
A letter to the Editor about:  

“Machado, M.A.G. and Costa A.F.B. (2014). Some comments regarding the synthetic chart. 

Communications in Statistics - Theory and Methods, 43 (14), 2897-2906” 

Sandile Charles Shongwe

 and Marien Alet Graham

Department of Statistics 

University of Pretoria 

South Africa 

Dear Editor, 

We recently read the abovementioned paper by Machado and Costa (2014). However, before 

going into the details, two of the referees requested us to clarify the difference between the four 

types of the synthetic  ̅ charts. Hence, in Table 1, we provide the operation of the non-side

sensitive (NSS), standard side-sensitive (SSS), revised side-sensitive (RSS) and modified side-

sensitive (MSS) synthetic  ̅ charts that were first proposed by Wu and Spedding (2000), Davis

and Woodall (2002), Machado and Costa (2014) and Shongwe and Graham (2016a), 

respectively. The control charting regions for each of these types of schemes are given as Step 

(1) in Table 1. According to Shongwe and Graham (2016a)’s zero-state and steady-state 

empirical analysis, the MSS synthetic  ̅ chart has a better performance than the other types of

Shewhart synthetic  ̅ charts.

Machado and Costa (2014) is an interesting paper, since, apart from the fact that it point out a 

very important mistake done by Davis and Woodall (2002) regarding the computation of the 

stationary probabilities vectors, the authors also proposed a new type of a synthetic  ̅ chart (i.e.

the RSS scheme) and compared its steady-state performance to the NSS scheme. Although 

Machado and Costa (2014) has some valuable contributions, we point out a correction regarding 

the NSS scheme’s illustrative example done in their p. 2899, which reads as follows: 

“Even though Davis and Woodall (2002) declared that the stationary probabilities should be

obtained with the process in control, they obtained   with A = Pr[|Z| < k | Z ~ N(d;1)], that is, the 

stationary probabilities were computed with         ̅, the out-of-control value of the 

process mean. For instance, when (L, k, d) = (5, 2.263, 2), the      = (5.105, 2.806, 3.196, 

3.885),    = (0.9162, 0.0279, 0.0279, 0.0279), and   = (0.4339, 0.1886, 0.1886, 0.1886);    is 

the   vector computed with A = Pr[|Z| < k | Z ~ N(0;1)] and    is the   vector computed with A = 


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Table 1: Operation of the non-side sensitive (NSS), standard side-sensitive (SSS), revised side-sensitive (RSS) and modified side-sensitive (MSS) 

synthetic  ̅ charts

Step NSS SSS RSS MSS 

(1) 

(2) Set the control limit of the CRL sub-chart (i.e. H), or equivalently, start at H = 1 and increase it accordingly. 

(3) Compute the corresponding k so that the target in-control ARL0 is attained. Hence the control limits of the  ̅ sub-chart are UCL/LCL =      . 

(4) Wait until the next inspection time, take a random sample of size n and calculate the sample mean  ̅ .

(5) If LCL <  ̅  < UCL, the i
th

 sample is conforming, hence return to Step (4); otherwise go to Step (6).

(6) If  ̅   LCL or  ̅   UCL go to Step (7). If  ̅   LCL go to Step (7a), or if  ̅   UCL go to Step (7b). 

(7) 
Calculate CRL

S1
 and if CRL

S1   H go to Step (8); 

otherwise return to Step (4). 

(7a) Calculate     
   and if 

    
     H go to Step (8); 

otherwise return to Step (4). 

(7b) Calculate     
   and if 

    
     H go to Step (8); 

otherwise return to Step (4). 

(7a) Calculate     
   and if 

    
     H go to Step (8); 

otherwise return to Step (4). 

(7b) Calculate     
   and if 

    
     H go to Step (8); 

otherwise return to Step (4). 

(7a) Calculate     
   and if     

     H go to Step 

(8); otherwise return to Step (4). 

(7b) Compute     
   and if     

     H go to Step 

(8); otherwise return to Step (4). 

(8) Issue an OOC signal and then take necessary corrective action to find and remove the assignable causes. Then return to Step (4). 

____________________________________________ 
     : Number of conforming samples that fall in region ‘O’; which are in between any two consecutive nonconforming samples that fall on region ‘U’. 

    
  : Number of (either conforming or nonconforming) samples that fall in regions ‘O’ and ‘A’; which are in between the two consecutive nonconforming samples that fall on region ‘D’. 

    
  : Number of (either conforming or nonconforming) samples that fall in regions ‘O’ and ‘D’; which are in between the two consecutive nonconforming samples that fall on region ‘A’. 

    
  : Number of conforming samples that fall in region ‘O’; which are in between the two consecutive nonconforming samples that fall on region ‘D’. 

    
  : Number of conforming samples that fall in region ‘O’; which are in between the two consecutive nonconforming samples that fall on region ‘A’. 

    
  : Number of conforming samples that fall in regions ‘C’; which are in between the two consecutive nonconforming samples that fall on region ‘D’. 

    
  : Number of conforming samples that fall in regions ‘B’; which are in between the two consecutive nonconforming samples that fall on region ‘A’. 

Note that each computation of the CRL value above, includes the nonconforming sample at the end, so that the absence of any nonconforming sample means CRL = 1. 

[Source: Shongwe and Graham (2016b)] 



3 

Pr[|Z| < k | Z ~ N(d;1)]. The steady-state ARL is given by   
     = 5.0. In their Table 2, Davis 

and Woodall (2002) present the value of   
     = 4.1. Table 1 shows the   

    s and   
    s 

for L = 1, 5, and 10 and d varying from 0 to 3.0 in steps of 0.1. Depending on the magnitude of 

the shift, the percentage difference between   
     and       ranges from 0% to 37%.” 

The elements of the paragraph that are underlined are incorrect. These are: (i) dimension of the 

vectors, (ii) stationary probabilities vector, (iii) ARL vector and (iv) actual ARL values; we 

discuss each of these next. 

(i) Dimension of the vectors 

Since as stated by Machado and Costa (2014, p.2899), the dimension of the essential transition 

probabilities matrix (eTPM) of the NSS synthetic  ̅ chart is equal to (L+1)×(L+1), hence the

corresponding   and ARL vectors must have a dimension of (L+1). However, we see that while 

they consider L = 5, yet the dimension of   and ARL vectors is not equal to 6. 

(ii) Stationary probabilities vectors 

It is clear that   
  and   

  are incorrect due to their dimension. Here, we give the expressions and 

the corresponding authors that computed the stationary probabilities vectors of the NSS synthetic 

chart (with those by Knoth (2016) pointed out by one of the referees and are called the cyclical 

and conditional quasi-stationary distribution vectors, with   the largest (in magnitude) 

eigenvalue of the eTPM), where     
     

  
: 

Machado and Costa (2014): 
 

       
                    (1) 

Knoth (2016): (  
    

 
) (

 

    
   

    

 
 (

    

 
)
 

   (
    

 
)
   

) (2) 

Knoth (2016):                                               (3) 

As stated by Machado and Costa (2014), Davis and Woodall (2002) mistakenly used    0 to 

calculate the stationary probabilities vector. Thus, Machado and Costa (2014, p.2899) was 

supposed to calculate the incorrect stationary probabilities vector of Davis and Woodall (2002) 

as one of those given in Table 2, Panel (b). The correct ones were supposed to be given by any of 

the corresponding vectors in Table 2, Panel (c). Note that Table 2, Panel (a) corresponds to each 

of the methods in Equations (1) to (3), respectively. 

(iii) ARL vectors 

There are two ways to write the closed-form expressions of the ARL vector of the NSS synthetic 

 ̅ chart (with that in Equation (4) derived by one of the referees and that in Equation (5) reported
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Table 2: The difference between the empirical stationary probabilities and their corresponding ARL values 

(a) Technique (b)  
      (c)  

      (d)  
           (e)  

           
M&C (2014) (0.3354,0.1329,0.1329,0.1329,0.1329,0.1329) (0.8943,0.0211,0.0211,0.0211,0.0211,0.0211) 4.0 5.1 

Knoth (2016) (0.3529,0.1881,0.1527,0.1240,0.1007,0.0817) (0.8980,0.0213,0.0208,0.0204,0.0199,0.0195) 3.9 5.1 

Knoth (2016) (0.0802,0.3963,0.2392,0.1444,0.0872,0.0526) (0.8873,0.0236,0.0231,0.0225,0.0220,0.0215) 3.2 5.0 

M&C (2014) – Machado and Costa (2014) 
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in Shongwe and Graham (2016b)). These look notionally different, however, they yield the same 

empirical values, where                    and                          :   

(
 

    
 

 

    
 

 

    
 
                 

    
   

       (            )

    
) (4) 

 

    
                                                                          (5) 

For (L, k, d) = (5, 2.263, 2), the correct empirical ARL vector using either Equation (4) or (5) is 

given by     (2) = (5.2669, 2.7435, 2.8879, 3.1271, 3.5233, 4.1797). 

(iv) Actual ARL values 

Using the ARL vector in Equation (4) or (5) and the stationary probabilities vectors in Equation 

(1) to (3) yield the incorrect actual ARL values (‘  
           ’, that were supposed to be 

reported by Davis and Woodall (2002)) in Table 2, Panel (d) and the corresponding correct 

actual ARL values (‘  
           ’, that were supposed to be calculated by Machado and Costa 

(2014)) are given in Table 2, Panel (e).  

Our findings sound a cautionary note to the use of the values presented in Machado and Costa 

(2014, p.2899). Note though, one of the referees pointed out that Machado and Costa (2014) 

might have confused (L, k, d) = (5, 2.263, 2) with (L, k, d) = (3, 2.164, 2), which yields the 

stationary probabilities and ARL vectors in the quoted paragraph above. 

Finally, for an empirical and theoretical discussion of other Shewhart synthetic-type monitoring 

schemes, we refer the reader to Shongwe and Graham (2016c, d); however, for a contrasting 

point of view on Shewhart synthetic charts, we refer the reader to Knoth (2016). 

Thank you for your attention. 

Sincerely, 

S.C. Shongwe and M.A. Graham, Department of Statistics, University of Pretoria, South Africa. 
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