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Abstract 

Smoking is now well recognised not only as a risk factor for rheumatoid arthritis 

(RA), but also as a determinant of disease activity, severity, response to therapy, 

and possibly mortality. Recent studies have provided significant insights into the 

molecular and cellular mechanisms which underpin the pathogenesis of smoking-

related RA. These involve release of the enzymes, peptidylarginine deiminases 

(PADs) 2 and 4 from smoke-activated, resident and infiltrating pulmonary 

phagocytes. PADs, in turn, mediate the conversion of various endogenous proteins 

to putative citrullinated autoantigens. In genetically susceptible individuals, these 

autoantigens trigger the production of anti-citrullinated peptide/protein pathogenic 

autoantibodies (ACPA), an event which precedes the development of RA. This 

review is focused primarily on smoking-mediated harmful chronic inflammatory 

responses, both local and systemic, which promote the formation of ACPA, as well 

as the possible involvement of other types of outdoor and indoor pollution in the 

pathogenesis of RA. This is preceded by a brief overview of the evidence implicating 

smoking as a risk factor for development of ACPA-positive RA. 

Keywords: Anti-citrullinated peptide/protein antibodies; airway microbiota; 

atmospheric pollution; heavy metals; peptidylarginine deiminases; smoking cessation 

strategies. 

Implications 

Chronic inflammatory mechanisms operative in the lungs of smokers lead to the 

production of anti-citrullinated protein antibodies which, in turn, drive the 

development of rheumatoid arthritis. These mechanistic insights not only reinforce 

the association between smoking and risk for rheumatoid arthritis, but also the 

necessity to increase the level of awareness in those at highest risk.  
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Introduction 

Although identification of the triggering events involved in the immunopathogenesis 

of rheumatoid arthritis (RA) remain elusive, a considerable and increasing body of 

evidence supports the contention that these may occur at sites distal to the synovial 

joints. Prime contenders are the gastrointestinal tract (GIT), and, more recently, the 

lungs. In the case of the GIT, a number of earlier studies focused on RA and other 

inflammatory arthropathies proposed a triggering role for Gram-negative intestinal 

bacterial pathogens.  In this setting, immunogenic and pro-inflammatory bacterial 

products were proposed to access the systemic circulation and joints via 

translocation across a damaged gut epithelium [1–7]. Potential mechanisms of 

initiation and/or exacerbation of RA included: i) deposition of bacterial endotoxin in 

the joints [5, 6]; and ii) production of antibodies and cytotoxic T lymphocytes reactive 

with cross-reactive epitopes present on both the putative causative bacterial 

pathogens and host synovial autoantigens [7]. In keeping with these earlier studies, 

alterations in the GIT microbiome, resulting in replacement of beneficial commensals 

such as Bacteroides, Blautia, Lachnospiraceae and Group XIV Clostridia clades with 

the pro-inflammatory, Gram-negative, anaerobic rod, Prevotella copri  have recently 

been linked to the pathogenesis of RA [8], possibly due to lifestyle factors such as 

diet and smoking [9]. 

Recent attention has also focused on the involvement of immunological 

disturbances in the lungs in the pathogenesis of RA. In this setting, inhalation of 

cigarette smoke and possibly other indoor and outdoor atmospheric pollutants have 

been reported to contribute to the development of RA.  

  Smoking and RA 

The association of smoking with development and severity of RA was documented 

almost 30 years ago [10] and confirmed in many subsequent studies [11–21]. A 

recent dose-response meta-analysis (encompassing 4,552 RA patients) reported 

relative risks of 1.26 and 1.96 for the associations of RA with smoking histories of 1–

10 and >20 pack years respectively [19]. In addition, others have reported that RA-

affected male, current smokers were less likely to experience remission than their 
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never- or former- smoking counterparts, an association that was not detected in 

females [22]. These observations are in keeping with several reports on the negative 

impact of smoking on the response to tumour necrosis factor (TNF) antagonists in 

particular [23-26], as well as methotrexate [26], in patients with RA [23–26]. 

It is only more recently, however, that a molecular mechanism underpinning 

the association between smoking and RA has been unravelled. In this context 

smoking, and possibly other inhaled pro-inflammatory agents, have been reported to 

promote protein citrullination in the lungs, a process mediated by peptidylarginine 

deiminase (PAD) enzymes [27–30]. PADs convert positively charged protein arginine 

residues to neutral, potentially immunogenic citrulline. In genetically predisposed 

individuals, protein citrullination poses the potential risk of production of anti-

citrullinated peptide/protein antibodies (ACPA), which are strongly associated with 

development of RA [31,32]. In this context, the combination of current smoking and 

possession of HLA-DRB1 shared epitope (SE) alleles, both of which are 

independently associated with RA, is closely associated with the appearance of 

ACPA, an event which precedes, and is predictive of, the development of RA [33-

38]. The specificity of ACPA for their target citrullinated proteins appears to increase 

closer to disease onset and progression [37]. In the case of patients with early-onset 

RA, previous smoking is associated with a dose-dependent occurrence of ACPA in 

both the lungs and circulation [35,39]. Moreover, the combination of a smoking 

history and double copies of HLA-DRB1 SE genes increases the risk for RA by 21-

fold relative to that of non-smokers with no SE genes [35]. The smoking/SE allele 

interaction is, however, complex [40]. This is clearly illustrated by the findings of a 

recent study which reported that ever-smoking per se is associated with production 

of ACPA of the IgA isotype, possibly consistent with a pulmonary origin, while SE in 

the absence of smoking is associated with ACPA of the IgG isotype, and the 

combination of smoking and SE with seropositivity for both isotypes [41].    

      Taken together, these findings highlight the putative role of smoking-related 

inflammatory events in the lungs as potential triggers for development of ACPA and 

RA [42]. This contention is supported by findings of structural abnormalities of lung 

parenchyma in patients with untreated, early ACPA-positive RA [41]. These were 
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associated with high concentrations of ACPA in bronchoalveolar lavage fluid relative 

to those of blood [35,39]. 

      The oral cavity is also a potential extra-articular site of smoking-associated 

production of ACPA. In this setting, smoking predisposes for development of chronic 

periodontitis [43,44]. Porphyromonas gingivalis, the major causative pathogen in 

chronic periodontitis, possesses a bacterial PAD which is capable of citrullinating 

both host and bacterial proteins, potentially triggering the generation of ACPA in 

genetically predisposed individuals. Not surprisingly, the prevalence of RA is 

increased in patients with P. gingivalis -associated chronic periodontitis, which 

correlates with circulating levels of ACPA [45,46].  Citrullination of periodontal 

proteins such as  filaggrin, vimentin and enolase, as well as bacterial antigens,  

results in a range of different ACPA specificities with antibodies to citrullinated 

enolase peptides most strongly associated with RA [47]. 

The remainder of this review is focused on mechanisms which underpin the 

interaction between smoking, pulmonary inflammation, protein citrullination, ACPA, 

and RA, as well as the possible involvement of a smokeless tobacco product (snuff) 

and atmospheric pollution in the pathogenesis of RA. 

Potentially harmful constituents of cigarette smoke 

The Food and Drug Administration (FDA) of the United States of America has 

published a list of 96 “harmful and potentially harmful constituents (HPHCs)” present 

in tobacco products and tobacco smoke [48]. This list of smoking-associated 

toxicants is, however, likely to be an underestimate given that the gas and tar 

phases of cigarette smoke collectively contain more than 9600 chemicals [49]. In 

addition to a range of potentially toxic hydrocarbons such as benzo[a]pyrene, 

gasses, and heavy metals (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Ni, Pb, V), these include 

various short-lived and stable toxic free radicals and reactive oxygen species (ROS). 

Notwithstanding direct damage to airway epithelium and epithelium [50–52], chronic 

exposure to these smoke-derived toxicants also impacts on cells of the innate and 

adaptive airway immune systems, as well as on the composition of the airway 

microbiota, creating a highly pro-inflammatory milieu. 
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Pro-inflammatory effects of smoking 

In the context of a putative role in the immunopathogenesis of RA, it is noteworthy 

that smoking promotes the recruitment of monocytes and neutrophils to the lungs, 

with the numbers of alveolar macrophages being about 2 times higher than that of 

non-smokers [53]. Smoking also causes a chronic, low-grade leukocytosis 

characterised by increased numbers of immature neutrophils with a pro-inflammatory 

phenotype which accumulate in the lungs [54]. Migration of circulating neutrophils 

and monocytes to the lungs is facilitated by smoke-mediated: i) activation of the β2-

integrin, CR3, on phagocytes together with upregulated expression of its counter-

receptor ,ICAM-1, on vascular endothelium; and ii) increased production of 

neutrophil/monocyte-attracting chemokines, as well as endothelium-interactive, pro-

adhesive cytokines, by smoke-exposed resident airway and infiltrating cells [55,56]. 

Mechanisms which contribute to the maintenance of a pro-inflammatory 

environment in the lungs and systemic circulation, of smokers include: 

 smoke-mediated, pro-oxidative activation of the transcription factor, nuclear

factor kappa B (NFκB), in cells of the airway innate immune system, as well

as structural cells, by smoke-derived ROS/radicals and sulphydryl-reactive

heavy metals [57-59]. On a cautionary note, however, the extent of the

involvement of NFκB in the pro-inflammatory effects of smoking has recently

been re-visited and questioned, raising the issue of alternative mechanisms of

smoke-activated pulmonary inflammation [60].

 inhibition of release of the anti-inflammatory proteins, suppressors of cytokine

signalling (SOCS), SOCS1 and SOCS3, by smoke-exposed alveolar

macrophages, consistent with transition of these cells from an anti-

inflammatory (M1) to a pro-inflammatory (M2) phenotype. SOCS1 and

SOCS3 are released from alveolar macrophages in exosomes and

microparticles, respectively. These are then internalised by alveolar epithelial
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cells, resulting in attenuation of cytokine signalling, a previously unrecognised 

mechanism of smoking-mediated inflammatory activity [61].   

 smoke-mediated redistribution of the interleukin (IL)-33 receptor, ST2, a

member of the IL-1 pro-inflammatory cytokine family, resulting in increased

expression on alveolar macrophages and natural killer cells, thereby

potentiating the inflammatory potential of these cells [62]

 increased expression of the G-protein-coupled receptor 15 gene (GPR15) in

the blood of smokers resulting from  hypomethylation of DNA [63].  This is an

orphan receptor involved in the homing of effector, pro-inflammatory Th1 and

Th17 cells to the colon [64]. Although altered expression in the lungs of

smokers has not yet been described, it is noteworthy that increased

expression of GPR15 has been detected on circulating neutrophils and

monocytes fom RA patients, as well as on CD14+/CD68+ dual-positive

synovial macrophages [65]

 chronic inhalation of highly pro-inflammatory bacterial endotoxin, which is

present in cured tobacco and remains biologically active, albeit at a lower

level, in cigarette smoke [66, 67]. Leakage from the lungs may explain the

increased levels of endotoxin present in the blood of “healthy” smokers [68],

and possibly the joints of RA patients who smoke [5,6]. Endotoxins have been

reported to bind to and to form complexes with procollagen that trigger

cartilage inflammation and degradation via inflammatory mechanisms

involving activation of NFκB [69].

These pro-inflammatory activities of smoking are summarised in Table 1. 
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Table 1: Documented and proposed mechanisms of the pro-inflammatory activities of 

cigarette smoking 

Mechanism* Consequence 

Damage to pulmonary epithelium and 

endothelium resulting in increased lung 

permeability 

Possible leakage of smoke-derived 

endotoxin and pro-inflammatory 

cytokines/chemokines, promoting systemic 

inflammation 

Upregulation of expression of adhesion 

molecules on circulating phagocytes, as 

well as their counter-receptors on vascular 

endothelium 

Facilitates pulmonary infiltration of 

neutrophils and monocytes 

Activation of NFκB in resident and 

infiltrating cells of the pulmonary innate 

immune system, as well as structural cells, 

by smoke-derived ROS and heavy metals 

Increased synthesis of pro-inflammatory 

cytokines/chemokines 

Inhibition of production of SOCS1 and 3 by 

alveolar macrophages 

Increased synthesis of pro-inflammatory 

cytokines/chemokines 

Altered expression of the IL-33 receptor, 

ST2, on cells of the pulmonary innate 

immune system 

Increased synthesis of pro-inflammatory 

cytokines/chemokines 

Increased expression of the G-protein 

coupled receptor 15 gene (GPR15) 

Possible recruitment of pro-inflammatory 

effector Th1 and Th17 cells and monocytes 

*Covered by references 56–59 and 60–67, 80 in the text
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Smoking and the microbiota 

The chronic inflammatory milieu in the airways of smokers results in chronic, 

inappropriate activation of innate and adaptive airway host defences, which together 

with the interactive cytotoxic effects of smoke-derived toxicants, causes immune 

dysfunction, leading to alterations in the airway microbiota. In this context, alterations 

in the nasopharyngeal microflora of smokers include reductions in the numbers of 

competitive aerobic and anaerobic commensals and replacement  of these with 

various pathogens such as Streptococcus pneumoniae [70]. Smoking-associated 

alterations in the airway microbiota are also favoured by the presence of a variety of 

potential microbial pathogens in cured tobacco the flakes of which translocate to the 

filter tip [71]. These smoking-related alterations in the airway microbiota are likely to 

exacerbate airway inflammation and production of ACPA. Given that microorganisms 

also express citrullinated proteins, it is also possible, albeit speculative, that 

differential expression of citrullinated proteins on replacement microorganisms may 

contribute to the pathogenesis of RA [72].  

Inflammation and protein citrullination in the lungs of smokers 

As mentioned above, PADs, of which there are 5 isoforms (PAD1, 2, 3, 4 and 6), are 

the key enzymes which mediate the conversion of arginine to citrulline.  Two of these 

enzymes, PAD2 and PAD4, are present at high concentrations in the lungs of 

smokers, probably originating from infiltrating and resident inflammatory cells, 

specifically neutrophils, monocytes and macrophages [27-30]. Neutrophils have 

been reported to contain PADs 2, 3 and 4 [73, 74], monocytes PADs 2 and 4 [75], 

and macrophages PAD2 only [75]. Neutrophils, not only in the lungs, but also in the 

synovial fluid, may be the major sources of PAD2 and PAD4, which are released 

from these short-lived cells during the processes of NETosis and necrosis [73, 74]. 

Collectively, PAD2 and PAD4 mediate the conversion of a range of host proteins to 

putative citrullinated autoantigens. These include β- and γ-actins, enolase, 

fibrinogen, filaggrin and vimentin, all of which are recognised by ACPA [30, 38, 73]. 

In this context, it is noteworthy that selective knockout of the gene encoding PAD4 in 

mice has been reported to significantly reduce disease severity in a model of 

glucose-6-phosphate isomerase-induced arthritis [76]. 
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The weight of evidence clearly supports the link between smoking, pulmonary 

inflammation, protein citrullination and formation of ACPA in the lungs. However, it 

should be mentioned that one study to which relatively small numbers of non-

smokers and smokers were recruited, failed to confirm this association, with the 

exception of a sub-group of patients with chronic obstructive pulmonary disease [30]. 

Although citrullination has received greatest interest with respect to 

smoking/inflammation-associated, post-translational conversion of host proteins to 

putative autoantigens, at least two other mechanisms have also been described. 

These are: i) carbamylation involving the reaction of cyanate present in cigarette 

smoke with the primary amine group of protein/peptidyl-lysine, resulting in 

conversion to  potentially autoantigenic protein/peptidyl-homocitrulline, which is 

potentiated by neutrophil/monocyte-derived myeloperoxidase [77]; and ii) ROS-

mediated lipid peroxidation, resulting in the formation of malondialdehyde and 

acetaldehyde which, in turn, form potentially autoantigenic protein adducts via 

reaction with primary amine groups of amino acids [77, 78]. 

     A proposed mechanism of the inflammatory events involved in the generation 

of ACPA in the lungs of smokers is shown in Figure 1. 

Heavy metals, smoking and RA 

Several recent studies have implicated environmental exposure to heavy metals in 

the pathogenesis of RA. For example, it has been reported that excised nasal polyps 

from smokers contain significantly higher concentrations of As, Cd and Ni than those 

measured in polyps of non-smokers [79]. More recently, and of particular relevance 

to RA, hair and blood samples taken from non-smoking, and smoking RA patients in 

particular (n=53, 26F:27M, 60% smokers), were found to contain significantly higher 

concentrations of As, Cd, Hg and Pb than those in the corresponding samples taken 

from either non-smoking or smoking healthy control subjects [80]. The authors did 

not, however, address the possible causes of the elevated concentrations of these 

metals in samples taken from the non-smoking RA patients [80], such as possible 

exposure to other inhaled atmospheric pollutants [79]. 
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Figure 1: A proposed smoking-activated pulmonary inflammatory cascade leading to the production 
of anti-citrullinated peptide/protein antibodies (ACPA). Inhalation of cigarette smoke results in 
exposure of the airways to a range of smoke-derived toxicants, including, but not limited to, 
hydrocarbons, heavy metals, reactive oxygen species (ROS) and microbial endotoxins. Interactions of 
these with resident and infiltrating pulmonary phagocytes (P), such as resident alveolar macrophages 
and infiltrating monocytes and neutrophils, leads to activation of peptidylarginine deiminases 
(PADs) resulting in citrullination of host proteins, including structural proteins and enzymes. In 
genetically susceptible individuals, these citrullinated proteins are potential immunogens 
(autoantigens) which trigger the local production of anti-citrullinated peptide/protein antibodies 
(ACPA). These, as well as the cells which produce them, migrate to the synovial joints where they 
promote synovial inflammation and damage to the joints. These events are exacerbated and 
perpetuated by the sustained production of pro-inflammatory cytokines/chemokines by cells of the 
pulmonary innate immune system, as well as structural cells. These pro-inflammatory cytokines/
chemokines sustain pulmonary inflammation by promoting the production and trafficking to the 
lungs of neutrophils and monocytes.
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Smokeless tobacco (snuff) 

Usage of snuff, which is prepared from dried, pulverised tobacco leaves and is 

available in the powdered or moistened forms for nasal or oral application 

respectively, is common in northern European countries, as well as  

a number of other developed and developing countries including South Africa.  

Usage of snuff, which may be increasing due to bans on smoking in public places, 

does not result in exposure to the toxicants that result from the combustion of 

tobacco. It does, however, carry the risk of exposure to nicotine, heavy metals, and 

contaminating microorganisms and their products, with the levels of blood and urine 

nicotine/cotinine being comparable to those of smokers [81–85]. Although studies to 

date are somewhat limited, those that have been reported did not, however, detect 

an association between usage of snuff and risk of development of either ACPA-

positive or ACPA-negative RA, or for increased disease severity [86–88]. All of these 

studies were performed in Sweden and involved users of orally-applied moist snuff. 

Future studies should focus on users of powdered, inhaled snuff products. 

Outdoor and indoor atmospheric pollution, pulmonary inflammation and ACPA 

Although smoking is a recognised risk factor for development of RA, probably linked 

to inappropriate immune activation and production of ACPA, in many settings, 

particularly in some developing world countries such as South Africa, the majority of 

ACPA-seropositive/SE allele-positive RA patients do not smoke [89, 90]. In this 

setting, alternative triggering mechanisms of production of ACPA may be implicated. 

Notwithstanding inhaled snuff products, these include chronic exposure to outdoor, 

and possibly indoor, atmospheric pollutants as causes of pulmonary inflammation 

possibly linked to the pathogenesis of RA [91]. 

Interest in exposure to motor vehicle exhaust fumes, which contain a variety 

of particulate and non-particulate airway irritants, as a risk factor for RA, was 

prompted by a study published in 2009 by Hart and colleagues [92]. Based on data 

derived from the “Nurses’ Health Study,” to which 90,297 U.S. women were enrolled, 

these authors, using Cox proportional hazard models with “adjustment for a large 
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number of potential co-founders,” including smoking, investigated residing in close 

proximity to a road as a potential environmental risk factor for RA [92]. They reported 

that those living within 50 metres of a road, but not further away, had an increased 

risk of RA, with a hazard ratio (HR) of 1.31 [92]. This association was evident in the 

following sub-groups: i) non-smokers (HR=1.62); ii) non-smokers with rheumatoid 

factor (RF)-seropositive RA (HR=1.51); and iii) non-smokers with RF-seronegative 

RA (HR=1.77) [92]. ACPA were not measured in this study [92]. These findings were 

confirmed in a more recent study from Canada encompassing 678,361 residents 

aged 45–48 [93]. The authors reported that residing within ≤50m of motor vehicle 

traffic was associated with an increased risk for RA [odds ratio (OR) of 1.37], which 

was not attributable to either traffic-related noise, or, somewhat surprisingly, to 

specific air pollutants (PM2.5, PM10, CO, NO, NO2, O3, SO2) [93]. Other studies have 

shown a similar  lack of association between RA, either seropositive (ACPA/RF) or 

seronegative disease, and exposure to specific atmospheric pollutants (PM2.5, PM10, 

NO2 and SO2) [94, 95]. 

Although the precise determinants of the link between traffic-related 

atmospheric pollution and risk for RA remain to be identified, the association is 

supported, albeit indirectly, by several other lines of evidence. These include: 

 a much higher prevalence of RA in urban, as opposed to rural areas of

several countries such as China, South Africa and Taiwan. In the case of

mainland China, which remains a predominantly rural country, the overall

prevalence of RA is considerably lower than that observed in Caucasians

(0.28% vs. 1%) [96]. In South Africa, where the epidemiology of RA is

changing in relation to ethnicity, the prevalence rates of “definite RA” in rural

and urban black South African populations reported in 1975 were reported to

be 0.18% and 0.9% respectively [97]; in a later study published in 1988, the

prevalence of RA in a defined, remote geographic region of South Africa was

estimated to be 0.0026% [98]. The corresponding prevalence rates for Taiwan

published in 1994 varied from 0.26 – 0.93%, with the highest rate recorded in

an urban region [99, 100]
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 As mentioned earlier, even in in non-smoking subjects with RA, the levels of

several toxic heavy metals in blood and hair samples were reported to be

higher than those of healthy control subjects [60]. In the context of the

association of atmospheric pollution and RA risk, two aspects of this study are

particularly noteworthy. Firstly, the subjects were resident in a major city

(Dublin, Republic of Ireland); secondly, most of the heavy metals tested (As,

Cd, Hg) are also present in diesel emissions [60]. In addition, residing in areas

with high levels of atmospheric pollution has also been reported to be

associated with particularly high concentrations of As in nasal mucosa and

nasal polyps [59].

In the context of developing countries, those exposed to high levels of outdoor 

atmospheric pollution are also likely to have a high probability of exposure to indoor 

pollution. Sprawling townships and informal settlements with high population 

densities are often located in close proximity to roads and highways with major traffic 

flow. Dwellings are often poorly constructed and ventilated, possibly non-electrified, 

and with lack of access to clean water and sanitation. Notwithstanding active and 

passive smoking, the major sources of indoor pollution include chronic exposure to  

house dust contaminated with endotoxin [101], and in some cases, components of  

smokeless tobacco [102], as well as a variety of particulate, gaseous, heavy metal 

and other toxicants emanating from woodsmoke and the combustion of paraffin and 

paraffin wax candles [103, 104]. In addition, those with employment who reside in 

these environments are likely to be engaged in industries such as construction and 

mining, involving occupational exposure to inhaled irritants such as silica, which also 

pose a high risk of development of ACPA-seropositive RA [105,106]. 

Although current smoking and possibly chronic exposure to outdoor 

environmental atmospheric pollutants appear to be independent risks for ACPA-

seropositive RA, it is likely that interactions between these, as well as with indoor 

pollution and occupation, pose the greatest risk. 
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Anti-inflammatory/immunosuppressive therapies 

While synthetic and biologic disease-modifying anti-inflammatory drugs remain the 

cornerstone of the therapy of RA, inhibitors of PADs, which are currently in the 

developmental pipeline [107], are of potential therapeutic utility in the prevention 

and/or therapy of RA. 

Smoking cessation strategies 

Given that smoking is currently recognised as the most significant, avoidable risk for 

RA, the early identification of RA sufferers who smoke, together with the inclusion of 

persuasive, anti-smoking counselling as an adjunct to routine care, are clearly 

priorities. This strategy is underscored by the increased mortality rates in RA, due 

predominantly to cardiovascular and pulmonary diseases [108, 109]. In this context, 

it is noteworthy that RA-related increased mortality has been reported to have a 

strong association with the combination of smoking, SE and ACPA [110]. 

Overcoming the barriers to successful implementation of anti-smoking strategies in 

RA does, however, present significant challenges. These include lack of awareness 

of the risk, as well as dependence on smoking as a distraction from pain, physical 

inactivity, loneliness and depression [111]. 

Conclusion 

The mechanisms underpinning the pathogenesis of RA are varied, complex and 

incompletely characterised. Nonetheless, an increasing body of evidence has 

identified inflammatory mechanisms in the lung, linked to the production of ACPA, as 

events which precede the development of seropositive RA. Smoking in particular, 

and possibly exposure to other types of environmental and occupational, 

atmospheric pollution, trigger these inappropriate inflammatory responses. The 

implementation of compelling, anti-smoking awareness/education campaigns and 

cessation strategies is a priority not only to improve the outcome of RA, but also in 

disease prevention. Future studies should focus on the role of passive smoking, as 

well as the utility of inclusion of objective, inexpensive measurements of smoke 
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exposure, in the routine clinical assessment of patients presenting with suspected 

RA. 
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