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ABSTRACT

In this paper the kurtosis of the logistic-exponential distribution is analyzed. All the

moments of this survival distribution are finite, but do not possess closed-form expressions.

The standardized fourth central moment, known as Pearson’s coeffi cient of kurtosis and

often used to describe the kurtosis of a distribution, can thus also not be expressed in closed

form for the logistic-exponential distribution. Alternative kurtosis measures are therefore

considered, specifically quantile-based measures and the L-kurtosis ratio. It is shown that

these kurtosis measures of the logistic-exponential distribution are invariant to the values of

the distribution’s single shape parameter and hence skewness-invariant.
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1. INTRODUCTION

The logistic-exponential distribution, introduced by Lan and Leemis (2008), is a useful

model in survival analysis, since it encompasses failure rates that are increasing, decreasing,

bathtub-shaped and upside-down bathtub-shaped, and because its cumulative distribution

function, F (x), probability density function, f(x), and quantile function, Q(u), all have

closed-form expressions. This survival distribution has a two-parameter version with scale

parameter λ > 0 and shape parameter κ > 0, and a three-parameter version which includes

a location parameter, θ > 0. In this paper the focus will be on the two-parameter version,
included by Leemis and McQueston (2008) in their univariate distribution relationship chart

(see www.math.wm.edu/~leemis/chart/UDR/UDR.html).

The cumulative distribution, probability density and quantile functions of the logistic-

exponential distribution are

F (x) = 1− 1

1 + (exp[λx]− 1)κ , x > 0,

f(x) =
λκ exp[λx] (exp[λx]− 1)κ−1

(1 + (exp[λx]− 1)κ)2
, x > 0,

and

Q(u) = 1
λ
ln
[
1 +

(
u
1−u
) 1
κ

]
, 0 < u < 1,

respectively. If κ > 1, the probability density function of the logistic-exponential distrib-

ution is unimodal and the distribution has upside-down bathtub-shaped failure rates. The

logistic-exponential distribution’s probability density function is J-shaped for κ 6 1 and

the distribution reduces to the exponential distribution with a constant failure rate when

κ = 1. Bathtub-shaped failure rates are obtained for κ < 1. Density curves for the logistic-

exponential distribution are illustrated in Figure 1 for λ = 1 and selected values of κ.

This paper investigates the kurtosis properties of the logistic-exponential distribution.

The skewness and kurtosis of a distribution have historically been described with its stan-

dardized third and fourth central moments, α3 and α4, referred to as Pearson’s coeffi cients

of skewness and kurtosis in the literature (Pearson, 1905). But although all the moments
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of the logistic-exponential distribution exist, and hence also its α3 and α4, they do not have

closed-form expressions. Of course, it is well known that α3 = 2 and α4 = 9 for κ = 1 (expo-

nential distribution). It was furthermore proved by Lan and Leemis (2008) that α3 ↓ 2.1126

and α4 ↓ 8.6876 as κ ↓ 0 and that α3 ↓ 0 and α4 ↓ 4.2 as κ → ∞ (note that the logistic

distribution has α3 = 0 and α4 = 4.2).

Figure 2 shows α4 plotted against α3 for various skewed two-parameter distributions with

nonnegative support. The uniform, normal and logistic distributions at (α3, α4) = (0, 1.8),

(α3, α4) = (0, 3) and (α3, α4) = (0, 4.2) respectively are symmetric limiting or special cases of

some of these skew distributions. Specifically, the generalized Pareto distribution reduces to

the uniform distribution when its shape parameter equals one (Hosking and Wallis, 1987).

As explained in Johnson et al. (1994), both the gamma distribution and the log-normal

distribution tend to the normal distribution as the values of their shape parameters tend to

infinity (or zero, depending on the parameterizations of the gamma distribution and the log-

normal distribution considered). Likewise the logistic-exponential distribution and the log-

logistic distribution tend to the logistic distribution as the values of their shape parameters

tend to infinity - see Lan and Leemis (2008) and Tadikamalla and Johnson (1982) respectively

for details.

Since no closed-form expressions exist for α3 and α4 of the logistic-exponential distrib-

ution, their values in Figure 2 were estimated as the averages of the sample coeffi cients of

skewness and kurtosis of 20 simulated samples of size 50 000 each. The values for all the other

distributions’coeffi cients of skewness and kurtosis were obtained using their corresponding

theoretical expressions —see, for instance, Johnson et al. (1994, 1995).

It is evident from Figure 2 that, in terms of α3 and α4, the curve plotted for the logistic-

exponential distribution differs from the curves plotted for the other distributions. As dis-

cussed by Lan and Leemis (2008), it is the only curve that is bounded and hence it is the only

curve for which maximum values for α3 and α4 are achieved. In the next two sections the

kurtosis properties of the logistic-exponential distribution are studied. Specifically Section 2

proves that the quantile-based kurtosis measures of the logistic-exponential distribution are
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constant. Section 3 considers the L-moments of the logistic-exponential distribution. In

particular, the L-kurtosis ratio is found to be constant. Thus for this useful family of

distributions, these two broad classes of kurtosis measures are constant, and, in

particular, are skewness-invariant.

2. QUANTILE-BASED KURTOSIS MEASURES

As indicated by Jones et al. (2011) and van Staden (2013), quantile-based kurtosis mea-

sures are typically of the general form∑n1
j=1 ajS(uj)∑n2
k=1 bkS(uk)

=

∑n1
j=1 aj (Q(uj)−Q(1− uj))∑n2
k=1 bk (Q(uk)−Q(1− uk))

, (1)

where aj : j = 1, 2, ..., n1 and bk : k = 1, 2, ..., n2 are constants with n1 and n2 positive

integers, and where

S(u) = Q(u)−Q(1− u), 1
2
< u < 1,

is the spread function introduced by MacGillivray and Balanda (1988). Examples of kurtosis

measures of the form in (1) include the measure by Kelley (1921),

K =
S(3

4
)

2S( 9
10
)
,

the octile-based measure of Moors (1988),

M =
S(7

8
)− S(5

8
)

S(3
4
)

,

the quintile-based measure given in Jones et al. (2011),

J =
S(4

5
)− 3S(3

5
)

S(4
5
)

,

and the ratio-of-spread functions,

R(u, v) =
S(u)

S(v)
, 1

2
< v < u < 1,

proposed by MacGillivray and Balanda (1988).

Referred to as the spread-spread function by some researchers in the literature (see, for

instance, Seier and Bonett (2003) and Kotz and Seier (2008)), the ratio-of-spread functions
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is a shape functional for kurtosis related to the plot of SG(SF )−1 for distributions F and

G, called the spread-spread plot by Balanda and MacGillivray (1990). Linking the spread-

spread plot to kurtosis orderings, Balanda and MacGillivray (1990) extended van Zwet’s

ordering 6S, van Zwet (1964), to skewed distributions, defining F 6S G ⇔ SG ((SF (u))
−1)

convex for 1
2
< u < 1. That is, if the spread-spread plot is convex (concave) for 1

2
< u < 1,

then distribution G has greater (smaller) kurtosis than distribution F.

Because the spread function of the logistic-exponential distribution is

S(u) = Q(u)−Q(1− u)

= 1
λ
ln
[
1 +

(
u
1−u
) 1
κ

]
− 1

λ
ln
[
1 +

(
1−u
u

) 1
κ

]
= 1

λ
ln

1 + ( u
1−u
) 1
κ

1 +
(
1−u
u

) 1
κ


= 1

λ
ln
[(

u
1−u
) 1
κ

]
since

1 + z

1 + z−1
= z for z 6= 0

= 1
λκ
(lnu− ln[1− u]) ,

the logistic-exponential distribution’s quantile-based kurtosis measures of the form in (1) are

given by ∑n1
j=1 ajS(uj)∑n2
k=1 bkS(uk)

=

∑n1
j=1 aj (lnuj − ln[1− uj])∑n2
k=1 bk (lnuk − ln[1− uk])

,

and are thus invariant to the value of the shape parameter κ. In particular, the logistic-

exponential distribution’s ratio-of-spread functions is simply

R(u, v) =
lnu− ln[1− u]
ln v − ln[1− v] ,

and therefore, in terms of 6S, the kurtosis of the logistic-exponential distribution is the same

for all values of κ.

None of the other two-parameter distributions considered in Figure 2 possess quantile-

based kurtosis measures which are invariant to the values of their shape parameters. This

is illustrated in Figure 3 depicting a shape functional diagram in which the ratio-of-spread

functions is plotted against

γ(u) =
Q(u) +Q(1− u)− 2Q(1

2
)

S(u)
, 1

2
< u < 1, (2)
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for the various survival distributions. The skewness functional in (2), originally suggested by

David and Johnson (1956) and called the γ-functional, defines the weak skewness ordering
6m
2γ , MacGillivray (1986), in that F 6m

2γ G ⇔ γF (u) 6 γG(u). In effect, distribution G has

greater skewness to the right (left) than distribution F if γG(u) > (<) γF (u). Note that

in Figure 3 the γ-functional and the ratio-of-spread functions are evaluated at u = 0.9 and

v = 0.75.

The γ-functional of the logistic-exponential distribution is

γ(u) =
κ
(
ln
[
1 +

(
u
1−u
) 1
κ

]
+ ln

[
1 +

(
1−u
u

) 1
κ

]
− 2 ln 2

)
lnu− ln[1− u] ,

and thus depends on the value of κ. However, as shown above and illustrated in Figure

3, the ratio-of-spread functions, and all the quantile-based kurtosis measures

of the form in (1), of the logistic-exponential distribution remain constant for

different levels of skewness, including for different values of the γ-functional.

3. L-MOMENTS

The theory of L-moments was compiled by Hosking (1990). L-moments are expectations

of linear combinations of order statistics. Let X1:n 6 X2:n 6 ... 6 Xn:n denote the order

statistics for a random sample of size n from the distribution of X. The rth order L-moment

and L-moment ratio of X are then defined by

Lr ≡ 1
r

r−1∑
k=0

(−1)k
(
r−1
k

)
E(Xr−k:r), r = 1, 2, 3, ...,

and

τ r ≡
Lr
L2
, r = 3, 4, 5, ...,

where L1 and L2 are the L-location and L-scale and where τ 3 and τ 4 are known as the L-

skewness and L-kurtosis ratios. Note that in this paper the rth order L-moment is denoted

by Lr instead of λr, as is usually done in the literature, to avoid confusion with the scale

parameter of the logistic-exponential distribution. Hosking (1990) showed that the rth order
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L-moment of X can be written as Lr =
∫ 1
0
Q(u)P ∗r−1(u)du, where

P ∗r (u) =

r∑
k=0

(−1)r−k
(
r
k

) (
r+k
k

)
uk

is the rth order shifted Legendre polynomial, related to Pr(u), the rth order Legendre poly-

nomial, by P ∗r (u) = Pr(2u− 1).

L-moments possess several advantages compared to conventional moments. Firstly, all

L-moment ratios are bounded, simplifying their interpretation. In particular, Hosking (1990)

and Jones (2004) have shown that −1 < τ 3 < 1 and 1
4
(5τ 23− 1) 6 τ 4 < 1. Secondly, Hosking

(1990) proved that if the mean of a distribution exists, then all its L-moments exist and the

distribution is uniquely characterized by its L-moments. All moments and all L-moments

of the logistic-exponential distribution exist.

Closed-form expressions for all the L-moments of the logistic-exponential distribution

so far elude us. Table 1 reports values of Lr : r = 1, 2, ..., 10 for λ = 1 without loss

of generality (Lr;λ,κ = λ−1Lr;1,κ because λ is a scale parameter) and for the values of κ

represented in Figure 1. The values in Table 1 were obtained withMathematica 8.0 notebooks

(Wolfram, 2010). For example, Table 2 gives theMathematica 8.0 source code for calculating

Lr : r = 1, 2, ..., 10 for κ = 0, 2. Regarding the L-kurtosis ratio, it is known that τ 4 = 1
6

for the exponential distribution (κ = 1) as well as the logistic distribution (κ → ∞). So

immediately one wonders about the values of τ 4 for other values of κ. Using numerical

methods in Mathematica 8.0, we obtained

Lr =
1

r(r − 1)λκ, r = 2, 4, 6, ...,

from which it follows that

τ r =
2

r(r − 1) , r = 2, 4, 6, ...,

is independent of λ and κ, and, in particular, τ 4 = 1
6
and hence skewness-invariant. No

expressions for Lr or τ r are available yet for r = 1, 3, 5, ..., but numerical analysis using

Mathematica 8.0 indicated that τ 3 ↓ 0 as κ→∞ and τ 3 ↑ 1
2
as κ ↓ 0.
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Figure 4 presents an L-moment ratio diagram for the positively skewed two-parameter

survival distributions considered in Figures 2 and 3. Values and expressions for the L-

moment ratios of the uniform, normal, logistic and exponential distributions as well as for

the generalized Pareto distribution, the Weibull distribution (which is a reflected generalized

extreme-value distribution) and the log-logistic distribution (which can be reparameterized

as a generalized logistic distribution, Hosking and Wallis (1997)) are available from Hosking

(1990) and Hosking and Wallis (1997). Approximate values of τ 3 and τ 4 for the gamma and

log-normal distributions in Figure 4 were calculated using rational-function approximations

given by Hosking and Wallis (1997).

As was the case with Pearson’s coeffi cients of skewness and kurtosis illustrated in Fig-

ure 2 and the shape functionals depicted in Figure 3, the L-moment ratios of the logistic-

exponential distribution behave distinctly differently compared to the L-moment ratios of

the other survival distributions considered in Figure 4. Firstly, and most apparent from Fig-

ure 4, among the distributions considered, the logistic-exponential distribution is the only

survival distribution possesing a skewness-invariant L-kurtosis ratio. Secondly, although the

focus of this paper is on kurtosis and not skewness, it is interesting to note that the logistic-

exponential distribution has τ 3 ↑ 1
2
, whereas τ 3 ↑ 1 for all the other survival distributions in

Figure 4.

4. CONCLUDING REMARKS

The concept of kurtosis is a complex topic in statistical research —the interested reader

is referred to Balanda and MacGillivray (1988) and Seier (2003) for detailed reviews on

kurtosis. Recently Jones et al. (2011) presented a seminal discussion on skewness-invariant

kurtosis measures - also see van Staden (2013). Turning to survival distributions, this paper

showed that the logistic-exponential distribution occupies a special place in the realm of

two-parameter distributions with nonnegative support in that its quantile-based kurtosis

measures and its L-kurtosis ratio are invariant to the values of its shape parameter and are

consequently skewness-invariant. However, it is important to note that the shape parameter

of the logistic-exponential distribution cannot be universally labeled a skewness parameter.
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Although no closed-form expressions are available for the logistic-exponential distribution’s

coeffi cients of skewness and kurtosis, it follows from Figure 2 that neither of these classical

measures of shape for the logistic-exponential distribution are invariant to the values of the

shape parameter, since the corresponding curve is not a straight line.
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Figure 1. Density curves for the logistic-exponential distribution for λ = 1 and selected values of κ.

Figure 2. Moment ratio diagram in which Pearson’s coeffi cient of kurtosis, α4, is plotted against Pearson’s

coeffi cient of skewness, α3, for the logistic-exponential and other skewed two-parameter survival

distributions with nonnegative support. The lower boundary for all distributions is given by

α4 > 1 + α
2
3.
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Figure 3. Shape functional diagram for the two-parameter survival distributions, including the logistic-

exponential distribution, considered in Figure 2.

Figure 4. L-moment ratio diagram for the two-parameter survival distributions, including the logistic-

exponential distribution, considered in Figure 2. The lower boundary for all distributions is given

by τ4 > 1
4 (5τ

2
3 − 1).
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Table 1. Values for the first ten L-moments of the logistic-exponential distribution for λ = 1 and the values

of κ represented in Figure 1.

κ 0.2 0.5 1 2 5

L1 3.5462 1.5708 1.0000 0.7854 0.7092

L2 2.5000 1.0000 0.5000 0.2500 0.1000

L3 1.2121 0.4292 0.1667 0.0537 0.0097

L4 0.4167 0.1667 0.0833 0.0417 0.0167

L5 0.1811 0.0937 0.0500 0.0197 0.0039

L6 0.1667 0.0667 0.0333 0.0167 0.0067

L7 0.1391 0.0482 0.0238 0.0101 0.0022

L8 0.0893 0.0357 0.0179 0.0089 0.0036

L9 0.0624 0.0277 0.0139 0.0061 0.0014

L10 0.0556 0.0222 0.0111 0.0056 0.0022

Table 2. Mathematica 8.0 source code for calculating the first ten L-moments of the logistic-exponential

distribution for κ = 0.2.

Source code:

κ = 0.2;κ = 0.2;κ = 0.2;

Lr = N

[
Table

[∫ 1
0

(
Log

[
1 +

(
u
1−u

) 1
κ

]
LegendreP[r − 1, 2u− 1]

)
du, {r, 1, 10, 1}

]]
Lr = N

[
Table

[∫ 1
0

(
Log

[
1 +

(
u
1−u

) 1
κ

]
LegendreP[r − 1, 2u− 1]

)
du, {r, 1, 10, 1}

]]
Lr = N

[
Table

[∫ 1
0

(
Log

[
1 +

(
u
1−u

) 1
κ

]
LegendreP[r − 1, 2u− 1]

)
du, {r, 1, 10, 1}

]]
Solution: {3.54622, 2.5, 1.21214, 0.416667, 0.181089, 0.166667, 0.139118, 0.0892857, 0.0624484, 0.0555556}
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