear dynamics of all agents by some
basis functions, each agent estimating the unknown pa-
rameters, a decentralized adaptive consensus algorithm
is developed in networks with jointly connected topolo-
gies by using both relative position feedback and local
consensus error feedback of neighboring agents. By intro-
ducing Persistent excitation (PE) condition for regres-
sor matrix, both position errors and parameter estimate
errors can be proved to be globally uniformly asymptoti-
cally convergent to zero based on algebraic graph theory
and Lyapunov theory.

The contributions of this paper are mainly in two aspect-
s. Firstly, a novel type decentralized adaptive consen-
sus control scheme is proposed for the considered multi-
agent systems to follow a leader in networks with jointly
connected topologies, by relative position and local con-
sensus error feedback. When unknown information or
unmeasured information exists in the system, there are
few efforts in the literature considering networks with
switching topology, especially jointly connected topolo-
gies. Except for Hong et al. (2006), the works (Bai et al.,
2008, 2009; Hou et al., 2009; Das and Lewis, 2010; Yu
et al., 2009a,b) mentioned above are all for network-
s with fixed topology. In Hong et al. (2006), the case
of networks with switching topologies and an extend-
ed case are studied. However, the algorithm proposed in
Hong et al. (2006) is not strictly decentralized because
each agent in the group must have access to the infor-
mation a0(t) of the leader. Moreover, in the extended
case of networks with switching topologies, it requires
that each time interval has identical length, and the to-
tal period of connected interconnected graphs is suffi-
ciently large. In our case, only jointly connectedness is
assumed. Secondly, sufficient conditions are obtained for

ensuring consensus with global, uniform and asymptot-
ical parameter convergence. The consensus of all agents
is ensured due to joint connectedness of graphs in net-
works with jointly connected topologies. The PE condi-
tion and some boundedness assumptions are introduced
for ensuring parameter convergence. The parameter con-
vergence analysis is more challenging when the interac-
tion topology is switching. This is particularly true for
the case of networks with jointly connected topologies,
because standard results from adaptive control theory
cannot be applied to the system directly. The two papers
(Bai et al., 2008, 2009) also introduced PE condition for
parameter convergence analysis in fixed network topol-
ogy. A situation of all followers and the leader having
non-identical unknown nonlinear dynamics and external
disturbances is considered in Das and Lewis (2010), in
which all consensus errors and parameter estimate errors
are proved to be uniformly ultimately bounded (UUB)
based on some assumptions in fixed network topologies.
In Yu et al. (2009b), parameter convergence is not con-
sidered. In our work, both consensus errors and parame-
ter estimate errors converging to zero (globally uniform-
ly asymptotically) are obtained for switching networks
with joint connectedness.

This paper is organized as follows. In section 2, we es-
tablish the notation and formally state the problem. We
present our main results in section 3, the simulation re-
sults supporting the objectives of the paper in section 4
and the concluding remarks in section 5.

2 Problem Statement

We consider a multi-agent system consisting ofN agents
and a leader. The dynamics ofN agents are described by

ẋi(t) = fi(xi, t) + ui(t), i = 1, 2, · · · , N, (1)

where xi(t) ∈ R is the position state of ith agent, ui(t) ∈
R is the control input, and fi(xi, t) is the dynamics of
agent i, which is assumed to be unknown. Standard as-
sumptions for existence of unique solutions are made,
i.e., fi(xi, t) is continuous in t and Lipschitz in xi. We
assume that the leader agent moves in R and its under-
lying dynamics is described by

ẋ0(t) = v0(t) (2)

where x0(t) ∈ R is the position state of the leader,
v0(t) ∈ R is its velocity and assumed to be unknown.
The leader agent moves freely or along some planning
trajectory, however, we assume that its velocity dynam-
ics v0(t) is only related to time t and unknown.

Remark 1 To avoiding complicated expressions, the s-
tates of all agents are assumed to be scalars in R, which
is trivial to be extended to Rn by introducing Kroneck-
er product. Kronecker product of matrix A ∈ Rm×n and
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B ∈ Rp×q is defined as

A⊗B =


a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

The information exchange between agents in a multi-
agent system can be modeled using graphs. A graph
G(V, E) consists of a node set V = {1, 2, · · · , N} and an
edge set E ⊂ V × V, where an edge of edge set E is de-
noted by (i, j). A graph is undirected if edges (i, j) ∈ E
are unordered pair. A graph is simple if it has no self-
loops or repeated edges. If there is an edge between two
nodes, then the two nodes are neighbors (or adjacent)
to each other. The set of neighbors of node i is denoted
by Ni = {j ∈ V|(i, j) ∈ E , j ̸= i}. A path is a sequence
of connected edges in a graph. If there is a path between
any two nodes of a graph G, then G is said to be connect-
ed, otherwise disconnected. The union of a collection of
graphs is a graph with node set and edge set being the
union of node set and edge set of all of the graphs in the
collection. We say that a collection of graphs is jointly
connected if the union of its members is connected.

With regarding the N agents as the nodes in V, the re-
lationships between N agents can be conveniently de-
scribed by a simple and undirected graph G, in which
an undirected edge (i, j) denotes that agent i and j can
sense, receive or obtain information from each other. The
adjacency matrix of graph G is denoted by A = [aij ] ∈
RN×N , whose (ij)th entry is 1 if (i, j) is an edge of
graph G and 0 if it is not. The degree matrixD ∈ RN×N

of graph G is a diagonal matrix with ith diagonal ele-
ment being |Ni|. The Laplacian of graph G is defined
as L = D − A, which is symmetric and have following
well-known results in algbraic graph theory (Godsil and
Royle, 2001).

Lemma 2 Laplacian L of graph G has at least one zero
eigenvalue with 1N = (1, 1, · · · , 1)T ∈ RN as its eigen-
vector, and all the non-zero eigenvalues of L are positive.
Laplacian L has a simple zero eigenvalue if and only if
graph G is connected.

To describe the information transmission between N a-
gents and the leader, we need define another graph Ḡ
on nodes 0, 1, 2, · · · , N , which consists of graph G, node
0 representing the leader and edges between the leader
and its neighbors.

Note that the interconnected topologies of the consid-
ered multi-agent system can vary with time. We need
to consider all possible graphs {Ḡp|p ∈ P} on nodes
set {0, 1, 2, · · · , N}, where P is an index set. The sub-
graphs defined on node set {1, 2, · · · , N} can denot-

ed as {Gp|p ∈ P} accordingly. To describe the depen-
dence of graphs upon time, we define a switching signal
σ(t) : [0,∞) → P, which is piecewise constant. There-
fore, the underlying graphs at time t on N + 1 and N
nodes are denoted as Ḡσ(t) and Gσ(t), respectively. The
index number between agent i and the leader is denoted
by bi(t), which is defined to be 1 whenever leader agent is
agent i’s neighbor and 0 otherwise. Note that neighbors
setNi of all agent, all (ij)th entries aij of adjacency ma-
trix A, and graph Laplacian L are all time varying. We
use Ni(t), aij(t) and Lσ(t) to denote their time varying
versions, respectively. It is assumed in this paper that
σ(t) switches finite times in any bounded time interval.

In this work, we consider the problem of designing de-
centralized controllers ui, i = 1, 2, · · · , N , such that all
agents follow the leader.

For the multi-agent system (1)-(2), we say consensus is
achieved if, for each agent i ∈ {1, 2, · · · , N}, there exists
a controller ui such that

lim
t→∞

|xi(t)− x0(t)| = 0, i = 1, 2, · · · , N, (3)

for any initial condition xi(0), i = 0, 1, · · · , N .

When v0(t) is known and fi(xi, t) = 0, i = 1, 2, · · · , N ,
all agent can reach consensus on the time-varying leader,
for example, using following control scheme (Ren, 2007):

ui = v0(t)−
∑
j∈Ni

aij(xi − xj)− bi(xi − x0). (4)

When v0(t) and fi(xi, t), i = 1, 2, · · · , N , are all un-
known, it is a challenging work for all agents to achieve
consensus.

3 Main results

In this section, we firstly give a basis function expression
of the unknown nonlinear dynamics and the unknown
velocity dynamics of the leader, and then a decentralized
adaptive consensus algorithm is proposed in networks
with switching topologies through relative position and
local consensus error feedback. Finally, stability analysis
of the consensus algorithm is given in switching networks
with joint connectedness.

Suppose that the unknown nonlinear dynamics fi(xi, t),
i = 1, · · · , N , unknown velocity v0(t) of the leader, are
parameterized as

fi(xi, t) = ϕT
i (xi, t)θi, i = 1, 2, · · · , N, (5)

and
v0(t) = ϕT

0 (t)θ0, (6)
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where ϕ0(t), ϕi(xi, t) ∈ Rm are basis function column
vectors and θ0, θi ∈ Rm are unknown constant parame-
ter column vectors to be estimated.

Because θ0 is unavailable to each agent, the ith agent

estimates the unknown parameter vector θ0 by θ̂0i and
v0(t) by v̂0i(t) respectively. We have

v̂0i(t) = ϕT
0 (t)θ̂0i, i = 1, 2, · · · , N. (7)

Similarly, the estimate of fi(xi, t) is expressed as

f̂i(xi, t) = ϕT
i (xi, t)θ̂i, i = 1, 2, · · · , N, (8)

where θ̂i is the estimate of θi.

Remark 3 The unknown nonlinear dynamics of all
agents are assumed to be linearly parameterized. The
linearly parameterized models have been studied widely
in classical adaptive control (Sastry and Bodson, 1989;
Marino and Tomei, 1995). The examples of linearly pa-
rameterized model of multi-agent systems can be found
in Bai et al. (2008, 2009).

3.1 Decentralized adaptive consensus algorithm design

Consider an infinite sequence of bounded, non-
overlapping, contiguous time intervals [tk, tk+1), k =
0, 1, 2, · · · , with t0 = 0, T0 ≤ tk+1− tk ≤ T for some pos-
itive constants T0, T . Suppose that in each time interval
[tk, tk+1) there exists a sequence of nonoverlapping,
contiguous subinterval

[t0k, t
1
k), . . . , [t

l
k, t

l+1
k ), · · · , [tlk−1

k , tlkk ) (9)

with tk = t0k, tk+1 = tlkk for some integer lk ≥ 0 such
that the time-varying graph topology switches at time
instants t0k, t

1
k, · · · , t

lk−1
k , in other words, the switching

graph Ḡσ(t) is time invariant in each of such subinterval-
s. We assume that there exists a constant number τ > 0,
often called dwell time, such that tl+1

k − tlk ≥ τ, 0 ≤ l ≤
lk − 1. Note that in each of such subintervals the in-
terconnected graph Ḡσ(t) is permitted to be disconnect-

ed. A collection of switching graphs {Ḡσ(s)|s ∈ [t, t+ △
t],△ t > 0} is said to be jointly connected across a time
interval [t, t+ △ t] if its union is connected. For each
p ∈ P, Hp has N eigenvalues denoted as λ1

p, λ
2
p, · · · , λN

p

based on some labeling rule (Ni and Cheng, 2010). De-
fine C (p) = {k|λk

p ̸= 0, k = 1, 2, · · · , N}, we have the
following Lemma (Ni and Cheng, 2010):

Lemma 4 Graphs Gp, p ∈ P are jointly connected
across [tk, tk+1) if and only if

∪
t∈[tk,tk+1)

C (σ(t)) =

{1, 2, · · · , N}.

Define local consensus error vector (Khoo et al., 2009)
for agent i as

ei(t) =
∑

j∈Ni(t)
aij(t)(xi − xj)

+bi(t)(xi − x0), i = 1, · · · , N.
(10)

The global error vector for switching graph Ḡσ(t) is ex-
pressed as

e(t) = Hσ(t)(x− 1Nx0), (11)

where Hσ(t) = Lσ(t) + Bσ(t), Lσ(t) is the Laplacian of
graph Gσ(t) and Bσ(t) is a diagonal matrix with diagonal
elements b1(t), b2(t), · · · , bN (t).

In each time interval [tlk, t
l+1
k ), k = 0, 1, · · · , 0 ≤ l ≤

lk − 1, matrix Hσ(t) is time-invariant, then

ė(t) = Hσ(t)(ẋ− 1N ẋ0)

= Hσ(t)(f + u− 1Nv0(t))
(12)

where f = (f1, f2, · · · , fN )T .

We denote by col(xi)i∈S or col(xi) according to the con-
text the stack column vector of xi with i in some index
set S, by col(x, y) the stack column vector of vector x and
y, etc. Letting x = col(xi), x̄ = x − 1Nx0, u = col(ui),

Θ̂0 = col(θ̂0i), Θ̂f = col(θ̂i) with i ∈ {1, 2, · · · , N}, and
σ(t) : [0,∞) → P a switching signal, we propose the
following adaptive consensus scheme consisting of two
parts.

Decentralized feedback laws:

ui(t) = c
∑

j∈Ni(t)
aij(t)(xj − xi)

+cbi(t)(x0 − xi) + ϕT
0 (t)θ̂0i

−ϕi(xi, t)
T θ̂i, i = 1, 2, · · · , N,

(13)

or in matrix form

u = −cHσ(t)x̄+ΦT
0 Θ̂0 − ΦT

f Θ̂f . (14)

where c > 0 is a constant number, Φ0 = (IN ⊗ ϕ0), Φf

is a block diagonal matrix with block diagonal elements
ϕ1, ϕ2, · · · , ϕN , IN is the N ×N identity matrix.

Decentralized adaptive laws:

˙̂
θ0i = − c0

c ϕ0(t)[
∑

j∈Ni(t)
aij(t)(ei − ej) + bi(t)ei],

˙̂
θi =

c1
c ϕi(xi, t)[

∑
j∈Ni(t)

aij(t)(ei − ej) + bi(t)ei],

i = 1, 2, · · · , N,

(15)
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or in matrix form

˙̂
Θ0 = − c0

c Φ0Hσ(t)e,
˙̂
Θf = c1

c ΦfHσ(t)e.
(16)

where c0, c1 > 0 are constant numbers.

Remark 5 Note that controller ui(t) defined in (13) is
decentralized. For control purpose, we assume that the
information of local consensus error ei(t) of agent i is
calculated and saved in its memory at each time instant
by each agent and available for its neighbors. Controller
ui(t) only depends on the information of relative position
measurements and local consensus errors from its neigh-
boring agents. Similar way of information transmission
can be found, for instance, in the literature (Ren, 2007;
Ren et al., 2009; Khoo et al., 2009).

Remark 6 If the states xi(t), i = 0, 1, · · · , N , of system
(1)–(2) are considered in Rn, a corresponding version of
equation (14) and (16) are the following equations

u = −ce+ (ΦT
0 ⊗ In)Θ̂0 − (ΦT

f ⊗ In)Θ̂f

˙̂
Θ0 = − c0

c (Φ0Hσ(t) ⊗ In)e,
˙̂
Θf = c1

c (ΦfHσ(t) ⊗ In)e.

where e = (Hσ(t) ⊗ In)(x− 1N ⊗ x0).

3.2 Stability analysis

Denote Θ0 = 1N ⊗ θ0, θ̄0i = θ̂0i − θ0, Θ̄0 = Θ̂0 −Θ0 =

col(θ̄0i), Θf = col(θi), θ̄i = θ̂i − θi, Θ̄f = Θ̂f − Θf =
col(θ̄i), and Θ̄ = col(Θ̄0, Θ̄f ). From equations (10)-(16),
we obtain the following error dynamics of the system
(1)-(2):

ė = −cHσ(t)e+Hσ(t)Φ
T
0 Θ̄0 −Hσ(t)Φ

T
f Θ̄f ,

˙̄Θ0 = − c0
c Φ0Hσ(t)e,

˙̄Θf = c1
c ΦfHσ(t)e.

(17)

The matrixHσ(t) corresponding to a graph Ḡσ(t), has the
following well-known properties (Ni and Cheng, 2010):

Lemma 7 (1) Matrix Hσ(t) has nonnegative eigenval-
ues; (2) Matrix Hσ(t) is positive definite if and only if

graph Ḡσ(t) is connected.

Let P be a positive semi-definite matrix , and λmin(P ),
λmax(P ) denote the smallest and the largest non-zero
eigenvalue of matrix P respectively. For each p ∈ P,

define µp = λmin(Hp) and νp = λmax(Hp). Based on
Lemma 7 and the fact that the index set P is finite,

δmin = min{µp|p ∈ P}, δmax = max{νp|p ∈ P} (18)

are positive and independent of time t.

Before giving the theoretical results, we suppose that

the regressor matrix Φ =

(
Φ0

Φf

)
, is persistently exciting

(PE) (Marino and Tomei, 1995), that is, there exist two
positive reals δ0 and α, such that∫ t+δ0

t

ΦΦT dτ ≥ αI > 0, ∀t ≥ 0. (19)

This PE condition ensures the information richness of
the time varying matrix Φ throughout time, and guar-
antees parameter convergence, i.e.,

lim
t→∞

∥θ̂0i − θ0∥ = 0, lim
t→∞

∥θ̂i − θi∥ = 0, (20)

for any initial condition θ̂0i(0), θ̂i(0), i = 1, 2, · · · , N.

The PE condition has another interpretation, by reex-
pressing the PE condition in scalar form∫ t+δ0

t

ωTΦΦTωdτ ≥ α, ∀t ≥ 0,∀ω : ∥ω∥ = 1. (21)

Lemma 8 If graphs Gp, p ∈ P are jointly connected
across each time interval [tk, tk+1), then limt→∞ e(t) = 0
implies limt→∞ x̄(t) = 0.

PROOF. Due to the symmetry of Hp, there exists an
orthogonal matrix Up such that

UpHpU
T
p = Λp = diag{λi1

p , λi2
p , · · · , λiN

p }, (22)

where λi1
p , λi2

p , · · · , λiN
p are the N eigenvalues of Hp,

i1, i2, · · · , iN form a permutation of 1, 2, · · · , N .

Let ε = Upx̄, we have

x̄T e = x̄THpx̄ = εTΛpε ≥ δmin

∑
i∈C (σ(tl

k
))

ε2i ≥ 0

for l = 0, 1, · · · , lk − 1.

Due to the jointly connectedness of Gp, limt→∞ e(t) = 0

and Lemma 4, we have limt→∞
∑lk−1

l=0

∑
i∈C (σ(tl

k
)) ε

2
i =

limt→∞
∑N

i=1 aiε
2
i = 0, where a1, a2, · · · , aN are some

5



positive integers. This implies limt→∞ εi = 0, i =
1, 2, · · · , N . Then limt→∞ x̄ = 0. �

The following theorem is our main result:

Theorem 9 Consider the multi-agent system (1)-(2).
Assume that the switching interconnected graph Ḡσ(t) is
jointly connected across each time interval [tk, tk+1), k =

0, 1, · · · , ϕi and ϕ̇i, i = 0, 1, · · · , N , are uniformly bound-
ed and the PE condition defined in (19) is satisfied, then,
under control law (13) and parameter adaptive law (15),
(x̄, Θ̄) = 0 is a globally uniformly asymptotically stable
equilibrium point, i.e., consensus is reached with global,
uniform and asymptotical parameter convergence.

PROOF. For multi-agent system (17), consider a Lya-
punov function candidate

V (t) =
1

2c
eT e+

1

2c0
Θ̄T

0 Θ̄0 +
1

2c1
Θ̄T

f Θ̄f . (23)

Obviously, V (t) is continuously differentiable at any time
except for the switching instants.

At a non-switching time t, assume that the subsystem
p ∈ P is active, the time derivative of this Lyapunov
function candidate along the trajectory of the system
(17) is V̇ (t) = −eTHpe. From (22), let ẽ = Upe, we have

V̇ (t) = −ẽTΛpẽ

= −
∑

i∈C (p) λ
i
pẽ

T
i ẽi

≤ −δp
∑

i∈C (p) ẽ
T
i ẽi

≤ −δmin

∑
i∈C (p) ẽ

T
i ẽi

≤ 0.

(24)

Therefore, limt→∞ V (t) = V (∞) exists.

In the following, we prove limt→∞ e(t) = 0.

Consider the infinite sequence {V (tk), k = 0, 1, · · · } and
from Cauchy’s convergence criteria, we have that, for
∀ϵ > 0, there exists a positive integer K, such that,
for ∀k > K, |V (tk+1) − V (tk)| < ϵ or equivalently,

|
∫ tk+1

tk
V̇ (t)dt |< ϵ. This integral can be rewritten as∑lk−1

l=0

∫ tl+1
k

tl
k

V̇ (t)dt > −ϵ.

From (24), we have

−ϵ <
∑lk−1

l=0

∫ tl+1
k

tl
k

V̇ (t)dt

≤ −δmin

∑lk−1
l=0

∫ tl+1
k

tl
k

∑
i∈C (σ(tl

k
)) ẽ

T
i ẽidt

(25)

and ∑lk−1
l=0

∫ tlk+τ

tl
k

∑
i∈C (σ(tl

k
)) ẽ

T
i ẽidt

≤
∑lk−1

l=0

∫ tl+1
k

tl
k

∑
i∈C (σ(tl

k
)) ẽ

T
i ẽidt ≤ ϵ

δmin
.

(26)

Because lk is assumed to be finite in each time interval
[tk, tk+1) for k = 0, 1, · · · . Thus, for ∀k > K, we have

∫ tlk+τ

tl
k

∑
i∈C (σ(tl

k
))

ẽTi ẽidt ≤
ϵ

δmin
, l = 0, 1, · · · , lk − 1.

(27)
or equivalently,

lim
t→∞

∫ t+τ

t

∑
i∈C (σ(tl

k
))

ẽTi (s)ẽi(s)ds = 0, (28)

which implies that

lim
t→∞

lk−1∑
l=0

∫ t+τ

t

∑
i∈C (σ(tl

k
))

ẽTi (s)ẽi(s)ds = 0.

From Lemma 4,
∪

t∈[tk,tk+1)
C (σ(t)) = {1, 2, · · · , N}

due to the joint connectivity of the graphs through the
time interval [tk, tk+1), we have

lim
t→∞

∫ t+τ

t

N∑
i=1

aiẽ
T
i (s)ẽi(s)ds = 0,

where ai, i = 1, 2, · · · , N , are some positive integers.
Moreover, from (23) and (24) it follows that both
e and Θ̄ are uniformly bounded for any t ≥ 0 and
so is ė due to (17) and the assumption that ϕi and

ϕ̇i, i = 0, 1, · · · , N , are uniformly bounded. Therefore,∑N
i=1 aiẽ

T
i (s)ẽi(s)ds is uniformly continuous. From Bar-

balat’s Lemma, we have limt→∞
∑N

i=1 aiẽ
T
i (t)ẽi(t)dt =

0, then limt→∞ ẽi(t) = 0, i = 1, 2, · · · , N . Thus
limt→∞ ei(t) = 0, i = 1, 2, · · · , N . Therefore, from Lem-
ma 8, limt→∞ |xi(t)− x0(t)| = 0, i = 1, 2, · · · , N .

Now, to show that for any initial condition

lim
t→∞

∥Θ̄(t)∥ = 0, (29)

i.e., for any ϵ > 0 there exists Tϵ > 0 such that ∥Θ̄(t)∥ <
ϵ, ∀t > Tϵ. We first prove the following claim.

Claim 10 Given any ϵ > 0 and T > 0, for any ini-
tial condition e(0), Θ̄(0) there exists t > T such that
∥col(θ̄0i, θ̄i)∥ < ϵ, i = 1, 2, · · · , N .

6



Proof of Claim 10. We equivalently show by contra-
diction that for any ϵ > 0 and some i ∈ {1, 2, · · · , N} a
time T1 such that

∥col(θ̄0i, θ̄i)∥ > ϵ,∀t ≥ T1 (30)

does not exist.

Without loss of generality , for the infinite sequence of
time intervals [tk, tk+1), k = 0, 1, · · · , consider an infinite
subsequence of time intervals [tkj , tkj+1), j = 0, 1, · · ·
with identical length T1 satisfying T0 ≤ T1 ≤ T , that is
tkj+1 = tkj + T1. Define function

Ψ(Θ̄(t), t) =
1

2
[Θ̄T (t+T1)Θ̄(t+T1)− Θ̄T (t)Θ̄(t)]. (31)

Because limt→∞ e(t) = 0, limt→∞ V (t) = V (∞) ex-
ists and (23), we have limt→∞ Θ̄(t)T Θ̄(t) = ηV (∞)
with η some positive constant number and then
limt→∞ Ψ(Θ̄(t), t) = 0 due to (31). Therefor, for ∀ϵ1 > 0,
there exists tϵ1 > 0 such that

∥Ψ(Θ̄(t), t)−Ψ(Θ̄(t′), t′)∥ < ϵ1, ∀t, t′ > tϵ1 . (32)

The time derivative of the function Ψ(Θ̄(t), t) defined in
(31) at time instant tkj is

Ψ̇(Θ̄(tkj ), tkj )

=
∫ tkj

+T1

tkj

d
dτ [Θ̄

T (τ) ˙̄Θ(τ)]dτ

= −1
c

∑lk−1
l=0

∫ tl+1
kj

tl
kj

d
dτ {[c0Θ̄

T
0 Φ0 − c1Θ̄

T
f Φf ]Hpe}dτ

=
∑lk−1

l=0

∫ tl+1
kj

tl
kj

[(
c20
c2 e

THpΦ
T
0 Φ0 − c0

c Θ̄
T
0 Φ̇0 +

c1
c Θ̄

T
f Φ̇f

+
c21
c2 e

THpΦ
T
f Φf )Hp + (c0Θ̄

T
0 Φ0 − c1Θ̄

T
f Φf )H

2
p ]edτ

−
∑lk−1

l=0

∫ tl+1
kj

tl
kj

( c0c Θ̄
T
0 ,− c1

c Θ̄
T
f )ΦH

2
pΦ

T

(
Θ̄0

−Θ̄f

)
dτ

, I1 − I2.
(33)

Because e, Θ̄, ϕi, ϕ̇i are bounded, letting Me,MΘ,MΦ >
0 be such that ∥e∥ ≤ Me, ∥Θ̄0∥ ≤ MΘ, ∥Θ̄f∥ ≤ MΘ,

∥Φ0∥ ≤ MΦ, ∥Φf∥ ≤ MΦ, ∥Φ̇0∥ ≤ MΦ and ∥Φ̇f∥ ≤ MΦ,
∀t ≥ 0, we can write for the first integral in (33) as

I1 ≤ M
∑lk−1

l=0

∫ tl+1
kj

tl
kj

∥e∥dτ (34)

whereM = [
c20+c21
c2 δmaxMe+

(c0+c1)(1+cδmax)
c MΘ]δmaxMΦ

is a positive constant.

Because lk, k = 1, 2, · · · , are assumed to be finite and
limt→∞ ∥e(t)∥ = 0, we have

I1 ≤ c0
2c

αγminδ
2
minϵ

2, ∀tkj ≥ T2, (35)

where γmin is defined in the sequel.

From (22), we have

H2
p = UT

p Λ2
pUp ≥ γpΛ

2
p, (36)

for some 0 < γp ≤ 1.

Without loss of generality, selecting c1 = c0 and letting
Θ̃ = col(Θ̄0,−Θ̄f ), we have

I2 ≥ c0
c

lk−1∑
l=0

∫ tl+1
kj

tl
kj

γpΘ̃
TΦΛ2

pΦ
T Θ̃dτ. (37)

Let γmin = min{γp : p ∈ P}, (ΦT Θ̃)i represent the ith

component of ΦT Θ̃, col(θ̄0i) and col(θ̄i) be column vec-

tors with components indexed by i ∈ C (σ(tlkj
)), Θ̃p =

col[col(θ̄0i)i∈C (σ(tl
kj

)), col(θ̄i)i∈C (σ(tl
kj

))], Mi,N+i be the

principle submatrix of ΦΦT by retaining like-numbered
rows and columns indexed by {i,N + i : i ∈ C (σ(tlkj

))},
we have

I2 ≥ c0
c γminδ

2
min

∑lk−1
l=0∫ tl+1

kj

tl
kj

∑
i∈C (σ(tl

kj
))(Φ

T Θ̃)2i dτ

= c0
c γminδ

2
min

∑lk−1
l=0∫ tl+1

kj

tl
kj

(Θ̃p)TMi,N+iΘ̃
pdτ.

(38)

From the PE condition (19), we have

∫ t+δ0

t

Mi,N+idτ ≥ αI > 0,∀t ≥ 0. (39)

Assume now by contradiction that exists a time T1 so
that (30) holds, which implies that for some p, ∥Θ̃p∥ > ϵ,
due to Lemma 4. From (21), (38), (39) and for some l

I2 ≥ c0
c γminδ

2
min

∫ tlkj
+τ

tl
kj

(Θ̃p)TMi,N+iΘ̃
pds

≥ c0
c γminδ

2
minϵ

2
∫ tlkj

+τ

tl
kj

(Θ̃p)T

∥Θ̃p∥ Mi,N+i
Θ̃p

∥Θ̃p∥ds

≥ c0
c αγminδ

2
minϵ

2, ∀tkj ≥ T1.

(40)
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From (33), (35) and (40), we obtain

Ψ̇(Θ̄(tkj ), tkj ) ≤ − c0
2c

αγminδ
2
minϵ

2 < 0, ∀tkj ≥ T3 (41)

with T3 = max{T1, T2, tϵ1}. Thus, from sign-preserving
theorem of continuous function, there exists an interval
[tkj

, tkj
+ δ) with tkj

≥ T3, δ > 0 such that Ψ̇(Θ̄(t), t) <

− c0
4cαγminδ

2
minϵ

2 < 0 holds for ∀t ∈ [tkj , tkj + δ). In-

tegrating Ψ̇(Θ̄(t), t) from tkj to tkj + δ and selecting

ϵ1 = c0
4cαγminδ

2
minϵ

2δ, we have

Ψ(Θ̄(tkj ), tkj )−Ψ(Θ̄(tkj + δ), tkj + δ) > ϵ1, (42)

which contradicts (32). This completes the proof of the
Claim. �

By virtual of limt→∞ e(t) = 0, for any ϵ > 0 there exists
a time instant tϵ such that

∥e(t)∥ ≤
√

c

2min{c0, c1}
ϵ,∀t ≥ tϵ. (43)

By virtual the Claim there exists a time instant Tϵ > tϵ
such that

∥Θ̄(t)∥ ≤ 1√
2
ϵ. (44)

From the initial condition e(Tϵ) and Θ̄(Tϵ), according to
(23), (43), and (44), we have

∥Θ̄∥ ≤
√

min{c0, c1}
c

∥e(Tϵ)∥2 + ∥Θ̄(Tϵ)∥2 ≤ ϵ,∀t ≥ Tϵ,
(45)

which implies (29). Therefore the equilibrium is at-
tractive. Since limt→∞ e(t) = 0 and limt→∞ Θ̄(t) =
0 hold uniformly with respect to initial time in-
stant, it follows that (e, Θ̄) is a globally uniformly
asymptotically stable equilibrium point. Note that
limt→∞ ∥e∥ = 0 implies limt→∞ ∥x̄∥ = 0 due to
Lemma 8, therefore limt→∞ |xi(t) − x0(t)| = 0, for

∀xi(0) ∈ R, i = 1, 2, · · · , N and limt→∞ ∥θ̂0i − θ0∥ = 0,

limt→∞ ∥θ̂i − θi∥ = 0, for ∀θ̂0i(0) ∈ Rm, θ̂i(0) ∈ Rm, i =
1, 2, · · · , N . �

Remark 11 The consensus stability proof of Theorem
9, which uses some inequality techniques, Lemma 4 and
Barbalat’s Lemma, is motivated by that in Ni and Cheng
(2010). The Lemma 4 from Ni and Cheng (2010) shows
the relation between jointly connected graphs and its
nonzero eigenvalues, and plays a key role in the stability
analysis. However, for an adaptive design of uncertain
systems, both consensus stability and parameter conver-
gence are considered in this paper. For networks with
jointly connected topologies, the parameter convergence
analysis is more challenging.

Remark 12 From the proof of Theorem 9, we can see
that the consensus result limt→∞ |xi(t) − x0(t)| = 0,
i = 1, 2, · · · , N , is derived without using the PE condi-
tion. Therefore, consensus of multi-agent systems will be
still reached in networks with jointly connected topolo-
gies in the absence of the PE condition. In this case, we
certainly would not expect the parameter convergence. In

fact, when consensus is reached, ˙̄Θ will be equal to zero
and Θ̄ some constant vector. Therefore, no conclusion
can be drawn about the behavior of the estimation error
Θ̄ in the absence of the PE condition, except that it con-
verges to a constant vector.

4 Simulations

In this section, we give two examples to validate our the-
oretical results. In both examples, we consider a multi-
agent system consisting of five agents and a leader. The
leader agent’s unknown velocity dynamic is parameter-
ized as

v0(t) = [sin(t), cos(t)]θ0. (46)

We pick θ0 = [
√
3
2 ,

√
2
2 ]T . The followers’ unknown non-

linear dynamics are parameterized as

fi(xi, t) = [xi sin(t), xi cos(t)]θi, i = 1, 2, · · · , 5. (47)

We select θi = [ 12 ,
1
2 ]

T , i = 1, 2, · · · , 5, as the true pa-
rameters to be estimated. In both examples, all compo-
nents of the initial state of system are chosen in interval
[−5, 5] randomly.

Example 13 In this example, a finite automation with
set of states {Ḡ1, Ḡ2, Ḡ3, Ḡ4} is shown in Figure 1, which
represents the discrete states of a network with switching
topologies. It starts at the discrete state Ḡ1 and switches
every three simulation time steps to the next state accord-
ing to the state machine in Fig. 1. The proposed adaptive
consensus scheme (13) and (15) is realized in this situ-
ation and the simulation results are shown in Figures 2
and 3. Figures 2 and 3 show that consensus is reached,
parameter convergence is guaranteed under control law
(13) and parameter adaptive law (15), respectively.
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3

2G Automation

t=0

Fig. 1. Switching Graphs

Example 14 In this example, we consider the case
of networks with jointly connected topologies. We
suppose that the possible interconnected graphs are
{Ḡ1, Ḡ2, Ḡ3, Ḡ4, Ḡ5, Ḡ6} which are shown in Figure 4,
and switched every three simulation time steps to the next
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Fig. 2. Consensus is reached applying (13) and (15) in net-
works with switching topologies.
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Fig. 3. Parameter convergence is guaranteed applying (13)
and (15) in networks with switching topologies.

graph as Ḡ1 → Ḡ2 → Ḡ3 → Ḡ4 → Ḡ5 → Ḡ6 → Ḡ1 · · · .
Note that both Ḡ1 ∪ Ḡ2 ∪ Ḡ3 and Ḡ4 ∪ Ḡ5 ∪ Ḡ6 are con-
nected, therefore both {Ḡ1, Ḡ2, Ḡ3} and {Ḡ4, Ḡ5, Ḡ6}
are jointly connected through some time intervals. Con-
trol law (13) and parameter adaptive law (15) are then
realized in networks with jointly connected topologies.
Simulation results are shown in Figures 5 and 6. Figure
5 and Figure 6 show that consensus is reached and pa-
rameter convergence is guaranteed in jointly connected
networks under (13) and (15), respectively.
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Fig. 4. Jointly connected graphs
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Fig. 5. Consensus is reached applying (13) and (15) in net-
works with jointly connected topologies.
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Fig. 6. Parameter convergence is guaranteed applying (13)
and (15) in networks with jointly connected topologies.

5 Conclusions

In this paper we considered the consensus problem of
multi-agents with unknown nonlinear dynamics follow-
ing a leader also with unknown velocity dynamics. By
adaptive control design, consensus with parameter con-
vergence is ensured. Graph theory was used to describe
the interconnection topologies. Lyapunov theory and
Barbalat’s Lemma were employed for stability analysis.
The joint connectedness of graphs is a key condition to
ensure consensus achievement and the PE condition en-
sures parameter convergence. Simulations showed the
validity of our results.
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W. Yu, G. Chen, and J. Lü. On pinning synchronization
of complex dynamical networks. Automatica, 45:429–
435, 2009a.
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