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Introduction and preliminaries
Results and applications on fuzzy sets in several research disciplines are abundant in the 
background literature on the field. Related studies have been performed, for instance, 
in Schweizer and Sklar (1960), George and Veeramani (1994, 1997) and Grabiec (1983), 
Heilpern (1981), Vetro and Salimi (2013), Gregori and Sapena (1975) and references 
therein in the context of fuzzy metric spaces since its first introduction and formaliza-
tion by Zadeh (1965). In particular, a good background on statistical metric spaces is 
given in Schweizer and Sklar (1960) while some basic results for the analysis of fuzzy 
metric spaces are given in George and Veeramani (1994, 1997), Gregori and Sapena 
(1975) including the characterization of fixed points. Among the performed research 
on the subject, important effort has been devoted to the investigation of the existence 
and uniqueness of fixed points, best proximity points in cyclic mappings, proximal 
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mappings and partially ordered sets (Vetro and Salimi 2013; Basha 2012; Mongkolkeha 
et al. 2013; Vetro 2010; De la Sen et al. 2014, 2015; Gabeleh 2015; Rezapour et al. 2011; 
Al-Thagafi and Shahzad 2009), and also in probabilistic metric spaces (De la Sen and 
Karapinar 2013; De la Sen and Ibeas 2015, 2016). The study of fuzzy fixed points and its 
properties has been addressed in Grabiec (1983), Heilpern (1981), Gregori and Sapena 
(1975), Azam and Beg (2013), De la Sen et al. (2015), Rashid et al. (2015), Chauan et al. 
(2013b), that of fuzzy best proximity points in De la Sen et  al. (2015), those of com-
mon fuzzy fixed points in Azam and Beg (2013), Cho et al. (1998), Abbas et al. (2009), 
Phiangsungnoen et  al. (2014), Chauan et  al. (2013a, c) and optimal fuzzy best prox-
imity or coincidence points (Basha 2011; Azam and Beg 2013; Cho et al. 1998; Abbas 
et al. 2009; Phiangsungnoen et al. 2014; Chauan et al. 2013a, c). On the other hand, a 
detailed research devoted to related properties of convergence of sequences to those rel-
evant points. There are also studies devoted to such topics in classical metric spaces and 
Banach spaces, not necessarily under the fuzzy formalism, including a lot of research 
on contractive and non-expansive mappings, self-mappings and, in particular, on cyclic 
contractive and proximal mappings. See, for instance (Rezapour et al. 2011; Al-Thagafi 
and Shahzad 2009; Derafshpour et  al. 2010; De la Sen and Karapinar 2013; De la Sen 
et al. 2014), and there are also recent studies on the generalizations and comparison of 
several types of contractions in Khojasteh et al. (2015) with the introduction of the so-
called simulation function. Fixed point theory is also relevant to the stability properties 
of some iterative schemes or that of dynamic systems (De la Sen and Karapinar 2013; 
De la Sen and Ibeas 2014, 2015; De la Sen et al. 2015), as an alternative mathematical 
tool to other classical technique like, for instance, the analysis of Lyapunov stability or 
hyperstability. See, for instance Se la Sen et al. (2010, 2015), De la Sen (1986), March-
enko (2015a, b). It can be pointed out that recent work in fuzzy metric spaces and proba-
bilistic metric spaces can be found in Grabiec (1983), Cho et al. (1998) and Rashid et al. 
(2013a, b, c, 2015), respectively. Also, in Khojasteh et al. (2015), the so-called simulation 
function is introduced and discussed related to a new special generalized contraction 
which generalizes the Banach contraction and unifies several previously known types of 
contractions.

There are certain real- life problems for which fixed points, best proximity points, 
optimal coincidence points or optimal best proximity coincidence points do not exist so 
that their approximate counterparts are looked for in order to have an approximate solu-
tion of the problem at hand. We recall the following basic concepts:

If (X, d) is a metric space, A,B ⊆ X are nonempty then:

(1)	 x ∈ A is a fixed point of T : A → A if d(x, Tx) = 0,
(2)	 x ∈ A is an approximate fixed point of T : A → A if d(x,Tx) = inf {d(y,Tx) : y ∈ A},

(3)	 x  ∈  A is a best proximity point of T : A → B in A if d(x,Tx) =

d(A,B) = inf{d(z, y) : z ∈ A, y ∈ B},

(4)	 x  ∈  A is an approximate best proximity point of T : A → B in A if 
d(x,Tx) = inf {d(y,Tx) : y ∈ A}.

For the case of a pair of two mappings g : A → A and T : A → B one has:
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(5)	 x  ∈  A is an optimal best proximity coincidence point of the pair (g, T) if 
d(gx,Tx) = d(A,B),

(6)	 x ∈ A is an approximate optimal best proximity coincidence point of the pair (g, T) 
if d(gx,Tx) = inf {d(y,Tx) : y ∈ A}.

The various above concepts can be extended to the “fuzzy” formalism when dealing 
with fuzzy metric spaces.

The main objective of this paper is the investigation of some relevant properties of tan-
dems (g, T) of mappings, where g : A → A is a non-contractive fuzzy self-mapping and 
T : A → B is a fuzzy order preserving proximal so-called Ψ(σ, α)-lower-bounding map-
ping, where A, B ⊂ X, (X ,M, ∗, ≺) is a partially ordered non-Archimedean fuzzy metric 
space which is endowed with a fuzzy metric M, a triangular norm * (Schweizer and Sklar 
1960) and an ordering ≺, (Basha 2012; Rashid et al. 2015; Saleem et al. 2015). The above 
function σ defined from A × A to a subset of the natural numbers is the so-called switch-
ing law such that each associate sequence {σn} of its realization is parameterized by a 
sequence of positive real numbers {αn} which defines a growing condition (contractive, 
non-expansive or expansive) of the fuzzy set of the form

belongs to Ψ(σ, α)and {xn} ⊂ A with the values of {αn} remaining constant until a new 
switching at n = n∗i+1 occurs, i.e. σn = σn∗i

, αn = σn∗i
; ∀n ∈ [n∗i , n

∗
i+1) ∩ Z0+ where 

{n∗i } ⊂ Z0+ is either a strictly sequence (infinite switching) or a finite set (switching with 
a terminal switching point) of switching points. In particular, the existence, uniqueness 
and limit properties for proximal sequences of optimal fuzzy best proximity coinci-
dence points is investigated for such pairs of mappings under certain conditions on the 
switching rules. Note that stability under switched parameterizations is of interest in the 
fields of dynamic systems since those systems can be driven by different parameteriza-
tions through time. See, for instance De la Sen et al. (2015), De la Sen and Ibeas (2016), 
and references there in. “Optimal fuzzy best proximity coincidence points in partially 
ordered non-Archimedean fuzzy metric spaces for fuzzy order preserving proximal 
Ψ(σ, α)-lower-bounding mappings” section is devoted to present, state and prove the 
formal results. On the other hand, “Examples and associate particular results” section 
gives three application examples in subjects of stabilization of switched fuzzy discrete 
dynamic systems and best approximation of resolution of equations in linear algebra and 
establishes and proves some “ad hoc” specific related results.

Notation

R is the set of real numbers, R+ = {z ∈ R : z > 0}, R0+ = R+ ∪ {0},

Z is the set of integer numbers, Z+ = {z ∈ Z : z > 0}, Z0+ = Z+ ∪ {0},

cl(·) stands for the closure of the (·)-set,

M(xn+2, xn+1, t) ≥ ψσn

(

M
(

xn+1, xn,α
−1
n t

))

> M
(

xn+1, xn,α
−1
n t

)

;

∀n ∈ Z0+, t ∈ R+, ψσn : [0, 1] → [0, 1]

p̄ = {1, . . . , p},
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The subsequent equality holds for the t-norm ∗ : [0, 1]2 → [0, 1],

�A�2 =
√
�max(A

∗A) stands for the ℓ2-norm of the complex matrix or vector A and 
�max(A

∗A) denotes the maximum eigenvalue of A∗A.

Some technical definitions to be then used follow below:

Definition 1 (Schweizer and Sklar 1960)  A binary operation ∗ : [0, 1]2 → [0, 1] is said 
to be a continuous t-norm if

(i)		 * is continuous, commutative and associative,
(ii)	 a ∗ 1 = 1 for all a ∈ [0, 1],

(iii)	 a ∗ b ≤ c ∗ d if a ≤ c and b ≤ d.

The formalism of fuzzy sets was proposed by Zadeh in a general context (Zadeh 1965). 
The concept of fuzzy metric spaces has been generalized by using continuous t-norms 
in George and Veeramani (1994, 1997). The following formal definition of fuzzy sets on 
non-Archimedean fuzzy metric spaces will be then used through this manuscript:

Definition 2 (George and Veeramani 1994, 1997)  Let X be a nonempty set and * be a 
continuous t-norm. A fuzzy set M on X × X × [0,∞) is said to be a fuzzy metric on the 
non-Archimedean fuzzy metric space (X ,M, ∗) if for any x, y, z ∈ X, the following condi-
tions hold:

(i)		 M(x, y, t) > 0,

(ii)	 x = y if and only if M(x, y, t) = 1; ∀t ∈ R+,

(iii)	 M(x, y, t) = M(y, x, t),

(iv)	 M(x, y, max(t, s)) = M(x, z, t) ∗M(z, y, s); ∀t, s ∈ R+,
(v)		 M(x, y, ·) : [0,∞) → [0, 1] is left-continuous.

If the condition (iv) of Definition 2 is replaced with M(x, y, t + s) = M(x, z, t) ∗M(z, y, s); 
∀t, s ∈ R+ then (X ,M, ∗) is a (Archimedean) fuzzy metric space and M(x, y, ·) is non-
decreasing on [0,∞) and continuous on X2 × (0, ∞) (Grabiec 1983; Vetro and Salimi 2013; 
Chauan et al. 2013b; Abbas et al. 2015). If t = s then M(x, y, t) = M(x, z, t) ∗M(z, y, t);  
∀t ∈ R+ and M is said to be the strong metric on X. Each fuzzy metric M on X gen-
erates a Hausdorff topology τM whose base is the family of open balls of members 
BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε} for ε ∈ (0, 1), t ∈ R+, and a sequence {xn} con-
verges to x ∈ X with respect to τM if and only if limn→∞M(xn, x, t) = 1; ∀t ∈ R+. Note 
that, since property (iv) implies the above condition, any non-Archimedean fuzzy metric 
space is a fuzzy metric space.

Definition 3 (Vetro 2010)  Let A and B be two nonempty subsets of a non-Archime-
dean fuzzy metric space (X ,M, ∗). Define the sets A0(t) and B0(t) as

n
∗

i=m
M
(

x, y, ti
)

= M
(

x, ym, tm
)

∗M
(

ym, ym+1, tm+1

)

∗ · · · ∗M
(

yn, y, tn
)

,

A0(t) =
{

x ∈ A : M(x, y, t) = M(A,B, t) for some y ∈ B
}

,

B0(t) =
{

y ∈ B : M(x, y, t) = M(A,B, t) for some x ∈ A
}
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Definition 4 (Saleem et al. 2015)  Let Ψ be the set of all mappings ψ : [0, 1] → [0, 1] 
satisfying the following properties:

(i)		 ψ(0) = 0, ψ(1) = 1 and ψ(t) > t for t ∈ (0, 1) and it is continuous in (0, 1),
(ii)	 limn→∞ψn(t) = 1 if and only if t = 1.

The set Ψ(σ,  α) used in this paper generalizes the above concept with its elements 
being functions ψσn parameterized with the sequence of parameterizations of the switch-
ing law.

Optimal fuzzy best proximity coincidence points in partially ordered 
non‑Archimedean fuzzy metric spaces for fuzzy order preserving proximal Ψ(σ, 
α)‑lower‑bounding mappings
This section presents, enounces and proves the main formal results which are related to 
convergence of proximal sequences to existing fuzzy best proximity coincidence points 
in partially ordered non-Archimedean fuzzy metric spaces (X ,M, ∗,≺) for so-called 
fuzzy order preserving proximal Ψ(σ, α)-lower-bounding mappings where * is a triangu-
lar norm, ≺ is an ordering relation, X is a nonempty set and Mis a fuzzy set. Such a fuzzy 
set takes values in a sequence {Mσn} where the elements of the so-called switching rule 
{σn} ⊂ Z+ are defined from X × X × Z0+ to a subset of Z+.

Definition 5  Let A be a nonempty subset of a non-Archimedean fuzzy metric space 
(X ,M, ∗). See, for instance (Vetro and Salimi 2013; Chauan et  al. 2013c; Abbas et  al. 
2015). A self-mapping f on A is said to be

(1)	 a fuzzy isometry if M(fx, fy, t) = M(x, y, t) for all x, y ∈ A and t ∈ R+,

(2)	 fuzzy non-contractive if for any x, y ∈ A and t ∈ R+, we have M(fx, fy, t) ≤

M(x, y, t).

Definition 6  Let (X , ≺) be a preordered set and let A ⊆ X be nonempty sets. A map-
ping T : A → B is said to be nondecreasing, or order preserving with respect to a preor-
der relation ≺ on A0(t), if:

(a)	 the binary preorder relation ≺ on A is a partial order relation on A0(t),
(b)	 for any x, y in A if x ≺ y then Tx ≺ Ty.

See, for instance Grabiec (1983), Heilpern (1981) for recording some basic concepts on 
fuzzy mappings and related fixed point theory. The concepts of order preserving, order 
reversing and monotone mappings T : A → B have been discussed in Basha (2012), 
Abbas et al. (2015), where related results have been obtained. An “ad-hoc” adaption of 
the concept order preserving for the mapping T : A → B is proposed in the subsequent 
definitions:

Definition 7  Let (X , ≺) and (X ,M, ∗) be a preordered set and a non-Archimedean 
fuzzy metric space, respectively, and let A, B be nonempty subsets of X. A mapping 
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T : A → B is said to be a fuzzy order preserving proximal ψ-contraction if for some 
α ∈ (0, 1) and any u, v, x, y ∈ A, the following condition holds:

If the above conditions holds for any u, v, x, y ∈ A0(t) then T : A → B is said to be a 
weak fuzzy order preserving proximal ψ-contraction.

The contractions of Definition 7 are sometimes referred to as being contractions of 
type II (Abbas et al. 2015).

A more general concept than the above contractive one is that of proximal Ψ (σ ,α)

-lower-bounding mapping (which is non-necessarily contractive) as follows:

Definition 8  Let (X , ≺) and (X ,M, ∗) be a preordered set and a non-Archimedean 
fuzzy metric space, respectively, and let A, B be nonempty subsets of X.

1.		  A mapping T : A → B is said to be a fuzzy order preserving proximal (or a weak 
fuzzy order preserving proximal) Ψ(σ, α)-lower-bounding mapping if for any 
u, v, x, y ∈ A0(t) the following condition holds:

2.		  A mapping T : A → B is said to be a fuzzy order preserving strong proximal Ψ(σ, 
α)-lower-bounding mapping if for any given sequences {xn}, {un} ⊂ A the follow-
ing condition holds:

�∀n ∈ Z0+, where ψσn ∈ Ψ (σ ,α) for all t ∈ R+, α = α(x, y, σ(x, y,Z0+)) ∈ R+ is 
referred to as the growth evolution rule and σ : A× A× Z0+ → p̄ is referred to 
as the switching rule, where p̄ = {1, 2, . . . , p} ⊂ Z0+, and ψ ∈ Ψ (σ ,α).

Note that if xn  =  x, xn+1 = y (≺x), un+1  =  u and vn+1  =  v are in A0(t) and 
M(u,Tx, t) = M(v,Ty, t) = M(A,B, t) then νn+1 = ν(≺u) and M(un+1,un, t) ≥

ψ(M(xn+1, xn,α
−1t)). Thus, a strong fuzzy order preserving proximal Ψ(σ, α)-lower-

bounding mapping is also a (weak) fuzzy order preserving proximal Ψ(σ, α)-lower-
bounding mapping.

In the above definitions, p can be finite or infinite, the switching rule can be point-
dependent only, i.e. σ = σ(x, y), it can be iteration-dependent only, i.e. σ  =  σ(n) for 
n ∈ Z0+ when proximal sequences {xn} are built or both, i.e. σ = σ(x, y, n) for n ∈ Z0+ 
(which can be denoted for simplicity by σn = σn(x, y) for n ∈ Z0+). A particular 

x≺ y
M(u,Tx, t) = M(A,B, t)
M
�

v,Ty, t
�

= M(A,B, t)







⇒

�

u≺ v

M(u, v, t) ≥ ψ
�

M
�

x, y,α−1t
��

,

whereψ ∈ Ψ for all t ∈ R+

x≺ y
M(u,Tx, t) = M(A,B, t)
M(v,Ty, t) = M(A,B, t)







⇒

�

u≺ v

M(u, v, t) ≥ ψ
�

M
�

x, y,α−1t
��

xn≺ xn+1

M(un+1,Txn+1, t) ≥ M(un,Txn, t)

�

⇒







un≺un+1

M(un+1,un, t) ≥ ψσn

�

M
�

xn+1, xn,α
−1t

��

M(un,Txn, t) → M(A,B, t)
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well-known case is when no switching occurs, i.e. p = 1 and α = α(x, y) ∈ (0, ᾱ] ⊂ (0, 1).  
In this case, T : A → B is said to be a fuzzy order preserving proximal ψ-contraction. 
There is a background literature available on switched maps and applications to stabil-
ity of dynamic systems and convergence in probabilistic spaces. See, for instance De 
la Sen and Ibeas (2014, 2015, 2016), De la Sen et al. (2015) and references therein. The 
concept of best proximity points for non-proximal mappings is discussed in Gabeleh 
(2015) while giving and proving related results. The problem of common of common 
fuzzy fixed points in Azam and Beg (2013), Cho et al. (1998), Abbas et al. (2009), Phiang-
sungnoen et al. (2014), Chauan et al. (2013a, c) for compatible, weakly compatible, non-
compatible mappings, and, in Basha (2012) with application of the global minimization 
of multi-objective functions. Best proximity points are of interest in deterministic, fuzzy 
and probabilistic frameworks. See, for instance, Mongkolkeha et al. (2013), Vetro (2010), 
Gabeleh (2015), Rezapour et  al. (2011), Al-Thagafi and Shahzad (2009), Derafshpour 
et al. (2010), De la Sen and Karapinar (2013) and references therein. On the other hand, 
we have the following definition in the context of fuzzy metric spaces:

Definition 9  A point z in an abstract nonempty set X is said to be an optimal fuzzy 
best proximity coincidence point of the pair of mappings (g ,T ), where g : A → A is a 
self-mapping and T : A → B is, in general, a non-self mapping, A and B are nonempty 
subsets of X if M(gz,Tz, t) = M(A,B, t).

Definition 10 (Gregori and Sapena 1975)  A sequence {tn} of positive real numbers is 
said to be s-increasing if there exists n0 ∈ Z0+ such that tn+1 = tn + 1 for all n ≥ n0.

Definition 11 (Vetro and Salimi 2013; Gregori and Sapena 1975)  A fuzzy metric space 
(X, M, *) is said to have the property T if for any s-increasing sequence {tn} and any given 
real constant ɛ ∊ (0, 1), there exists n0 = n0(ε) ∈ Z0+ such that ∗∞n≥n0

M(x, y, tn) ≥ 1− ε 
for all n ≥ n0 and all x, y ∈ X.

The main result of this section is the subsequent one:

Theorem 12  Let (X ,M, ∗,≺) be a complete partially ordered non-Archimedean fuzzy 
metric space with the property T and let A, B ⊆ X be nonempty sets; ∀i ∈ p̄ with ≺ being 
a partial order defined on A0(t). Let a mapping T : A → B be continuous and fuzzy order 
preserving (with respect to ≺) proximal Ψ(σ, α)-lower-bounding and let g : A → A be sur-
jective, fuzzy non-contractive and inverse monotone mapping such that, for any x, y ∈ A, 
gx and gy are comparable with respect to ≺ only if x, y are comparable. Suppose also 
that each pair of elements of A0(t) has a lower-bound and an upper-bound, and that for 
any t > 0, A0(t) is nonempty, T(A0(t)) ⊆ B0(t) and A0(t) ⊆ g(A0(t)). Assume that for each 
given x0 ∈ A0(t) there exists some element x1 in clA0 (t) such that

Assume also that:
(a)		 αn = α(zn, zn+1, σn) ∈ R+; ∀n ∈ Z0+,
(b)	 ℓ−M(z0, z1,+∞) = limt→ω− limω→+∞ M(z0, z1, t) = 1 for any z0, z1 ∈ A0(t),

(1)M
(

gx1,Tx0, t
)

= M(A,B, t) with x0≺ x1
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(c)		 limn→∞

∏n
i=0 [α

−1
i (zi, zi+1, σi(zi, zi+1))] = +∞.

Then, the following properties hold:

(i)		 There exists z* ∈  clA0(t) which is an optimal fuzzy best proximity coincidence 
point of the pair (g, T) in A such that M(gz∗,Tz∗, t) = M(A,B, t) which is the limit 
of a proximal Cauchy convergent sequence {zn} ⊂ A0(t).

(ii)	 Let two distinct proximal sequences {xn} ⊂ A0(t) and {yn} ⊂ A0(t) be sub-
ject to identical growth evolution rule and switching law αn = α(xn, xn+1, n) = 
α(yn, yn+1, n) and σn = σ(xn, xn+1, n) = σ(yn, yn+1, n); ∀n ∈ Z0+. Then, both  
sequences are Cauchy convergent sequences to the same limit z* ∈ clA0(t) which is 
an optimal fuzzy best proximity coincidence point of the pair (g, T) in A.

(iii)	 Assume that all the Cauchy proximal sequences in A0(t), being convergent in 
clA0(t), are subject to identical growth evolution rule and switching law, as it is the 
case, in particular, if αn ∈ R+ and σn ∈ p̄ are iteration-dependent (and not point 
dependent) only. Then, all such Cauchy sequences converge to a unique optimal 
fuzzy best proximity coincidence point z* ∈ clA0(t) of the pair (g, T) in A.

Proof  Consider any proximal sequence {zn} ⊂ A0(t) being defined from some arbi-
trary given first element z0 ∈ A0(t) such that M(gz1,Tz0, t) = M(A,B, t) holds for some 
z1(∈ A0(t))≺ z0. Since T : A → B be continuous fuzzy order preserving (with respect to 
≺) proximal Ψ (σ ,α)-lower-bounding and g : A → A is surjective, fuzzy non-contractive 
and inverse monotone, it follows by contradiction that z1≺ z2. Assume that this is not 
the case. Since gz1 and gz2 are comparable what holds, by hypothesis, only if z1 and z2 are 
comparable then z1 ≻ z2 since z1≺ z2 is assumed false. But then gz1 ≻ gz2 which contra-
dicts gz1≺ gz2. Then, z1≺ z2 and, as a result, z0≺ z1≺ z2. Proceeding in the same way, we 
can build a sequence {zn} so that the proximal constraint M(gzn+1,Tzn, t) = M(A,B, t) 
holds for any given n ∈ Z0+ fulfilling zn−1 ≺  zn; ∀n ∈ Z+ and, furthermore, the set of 
inequalities:

∀t ∈ R+ where {σn}and {αn}, with σn = σ(zn, zn+1, n) ∈ p̄, αn = α(zn, zn+1, σn) ∈ R+ ; 
∀n ∈ Z0+, are the switching and growth evolution sequences, ψσn is in the set Ψ(σ, 
α); ∀n ∈ Z0+. Since ℓ−M(z0, z1,+∞) = 1 for any given z0, z1(≺z0) ∈ A0(t), and 
limn→∞

∏n
i=0 [α

−1
i (zi, zi+1, σi(zi, zi+1))] = +∞, then it follows from (2) and the prop-

erty T:

(2)

M(zn, zn+1, t) ≥ M
(

gzn, gzn+1, t
)

≥ ψσn−1

(

M
(

zn−1, zn,α
−1
n−1t

))

> M
(

zn−1, zn,α
−1
n−1t

)

≥ · · · ≥ M

(

z0, z1,

n−1
∏

i=0

[

α−1
i

]

t

)

;
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Thus, for any given ɛ  ∈  (0, 1), there exists N = N (ε) ∈ Z0+ such that 
M(zn, zn+1, t) > 1− ε and zn≺ zn+1 for any n(≥ N ) ∈ Z0+ and then {zn} ⊂ A0(t) 
is a Cauchy sequence for the given first element z0  ∈  A0(t). Such a sequence 
is convergent to some (X ,M, ∗,≺) since (X ,M, ∗,≺) is complete. Since 
M(z0, z1,

∏n−1
i=0 [α−1

i ]t) ≤ M(gzn, gzn+1, t) ≤ M(zn, zn+1, t); ∀t ∈ R+, {zn} → z∗, T is con-
tinuous and then one gets from (3)

∀t ∈ R+ and then z* ∈ clA0(t) which is an optimal fuzzy best proximity coincidence point 
of the pair (g, T) since {Tzn} → Tz∗ since T : A → B is continuous and {Tzn} → Tz∗, and

∀t ∈ R+, ∀n ∈ Z0+. Property (i) has been proved.

(ii)	 The fact that both proximal sequences are Cauchy and convergent to optimal 
fuzzy best proximity coincidence points of the pair (g, T) in A follows from Prop-
erty (i). It is now proved that both have the same limit under the same growth 
evolution rule and switching law. Assume, on the contrary, that there are two 
points x∗, y∗(�= x∗) ∈ clA0(t) such that there are two distinct convergent Cauchy 
sequences {xn} → x∗ and {yn} → y∗. Thus, for any given ε ∈ (0, 1) there exist 
Nx = Nx(ε),Ny = Ny(ε) ∈ Z0+ such that

where N = N(ɛ) = max(Nx, Ny), and

so that

with xn+1≺ xn≺ x∗ and yn+1≺ yn≺ y∗ for n ∈ Z0+. Then min(M(xm, x
∗, t),

M(ym, y
∗, t)) > 1− ε; ∀m(≥ M) ∈ Z0+; ∀t ∈ R+ and some M = M(ε)(≥ N ) ∈ Z0+,  

and,

Case a  if x* and y* are comparable then

(3)lim
ω→t−

lim
n→∞

M(zn, zn+1,ω) = 1; ∀t ∈ R+

(4)

1 = lim
ω→t−

lim
n→∞

M

(

z0, z1,

n−1
∏

i=0

[

α−1
i

]

ω

)

≤ lim
n→∞

M
(

gzn, gzn+1, t
)

≤ lim
n→∞

M(zn, zn+1, t) = lim
ω→t−

lim
n→∞

M
(

z∗, z∗, t
)

= 1;

(5)M
(

gz∗,Tz∗, t
)

= lim
n→∞

M
(

gzn+1,Tzn, t
)

= M(A,B, t);

min
(

M(xn, xn+1, t),M
(

yn, yn+1, t
))

> 1− ε; ∀n(≥ N ) ∈ Z0+

M
(

xn, x
∗, t

)

≥ M(xn, xn+1, t) ∗M
(

xn+1, x
∗, t

)

; ∀t ∈ R+

M
(

yn, y
∗, t

)

≥ M
(

yn, yn+1, t
)

∗M
(

yn+1, y
∗, t

)

; ∀t ∈ R+

lim
n→∞

M
(

xn, x
∗, t

)

= lim
n→∞

M
(

yn, y
∗, t

)

= 1; ∀t ∈ R+
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with N * = N*(ɛ) = M + N2 = N + N1 + N2 and some N1 = N1(ε),N2 = N2(ε) ∈ Z0+ . 
Then, since ɛ ∈ (0, 1) is arbitrary, limω→t−M(x∗, y∗,ω) = 1; ∀t ∈ R+ which implies that 
x* =  y*, provided they are comparable, a contradiction. Thus, any proximal sequence 
is a convergent Cauchy sequence all of them converging to the same unique limit 
z∗ ∈ clA0(t) provided that they are built with the same growth evolution rule and the 
same switching law.

Case b  In the case that there exist two non-comparable distinct limits 
x∗, y∗(�= x∗) ∈ clA0(t) for two proximal Cauchy convergent sequences, then it follows by 
contradiction also that x* =  y* from the assumption that g : A → A is inverse mono-
tone. Assume that x* ≠  y*. Thus, the convergent sequences {xn}  and {yn} are lower-
bounded and upper-bounded by the same sequences {un} and {ūn}, respectively, which 
are both of them bounded and totally ordered, of comparable terms and convergent, 
that is un+1≺un≺u∗ and ūn+1≺ ūn≺ ū∗ for all n ∈ Z0+. Then, from thee above case for 
comparable limits, u*and ū∗ are mutually comparable, then identical, and comparable as 
well to x*and y*so that u∗ ≺ x∗ ≺u∗ and u∗ ≺ y∗ ≺u∗ since ū∗ = u∗. Then, it follows that 
x* = y*. Property (i) has been proved. Property (iii) is a direct consequence of Property 
(ii). � □

Definition 13  Let A and B be two nonempty subsets of a non-Archimedean fuzzy met-
ric space (X ,M, ∗). The set B is said to be fuzzy approximatively compact with respect to 
A if each sequence {Txn} ⊂ B such that {M(x,Txn, t)} → M(x,B, t) for some x ∈ A has a 
convergent subsequence.

We can get the subsequent Corollary to Theorem 12:

Corollary 14  Theorem 12 holds “mutatis-mutandis” if B is fuzzy approximatively com-
pact with respect to A (even if  T : A → B is not everywhere continuous).

(6)

M
(

x∗, y∗, t
)

≥
(

M
(

xn+1, x
∗, t

)

∗M
(

y∗, yn+1, t
))

∗M
(

xn+1, yn+1, t
)

≥
(

M
(

xn+1, x
∗, t

)

∗M
(

y∗, yn+1, t
))

∗M
(

xn+1, yn+1, t
)

≥
(

M
(

xn+1, x
∗, t

)

∗M
(

y∗, yn+1, t
))

∗M
(

gxn+1, gyn+1, t
)

≥
(

M
(

xn+1, x
∗, t

)

∗M
(

y∗, yn+1, t
))

∗ ψσn

(

M
(

xn, yn,α
−1
n t

))

>
(

M
(

xn+1, x
∗, t

)

∗M
(

y∗, yn+1, t
))

∗M
(

xn, yn,α
−1
n t

)

≥ · · · ≥
(

M
(

xn+1, x
∗, t

)

∗M
(

y∗, yn+1, t
))

∗M

(

x0, y1,

n−1
∏

i=0

[

α−1
i

]

t

)

≥ ((1− ε) ∗ (1− ε)) ∗ (1− ε); ∀t ∈ R+, ∀n(≥ N ∗) ∈ Z0+
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Proof  The hypothesis of Theorem 12 still hold except that T : A → B is not necessar-
ily everywhere continuous while B is fuzzy approximatively compact with respect to A. 
Then, the first part of the proof of Theorem 12 is still applicable while one concludes that 
{zn} → z∗ is a convergent Cauchy sequence and that {gzn} → gz∗ for any chosen proxi-
mal sequence so that there is a convergent subsequence {Tznk }(⊂ {Tzn} ⊂ clA0(t)) → z̄∗ 
as k → ∞ for some z∗ ∈ clA0(t) since

leads to

as k , n → ∞ (thus, nk → ∞) and then z̄∗ = Tz∗. Assume the contrary z̄∗ �= Tz∗ so that 
one gets:

what leads to the subsequent contradiction since {Tznk } → z̄∗, ({Tzn} − {Tznk }) → 0 and 
{zn} → z∗:

Thus, z̄∗ = Tz∗ and z* ∈ clA0(t) which is an optimal fuzzy best proximity coincidence 
point of the pair (g, T) in A such that M(gz∗,Tz∗, t) = M(A,B, t) which is the limit of 
a proximal Cauchy convergent sequence {zn} ⊂ A0(t). This proves Property (i) of The-
orem  12 if the everywhere continuity condition of T : A → B is replaced with that of 
fuzzy approximative compactness. Properties [(ii)–(iii)] of Theorem  12 can be also 
proved under the condition replacing the continuity of T : A → B. � □

Theorem 12 and Corollary 14 also hold if T : A → B is a continuous fuzzy order pre-
serving (with respect to ≺) proximal Ψ (σ ,α)-lower-bounding mapping if constructed 
subsequences in the whole A converge asymptotically to be proximal subsequences 
(asymptotically convergent proximal sequences) converging to a unique optimal fuzzy 
best proximity coincidence point of (g, T) (Vetro and Salimi 2013; Abbas et al. 2015) in A 
so that M(gzn+1,Tzn, t) → M(A,B , t) as n → ∞. This can be set up more rigorously as 
follows.

(7)

M
(

gz∗,Tz∗, t
)

≥ lim inf
k→∞

M
(

gz∗,Tznk , t
)

= lim
k→∞

M
(

gznk , z̄
∗, t

)

= lim
k→∞

M
(

gz∗, z̄∗, t
)

= lim
k→∞

M
(

gz∗, z̄∗, t
)

= M(A,B, t)

(8)

(

M
(

gznTzn, t
)

−M
(

gz∗,Tznk , t
))

→ 0,

M
(

gz∗,Tz, t
)

→ M
(

gz∗,B, t
)

= M(A,B, t)

1 > M
(

z̄∗,Tz∗, t
)

≥
(

M
(

z̄∗,Tznk , t
)

∗M
(

Tznk ,Tzn, t
))

∗M
(

Tzn,Tz
∗, t

)

;

∀t ∈ R+, ∀n ∈ Z0+

(9)
1 >

(

lim
k→∞

M
(

z̄∗,Tznk , t
)

∗ lim
k ,n→∞

M
(

Tznk ,Tzn, t
)

)

∗ lim
n→∞

M
(

Tzn,Tz
∗, t

)

= (1 ∗ 1) ∗ 1 = 1
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Definition 15  Let

(1)  �(X ,M, ∗,≺) be a complete partially ordered non-Archimedean fuzzy metric space, 
g : A → A,

(2)  �T : A → B be a fuzzy order preserving (with respect to ≺) strong proximal Ψ (σ ,α)

-lower-bounding mapping (Definition 8.2).

A Cauchy sequence {zn} ⊂ A is said to be an asymptotically convergent proxi-
mal sequence with respect to (g, T) if zn+1≺ zn; ∀n ∈ Z0+, {zn} → z∗ and 
{M(gzn+1,Tzn)} → M(A,B, t) = M(gz∗,Tz∗, t).

Note that the limit z*of {zn} is an optimal fuzzy best proximity coincidence point of (g, 
T). Note also that the asymptotically convergent proximal sequence can have points in A 
which are not necessarily in clA0(t).

If, furthermore, T : A → B is continuous (or, alternatively, if Bis fuzzy approxima-
tively compact with respect to A) and g : A → A is surjective, fuzzy non-contractive and 
inverse monotone mapping such that, for any x, y ∈ A, gx and gx are comparable with 
respect to ≺ only if x, y are comparable then the following extensions of Theorem 12 and 
its counterpart of Corollary 14 follow:

Theorem 16  Let (X ,M, ∗,≺) be a complete partially ordered non-Archimedean fuzzy 
metric space with the property T and let A, B ⊆ X be nonempty sets with ≺ being a par-
tial order defined on A0(t). Let a mapping T : A → B be continuous and fuzzy order pre-
serving [with respect to ≺ (Basha 2012)] strong proximal Ψ(σ, α)-lower-bounding and let 
g : A → A be surjective, fuzzy non-contractive and inverse monotone mapping such that, 
for any x, y ∈ A, gx and gy are comparable with respect to ≺ only if x, y are comparable. 
Suppose also that each pair of elements of A0(t) has a lower-bound and an upper-bound, 
and that for any t > 0, A0(t) is nonempty, T(A0(t)) ⊆ B0(t) and A0(t) ⊆ g(A0(t)). Assume 
that for each given x0 ∈ A0(t) there exist some element x1 in clA0 (t) such that

Assume also that:

(a)		 αn = α(zn, zn+1, σn) ∈ R+; ∀n ∈ Z0+,

(b)	 ℓ−M(z0, z1,+∞) = limω→t− limt→+∞M(z0, z1, t) = 1 for any z0, z1 ∈ A0(t),

(c)		 limn→∞

∏n
i=0

[

α−1
i (zi, zi+1, σi(zi, zi+1))

]

= +∞

 
Then, the following properties hold:

(i)		 There exists z∗ ∈ clA0(t) which is an optimal fuzzy best proximity coincidence 
point of the pair (g, T) in A such that M(gz∗,Tz∗, t) = M(A,B, t) which is the limit 
of some sequence {zn} which is asymptotically convergent proximal Cauchy with 
respect to the pair (g, T),

(ii)	 Let two distinct proximal sequences {xn} ⊂ A and {yn} ⊂ A be subject to identical 
growth evolution rule and switching law αn = α(xn, xn+1, n) = α(yn, yn+1, n) and 
σn = σ(xn, xn+1, n) = σ(yn, yn+1, n); ∀n ∈ Z0+. Then, both sequences are asymp-

(10)M(gx1,Tx0, t) = M(A,B, t) with x0≺ x1
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totically convergent proximal Cauchy sequences to the same limit z* ∈  clA0(t) 
which is an optimal fuzzy best proximity coincidence point of the pair (g, T) in A,

(iii)	 Assume that all the asymptotically convergent proximal Cauchy sequences in A, 
being convergent in clA0(t), are subject to identical growth evolution rule and 
switching law, as it is the case, in particular, if αn ∈ R+ and σn ∈ p̄ are iteration-
dependent (and not point dependent) only. Then, all such Cauchy sequences con-
verge to a unique optimal fuzzy best proximity coincidence point z* ∈ clA0(t) of the 
pair (g, T) inA. 

Sketch of proof  Now take z0 ∈ A(arbitrary) and some existing z1(≺z0), zn+1(≺zn) such 
that {zn}  ⊂  A. {Tzn} ⊂ B and M(gzn+1,Tzn,α

−1
n t) ≤ M(gzn+2,Tzn+1, t) ≤ M(A,B, t); 

∀n ∈ Z0+. Since T : A → B is a fuzzy order preserving strong proximal Ψ (σ ,α)-lower-
bounding mapping and g : A → B is surjective, fuzzy non-contractive and inverse 
monotone mapping such that, for any x, y ∈ A, gx and gy are comparable with respect 
to ≺ only if x, y are comparable, one has for any built subsequence zn ∈ {zn} ⊂ A of the 
whole iterative process, since ψ : [0, 1] → [0, 1] is in the set Ψ, and one gets that (2)–(4) 
and (6) still hold, but now {zn} ⊂ A, and also

One can conclude from the steps of the proof of Theorem 12 and from the sketch of 
proof of Corollary 14 that M(zn−1, zn, t) → M(A,B, t) as n → ∞so that the subsequence 
zn converges to a best proximity point in cl(A0(t)) which is an optimal fuzzy best proximity 
coincidence point of (g, T)inA, that is, {M(gzn+1,Tzn, t)} → M(A,B, t) = M(gz∗,Tz∗, t). 
This proves Property (i) while Properties [(ii)–(iii)] follow under the added assumptions 
as their counterparts of Theorem 12. � □

Corollary 17  Theorem 16 also holds for asymptotically convergent proximal sequences 
with respect to (g, T) if B is fuzzy approximatively compact with respect to A (even if 
T : A → B is not everywhere continuous). �

The following result, which is a consequence of Theorem  16 and Corollary 17, is of 
interest for its use in real situations:

Corollary 18  Let (X ,M, ∗,≺) be a complete partially ordered non-Archimedean fuzzy 
metric space and let A, B ⊆ X be nonempty sets with ≺ being a partial order defined on 
A0(t), such that the following conditions hold:

(1)	 Either (X ,M, ∗,≺) possesses the property T or, alternatively, M(x, y, ·) : [0,∞)

×[θ ,∞) → [0, 1] is strictly increasing for some θ ∈ R0+,
(2)	 The mapping g : A → A is surjective, fuzzy non-contractive and inverse monotone 

such that, for any x, y ∈ A, gx and gy are comparable with respect to ≺ only if x, y 
are comparable,

(11)

M(A,B, t) ≥ M(zn, zn+1, t) ≥ M
(

gzn, gzn+1, t
)

≥ ψ

(

M
(

zn−1, zn,α
−1
n−1t

))

> M
(

zn−1, zn,α
−1
n−1t

)

; ∀n ∈ Z0+
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(3)	 Each pair of elements of A0(t) has a lower-bound and an upper-bound, and 
for any t  >  0, A0(t) is nonempty, T(A0(t))  ⊆  B0(t) and A0(t) ⊆ g(A0(t)) and 
also, for each given z0 ∈  A0(t), there exist some element z1 in clA0 (t) such that 
M(gz1,Tz0, t) = M(A,B, t) with z0≺ z1, and ℓ−M(z0, z1,+∞) = 1 for any 
z0, z1 ∈ A0(t),

(4)	 The mapping T : A → B is fuzzy order preserving strong proximal Ψ(σ, 
α)-lower-bounding, such that any sequence {zn} ⊂ A built accordingly to 
M(gzn+2,Tzn+1, t) ≥ M(gzn+1,Tzn,α

−1
n t); ∀n ∈ Z0+, ∀t ∈ R+, and subject to a 

switching law and associate growth evolution rule defined by:

with α
n∗1
0 < 1

α
n∗i+1−n∗i
n∗i

 for some j = j(n∗i ) ∈ p̄: (a) either strictly increas-

ing sequence {n∗i } ⊆ Z0+, or (b) some finite strictly ordered set of nonnega-
tive integers with ℓ̄ = card{n∗i : i = 1, 2, . . . , ℓ} and αℓ ∈  (0,  1), with n∗0 = 0 and 
(n∗i+1 − n∗i ) ≤ N < ∞; ∀i ∈ Z0+, of switching points, that is σn∗i+1

�= σn∗i
, with 

σn∗i
, σn∗i+1

∈ p̄, and αn∗i+1
= ασ(n∗i+1)

�= αn∗i
= ασ(n∗i )

; ∀i ∈ Z0+.
 

Then, Theorem 16 holds if T : A → B is continuous and Corollary 17 holds if B is fuzzy 
approximatively compact with respect to A.

Outline of the proof  The proof follows from the fact that n0
* = 0, and

(a) 	�if {n∗i } ⊆ Z0+ is a strictly increasing sequence (i.e. there are infinitely many switches), 
then

since:

(b) 	if there is a finite number of ℓ switches and αℓ ∈ (0, 1) then

(12)

σn = σn(zn, zn+1, n) = σn∗i
= σj = σj(n∗i )

for all n(∈ Z0+) ∈
[

n∗i , n
∗
i+1

)

αn = αn(zn, zn+1, n) = αn∗i
= αj = αj(n∗i )

,

∀n(∈ Z0+) ∈
[

n∗i , n
∗
i+1

)

, ∀i ∈ Z0+ which satisfy the constraint:

i
∏

j=0

[

α
n∗j+1

n∗j

]

α
n∗i+2−n∗i+1

n∗i+1
< 1; ∀i ∈ Z0+

(13)

lim sup
n→∞

n
∏

i=0

[

α−1
i (zi, zi+1, σi(zi, zi+1))

]

= lim
i→∞

i
∏

j=0

[

α
−

(

n∗j+1−n∗j

)

n∗j

(

zj , zj+1, σj
(

zj , zj+1

))

]

= +∞

i
∏

j=0

[

α
n∗j+1

n∗j

]

< 1; ∀i ∈ Z
+
0 and lim

i→∞

i
∏

j=0

[

α
n∗j+1

n∗j

]

< 1

i
∏

j=0

[

α
n∗j+1

n∗j

]

< 1 for i ∈ ℓ̄ = card
{

n∗i : i = 1, 2, . . . , ℓ
}
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so that limn→∞

∏n
i=0 [α

−1
i (zi, zi+1, σi(zi, zi+1))] = +∞. Then from Theorem  16,  

or, eventually, from Corollary 17, it follows {zn} → z∗ and, furthermore, 
{M(gzn+1,Tzn, t)} → M(A,B, t) = M(gz∗,Tz∗, t) for some z∗ ∈ clA0(t).� □

Corollary 19  Corollary 18 holds, under the same assumptions, if (12) is replaced with:

Sketch of proof  Note that (13) guarantees that (12) holds for all i ∈ Z0+ with n∗0 = 0. � □

Corollary 20  Corollaries 18 and 19 also hold, under the same assumptions, if there is 
some strictly increasing sequence of marked switching points {n∗i∗} ⊆ {n∗i }, with first ele-
ment n∗0∗ = n∗0 = 0, fulfilling the following condition instead of (12):

Sketch of proof  Note from (14) that

where card J (i∗, (i + 1)∗) = n∗
(i+1)∗ − n∗i∗ =

∑(i+1)∗−1
j=i∗ n∗j+1 − n∗j . Then, it follows as in 

the proof of Corollary 16 that

� □

Remark 21  Note that p, such that ∞ ≥ p ≥ 1, in Corollary 18 is the number of available 
configurations for switching, i.e. the “switching” is reflected in the inequalities related 
to the mapping M : A× A× [0,∞) → [0, 1] for an asymptotically convergent proximal 
sequence {zn} ⊂ A which converge to an optimal fuzzy best proximity coincidence point 
in A0(t), under the hypotheses of Corollary 18, as follows:

(14)
α
n∗1
0 <

1

α
n∗i+1−n∗i
n∗i

, α
n∗i+2−n∗i+1

n∗i+1
<

1

α
n∗i+1−n∗i
n∗i

; ∀i ∈ Z0+

(15)

n(i+1)∗−1
∏

j=ni∗

[

α
n∗j+1

n∗j

]

< 1 for all n∗i∗ ∈
{

n∗i∗
}

(16)

n(i+1)∗−1
∏

j=ni∗

[

α
n∗j+1

n∗j

]

=
∏

j∈J (i∗,(i+1)∗),i∈Z0+

[

α
n∗j+1−n∗j
n∗j

]

< 1 for all n∗i∗ ∈
{

n∗i∗
}

lim sup
n→∞

n
∏

i=0

[

α−1
i (zi, zi+1, σi(zi, zi+1))

]

= lim
i→∞

i
∏

j=0

[

α
−

(

n∗j+1
−n∗j

)

n∗j

(

zj , zj+1, σj
(

zj , zj+1

))

]

= +∞

(17)

M(zn+2, zn+1, t) ≥ M
(

gzn+2, gzn+1, t
)

≥ ψσn∗i

(

M
(

zn+1, zn,α
−1
n∗i

t
))

> M
(

zn+1, zn,α
−1
n∗i

t
)

�= M
(

zn+1, zn,α
−1
n−1t

)

if n = n∗i for any given i ∈ Z0+

M(zn+2, zn+1, t) ≥ M
(

gzn+2, gzn+1, t
)

≥ ψσn∗i−1

(

M
(

zn+1, zn,α
−1
n t

))

> M
(

zn+1, zn,α
−1
n t

)

= M
(

zn+1, zn,α
−1
n∗i−1

t
)

if n ∈
[

n∗i−1, n
∗
i

)

for any given i ∈ Z+.
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Remark 22  Note that for some given p such that ∞ ≥ p ≥ 1,

Thus, it turns out that a necessary condition for Corollary 18 to hold is that αn ∈ (0, 1) 
for at least some n ∈ p̄. It turns also out that if the switching law is such that in the case 
when S = {ni

*} is a strictly ordered finite set (i.e. only a finite number of switches is per-
formed) with n∗max = max{n ∈ S}, and in this case necessarily p < ∞, then αn∗max

∈ (0, 1).

Examples and associate particular results
Three worked examples are given in this section which are related to two useful applica-
tions related, in particular, to stabilization of switched fuzzy discrete dynamic systems 
and to best approximation of resolution of equations in linear algebra. Some “ad hoc” 
specific related results are also established and proved.

Example 23  (X ,M, ∗,≺) be an ordered set and a non-Archimedean fuzzy metric space 
(Vetro and Salimi 2013; Chauan et al. 2013b; Abbas et al. 2015) endowed with a fuzzy 
metric Mσn

(

x, y,αn
)

= t
t+d(x,y); ∀x, y ∈ X, ∀t ∈ R+, where d : X × X → R0+ is the met-

ric of the Banach space (X , �·�), being also a complete metric space (X , d), the distance 
being identified with the norm, where:

(1)	 X = A = B = R,

(2)	 σn ∈ p̄ = {1, 2, . . . , p} is a numerable set of switching laws for some p ∈ Z+ with 
parameterizations αn ∈ Ω = {α1,α2, . . . ,αp} ⊂ R+ (see Remark 22), ψσn ∈ Ψ  is 
defined by ψσn(t) = t1/m(σn); ∀n ∈ Z0+ where m(σn) ∈ Z+; ∀n ∈ Z0+

(3)	 T : R → R is a fuzzy order preserving strong proximal Ψ (σ ,α)-lower-bounding 
mapping which, together with the non-contractive invertible mapping g : R → R,  
describes the solution of the positive discrete nth dimensional linear system as  
follows:

	 for any initial condition x0 = a ∈ R
n, vn = Qnxn; ∀n ∈ Z0+ quantifies the unmod-

eled dynamics (De la Sen et al. 2010; De la Sen 1986; Marchenko 2015a, b), and 
An,Gn,Qn ∈ R

n×n; ∀n ∈ Z0+. This implies that:

provided that Gn is nonsingular; ∀n ∈ Z0+. If I denotes the n-th identity matrix then
 

The condition (11) holds if:

σn ∈ p̄ = {1, 2, . . . , p}, αn ∈ Ω =
{

α1,α2, . . . ,αp
}

; ∀n ∈ Z0+

(18)Gnxn+1 = Anxn + vn; ∀n ∈ Z0+

(19)Gnxn+1 = (An + Qn)xn; ∀n ∈ Z0+

(20)�xn+1 − xn� =

∥

∥

∥

(

G−1
n (An + Qn)− I

)

xn

∥

∥

∥
; ∀n ∈ Z0+

(21)

t

t +
�

�

�

�

G−1
n (An + Qn)− I

�

xn

�

�

�

≥





t

t + αn

�

�

�

�

G−1
n−1(An−1 + Qn−1)− I

�

xn−1

�

�

�





1/mn

>
t

t + αn

�

�

�

�

G−1
n−1(An−1 + Qn−1)− I

�

xn−1

�

�

�

; ∀n ∈ Z+
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where mn = m(σn−ℓ(n)) and αn  =  α(σn−ℓ(n)); ∀n ∈ Z0+ for some ℓ(n) ∈ Z0+ . Note 
that if ℓ(n)  =  0, then there is a switching at the nth iteration so that either 
αn = α(σn) ≠ αn−1 = α(σn−1) or mn = m(σn) ≠ mn−1 = m(σn−1). Note that at least one of 
the two values should be distinct from its value at the preceding iteration step if there is 
a switching at the n-th iteration so that σn(�= σn−1) ∈ p̄

or, using (19) to calculate xn:

Since mn ≥ 1, the lower-bound of (23) is zero at t = 0 and decreasing to (−∞) in R+ 
for any n ∈ Z0+. Then, it is satisfied for any nonnegative real sequence {αn}. Note that

(a) 	� if mn = 1, which leads to the use of the last right-hand-side lower-bounding in (21) 
irrespective of the particular used functions in the set Ψ (σ ,α), then (23) becomes:

�where the superscript T denotes matrix and vector transposition and, if λmax(·) 
and λmin(·) denote, respectively, the maximum and minimum eigenvalue of the 
symmetric (·)-matrix and λ(·) denotes some eigenvalue of the (·)-matrix, then

and

is a sufficient condition for (24) to hold.

(b) 	� if mn > 1, then ψσn(z) = z1/m(σn) > z for z ∈ (0, 1) leads to the same conclusion and 
(25) is a sufficient condition for (23) to hold for all t ∈ R+. Then (11) also holds if 
(25) holds, i.e. M(xn, xn+1, t) > M(xn−1, xn,α

−1
n−1t); ∀n ∈ Z+, ∀t ∈ R+. Thus, one 

gets the following result:

Proposition 24  Assume that, for any given x0 = a ∈ R
n:

(A)	 If eTi (G
−1
n−1(An−1 + Qn−1)− I)xn−1 �= 0 then, for each i ∈ p̄ and n ∈ Z+, either

or eTi (G
−1
n (An + Qn)− I)xn = 0,

(22)

∥

∥

∥

(

G
−1
n (An +Qn)− I

)

xn

∥

∥

∥
≤

(

t + αn

∥

∥

∥

(

G
−1
n−1(An−1 +Qn−1)− I

)

xn−1

∥

∥

∥

)1/mn

t
(mn−1)/mn − t;

∀n ∈ Z+, ∀t ∈ R+,

(23)

αn ≥

((∥

∥

∥

(

G−1
n (An + Qn)− I

)

G
−1
n−1(An−1 + Qn−1)xn−1

∥

∥

∥+ t

)

t−mn − 1

)

t

∥

∥

∥

(

G
−1
n−1(An−1 + Qn−1)− I

)

xn−1

∥

∥

∥

; ∀n ∈ Z+; t ∈ R+

(24)αn ≥
�MnRn−1xn−1�

�Mn−1xn−1�
=

(

xTn−1R
T
n−1M

T
n MnRn−1xn−1

xTn−1M
T
n−1Mn−1xn−1

)

1/2

Mn = G−1
n (An + Qn)− I; Rn = G−1

n (An + Qn) = Mn + I;

(25)

αn ≥

√

�max

(

R
T
n−1

MT
n MnRn−1

)

�min

(

M
T
n−1

Mn−1

)

=
|�(MnRn−1)|max

|�(Mn−1)|min

=
|�(Mn(Mn−1 + I))|max

|�(Mn−1)|min

sgn

[

e
T
i

(

G
−1
n (An + Qn)− I

)

xn

]

= sgn

[

e
T
i

(

G
−1
n−1(An−1 + Qn−1)− I

)

xn−1

]

; ∀i ∈ p̄,
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(b)	

where ei is the ith unity vector in the canonical basis of Rn.
(B)	� Assume also that a switching law σ : R2 × Z0+ → p̄ with a growth evolution rule 

αn = α(xn+1, xn, σ(xn+1, xn,Z0+)) ∈ Ω which satisfies (25) and

The constraint (26) is guaranteed, in particular, if the switching rule obeys the initial 
constraint αn∗1

0 < 1

α
n∗i+1−n∗i
n∗i

 and some of the constraints below which guarantee that (26) 
holds:

where {n∗i } and {n∗i∗} ⊆ {n∗i } are, respectively, the sets of switching points and marked set 
of switching points. Then, limn→∞M(xn, xn+1, t) = 1 and {xn} converges.

Proof  The given first assumption (a) together with the constraints (25), or (23), guar-
antees a component-wise ordering and also that T : R → R is a fuzzy order preserving 
strong proximal Ψ (σ ,α)-lower-bounding mapping. If the switching law, with its asso-
ciate growth rule, satisfies (26) or, in particular any of the constraints (27)–(29), then, 
limn→∞M(xn, xn+1, t) = 1 and {xn} converges from Theorem 16 and Corollaries 18–20. 
� □

The following particular result of Proposition 24 for Example 23 is relevant in practical 
cases for this problem under conditions of positivity and decreasing conditions of the 
solution.

Example 25  A particular case of interest of Example 23/Proposition 24 follows below 
under conditions of positivity of the solutions (i.e. A = B = R

n
0+) being strictly decreas-

ing to a zero equilibrium point.

Proposition 26  The following properties hold:

(i)		 Assume that the entries of the sequences of matrices {An} and {Qn} satisfy the entry-
per-entry constraint (Qn)ij ≥ −(An)ij; ∀i, j ∈ n̄, ∀n ∈ Z0+ and that the sequence 

eTi (G
−1
n−1(An−1 + Qn−1)− I)xn−1 = 0 ⇒ eTi (G

−1
n (A+ Qn)− I)xn = 0

(26)lim
n→∞

n
∏

i=0

[

α−1
i (xi, xi+1, σi(xi, xi+1))

]

= +∞

(27)(1)

i
∏

j=0

[

α
n∗j+1

n∗j

]

α
n∗i+2−n∗i+1

n∗i+1
< 1,

(28)
(2) α

n∗i+2−n∗i+1

n∗i+1
<

1

α
n∗i+1−n∗i
n∗i

; ∀i ∈ Z0+,

(29)(3)

n(i+1)∗−1
∏

j=ni∗

[

α
n∗j+1

n∗j

]

< 1 for all n∗i∗ ∈
{

n∗i∗
}(

⊆
{

n∗i
})
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{Gn} consist of monomial (or generalized permutation) matrices with its nonzero 
entries being positive. Then, {G−1

n (An + Qn)} ⊂ R
n×n
0+ .

(ii)	 Assume that the sequences {(An + Qn)} and {(An + Qn)
−1Gn} are, respectively, 

nonsingular and consist of monomial matrices. Then, {G−1
n (An + Qn)} ⊂ R

n×n
0+ .

(iii)	 Assume that a ∈ R
n
0+, {G−1

n (An + Qn)} ⊂ R
n×n
0+  (equivalently if (An + Qn)

−1Gn 
and it is a monomial matrix) and 1 > �max(((A

T
n + QT

n )G
−T
n G−1

n (An + Qn))); 
∀n ∈ Z0+ and that the assumption B of Proposition 24 holds for 
a switching law σ : R2 × Z0+ → p̄ with a growth evolution rule 
αn = α(xn+1, xn, σ(xn+1, xn,Z0+)) ∈ Ω. Then, limn→∞M(xn, xn+1, t) = 1 and 
{xn} → 0.

Proof  If (Qn)ij ≥ −(An)ij; ∀i, j ∈ n̄, ∀n ∈ Z0+ then {(An + Qn)} ⊂ R
n×n
0+  and if 

Gn ∈ R
n×n; ∀n ∈ Z0+ is monomial then {G−1

n } ⊂ R
n×n
0+ . As a result, direct calculus via 

matrix multiplication yields G−1
n (An + Qn) ∈ R

n×n
0+ ; ∀n ∈ Z0+. Property (i) has been 

proved. If (An + Qn)
−1Gn; ∀n ∈ Z0+ exists and is monomial then G−1

n (An + Qn) ∈ R
n×n
0+  

(since the inverse of a positive matrix is positive if and only if such a matrix is mono-
mial); ∀n ∈ Z0+ and Property (ii) follows.

Now, note that:

has all its components nonnegative for any n ∈ Z0+ if {xn} ⊂ R
n
0+ and 

{I − G−1
n (An + Qn)} ⊂ R

n×n
0+  (then xn+1≺ xn, with the ordering “≺” (Basha 2011, 2012), being 

defined as component-wise “≤”-ordering, and {G−1
n (An + Qn)} is a sequence of convergent 

matrices; ∀n ∈ Z0+) which is guaranteed if 1 > �max(((A
T
n + QT

n )G
−T
n G−1

n (An + Qn)));  
∀n ∈ Z0+. On the other hand, {xn} ⊂ R

n
0+ if a ∈ R

n
0+ and G−1

n (An + Qn) ∈ R
n×n
0+ . Since 

xn+1≺ xn; ∀n ∈ Z0+, a ∈ R
n
0+ and {xn} ⊂ R

n
0+ , under the assumptions of Property (iii), then 

limn→∞M(xn, xn+1, t) = 1 and {xn} → 0 . � □

Example 27 (Generalized matrix inversion to calculate optimal approximate solu-
tions)  Define the mappings gand T by respective matrix sequences {Gn} ∈ C

s×q and, 
{Ln} ∈ C

s×q and {Bn} ∈ C
s×r, with s ≤ q, to solve either exactly or approximately solved 

the proximal constraint in Xn+1 for any given Xn and any n ∈ Z0 with {Xn} ⊂ C
q×r:

It is well-known from the Rouché–Froebenius theorem from linear alge-
bra that for the case of constant matrices Gn  =  G, Ln  =  L, Bn  =  B, Xn  =  X; 
∀n ∈ Z0+ , there are infinitely many solutions (compatible indeterminate system) if 
rank(G − L) = rank(G − L,B) ≤ min(q, s) = s and a unique one X = (G − L)−1B if the 
above rank equality holds with rank(G − L) = q = s. If the system is compatible inde-
terminate or if it is incompatible [i.e. rank(G − L) < rank(G − L,B) ≤ s = min(q, s)]  
then best approximations to the solutions can be computed in the sense of minimizing 
�GX − LX − B� in X for some prefixed matrix norm. The approximated solutions through 

(30)−x̃n = xn − xn+1 =

(

I − G−1
n (An + Qn)

)

xn; ∀n ∈ Z0+

(31)GnXn+1 = LnXn + Bn; ∀n ∈ Z0+
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an iterative process in (31) is stated so as to solve the next iteration either exactly or approxi-
mately in {Xn}:

Let G†
n be the generalized inverse (or pseudoinverse) ofGn. If Gn ∈ C

s×q is of rank rn ≤ s 
then there exist Cn ∈ C

s×rn and Dn ∈ C
rn×q such that the following factorization exists 

Gn = CnDn; ∀n ∈ Z0+ and G†
n = D∗

n(DnD
∗
n)

−1(C∗
nCn)

−1C∗
n; ∀n ∈ Z0+, where the super-

script “*” stands for the complex conjugate, is the so-called Moore–Penrose generalized 
inverse (Barnett 1971; Moore 1935; De la Sen et al. 2014). Any solution sequence {Xn} of 
(32) is given by

where I is the qth identity matrix, for any given arbitrary sequence {Yn} ⊂ C
q×r provided 

that the following necessary and sufficient condition for a solution to exist holds:

It is known that for any n ∈ Z0+ and any given Xn ∈ C
q×r the best approximation solu-

tion (33) of (32) is obtained if Yn = 0, i.e.

Theorem  28  Assume that there exist sequences {L̃n} ⊂ C
s×q and {M̃n} ⊂ C

s×q such 
that Bn = L̃nXn and Yn = M̃nXn; ∀n ∈ Z0+. Then, the following properties hold:

(i)		 Define the matrix sequence {Hn} ⊂ C
q×q of elements:

	 If either lim supn→∞�Hn�2 ≤ 1 or if 
∑∞

i=0 (I −Hn) is bounded and positive semidefi-
nite then the solution iteration sequence {Xn} of (33) fulfils limn→∞X∗

nXn = X̄ = X̂∗X̂ 
with 

∥

∥X∗
nXn

∥

∥ = �Xn�
2
2 < ∞; ∀n ∈ Z0+ and 

∥

∥

∥X̂
∥

∥

∥

2
< ∞.

(ii)	 Consider the best approximation solution X0 = (G − L)†B solution nominal alge-
braic equation GX = LX + B.Then the solution to the iterative scheme (31) with 
Gn = G, Ln = L and Bn = B; ∀n ∈ Z0+ converges to X0 if

(a)	
∥

∥

∥G
†
L
∥

∥

∥

2
< 1

(b)	  the involved G, L and B matrices are real and G is full row rank (i.e. it is 
associated with a surjective mapping) and −(G

†
L) ≥ 0 (i.e. G†

L has no posi-
tive entry).

(32)GnXn+1 = LnXn + Bn; ∀n ∈ Z0+

(33)Xn+1 = G†
n(LnXn + Bn)+

(

I − G†
nGn

)

Yn; ∀n ∈ Z0+,

(34)
(

I − GnG
†
n

)

(LnXn + Bn) = 0; ∀n ∈ Z0+

(35)

X
0
n+1 = G

†
n(LnXn + Bn)

= Arg
(

Xn+1 ∈ C
q×r : �GnXn+1 − LnXn − Bn� <

∥

∥GnX̄n+1 − LnXn − Bn

∥

∥, ∀X̄n+1 ∈ C
q×r

)

(36)

Hn =

[(

L
∗
nG

∗†

n + G
†
nLn

)

+

(

L̃
∗
nG

∗†

n + M̃
∗
n

(

I − G
∗
nG

∗†

n

))(

G
†
nL̃n +

(

I − G
†
nGn

)

M̃n

)

+ L
∗
nG

∗†

n

(

G
†
nL̃n +

(

I − G
†
nGn

)

M̃n

)

+

(

L̃
∗
nG

∗†

n + M̃
∗
n

(

I − G
∗
nG

∗†

n

))

G
†
nLn

]

; ∀n ∈ Z0+
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(iii)	 Assume that all the conditions of Property (i) hold and consider the iterative scheme 
(31) with {Gn} → G, {Ln} → L and {Bn} → B. Then, lim supn→∞

∥

∥X0
n − X0

∥

∥ ≤ Kδ
1−ρ

 

where K ∈ R+, ρ ∈ (0, 1) and δ = o

[

supn∈Z0+

(∥

∥

∥B̃n

∥

∥

∥

2
+

∥

∥

∥L̃n

∥

∥

∥

2
+

∥

∥

∥G̃n

∥

∥

∥

2

)]

.

(iv)	 Assume that Gn is full row rank, i.e. rank Gn = s; ∀n ∈ Z0+ there 
is a switching law σ : R2 × Z0+ → p̄ with a growth evolution rule 
αn = α(xn+1, xn, σ(xn+1, xn,Z0+)) ∈ Ω , under control functions ψσn ∈ Ψ (σ ,α); 
∀n ∈ Z0+, such that

for some sequence {mn} ⊂ Z+, and

Then, there exists a best approximation solution limit of (33) X0 = limn→∞X0
n.

Assume, in addition that G = GG
†
G, G† = G†GG†, (GG†)∗ = GG∗, (G†G)∗ = G∗G  

and that {Gn}  →  G, {Ln}  →  L and {Bn}  →  B. Then G† is unique and limn→∞X0
n

= X
0 = (G − L)†B = (I − G

†
L)

†

B.

Proof  Direct calculations from (33),G†∗
n = G∗†

n , Bn = L̃nXn, Yn = M̃nXn and 
�n = (I − G†

nGn)Yn = (I − G†
nGn)M̃nXn; ∀n ∈ Z0+ and lim supn→∞�Hn�2 < 1 yield:

from (39c) sinceHn and lim supn→∞(I −Hn) are symmetric semidefinite positive matri-
ces; ∀n ∈ Z0+, then with no negative eigenvalues, since 0 ≤ lim supn→∞�Hn�2 ≤ 1. If 

(37)
αn ≥

((∥

∥

(

G
†
n+1

Ln+1 − I
)(

G†
n

(

LnX
0
n + Bn

))

+ G
†
n+1

Bn+1

∥

∥

2
+ t

)

t−mn − 1
)

t
∥

∥

(

G†
nLn − I

)

X0
n + G†

nBn

∥

∥

2

;

∀n ∈ Z0+; t ∈ R+

(38)lim
n→∞

n
∏

i=0

[αi(Xi,Xi+1, σi)] = 0.

(39a)

X
∗
n+1Xn+1 − X

∗
nXn

= −X
∗
n

[

I −

(

L
∗
nG

∗†

n + G
†
nLn

)]

X
∗
n

+

(

B
∗
nG

∗†

n +�∗
n

)

(

G
†
nBn +�n

)

+ X
∗
nL

∗
nG

∗†

n

(

G
†
nBn +�n

)

+

(

B
∗
nG

∗†

n +�∗
n

)

G
†
nLnXn

= −X
∗
n

[

I −

(

L
∗
nG

∗†

n + G
†
nLn

)

−

(

L̃
∗
nG

∗†

n + M̃
∗
n

(

I − G
∗
nG

∗†

n

))(

G
†
nL̃n +

(

I − G
†
nGn

)

M̃n

)

(39b)

−L∗nG
∗†

n

(

G†
nL̃n +

(

I − G†
nGn

)

M̃n

)

−

(

L̃∗nG
∗†

n + M̃∗
n

(

I − G∗
nG

∗†

n

))

G†
nLn

]

Xn

(39c)= −X∗
n (I −Hn)Xn ≤ 0; ∀n ∈ Z0+
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0 ≤
∑∞

i=0 �j(I −Hn) < ∞ for j ∈ q̄, with λj(·) denoting some of the eigenvalues of the 
(·)-matrix, then for some {Qn} ⊂ C

q×q ,, one has

Then, {X∗
nXn} ⊂ C

r×r converges to a positive (at least) semidefinite 
limit matrix X̄ which can be factorized as X̄ = X̂∗X̂ .. On the other hand, 
if {L̃n} → 0 and {M̃n} → 0 or if {L̃n} → 0, and {Yn}  →  0 without its gen-
eration from Yn = M̃nXn, then lim supn→∞�max(L

∗
nG

∗†

n + G†
nLn) < 1. If 

0 ≤
∑∞

i=0 (I − L∗nG
∗†

n + G†
nLn) < ∞, yields the same conclusion from (39a) and 

(39c). Now, {X∗
nXn} → X̄ = X̂∗X̂ with rank(X̄) = rank(X̂) = ℓ ≤ min(q, r). Thus, 

there is a subsequence of matrices of rank ℓ,{Xnk } ⊂ {Xn} ⊂ C
q×r, such that 

Xnk+1 = ÛnkXnk for some subsequence {Ûnk } ⊂ {Un} ⊂ C
q×q of non-singular matri-

ces such that rank Xnk+1 = rank(ÛnkXnk ) = rank Xnk = rank X̂ = ℓ; ∀n ∈ Z0+ . 
Then X∗

nk
Û∗
nk
ÛnkXnk → X̂∗X̂, and then (ÛnkXnk − X̂) → 0 and (Xnk − Û−1

nk
X̂) → 0 , 

as k  →  ∞and there exists a sequence {Un} of nonsingular matrices such that 
limn→∞(Xn −UnX̂) = 0, ∀n ∈ Z0+. Property (i) has been proved.

To prove Property (ii), X0 = (G − L)†B is the best approximation solution nominal 
algebraic equation GX = LX + B.Thus, GX = LX + B is satisfied by X0 if and only if

(Moore 1935). Note that if (42) holds then direct calculations yield:

Rewrite the iterative scheme (31) in equivalent error form by defining the best approxi-
mation error solution related to X0{X̃0

n} by X̃0
n = X0

n − X; ∀n ∈ Z0+. This yields using (43):

Now, if 
∥

∥G†L
∥

∥

2
< 1 then {X̃0

n} → 0 and {X0
n} → X0.

(40)

X∗
n+1Xn+1 − X∗

mXm =

n
�

j=m

�

X∗
j+1Xj+1 − X∗

j Xj

�

= −

n
�

j=m

X∗
j (I −Hj)Xj ≤ −X∗

n





n
�

j=m

�

I −Hj

�

Xn



; ∀n ∈ Z0+

(41)X∗
nQnXn ≤ X∗

n





n
�

j=0

I −Hj



Xn ≤ X∗
0X0 − X∗

n+1Xn+1 ≤ X∗
0X0; ∀n ∈ Z0+

(42)G(G − L)†B =
(

I + L(G − L)†
)

B

(43)

G
†(L− G)X0 + G

†
B = −G

†(G − L)(G − L)†B+ G
†
B

= G
†
(

I − (G − L)(G − L)†
)

B

= G
†
B− G

†
G(G − L)†B+ G

†
L(G − L)†B

= −G
†
G(G − L)†B+ G

†
(

I + G
†
L(G − L)†

)

B

= −G
†
G(G − L)†B+ G

†
G(G − L)†B

= 0

(44)

X̃
0
n+1 = G

†
L+ G

†
(

(L− G)X0 + B

)

= G
†
LX̃

0
n + G

†
(

I − (G − L)(G − L)†
)

B

= G
†
LX̃

0
n; ∀n ∈ Z0+



Page 23 of 26De la Sen et al. SpringerPlus  (2016) 5:1478 

On the other hand, define an ordering in the best approximation real matrix solu-
tion as the entry-to-entry ordering of real numbers so that X̃0

n+1 ≤ X̃0
n if and only if 

(X̃0
n+1)ij ≤ (X̃0

n)ij. If now, G is surjective and inverse monotone and −(G†L)ij ≥ 0 then 
X̃0
n+1 ≤ X̃0

n if and only if (X̃0
n+1)ij ≤ (X̃0

n)ij, provided that (X̃0
0 )ij ≥ 0, and X̃0

n+1 ≥ X̃0
n, 

provided that (X̃0
0 )ij ≤ 0, for each n ∈ Z0+. As a result, {X̃0

n} → 0.Property (ii) has been 
proved.

To prove Property (iii), first note that {Gn}  →  G, {Ln} → L and {Bn} → B imply 
that the sequences are bounded and that ‖GnLn‖2 < 1 for n ≥  n0 and some n0 ∈ Z0+ 
since 

∥

∥

∥G
†
L
∥

∥

∥

2
< 1. As a result, lim supn→∞

∑n
i=n0

∥

∥G†
i Li

∥

∥

2
< ∞ and {

∥

∥X0
n

∥

∥

2
} is a 

bounded sequence, so the solution is bounded. Now, consider the incremental solution 
X̃0
n = X0

n − X0; ∀n ∈ Z0+. It satisfies the iterative scheme:

and

for some K ∈ R+ and ρ ∈ (0, 1), since LX − GX + B = 0, and 
∥

∥X0
n

∥

∥

2
, {Gn}, {Ln}, {Bn} and 

then {Vn}, with Vn = B̃n + L̃nX
0
n − G̃nX

0
n+1; ∀n ∈ Z0+, are bounded. Property (iii) has 

been proved.
To prove Property (iv), define M(X0

n+1,X
0
n , t) =

t

t+
∥

∥X0
n+1−X0

n

∥

∥

2

; ∀n ∈ Z0+, ∀t ∈ R+ . 

From the contractive condition (11), one has M(X0
n+2,X

0
n+1, t) ≥ M(X0

n+1,X
0
n ,α

−1
n t); 

∀n ∈ Z0+, ∀t ∈ R+ with strict inequality if M(X0
n+1,X

0
n ,α

−1
n t) < 1. Since rank Gn = s; 

∀n ∈ Z0+ the mapping g : Cq×r → C
s×r is surjective. Then, such an inequality holds for 

all t ∈ R+ from (39c) if for some sequence {mn} ⊂ Z+:

Thus, for any switching law σ : R2 × Z0+ → p̄, with a growth evolution rule 
αn = α(X0

n+1,X
0
n , σ(X

0
n+1,X

0
n ,Z0+)) ∈ Ω and functions ψσn ∈ Ψ (σ ,α), such that 

limn→∞

∏n
i=0 [αi(X

0
i ,X

0
i+1, σi(X

0
i ,X

0
i+1))] = 0, it follows that there exists a best approxi-

mation solution limit of (33) X0 = limn→∞X0
n.

(45)X̃0
n+1 = G

†
(

LX̃0
n +

(

B̃n + L̃nX
0
n − G̃nX

0
n+1

)

+ (LX − GX + B)
)

; ∀n ∈ Z0+

(46)

∥

∥

∥X̃0
n+1

∥

∥

∥

2
≤

∥

∥

∥

∥

∥

n+1
∏

i=0

[

G
†
L
]i

X0

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

n
∑

i=0

[

G
†
L
]n+1−i

Vn

∥

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

∥

n+1
∏

i=0

[

G
†
L
]i

X0

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

∞
∑

i=0

[

G
†
L
]n+1−i

Vn

∥

∥

∥

∥

∥

2

≤ Kρn+1�X0�2 +
Kδ

1− ρ

(47)lim sup
n→∞

∥

∥

∥X̃0
n+1

∥

∥

∥

2
≤ lim sup

n→∞

∥

∥

∥

∥

∥

n
∑

i=0

[

G
†
L
]n+1−i

V

∥

∥

∥

∥

∥

2

≤
δ

1− ρ

(48)

αn ≥

((∥

∥

(

G
†
n+1

Ln+1 − I
)(

G†
n

(

LnX
0
n + Bn

))

+ G
†
n+1

Bn+1

∥

∥

2
+ t

)

t−mn − 1
)

t
∥

∥

(

G†
nLn − I

)

X0
n + G†

nBn

∥

∥

2

;

∀n ∈ Z0+, t ∈ R+
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On the other hand, if {Gn} → G, {Ln} → L and {Bn} → B then {G†
nLn} and {G†

nBn} con-
verge. If rank Gn = s; ∀n ∈ Z0+ and, furthermore, (37) and (38) hold, then {Xn} con-
verges. If X0 is the best approximation solution of the limit system and if G = GG†G, 
G† = G†GG†, (GG†)∗ = GG∗, (G†G)∗ = G∗G, then G† is unique (Barnett 1971), and thus 
X0 = (G − L)†B = (I − G†L)†G†B is the best approximation limit solution (see also 
Property (ii)). Define the solution error with respect to the best approximated solution 
in the constant case as X̃0

n = X0
n − X0; ∀n ∈ Z0+. Thus:

and limn→∞X̃0
n = 0, since lim supn→∞

∥

∥G†
nLn

∥

∥

2
< 1, and then limn→∞X0

n = X0. � □

Conclusions
The existence, uniqueness and limit properties for proximal sequences of optimal fuzzy 
best proximity coincidence points have been investigated for pairs of mappings defining 
proximal sequences {(gn,Tn)}, with g : A → A being surjective and T : A → B, where A 
and Bare nonempty subsets of a nonempty set X. The best proximity coincidence points 
are defined in partially ordered non-Archimedean fuzzy metric spaces (X ,M, ∗,≺) for 
so-called fuzzy order preserving proximal Ψ(σ, α)-lower-bounding mappings where * is 
a triangular norm, ≺ is an ordering relation and Mis a fuzzy set which evolves according 
to a switching rule {σn} ⊂ Z+. The concerned fuzzy sets have been interpreted, in the 
general case, as sequences defined depending of the switching rules. Also, three applica-
tion examples are described concerned with: (a) switched stabilization of fuzzy discrete 
dynamic systems, and (b) best approximations of resolution of equations in linear alge-
bra. Some “ad hoc” specific related results for the examples are also given and proved. 
The proposed formalism seems to be also of usefulness for extensions of studies of sta-
bility and stabilization and for proximal approaches in the fuzzy framework.
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(49)

X̃0
n+1 = G†

nLnX
0
n +

(

G†
nBn − X0

)

; ∀n ∈ Z0+

= G†
nLnX̃

0
n +

(

G†
nBn +

(

G†
nLn − I

)

X0
)

; ∀n ∈ Z0+

(50)lim sup
n→∞

(

X̃0
n+1 − G†

nLnX
0
n

)

= lim sup
n→∞

(

G†
nBn − X0

)

= E

(51)lim sup
n→∞

(

X̃0
n+1 − G†

nLnX̃
0
n

)

= lim sup
n→∞

(

G†
nBn +

(

G†
nLn − I

)

X0

)

= 0
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