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Abstract

Mining is a competitive business with many players. The survival of a mine in the
business is determined by its efficiency and cost-effectiveness relative to the other
producers. Both new and operating mines should select optimal technical variables,
such as the production rate, that will make them competitive, taking into account
mine unique project variables.

This paper describes a model for estimating the technical efficiency of surface
mine for Coal Supply to Local and Export (CSLE). The application of the model
and evaluation is shown using simulated data. It proposes a predictive model of the
efficiency of a new project.

Keywords: DEA; surface coal mining competitiveness; technical efficiency

1 Introduction

Mine planning involves determining parameters such as production rate, and estimating
capital and operating costs that will maximize Net Present Value (NPV). Mine plans
should include optimal parameters that will make the mine efficient and cost-effective in
a competitive business environment. An efficient mine, in this context, is one which uses
optimum resources to generate maximum outputs at an effective cost, given both discre-
tionary and non-discretionary operational conditions and unique deposit characteristics.

After fuel oil, coal is the second major source of primary energy in the world. It is expected
to be the leading source of energy by 2030 and will be the only fossil fuel remaining after
2042 [34]. A major factor contributing to this is the continuously increasing demand for
coal outside the Organisation for Economical Cooperation and Development (OECD),
mainly driven by intensive industrial development in China and India. This increasing
demand will drive the future supply of coal from both new operations and existing mines.

On the supply side, new and existing mine projects face challenges that can result in
uncertainty in both their production performance and benefits. Various authors have
highlighted some of the challenges among them, including a high stripping ratio, low
cost to mine seam being located in remote areas with infrastructure problems, complex
metallurgy, topographical challenges, inclement weather, and dip of the coal seam [33,
35]. The other factors include geology, variable coal quality, economics and legislation
[6, 12, 13, 16, 32].

Despite the highlighted challenges, some mines are more efficient than others. These can
be termed as best-practice mines and generate value on the investment while others are
inefficient and ineffective. The best-practice mines become competitive while inefficient
ones are less competitive, cannot deliver the expected benefits and face high risk of failing
to survive in the business.
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The question arises how to estimate the envelope of the best-practice mines and predict
the technical efficiency, which will help a new mine to position itself competitively, given
mine specific characteristics of the planned project and the mine supply market structure.
The mine under evaluation are termed as Decision Making Units (DMUs). The DMU
refers to any entity such as a firm or organisation for profit or non-profit making which is
considered for measuring its efficiency relative to other units producing similar products
or services. The envelope can be defined as that shape which is made by the piecewise
lines connecting all the DMUs that are efficient with a score of 1. All DMUs lying on the
envelope are termed as best - practice operations.

Planning a new mine should consider its competitiveness relative to operating mines. This
can be achieved if the planned mine can predict its technical efficiency within a set of
technical parameters relative to other existing producers. The plan can be optimized by
iterative re-selection of the technical variables to determine those that will enhance its
competitiveness.

Highlighting a number of cases, Lumley [24] states that forecasts in mine plans have not
been met and returns on investment are lower than predicted. That is, 80-90% of projects
will exceed their budgeted costs and will not deliver the benefits to stakeholders. More
often the planned production rate has not been achieved due to technical deficiencies in
the planning process, the planners’ optimism and strategic misrepresentation. In addition,
planning has often been based on ideal production rates, which are given by the Original
Equipment Manufacturer (OEM). These production rates do not necessarily make the
mine competitive. On the other hand, Bullock [5] showed some examples from mining
projects studied between 1965 to 2002, indicating cost overruns, the lowest overrun being
22% and the highest 35%. In another study of 60 projects, 58% had overruns of between
15% and 100% of the capital cost.

More often, new mines plan to be the lowest cost producers in the industry. In this case
cost estimation is done by averaging the cost of the mines with similar characteristics
and adjusting the estimates to suit the operating conditions. In other cases, the mine
evaluators tend to take a conservative approach, overestimating the costs to mitigate
uncertainties [35].

This article describes the formulation of the model for estimating the efficiency of surface
mine for Coal Supply to Local and Export - CSLE. The model is formulated using Data
Envelopment Analysis (DEA) technique. DEA applies linear programming to determine
the efficiency of a unit relative to other units, using similar inputs to generate similar
outputs. The inputs and outputs quantities can vary from one unit to the other. Sim-
ulated data in this study are used to illustrate the application of CSLE model and to
formulate a predictive model for the technical efficiency of a new mine. The mine could
use the models to determine its efficiency and competitiveness relative to other operating
mines, selecting the optimal parameters, such as production rate, for planning purposes.
Mines would be able to identify and improve any stage of a supply chain which is causing
inefficiency.

This article is organised as follows:
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• Section 2 discusses the literature review considering mine competitiveness and the
determination of the technical efficiency using the DEA method;

• Section 3 explains the formulation of CSLE model for the evaluation of the technical
efficiency of a surface coal mine;

• Section 4 describes the simulation process of data and illustrates the evaluation of
the CSLE model;

• Section 5 formulates a predictive model for the efficiency of a new surface coal mine;
and

• Section 6 presents the conclusion.

2 Literature review

Mine planning starts once an economical block model has been made available. The major
objective is to determine which tonnages, grades and associated costs will maximize NPV.
In other cases, planning aims to maximize the rate of return (ROR) or achieve the lowest
payback period for a given project. The production rate is always the first parameter to be
specified and is used in selecting equipment and in determining the capital expenditures
of the project. Long [22] describes the estimation of the production rate of a new mine,
taking into account the expected tonnes to be mined. The production rate is represented
by Equation 1 [22].

Tonnes per day = 0.014(Expected tonnes)0.75 (1)

Leinart and Schumacher [21], on the other hand, maintain that in mine planning, multiple
scenarios should be used to estimate the production rate, determining the full cost esti-
mate of each production rate and selecting the one that will generate maximum NPV. The
authors suggest that before estimation, a conceptual mine plan should first be developed.

2.1 Competitiveness in the mines

The competitiveness of a mine is traditionally measured by its position on the cost curve.
For example, Rudenno [30] suggests that investing in projects or resource companies at a
given volatility of commodity prices calls for the consideration of that project’s position
on the cost curve. The cost curve refers to a plot of cash costs (US$/tonne) on the
vertical axis against the cumulative production rate (Mt) on the horizontal axis of the
mines involved in production. To illustrate the use of the cost curve, consider Figure 2
to represent a cost curve of the operating thermal coal mines. Assuming a free on board
(FOB) price of US$100/tonne, mines A and B are regarded as competitive and mines C
and D are considered to be high risk because their production costs are higher than the
market price of the commodity.
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Figure 1: Example of mine cost curve (source: Authors‘ construction)

On the other hand, a challenge remains on how best a new mine positions itself com-
petitively on the cost curve. This has not been fully investigated. The current practice
involves the company comparing its production rates and associated costs with those of
lower cost producers on the mine cost curve. According to [26], new mines are faced with
the problem of combining technical design and economic parameters to generate value for
the stakeholders. Planning to be a low-cost producer, however, has always been uncer-
tain since each project has unique challenges and production characteristics which can
critically affect efficiency and cost effectiveness. In addition, being a low-cost producing
mine does not necessarily make a mine efficient. Besides cost curves, measuring the com-
petitiveness of mines using relative technical efficiency can reflect how a mine is using the
inputs to generate the target outputs at an effective cost.

The competitiveness measure of mines using the relative technical efficiency approach for
a new mine is essential for three reasons. Firstly, as soon as the mine goes into operation,
it will be exposed to competition. It will therefore need to compare itself to other mines
in the market and determine whether it is on the envelope of best-practice, choosing
appropriate operating parameters that will enable it to be competitive and hence survive
in the business. Secondly, the mine should identify any stage of its supply chain which
could cause overall inefficiency once it has commenced production, and take steps to
minimize this. Thirdly, the mine should identify the best-practice mines on the envelope
and use them to benchmark its own operation.
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2.2 Determination of relative technical efficiency of a DMU

Measuring technical efficiency involves determining the levels of inputs that will be trans-
formed by a unit such as a firm or organization to generate outputs. An operation is
deemed efficient if it uses the minimum inputs to produce target output. A surface coal
mine is no exception to this rule. It uses capital, labour and other technical parameters
of a given project to generate a certain quantity of coal of a specific quality.

There are two major approaches to the measurement of efficiency, namely parametric and
non-parametric. The parametric method involves determining efficiency on the basis of
a linear function which is assumed to represent the plane of the efficient units. When
a unit deviates from the plane, it is considered inefficient. The non-parametric method
includes Data Envelopment Analysis (DEA), which uses a linear programming technique
to define the envelope of the best-practice units. The differences between the parametric
and non-parametric methods are illustrated by Figure 2 [18]. In Figure 2, the parametric

Figure 2: Comparison of DEA and regression (Source: Charnes et al. (1994))

model tries to fit a plane (dotted line) on the data points, while the DEA constructs the
piecewise envelopment of best-practice using a linear programming technique. DEA is
preferred to parametric method due to factors including;
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• it does not require assuming the function;

• it can be used for measuring efficiency using multiple inputs and outputs; and

• it can be used even when there is insufficient data.

DEA was introduced by Charnes and Cooper in 1978 [8]. It has been used in differ-
ent fields, for example in agriculture and economics. In mining, its application includes
evaluating the technical efficiency of coal mines, the growth in productivity for both open-
cast and underground mines, and in assessing the efficiency of coal mine safety measures
[20, 36, 38].

2.2.1 Mathematical representation of the basic DEA models

The DEA can be input-oriented, which refers to a DMU which uses a minimum of its
inputs in order to achieve a specific level of outputs. The output-oriented, considers the
DMU as using the same level of input and maximizing the outputs.

The mathematical representation of an input-oriented DEA is as follows. Assuming a set
of DMUs given by JJJ = {1...n}, with each j ∈ JJJ using m inputs to generate s outputs.
Consider a set of inputs III = {1...m} and a set of output RRR = {1...s}. Assume that the
usage of input is xij and the amount of output is yrj. The weights (multipliers) given to
the inputs and outputs are vi and ur respectively. The efficiency score of a DMU under
evaluation denoted by DMUj = o can be defined by Equation (2) [37]. The resulting
relative technical efficiency of each DMU in fractional form is given by Equation 3-6.

Efficiency =
weighted sum of outputs

weighted sum of inputs
(2)

maxho =

∑
r∈RRR

uryro∑
i∈III

vixio
(3)

subject to

(4)∑
r∈RRR

uryrj∑
i∈III

vixij
≤ 1 ∀j ∈ JJJ (5)

vi, ur ≥ 0 ∀i ∈ III, r ∈ RRR (6)

The above Fraction Programming (FP) equations can be transformed using Charnes and
Cooper transformation into Linear Programming (LP) below.

max go =
∑
r∈RRR

µryro (7)
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subject to∑
r∈RRR

µryrj −
∑
i∈III

νrxij ≤ 0 ∀j ∈ JJJ (8)∑
i∈III

νixio = 1 (9)

νi, µr ≥ 0 ∀i ∈ III, r ∈ RRR (10)

where t =
1

vixio
, µr = tur and νi = tvi (11)

The above Equation (7)-(10) can be written in dual form, and the efficiency score can
then be solved. The dual form involves a minimum number of variables, but gives the
same results as its primal linear programming counterpart. If the operation involves scale
measures, the DEA can be considered in two formulations. The first of these, considers a
constant return to scale (CRS) in which a DMU assumes that an increase in inputs results
in a proportional increase in outputs, while the other is a variable return to scale (VRS)
which assumes that the DMU increase in the inputs results in an unequal proportional
increase in outputs.

3 Formulation of a Coal Supply for Local and Export

(CSLE) model

The mathematical representation of the CSLE model are formulated from the generic
structure of the mine system shown Figure 3. It is an extension of a model supplying coal
for the export market as discussed by Budeba et al. [4]. In the formulation of the CSLE
model in this research, consider a set of surface coal mine systems JJJ = {1, ..., n}. Each
coal mine system j ∈ JJJ is considered to be a DMU producing coal and supplying product
to the local and export markets. The coal mine system consists of subsystems, including
mining denoted by superscript m, washing represented by superscript b and port denoted
by superscript p. These subsystems are interdependent functioning to produce coal for
sales in the markets.

Let the following apply: A set of inputs to the mining-subsystem is FFF = {1, ..., F}.
A set of intermediate outputs from the mining-subsystem to the washing-subsystem is
KKK = {1, ..., K}. A set of inputs at the beginning of the washing-subsystem is III = {1, ..., I}.
A set of intermediate outputs from the washing-subsystem to the port-subsystem is RRR =
{1, ..., R}. A set of inputs at the beginning of the port-subsystem be SSS = {1, ..., S}. A
set of outputs from the port-subsystem be TTT = {1, ..., T} and a set of non-discretionary
variables be HHH = {1, ..., H}.
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Figure 3: Generic mining to export coal supply chain structure

Consider the following mathematical notations that are used in the formulation of the
models.

xmfj is the given usage of input f ∈ FFF by mining-subsystem m of a coal supply system
j ∈ JJJ .

υmf is the weight of input f ∈ FFF .

ymgj is the given amount of output supplied to local market g ∈ GGG generated by mining-
subsystem m of a coal mine system j ∈ JJJ .

νmg is the weight given to output g ∈ GGG.

xbij is the given usage of input i ∈ III at the beginning of washing-subsystem b of a coal
mine supply system j ∈ JJJ .

υbi is the weight given to the input i ∈ III.

zmkj is the amount of intermediate output k ∈ KKK generated by mining-subsystem m and
is the usage of washing-subsystem b of a coal mine system j ∈ JJJ .

ηmk is the weight given to intermediate output k ∈KKK.

xpsj is the given usage of input s ∈ SSS at the beginning of port-subsystem p of a coal mine
supply system j ∈ JJJ .

υps is the weight given to the input s ∈ SSS.

zbrj is the amount of intermediate output r ∈ RRR generated by washing-subsystem b and is
the usage of port-subsystem p of a coal mine system j ∈ JJJ .

ηbr is the weight given to intermediate output r ∈ RRR.

yptj is the amount of outputs t ∈ TTT generated by port-subsystem p and is the final output
which is supplied to the export market.
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νpt is the weight given to output t ∈ TTT .

xehj is the given non-discretionary input h ∈HHH with effects on a coal mine supply system
j ∈ JJJ .

ωe
h is the weight given to non-discretionary input h ∈HHH.

According to Cook et al. [7], the overall efficiency of a system involving subsystems is
the weighted sum of the efficiencies of the subsystems. The weight of a subsystem is the
ratio of the inputs of that system to the overall inputs of the system. Considering the
assumption of VRS, the mathematical representation of the model for a mine supplying
coal to both local and export markets is presented in fractional programming (FP) by
Equations (12) -(20).

maxho =

∑
g∈GGG

νmg y
m
go +

∑
k∈KKK

ηmk z
m
ko +

∑
r∈RRR

ηbrz
b
ro +

∑
t∈TTT

νpt y
p
to + πm + πb + πp

∑
f∈FFF

υmf x
m
fo +

∑
k∈KKK

ηmk z
m
ko +

∑
i∈III

υbix
b
io +

∑
s∈SSS

υpsx
p
so +

∑
r∈RRR

ηbrz
b
ro

(12)

subject to∑
g∈GGG

νmg y
m
gj +

∑
k∈KKK

ηmk z
m
kj +

∑
r∈RRR

ηbrz
b
rj +

∑
t∈TTT

νpt y
p
tj + πm + πb + πp

∑
f∈FFF

υmf x
m
fj +

∑
k∈KKK

ηmk z
m
kj +

∑
i∈III

υbix
b
ij +

∑
s∈SSS

υpsx
p
sj +

∑
r∈RRR

ηbrz
b
rj

≤ 1 ∀j ∈ JJJ (13)

∑
g∈GGG

νmg x
m
gj +

∑
k∈KKK

ηmk z
m
kj + πm

∑
f∈FFF

υmf x
m
fj

≤ 1 ∀j ∈ JJJ (14)

∑
r∈RRR

ηbrz
b
rj + πb

∑
i∈III

υbix
b
ij +

∑
k∈KKK

ηmk z
m
kj

≤ 1 ∀j ∈ JJJ (15)

∑
t∈TTT

νpt y
p
tj + πp

∑
s∈SSS

υpsx
p
sj +

∑
r∈RRR

ηbrz
b
rj

≤ 1 ∀j ∈ JJJ (16)

∑
f∈FFF

υmf x
m
fj ≥ α ∀j ∈ JJJ (17)∑

i∈III

υbix
b
ij +

∑
k∈KKK

ηmk z
m
kj ≥ α ∀j ∈ JJJ (18)∑

s∈SSS

υpsx
p
sj +

∑
r∈RRR

ηbrz
b
rj ≥ α ∀j ∈ JJJ (19)

υmf , νmg , ηmk , υbi , ηbr, υps , νpt , ≥ ε; πm, πb, πp are free in sign

(20)
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Taking into account the effect of non-discretionary variables e, Lotfi et al. [23] and
Cooper et al. [8] suggested that non-discretionary variables have to enter the objective
functions to account for their influence on the efficiency of the producing entity. Therefore,
Equations (12) -(20) are transformed from FP to LP using the same form as the Charnes
and Cooper transformation, and by including the influence of non-discretionary variables,
with the resulting CSLE model being represented by Equations (21)-(31).

maxho =
∑
g∈GGG

µm
g y

m
gj +

∑
k∈KKK

γmk z
m
ko +

∑
r∈RRR

γbrz
b
ro +

∑
t∈TTT

µp
ty

p
to −

∑
h∈HHH

ωe
hx

e
ho + um + ub + up

(21)

subject to∑
g∈GGG

µm
g y

m
gj +

∑
t∈TTT

µp
ty

p
tj −

∑
f∈FFF

ωm
f x

m
fj −

∑
i∈III

ωb
ix

b
ij −

∑
s∈SSS

ωp
sx

p
sj

−
∑
h∈HHH

ωe
hx

e
hj + um + ub + up ≤ 0 ∀j ∈ JJJ (22)∑

f∈FFF

ωm
f x

m
fo +

∑
k∈KKK

γmk z
m
ko +

∑
i∈III

ωb
ix

b
io +

∑
r∈RRR

γbrz
b
ro +

∑
s∈SSS

γpsx
p
so = 1 (23)∑

g∈GGG

µm
g y

m
gj +

∑
k∈KKK

γmk z
m
kj −

∑
f∈FFF

ωm
f x

m
fj + um ≤ 0 ∀j ∈ JJJ

(24)∑
r∈RRR

γbrz
b
rj −

∑
i∈III

ωb
ix

b
ij −

∑
k∈KKK

γmk z
m
kj + ub ≤ 0 ∀j ∈ JJJ (25)∑

t∈TTT

µp
ty

p
tj −

∑
s∈SSS

ωp
sx

p
sj −

∑
r∈RRR

γbrz
b
rj + up ≤ 0 ∀j ∈ JJJ (26)∑

f∈FFF

ωm
f x

m
fj ≥ β ∀j ∈ JJJ (27)∑

i∈III

ωb
ix

b
ij +

∑
k∈KKK

γmk z
m
kj ≥ β ∀j ∈ JJJ (28)∑

s∈SSS

ωp
sx

p
sj +

∑
r∈RRR

γbrz
b
rj ≥ β ∀j ∈ JJJ (29)

ωe
h ≥ 0 ∀h ∈HHH, ∀j ∈ JJJ (30)

ωm
f , µm

g , γmk , ωb
i , γbr, ωp

s , µp
t ≥ ε; um, ub, up are free in sign

(31)

Where:
u is a difference of two positive numbers and accounts for VRS; ε is a smallest positive
number with a value of = 106, it is used to ensure that there is no slacks in inputs when
a DMU attains the efficiency score of one relative to other DMUs, that is a DMU of
efficiency scores of one must be efficient [40].
β =0.05 is the minimum weighted input at each subsystem.
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4 Data simulation and application to CSLE model

The major source of data for this study is Raw Materials Data (RMD) database subscribed
in 2013 to 2014 [17]. The database consists of minerals and mining entities. Data for some
mines ( named DMUs) that were extracted are represented in Tables 1 and 2. Table 1
shows the data for selected major mine design and production variables while Table 2
indicates the deposit’s unique characteristics for same mines. These were found to be the
only mines having all values in the variables required for purpose of the study.

Table 1: Selected mine variables

DMUs CAPEX (US$M) SR ROM (Mt/yr) Cap (Mt/yr) Age (yrs)

DMU1 631.33 2.00 11.07 15.00 8.00
DMU2 502.71 5.00 8.89 6.00 19.00
DMU3 15.88 10.30 14.80 11.00 17.00
DMU4 62.18 13.20 8.31 7.80 9.00
DMU5 2.00 7.80 0.60 4.00 2.00
DMU6 8.31 2.40 1.24 1.20 4.00
DMU7 424.99 5.20 4.00 2.40 3.00

Source: RMD, annual reports, media and company websites

Table 2: Location and deposit specific variables

DMUs Ash (%) Moisture(%) Dist-port (Km) Precipitation (mm) CV (MJ/Kg) Thickness (m)

DMU1 26.50 9.00 262.00 630.00 26.10 15.00
DMU2 10.10 11.00 275.00 656.00 27.80 5.50
DMU3 5.50 15.50 41.50 2809.00 25.80 8.70
DMU4 6.00 16.00 517.00 2905.00 28.90 5.00
DMU5 5.50 13.50 98.00 2121.00 27.60 3.50
DMU6 25.00 10.00 951.20 688.00 20.00 10.00
DMU7 13.30 2.90 570.00 683.00 27.80 3.00

Source: RMD, annual reports, media and company websites
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Considering that all models formulated using DEA technique are sensitive to number
of DMUs in relation to number of inputs and outputs. These models does not perform
well when the sample size is small, they poorly discriminate the efficient from inefficient
DMUs. Cooper et al. [8] explain the rule of thumb to determine the minimum number
of DMUs needed for DEA studies. The number of DMUs should be the maximum of
(n ∗m, 3(m + n)), where n is the number of inputs and m the number of outputs. The
extracted mines for this study did not satisfy the suggested condition [8]. Simulation was
proposed to generate the representative samples conditioned to the correlation among the
variables of the mines from Table 1 and Table 2.

Before conducting the simulation, a bootstrap sampling technique was applied to infer
the underlying distribution of each variable based on skewness and kurtosis statistical
measures. Bootstrap sampling refers to the processes of drawing a representative sample
from a population of data, then assuming that sample being a population from which
other samples of the same size are drawn with replacement. The generated samples are
known as bootstrap samples. Ankarali et al. [1] explain an example of the computation
and construction of the distribution for skewness and kurtosis of bootstrap samples and
more details about the bootstrap technique has been discussed in [10].

In this study, the calculated bootstrap mean values of skewness of most variables are
greater or less than zero and the mean kurtosis values are less than 3. These are typical
properties of non-normal data, suggesting that the variables for each mine were drawn
from non-normal populations of their distributions.

Various methods are available for the simulation of multivariate non-normal data. The
methods include the iterative method, also known as Sample and Iterate Sample and
Iterate (SI) [31], the extended Fleishman‘s linear transformation [3, 39], the fifth order
polynomial transformation [15], the generalized lambda methods [14], and the copula
based method which was proposed as an alternative to the iterative method by Mair
et al. [25].

In this research, the SI method was chosen due to the following reasons;

• it can be applied to any distribution in which other methods do fail;

• it does not require a specification of the moment but rather iterations to restore the
correlation matrix;

• it can be used in sampling discrete distribution;

• it distinguishes populations with equal moments;

• no boundary conditions exist for defined moment; and

• it can accommodate distributions with undefined moments.

The simulation was conducted in two steps. Firstly, the determination of the correla-
tion matrix indicated in Table 3 was determined from the samples of variables of mines
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collected. Secondly, the SI method was applied, whose implementation in R software is
discussed in detail by Ruscio and Kaczetow [31]. The matrix of the simulated data is
shown in Table 4. A comparison of the correlation matrix between the original samples
and the simulated data has a root mean square residual of 0.099. This is the minimum
average error that was obtained in reproducing the original matrix for all simulations
conducted. It was achieved when the number of DMUs reached 60. These were used in
the application and evaluation of the CSLE model and in the predictive modelling.

Table 3: Correlation of original sample variables for CSLE

R
O

M

C
V

T
h

ick
n

ess

C
ap

C
A

P
E

X

S
R

P
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A
ge

A
sh

M
oistu

re

D
ist.p

ort

E
x
p

ort

D
q
u

an
tity

ROM 1
CV 0.2669 1
Thickness 0.4244 -0.5155 1
Cap 0.8336 0.259 0.6532 1
CAPEX 0.2796 0.2859 0.3024 0.3755 1
SR 0.2804 0.5409 -0.4961 0.0987 -0.5613 1
Precipitation 0.2983 0.3463 -0.2785 0.2169 -0.693 0.9357 1
Age 0.7908 0.2038 0.1389 0.4576 0.1939 0.2339 0.173 1
Ash -0.1403 -0.6565 0.7478 0.1007 0.4365 -0.8499 -0.7468 -0.3024 1
Moisture 0.3345 0.1066 0.017 0.3139 -0.6135 0.6941 0.8166 0.4054 -0.5245 1
Dist.port -0.5209 -0.5835 0.037 -0.5802 -0.1004 -0.3373 -0.4205 -0.4404 0.5397 -0.4003 1
Export 0.9362 0.2964 0.1692 0.6411 -0.0017 0.538 0.5265 0.8141 -0.4027 0.4875 -0.4893 1
Dquantity 0.4901 -0.0849 0.8676 0.7938 0.6633 -0.4978 -0.3724 0.1641 0.6445 -0.143 -0.2019 0.1613 1

Table 4: Correlation matrix for simulated data for CSLE
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ROM 1
CV 0.3122 1
Thickness 0.4127 -0.4191 1
Cap 0.9096 0.2424 0.5743 1
CAPEX 0.1293 0.1607 0.2402 0.2761 1
SR 0.26 0.455 -0.5007 0.0276 -0.5727 1
Precipitation 0.2869 0.2113 -0.32 0.0477 -0.6453 0.8398 1
Age 0.6634 0.2317 0.2886 0.5916 0.0255 0.2546 0.3237 1
Ash -0.1621 -0.6086 0.6104 -0.0265 0.3705 -0.8073 -0.6392 -0.2151 1
Moisture 0.4498 -0.003 0.0911 0.2787 -0.7049 0.6474 0.745 0.4238 -0.3755 1
Dist.port -0.6143 -0.5633 0.0732 -0.4949 -0.0946 -0.4443 -0.3099 -0.3947 0.438 -0.3157 1
Export 0.8473 0.3923 0.2072 0.7293 -0.1177 0.5271 0.5191 0.6509 -0.4025 0.6321 -0.6223 1
Dquantity 0.4835 -0.0645 0.7168 0.6936 0.4818 -0.3999 -0.3366 0.3038 0.3571 -0.0562 -0.1854 0.2744 1
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5 Results of the computation of efficiency using CSLE

model

For computation of efficiency scores, the evaluation of the mines considered that the
mines are subjected to similar economic conditions and legislation. The average export
price of $90 per tonne of product for three years was used [19]. The export price was
adjusted for actual heat content to account for the differing calorific value contents [9].
The assumed local coal supply price was approximated to be equivalent to $53 per tonne
based on energy content. The minimum calorific value specification for export coal was
considered to be 24.5 MJ/kg (5,850kcal/kg NCV) [11]. The allowable maximum carbon
dioxide emission was assumed to be 25000 tonnes of Co2 equivalent per annum. The
CSLE model representing the mine system in Equations (21)-(31) was solved using the
simulated DMUs from Section 4. The inputs and outputs of the subsystem used in solving
the model are the following:

• Inputs in the mining-subsystem were CAPEX, SR, and mining employees, and the
outputs were ROM, ash, moisture, local sales of coal.

• Inputs in the washing-subsystem were ROM, ash, moisture and the specication of
plant capacity, and the estimated administrative and washing plant employees. The
outputs included export tonnages.

• Inputs to the port-subsystem were export tonnages and allowable carbon emission,
while the output was net revenue generated.

• Non-discretionary variables include precipitation, distance to the port, seam thick-
ness and the age of the mine.

The CSLE model was solved using the computer code (program) developed by the authors
in R software [27, 28].

The overall efficiency scores of the simulated surface coal mines’ supply system are pre-
sented in Figure 4. The results show that the efficiency scores range from 0.691 to 1.
Those with an efficiency score of 1 represent the envelope of the best-practice, while those
with an efficiency score of less than 1 are deemed to be inefficient. The best-practice
operations are those mines named DMU7 , DMU9, DMU15, DMU17, DMU33, DMU44,
and DMU54, with the remaining operations being deemed inefficiency. The best-practice
mines are using minimal inputs to generate their target outputs.

The least efficient mine is DMU16 with technical efficiency of 69.1%. This DMU has to
improve by 31.9% in order to be efficient. This can be achieved by reducing the inputs in
its subsystems for an aggregate of 31.9 %. The DMU16 is inefficient because it is using
excess inputs to produce the present outputs.
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Figure 4: Overall efficiency scores for each DMU for CSLE model

5.1 Prediction of efficiency of a new surface coal mine

Methods for predicting DEA efficiency scores are addressed by Radovanović et al. [29].
The authors highlight the available methodologies, including statistical algorithms, such
as linear regression and least median square regression, and machine learning algorithms,
such as neural networks and support vector machines. They claim that predicting DEA
efficiency scores saves re-computation of scores when a new DMU is added in the pro-
duction. One could also argue that, in the absence of enough mines to be compared,
the developed predictive model could help new mines to predict their technical efficiency
within a given set of discretionary and non-discretionary variables.

In building the predictive function, the simulated DMUs were randomly divided into two
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groups, training sets (48 DMUs) and test sets ( 12 DMUs). Bootstrap of the training data
sets is done so as to create independent efficiency scores that were obtained by relative
computation among the DMUs. The training data were used to specify and estimate
the model parameters using the stepwise akaike information criterion (AIC) based on
bootstrap, for selecting the final model in linear regression modelling [2]. In the first
place all variables are used and upon application of stepwise bootstrap the final model is
specified. The test set was used to evaluate the model. The general form of the function
considered is presented in Equation 32.

θ̂overall(j) = αo +
n∑

i=1

αixij (32)

Where θ̂overall(j) is the overall efficiency of a mine supply system j and xij are the input
variables consisting of both discretionary and non discretionary variables and αi represents
the coefficient of input i in the model.

The variables that were found to be useful in building the model at the 5% significant
level are summarized in Table 5. These variables are used in specifying the final useful
model represented by Equation 33.

Table 5: Regression Results

Dependent variable:

Efficiency

EmployeesM 0.0022∗∗∗

(0.0006)
Thickness 0.0139∗∗∗

(0.0030)
Precipitation 0.00004∗∗∗

(0.00001)
Export 0.0117∗∗

(0.0054)
EmployeesP −0.0207∗∗∗

(0.0050)
Constant 0.9899∗∗∗

(0.0461)

Observations 48
R2 0.626
Adjusted R2 0.581
Residual Std. Error 0.057 (df = 42)
F Statistic 14.030∗∗∗ (df = 5; 42)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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θ̂ = 0.9899 + 0.0022× (EmployeesM) + 0.0139× (Thickness) + 0.00004× (Precipitation)

+ 0.0117× (Export)− 0.0207× (EmployeesP) (33)

Where:

EmployeesM: total number of employees in mining subsystem.

Thickness: average coal seam thickness (m).

Precipitation: annual precipitation (mm).

Export: annual export tonnages (Mt/yr).

EmployeesP: total number of employees in washing subsystem.

The evaluation of the performance of the predictive model was achieved by re-estimating
the efficiency scores of the test sets using Equation 33. The computed efficiencies for
selected test sets, as shown in Figure 4, are compared to the predicted efficiency scores
using Equation 33, as indicated Table 6. The predictive model generates good estimates
that are closer to the computed ones and the model root mean square error of 0.057. The
model can be used by the new mine to assess the likely technical efficiency for the given
predetermined parameters in the feasibility study.

Table 6: Comparison between the DEA efficiency scores of test sets and the predicted scores

Mines Employees Thickness (m) Precipitation(mm) Export(Mt/yr) EmployeesP Calculated Efficiency Predicted Efficiency

DMU 2 992 8.7 2809 4.80 124 0.8806 0.8542
DMU 3 440 5.0 2809 6.00 59 0.9743 0.9698
DMU 4 832 5.5 2809 6.00 105 0.8662 0.8718
DMU 10 266 5.5 683 0.58 40 0.8971 0.8469
DMU 13 946 3.0 2809 6.99 118 0.8428 0.8260
DMU 31 61 3.5 656 0.58 13 0.9569 0.9339
DMU 34 320 10.0 683 6.00 49 0.8924 0.9034
DMU 39 170 5.0 656 0.58 30 0.9258 0.8385
DMU 42 812 5.5 683 6.00 104 0.7541 0.7657
DMU 47 1250 5.5 2905 6.99 154 0.7194 0.7762
DMU 50 345 15.0 656 6.00 53 0.9132 0.9430
DMU 51 440 5.0 2809 4.80 59 0.9742 0.9558

6 Conclusion

This study formulated a CSLE model based on a DEA technique for evaluating the relative
technical efficiency of a surface mine supplying thermal coal to both local and export
markets. The model can be used to evaluate a mine’s competitiveness and to suggest
the optimal inputs. The competitiveness of a new mine depends on its efficiency and
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cost effectiveness. Optimal competitiveness can be achieved by selecting and combining
discretionary input variables to generate maximum output without the excessive use of
inputs, taking into account the influence of non-discretionary variables in the area in
which the mine project is located.

It could also be concluded that, before investing in a project, a new mine can predict its
technical efficiency based on the choice of predetermined variables in a feasibility study.
However, the predictive model has some limitations, for example, it can generate large
errors if the mine variables are out of the range of the data used in specifying it. It is
recommended that simulation studies should be done for operating mines with variables
outside the range of the simulated DMUs for this study and then use the CSLE model
to compute the efficiency of each DMU. In addition, one can collect more data from
operating mines and compute their efficiency scores using the CSLE model.

Management can use the CSLE models to identify those mines that can be used as bench-
marks for an inefficient mine. It can also help in choosing a better project for investment
purposes from a given list of projects, taking into account their comparable technical
efficiencies.
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