
Monitoring the process mean when standards are unknown:  

A classic problem revisited 

 

Abstract 
One of the most common applications in statistical process monitoring is the use of 

control charts to monitor a process mean. In practice, this is often done with a 

Shewhart X  chart along with a Shewhart R (or an S) chart. Thus two charts are 

typically used together, as a scheme, each using the 3-sigma limits. Moreover, the 

process mean and standard deviation are often unknown and need to be estimated 

before monitoring can begin. We show that there are three major issues with this 

monitoring scheme described in most textbooks.  The first issue is not accounting for 

the effects of parameter estimation, which is known to degrade chart performance. 

The second issue is the implicit assumption that the charting statistics are both 

normally distributed and, accordingly, using the 3-sigma limits. The third issue is 

multiple testing, since two charts are used, in this scheme, at the same time. We 

illustrate the deleterious effects of these issues on the in-control properties of the 

( , )X R  charting scheme and present a method for finding the correct charting 

constants taking proper account of these issues. Tables of the new charting constants 

are provided for some commonly used nominal in-control average run-length 

(ICARL0) values and different sample sizes. This will aid in implementing the ( , )X R  

charting scheme correctly in practice. Examples are given along with a summary and 

some conclusions.  

 

Keywords: False alarm rate; Monitoring mean and variance; Multiple testing; 

Parameter estimation, 3-sigma limits; Shewhart X chart, Shewhart R chart 

 

1. Introduction 

For decades control charts have been used as effective tools for detecting process 

changes that may affect the quality of products and services. In most cases the process 

is assumed to be normally distributed, and the goal is to monitor the mean (  ) of the 

process with a Shewhart X  chart. However, even though the mean   may be the 

                                                 
1
 Part of the work done in the Department of Statistics, University of Pretoria, South Africa 

M.D. Diko 
Department of Statistics 

University of Pretoria 

South Africa 

 

dikomandla@gmail.com 

S. Chakraborti
1
 

Department of Information Systems,    

Statistics and  Management Science, 

University of Alabama 

Tuscaloosa, AL 35487, U.S.A.  

schakrab@cba.ua.edu  

M.A. Graham 
Department of Statistics 

University of Pretoria 

South Africa 

 

marien.graham@up.ac.za 

 

../../../../../AppData/Local/AppData/Local/Microsoft/Windows/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/AppData/Local/Temp/XPgrpwise/dikomandla@gmail.com
mailto:schakrab@cba.ua.edu
mailto:marien.graham@up.ac.za


P a g e  | 2 

 

 

quantity of interest, the standard deviation   is also monitored with a Shewhart R (or 

an S) chart.  This is because the X control chart limits depend on   and therefore 

unless   is in-control (IC), the X  chart does not convey much meaning. The bottom 

line is that two charts are used, as a charting scheme, to make a decision about the 

status of the process. The process is considered to be IC whenever both charts plot 

within their respective control limits and display random patterns. On the other hand, 

the process is declared out-of-control (OOC) when at least one of the charts shows an 

OOC situation, such as a point outside of the control limits or points exhibiting a non-

random pattern.  

For simplicity we assume that the Shewhart X  chart and the Shewhart R chart 

are used to monitor the process mean (  ) and the process standard deviation ( ), 

respectively. We use the Shewhart R chart even though recent literature recommends 

using a different spread chart, such as the Shewhart S chart, see for instance 

Mahmoud
1
. We do this because the Shewhart R chart is simple and continues to be 

used in industry. However, our ideas can easily be extended to other two-chart 

schemes for the mean and the variance of a normal process, including the Shewhart 

( , )X S  charting scheme, and other more sophisticated two-chart monitoring schemes 

involving the cumulative sum (CUSUM) and the exponentially weighted moving 

average (EWMA) charts. Note that, from this point forward we will refer to the 

Shewhart X  chart, the Shewhart R chart and the Shewhart S chart; as the X  chart, 

the R chart and the S chart, respectively. 

Even though a lot of work has been done on monitoring the mean and the 

standard deviation of a normally distributed process using Shewhart or Shewhart-type 

charts (Quesenberry
2
, Chen

3,4
, Chakraborti

5,6
), few studies (for example, Diko et al. 
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(2014)) seem to have considered the design and performance of the X  and R  charts 

as they are applied together as a charting scheme. According to the current practice, 

the X  chart and the R chart are constructed independently, each using the estimated 

3-sigma limits, which are calculated from a Phase I reference sample. We show that 

this practice is incorrect, which results in the average run-length (ARL) being 

significantly off from the nominal value. In fact, the ARL is often shorter, which 

implies that the false alarm rate is more than what is nominally expected. We then 

derive and present the new charting constants to help practitioners to run the ( , )X R  

charting scheme at the desired nominal level.  

This paper is organised as follows: we first illustrate the ideas with an example 

(Example 1), showing how monitoring the process mean is presently done in industry. 

This sets the stage. We then consider two cases (i) the case when the mean is known 

or specified but the standard deviation is unknown (denoted Case KU) (ii) the case 

when both the mean and standard deviation are unknown (denoted Case UU). The 

Case KU is important since it often arises in practice in meeting specifications for a 

process. The Case UU is the general case where not much is known about the process 

parameters, such as in a start-up situation. For each case, we analytically derive the 

unconditional in-control average run-length (denoted by ICARL, see Appendix A) of 

the ( , )X R  charting scheme, with the estimated 3-sigma limits. This is the IC average 

run-length averaged over the distribution(s) of the parameter estimator(s). We show 

that the values of the ICARL can be far lower than the specified nominal IC average 

run-length, denoted by 0ICARL . This is obviously a major issue since there will be 

lots of unexpected false alarms. Following this, we present a method for correcting 

these control limits; which accounts for the effects of parameter estimation, use of the 

estimated 3-sigma limits and multiple testing. Finally, we give an illustration using 
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the same data from the first example but applying the corrected limits and contrast the 

results. It is seen that the corrected limits can alter decisions. We conclude with a 

summary and recommendations.   

1.1. Example 1 

To set the stage, we constructed the X  chart and the R chart, with the estimated 3-

sigma limits, in Case UU, using the data set on measurements of the flow width of the 

Hard-Bake process (see Montgomery
7
 (p. 244)). This data set contains m = 20 Phase I 

subgroups, each of size n = 5. The average of the Phase I sample means and ranges 

are 5056.1X  and 3252.0R , respectively. The resulting X and R charts, with the 

estimated 3-sigma limits, are shown in Figures 1a and b, respectively.  

 

Figures 1a and b help to illustrate the ( , )X R  charting scheme, with the 

estimated 3-sigma limits, as presently used in the industry. As always, the R chart is 

examined first. This is done because the control limits of the X chart depend on the 

estimate of process variability (see Equations (1) and (4)). From Figure 1b it is seen 

that the variability is IC, and so we go on to examine the X  chart in Figure 1a. Figure 

1a shows that the process mean is IC until the 18
th

 sample when the X  chart gives a 

signal. However, whether this is a genuine signal or a false alarm could be questioned 

based on three issues.  

The first issue is the effect of parameter estimation, which is not accounted for 

by the control limits used in either of these charts. It is well-known that using 

parameter estimates instead of known parameters without accounting for the 

additional variability introduced by parameter estimation degrades chart performance 

(see Jensen et al.
8
, Quesenberry

2
). In fact, based on the current available information 

in the literature, we suspect that the unconditional ICARL for the charting scheme  
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Figure 1.  (a) The chart for the mean, with the estimated 3-sigma limits, for the data from 

Montgomery[8] (p. 244). (b) The R chart for variability, with the estimated 3-sigma limits, for the data 

from Montgomery[8] (p. 244). LCL, lower control limit; CL, center line; UCL, upper control limit 

 

would be less than the nominal 0ICARL , so that the false alarms rate (FAR) is 

increased. 

The second issue relates to the standard practice of using the estimated 3-

sigma control limits in the two component charts. This is a common practice and is 
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recommended in most textbooks, including Montgomery
7
. However, the plotting 

statistics, X  and R, each has a different sampling distribution, and thus each 

component chart, each with the estimated 3-sigma limits, has a different unconditional 

ICARL, which can be different from the nominal 0ICARL . This, in fact, is shown to 

be true, which in turn yields a completely different unconditional ICARL for the two-

chart ( , )X R  scheme.   

The third issue relates to the issue of multiple testing. As two charts are used 

simultaneously in the decision making process, unless proper adjustments are made, 

the charting scheme does not deliver the nominal 0ICARL . In fact, as will be seen in 

Tables 1 and 3, that the unconditional ICARL of the charting scheme is far lower than 

the nominal 0ICARL . This means that many more false alarms are issued, leading to 

faulty decisions, possible work stoppages and reducing the value of the charting 

scheme. Note that the fact that the two component charting statistics, X  and R , are 

independent under normality does not solve the problem induced by multiple testing; 

however it does play a role in finding a correction. 

In summary, while monitoring the mean, when parameters are estimated, the 

control limits of the ( , )X R  charting scheme need to be corrected so that the effects of 

parameter estimation are correctly accounted for along with the effects of using the 

estimated 3-sigma limits and multiple testing. We do this by first using the 

conditioning technique developed in Chakraborti
5
, then applying a correction to take 

account of multiple testing and finally using the probability limits. We start with Case 

KU. 
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2. Mean known and standard deviation unknown (Case KU) 

In a number of practical situations, one has a specified value of the mean of the 

process to monitor, but the standard deviation of the process is unknown. This is Case 

KU. We now consider the ( , )X R  charting scheme, with the estimated 3-sigma limits, 

in this case. We show analytically that the unconditional ICARL values of this scheme 

differ dramatically from the nominal 0ICARL . We then use this result to calculate the 

correct charting constants that deliver the nominal 0ICARL . However, since the 

unconditional ICARL of the ( , )X R  charting scheme depends on the unconditional 

ICARL of its two component charts, we review the two component charts first. We 

start with the X  chart with the estimated 3-sigma limits. 

 

2.1. Shewhart X  chart, with the estimated 3-sigma limits 

When any of the process parameters are unknown, they are estimated from a Phase I 

reference data. Let ,ijX  i=1,2,…,m and j=1,2,…,n denote the IC Phase I data from a 

normal distribution with a specified mean 0  and an unknown standard deviation  , 

where m is the number of Phase I subgroups and n is the subgroup size. The plotting 

statistic for the X  chart, with the estimated 3-sigma limits, in Phase II, is the sample 

mean , 1, 2,...iX i m m   . It is well-known that the IC distribution of the sample 

mean is normal with mean 0  and variance n2 . 

          Typically, the estimated lower and upper control limits of the X  chart, with the 

estimated 3-sigma limits, are expressed as 
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 (1) 

respectively, where 
2

ˆ
d

R
  is the unbiased estimator of  , R  is the average of the 

Phase I sample ranges and 2d  is the unbiasing constant, defined later. 

Note that, the performance of a Phase II control chart is judged in terms of its 

run-length distribution and certain characteristics, such as the ARL and the standard 

deviation of the run-length (denoted by SDRL). The run-length (denoted by N) is a 

discrete random variable that represents the number of subgroups which must be 

collected in order for the chart to give the first signal. It is well-known that when the 

mean and the variance of a process are both known or specified (the so-called 

standards known case, denoted by Case KK), and the process is IC, the run-length 

distribution is geometric with the parameter equal to the nominal false alarm rate 

(denoted by FAR0) and mean equal to the nominal  ICARL0.  However, this is not the 

case when any of the parameters is unknown and are estimated.  Thus, assuming that 

the process is IC and that some value(s) of the Phase I parameter estimator(s) have 

been observed, it is now well known (see, e.g., Chakraborti
5
) that N follows a 

geometric distribution with the parameter equal to the conditional false alarm rate 

(denoted by CFAR) and mean equal to the conditional in-control average run-length 

(denoted by CICARL). The word conditional refers to the fact that these values are 

calculated for given values of the parameter estimates, for the given Phase I sample.  

Thus, the CFAR and CICARL are random variables and so their values can be 

radically different from the nominal FAR0 and the nominal ICARL0, respectively. 

Studies of control chart performance have mostly focused on the unconditional run-
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length distribution and its associated characteristics, such as the unconditional ICARL 

(see Jensen et al.
8
). Accordingly, in this paper, we use the unconditional ICARL to 

evaluate chart performance and to make design recommendations when any of the 

process parameters are unknown.   

 Against this background, we derive an expression for the unconditional ICARL 

for the X  chart, with the estimated 3-sigma limits, in Case KU (see (A4) and (A3) in 

Appendix A) and tabulate it in Panel (a) of Table 1 for n = 5 and for various values of 

m. The percentage difference, PD = 
attained unconditional 370

100
370

ICARL 
 
 

, is 

also shown for each m.   

Table 1. The attained unconditional ICARL values and the percentage difference for the ( , )X R  

charting scheme and its component charts, with the estimated 3-sigma limits, in Case KU, for various 

values of m and n = 5 and the nominal ICARL0 = 370 

 

 

m 

(a) 

X  chart 

(b) 

R  chart 

(c) 

 RX ,  charting scheme 

ICARL PD ICARL PD ICARL PD 

5 3169 756% 10587 2758% 2228 502% 

10 884 139% 1000 170% 445 20% 

20 550 49% 422 14% 235 -37% 

30 479 29% 332 -10% 194 -48% 

50 430 16% 278 -25% 168 -55% 

100 399 8% 245 -34% 152 -59% 

500 375 2% 222 -40% 140 -62% 

ICARL0 370  370  370  

 

 
 An examination of Panel (a) in Table 1 reveals some interesting facts.  For all 

values of m, the PD values differ from zero, with PD > (<) 0 indicating that the 
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attained unconditional ICARL value is greater (smaller) than the nominal ICARL0 = 

370.  It can be seen that the attained unconditional ICRL values differ (sometimes 

dramatically) from the nominal ICARL0 = 370, as the absolute values of the PD range 

from as little as 2% (m = 500) to as much as 756% (m = 5).   Although, in general, a 

small positive difference (< 10%) between the attained and the nominal values may be 

acceptable but not for the magnitudes that are seen.  For example, for m = 30, which 

is often recommended in textbooks, the attained unconditional ICARL value for the 

scheme is 49% above the nominal value, which is unacceptable.  However, the 

attained unconditional ICARL values converge to the nominal ICARL0 = 370 value of 

370 as m increases, which is to be expected for the X chart. But, this convergence is 

not seen for the R chart as well as for the two-chart ( , )X R  charting scheme. We 

discuss these next.  We start with the R chart. 

 

2.2. Shewhart R control chart, with the estimated 3-sigma limits 

The plotting statistic for the R chart, with the estimated 3-sigma limits, is the sample 

range iR . For a nominal 3700 ICARL , the lower and upper control limits of this 

chart are given in Montgomery
7
, Chapter 6, as 

3
3

2

3
4

2

3ˆ 1

3ˆ 1

R

R

d
LCL R D R

d

d
UCL R D R

d

 
   
 

 
   
 

    (2) 

respectively, where  2d E W and  3d Var W  are the mean and the standard 

deviation of the IC distribution of the sample relative range 


i

i

R
W  , respectively. 

 The expression for the unconditional ICARL of the R chart, with the estimated 
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3-sigma limits, in Case KU, is derived in Appendix A (see (A8) and (A7)) and is 

tabulated in Panel (b) of Table 1 for n = 5 and various values of m.  The message is 

really bad. For all values of m, it can be seen that the attained unconditional ICARL 

values differ (sometimes dramatically) from the nominal ICARL0 = 370, since the 

absolute value of the PD ranges from as little as 10% (m = 30) to as much as 2758% 

(m = 5). Therefore, in Case KU, the R chart, with the estimated 3-sigma limits, has the 

unconditional ICARL values that are not only very different from the nominal ICARL0 

= 370, but are also very different from the unconditional ICARL values of the X  chart 

with the estimated 3-sigma limits. Furthermore, even more striking is the fact that, 

unlike the X  chart, the attained unconditional ICARL values for the R chart do not 

converge to the ICARL0 = 370 as m increases. This is alarming, and can be attributed 

to the failure of the normal approximation (instead of the exact sampling distribution 

of iR )
 
along with the use of the estimated 3-sigma limits to construct the classical R 

chart.  

In summary, using the normal approximation along with the 3-sigma limits to 

construct the R chart is highly aggravated by the effects of parameter estimation, so 

much so that even if the Phase I sample size is increased dramatically, it does not 

guarantee the desired nominal performance and, in fact, it becomes 

counterproductive.  

Next we discuss the effects of multiple testing, that is, the use of the X  and R 

charts, with the estimated 3-sigma limits, in order to monitor the mean of the process.  
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2.3. Shewhart ( , )X R  charting scheme, with the estimated 3-sigma 

limits 

As noted before, in practice, the X  chart with the estimated 3-sigma limits is used 

together with a spread chart, such as the R chart, with the estimated 3-sigma limits, to 

make decisions about the status (IC or OOC) of a process. This charting scheme gives 

a signal when at least one of the two component charts, the X  or the R chart, signals. 

It will be seen that the unconditional ICARL for the two-chart ( , )X R  scheme is far 

different from the nominal 3700 ICARL , and is completely different to the 

unconditional ICARL of its two component charts.    

 The unconditional ICARL of the ( , )X R  charting scheme, with the estimated 

3-sigma limits, in Case KU, is derived in Appendix A (see (A12) and (A11)) and is 

tabulated in Panel I of Table 1 for n = 5 and various values of m. From Table 1 it can 

be seen that the unconditional ICARL values in Panel I are less than the corresponding 

unconditional ICARL values for the component charts in Panels (a) and (b), 

respectively. This implies that the ( , )X R  charting scheme, with the estimated 3-

sigma limits, issues false alarms, on an average, quicker than its component charts. 

Furthermore, for m = 5 we have PD = 502%, this suggests that the unconditional 

ICARL values for the ( , )X R  charting scheme can be approximately 6 times more 

than the nominal ICARL0 = 370. For m around 20-30, which is often recommended in 

textbooks, the attained unconditional ICARL values for the scheme are 37% to 48% 

below the nominal value, which indicates many more false alarms than expected. 

Interestingly, for m = 50, 100, 500 the attained unconditional ICARL values for the 

scheme range between 55% and 62% below the nominal value.  This is counter 

intuitive, because increasing the Phase I sample size is expected to decrease the false 
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alarm rate and not to increase it. Clearly, the ( , )X R  charting scheme, with the 

estimated 3-sigma limits, in Case KU, does not perform as nominally expected. Thus, 

the control limits of the component charts need to be adjusted such that the two-chart 

( , )X R  scheme delivers the nominal 3700 ICARL . This is described next. 

 

2.4. New control limits corrected for parameter estimation, the 

estimated 3-sigma limits and multiplicity effects 

We understand the need to select the control limits on the component charts of the 

( , )X R  charting scheme in a way that accounts for the additional variability caused by 

parameter estimation, corrects for the use of the estimated 3-sigma limits (implicit 

normal approximation for both charting statistics) along with the multiple testing 

issue, as a function of the available data. We accomplish this by first using the 

conditioning technique developed in Chakraborti
5
, then applying the correction (due 

to multiple testing) and finally using probability limits. This is described next. 

The unconditional ICARL of the ( , )X R  charting scheme, with the estimated 

probability limits, in Case KU, can be expressed as (see (A14) in Appendix A) 

      
 

 
0

1
,,,,, duugpnmuCFARpnmICARL charttwocharttwo

 

where ),,,( pnmuCFAR charttwo  denotes the conditional false alarm rate (see (A13) in 

Appendix A) of the ( , )X R  charting scheme, with the estimated probability limits, 

and g(u) is the density function of a random variable U, following a chi-square 

distribution with v degrees of freedom. Note that, by averaging the 

  1
),,,(


 pnmuCFAR charttwo  
over the distribution of U, the effects of parameter 

estimation are accounted for. Further, by using the probability limits and the joint 
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distribution of iX  and iR , to calculate ),,,( pnmuCFAR charttwo  in (A13) of Appendix 

A, the issues of estimated 3-sigma limits and multiplicity are also accounted for, 

respectively. Thus, for some given value of 0ICARL , m and n, we solve the following 

equation  

    0
0

1
),,,( ICARLduugpnmuCFAR charttwo 

 

  (3) 

for p, using the software package R. Once p  is found, the corrected (probability) 

control limits for the X  and the R charts are found from the corresponding 

percentiles of the standard normal distribution and the distribution of the relative 

range, respectively. Some results are shown in Table 2. 

 Table 2 shows the new charting constants for the ( , )X R  charting scheme in 

Case KU. For the nominal 3700 ICARL , it is seen that the charting constants of the 

X  chart range from k = 3.198 to k = 3.260. These values are approximately 7% to 9% 

greater than the conventional charting constant k = 3 in Equations (1) and (2), 

respectively. This means that the X  chart constructed, using the corrected charting 

constants in Table 2, will have wider control limits. This will help in reducing the 

higher false alarm rate (or increasing the unconditional ICARL) of the overall ( , )X R  

charting scheme. In addition, for the R chart, note that using the probability limits 

along with the charting constants in Table 2 ensures that the LCL of the R chart is 

never negative. This means that decreases in the process standard deviation that are 

often undetected by the conventional R chart (the LCL is negative and hence set equal 

to 0) will now also be detected by the ( , )X R  charting scheme, with corrected control 

limits. Further, using the R code provided in B1 of Appendix B, it can be shown that  
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Table 2.  New charting constants for the ( , )X R  charting scheme in Case KU for various values of m and n 

and ICARL0 = 370 and 500, respectively. 

 

 

 

n 

 

 

m 

(a) 

ICARL0=370 

(b) 

ICARL0=500 

p X  chart R chart p X  chart R chart 

5 5 0.001288 3.219 0.329 5.636 0.000956 3.303 0.305 5.737 

 10 0.001357 3.204 0.333  5.618 0.001008 3.288 0.309 5.719 

 20 0.001382 3.198 0.335 5.611 0.001027 3.283 0.310 5.713 

 30 0.001385 3.198 0.335 5.611 0.001028 3.283 0.310 5.713 

 50 0.001380 3.199 0.334 5.612 0.001024 3.284 0.310 5.714 

 75 0.001375 3.200 0.334 5.614 0.001020 3.285 0.310 5.715 

 100 0.001371 3.201 0.334 5.615 0.001016 3.286 0.310 5.716 

 500 0.001357 3.204 0.333 5.618 0.001005 3.289 0.309 5.720 

10 5 0.001114 3.260 1.009 6.162 0.000822 3.345 0.972 6.257 

 10 0.001222 3.234 1.020 6.132 0.000903 3.319 0.983 6.228 

 20 0.001288 3.219 1.027 6.116 0.000953 3.304 0.989 6.211 

 30 0.001311 3.214 1.029 6.111 0.000970 3.299 0.992 6.205 

 50 0.001329 3.210 1.031 6.105 0.000984 3.295 0.993 6.201 

 75 0.001337 3.208 1.032 6.103 0.000990 3.293 0.994 6.199 

 100 0.001342 3.207 1.032 6.102 0.000993 3.293 0.994 6.198 

 500 0.001350 3.205 1.033 6.101 0.000999 3.291 0.995 6.196 

 

the charting constants in Table 2 perform as specified, i.e. they deliver the desired 

nominal 0ICARL . 
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Next, we consider the ( , )X R  charting scheme with the estimated 3-sigma 

limits in Case UU. Recall that this is the situation when both the process mean and the 

standard deviations are unknown. 

 

3. Mean and standard deviation both unknown (Case UU) 

Again, since the properties of the charting scheme depend on the properties of its 

component charts, we review the component charts first. We assume that a Phase I 

sample of reference data, m subgroups, each of size n, is available for parameter 

estimation. 

 

3.1. Shewhart X  control chart, with the estimated 3-sigma limits 

In Case UU, for a nominal  ICARL0 = 370, the X  chart, with the estimated 3-sigma 

limits, is given in Montgomery
7
, Chapter 6 by 

RAXR
nd

XUCL

RAXR
nd

XLCL

xbar

xbar

2

2

2

2

3

3





 (4) 

respectively. Next, we study the IC performance of this chart. As in Case KU, we will 

see that the unconditional ICARL of the scheme can be very different from the 

nominal 0ICARL .   

 The unconditional ICARL for the X  chart, with the estimated 3-sigma limits, 

in Case UU, is derived in Appendix A (see (A18) and (A17)) and is tabulated in Panel 

(a) of Table 3 for n = 5 and various values of m. Similar to Case KU (see Table 1), the 

PD values are also given. It can be seen that the attained unconditional ICARL values 

differ (sometimes dramatically) from the nominal value, since the PD values range 
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from as little as 1% (m = 500) to as much as 352% (m = 5).  Note also that as in Case 

KU, the PD values are all positive.  Also, the attained unconditional ICARL values 

converge to the nominal ICARL0 = 370 as m increases. Again, this convergence is not 

seen for the R chart as well as for the two-chart ( , )X R  charting scheme. Since the R 

chart, with the estimated 3-sigma limits, has been discussed earlier in Case KU; we 

move on to discuss the ( , )X R  charting scheme, with the estimated 3-sigma limits, in 

Case UU. 

Table 3.  The attained unconditional ICARL values and the percentage difference for the ( , )X R  

charting scheme and its component charts, with the estimated 3-sigma limits, in Case UU, for various 

values of m and n = 5 and the nominal ICARL0 = 370 

 

 

m 

(a) 

X  chart 

(b) 

R  chart 

(c) 

 RX ,  charting scheme 

ICARL PD ICARL PD ICARL PD 

5 1675 352% 10587 2758% 1259 240% 

10 624 69% 1000 170% 349 -6% 

20 453 22% 422 14% 211 -43% 

30 417 13% 332 -10% 182 -51% 

50 395 7% 278 -25% 162 -56% 

100 381 3% 245 -34% 149 -60% 

500 372 1% 222 -40% 139 -62% 

ICARL0 370  370  370  

 

 

3.2. The Shewhart ( , )X R  charting scheme, with the estimated 3-sigma 

limits 

As noted before, in practice, the X  chart, with the estimated 3-sigma limits, and a 

spread chart, such as the R chart, also with the estimated 3-sigma limits, are used 
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together to make decisions about the status (IC or OOC) of a process. This charting 

scheme gives a signal when at least one of the two component charts, the X  or the R 

chart, signals. We now study the IC performance of this two-chart scheme in Case 

UU. 

 The unconditional ICARL of the ( , )X R  charting scheme, with the estimated 

3-sigma limits, in Case UU, is derived in Appendix A (see (A22) and (A21)) and is 

tabulated in Panel I of Table 3 for n = 5 and various values of m.   The pattern of the 

results is similar to those in Case KU. Again, it can be seen that the unconditional 

ICARL values in Panel I are less than the corresponding unconditional ICARL values 

for the component charts in Panels (a) and (b), respectively. Furthermore, for m = 5, 

the attained unconditional ICARL value is 240% above the nominal value. For m 

around 20 to 30, which is often recommended in textbooks, the attained unconditional 

ICARL values for the scheme are 43% to 51% below the nominal value, which 

indicates many more false alarms than expected. For m = 50, 100, 500, the attained 

unconditional ICARL values for the scheme are 56% to 62% below the nominal value, 

which indicates even more false alarms than nominally expected, even though the 

Phase I sample has been increased. On the whole, these results show that using the X  

chart and the R chart, with the estimated 3-sigma limits, together in a charting scheme 

reduces the unconditional ICARL and hence increases the FAR by a substantial 

amount. This should be a cause for great concern. Again, as we did for Case KU, we 

need to adjust the control limits on the component charts in a way that accounts for 

parameter estimation, using the estimated 3-sigma limits and multiple testing; 

otherwise the charting scheme runs the risk of being too expensive and hence useless 

in practice. This is described next. 
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3.3. New control limits corrected for parameter estimation, 3-sigma 

limits and multiplicity effects, in Case UU 

The method for finding the new charting constants for the ( , )X R  charting scheme, in 

Case UU, is similar to the method that was described for Case KU. First we derive an 

analytical expression for the unconditional ICARL (see (A23) and A(24) in Appendix 

A) and then for a given 0ICARL , m and n, we solve the following equation 

       0

1

0
,,,, ICARLdzduugzpnmuzCFAR charttwo 











   (5) 

for p, where   is the density function of the standard normal variable. Once p  is 

found, the correct probability control limits for the X  and R charts are found from the 

corresponding percentiles of the standard normal distribution and the distribution of 

the relative range, respectively. The software package R is used to solve equation (5). 

Some results are shown in Table 4.   

 Using the R code in B2 of Appendix B, it can be verified that the charting 

constants in Table 4 yield the unconditional ICARL values that are equal to the 

nominal 0ICARL  values 370 and 500. Next, we illustrate how Table 4 can be used to 

implement the ( , )X R  charting scheme, with the corrected limits, in Case UU. We 

then compare the corrected limits against the estimated 3-sigma limits in Example 1. 

Keep in mind that the estimated 3-sigma control limits in Example 1 have not been 

corrected for parameter estimation, normal approximation and multiple testing.  
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Table 4.  New charting constants for the ( , )X R  charting scheme in Case UU for various values of m and 

n with ICARL0 = 370 and 500, respectively 

 

 

 

n 

 

 

m 

(a) 

ICARL0=370 

(b) 

ICARL0=500 

p X  chart 

R  

chart p X  chart 

R  

chart 

5 5 0.001025 3.284 0.310 5.713 0.000758 3.368 0.287 5.814 

 10 0.001164 3.248 0.320 5.670 0.000862 3.332 0.297 5.772 

 20 0.001256 3.226 0.327 5.645 0.000929 3.311 0.303 5.747 

 30 0.001290 3.218 0.329 5.636 0.000955 3.303 0.305 5.737 

 50 0.001318 3.212 0.331 5.628 0.000975 3.298 0.306 5.73 

 75 0.001331 3.209 0.331 5.625 0.000985 3.295 0.307 5.727 

 100 0.001337 3.208 0.332 5.623 0.00099 3.293 0.307 5.725 

10 5 0.000855 3.334 0.976 6.245 0.000627 3.420 0.940 6.341 

 10 0.00103 3.282 0.999 6.186 0.000758 3.368 0.962 6.282 

 20 0.001163 3.248 1.014 6.148 0.000857 3.334 0.977 6.244 

 30 0.001217 3.235 1.020 6.134 0.000899 3.320 0.982 6.229 

 50 0.001267 3.223 1.025 6.121 0.000936 3.309 0.987 6.217 

 75 0.001294 3.217 1.027 6.114 0.000957 3.303 0.990 6.210 

 100 0.001308 3.214 1.029 6.111 0.000967 3.300 0.991 6.206 

 

 

3.4 Example 2 

Again, we use the data set used in Example 1, from Montgomery
7
 (p. 244), on the 

measurements of the flow width of a Hard-Bake process.  Recall that, for this data set, 

both the mean and standard deviation are unknown (Case UU). Using Table 4 and the 

Phase I estimates of the process mean and standard deviation given in Example 1, the 

corrected control limits for the charting scheme are calculated as follows 
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 Note that for m = 20, n = 5 and ICARL0 = 370, the charting constant for the 

X chart is k = 3.226 from Table 4. This value is 7.5% larger than the conventional 

Shewhart charting constant k = 3. Note also that, unlike the RLCL ˆ  of the R chart, with 

the estimated 3-sigma limits (see Example 1) the RLCL ˆ  here (with the corrected 

limits) is no longer equal to zero but is equal to 0.0457, hence the R chart with 

corrected limits can detect decreases in the process standard deviation. 

 Figures 4a and b help to compare the corrected limits and the 3-sigma limits 

for the data in Montgomery
7
 (p. 244).  

 

 From Figures 2a and 2b it can be seen that the corrected limits, for both charts, 

are slightly wider than the estimated 3-sigma limits. The 18
th

 point on the X  chart 

now plots IC and thus, what we initially thought to be a signal at the 18
th

 sample on 

the X  chart, in Example 1, now turns out to be a false alarm.  This illustrates the 

possible price currently paid by the practitioners while using the classical limits to 

construct the X  and R charts.  Both the corrected and the uncorrected charts signal on 

the 20
th

 sample, indicating a shift in the process mean.   
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Figure 2. (a) The chart for the mean with the corrected and the estimated 3-sigma (uncorrected) 

limits and (b) The R chart for variability with the corrected limits and the estimated 3-sigma 

(uncorrected) limits for the data from Montgomery[8] (p. 244) 

 

 Thus, using the corrected charting constants in Table 4 is recommended, 

because it keeps the unconditional ICARL at the desired nominal level.  
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4. Summary and Conclusion 

When monitoring a process mean with a X chart, the process standard deviation is 

monitored first with a spread chart, such as the R chart.  However, although these 

charts are used together, as a ( , )X R  charting scheme, they are often constructed 

individually using the estimated 3-sigma limits (see e.g., Montgomery
7
).  When 

parameters (standards) are unknown, they are estimated from a Phase I analysis of 

retrospective data.  We show that in the mean known and variance unknown case 

(Case KU) and in the mean and variance both unknown case (Case UU), the ( , )X R  

charting scheme with estimated 3-sigma limits does not perform as expected due to (i) 

unaccounted parameter estimation (ii) using the incorrect assumption that the charting 

statistics are normally distributed and thus using the estimated 3-sigma limits for each 

chart and (iii) unaccounted multiple testing (or multiplicity). As a result, the false 

alarm rate can be very different from what is nominal, sometimes almost tripled, 

which obviously leads to faulty decisions, possible work stoppages and reducing the 

value of the charting scheme. A method for correcting the limits, taking proper 

account of these issues is presented in this paper. Along with the necessary theoretical 

derivations, a table of the new charting constants is provided for each of Case KU and 

Case UU, respectively. Our new charting constants help run the control charting 

scheme at the desired (nominal) 0ICARL  level.  We encourage practitioners to use our 

tables of new charting constants to implement the ( , )X R  charting scheme in practice. 

Our ideas can be extended to other two-chart monitoring schemes, including the 

CUSUM and EWMA for the mean and the variance of a normal process. 
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Appendix A: Detailed derivations  
 

Appendix A provides detailed information and derivations relating to some of the 

equations presented in this paper. 

 

1. Case KU 

 

Results (A1) and (A2) are useful for deriving the conditional false alarm rate (CFAR) 

and the unconditional in-control average run-length (ICARL), for the  RX ,  charting 

scheme and its component charts, in Case KU.  Note that in Case KU, when the 

process is IC we have that 

   
 1,0~,~ 02

0 N
Xn

ZnNX
i

ii









 
(A1) 

Also, 

2

ˆ
d

R
  is approximately distributed as 

v

Uc
 (A2) 

where 
22

2ˆ





c

v
U   follows a chi-square distribution with v degrees of freedom, the c 

and v depend on m and n (see Champ and Jones
9
).  To calculate the constants c and v, 

we used the formulas given in Chen
3
. Note that c and v are not affected by the case 

(Case KU and Case UU) in hand, since ̂ is not dependent on  . 

Using (A1), (A2) and Equation (1), it can be shown that the CFAR and the 

unconditional ICARL of the X chart, with the estimated 3-sigma limits, in Case KU 

can be expressed as 
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 (A3) 

 

Since the conditional run-length distribution is geometric with success probability 

CFAR (Chakraborti
5
), the conditional ICARL equals 1[ ( , , )]xbarCFAR u m n  . Hence the 

unconditional ICARL is given by 

      
 


0

1
,,, duugnmuCFARnmICARL xbarxbar

 
(A4) 

where   is the cumulative distribution function (cdf) of the standard normal 

distribution. 

 It follows that the CFAR and the unconditional ICARL of the X chart, with 

the probability limits, in Case KU, can be expressed as 

 








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





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
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v
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Uc
zpnmUCFAR ppxbar 21211,,,

 

(A5) 

      
 


0

1
,,,,, duugpnmuCFARpnmICARL xbarxbar

 
(A6) 

respectively, where 21 pz  is the (1 )
2

thp
  percentile of the standard normal 

distribution. 

Similarly, using (A2) and Equation (2), it can be shown that the CFAR and 

ICARL of the R chart, with the estimated 3-sigma limits, in Case KU, can be 

expressed as 
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and 

      
 


0

1
,,, duugnmuCFARnmICARL RR

 
(A8) 

respectively. Consequently, the CFAR and the unconditional ICARL of the R chart, 

with the probability limits, in Case KU, can be expressed as 
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and 

      
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(A10) 

respectively, where    
1

( ) ( )
n

WF w n x w x x dx
 


       is the IC cdf of W (see 

for example, Gibbons and Chakraborti
10

) and 1

WF  is the inverse of the IC cdf of W. 

Moreover, using (A3) and (A7) along with the independence between iX  and 

iR  in normal populations, it can be shown that the CFAR and the unconditional 

ICARL of the ( , )X R  charting scheme, with the estimated 3-sigma limits, in Case KU, 

can be written as 
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and 
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(A12) 

respectively. 

Similarly, using (A5) and (A9) with the independence assumption, the CFAR 

and the unconditional ICARL of the ( , )X R  charting scheme, with the probability 

limits, in Case KU, can be expressed as 

       pnmUCFARpnmUCFARpnmUCFAR Rxbarcharttwo ,,,1,,,11,,,   (A13) 

and  

      
 
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0

1
,,,,, duugpnmuCFARpnmICARL charttwocharttwo

 
(A14) 

respectively. 

 

2. Case UU 

Note that, in Case UU, when the process is IC, the following is true 

   
 1,0~,~ 2 N

Xn
ZnNX
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and  

   
 1,0~,~ˆ 2 N

Xmn
ZmnNX







  (A16) 

Using (A15), (A16), (A2) and Equation (4), it can be shown that the CFAR 

and ICARL of the X chart, with the estimated 3-sigma limits, in Case UU, can be 

expressed as 
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respectively, The constants c and v are calculated in the same way as in Case KU. 

It then follows that the CFAR and ICARL of the X chart, with the estimated 

probability limits, in Case UU, can be expressed as 
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respectively. 

Moreover, using (A17) and (A7) along with the independence between iX  

and iR in normal populations, it can shown that the CFAR and the unconditional 

ICARL of the  RX ,  charting scheme, with the estimated 3-sigma limits, in Case UU 

can be written as 

       .,,1,,,11,,, nmUCFARnmUZCFARnmUZCFAR Rxbarcharttwo   (A21) 

and 
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        










  dzduugznmuzCFARnmICARL charttwocharttwo 
1

0
,,,,  (A22) 

respectively. 

Similarly, using (A19) and (A9) along with the independence assumption, the 

CFAR and the unconditional ICARL of the  RX ,  charting scheme, with the 

probability limits, in Case UU, can be expressed as 

       .,,,1,,,,11,,,, pnmUCFARpnmUZCFARpnmUZCFAR Rxbarcharttwo   (A23) 

and 

        










  dzduugzpnmuzCFARpnmICARL charttwocharttwo 
1

0
,,,,,,  (A24) 

respectively. 

 

Appendix B: Software 

Appendix B provides the R codes for the calculation of the unconditional ICARL of 

the  RX ,  charting scheme with the corrected limits in Case KU and Case UU, 

respectively.  

 

B1. Unconditional ICARL for the  RX ,  charting scheme with corrected limits in 

Case KU 

 

 

n=5 # sample size 

m=c(5,30,100,500) # subgroup size 

a=c(0.001288,0.001385,0.001371,0.001357) # charting constants 

d2=function(n){ 

pt=function(w){1-ptukey(w,n,Inf)} # constant d2 

integrate(pt,lower=0,upper=Inf)[[1]]} 

d2=d2(n) 

EW2=function(n){ 

ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 

integrate(ptt,lower=0,upper=Inf)[[1]]} 

d3=function(n){ 

sqrt(EW2(n)-d2^2)} # constant d3 

d3=d3(n) 

 

library(cubature) 
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ICARL=function(m,aa){ 

M=function(m){ 

d3^2/(m*d2^2)} 

r=function(m){  

(-2+2*sqrt(1+2*M(m)))^-1} 

t=function(m){ 

M(m)+1/(16*r(m)^3)} 

v=function(m){ 

(-2+2*sqrt(1+2*t(m)))^-1} # degrees of freedom v 

cc=function(m){ 

1+(1/(4*v(m)))+(1/(32*v(m)^2))-(5/(128*v(m)^3))} # constant c 

uclxbar=function(x){qnorm(1-a[j]/2,0,1)*cc(m)*sqrt(x)/sqrt(v(m))} # ucl xbar chart 

lclxbar=function(x){-qnorm(1-a[j]/2,0,1)*cc(m)*sqrt(x)/sqrt(v(m))} # lcl xbar chart 

PNSxbar=function(x){pnorm(uclxbar(x),0,1)-pnorm(lclxbar(x),0,1)}# Probability of 

no signal for the xbar chart 

uclrchart=function(x){qtukey(1-a[j]/2,n,Inf)*cc(m)*sqrt(x)/sqrt(v(m))}# ucl R chart 

lclrchart=function(x){qtukey(a[j]/2,n,Inf)*cc(m)*sqrt(x)/sqrt(v(m))} # lcl R chart 

PNSrchart=function(x){ptukey(uclrchart(x),n,Inf)-

ptukey(max(c(lclrchart(x),0)),n,Inf)} # Probability of no signal for the R chart 

CFAR=function(x){1-PNSxbar(x)*PNSrchart(x)} # Conditional Probability of a 

signal for the corrected limits (Xbar,R) charting scheme 
CARL=function(x){ CFAR(x)^-1*dchisq(x,v(m))} # Conditional ICARL for the 

corrected limits (Xbar,R) charting scheme   

b=qchisq(0.99999,v(m)) 

adaptIntegrate(CFAR,c(0),c(b),tol=1e-10)[[1]]} # Marginal ICARL for the 

corrected limits (Xbar,R) charting scheme   

 

ICARLxbarrchart=numeric(length(a)) 

for (j in 1:length(m)) { 

ICARLxbarrchart[j]= ICARL(m[j],a[j])} 

ICARLxbarrchart ]]} # Marginal ICARL for the corrected limits (Xbar,R) 

charting scheme   

 

B2. Unconditional ICARL of the  RX ,  charting scheme with corrected limits in 

Case UU 

 

n=5 # sample size 

m=c(5,30,100,500) # subgroup sizes 

a=c(0.001025,0.001290,0.001337,0.001350) # charting constants 

d2=function(n){ 

pt=function(w){1-ptukey(w,n,Inf)} 

integrate(pt,lower=0,upper=Inf)[[1]]} # constant d2 

d2=d2(n) 

EW2=function(n){ 

ptt=function(a){(1-ptukey(sqrt(a),n,Inf))} 

integrate(ptt,lower=0,upper=Inf)[[1]]} 

d3=function(n){ 

sqrt(EW2(n)-d2^2)} # constant d3 

d3=d3(n) 
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library(cubature) 

ICARL=function(m,a){ 

M=function(m){ 

d3^2/(m*d2^2)} 

r=function(m){  

(-2+2*sqrt(1+2*M(m)))^-1} 

t=function(m){ 

M(m)+1/(16*r(m)^3)} 

v=function(m){ 

(-2+2*sqrt(1+2*t(m)))^-1} # degrees of freedom v 

cc=function(m){ 

1+(1/(4*v(m)))+(1/(32*v(m)^2))-(5/(128*v(m)^3))} # constant c 

uclxbar=function(x){x[1]/sqrt(m)+qnorm(1-a[j]/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} # 

ucl xbar chart 

lclxbar=function(x){x[1]/sqrt(m)-qnorm(1-a[j]/2,0,1)*cc(m)*sqrt(x[2])/sqrt(v(m))} # 

ucl xbar chart 

PNSxbar=function(x){pnorm(uclxbar(x),0,1)-pnorm(lclxbar(x),0,1)} # Probability of 

no signal for the xbar chart 

uclrchart=function(x){ qtukey(1-a[j]/2,n,Inf) *cc(m)*sqrt(x[2])/sqrt(v(m))}# ucl R 

chart 

lclrchart=function(x){ qtukey(a[j]/2,n,Inf) *cc(m)*sqrt(x[2])/sqrt(v(m))} # lcl R 

chart 

PNSrchart=function(x){ptukey(uclrchart(x),n,Inf)-

ptukey(max(c(lclrchart(x),0)),n,Inf)} # Probability of no signal for the R chart 

AFAR=function(x){1-PNSxbar(x)*PNSrchart(x)} 

CICARL=function(x){ AFAR(x)^-1*dnorm(x[1],0,1)*dchisq(x[2],v(m))} # 

Conditional ICARL for the corrected limits (Xbar,R) charting scheme 
b=qchisq(0.99999,v(m)) 

adaptIntegrate(CICARL,c(-100,0),c(100,b),tol=1e-10)} # Marginal ICARL for the 

corrected limits (Xbar,R) charting scheme 
 

ICARLxbarrchart=numeric(length(m)) 

for (j in 1:length(m)) { 

ICARLxbarrchart[j]= ICARL(m[j],a[j])[[1]]} 

ICARLxbarrchart # Marginal ICARL for the corrected limits (Xbar,R) charting 

scheme 
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