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Abstract

In this paper, we establish the existence of a common fixed point of almost
generalized contractions on modular spaces. As an application, we present some
fixed and common fixed point results for such mappings on modular spaces
endowed with a graph. The existence of fixed and common points of mappings
satisfying generalized contractive conditions of integral type is also obtained in such
spaces. Some examples are presented to support the results obtained herein. Our
results generalize and extend various comparable results in the existing literature.
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1 Introduction

Over the past two decades the development of fixed point theory in metric spaces has at-
tracted considerable attention due to numerous applications in areas such as variational
and linear inequalities, optimization, and approximation theory. The classical Banach con-
traction principle is one of the most useful results in nonlinear analysis. It ensures the
existence and uniqueness of the fixed point of nonlinear operators satisfying the strict
contraction condition. It also shows that the fixed point can be approximated by means
of a Picard iteration. Due to its applications in mathematics and other related disciplines,
the Banach contraction principle has been generalized in many directions. Extensions of
the Banach contraction principle have been obtained either by generalizing the domain of
the mapping (see, e.g., [1, 2]) or by extending the contractive condition on the mappings
[3, 4]. The existence of fixed points in ordered metric spaces has been studied by Ran
and Reurings [5], Theorem 2.1. Subsequently, Nieto and Rodriguez-Lépez [6] extended
the results in [5], Theorem 2.1 for nondecreasing mappings and applied them to obtain
a unique solution for a first order ordinary differential equation with periodic boundary
conditions. Since then, a number of results have been proved in the framework of ordered
metric spaces. In 2008, Jachymski [7] investigated a new approach in metric fixed point
theory by replacing the order structure with a graph structure on a metric space. In this
way, the results proved in ordered metric spaces are generalized (see for details [7] and
the references therein). Abbas and Nazir [8] obtained some fixed point results for a power
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graphic contraction pair endowed with a graph. Beg and Butt [9] proved fixed point the-
orems for set-valued mappings on a metric space with a graph. In this direction, we refer
to [10-12] and the references mentioned therein.

The concept of a modular space was initiated by Nakano [13] and was redefined and
generalized by Musielak and Orlicz [14]. In addition to it, the most important develop-
ment of this theory is due to Mazur and Musielak, Luxemburg and Turpin (see [15-17]).
The fixed point theory in modular function spaces has recently got a great deal of atten-
tion of researchers, for example, Khamsi [18] (see also [10, 11, 15, 17, 19-26]). Kuaket and
Kumam [27] and Mongkolkeha and Kumam [28-30] proved some fixed and common
fixed point results for generalized contraction mappings in modular spaces. Also, Kumam
[22] obtained some fixed point theorems for nonexpansive mappings in arbitrary modular
spaces.

The aim of this paper is to prove common fixed point results of a pair of mappings
satisfying an almost generalized (v, ¢)-contraction condition in the setting of modular
spaces. We provide an example to show that our results are a substantial generalization
of comparable results in the existing literature. As an application of the results obtained
herein, we obtain fixed and common fixed point results in the framework of modular space
endowed with a directed as well as undirected graph. Some examples are presented to
support the results proved herein. The existence of common fixed points of mappings
satisfying a contractive condition of integral type is also obtained in such spaces.

2 Preliminaries

In the sequel the letters R, R,, and N will denote the set of all real numbers, the set of
all nonnegative real numbers, and the set of all positive integer numbers, respectively. Let
(X, d) be a metric spaceand T : X — X. A point x € X is called a fixed point of T iff Tx = x.
A mapping T : X — X is called a Picard operator (PO). If

(1) F(T)={xeX:Tx=x} ={z},

(2) for any xo € X, the Picard iteration x,, = T"x, converges to z.

A sequence as in the above definition is called a sequence of successive approximations
of T starting from x,.

The Banach contractive condition forces the mappings to be continuous. It is natural
to ask if there do or do not exist weaker contractive conditions that ensure the existence
and uniqueness of a fixed point but do not imply the continuity of mappings. Kannan [23],
by considering a weaker contractive conditions, proved the existence of a fixed point for
a mapping that can have a discontinuity. Following Kannan’s result, a lot of papers were
devoted to obtaining fixed point or common fixed point theorems for various classes of
contractive type conditions that do not require the continuity of the mappings; see, for
example, [24] and [31].

The following definition is more suitable in this context.

Definition 2.1 Let (X, d) be a metric space. A map T : X — X is called an almost con-
traction or a §-weak contraction if there exist a constant § € (0,1) and some L > 0 such
that

d(Tx, Ty) < 8d(x,y) + Ld(x, Ty)

for any x,y € X.
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This concept was introduced by Berinde as a ‘weak contraction’ in [3]. But in [4], Berinde
renamed the ‘weak contraction’ as an ‘almost contraction, which is more appropriate.

Berinde [3] proved some fixed point results for an almost contraction in the setting of a
complete metric space and generalized the results in [23, 24], and [31].

Recently Babu et al. [32] considered the class of mappings that satisfy ‘condition (B)’ as
follows.

Let (X,d) be a metric space. A map T : X — X is said to satisfy ‘condition (B)’ if there
exist a constant § €]0,1[ and some L > 0 such that

d(Tx, Ty) < éd(x,y) + Lmin{d(x, Tx),d(y, Ty), d(x, Ty), d(y, Tx)}

forall x,y € X.
They proved the following fixed point theorem.

Theorem 2.2 ([32], Theorem 2.3) Let (X, d) be a complete metric space and T : X — X be
a map satisfying condition (B). Then T has a unique fixed point.

Afterwards Berinde [33] introduced the concept of a generalized almost contraction as
follows.

Let (X, d) be a metric space. A map T : X — X is called a generalized almost contraction
if there exist a constant § € ]0,1[ and some L > 0 such that

d(Tx, Ty) < dM(x,y) + Lmin{d(x, Tx),d(y, Ty),d(x, Ty), d(y, Tx)},

where
M;i(x,y) = max{d(x,y), d(x, Tx), d(y, Ty), %[d(x, Ty) + d(y, Tx)] }

Theorem 2.3 Let (X, d) be a complete metric space and T : X — X a generalized almost
contraction. Then T has a unique fixed point.

A point y € X is called a point of coincidence of two self-mappings f and T on X if there
exists a point x € X such that y = Tx = fx. The point x is called coincidence point of a pair

(f, 7).

Abbas et al. [34] introduced a generalization of ‘condition (B)’ for a pair of self-maps
and obtained a unique point of coincidence. Ciric et al. [35] extended the concept of the
generalized almost contraction to two mappings and obtained some common fixed point
results in a complete metric space.

Consistent with [14], some basic facts and notations needed in this paper are recalled as
follows.

Definition 2.4 Let X be an arbitrary vector space. A functional p : X — [0, 00) is called a
modular if, for any x, y in X, the following conditions hold:

(m;) p(x) =0 ifand only if x = 0;
(mg) p(ax) = p(x) for every scalar « with |a| = 1;
(m3) plax+ By) < p(x) + p(y), whenever o + B =1, and «, 8 > 0.
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If (m3) is replaced with p(ax + By) < o*p(x) + B*p(y) where o* + B° =1, o, 8 > 0, and
s € (0,1], then p is called s-convex modular. If s = 1, then we say that p is convex modular.
The following are some consequences of condition (ms3).

Remark 2.5 [20]

(r1) For a,b € R with |a| < |b| we have p(ax) < p(bx) for all x € X.
(ry) Foray,...,a, € R, with Y a; =1, we have

p(z azm) < Zp(xi) forany xy,...,x, € X.

i=1 i=1
Proposition 2.6 [30] Let X, be a modular space. If a,b € R, with b > a, then p(ax) <
p(bx).

A mapping p : R — [0, oo] defined by p(x) = /|x] is a trivial example of a modular func-
tional.
The vector space X, given by

X, ={x€X;p(kx) > 0 as A — 0}

is called a modular space. Generally, the modular p is not sub-additive and therefore does
not behave as a norm or a distance. One can associate to a modular an F-norm. One can
associate to a modular an F-norm.

The modular space X,, can be equipped with an F-norm defined by

x
Ilxll, = inf{a > 0;p<—> < a}.
o

When p is convex modular, then

%], = inf{a > o;p<f> < 1}
o

defines a norm on the modular space X, and this is called the Luxemburg norm.
Define the p-ball, B,(x,r), centered at x € X, with radius r as

B,(x,r) = {h eXy;plx—h) < r}.

A function modular is said to satisfy:

(a) the A,-type condition if there exists K > 0 such that for any x € X,,, we have
p(2x) < Kp(x);

(b) the A,-condition if p(2x,) — 0 as n — 00, whenever p(x,) — 0 as n — 00.

Definition 2.7 A sequence {x,} in modular space X, is said to be:
(t1) p-convergent tox € X,, if p(x, —x) — 0 as n — oo;

(t2) p-Cauchy if p(x, —x,,) — 0 as n,m — oo.

X, is called p-complete if any p-Cauchy sequence is p-convergent. Note that p-conver-
gence does not imply p-Cauchy since p does not satisfy the triangle inequality. In fact, one
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can show that this will happen if and only if p satisfies the A,-condition. We know that
[25] the norm and modular convergence are also the same when we deal with the A,-type
condition.

In the sequel, suppose the modular function p is convex and satisfies the A,-type con-
dition.

Mongkolkeha and Kumam [30] proved the existence of a fixed point generalized weak

contractive mapping in modular space as follows.

Theorem 2.8 Let X, be a p-complete modular space and T : X, — X,. Suppose that there
exist continuous and monotone nondecreasing functions ¥, ¢ : R, — R, such that y(t) =
@(t) =0 ifand only if t = 0. If for any x,y € X, the following condition holds:

¥ (p(Tx — Ty)) < ¥ (m(x,9)) - o(m(x,9)), o)

where

(3= 1) + p(5(y - Tx)) }
2 )

m(x,y) = maX{p(x -9, plx—Tx), p(y — T¥), P

then T has a unique fixed point.

Definition 2.9 Let X, be a modular space and 7": X, — X, be a self-map. We say that T
is p-continuous when if p(x,, —x) — 0, then p(Tx, — Tx) — 0 as 1 — 0.

3 Common fixed point of almost generalized (¥, ¢)-contraction
We set W = {1 : [0,00) — [0,00) : ¥ a continuous nondecreasing function and ¥ (¢) = 0 if
and only if £ = 0} and ® = {¢: [0,00) — [0,00) : ¢ a lower-semi continuous function and
¢(t) =0 if and only if £ = 0}.

In this section, we obtain common fixed point results for a pair of mappings satisfying
the generalized (Y, ¢)-contractive condition in the framework of a modular space.

Theorem 3.1 Let X, be a p-complete modular space and S, T : X, — X,. Suppose that
there exists L > 0 such that for any x,y € X,, the following condition holds:

v (p(Sx— Ty)) < ¥ (M(x,9)) — o(M(x,y)) + Ly (N(x,)), (2)

1 1
where y € ¥, ¢ € ®, M(x,y) = max{p(x —y), p(x — Sx), p(y — Ty), w} and
N(x,y) = min{p(x — Sx), p(y — T), p(y — Sx), p(x — Ty)}. Then S and T have a unique com-

mon fixed point provided that one of the mappings S or T is p-continuous.

Proof Let x, be a given point in X,. We construct a sequence {x,} for # > 0 by a two step

iterative process thus:

Xon+2 = Tx2n+1;
3)

Xon+l = Sx2n-

We divide the proof into the following steps.



Oztiirk et al. Fixed Point Theory and Applications (2016) 2016:19 Page 6 of 19

Step 1. Prove that p(x, —x,41) = 0 as n — oo.

From Remark 2.5, the properties of the functions ¥ and ¢ and substituting x = x5, and

¥ = X241 in (2), we have

1/f (:0 (x2n+1 - x2n+2)) = 1/’ (IO(SxZVI - Tx2n+l))
< U (Mo %2n41)) = @(M(F20, ¥2011)) + LY (N (%20 %2041))

where

M(x2nr x2n+1) = max { /O(xZn - x2n+1)r p(xZn - SxZn); p(x2n+1 - Tx2n+1)r

(5 ®2ne1 — Sx2n)) + (5 (X2n — Tx2.1)) }
2

= max { P (X2 — X241)5 PKon — X2141)s L2041 — X2n42)s

p(%(x2n+l _x2n+1)) + p(%(xZn _x2r1+2)) }
2

< max { p(xZn - x2n+1)) p(x2n+1 - x2n+2)7

(%2 — Xone1) + P (K241 — X2,142) }
2

= max{,o(xzn - x2n+l): p(x2n+1 - x2n+2) }
and

N (%2, Xap1) = min{ p (2, — Sx1), 0 Kame1 = T2a1)s 0 (K2n — Thopi),
o (F2n41 — Sx2n) |
= min{p(¥2n — ¥2n41)s P K21 — K2me2) P K2 — K2s2)s
p(Xaue1 — x2n+1)}
= min{ﬂ(xZn = %2u41)s P (X2ns1 — X2n42),
p(¥2n — X2n12), 0}
=0.

Hence we have

1# (:0 (x2n+l - x2n+2)) = I// (max{p(x2,, - x2n+1)r p(x2n+1 - x2n+2) })

' (maX{p(xZH - x2n+1)’ p(x2n+1 - x2n+2) }) . (4)

We now consider the following case.
If max{p (%2, — %21+1)s P X2ns1 — X2142)} = P (2041 — X242) for some #, then using the defi-

nition of ¢, (4) becomes

1/f (:0 (x2n+1 - x2n+2)) =< 1/’ (/O(x2n+l - x2n+2)) -@ (p (x2n+1 - x2n+2)) < w (,0 (x2n+1 - x2n+2))y
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a contradiction. Consequently

maX{p(xZH - x2n+1)’ p(x2n+1 - x2n+2)} = p(x2n - x2n+1)'

Thus from (4), we have

1/f (:0 (x2n+1 - x2n+2)) = Iﬁ (,0(962;1 - x2n+1)) 4 (p (xZn - x2n+1))
<Y (p(xZn - x2n+1)) . (5)

Continuing this way, we obtain

1P(P(xznﬂ - xZn)) <y (p(xZn—l - x2n)) - ¢(P(x2n—1 - xzn))
< ¥ (p(¥2n1 — X2n)). (6)

From (5) and (6), it follows that {p(x;, — x,,,1)} is monotone decreasing and bounded below.
Therefore, there is r > 0 such that

lim p(x, —%,1) = 7.
n— 00
On taking the limit as # — oo on both sides of the inequality (5), we have
Y (r) <y (r) - (),
which implies that ¢(r) = 0, that is, r = 0. Hence
lim p(x, — %,.1) = 0. (7)
n— 00

Step 2. Now we show that {x,} is a p-Cauchy sequence.

It is sufficient to show that {xy,} is a p-Cauchy sequence. Assume the contrary. Then
there exists ¢ > 0 such that we can find two subsequences {m1;} and {n} of positive integers
satisfying ny > my > k such that the following inequalities hold:

:O(xZHk _x2mk) =&, ,0(2(9(32;«,](71 —mek)) <E. (8)

From (8) and Remark 2.5, it follows that

& < p(Xon — X2my)
= p(Xan, — o1 + K21 — Xomy)
< p(2(2m — %2mp-1)) + P(2(X2m-1 — X))

< &+ p(2(%2m — Xom-1))-

On taking the limit as k — oo, we obtain

klifgo ,O(x2nk - x2mk) =é. (9)
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Using & = x5, and y = X, 1 in (2), we have

V(0 Xam1 — %2my)) = ¥ (0 (Sx2, — Tom—1))
< U (MXon X2mg-1)) — @ (M, X2y —1))

+ Ll/f(N(xan,mek_l)), (10)
where

M (X5 Koy 1) = max{,o(xznk — Xomy-1)s PXom, — Sxanp)s P (K2my-1 — T2y 1),

(5 Famp-1 — Sx2m)) + p(5 2, — T2m-1)) }
2

= max{p(xg,,k - mek—l):p(xan - x2nk+1): p(x2mk—l - x2mk);

p(%(mek—l — Xome1)) + P(%(xznk — X2my.)) } 11)

2

and

N (o %2mg—1) = min{ p (2, — Sx2), P21 — T2mp1)s
P Xam-1 — Sxam)s P2, — T2m—1) }
= min{ p (%2, — %2 41)s P F2m—1 — X2y )s

(X2 -1 = Koy +1)s P Koy, — xzmk)}~ (12)
Also from (8) and Remark 2.5, it follows that

,O(xznk+1 - xzmk) = /O(xznk+1 = X2yt Xomp — Xomp—1 + X1 — xzmk)
< (2021 — Xy + Ko, — Xom-1)) + P (2(F2n -1 — Xomy))
< p(4(xam1 — X)) + £ (4 (X2, — Xamg1)) + P (2(F2mp 1 — Xomy))
< p(

41 — X)) + P (4o, — Ko —1)) + €. (13)
Also, from (11) we have

p(xan - x2mk—l) = P(xz;qk = Xomp-1 + Xom—1 — Xomy + Xomy — x2mk—1)

< (202, — X1 + X, — Xome-1)) + (221 — X))
< 04X, — %onp1)) + P (4G2m, — Xomp-1)) + P (2(X2me-1 — X2my))
< p(4om, — Xom-1)) + ,0(4(xzmk - x2mk—l)) +e. (14)

Note that

1 1
Y §(x2mk—l _x2nk+1) =p 5(x2mk—l = Xomy + Xomy —xznk+1)

< p(®2mg-1 = Xomy) + P K2y — Xomg41)
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= P(xzmk—l - xzmk)
+ p(mek — Xom-1 t Ko -1 — Xopy + Xopy — xznk+1)

< P21 = Xom) + P (2(F2m-1 — Xom,)
+ P (2(2m-1 — Xomg + Ko, — Xom41))

< pXam-1 — %om) + P (221 — Xomy)) + 0 (421 — Xoy))
+ 0 (42, — Xong41))

< &+ Pt — Xamy) + (421 — %2n,))

+p (4(x2nk - x2nk+1))' (15)
By Remark 2.5 and Proposition 2.6, we get

1 1
Y _(ertk _mek) =p _(xan —Xom-1 + Xopy—1 — xzmk)

2 2
P2y = Xam-1) + P(X2m—1 = Xapmy)
< P, — Fom1) + P (2Xamg-1 — %2my))
< pKop, — Xon—1) + €. (16)

From (14), (15), (16), and arranging (11), we obtain

M(xan ) mekfl)

= max{,o(xgnk = X2mp—1) P X2y = X2 41)s 0 X2y — X2mp—1),

PG Fam-1 — Xamea1)) + (5 (K2, — X2my) }
2

< max{p(4(x2nk - x2nk—l)) + (4o, — Xom-1)) + &,

p(xan - x2nk+1): p(mek - xzmk—l),

&+ p(x2mk—l - mek) + p(4(x2nk—l _xan)) + p(4(x2nk - x2nk+l)) + p(x2nk - xan—l) +é& } (17)
5 .

Taking the limit as k — oo on both sides of (10) and by using (7), (12), (13), (17), and

Proposition 2.6, we get

v(e) < ¥(e) - p(e),

a contradiction. Hence {x,,} is a p-Cauchy sequence.
Step 3. We prove the existence of a fixed point of one mapping.

As X, is a p-complete, there exists a z € X, such that p(x,, —z) — 0 as # — 00. Assume
that S is p-continuous. From p(xy, —z) — 0 as n — 00, we have p(Sx,, — Sz) — 0, that is,
P(X2441 — Sz) = 0 as n — 0o. By the uniqueness of the limit we obtain Sz = z. Thus z is a
fixed point of S.
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Step 4. We prove that z is a fixed point of a mapping 7.

By (2) and Remark 2.5, we get

¥ (0(Sxan — T2)) < Y (M(x20,2)) — @(M(%2,2)) + L (N (32, 2)), (18)

where

M(x2,2) = maX{p(xZn —2), p(Xon — Sxou), p(z — TZ),

(52 — T2)) + p(5 (2 — Sxan)) }
2

= max{p(xZn - Z)’ lo(x2n - x2n+l)) ,O(Z - TZ),

(5 @an — T2)) + p(5 (2 — %2141)) }
2

< maX{p(xzn - 2), p(Xon — X2041), p(z — TZ2),

p(xan —2) + pz = T2) + p(5(z = %2n41)) } 19)
2
and
N(xZHrZ) = min{ﬂ(xZn - Sx2n)1 ,O(Z - TZ), p(x2n - TZ)1 IO(Z - SxZn)}
= min{p(2n = X2011), P(2 = T2), p (2 = T2), p(2 = X20:1) (20)

on taking the limit #» — oo by (18)-(20), we get

¥ (o(z - T2)) < ¥ (p(z - T2)) - ¢(p(z - T2)),

which implies that ¢(o(z — Tz)) = 0 and so p(z — Tz) = 0. Then we obtain 7z = z. Thus z is
a fixed point of T. Hence, z is a common fixed point of Sand 7.
Similarly, if we suppose that T is p-continuous, then we get the same result.

Step 5. To prove the uniqueness of a common fixed point of two mappings.

We assume that w is an another common fixed point, thatis, w = Sw, w = Tw, and w # z,

Y (p(z—w) = ¥ (p(Sz— Tw))
< ¥ (M(zw) - o(M(z,w) + Ly (N(z,w)), (21)

where

p(%(W—SZ))w(%(Z—TW))} 22)

M(z,w) =max{p(z—w),,0(z—Sz),,o(w— Tw), 5

and

N(z,w) = min{p(z - 82), p(w—Tw), p(w — Sz), p(z — Tw)}, (23)
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By (21)-(23) we have
Y (pz-w)) < ¥ (plz—w)—9(pz-w))
< ¥(pz-w),
a contradiction. Hence z = w. g
The following results are obtained directly from Theorem 3.1.

Corollary 3.2 Let S, T be self-mappings on a p-complete modular space X, such that for
any x,y € X, the following condition holds:

Y (o(Sx = Ty)) < ¥ (M(x,)) — o (M(x,)), (24)

1o 1
where y € ¥, ¢ € @, M(x,y) = max{p(x —y), p(x — Sx), p(y — Ty), w}. Then

S and T have a unique common fixed point provided that one of the mappings S or T is
p-continuous.

Corollary 3.3 Let S, T be self-mappings on a p-complete modular space X,, such that for
any x,y € X, the following condition holds:

p(Sx - Ty) < M(x,y) — ¢(M(x,7)), (25)

1o 1
where ¢ € ®, and M(x,y) = max{p(x —y), p(x — Sx), p(y — Ty), w}. Then S
and T have a unique common fixed point provided that one of the mappings S or T is
p-continuous.

Corollary 3.4 Let S, T be self-mappings on a p-complete modular space X,,. Suppose that
there exist k € [0,1) and L > 0 such that for any x,y € X,, the following condition holds:

p(Sx — Ty) < kM(x,y) + LN (x,y), (26)

LS4 p(d (xe
where M(x,y) = max{p(x—y), o(x—Sx), oy - Ty), w} and N(x,y) =
min{p(x — Sx), p(y — Ty), p(y — Sx), p(x — Ty)}. Then S and T have a unique common fixed
point provided that one of the mappings S or T is p-continuous.

Define f = {£: R, — R, : ¢ is a Lebesgue integral mapping which is summable, non-
negative and satisfies fog &(t)dt > 0, for each ¢ > 0}.

Corollary 3.5 Let S, T be self-mappings on a p-complete modular space X,,. Suppose that
there exist k € [0,1) and L > 0 such that for any x,y € X,, the following condition holds:

p(Sx=Ty) M(x,y) N(xy)
/ E(t)dt < k/ E(t)dt + L/ &(¢) dt, (27)
0 0 0

1y 1
where M(x,y) = max{p(x~ ), p(x~Sx), ply - Ty), “2=0LGEDY - and Ni(x,y) =
min{p(x — Sx), p(y — Ty), p(y — Sx), p(x — Ty)}. Then S and T have a unique common fixed
point provided that one of the mappings S or T is p-continuous.
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Proof Take () = foté(t) dt and ¢(t) = (1 - k)t for all ¢ € [0,00). The result then follows
from Theorem 3.1. O

Corollary 3.6 Let T be a self-mapping on a p-complete modular space X,, which satisfies
the following inequality:

v (o(Tx - Ty)) < v (m(x,)) — ¢(m(x,9)) + Ly (n(x,y)) (28)

forall x,y € X, where y ¢ ¥, ¢ € P,

PG — Tx)) + p(5(x — Ty)) }

m(x,y) =maX{p(x—y),p(x— Tx), p(y — 1), 5

and n(x,y) = min{p(x — Tx), p(y — T9), p(y — Tx), p(x — T¥)}. Then T has a unique fixed
point.

4 Common fixed points on modular spaces with a directed graph

Let X, be a p-modular space and A = {(x,x) : x € X} denote the diagonal of X, x X,,. Let
G be a directed graph such that the set V(G) of its vertices coincides with X and E(G) be
the set of edges of the graph such that A € E(G). Also assume that G has no parallel edges
and G is a weighted graph in the sense that each edge (x, y) is assigned the weight p(x — y).
Since p is a modular functional on X, the weight assigned to each vertex x to vertex y
does not need to be zero and whenever a zero weight is assigned to some edge (x,y), it
reduces to a (x,x) having weight 0. The graph G is identified with the pair (V(G), E(G)).

If x and y are vertices of G, then a path in G from x to y of length k € N is a finite sequence
{x,} of vertices such that x = xo,...,x¢ = y and (x,1,%;) € E(G) fori € {1,2,...,k}.

Recall that a graph G is connected if there is a path between any two vertices and it
is weakly connected if G is connected, where G denotes the undirected graph obtained
from G by ignoring the direction of edges. Denote by G™! the graph obtained from G by
reversing the direction of edges. Thus,

E(G") ={(xy) € X x X:(y,x) e E(G)}.

It is more convenient to treat G as a directed graph for which the set of its edges is sym-

metric, and with this convention we have
EG) = E(G)UE(G™).

Let G, be the component of G consisting of all the edges and vertices which are contained
in some path in G beginning at x. In V(G), we define the relation R in the following way.
For x,y € V(G), we have x Ry if and only if there is a path in G from x to y. If G is such
that E(G) is symmetric, then for x € V(G), the equivalence class [x]g in V(G) defined by
the relation R is V(G,).
Let X, be a modular space endowed with a graph Gand S, T : X, — X,. We set

Xst = {x € X : (x,Sx) € E(G) and (Sx, TSx) € E(G)}.
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Theorem 4.1 Let X, be a p-complete modular space endowed with a directed graph G,
and S, T self-maps on X,,. Suppose that the following conditions hold:
(1) If {xn} is a sequence in X, such that p(x, —x) = 0 and (xo, X2441) € E(G) for all
n > 0, then there exists a subsequence {x2y,} of {x2,} such that

(ia) T is p-continuous and (x,%2y,+1) € E(G) for all p > 0 or
(ib) S is p-continuous and (xap,,x) € E(G) for all p > 0.

(ii) There is a sequence {x,} in X, such that

(%2, Sx2,) € E(G)  implies that (%212, SXop42) € E(G)  and

(x2n+1’ Tx2n+1) € E(G) lmPlleS that (x2r1+31 Tx2n+3) € E(G)

(iii) Forany (x,y) € E(G), S and T satisfy (2) in Theorem 3.1.
(iv) Xsr is nonempty.
Then S and T have a common fixed point.

Proof Let x( be a given point in X7, then (x9, Sxo) € E(G) and (Sxo, TSxy) € E(G), that
is, (x1, Tx1) € E(G). From (ii), it follows that (x,Sx;) € E(G) and (x3, Tx3) € E(G). Con-
tinuing this way, we can obtain a sequence {x,} in X, such that (xy,, Sx3,) € E(G) and
(%2141, TX2,41) € E(G) for all n € N. Also, (X2, %2,441) € E(G) and (x2,,11, X2,,42) € E(G) for all
n € N. Using arguments as in the proof of Theorem 3.1, we obtain

pxy —x411) > 0, n— o0. (29)
Also, {x,} is a p-Cauchy sequence. Since X, is p-complete, there exists a p(x, —x*) — 0
as n — oo.

Now we show that x* is a common fixed point of S and T. As p(x, —x*) — 0 and
(%215 X2141) € E(G), there exists a subsequence {x2np} of {x,,,}. Assume that (i,) holds. Then
T is p-continuous and (x*, x2y,+1) € E(G). Thus

p(Tx2np+1 - Tx") = p(xznp+2 -Tx") >0, p— oo

This implies that Tx* = x*. From (iii) and Remark 2.5, we have

v (o (Sx* - szn,,+1)) < W(M(X*;xmpu)) - </7(M(9C*rx2n,,+1))

+LW(N(x*,x2np+1)), (30)

where

M(x*, %o, 01) = maX{p(x* = Xomye1)s P (8" = Sx*), P2y 41 — T2y 41)s

P(5&* = To, 1)) + p(5 (X2, 1 — S&*)) }
2

= max{p(x* - xznpﬂ), ,o(x* - Sx*), ,O(xznpﬂ - x2np+2);
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P(5 (" = X2,12)) + P(5 (2,11 — Sx%)) }
2

< max{ﬂ(x* - x2,,p+1),,o(x* - Sx*)r p(x2np+1 - x2np+2),

P(5 (" = X2,12)) + p(Xnya1 — &%) + p(x* — Sx*) } 31
2
and
N (%, %20,41) = min{p (5" = Sx*), p(x2n,1 — T¥2, 1),
P (¥, 1 = Sx*), p(x* = Tz, 1) }- (32)

On taking the limit as p — oo (30)-(32), we have
¥ (o(Sx" —a%)) < ¥ (p(Sx" - 2%)) — o (p(Sx" - 7)),

a contradiction. Thus Sx* = x* and hence x* is a common fixed point of S and T'. Similarly,
the result follows if we suppose that S is p-continuous and (x2,,,x*) € E(G). a

We note that Theorem 4.1 does not guarantee the uniqueness of a common fixed point.
To obtain the uniqueness, an additional assumption as given in the following theorem
is required.

Theorem 4.2 In addition to the conditions of Theorem 4.1, assume that for any two
common fixed point x*, y* of S and T, there exists z € X, such that (x*,z) € E(G) and
(z,y*) € E(G). Then x* = y*.

Proof Let x*, y* be common fixed points of S and 7, then (x*,z) € E(G) and (z,y*) € E(G).
As G is a directed graph, (x*,y*) € E(G). From (iii), we obtain

V(p(x* ~7)) = ¥ (p(Sx* - Ty"))
< ¥ (M(x*y*)) o (M(x",5")) + Ly (N (x",57)), (33)

where

M(x*,y%) = max{p(x* -¥), p(x* = Sx%), p(v* - Ty"),

p(%(y*—Sx*));,O(%(x*— Ty*))} (34)
and
N(x%,y") = min{p(x* - Sx*), o (y* = T¥"), p(y* = Sx*), p(x* = T¥*) }. (35)

By (33)-(35) we have
v(p( =5)) v (e -5)) —e(p(x" -y")) < ¥ (o(x" -5")),

a contradiction. Hence x* = y*. g
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Example 4.3 Let X, = R, p(x) = |x| for all x € X, and E(G) = {(x,9) : %,y € [0,1]}. Define
the mappings S, T : X — X as follows:

x
Sx=—, Tx=—, xe€X,.
4

x
3

Take ¥ (f) = é and ¢(t) = é forall£>0and L > é It is verified that all the conditions of
Theorem 3.1 and Theorem 4.2 are satisfied. Moreover, 0 is a common fixed point of S
and 7.

The following results are obtained directly from Theorem 4.1.

Corollary 4.4 Let X, be a p-complete modular space endowed with a directed graph G,
and S, T self-maps on X,,. Suppose that the following conditions hold:
(i) If{x,} is a sequence in X, such that p(x, —x) — 0 and (X2, %2,41) € E(G) for all
n > 0, then there exists a subsequence {xay,} of {x2,} such that

(i) T is p-continuous and (x,%yu,+1) € E(G) for all p > 0 or
(i) S is p-continuous and (xap,,x) € E(G) for all p > 0.

(ii) There is a sequence {x,} in X, such that

(%21, Sx2,) € E(G)  implies that (%342, SXop42) € E(G)  and
(%2041, Tx2n11) € E(G)  implies that (%23, Tx2n43) € E(G).
(i) ¥ (p(Sx —T1y)) < ¥ (M(x,9)) — p(M(x,)), for any (x,y) € E(G).

(iv) Xsr is nonempty.
Then S and T have a common fixed point.

Corollary 4.5 Let X, be a p-complete modular space endowed with a directed graph G,
and S, T self-maps on X,,. Suppose that the following conditions hold:
(i) If{x,} is a sequence in X, such that p(x, —x) — 0 and (X3, %2441) € E(G) for all

n > 0, then there exists a subsequence {xznp} of {xan} such that

(ia) T is p-continuous and (x,%2p,+1) € E(G) for all p > 0 or
(ib) S is p-continuous and (xap,,x) € E(G) for all p > 0.

(ii) There is a sequence {x,} in X, such that

(Xon> Sx2,) € E(G)  implies that  (X3y42, SXons2) € E(G)  and
(x2n+1’ Tx2n+1) € E(G) lmplles that (x2n+31 Tx2n+3) € E(G)
(i) p(Sx - Ty) < M(x,y) — (M(x,y)) for any (x,y) € E(G).

(iv) Xsr is nonempty.

Then S and T have a common fixed point.

Corollary 4.6 Let X, be a p-complete modular space endowed with a directed graph G,
and S, T self-maps on X,,. Suppose that the following conditions hold:
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(i) If{x,} is a sequence in X, such that p(x, —x) — 0 and (X2, %2441) € E(G) for all
n > 0, then there exists a subsequence {xay,} of {x2,} such that

(ia) T is p-continuous and (x,%2p,+1) € E(G) for all p > 0 or
(ib) S is p-continuous and (xap,,x) € E(G) for all p > 0.

(ii) There is a sequence {x,} in X, such that

(Xon> Sx2,) € E(G)  implies that (X342, SXons2) € E(G)  and

(x2n+1; Tx2n+1) € E(G) lWlPlleS that (x2n+3r Tx2n+3) € E(G)
(iii) There exist k € [0,1) and L > 0 such that
p(Sx = Ty) < kM(x,y) + LN (x,y)

for any (x,y) € E(G).
(iv) Xsr is nonempty.
Then S and T have a common fixed point.

Corollary 4.7 Let X, be a p-complete modular space endowed with a directed graph G,
and S, T self-maps on X,,. Suppose that the following conditions hold:
(i) If{x,} is a sequence in X, such that p(x, —x) — 0 and (X, %2,41) € E(G) for all
n > 0, then there exists a subsequence {xay,} of {x2,} such that

(ia) T is p-continuous and (x,%2p,+1) € E(G) for all p > 0 or
(ib) S is p-continuous and (xap,,x) € E(G) for all p > 0.

(ii) There is a sequence {x,} in X, such that

(Xon> Sx2,) € E(G)  implies that (%42, SXons2) € E(G)  and

(x2n+1; Tx2n+1) € E(G) lmPlles that (x2n+3’ Tx2n+3) € E(G)

(iii) There exists k € [0,1) and L > 0 such that

p(Sx~Ty) M(x,y) N(xy)
/ E(t)dtfk/ E(t)dt+L/ @) dt
0 0 0

for each (x,y) € E(G).
(iv) Xsr is nonempty.
Then S and T have a common fixed point.

Proof The proof follows from Theorem 4.1 by taking ¥ (¢) = fot E(t)dt and o(t) = A1 - k)t
for all £ € [0, 00). O

5 Fixed point results on modular spaces involving undirected graph

Recently, Oztiirk et al. [10] obtained some fixed point results for mappings satisfying a
contractive condition of integral type in modular spaces endowed with a graph using the
C,-graph and being orbitally G,-continuous. To apply this property, we modify for C =1
as follows.
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Definition 5.1 Let {T"x} be a sequence in X, for some x € X, such that p(T"x —x*) — 0
for x* € X, and (T"x, T""'x) € E(G) for all n € N. Then a graph G is called a modified
C,-graph if there exists a subsequence {T"7x} of {T"x} such that (T"x,x*) € E(G) for
peN.

Definition 5.2 A mapping T': X, — X, is called orbitally G,-continuous if for all x,y € X,,
and any sequence (#,),en of positive integers, p(T"7x — y) — 0and p(T(T"7x) - T(y)) — 0
as p — 00.

Next, we define an almost generalized (, ¢)-G-contraction mapping.

Definition 5.3 Let X, be a modular space endowed with undirected graph G. A self-
mapping T on X, is called an almost generalized ({, ¢)-G-contraction mapping if:

(i) T preserves edges of G.

(ii) There exists L > 0 such that

¥ (p(Tx - Ty)) < ¥ (m(x,9)) — ¢(m(x,)) + Ly (n(x,))
holds for all (x,y) € E(G).

Remark 5.4 Let X, be a modular space endowed with a graph G and T': X, — X, an
almost generalized (¥, ¢)-G-contraction mapping. If there exists xo € X, such that Tx, €
[x0]g, then the following statements hold:
(i) T is both an almost generalized (¥, ¢)-G'-contraction mapping and an almost
generalized (v, ¢)-G-contraction mapping.
(i) [xo]g is T-invariant and Tjx) is an almost generalized (v, (p)—éxo -contraction

mapping.

Theorem 5.5 Let X, be p-complete modular space endowed with a graph G and T : X, —
X,. If the following statements hold:
(i) G is weakly connected and modified C,-graph;
(i) T is an almost generalized (Y, (p)—é-contmction;
(ili) X7 ={x € X:(x, Tx) € E(G)} is nonempty,
then T is a PO.

In Theorem 5.5, if we replace the condition that G is a modified C,-graph with modified

orbitally G,-continuity of T, then we have the following theorem.

Theorem 5.6 Let X, be a p-complete modular space endowed with a graph G, and
T:X, - X, an almost generalized ({, ¢)-G-contraction mapping and modified orbitally
G,-continuous. If Xt is nonempty and the graph G is weakly connected, then T is a
PO.

Example 5.7 Let X, =R, p(x) = |%| for all x € X,,, and

E(G) = {(0,0),(0,1),(1,1),(1,3),(2,2),(0,3),(2,3),(3,3)}.
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Define T': X, — X, by

0, xe{0,1},
Tx=1{1, xe{2,3),
3, otherwise.

Clearly, G is weakly connected and a C,-graph, X7 is nonempty, and T is orbitally
G,-continuous and an almost generalized (v, (p)—é—contraction mapping where ¥ (¢) = é,
o(t) = é, and L > 0. Note that T does not satisfy inequality (25). Indeed, we have

Y (0o(T1-T2)) < ¥ (m(1,2)) - p(m(1,2)) + Ly (n(1,2)),

where m(1,2) =1, n(1,2) = 0, and so % < % is obtained, an absurd statement. Also, Corol-

lary 3.6 is not applicable in this case, but all the conditions of Theorem 5.5 and Theo-
rem 5.6 are satisfied.
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