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Abstract 
Blades are critical components of turbomachines, failure of a single blade may result in catastrophic 
failure of the entire machine. One study found that blade failure was the third largest cause of power 
generation unit unavailability. Their condition during operation is therefore of interest to monitor.  

Various intrusive and non-intrusive blade vibration measurement (BVM) techniques have been 
developed for this purpose. Intrusive techniques such as strain gauge approaches and the frequency 
modulated grid method require expensive and complex alteration of the actual blades and/or casing. 
Further, they are prone to failure due to operation in harsh working environments. Therefore the use 
of intrusive techniques has been predominantly limited to design verification, testing and research. 

Blade tip timing approaches are currently at the forefront of BVM. The practicality, accuracy and ease 
of implementation of these approaches have limited their commercial roll out. An alternative non-
intrusive source of blade vibration information was found in the internal casing pressure signal (CPS). 

As the machine operates the blade movement excites the fluid in the casing, producing a measureable 
response. Unlike BTT approaches which deal with a scarcity of information, CPS based methods must 
identify blade vibration from a complex signal which contains multiple other sources of information. 
The issue of how to model the blades’ response and fluid interaction is the topic of this investigation. 

An available single stage turbomachine mock setup was modified for internal pressure and direct 
blade vibration measurements. Pressure measurements were taken in line with a redesigned hub and 
rotor blade assembly. Strain gauges (SG) were applied to blades in order to capture their response. 

The blades’ response was modelled as the combination of a forcing function and a multiple degree of 
freedom transfer function. Repurposed experimental modal analysis frequency response 
reconstruction techniques were used to model the blades’ transfer function. It was found that this 
technique was able to capture the blades’ underlying behaviour to a high degree. The forcing function 
was modelled in the time domain as a series of Gaussian shaped force distributions. It was found that 
the model was able to capture many important aspects of the forcing behaviour. Both the forcing 
function and blade transfer function were explored using constrained optimisation techniques. 

The blade-fluid interaction was modelled as a Fourier series. It was shown that the blade behaviour 
cannot be extracted from a pressure signal using standard frequency analysis techniques. The viability 
of an inverse problem solution methodology, for the purpose of blade behaviour extraction, was 
investigated. This was achieved by solving reduced components of the model with SG measurements 
and observations from pressure measurements. Further the need to isolate the pressure field about 
individual blades was motivated and a novel time domain windowing technique provided. 

Keywords: Turbomachine, blade vibration, casing pressure, signal processing, optimisation.  
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Chapter 1 Introduction 
1.1. Background 
Forced vibration of bladed assemblies in turbomachines may occur in the vicinity of their natural 
frequencies. This results in magnified structural motion of the blades (Carrington et al., 2001; Kahl, 
2002). Structural motion of rotating blades directly affects the fatigue life, performance and integrity 
of the system as a whole (Heath and Imregun, 1997), therefore the design and validation of 
methodologies to extract turbomachine blade vibration information during operation is of interest. 
Accurately determining the vibrational response of a blade can be used to directly report on any 
change in its health as well as assist in residual life estimation and maintenance planning. 

In terms of real world significance turbine failure and maintenance accounts for a large portion of the 
unavailability of power generation units.  Turbine failure was identified as the third largest cause of 
non-productivity of power generation units behind overhauls and boiler issues (Dewey and Rieger, 
1985). The implication of a single blade failing could be the catastrophic failure of the entire 
turbomachine (Rao and Dutta, 2012). Research shows that blades in the late stages of low pressure 
(LP) turbines are the most vulnerable to failure  (Das et al., 2003; Mukhopadhyay and Chowdhury, 
1998; Rao and Dutta, 2014). This phenomenon is attributed to longer blades which result in higher 
stress levels and a plurality of potential resonance frequencies (Booysen et al., 2014). It has also been 
mentioned that final stage LP turbine blades, which experience low and potentially wet steam flow 
and high back pressure, are potentially susceptible to stall flutter (Rao and Dutta, 2014, 2012). 

There are many complex mechanisms by which LP turbine blades fail. Nearly half of all LP turbine blade 
failures are attributed to stress corrosion cracking, corrosion fatigue and fatigue and as high as 40% 
of the failure mechanisms are unidentified or not completely understood (Mukhopadhyay and 
Chowdhury, 1998; Rao and Dutta, 2012). Fatigue damage is accumulated during both steady and 
transient operation of a turbomachine. Centrifugal stresses are dominant during steady operation, 
however during run-up or shut down blades may accumulate high cycle fatigue damage as a result of 
passing through critical speeds which excite blade resonances. This fatigue accumulation is reported 
to be regardless of low excitation force magnitudes  (Booysen et al., 2015; Rao, 1998). 

It was concluded that repeat failure incidents occur as a result of implementation of unproven life-
extension methodologies, based on deterministic fatigue life calculations used in tandem with 
schedule based maintenance regimes (Dewey and Rieger, 1985; Pusey and Pusey, 1990).  

Blade residual life is traditionally estimated using deterministic cumulative damage theories. 
Uncertainty in input parameters, such as loading and material properties, leads to highly conservative 
parameter choices for life estimations with little confidence (Booysen et al., 2014). A probabilistic 
approach to life estimation with cumulative damage theories has been suggested to improve the 
current practices (Banaszkiewicz, 2015; Booysen et al., 2014). Blade vibration monitoring can not only 
provide the much needed accuracy and confidence in input parameters for all residual life calculations, 
but may also furnish insight into the complex failure mechanisms. 

Mechanical engineering as a whole is currently experiencing a paradigm shift from schedule based 
maintenance to a needs based maintenance regime. In terms of blade vibration monitoring advanced 
techniques are sought to extend the maintenance schedules safely as well as to provide early warning 
systems to prevent catastrophic failure.  
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1.2. Problem Statement 
Blade vibration measurement during operation can provide crucial insight into the health and 
expected residual life of turbomachine blades. Both intrusive and non-contact techniques have been 
developed for this purpose.  

The intrusive techniques suffer many drawbacks, the most significant of which being their cost and 
complexity to implement, the high possibility of failure during operation and an undesirable influence 
on the geometry and operation of the turbomachine blades (Zielinski and Ziller, 2000). The use of 
intrusive techniques has therefore been limited to the design verification stage of blade development 
and not implemented as a continuous online condition monitoring solution on working turbomachines 
(Forbes and Randall, 2012). 

A robust non-contact and non-intrusive blade vibration measurement technique was thus sought. A 
possible solution was found in blade tip time of arrival (BTT) techniques. Discrete tip deflections of a 
blade could be captured during operation and these measured deflections related to the actual blade 
vibration by means of curve fitting techniques. The BTT techniques are capable of estimating both the 
frequency of vibration as well as the amplitude of the tip deflection along its oscillatory path.  

BTT techniques are limited by the sensors’ ability to accurately capture the tip time of arrival (TOA) in 
a number of operating conditions. Other factors such as the number of sensors required to provide 
sufficient information for curve fitting processes, the rotor speed, and the general poor performance 
of many of the curve fitting algorithms when a small amount of noise is present in the measured TOA 
signal limit the technique. Recent developments incorporating a statistical approach to the BTT curve 
fitting procedure have yielded encouraging results (Diamond et al., 2014a). 

A second non-contact source of blade vibration information was identified. Blade vibration 
information is inherently present in the fluid flowing through the turbomachine due to excitation from 
the blades (Forbes and Randall, 2013). It may be possible to extract blade vibration information from 
the pressure fluctuations of the fluid within the casing by means of signal-processing techniques. 
Techniques based upon internal pressure or casing vibration measurement are known as casing 
pressure signal (CPS) methods.  

Current CPS techniques require knowledge of the actual blade vibration to within half the rotor 
frequency of operation during steady operation (Forbes and Randall, 2013) or require measurements 
to be taken at a minimum of two different rotor operating frequencies (Cox and Anusonti-Inthra, 
2014). Analytical models have been proposed for this task, however the most appropriate means to 
model the fluid-blade interaction and the constituent components of the signal requires work. 

In light of the drawbacks and advantages of the current non-intrusive blade vibration measurement 
techniques, a robust method capable of supplying blade vibration information from non-contact and 
non-intrusive measurement techniques is desired.  

The problem is therefore to investigate aspects related to the modelling and evaluation of a 
turbomachine internal pressure signal for the purpose of blade vibration measurement. This includes 
how to construct an internal pressure model with included blade vibration and the evaluation thereof.  

The succeeding section contains the literature reviewed for this purpose.  
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1.3. Literature Review 
The principal focus of this dissertation is on blade vibration modelling, specifically in terms of pressure 
signal analysis based methods. The literature presented in this section was chosen to highlight this 
choice whilst simultaneously providing brief insight into other related blade vibration measurement 
and signal processing techniques and concerns.  

Depending on the subject matter, additional derivations and explanations have been included in the 
appendix and are referred to in the text. Different literature sources have used different nomenclature 
in their derivations. The nomenclature of the source literature is maintained and is defined in the text. 
The nomenclature of developmental sections remains constant from Chapter 2 onwards. 

The following overview may be used as a guide to the literature investigated. Although all topics 
included are considered as important, certain topics are integral to understanding aspects about the 
pressure signal and others are supplementary to those topics and may be given less attention. Due to 
the volume of information considered, the reader is therefore directed towards the crucial literature 
topics for developing a picture of the internal pressure based problem. 

The succeeding section discusses turbomachine blade vibration from an excitation and response point 
of view. Specifically the difference between asynchronous and synchronous vibration is covered. 
Thereafter the discussion focuses on the mode shapes and excitation ranges of interest when 
evaluating blade vibration. These sections provide the basis theory upon which all blade vibration 
measurement methodologies are based and are thus considered as integral topics. 

Classical blade vibration measurement methodologies are then touched on to highlight the 
importance and need for non-contact non-intrusive methodologies. A classical method, namely the 
strain gauge approach, forms part of the actual measurement scheme and is thus of importance to 
briefly discuss. 

At the current forefront of non-contact non-intrusive blade vibration measurement is the blade tip 
timing approach. As the current primary non-interference method, understanding its strengths and 
weaknesses contribute to the premise for the pressure based methods. This theory does however not 
contribute significantly to the understanding of the pressure based methods and may been seen in a 
supplementary light. 

The theme which follows investigates and discusses the casing pressure signal based methods. Topics 
such as analytical representation of a rotating pressure signal and blade vibration identification from 
pressure signals are reviewed. Two different internal pressure models, from two different literature 
sources, provide the backbone for the theoretical development in the succeeding chapter (blade 
mounted pressure analyses methodologies will not be considered as they are inherently intrusive 
techniques). It is on these pressure based methods and investigations that the remaining chapters of 
the dissertation are based. These themes are therefore the central focus of the literature review. 

Finally a number of factors which may influence experimental observations (such as the tuning of a 
rotor system, physical coupling between blades and identification of the presence of flutter) are 
reviewed. The need for zebra-tape based tachometer geometry compensation, for signal processing 
purposes, is also touched upon. These final literature sections are considered as supplementary. 

The chapter ends off by discussing the scope of research as well as provides an overview of the 
succeeding chapters.  
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1.3.1. Turbomachine Blade Vibration – Excitation and Response Mechanisms 
Many blade excitation mechanisms exist. The excitation mechanisms and corresponding forced 
responses can be classified into one of two categories: synchronous and asynchronous vibration. 
Before these mechanisms can be explored it is convenient to define blade vibration in terms of engine 
order (EO). The EO is the ratio of the excitation frequency 𝜔𝜔𝑓𝑓  to the frequency of rotation Ω. The 
relationship is presented in Equation [1.3.1]. 

 𝐸𝐸𝐸𝐸 =
𝜔𝜔𝑓𝑓
Ω

 [1.3.1] 

Synchronous excitation phenomena (also known as “engine-ordered” , “integral order” or “harmonic” 
excitation) are characterised by vibration at frequencies which are integer multiples of the engine 
rotation speed (Rao and Dutta, 2012). The excitation phenomenon can be due to mechanical effects 
such as residual unbalance of rotors and non-concentric casings which result in a varying 
circumferential blade tip clearance. It may also be due to aerodynamic effects such as irregular 
pressure distributions stemming from engine intake geometry (Zielinski and Ziller, 2000). These 
mechanisms typically produce vibration at low EOs due to few excitation instances per revolution 
(Zielinski and Ziller, 2000). 

Upstream and downstream stator blades direct fluid flow across rotor blades in order to produce lift. 
This lift is used to convert axial flow energy into rotational mechanical energy and is the primary 
purpose of the rotor. This process induces significant pressure fluctuations across the rotor blades and 
is the principal source of blade excitation (Cookson et al., 2001; Hsu, 2014). The process typically 
results in a higher engine order excitation when compared to other synchronous phenomena (Zielinski 
and Ziller, 2000). The associated excitation frequency is a function of the number of upstream stator 
blades directing flow onto the rotor blades. This frequency is known as the stator passing frequency 
(SPF) 𝜔𝜔𝑆𝑆𝑆𝑆𝑆𝑆 or blade passing frequency (BPF) 𝜔𝜔𝐵𝐵𝐵𝐵𝐵𝐵. A schematic cross section of a turbomachine with 
stationary inlet guide vanes (IGVs) and stator rows directing axial flow onto moving rotor blades is 
presented in Figure 1.3-1. The blade rotation direction is indicated in (a) and fluid flow direction in (b).  

 

Figure 1.3-1 Schematic turbomachine cross section of blades. (a) Top view with blade direction of rotation indicated. (b) 
Side view with direction of fluid flow indicated. 

The phase of the synchronous response remains constant with respect to a datum arbitrarily fixed to 
the circumference of rotation (Heath and Imregun, 1996). Thus a single stationary measurement 
point, capturing a discrete indicator of response (such as tip deflection), will always encounter the 
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response indicator in the same state (at the same phase angle) along the oscillating cycle given a fixed 
rotational frequency. 

Synchronous excitation is a function of the rotor speed as well as turbomachine geometric 
configuration. It can thus be viewed as a deterministic source of vibration with clear causality 
relationships. Due to its deterministic nature designers are generally able to tune a rotor system such 
that the resonant frequencies of the system do not coincide with synchronous excitation for steady 
operation (Rao and Dutta, 2012). Similarly, during run-up or shut-down, resonant (or critical) 
operating speeds are avoided or passed through rapidly to prevent fatigue accumulation and damage. 

Asynchronous excitation occurs at frequencies which are not integer multiples of rotational speed and 
thus results in non-integer EO excitation. Asynchronous phenomena can be viewed as stochastic when 
compared to the deterministic synchronous vibration as they are not directly a function of rotor speed 
or geometry. The main causes of asynchronous excitation are attributed to aerodynamic instabilities 
such as compressor surge, self-exciting flutter, rotating stall and acoustic resonance (Sabbatini et al., 
2012a; Zielinski and Ziller, 1997).  

Self-exciting flutter is a widely studied asynchronous excitation mechanism due to the fatigue effects 
it has on turbomachine blades (Rao and Dutta, 2012). It does not require an external excitation 
frequency as this is generated internally (Rao and Dutta, 2012). If a blade is perturbed from its 
equilibrium position it will vibrate at one of its natural frequencies until it reaches equilibrium once 
again (Rao and Dutta, 2012). However, if the flow about the blade is sufficiently affected by the 
vibrating blade such the dynamic forces acting on the blade sustain the response then a state of self-
excitation is achieved (Rao and Dutta, 2012). It has been noted that the relationship between self-
excitation and loading conditions is not linear. It has also been noted that self-exciting flutter occurs 
in lower order modes (Rao and Dutta, 2012). 

The response resonant frequency and phase of an asynchronously vibrating blade is arbitrary with 
respect to the angular velocity and position of the rotor. Therefore a single measurement point on the 
circumference of rotation is exposed to the full range of possible responses of the measured discrete 
indicator over a certain number of revolutions (Forbes, 2010). A discrete response indicator, sampled 
at a single stationary point can thus be utilised with classic sampling and sub-sampling techniques to 
stitch together the full response cycle of the indicator (Heath and Imregun, 1996). This reconstructed 
signal can then be related directly to the actual blade vibration. 

Turbulence and impulse excitation is inherent in the fluid flow and so is an expected source of 
excitation regardless of the presence of other synchronous or asynchronous phenomena (Forbes and 
Randall, 2013; Rao and Dutta, 2012). Turbulence within a particular stage may manifest as a result of 
upstream turbulence, vortex generation at the blade tip, boundary effects and inverted flow (Forbes, 
2010, p. 64). Blade and upstream wake interaction may result in both impulse and turbulent excitation 
due to the ‘chopping’ of the upstream wake by the moving rotor blades (Forbes, 2010, p. 65). 

Therefore a turbomachine blade does not necessarily experience purely synchronous excitation as 
asynchronous turbulence is inherent, nor does it experience purely asynchronous excitation as 
synchronous vibration due to machine geometry and operational speeds is intrinsic as well. However 
the response may be dominated by one or the other. The succeeding section outlines response modes, 
mode shapes and critical resonances.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 1 Introduction CB Church
   

6 

1.3.2. Turbomachine Blade Vibration – Modes, Mode Shapes and Critical Resonances 
Three basic blade deformation mode shapes exist when exposed to natural vibration conditions, 
namely flexural (bending), torsional (twisting) and combined (simultaneous bending and twisting) 
(Cookson et al., 2001). The bending modes can be further subdivided into flap-wise modes (bending 
about the weak axis) and edgewise modes (bending about the strong axis) (Cookson et al., 2001). 
Examples of the first four basic flexural and torsional modes for a simplified turbomachine blade 
geometry are presented in Table 1.3-1. 

Table 1.3-1 Basic turbomachine blade mode shapes 

First Flap (1F) First Torsional (1T) Second Flap (2F) First Edgewise (1E) 

    
In general turbomachine blade geometries are more complex than the flat beam approximation 
presented in Table 1.3-1. The blades may contain twisting, tapering and a complex aerofoil cross 
sectional shape along the length of the blade (Rao and Dutta, 2012). This complex geometry results in 
basic mode shapes which are not purely flexural, torsional or edgewise but rather a combination of all 
with one of the primary mode shapes dominating the response (Kahl, 2002). 

When designing blade vibration monitoring systems it is important to consider which blade 
resonances are of interest and which are not. As excitation frequency increases so does response 
motion decrease for a given excitation force (Cookson et al., 2001). Moreover as the structural motion 
of the blade decreases it follows that strain at integral locations on the blade decreases resulting in 
decreased stresses at those locations. Therefore it is sufficient to concentrate attention upon the 
lower resonance frequencies and disregard higher order response (Cookson et al., 2001). Consider the 
first and third flap-wise bending mode shapes of the given geometry presented in Table 1.3-2.  

Table 1.3-2 Comparison of first and third bending modes 

First Flap (1F) Third Flap (3F) 

  
In the first mode all the blade mass is moving in one direction whereas in the third bending mode near 
equal portions of the blade are moving in opposite directions. In the first case the resulting energy 
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from mass motion is additive whereas in the second case the energy due to mass motion roughly 
balances out (Cookson et al., 2001). Therefore it may be concluded that the root attachment of a blade 
responding in the first bending mode will experience a higher stress than if it had been responding in 
the third bending mode given the same excitation force. This trend, of mass motion averaging over 
the blade, only increases as the complexity of the mode shapes increases (Cookson et al., 2001). 

An investigation into the fatigue life of LP turbine blades, using an updated statistical approach, found 
that the fundamental frequency of vibration (the first flap mode) was the only resonance to have a 
significant impact on the fatigue life results in the study (Booysen et al., 2015). These results reinforce 
the reasoning that only the first few natural modes and corresponding mode shapes of response are 
of interest (Cookson et al., 2001). 

It follows logically to determine at which rotor speeds the first few resonances may be excited. This is 
best represented on a Campbell diagram. The Campbell diagram illustrates the relationship between 
the changing natural frequency of a given mode as the rotor speed increases and possible harmonic 
excitation from synchronous vibration mechanisms.  

The speed at which the rotor operates may explicitly appear in the governing equations of motion 
(EOM) causing the natural frequencies and mode shapes to become a function of speed (Genta, 2005, 
p. 9). When centripetal forces are accounted for in the EOM it can be shown that they contribute an 
additive term to the stiffness matrix and are scaled by the square of the rotor speed. This increase in 
stiffness is termed centrifugal stiffening and leads directly to an increase in the flap-wise blade natural 
frequencies (Kahl, 2002). The potential engine harmonic excitation is indicated by EO lines which are 
integer multiples of the rotor speed. An example Campbell diagram, displaying the changing 
fundamental resonant frequency as a function of shaft speed analytically obtained for the blade 
geometry represented in Table 1.3-2 and 9, is given in Figure 1.3-2. 

 

Figure 1.3-2 Example Campbell diagram of first flap mode for arbitrary blade geometry 

It is clear from the diagram that a near unlimited number of EO resonances are possible (Cookson et 
al., 2001). Within the speed range plotted only harmonics at EOs of 3 and above may cause excitation 
of the blade at its fundamental frequency. However as the engine order increases so does the 
magnitude of the excitation force diminish given a particular excitation mechanism (Booysen et al., 
2015). Therefore as the EO of the harmonics increase, so do their relative importance decrease.  
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1.3.3. Classical Blade Vibration Measurement Techniques 
Two classical methodologies for capturing blade vibration response are discussed here. The first is 
known as the frequency modulated grid method and the second the strain gauge (SG) approach 
(Sabbatini et al., 2012b).  

The frequency modulated (FM) grid method requires that permanent magnets be fitted to the tips of 
rotor blades and receiver wires embedded into the casing about the rotor stage. During operation the 
vibrating blades induce an alternating current in the receiver wires. The signal produced by this 
alternating current is modulated by the frequency of response and can therefore be related to the 
blade frequency of vibration (Sabbatini et al., 2012b; Zielinski and Ziller, 2000).  

The method is limited to a few blades on a single stage. It is expensive and complex to implement and 
requires intrusive alteration of the blades and casing (Zielinski and Ziller, 2000). Figure 1.3-3 illustrates 
the frequency modulated grid method, the location of the magnet in the blade tip, the blade vibration 
and the signal measured from the receiver wires embedded into the casing are indicated. 

 

Figure 1.3-3 Frequency modulated grid method (Russhard, 2015) 

The SG approach involves vibration capture by means of SGs attached to the surface of the blade. The 
approach is itself not free from disadvantages. Similar to the frequency modulated grid method it also 
requires a complex installation procedure and the SGs have an inherent possibility of failure during 
operation due to exposure to harsh working environments and high operating temperatures. This 
results in a low expected operating life for the SGs (Robinson and Washburn, 1991; Russhard, 2015). 
In order to be sensitive to a number of blade response modes, the SG approach may require multiple 
gauges to be attached across the surfaces of the rotor blade at specially chosen regions.  

Further the SG approach requires rotor mounted radio telemetry systems or slip ring systems for data 
capture (Heath and Imregun, 1997; Russhard, 2015). The mounted strain gauges may interfere with 
the mechanical behaviour of the vibrating blade to which it is attached, as well as distort the desired 
fluid-blade interaction (Heath and Imregun, 1997). For these reasons the SG approach is generally 
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limited to design verification of a limited number of blades and is not practical for online operational 
condition monitoring (Forbes and Randall, 2013; Russhard, 2015).  

Due to the fact that only a few blades are instrumented at specific locations, a very limited picture of 
the actual strain across an individual blade is obtained. Inter-blade differences and mistuning of the 
system results in a situation where the behaviour of an individual instrumented blade cannot be 
directly compared to a neighbouring un-instrumented blade (Russhard, 2015). This limits statistical 
analyses of the blade and full rotor behaviours (Russhard, 2015). 

Although the SG technique suffers from many drawbacks, it is still the most accurate way to capture 
blade vibration phenomena in real time (Russhard, 2015). It stands as a both a benchmark and means 
for calibration with which one can compare and fine tune new blade vibration measurement 
techniques. Unlike the frequency modulated grid method the SG approach does not require that 
blades and casing be specially designed for instrumentation. SGs can be simply applied to the surface 
of the rotor blades at chosen regions and reading taken therefrom. For these reasons the SG approach 
remains the preferred intrusive blade vibration measurement technique (Russhard, 2015). Examples 
of actual rotor mounted SGs can be seen in Figure 1.3-4. 

 

Figure 1.3-4 Example of rotor mounted strain gauges. (a) Root mounted strain gauges. (b) Blade mounted strain gauges. 
(Russhard, 2015) 

The early FM method often required calibration with a blade mounted SG system (Russhard, 2015). 
Once the calibration was complete testing could be performed without reference to the blade 
mounted SG (Russhard, 2015). The need for calibration with SGs has however lapsed for the reason 
that numerical blade modelling techniques have matured to the point that they can perform this task 
adequately well (Russhard, 2015). 

Both classical techniques discussed require intrusive intervention in order to capture the blade 
vibration. The succeeding section outlines one of the first viable non-contact and non-intrusive blade 
vibration measurement technologies, namely the blade tip timing (BTT) approach. 
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1.3.4. Blade Tip Timing Approach 
BTT techniques are based on the measurement of blade tip times of arrival (TOA) at discrete 
measurement points on the circumference of the rotor casing. The TOA of a vibrating blade differs 
from that of a non-vibrating blade as is illustrated in Figure 1.3-5. The theoretical non-vibrating blade’s 
TOA is estimated using a tachometer or similar sensor, whilst the true blade arrival time may be 
measured using eddy current probes, optical sensors, microwave sensors or any instrumentation 
sufficiently sensitive to the passing of the blade tip. The sensor choice is of course limited by the 
operating conditions inside the rotor casing. The TOA difference is used to obtain an instantaneous 
measurement of the blade tip displacement during motion along its oscillatory path.  

 

Figure 1.3-5 Principle of BTT 

Early synchronous BTT approaches required that data be collected across the entire resonance region 
of the blades. This is done by sweeping the rotor speed across all natural frequencies of interest 
(Carrington et al., 2001). This procedure exposes a single measurement point to a full range of 
excitation amplitudes at varying frequencies. This is similar to the exposure of a sensor to a purely 
asynchronous response. These methods have been termed indirect approaches and are capable of 
providing both the response amplitude and frequency of a blade. They are however not suitable for 
continuous online monitoring of a rotor stage operating at a nominally constant rotational speed. 

More recently research has shifted away from the indirect methods to blade vibration measurement 
at a nominally constant rotational speed under synchronous excitation conditions. As was previously 
mentioned, if the blade excitation is synchronous then a single BTT measurement point will always 
capture the same displacement measurement. This issue is overcome by using multiple probes placed 
about the periphery of the rotor in order to capture multiple points along the blade’s actual response 
cycle. These methods are termed direct approaches. The measured signal is however inherently 
aliased as the TOAs are subsampled (Diamond et al., 2014a). 

The issue of aliasing leads to physical constraints on the positioning of the TOA capture 
instrumentation and has led to the concept of pulse spacing on resonance (PSR). PSR is the percentage 
of the response waveform captured by measurement probes during one oscillatory cycle of a blade 
(Gallego-Garrido et al., 2007b). Consider the example in Figure 1.3-6. 
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Figure 1.3-6 PSR. (a) Comparison of Pulse Spacing on Resonance for BTT Measurements (adapted from (Gallego-Garrido 
et al., 2007b)). (b) Rotor cross section with four BTT probes placed equidistant apart between an angle γ = 45°. 

Assuming that the blade responds in a purely sinusoidal single degree of freedom (SDOF) manner, the 
rotor speed is constant, BTT probes are placed within an angular distance 𝜆𝜆 between the first and final 
probe, and a measurement for a single revolution of the rotor is made which captures data across an 
individual blade response cycle. If the angle 𝜆𝜆 is too small then only a small fraction of the actual 
response is captured leading to errors in response estimation (low PSR). If the angle is enlarged 
sufficiently then measurements are taken over a substantial percentage of the response and a model 
can be accurately fitted to the data (high PSR). Finally if the angle is too large it will lead to 
undersampling of the response and thus lead to significant errors (subsampling PSR) (Gallego-Garrido 
et al., 2007b). The PSR is calculated using Equation [1.3.2] (Gallego-Garrido et al., 2007b). 

 𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐸𝐸𝐸𝐸 ⋅ 𝜆𝜆

2𝜋𝜋
=
𝜔𝜔𝑓𝑓 ⋅ 𝜆𝜆
Ω ⋅ 2𝜋𝜋

 [1.3.2] 

It is important to note that the positioning of the tip timing sensors is optimised to detect blade 
vibrational response for a specific mode from a specific operating rotor speed. A particular tip timing 
configuration is therefore limited to detecting the specific response it has been designed for (Murray 
and Key, 2015). Further, if little tip deflection is present for a particular mode given a particular level 
of excitation then no useful information will be derived from the technique (Murray and Key, 2015). 

The tip displacement data captured during operation is curve fitted to a blade tip vibration model over 
a chosen number of revolutions to elicit blade vibration parameters (Zielinski and Ziller, 1997). A range 
of curve fitting techniques have been applied to the direct synchronous BTT problem and their relative 
performance compared in both simulations and experiments (Carrington et al., 2001; Diamond et al., 
2014a, 2014b; Gallego-Garrido et al., 2007a, 2007b).  

The most commonly investigated curve fitting approaches use auto-regression (AR). The blade tip 
response solution is assumed to be a SDOF sinusoid, the forcing frequency is assumed to be the tuned 
synchronous response at resonance (i.e. 𝜔𝜔𝑓𝑓 =  𝜔𝜔𝑛𝑛) (Carrington et al., 2001). The tip response solution 
is given in Equation [1.3.3]. 

 𝑥𝑥 = 𝐴𝐴𝑛𝑛 cos(𝜔𝜔𝑛𝑛𝑡𝑡 + 𝜙𝜙𝑛𝑛) + 𝐷𝐷 [1.3.3] 

The parameters 𝑥𝑥, 𝐴𝐴𝑛𝑛, 𝜙𝜙𝑛𝑛 and 𝐷𝐷 are the response displacement, amplitude, frequency, phase and DC 
offset respectively. 
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The fitting equation is derived from a simple form of the EOM which is integrated from acceleration 
to displacement using a Taylor expansion procedure (Carrington et al., 2001). The initial EOM is 
presented in Equation [1.3.4]. 

 𝑥̈𝑥 + 𝜔𝜔𝑛𝑛2 ⋅ 𝑥𝑥 = 0 [1.3.4] 

The natural frequency and DC offset are solved for by performing a least squares fit over multiple 
revolutions of the Taylor expanded EOM. The expanded EOM for N revolutions is given in Equation 
[1.3.5] (Carrington et al., 2001). 

 
�
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⋮
1

� ⋅ � −ωn
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𝐷𝐷 ⋅ (2 + ωn
2)� 

[1.3.5] 

Finally the amplitude and phase of response is estimated using two measurement points and solving 
the assumed form of the response equation simultaneously (Carrington et al., 2001). 

 𝑥𝑥1  = 𝐴𝐴𝑛𝑛 ⋅ cos(𝜔𝜔𝑛𝑛 ⋅ 𝑡𝑡1 + 𝜙𝜙𝑛𝑛) + 𝐷𝐷 
𝑥𝑥2  = 𝐴𝐴𝑛𝑛 ⋅ cos(𝜔𝜔𝑛𝑛 ⋅ 𝑡𝑡2 + 𝜙𝜙𝑛𝑛) + 𝐷𝐷 

[1.3.6] 

The AR technique requires that BTT probes be placed equidistant apart within the probe capture angle 
𝜆𝜆 (Carrington et al., 2001). Improvements have been suggested and include expanding the model to 
multiple degrees of freedom (MDOF), preventing noise correlation in the least squares solution form 
and solving over all measured revolutions simultaneously (Carrington et al., 2001; Gallego-Garrido et 
al., 2007a, 2007b).  

Recently an alternative curve fitting technique has been suggested to replace the least squares 
approach, namely Bayesian curve fitting. The method is similar to the AR class of methods in that a 
SDOF sinusoidal response solution is assumed for the tip and the unknown amplitude and frequency 
of response estimated (Diamond et al., 2014b). The assumed tip response is provided in Equation 
[1.3.7] (Diamond et al., 2014b).  

 
𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝐴𝐴1 ⋅ cos(𝜔𝜔 ⋅ 𝑡𝑡𝑖𝑖) + 𝐴𝐴2 ⋅ sin(𝜔𝜔 ⋅ 𝑡𝑡𝑖𝑖) + 𝐷𝐷 [1.3.7] 

The unknown parameters 𝐴𝐴1, 𝐴𝐴2 and D are solved for using the standard Bayesian linear regression 
formulation over a chosen number of revolutions (Diamond et al., 2014a).  

Unlike the AR approach the tip response is solved for directly using the assumed solution form and 
not a Taylor approximation of the estimated governing EOM. The Bayesian method does not require 
that the probes be placed equidistant apart within the angle 𝜆𝜆. It has in fact been found to perform 
better when they are not (Diamond et al., 2014b). The Bayesian approach was found to perform better 
than the SDOF AR approach in terms of both response amplitude estimation and natural frequency 
estimation for a range of simulated noise levels in the particular study (Diamond et al., 2014a). 

It is important to note that indirect BTT methods, for blade response capture at changing rotor speeds, 
were not considered for investigation. Additional information and relevant derivations of various BTT 
curve fitting techniques are presented in section “7.2 Appendix B – Additional BTT Literature”.  
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1.3.5. Casing Pressure Signal Methods 
The internal pressure signal of a gas turbomachine inherently contains the response signature of the 
vibrating blades moving through the fluid (Forbes and Randall, 2013). The interaction of this internal 
pressure profile on the casing of the turbomachine may result in excitation of the casing (Forbes and 
Randall, 2013).  

The casing response and internal pressure signal, measured at the casing wall, are thus two potential 
sources of blade vibration information which can be measured remotely from the blade itself (Forbes 
and Randall, 2013; Mathioudakis et al., 1989). Identifying the acoustic characteristics of vibrating 
blades may thus be used to discern it from other sources of unsteady vibration (Mengle, 1990). 

The internal casing pressure undulations, stemming from synchronous excitation, are typically smaller 
in magnitude when compared to non-integral EO vibration (Murray and Key, 2015). This results in 
difficulty in measuring blade forced vibration from pressure measurements (Murray and Key, 2015). 
Furthermore it is believed that the forced response pressure signal of blades, measured by a stationary 
observer placed at some location on the non-rotating reference frame, are inherently Doppler shifted 
to stator passing frequencies (SPFs) (Mengle, 1990; Murray and Key, 2015). This may make the 
identification of the measured blade’s response troublesome (Murray and Key, 2015). 

The succeeding two sections investigate the constitutive components of the internal pressure signal 
as well as a means to mathematically represent those components. This forms a basis for blade 
vibration identification from internal casing pressure and external casing vibration measurements. 

1.3.5.1. Model 1: Pressure Model Developed from Rotor Reference Frame 
1.3.5.1.1. Pressure Signal Representation 
In order to develop an analytical model describing the pressure distribution around an individual rotor 
cascade a general model is first considered. Figure 1.3-7 illustrates the case of multiple rotor blade 
and stator rows. The rotor blades are attached to an infinite length shaft and similarly the stators are 
attached to an infinite length annular duct representing the casing. An acoustic pressure transducer is 
placed downwind of the stator and rotor rows in order to capture the blade vibration present in the 
moving fluid. The fluid is moving at a constant velocity of  𝑈𝑈� parallel to the casing and shaft. 

 

Figure 1.3-7 Stator and rotor schematic attached to infinite length shaft and infinite length annular casing cylinder 
(adapted from (Mengle, 1990)) 
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Focus is placed on an individual rotor row which contains 𝐵𝐵 rotor blades, each vibrating at an arbitrary 
frequency, amplitude and phase angle. It is assumed that the net pressure field around the rotor may 
be obtained by linear superposition of each of the individual blade’s contributions to that field 
(Mengle, 1990). This assumption facilitates the decoupling of each individual blade’s behaviour, the 
situation where only a single blade is vibrating may now be considered. The solution to the individual 
blade’s vibration is obtained by superposition of all possible rotor travelling-wave modes for the 
specific case (Mengle, 1990). 

A rotor travelling-wave mode is defined as the situation where all of the blades are vibrating in the 
same blade mode, at the same frequency and at the same amplitude. There is however a constant 
inter-blade phase angle difference (Mengle, 1990). The phase angle difference between the blades, 𝜎𝜎, 
may only take certain discrete values due to cyclic periodicity of the rotor (Mengle, 1990). These 
discrete values are given by Equation [1.3.8] (Mengle, 1990). 

 𝜎𝜎 =
𝑘𝑘 ⋅ 2 ⋅ 𝜋𝜋

𝐵𝐵
 [1.3.8] 

Where the travelling wave mode number 𝑘𝑘 is limited to the set {0, 1, 2, … ,𝐵𝐵 − 1}. 

Finally, in order to obtain the net acoustic response for the general case of arbitrary blade vibration, 
each unsteady pressure field for each travelling-wave mode is superimposed (Mengle, 1990). The use 
of superimposed travelling-wave modes facilitates the investigation of flutter conditions (Mengle, 
1990). The flutter response frequency is common to all blades regardless of whether the system is 
tuned or mistuned, the only difference being that in mistuned flutter the inter-blade response phase 
angle difference is no longer constant (Mengle, 1990). 

In order to develop a descriptive model of the pressure distribution due to blade vibration an isolated 
rotor cascade is considered. The model is initially developed from the rotor frame (as though a 
stationary observer is present on the moving rotor itself). Consider the two dimensional cascade 
schematic in Figure 1.3-8 (a) and a rotor schematic with angular coordinates defined on the rotor 
reference frame in Figure 1.3-8 (b). The y-θ axis in (a) corresponds to the θ axis in (b). 

  

Figure 1.3-8 Rotor and cascade schematic. (a) Two dimensional cascade with one travelling wave mode boundary 
condition. (b) Angular coordinate system in rotor frame. (adapted from (Mengle, 1990)) 

(a) (b) 
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It is assumed that the cascade is isolated, the flow from the upstream stators is uniform (or at least 
not highly sheared) (Mengle, 1990). The axial velocity of the inlet fluid flow is given by 𝑈𝑈�, the flow 
component relative to the blade stagger angle 𝛾𝛾 is 𝑊𝑊� , and the flow normal to the surface of blade 𝑙𝑙 is 
represented by 𝑤𝑤𝑙𝑙 (Mengle, 1990).   

The system comprises of 𝐵𝐵 blades set at a stagger angle of 𝛾𝛾 and each having a chord length of 𝐶𝐶 
(Mengle, 1990). The blade tips are at a radius 𝑅𝑅 from the center of the rotor (Mengle, 1990).  

Stationary observers 𝑂𝑂1 and 𝑂𝑂2 are fixed to the turbomachine’s casing at a distance 𝑥𝑥′ downwind of 
the turbomachine blades. This is measured from an arbitrary position along the chord length of the 
blades (Mengle, 1990). From the rotor reference frame the stationary observers are seen to be moving 
at a translational speed of Ω ⋅ 𝑅𝑅  in Figure 1.3-8 (a), or identically an angular speed of Ω in Figure 
1.3-8 (b). The blade-to-blade gap 𝑆𝑆, defined in Figure 1.3-8 (a), is given by:  

 𝑆𝑆 =
2 ⋅ 𝜋𝜋 ⋅ 𝑅𝑅

𝐵𝐵
 [1.3.9] 

Similarly the angle between two blades, shown in Figure 1.3-8 (b), can be calculated as: 

 𝜃𝜃𝑆𝑆 =  
2 ⋅ 𝜋𝜋
𝐵𝐵

 [1.3.10] 

The blades are responding as travelling-wave modes with frequencies 𝜔𝜔𝑙𝑙 and at phase angles 𝜎𝜎𝑙𝑙. The 
blades’ response modes are represented by the previously defined normal fluid velocities  𝜔𝜔𝑙𝑙(𝑥𝑥) 
indicated in Figure 1.3-8 (a). The blades are assumed to be vibrating sinusoidally and are represented 
by means of the Euler term. The pressure responses due to blade vibration are assumed to be small 
with respect to the inlet speed 𝑈𝑈 (Mengle, 1990). Since it is assumed that the blades are responding 
in a travelling-wave mode the normal velocities about each blade must satisfy Equation [1.3.11] 
(Mengle, 1990). 

 𝑤𝑤𝑙𝑙+1(𝑥𝑥) ⋅ 𝑒𝑒𝑗𝑗⋅(𝜔𝜔⋅𝑡𝑡) =  𝑤𝑤𝑙𝑙 ⋅ 𝑒𝑒𝑗𝑗⋅(𝜔𝜔⋅𝑡𝑡) ⋅ 𝑒𝑒𝑗𝑗⋅(𝜎𝜎) [1.3.11] 

The parameter 𝑗𝑗 is the complex number √−1. The linearised unsteady pressure of a neighbouring 
blade 𝑙𝑙 + 1 with reference to blade 𝑙𝑙, due solely to blade vibration, is given in the rotor reference 
frame by Equation [1.3.12] (Mengle, 1990). 

 𝑝𝑝 �𝜃𝜃 +
2 ⋅ 𝜋𝜋
𝐵𝐵

� = 𝑝𝑝(𝜃𝜃) ⋅ 𝑒𝑒𝑗𝑗⋅(𝜎𝜎) [1.3.12] 

Equation [1.3.12] may be rearranged such that the pressure in the rotor reference frame, 𝑝𝑝(𝜃𝜃), is the 
subject of the formula. The periodic nature of the unsteady pressure distribution, due to blade 
vibration, allows describing the phenomenon in the rotor reference frame by means of a Fourier 
series. After rearrangement and simplification,  the unsteady pressure field for a particular mode 𝑘𝑘, is 
now described by the Fourier series in Equation [1.3.13] (Mengle, 1990). The rotor reference frame is 
now explicitly indicated in the equation’s variables. 

 𝑝𝑝(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑡𝑡, 𝑥𝑥) = � 𝑓𝑓𝑚𝑚(𝑥𝑥) ⋅ 𝑒𝑒𝑗𝑗[(𝑘𝑘+𝑚𝑚⋅𝐵𝐵 )⋅𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟+𝜔𝜔⋅𝑡𝑡]
∞

𝑚𝑚=−∞

 [1.3.13] 
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Summation occurs over all integer values of 𝑚𝑚 with the Fourier constants 𝑓𝑓𝑚𝑚. It is stated that the 
Fourier coefficients 𝑓𝑓𝑚𝑚 are independent of the angle 𝜃𝜃. The axial dependency of the pressure signal 
(along the pre-defined x-axis) is however contained in the Fourier coefficients (Mengle, 1990). An 
equivalent form of Equation [1.3.13], with the blade vibration factored out and presented as a 
separate exponential multiplier is given in Equation [1.3.14]. 

 𝑝𝑝(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑡𝑡, 𝑥𝑥) = � 𝑓𝑓𝑚𝑚(𝑥𝑥) ⋅ 𝑒𝑒𝑗𝑗[(𝑘𝑘+𝑚𝑚⋅𝐵𝐵 )⋅𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟] ⋅ 𝑒𝑒𝑗𝑗[𝜔𝜔⋅𝑡𝑡]
∞

𝑚𝑚=−∞

 [1.3.14] 

According to Mengle the resulting equation shows that about the blades, in the rotor reference frame, 
there exists |𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵| spinning lobes (vortices) about the circumference of the rotor. This is for each 
value of 𝑚𝑚 (Mengle, 1990). The rate at which the lobes spin is 𝜔𝜔 (𝑘𝑘 +𝑚𝑚 ⋅ 𝐵𝐵)⁄  (Mengle, 1990). Due to 
the restriction on the travelling wave mode number 𝑘𝑘, the direction of the spin is due solely to the 
value of integer m. The pressure fluctuations due to the vortices are measured by the acoustic 
pressure transducer. 

For any positive value 𝑚𝑚 the lobes spin the same direction as the rotor and conversely a negative 𝑚𝑚 
value results in rotation opposite to the direction of the rotor (Mengle, 1990). From the rotor 
reference frame each lobe is seen as spinning at the blade flutter frequency 𝜔𝜔 (Mengle, 1990). The 
significance of the spinning lobes becomes apparent when the system is observed from the casing 
reference frame. 

It is stated that the resulting expression, Equation [1.3.14], was obtained independently using a 
completely alternative method by Smith (Mengle, 1990; Smith, 1973). The pressures and velocities of 
a real rotor row blades, in the circumferential direction, were represented by a row of vortices 
(spinning lobes) occurring about the circumference of the casing (Smith, 1973).  

A constant phase angle difference was noted between each vortex (Smith, 1973). This constant phase 
angle difference has the same significance as the constant inter-blade phase angle difference 
described by Mengle (Mengle, 1990). The vortex array was characterised using a series 
representation; the series was integrated over and operated on by Dirac delta functions (Mengle, 
1990; Smith, 1973). The relation is provided in Equation [1.3.15] (Smith, 1973). 

 𝛾𝛾(𝑦𝑦) = 𝛾̅𝛾(𝑦𝑦) ⋅ 𝑒𝑒𝑗𝑗⋅𝜔𝜔⋅𝑡𝑡 =  �
Γ
𝑠𝑠
⋅ 𝑒𝑒𝑗𝑗⋅�𝜔𝜔⋅𝑡𝑡+

𝜙𝜙−2⋅𝜋𝜋⋅𝑟𝑟
𝑠𝑠 ⋅𝑦𝑦�

∞

𝑟𝑟=−∞

= �
Γ
𝑠𝑠
⋅ 𝑒𝑒𝑗𝑗⋅[𝜔𝜔⋅𝑡𝑡+𝛽𝛽⋅𝑦𝑦]

∞

𝑟𝑟=−∞

 [1.3.15] 

The vortices are said to fluctuate at angular frequency 𝜔𝜔 with amplitude Γ and phase angle between 
vortices of 𝜙𝜙 (Smith, 1973). The distance between vortices (analogous to blade spacing) is 𝑠𝑠 and the 
vortex strength per unit length along the circumferential axis  𝑦𝑦  is  𝛾𝛾  (Smith, 1973). The resultant 
independently obtained equation is said to be equivalent to the pressure distribution as seen in the 
rotor reference frame given in Equation [1.3.14] (Mengle, 1990). 

It is of interest to describe the unsteady pressure about the rotor in terms of a stationary observer 
placed on the casing of the rotor. If we consider the case where the system is operating at a constant 
angular velocity a simple transform of the rotor reference frame, in terms of the stationary observers 
placed on the casing reference frame, is possible.  
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The relationship developed between the observer in the rotor reference frame and the stationary 
observer in the casing reference frame is given by Equation [1.3.16] (Mengle, 1990). 𝜃𝜃𝑆𝑆𝑆𝑆 is the angular 
distance between the stationary observer on the casing and 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 at time 𝑡𝑡 = 0 (Mengle, 1990). 

 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜃𝜃𝑆𝑆𝑆𝑆 + Ω ⋅ 𝑡𝑡 [1.3.16] 

The resulting pressure observed by a stationary observer on the casing is thus (Mengle, 1990): 

 𝑝𝑝�𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑡𝑡, 𝑥𝑥� = � 𝑓𝑓𝑚𝑚(𝑥𝑥) ⋅ 𝑒𝑒𝑗𝑗�𝑘𝑘′⋅𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� ⋅ 𝑒𝑒𝑗𝑗�𝜔𝜔′⋅𝑡𝑡�
∞

𝑚𝑚=−∞

 [1.3.17] 

Where 𝑘𝑘′ = 𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵 and 𝜔𝜔′ = 𝜔𝜔 + (𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ Ω. 

The parameter 𝑘𝑘′ is the observed travelling wave mode number and 𝜔𝜔′ is the observed blade flutter 
frequency measured by a stationary observer in the casing reference frame. It is clear from 
Equation [1.3.17] that each Fourier term of the observed blade vibration is Doppler shifted at an 
integer multiple of the rotor speed (Mengle, 1990). If the inter-blade phase angle is constant then the 
integer multiple is related to the number of spinning vortices about the circumference of the rotor. 

The Doppler shifting effect is due to the relative angular velocities of the rotor speed and the spin rate 
of the vortices (Mengle, 1990). If a vortex is spinning in the same direction as the rotor then the 
observed vortex spin rate will be the rotor speed plus the spin rate in the rotor reference frame 
(Mengle, 1990). If however the vortex is moving in the opposite direction the observed spin rate of 
the vortex will be the rotor speed minus the spin rate in the rotor reference frame (Mengle, 1990). 

The observed travelling wave mode is in general not symmetric about zero, it is only symmetric for 
𝑘𝑘 = 0 or a specific combination of 𝑘𝑘 and 𝐵𝐵. An example of this is provided in Figure 1.3-9.  

 

Figure 1.3-9 Frequency folding about zero (adapted from (Mengle, 1990)) 

The asymmetry of  𝑘𝑘′ results in a folding of the observed blade vibration in the frequency domain 
about zero; thus the blade vibration is doubly symmetric (Mengle, 1990). This is due to the symmetry 
of the Fourier transform. The folding effect has consequences for the observed frequency content. 

It is stated that when the interblade phase angle is not constant all possible travelling-wave modes 
participate (Mengle, 1990). An example of a non-constant inter-blade phase angle scenario is 
mistuned flutter. The consequence of this scenario is that the multipliers can occur at any integer 
value (𝑘𝑘 ∈ {0,1,2, … ,𝐵𝐵 − 1. } and −∞ < 𝑚𝑚 < ∞ 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚 ∈  ℤ). This results in Doppler shifting of 
observed blade vibration frequencies at all harmonics of rotor speed (Mengle, 1990). This is a special 
case which results in a symmetric observed travelling wave mode number. 
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Conversely, if the interblade phase angle between blades is constant then the travelling-wave mode 
number, 𝑘𝑘, must be determined in order to identify the blade vibration (Mengle, 1990). 

It must also be noted that if an additional stationary observer is present at the same axial distance 
from the source of vibration (see Figure 1.3-8 (a) and (b)) the observed phase angle difference 
between the two observers is given by Equation [1.3.18] (Mengle, 1990). 

 𝜎𝜎′ = (𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ ∆𝜃𝜃𝑆𝑆𝑆𝑆 [1.3.18] 

The significance of a second observer will be made clear when relating the analytical blade vibration 
equations to an actual observed pressure response spectrum. 

Much of Model 1 is based on a prior investigation by Smith (Smith, 1973). The wave equations and 
relevant definitions are based on the linearised momentum and continuity equations (Smith, 1973). 

1.3.5.1.2. Pressure Measurement Considerations 
In the original configuration, presented in Figure 1.3-7, the stationary observer is placed downwind of 
the rotor row of interest. Potential attenuation of the blade vibration signal along the axial length of 
the rotor and the associated rate of attenuation are thus of interest. Several conclusions were drawn 
for each 𝑚𝑚𝑡𝑡ℎ Fourier component of the pressure signal and are presented here.  

Consider the linearised Euler equation describing the pressure wave in the rotor frame (where 𝑥𝑥 refers 
to the axial axis and 𝑦𝑦 refers to the circumferential axis as described in Figure 1.3-8 (a)) (Mengle, 1990). 

 𝑝𝑝 =  𝑝̅𝑝𝑚𝑚 ⋅ 𝑒𝑒𝑗𝑗⋅�𝛼𝛼�⋅𝑥𝑥+𝛽𝛽�⋅𝑦𝑦+𝜔𝜔⋅𝑡𝑡� [1.3.19] 

The expression is obtained by starting with the linearised form of the continuity and mass momentum 
equations (Smith, 1973). After inter-substitution, rearrangement and simplification a linearised Euler 
description of pressure waves in the rotor frame is obtained (Smith, 1973). 

The definition of the components in Equation [1.3.19] may be found in (Mengle, 1990; Smith, 1973), 
the conclusions drawn are however of interest (Mengle, 1990). The axial component 𝛼𝛼�  may be real, 
imaginary or zero. If the particular 𝑚𝑚𝑡𝑡ℎ Fourier 𝛼𝛼 component is real then the associated frequency 
information propagates axially without diminishing (Mengle, 1990). If it is however complex then the 
component decays exponentially resulting in difficulty to identify the component downwind or 
upwind of the rotor (Mengle, 1990). An 𝛼𝛼� component of zero indicates acoustic resonance conditions. 
This results in the acoustic waves propagating solely in the  circumferential direction (Mengle, 1990).  

There exists a maximum value of |𝑚𝑚|  above which all frequency components, both axial and 
circumferential,  decay (Mengle, 1990). This means that at a particular point all higher frequency 
components related to blade vibration will become increasingly difficult to detect (Mengle, 1990). 

The circumferential component  𝛽̅𝛽 is always real and only ever zero if both 𝑚𝑚 = 0 and 𝜎𝜎 = 0 (Mengle, 
1990). The amplitude of the frequency components, 𝑝̅𝑝𝑚𝑚 , decreases with for an increase in |𝑚𝑚| 
(Mengle, 1990). 

In addition to the concerns of signal attenuation is the fact that in practice the rotor row is not isolated. 
Therefore the interference of nearby rotors and stators must be taken into account. This is because 
they may affect the acoustic signatures of vibrating blades measured from stationary observers placed 
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on the casing (Mengle, 1990). This argument is related the original rotor-stator configuration in Figure 
1.3-7. Once again the mathematical arguments will not be reported on, only the conclusions drawn. 

It was established that a nearby stator stage does not affect the Doppler shift of the original vibrating 
frequencies of the turbomachine blades. It does however affect the observed modes as well as the 
corresponding amplitudes of the Fourier components (Mengle, 1990).  

The presence of a nearby rotor stage produces an additional Doppler shift of the observed original 
blade vibration (Mengle, 1990). This could lead to difficulties in identifying individual blade vibration 
characteristics for an individual stage measured downwind of multiple stages. 

Understanding the interference effects of nearby stators and rotor rows on observed spectra may be 
the key to determining the actual blade vibration. These interference effects may be increasingly 
significant for blade vibration measurement at an increasing axial distance from the source. 

1.3.5.1.3. Acoustic Detection of Rotor Blade Vibration 
Given data measured by a stationary observer on the casing wall downwind of a rotor, is it possible to 
infer the rotor blade vibration characteristics such as the inter-blade response phase angle, and the 
frequency and amplitude of vibration?  

In order to provide a possible solution to this question Mengle limited the investigation to non-integral 
engine order vibration (𝐸𝐸𝐸𝐸 ∉  ℤ ), in specific flutter at a single frequency with multiple possible 
travelling-wave modes 𝑘𝑘 (Mengle, 1990). The inter-blade phase angle 𝜎𝜎 is assumed to be constant 
such that only a single travelling-wave mode exists at any given time. Additionally the rotor is assumed 
to be isolated and only positive frequency components can be observed (Mengle, 1990). 

Given the observed stationary acoustic spectra, the number of rotor blades 𝐵𝐵 and a constant rotor 
speed of Ω, three unknowns remain, namely the rotor flutter frequency 𝜔𝜔, the travelling-wave mode 
number  𝑘𝑘  and the specific Fourier term number  𝑚𝑚  (Mengle, 1990). Consider the equation for 
observed blade vibration frequencies given in Equation [1.3.20].  

 𝜔𝜔′ = 𝜔𝜔 + (𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ Ω [1.3.20] 

One equation with three unknowns results in an indeterminate system. If an additional stationary 
observer is placed at the same axial distance as the original stationary observer, then the travelling-
wave mode number may be determined (Mengle, 1990). It is chosen that the second observer is 
placed at a circumferential angular offset equal to the angular distance between two blades for 
convenience; the phase angle is further limited to the range 𝜎𝜎 ∈ [0, 2 ⋅ 𝜋𝜋] (Mengle, 1990).  

This results in the case that the observed phase angle difference is equivalent to the phase angle 
between two blades’ responses (Mengle, 1990). Therefore the travelling-wave mode number can be 
determined. The process by which the travelling wave number is obtained is expressed in Equations 
[1.3.21] to [1.3.26]. 

 𝜎𝜎′ = (𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ ∆𝜃𝜃𝑆𝑆𝑆𝑆 [1.3.21] 

 ∆𝜃𝜃𝑆𝑆𝑆𝑆 =
2 ⋅ 𝜋𝜋
𝐵𝐵

 [1.3.22] 
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 ∴ 𝜎𝜎′ =
2 ⋅ 𝜋𝜋
𝐵𝐵

⋅ 𝑘𝑘 + 𝑚𝑚 ⋅ 2 ⋅ 𝜋𝜋 [1.3.23] 

 𝜎𝜎 ∈ [0. 2 ⋅ 𝜋𝜋) [1.3.24] 

 ∴ 𝜎𝜎′ =
2 ⋅ 𝜋𝜋
𝐵𝐵

⋅ 𝑘𝑘 [1.3.25] 

 ∴ 𝑘𝑘 =
𝜎𝜎′ ⋅ 𝐵𝐵
2 ⋅ 𝜋𝜋

 [1.3.26] 

Given 𝑘𝑘 from the above solution two unknowns still remain. We have assumed that the frequencies 
observed are only positive, thus (Mengle, 1990): 

 𝜔𝜔𝑂𝑂𝑂𝑂𝑂𝑂 ≡ |𝜔𝜔′| = |𝜔𝜔 + (𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ Ω| [1.3.27] 

Given that 𝑚𝑚 is an integer in the infinite interval and the fact that we are only considering positive 
frequencies it is possible to divide Equation [1.3.27] into two possible true vibrational frequency sets 
(Mengle, 1990). The resulting sets are presented in Equation [1.3.28] (Mengle, 1990). 

 
𝜔𝜔1𝑛𝑛 = (𝑘𝑘 ⋅ Ω + 𝜔𝜔𝑂𝑂𝑂𝑂𝑂𝑂

′ ) + 𝑛𝑛 ⋅ 𝐵𝐵 ⋅ Ω 

𝜔𝜔2𝑛𝑛 = (𝑘𝑘 ⋅ Ω − 𝜔𝜔𝑂𝑂𝑂𝑂𝑂𝑂
′ ) + 𝑛𝑛 ⋅ 𝐵𝐵 ⋅ Ω [1.3.28] 

Where 𝑛𝑛 ∈ ℤ, and 𝜔𝜔𝑂𝑂𝑂𝑂𝑂𝑂
′  is the observed flutter frequency (Mengle, 1990). 

If one divides the frequency domain into intervals of 𝐵𝐵 ⋅ Ω, then in each interval there exists a single 
value from the set {𝜔𝜔1𝑛𝑛} and a single value from the set {𝜔𝜔2𝑛𝑛} , one of which is the true frequency of 
blade flutter vibration (Mengle, 1990). Thus for each interval you investigate, two possible frequencies 
of vibration exist, one of which is the desired value (Mengle, 1990). This is even the case when you 
know that the true frequency of vibration lies within a specific interval (Mengle, 1990). 

The solution for the case of a non-constant phase angle difference between blades is slightly more 
complicated. This is because there is now an ambiguity in the value for travelling-wave mode k 
(Mengle, 1990). It is suggested that data be recorded at a slightly different rotor speed Ω which can 
allow the splitting apart of the different spectra for the different k values. This will only be possible if 
the frequency of vibration 𝜔𝜔, does not change significantly at the altered operating speed (Mengle, 
1990). 

As was previously noted the blade vibration was assumed to be non-integral engine order flutter. This 
response is small in comparison to engine ordered information in the pressure signal (Mengle, 1990). 
It must be stated that the pressure spectrum utilised had been cleared of engine ordered responses 
(such as the blade passing frequencies and associated harmonics) by means of a deletion process in 
order to emphasize the actual blade vibration (Mengle, 1990).  

Mengle does not mention the process by which the integral engine order responses are removed from 
the pressure signal, however references are made to an investigation where a pressure spectrum void 
of blade vibration is subtracted directly from a pressure spectrum which contains blade vibration 
(Kurkov, 1981; Mengle, 1990). This is done in order to reveal the spectrum comprising solely of blade 
vibration information (Kurkov, 1981; Mengle, 1990; Murray and Key, 2015). This methodology is a 
precursor for the succeeding model and associated signal processing approach.  
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1.3.5.2. Model 2: Pressure Model Developed Directly from Casing Reference Frame 
1.3.5.2.1. Pressure Signal Representation 
Consider the development of the internal pressure distribution model presented in Figure 1.3-10 
(Forbes and Randall, 2013). 

 

Figure 1.3-10 Schematic of the internal pressure profile. (a) Pressure distribution due to blade rotation. (b) Included 
blade vibration. (c) Included noise and other vibratory phenomena. (adapted from (Forbes and Randall, 2013))  

As the blades rotate a harmonic pressure distribution is formed in the casing (Forbes and Randall, 
2013). A simple sinusoid is used to represent the first harmonic in the Figure 1.3-10 (a) (Forbes and 
Randall, 2013).  

At a constant shaft speed of Ω, and without additional sources of vibration, the harmonic pressure 
distribution will cause a steady state fluctuating pressure profile to be exerted on the inner wall of the 
casing (Forbes and Randall, 2013). Although the shape of the steady state pressure distribution around 
each hypothetical non-vibrating blade is dependent on machine geometry, it tends to take the form 
of a damped impulse (Forbes, 2010, p. 61). An example of a casing wall pressure signal, measured 
about non-vibrating blades with noise removed, is given in Figure 1.3-11. 

 

Figure 1.3-11 Casing pressure distribution about non-vibrating blades measured at Ω = 1200 RPM (Forbes, 2010, p. 61) 

The damped impulse form is due to a passing blade, ahead of the blade there exists a high pressure 
region whereas behind the blade there is a low pressure region. As the blade passes the stationary 
observer a pressure drop is experienced.  

The pressure profile shape around the 𝑟𝑟𝑡𝑡ℎ non-vibrating blade can expressed using a Fourier series 
tuned to produce the periodic shape of interest. A suggested Fourier series form is expressed in 
Equation  [1.3.29] (Forbes and Randall, 2013). 

(a) (b) (c) 
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 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅�∑ 𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+Ω(𝑡𝑡)+𝛼𝛼𝑟𝑟+𝛾𝛾𝑖𝑖])∞
𝑖𝑖=0 �  [1.3.29] 

The parameters Ai and γi are the amplitude and phase of the 𝑖𝑖𝑡𝑡ℎ Fourier term, 𝑃𝑃 is the magnitude of 
the pressure, αr is the angular distance between the blades (shown in Figure 1.3-10 (a)). The 
parameter Ω is the angular velocity of the rotor as a function of time and 𝜃𝜃 is the angular position at 
which the pressure is measured relative to an arbitrary datum (Forbes and Randall, 2013).  

The sources of blade excitation have already been mentioned in Section 1.3.1; the section outlined 
both synchronous and asynchronous mechanisms. The conclusion was drawn that blade excitation is 
driven predominantly by upstream stator wake interaction at the stator passing frequency (SPF). The 
stator passing frequency is a function of rotor speed and number of stators s and is shown in 
Equation [1.3.30]. 

 𝜔𝜔𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑠𝑠 ⋅ Ω = 𝑠𝑠 ⋅ 2 ⋅ 𝜋𝜋 ⋅ 𝑓𝑓𝑅𝑅  [1.3.30] 

It was further noted that noise is inherent in the internal pressure signal and is thus an important 
additional driving component (Forbes and Randall, 2013). The blade forcing function, modelled with a 
Fourier periodic series, is provided in Equation [1.3.31] to [1.3.32] (Forbes and Randall, 2013). 

 𝑓𝑓(𝑡𝑡)𝑟𝑟 = 𝐹𝐹0 ⋅ 𝑔𝑔(𝑡𝑡) ⋅ ��𝐶𝐶𝑞𝑞 ⋅ cos�𝑞𝑞�ωSPF ⋅ 𝑡𝑡 + 𝛾𝛾𝑞𝑞 + 𝛾𝛾𝑟𝑟��
∞

𝑞𝑞=0

� [1.3.31] 

 𝛾𝛾𝑟𝑟 =
2 ⋅ 𝜋𝜋 ⋅ 𝑠𝑠 ⋅ (𝑟𝑟 − 1)

𝑏𝑏
− 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �

𝑠𝑠(𝑟𝑟 − 1)
𝑏𝑏 � ⋅ 2 ⋅ 𝜋𝜋 [1.3.32] 

The analytical Fourier force relation is capable of taking any periodic shape by selecting the Fourier 
coefficients Cq, γq and phase offset γr (Forbes and Randall, 2013). The parameters 𝑏𝑏 and 𝑠𝑠 are the 
number of rotor blades and upstream stator blades respectively.  𝐹𝐹0 is the magnitude of the driving 
force (Forbes and Randall, 2013).  The Gaussian noise component has been included as the term 𝑔𝑔(𝑡𝑡). 

Noise in the internal pressure signal is attributed to turbulence or impulses in the flow, propagation 
of acoustic waves as well as mechanical and rotary vibration resulting from operation of the 
turbomachine (Forbes and Randall, 2013). Noise is included in the internal pressure distribution model 
by multiplying the blade forcing function with a zero mean Gaussian random variable 𝑔𝑔(𝑡𝑡), although 
in practice the frequency content of the noise is expected to be band limited (Forbes and Randall, 
2013; Forbes, 2010, p. 65). 

It is assumed that the pressure at the casing wall is equivalent to, or at least directly related to, the 
pressure profile about the blade tip (Forbes, 2010, pp. 68, 172). It is also assumed that the pressure 
profile around an individual blade follows the blade’s motion during vibration about its equilibrium 
position (Forbes, 2010, p. 69). The blade tip response is therefore of interest. If the blade is excited by 
a single dominant discrete frequency, such as the SPF, then the response motion of the 𝑟𝑟𝑡𝑡ℎ blade tip 
can be expressed as a single degree of freedom (SDOF) sinusoid (Forbes, 2010, p. 68): 

 𝑥𝑥(𝑡𝑡)𝑟𝑟 = 𝑋𝑋𝑘𝑘 ⋅ sin (𝑘𝑘 ⋅ Ω(𝑡𝑡) + 𝛾𝛾𝑘𝑘)  [1.3.33] 
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If the excitation is synchronous then the parameter 𝑘𝑘 is equivalent to the EO of excitation (Forbes, 
2010, p. 68). If the excitation frequency is near to a natural frequency of the blade then the amplitude 
and phase of response can be resolved using the SDOF forced response solution (Forbes, 2010, p. 68). 

The blade is however excited at integer multiples of shaft speed along with a noise component and 
unless one of the integer multiples lies exactly at the resonant frequency of interest the blade tip 
response cannot be estimated using a SDOF sine approximation.  

Therefore an alternative approach to the sine approximation would be to obtain the full forced blade 
response spectrum. This is achieved by multiplying the forcing function spectrum with the transfer 
function of the blade (Forbes and Randall, 2013). Once again a SDOF model approximation is used to 
obtain the blade’s transfer function, the blade representation is provided in Figure 1.3-12.  

 

Figure 1.3-12 SDOF blade representation 

The coefficients  𝑚𝑚 ,  𝑘𝑘  and  𝑐𝑐  refer to the equivalent SDOF mass, stiffness and viscous damping 
coefficients respectively. The mass is acted on by a forcing function 𝑓𝑓(𝑡𝑡)  and has a response 
displacement of 𝑥𝑥(𝑡𝑡). 

It is important to note that in this representation the individual blade is seen as independent of other 
blades and the assembly. Expressing the blade response as an isolated system independent of the hub 
assembly is only a valid approximation if the coupling effects between the blades are limited and only 
a small amount of mistuning is present (Forbes, 2010, p. 138). Had the mistuning and coupling been 
above a certain threshold a coupled system representation would be required (Forbes, 2010, p. 138).  

The section ‘1.3.6 Blade Effects’ briefly explores the effects of coupling and mistuning on a bladed 
system. Representation of a coupled system, in terms of the governing equations of motion, is given 
in ‘7.1.3 A3 – Analytical Blade and Assembly Models’ sections ‘7.1.3.2 Lumped Mass Model’ and 
‘7.1.3.3 FE Model’. These sections explore the lumped mass model and the full finite element (FE) 
model and therefore apply directly to the fully coupled problem.  

An alternative multiple degree of freedom (MDOF) representation of a single blade is also presented 
in the appendix, namely the Euler-Bernoulli beam approximation. The governing equations and brief 
discussion for this model can be found in section ‘7.1.3.1.1 Euler-Bernoulli Beam Formulation’. 

The governing equations of motion (EOM) corresponding to the model presented in Figure 1.3-12 is 
provided in Equation [1.3.34]. 

 [𝑚𝑚]{𝑥̈𝑥} + [𝑐𝑐]{𝑥̇𝑥} + [𝑘𝑘]{𝑥𝑥} = {𝑓𝑓(𝑡𝑡)} [1.3.34] 
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The EOM cannot be directly evaluated in the time domain to obtain the response motion. In order to 
evaluate the system in the time domain to obtain the blade response a time based integration scheme, 
such as the Runge-Kutta approach, would need to be employed.  

An alternative methodology would be to perform the calculations in the frequency domain. The blade 
response, in the frequency domain, can then be expressed as (Forbes, 2010, p. 153): 

 𝑋𝑋(𝑓𝑓)𝑟𝑟 = 𝐻𝐻(𝑓𝑓)𝑟𝑟 ⋅ 𝐹𝐹(𝑓𝑓)𝑟𝑟 [1.3.35] 

Where the blade transfer function 𝐻𝐻 is obtained from the EOM and 𝐹𝐹(𝑓𝑓)𝑟𝑟 is the Fourier transform of 
the forcing function. The blade transfer function H, which is the steady state response of a system to 
unit harmonic excitation force, is provided in Equations [1.3.36] to [1.3.38] (Forbes, 2010, p. 153).  

 𝐻𝐻(𝑓𝑓)𝑟𝑟 =
1 𝑘𝑘𝑟𝑟⁄

(𝜔𝜔𝑛𝑛𝑛𝑛2 − 𝜔𝜔2) + 𝑗𝑗 ⋅ 2 ⋅ 𝜁𝜁 ⋅ 𝜔𝜔𝑛𝑛𝑛𝑛 ⋅ 𝜔𝜔
 [1.3.36] 

 𝜔𝜔𝑛𝑛𝑛𝑛2 =
𝑘𝑘
𝑚𝑚

 [1.3.37] 

 𝜁𝜁 =
𝑐𝑐

2 ⋅ 𝑚𝑚 ⋅ 𝜔𝜔𝑛𝑛𝑛𝑛
 [1.3.38] 

It was noticed that the original transformation of the blade transfer function to the frequency domain 
may have been erroneous. A recalculated transfer function is provided in Equation [1.3.39]. 

 𝐻𝐻(𝑓𝑓)𝑟𝑟 =
1 𝑘𝑘𝑟𝑟⁄

(𝜔𝜔𝑛𝑛𝑛𝑛2 − 𝜔𝜔2) + 𝑗𝑗 ⋅ 2 ⋅ 𝜁𝜁 ⋅ 𝜔𝜔 𝜔𝜔𝑛𝑛𝑛𝑛⁄  
 [1.3.39] 

The Fourier transform of the time based forcing function signal 𝐹𝐹 is given in Equation [1.3.40] . 

𝐹𝐹(𝜔𝜔)𝑟𝑟 = 𝐹𝐹0 ⋅ 𝐺𝐺(𝜔𝜔) ⋅ 𝜋𝜋 ⋅ �∑ 𝐶𝐶𝑞𝑞 ⋅ 𝑒𝑒−𝛾𝛾𝑞𝑞⋅𝑞𝑞⋅𝑗𝑗−𝛾𝛾𝑟𝑟⋅𝑞𝑞⋅𝑗𝑗 ⋅ 𝛿𝛿(𝜔𝜔 + 𝑞𝑞 ⋅ 𝜔𝜔𝑆𝑆𝑆𝑆𝑆𝑆) + 𝑒𝑒𝛾𝛾𝑞𝑞⋅𝑞𝑞⋅𝑗𝑗+𝛾𝛾𝑟𝑟⋅𝑞𝑞⋅𝑗𝑗 ⋅∞
𝑞𝑞=0

𝛿𝛿(𝜔𝜔 − 𝑞𝑞 ⋅ 𝜔𝜔𝑆𝑆𝑆𝑆𝑆𝑆)�  
[1.3.40] 

The parameter 𝐺𝐺(𝜔𝜔) is the Fourier transform of the Gaussian white noise term and 𝛿𝛿 is the Dirac 
delta. A graphical representation of the blade response spectrum derivation (convolution of the 
forcing spectrum and the blade transfer function) is presented in Figure 1.3-13 (Forbes and Randall, 
2013). 

 

Figure 1.3-13 Derivation of blade response model. (a) Blade force model containing Gaussian noise. (b) SDOF rotor blade 
transfer function. (c) Rotor blade response spectrum. (Forbes and Randall, 2013) 
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Assuming that the pressure distribution about a single blade is a function of both the blade motion 
due to vibration and the rotating internal pressure profile, it follows that the resultant total rotating 
pressure profile is a combination of these two signals (Forbes, 2010, p. 69). The blade response 
spectrum (represented as  𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝑥𝑥(𝑡𝑡)𝑟𝑟]) ) combined with the rotating pressure signal is given in 
Equation [1.3.41] (Forbes and Randall, 2013).  

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+Ω(𝑡𝑡)+𝛼𝛼𝑟𝑟+𝛾𝛾𝑖𝑖]) ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝑥𝑥(𝑡𝑡)𝑟𝑟])
∞

𝑖𝑖=0

� [1.3.41] 

A simplified form of the total pressure signal can be obtained by assuming that the pressure response 
due to blade motion is a SDOF system (the same as the form indicated in Equation [1.3.33]).  

By making use of a Laurent power series expansion of the response exponential ( 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝑥𝑥(𝑡𝑡)𝑟𝑟])) whilst 
employing an integral form of the Bessel function 𝐽𝐽𝑛𝑛(𝑥𝑥); the total internal pressure profile as a 
function of both blade rotation and vibration is expressed in Equation [1.3.42]  (Forbes, 2010, p. 69). 
The full derivation of the equation is provided in ‘7.1.1 A1 - Derivation of Bessel Representation of 
Pressure Signal’. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = � � 𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ 𝐽𝐽𝑛𝑛(𝑖𝑖 ⋅ 𝑋𝑋𝑘𝑘) ⋅ cos[𝑖𝑖 ⋅ (θ + Ω(t) + 𝛼𝛼𝑟𝑟 + 𝛾𝛾𝑖𝑖) + 𝑛𝑛 ⋅ (𝑘𝑘 ⋅ Ω(𝑡𝑡) + 𝛾𝛾𝑘𝑘)]
∞

𝑛𝑛=−∞ 

∞

𝑖𝑖=0

 [1.3.42] 

It can be seen from the revised form, Equation [1.3.42], that the pressure profile around a particular 
blade is a phase modulated signal (Forbes, 2010, p. 69). The carrier frequencies are at integer multiples 
of shaft speed. Due to the SDOF response solution assumption the modulated signal has a dominant 
response frequency at an integer multiple of shaft speed as well.  

Phase modulation of the signal results in sidebands appearing about engine harmonics in the 
frequency domain and provides a precursor for the actual expected pressure signal spectrum. The 
topic of phase modulation is explained in more depth in the succeeding section. 

The internal pressure signal resulting from the combination of the pressure profile from blade rotation 
and the forced blade response is illustrated in Figure 1.3-14 (Forbes and Randall, 2013). The spectrum 
of the internal pressure signal consists of discrete engine harmonics (Figure 1.3-14 (a)). The stochastic 
portion of the total rotating pressure spectrum consists of sideband peaks which form about integer 
multiples of the shaft speed (Forbes and Randall, 2013).  

 

Figure 1.3-14 Derivation of stochastic pressure spectrum. (a) Deterministic pressure signal resulting from assembly 
rotation. (b) Blade forced response model. (c) Stochastic part of the internal pressure signal. (Forbes and Randall, 2013) 
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What is not shown in Figure 1.3-14 is that the resultant convolution of the deterministic pressure 
signal and the blade vibration signal is first signal processed before the stochastic signal is displayed. 
The signal processing technique is used to separate the engine harmonic signature from the entire 
pressure spectrum. This is analogous to the deletion of engine ordered responses referred to by 
Mengle and explained by Kurkov (Kurkov, 1981; Mengle, 1990). 

As was already mentioned the appearance of sidebands is attributed to the phase modulation of the 
response signal. The appearance of sidebands in the stochastic part of the pressure spectrum is 
significant in that it may contain blade natural frequency information given operation at a particular 
shaft speed (Forbes, 2010, p. 156). The emphasis of the following subsection is a methodology to 
reveal these sidebands and relate them to actual blade vibration. 

1.3.5.2.2. Blade Vibration Detection Scheme 
It was noted that the resulting pressure signal is phase modulated. It should therefore be possible to 
extract blade response information through phase demodulation of the signal. However before 
demodulation can be discussed a brief definition of modulation, and then specifically phase 
modulation, will be given. 

Modulation is the process of varying one or more properties of a periodic waveform with a modulating 
signal (sometimes referred to as the message signal). The periodic waveform signal is termed the 
carrier signal. Properties such as the carrier signal’s amplitude, frequency or phase angle are varied by 
a modulating signal.  

As the name suggests, phase modulation is the process of time varying the carrier signal’s phase angle. 
The modulated signal contains both the carrier signal and the modulating message signal. In terms of 
blade vibration the carrier signal is the deterministic signal related to the rotation of the system and 
the message signal is the blade vibration carrying signal.  

The presence of blade vibration therefore causes the carrier signal to arrive sooner or later depending 
on the where the blade vibration is in its oscillatory path. In the frequency domain the modulated 
signal appears as sidebands flanking the carrier frequencies (specifically at the carrier ± the modulating 
frequency). An example of a sine carrier signal being modulated by some periodic modulating signal 𝑀𝑀 
to produce a modulated signal 𝑆𝑆 is given in Equation [1.3.42]. 

 𝑆𝑆(𝑡𝑡) = sin(𝜔𝜔 ⋅ 𝑡𝑡 + 𝑀𝑀(𝑡𝑡)) [1.3.43] 

Demodulation is the process of extracting the modulating signal from a modulated signal. In order to 
perform conventional phase demodulation certain initial conditions of Bedrosian’s theorem must be 
satisfied (Forbes, 2010, p. 69).  

The theorem states that in order to apply conventional phase demodulation, by means of the general 
solution of the Hilbert transform, the carrier frequency must be higher than the modulating frequency 
and the respective frequency domains must be non-intersecting  (Bedrosian, 1963; Cerejeiras et al., 
2009; Forbes, 2010, p. 69).  

Additionally in order to avoid aliasing of the modulating signal the carrier frequency must be at least 
six times greater than the modulating frequency (Forbes, 2010, p. 70). An example of an arbitrary 
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modulated sinusoid (modulated by another sinusoid) which satisfies Bedrosian’s theorem is presented 
in Figure 1.3-15. 

 

Figure 1.3-15 Arbitrary modulation example with carrier signal at 110 Hz and modulated signal at 15 Hz 

It is clear from Figure 1.3-15 that the sidebands which carry the modulated signal are separated and 
discernible from one another. The sideband frequencies around the carrier signals do not intersect. 
The conditions of Bedrosian’s theorem will however never be satisfied by the blade vibration scenario 
as multiple carrier frequencies exist at integer multiples of shaft speed along with the dominant blade 
resonance frequency being one of them (Forbes, 2010, p. 70). An example of an arbitrary modulated 
sinusoidal which does not satisfy the required conditions, is illustrated in Figure 1.3-16. 

 

Figure 1.3-16 Arbitrary modulation example with carrier signal at 30 Hz and modulated signal at 45 Hz 

It can be seen in Figure 1.3-16 that the sidebands, which contain the modulated message signal, are 
smeared across one another and a unique solution does not exist.  
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Finally a modulation example based on a rotor operating at 16 Hz (960 RPM) with a blade vibrating at 
128.8 Hz is given in Figure 1.3-17.  

 

Figure 1.3-17 Modulation example with carrier signal at integer multiples of 16 Hz and modulated signal at integer 
multiples of 128.8 Hz 

A novel demodulation methodology was developed for the problem of identifying blade vibration 
characteristics. The methodology was tuned for the case where the number of upstream stator blades 
coincides with the engine order (EO) of excitation for a SDOF system (Forbes, 2010, p. 70). The method 
was able to infer the response amplitude and phase of a simulated SDOF blade over a range signal to 
noise (SNR) ratios given the dominant frequency of response (Forbes, 2010, p. 70). The drawback to 
this approach is that the dominant blade response frequency must be known a priori. 

An alternative approach to direct signal demodulation was sought. As was previously mentioned, it 
was noticed that blade natural frequency information may be present in the stochastic part of the 
pressure signal. A signal processing method was thus developed to separate the engine harmonic 
(deterministic) and blade vibration carrying (stochastic) parts of the signal, and then to concentrate 
any pattern found in the stochastic part. The procedure is outlined in Figure 1.3-18 (Forbes and 
Randall, 2013). This is the process related to engine harmonic deletion mentioned by Mengle and 
performed by Kurkov (Kurkov, 1981; Mengle, 1990; Murray and Key, 2015). 

 

Figure 1.3-18 CPS signal processing procedure (adapted from (Forbes and Randall, 2013)) 
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A brief description of the process is as follows. The internal pressure signal is order tracked (phase 
resampled) in order to remove smearing in the frequency domain and to provide a resultant signal 
with a chosen number of linearly spaced measurements per revolution. This signal is then 
synchronously averaged to determine the average non-vibrating signal over a single revolution. This 
average is then repeated to form a full time length signal termed the deterministic signal.  

The deterministic signal is finally subtracted from the full order tracked signal in order to reveal the 
stochastic signal. From this point both the deterministic and stochastic signals are moved into the 
frequency domain by means of a Fourier transform for further analysis. An example of separated 
deterministic and stochastic signal spectra is presented in Figure 1.3-19. The deterministic portion of 
the signal is shown in red and the stochastic in blue. 

 

Figure 1.3-19 FRFs of the Stochastic and deterministic portions of the pressure signal for N = 2000 RPM. (a) Internal 
pressure directly measured (IPS). (b) Casing response measured (CPS). (Forbes and Randall, 2013) 

It is clear in Figure 1.3-19 that sidebands, in the stochastic portion of the signal, appear about certain 
engine harmonics. It is also clear from the figure that all deterministic information was successfully 
removed from the combined pressure signal in order to reveal the stochastic signal.  

The spectra in Figure 1.3-19 (a) was evaluated from internal pressure measurements using a sound 
pressure transducer. More interestingly the spectra in Figure 1.3-19 (b) were obtained by vibration 
measurements using an accelerometer attached to the outside of the casing (Forbes and Randall, 
2013). This is significant in that blade vibration may possibly be monitored without the need for casing 
alteration to access the internal pressure signature. This results in a truly non-intrusive blade vibration 
measurement technology (Forbes and Randall, 2013). The casing itself is said to act like a time 
invariant linear filter on the internal pressure signal (Forbes and Randall, 2013). 

After transformation into the frequency domain sideband peaks appear about engine harmonics in 
the stochastic portion of the signal. An ensemble averaging process was developed in order to obtain 
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a robust estimate of the form of the narrow band peaks (Forbes and Randall, 2013). The ensemble 
averaging process is illustrated in Figure 1.3-20. 

 

Figure 1.3-20 Ensemble averaging process (Forbes and Randall, 2013) 

The stochastic spectrum is divided into ensembles whose width is the same as the rotor speed and 
centered about engine harmonics. The engine harmonic peaks are determined using the deterministic 
signal. These ensembles are then summed and the result divided by the total number of ensembles 
added in order to obtain an average ensemble spectrum (Forbes and Randall, 2013).  

The process is analogous to synchronous averaging of rotating signals in the time domain as the 
process concentrates the sideband peak pattern and removes unwanted noise.  An example of 
analytically derived ensemble averages resulting from operation of the same system (in terms of 
geometry and material properties) at two separate rotational speeds is provided in Figure 1.3-21.  

 

Figure 1.3-21 Ensemble average from analytically derived CPS residual power spectrum. (a) 1200 RPM rotor speed.  (b) 
2000 RPM rotor speed (Forbes and Randall, 2013) 

Experiments were performed in order to confirm that the pressure relation developed accurately 
describes the periodic pressure signal within the casing. The above analytical ensemble averages are 
derived using an actual experimental setup’s geometry and blade material properties, although the 

(b) (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 1 Introduction CB Church
   

31 

response amplitudes are arbitrary. Ensemble averages, obtained from experimental measurements, 
for operation at the same speeds as indicated above, are provided in Figure 1.3-22. 

 

Figure 1.3-22 Ensemble averages from experimentally derived internal pressure measurements. (a) 1200 RPM rotor 
speed. (b) 2000 RPM rotor speed (Forbes and Randall, 2013) 

It can be seen that the experimentally determined ensemble averages produce averaged sideband 
peaks with a peak to peak distance which is the same as the analytically derived solutions for the same 
operating speed.  

A discussion on the experimental setup used and excitation methodology for the work done by Forbes 
et al. can be found in section ‘7.3 Appendix C – Example Application of CPS Method’. 

The succeeding section provides a relation between the ensemble average and the blade natural 
frequency by making use of the modulation and signal processing principles discussed above. 

1.3.5.2.3. Analytical Relation between Ensemble Average and Blade Natural Frequency 
It was proposed that a method be developed to relate these ensemble averages to the blade’s natural 
frequencies (Forbes and Randall, 2013). As has already been stated the sidebands which contain the 
blade vibration information occur at multiples of shaft speed plus and minus the blade natural 
frequency (Forbes, 2010, p. 156). Consider Figure 1.3-23. 

 

Figure 1.3-23 Sidebands about multiples of shaft speed  (Cox and Anusonti-Inthra, 2014; Forbes and Randall, 2013) 
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Due to the fact that the deterministic carrier signal’s frequencies are consistently lower than the blade 
natural frequencies, and that excitation occurs at all engine harmonics, the frequency domains about 
the carrier signals intersect. There however exist two peaks related to blade vibration in each range 
of length Ω. 

As has already been noted, this results in a situation where the blade vibration sidebands cannot be 
uniquely separated to infer the blade’s response. There is however a consistent and measureable 
pattern which emerges from the modulation: this sideband pattern is clearly visible in Figure 1.3-23. 
It is not clear from which shaft harmonic (𝑚𝑚 or 𝑘𝑘 in the figure) each individual sideband stems resulting 
in the aforementioned ambiguity as to which sideband peak is related to which carrier frequency. 

It was proposed that the distance between the sidebands, termed the narrow band peak spacing 
(NBPS), be used in order to estimate the blade natural frequency (Forbes and Randall, 2013). The final 
step in the ensemble averaging process is therefore to measure the average peak to peak distance 
between the sidebands in the ensemble average and then relate this measurement back to one of the 
natural frequencies of the blades. The relation of the NBPS to the actual frequency of vibration and 
the rotor speed is given in Equations [1.3.44] and [1.3.45] (Forbes and Randall, 2013).  

 ∆𝜔𝜔𝑁𝑁𝑁𝑁 = (𝑘𝑘 ⋅ Ω +𝜔𝜔𝑁𝑁)− (𝑚𝑚 ⋅ Ω −𝜔𝜔𝑁𝑁) [1.3.44] 

 ∴ 𝜔𝜔𝑁𝑁 =
∆𝜔𝜔𝑁𝑁𝑁𝑁 + (𝑚𝑚 − 𝑘𝑘) ⋅ Ω

2
=
∆𝜔𝜔𝑁𝑁𝑁𝑁 + 𝑞𝑞 ⋅ Ω

2
 [1.3.45] 

The parameters 𝑚𝑚 and 𝑘𝑘 refer to the rotor speed integer multiplier in Figure 1.3-23. They are both 
positive integers and 𝑘𝑘 < 𝑚𝑚. The rotor speed Ω is given in hertz. 

In order to use the above method the natural frequencies of the blades needs to be known within 
±0.5Ω  (within half the rotor speed) in order to estimate the positive integer  𝑞𝑞  before natural 
frequency estimates can be made (Forbes and Randall, 2013). This is because Equation [1.3.45] is 
linear in the variables 𝜔𝜔𝑁𝑁  and 𝑞𝑞 and results in an indeterminate system (Cox and Anusonti-Inthra, 
2014). The indeterminacy of Equation [1.3.45] is comparable to the analytical solution suggested in 
Model 1 where for each frequency range investigated two possible solutions for the blade vibration 
exist (Mengle, 1990). 

An example application of Equation [1.3.45] for the purpose of estimating a blade’s natural frequency 
from both analytically derived and experimentally determined NBPS is also presented in section 
‘7.3 Appendix C – Example Application of CPS Method’.  

It is suggested that the indeterminacy of Equation [1.3.45] be surmounted by rather employing a 
system of equations; this is achieved by making use of a slight change in rotor speed (Cox and 
Anusonti-Inthra, 2014). It is assumed that the stochastic responses of interest, related to the blade 
natural frequency, do not change significantly with the change in operating speed; this effectively 
uncouples Equation [1.3.45] (Cox and Anusonti-Inthra, 2014).  

Once again a similarity between the work of Mengle and the current approach can be made: Mengle 
suggested performing measurements at two slightly different operating speeds in order to uncouple 
the mistuned blade flutter scenario (Mengle, 1990). The concept suggested by Cox et al. is illustrated 
in Figure 1.3-24 (Cox and Anusonti-Inthra, 2014). 
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Figure 1.3-24 Adapted Forbes method (Cox and Anusonti-Inthra, 2014) 

The rotor blade natural frequency, 𝜔𝜔𝑁𝑁, is assumed to be constant over the change in rotor speed; the 
resulting linear set of equations are given in Equation [1.3.46] (Cox and Anusonti-Inthra, 2014). 

 
𝑚𝑚 ⋅ Ω1 ±𝜔𝜔𝑁𝑁 = 𝑓𝑓𝑠𝑠𝑠𝑠1 

𝑚𝑚 ⋅ Ω2 ±𝜔𝜔𝑁𝑁 = 𝑓𝑓𝑠𝑠𝑠𝑠2 [1.3.46] 

In this system of equations  𝑚𝑚  is a particular multiple of rotor speed. Further  𝑓𝑓𝑠𝑠𝑠𝑠1  and  𝑓𝑓𝑠𝑠𝑠𝑠2  are 
sideband frequencies which occur at the two rotor speeds Ω1 and Ω2 respectively. 

The natural frequency can then be solved for through substitution of one of the simultaneous 
equations into the other and rearrangement (Cox and Anusonti-Inthra, 2014). 

 𝜔𝜔𝑁𝑁 = �
Ω1 ⋅ 𝑓𝑓𝑠𝑠𝑠𝑠2 − Ω2 ⋅ 𝑓𝑓𝑠𝑠𝑠𝑠1

Ω2 − Ω1
� [1.3.47] 

An investigation was performed in order to determine the influence of blade response amplitude, 
signal to noise ratio, sampling time and sampling frequency on the amplitudes of the sidebands and 
noise in the frequency domain (Cox and Anusonti-Inthra, 2014). A simplified internal pressure signal 
was developed for investigation and is given in Equation [1.3.48] (Cox and Anusonti-Inthra, 2014). 

 𝑃𝑃𝑛𝑛 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(−1,1) +
(2 ⋅ 𝑆𝑆𝑆𝑆𝑆𝑆)0.5

6.6
⋅ cos(2 ⋅ 𝜋𝜋 ⋅ 𝐵𝐵 ⋅ Ω ⋅ 𝑡𝑡 + 𝜖𝜖 ⋅ cos(2 ⋅ 𝜋𝜋 ⋅ 𝜔𝜔 ⋅ 𝑡𝑡)) [1.3.48] 

In this equation 𝐵𝐵 is the number of rotor blades, 𝑡𝑡 is the time and 𝜖𝜖 is the blade response amplitude. 

An analysis of variance (ANOVA) was used to compare the influences of the above mentioned 
properties. It was found that the blade response pressure amplitude had the greatest effect on 
sideband height, followed consecutively by the sampling frequency, SNR and sample time (Cox and 
Anusonti-Inthra, 2014). 

The subsequent literature section explores alternative investigations into using the internal casing 
pressure signal to identify blade faults and blade resonance.  
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1.3.5.3. Alternative Casing Pressure Methods and Investigations 
1.3.5.3.1. Gas Turbomachine Blade Fault Identification from Wall Pressure Measurements 
It was proposed that distortions in the unsteady pressure field, about individual blades in a rotating 
turbomachine, could be used to identify faults associated with the individual blades (Mathioudakis et 
al., 1991).  

At the time of publication it was noted that the current blade fault diagnostic techniques only had the 
capacity to detect major faults whose magnitudes were of a sufficiently large scale (Mathioudakis et 
al., 1991). Several blades in a cascade would have to be significantly damaged in order to facilitate a 
significant variation in either the thermodynamic properties or structural vibration of the 
turbomachine to produce a measureable fault response (Mathioudakis et al., 1991). The capacity to 
identify minor faults, such as slight bending or twisting of a few blades or blade fouling, was desired 
(Mathioudakis et al., 1991). 

In order to investigate the effects of minor blade faults on an internal pressure signal a commercial 
gas turbomachine  test setup was modified (Mathioudakis et al., 1991). The gas turbomachine was 
operated at conditions expected in the field (Mathioudakis et al., 1991). A schematic of the 
experimental test setup used is presented in Figure 1.3-25. 

 

Figure 1.3-25 Gas compressor layout and positioning of fast response pressure transducers (Mathioudakis et al., 1991) 

Testing was performed on the compressor end of the gas turbomachine. Five fast response pressure 
transducers were installed flush to the inner compressor casing wall, as indicated on Figure 1.3-25 
(Mathioudakis et al., 1991). The first pressure transducer (PT-1 in the diagram) was positioned just 
after the row of inlet guide vanes (IGVs). The second, third, fourth and fifth pressure transducers were 
installed in line with the first, second, third and fourth rotor cascade respectively.  

Four separate measurement configurations were used in order to investigate minor blade fault 
identification from the internal casing pressure measurements. The first measurement configuration 
provided a datum measurement (void of any artificial blade faults) (Mathioudakis et al., 1991). In the 
second measurement configuration all of the blades on rotor cascade 2 were artificially fouled by 
coating them with a textured paint (Mathioudakis et al., 1991). In the third configuration only two 
blades of rotor cascade 1 were fouled by the same means, these blades were separated by five healthy 
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unaltered blades (Mathioudakis et al., 1991). In the final configuration the stagger angle of an 
individual blade of rotor cascade 1 was altered by approximately 8° changing its incidence angle 
(Mathioudakis et al., 1991). 

The comparison of the datum configuration measurement and a measurement from configuration 2 
at pressure transducer 3 (in line with rotor cascade 2) is given in Figure 1.3-26. 

 

Figure 1.3-26 Comparison of fully fouled rotor (a) and healthy rotor (b) at PT-3 (Mathioudakis et al., 1991) 

It was noted that the fouling produced a reduction in the pressure response amplitude as well as 
altered the form of the pressure peaks (Mathioudakis et al., 1991). The effects of minor faults on rotor 
cascade 1 (configurations 3 and 4) measured by pressure transducer 2 are presented in Figure 1.3-27. 

 

Figure 1.3-27 Effect of minor faults. (a) Fouling of two blades. (b) Twisting of a single blade. (Mathioudakis et al., 1991) 

The fouling of the two blades in rotor cascade 1 produced a slight but noticeable difference in the 
appearance of the pressure peaks (Mathioudakis et al., 1991). The twisting of an individual blade by 
8° produced a significant signature in the pressure signal (Mathioudakis et al., 1991).  
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Power spectra were evaluated for all four measurement configurations at pressure transducer 2. The 
power spectra for all experimental configurations taken by PT-2 are presented in Figure 1.3-28. 
Multiples of the blade passing frequency (BPF) and shaft harmonics are indicted in the final figure (d). 
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Figure 1.3-28 Power spectra measured at PT 2. (a) Configuration 1. (b) Configuration 2. (c) Configuration 3. (d) 
Configuration 4. (Mathioudakis et al., 1991) 

It is noted that almost no variation is perceived between the spectra for configuration 1 and 2 (when 
measured by pressure transducer 2) (Mathioudakis et al., 1991). There is however a visible variation 
between configurations 3 and 4 in the regions between 0 Hz and the first BPF in the shaft harmonics; 
these variations correspond to the introduction of minor faults (Mathioudakis et al., 1991). 

Power spectra were evaluated for the remaining configurations at all measurement points. The main 
observations noted are as follows (Mathioudakis et al., 1991): 

• A visible difference is noted between the spectra measured at pressure transducer 3 between 
configurations 1 and 2 corresponding the surface preparation across the entire cascade of 
rotor 2. 

• No visible difference in the power spectrum is noted for measurements taken at fast response 
pressure transducer 3 for measurement configurations 3 and 4. 

• When comparing the spectra measured at all locations, for measurement configuration 4, the 
only noticeable change in the spectra occurred for measurements taken by transducer PT-2 

It was concluded that minor blade faults, corresponding to individual blades, could be identified from 
internal casing pressure measurements (Mathioudakis et al., 1991). The minor fault information is 
identifiable in both the power spectra and time domain measurements (Mathioudakis et al., 1991).  
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Further, the minor fault signature decays to the extent that it cannot be observed either up- or 
downwind from the fault location when measured at the casing wall in line with preceding or 
succeeding rotor cascades respectively (Mathioudakis et al., 1991). This final conclusion is similar to 
that expressed by Mengle; namely that certain blade frequency response components will decay and 
will not be noticeable in a measurement plane removed from the source (Mengle, 1990). 

1.3.5.3.2. Blade Natural Frequency Estimation from Run-up and Run-down Measurements 
An investigation was performed in order to determine if the deterministic casing vibrational response 
and internal wall pressure signal could be used to identify blade natural frequencies from run-up and 
run-down measurements (Ratz et al., 2013).  

An analytical model was developed to simulate the internal casing pressure (Ratz et al., 2013). This 
model is built on the work done by Forbes et al. (Forbes and Randall, 2013). The internal pressure 
within the casing about blade  𝑟𝑟 is represented by Equation [1.3.49] (Ratz et al., 2013). 

 𝑃𝑃𝑟𝑟 = 𝑅𝑅𝑅𝑅 ��𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ 𝑒𝑒𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+ Ω⋅𝑡𝑡+𝛼𝛼�𝑟𝑟+𝛾𝛾𝑖𝑖+𝑥𝑥(𝑡𝑡)𝑟𝑟 ]
∞

𝑖𝑖=0

� [1.3.49] 

The Fourier coefficients 𝐴𝐴𝑖𝑖  and 𝛾𝛾𝑖𝑖  define the frequency response amplitudes and phase angles of the 
pressure wave associated with rotation of the system without blade vibration (Forbes and Randall, 
2013; Ratz et al., 2013). The value 𝜃𝜃 is the measurement angle define by some arbitrary datum, Ω is 
the shaft speed, 𝑥𝑥(𝑡𝑡)𝑟𝑟 is the vibration of blade 𝑟𝑟 and 𝛼𝛼�𝑟𝑟 is the phase offset of each rotor blade (Ratz 
et al., 2013).  

The phase offset 𝛼𝛼�𝑟𝑟 is designed to accommodate small deviations in the angular location of the rotor 
blades, the phase offset is given by Equation [1.3.59] where 𝑏𝑏 is a random variable between 0 and 1 
and 𝛼𝛼𝑟𝑟 is the angle between two adjacent blades (Ratz et al., 2013). 

 𝛼𝛼�𝑟𝑟 = [1 + 𝑏𝑏 ⋅ 0.001] ⋅ 𝛼𝛼𝑟𝑟 [1.3.50] 

The vibration of blade 𝑟𝑟 is defined by the sinusoid in Equation [1.3.51] (Ratz et al., 2013).  

 𝑥𝑥(𝑡𝑡)𝑟𝑟 = 𝐵𝐵 ⋅ sin(𝜔𝜔𝑆𝑆𝑆𝑆𝑆𝑆 ⋅ 𝑡𝑡 + 𝛾𝛾𝑟𝑟) [1.3.51] 

The blades are modelled as lumped single degree of freedom (SDOF) spring and mass systems (Ratz 
et al., 2013). Excitation occurs at the stator passing frequency 𝜔𝜔𝑆𝑆𝑆𝑆𝑆𝑆 (number of blades multiplied by 
the shaft speed i.e. 𝜔𝜔𝑆𝑆𝑆𝑆𝑆𝑆 =   𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ⋅ Ω) with an inter-blade phase angle offset of 𝛾𝛾𝑟𝑟. The solution to 
the SDOF system assumption yields a blade response amplitude 𝐵𝐵 defined in Equation [1.3.52]. 

 
𝐵𝐵 =

𝐹𝐹0 𝑘𝑘𝑟𝑟⁄

��1 − �𝜔𝜔𝑆𝑆𝑆𝑆𝑆𝑆𝜔𝜔𝑛𝑛𝑛𝑛
�
2
�
2

+ �2 ⋅ 𝜁𝜁 ⋅ �𝜔𝜔𝑆𝑆𝑆𝑆𝑆𝑆𝜔𝜔𝑛𝑛𝑛𝑛
��
2

 
[1.3.52] 

The variables 𝐹𝐹0 , 𝑘𝑘𝑟𝑟 , 𝜔𝜔𝑛𝑛𝑛𝑛  and 𝜁𝜁  are the force on each blade, the stiffness of blade 𝑟𝑟 , the natural 
frequency of blade 𝑟𝑟 and he non-dimensional damping of all blades respectively (Ratz et al., 2013).  

The experimental setup is the same as used by Forbes et al. mentioned in section ‘1.3.5.2 Model 2: 
Pressure Model Developed Directly from Casing Reference Frame’ and fully described and illustrated 
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in section ‘7.3 Appendix C – Example Application of CPS Method’ (Forbes and Randall, 2013; Ratz et 
al., 2013).  

A brief description of the experimental setup and methodology is as follows: the rotor consists of 19 
flat blades attached to a hub; the blades’ dimensions are 100mm in length by 50 mm in width by 
1.2mm in thickness (Ratz et al., 2013). The natural frequencies for all blades were measured using a 
stationary test bench. These measurements were then averaged over to determine mean blade 
resonant values. The mean blade natural frequencies were determined to be 117.4 Hz (first bending 
mode), 515.9 Hz (first torsional mode) and 726 Hz (second bending mode) (Forbes and Randall, 2013; 
Ratz et al., 2013).  

Six high pressure air jets were used to approximate upstream stators for the purpose of blade 
excitation (Ratz et al., 2013). Measurements were taken during run-down conditions with the shaft 
speed being slowed linearly from 1400 RPM to 1000 RPM (approximately from 23.3 Hz to 16.6 Hz) at 
a speed rate change of approximately -60 RPM/s (-1 Hz/s) (Ratz et al., 2013). It was assumed that the 
change in blade natural frequencies, due to centrifugal stiffening, is negligible for the chosen 
operational speed range (Forbes and Randall, 2013). A sound pressure transducer was installed into 
the casing wall, in line with the row of blades, in order to obtain the internal pressure response (Ratz 
et al., 2013). At a similar location on the outside of the casing an accelerometer was installed to 
measure the casing vibrational response (Ratz et al., 2013). 

The time domain measurements were divided into 32 parts; these parts were assumed to have a near 
constant rotational speed over the measurement interval (Ratz et al., 2013). The intervals were then 
order tracked with a once per revolution tachometer signal (Ratz et al., 2013). Finally the order tracked 
signal was synchronously averaged to reveal the deterministic signal (Forbes and Randall, 2013; Ratz 
et al., 2013). A plot containing the Fourier transform of the experimentally obtained deterministic 
signals, from the 32 time parts, with respect to the quasi-constant operational speed is given in Figure 
1.3-29. 

 

Figure 1.3-29 Experimentally obtained deterministic radial pressure signal  for run-down measurement from 23.3 Hz to 
16.6 Hz (Ratz et al., 2013) 

The four rows of curves represent the first four harmonics of the stator passing frequency 𝜔𝜔𝑆𝑆𝑆𝑆𝑆𝑆 (Ratz 
et al., 2013). It can be seen that the harmonics peak as the system passes through a resonance. The 
first harmonic frequency can be obtained by multiplying the number of blades with the operational 
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speed in hertz; the first harmonic therefore varies between 315 Hz to 424 Hz for operation between 
16.6 Hz and 23.3 Hz. Similarly the remaining harmonic peak rows can be obtained by multiplying the 
operational speed with the number of blades and harmonic number of interest, the frequency ranges 
traversed by the first four harmonics, as indicated in Figure 1.3-29, is given in Table 1.3-3. 

Table 1.3-3 Harmonics and frequency ranges for operation from 16.6 Hz to 23.3 Hz 

Harmonic  Frequency Range (Hz) 
1st  315 to 424 
2nd  630.8 to 885.4 
3rd  946.2 to 1328.1 
4th  1261.6 to 1770.8 

The measurement range is expected to traverse the 1st engine order (EO) of the fundamental 
resonance at a shaft speed of approximately 19.6 Hz (fundamental frequency of 117.4 Hz excited by 6 
air pulses per revolution will be exited at 117.4 (6 ⋅ 1) ≈ 19.6 𝐻𝐻𝐻𝐻⁄ ) (Ratz et al., 2013). The response 
at 19.6 Hz is indicated in Figure 1.3-29 by a red curve running perpendicular to the forced harmonic 
curves. The expected EO resonances, within the operational range of interest, for the first thee modes 
are given in Table 1.3-4. 

Table 1.3-4 EO Resonances for Run-Down Experiment 

Mode Natural Frequency of Mode 
(Hz) 

EO Expected resonance operational speed 
(Hz) 

First Bending 117.4 1 19.6 
First torsional 515.9 4 21.5 
First torsional 515.9 5 17.2 
Second Bending 726 5 24.2 
Second Bending 726 6 20.2 

The harmonic curves were summed across a chosen frequency range to produce an average response 
versus shaft speed plot (Ratz et al., 2013). This was done for both an analytically derived and 
experimentally derived pressure response. The result is given in Figure 1.3-30.  

 

Figure 1.3-30 Radial pressure response versus shaft speed as sum of harmonic curves. (a) Analytical. (b) Experimental. 
(Ratz et al., 2013) 

Two peaks are highlighted in the figure, namely excitation of the first and second bending mode 
respectively (Ratz et al., 2013). A clear peak at approximately 19.6 Hz corresponds to excitation of the 
blades first natural frequency at EO 1 (Ratz et al., 2013). A second peak emerges as the rotational 
speed approaches 24.2 Hz. This corresponds to the 5th EO excitation of the second bending mode (Ratz 
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et al., 2013). It is noted that the difference in magnitude between the analytical and experimental 
model is due a lack of calibration of the analytical model with respect to the experimental results (Ratz 
et al., 2013). No peak corresponding to torsional vibration is mentioned or observed. 

Similar to the investigation by Forbes et al., an individual blade of the 19 blade setup was replaced 
with a blade of reduced thickness (Forbes and Randall, 2013; Ratz et al., 2013). The first and second 
bending modes of the ‘damaged’ blade were measured to occur at 69 Hz and 432 Hz respectively (Ratz 
et al., 2013).  

In order to excite the damaged blade at its fundamental frequency at an EO of 1 the operational speed 
is estimated to be 11.5 Hz. Similarly to excite the second bending mode at an EO of 5 the operational 
speed is estimated to be 14.4 Hz. The results of an analytical investigation to determine the pressure 
response versus shaft speed for the case of 1 damaged blade (by summing the harmonic frequency 
response across a single operating speed) is presented in Figure 1.3-31. 

 

Figure 1.3-31 Analytical internal pressure response amplitude versus operating speed for operation with 18 healthy and 
1 damaged blade (Ratz et al., 2013) 

It can be seen that peaks corresponding to excitation of both the damaged blade and healthy blades, 
at their first and second bending modes, appear clearly in the figure (Ratz et al., 2013). 

The procedure performed on the internal pressure measurements was repeated for external 
acceleration measurements taken on the outer casing. It was found that the casing vibration signal 
contained the same information as the internal pressure signal. It was however difficult to discern 
excitation of the fundamental frequency for excitation at EO 1 when summing the response 
amplitudes across the frequency range of interest (Ratz et al., 2013). When viewing the response 
amplitude versus shaft speed at the third harmonic (3 ⋅ 𝜔𝜔𝑆𝑆𝑆𝑆𝑆𝑆) the expected resonant response peak 
of the fundamental frequency (excited at EO 1) at 19.6 Hz was clearly discernible (Ratz et al., 2013). 

The investigation showed that the deterministic response amplitude of both the internal pressure 
signal and the casing vibration is related to excitation of the turbomachine blades. Further a fault was 
simulated and shown to appear clearly in the response deterministic amplitude. 
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1.3.5.3.3. Turbomachine Blade Vibration Identification from Downwind Measurements 
An investigation was performed in order to detect engine ordered response of rotor blades in an axial 
compressor using fast response pressure transducers (Murray and Key, 2015). The transducers were 
installed into stator vanes downwind of the rotor cascade of interest (Murray and Key, 2015). 

It was noted that this publication was the first of its kind in open literature, namely the identification 
of engine ordered resonant response from a pressure signal measured at a stationary observation 
point in a real compressor (Murray and Key, 2015). A cross section of the experimental compressor 
used in the investigation is presented in Figure 1.3-32. 

 

Figure 1.3-32 Cross section of 3 stage Purdue University research compressor (Murray and Key, 2015) 

The compressor consists of three rotor stages. Ahead of the first rotor cascade are a set of inlet guide 
vanes which direct fluid flow onto the first set of rotor blades. The inlet guide vane cascade has 44 
blades (Murray and Key, 2015). The three rotor rows R1, R2 and R3 have 36, 33 and 30 blades each 
respectively (Murray and Key, 2015). The stator vane cascades S1, S2 and S3 have 44, 44 and 50 blades 
each respectively (Murray and Key, 2015).  

Identification of torsional vibration of the second rotor row to engine ordered excitation was of 
interest to investigate. It was reported that the first torsional mode occurs at 2700 Hz (Murray and 
Key, 2015). The 44th EO excitation point, in terms of rotor speed, for this mode occurs in the vicinity 
of 3700 RPM (Murray and Key, 2015).  Due to mistuning in the system the band in which the blade 
response occurs was found to be from 2700 Hz to 2735 Hz (Murray and Key, 2015). The mode response 
was confirmed to exist at this location using a blade tip timing system (Murray and Key, 2015). 

Two stator vanes were modified in order to accommodate the fast response pressure transducers 
(Murray and Key, 2015). A schematic of the installation locations on two stators in stator row S2 is 
provided in Figure 1.3-33. Pressure transducers were installed at both half the blade span and at 80% 
of the span on the suction side of one vane and the pressure side of another (Murray and Key, 2015). 

 

Figure 1.3-33 Stator vane pressure transducer installation. (a) Top view of sensor locations. (b) Side view of sensor 
locations. (Murray and Key, 2015) 
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It was noted that the fast response pressure transducers had a frequency response in the range of 100 
to 150 kHz. It was further noted that when tests were performed using pressure transducer with a 
lower frequency response that blade vibration identification was not possible (Murray and Key, 2015). 

The expression for observed frequencies, developed by Mengle, was implemented in the study 
(Mengle, 1990; Murray and Key, 2015). The form used in this investigation is provided in 
Equation [1.3.53] (Mengle, 1990; Murray and Key, 2015). 

 𝜔𝜔′ = 𝜔𝜔 + (𝑁𝑁𝑁𝑁 + 𝑚𝑚 ⋅ 𝐵𝐵)Ω [1.3.53] 

In the expression 𝜔𝜔′ refers to the observed blade response frequency due to Doppler shifting whereas 
𝜔𝜔  is the actual response frequency (Murray and Key, 2015). ND refers to the number of nodal 
diameters given a particular system response mode shape (travelling wave mode number in the work 
by Mengle) and is limited to 𝑁𝑁𝑁𝑁 ∈ {0,1,2, … ,𝐵𝐵 − 1}. The parameter 𝐵𝐵 is the number of rotor blades 
in the row, 𝑚𝑚 is the wave number (𝑚𝑚 ∈ ℤ) and Ω is the rotor speed (Mengle, 1990; Murray and Key, 
2015). 

It was stated that the nodal diameter could be estimated using the blade tip timing data or the 
difference in the number of upwind stator vanes to rotor blades (Murray and Key, 2015). The 
investigation was only interested in engine ordered response (Murray and Key, 2015). The latter 
formulation is shown in Equation [1.3.53] (Murray and Key, 2015). 

 𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐵𝐵 [1.3.54] 

Therefore, for rotor row R2 and upwind stator row S1 the nodal diameter is 11. The wave number 𝑚𝑚 
was restricted to the range of -2 to 2 in the investigation; the significant modes were said to lie in this 
region (Murray and Key, 2015). 

According to the work of Mengle the Doppler shifting effect forces the engine ordered blade response 
to occur at integer multiples of the blade passing frequency (BPF) (Mengle, 1990; Murray and Key, 
2015). The rotor row of interest has 33 blades; therefore responses are Doppler shifted to every ‘33rd 
per revolution’ (33rd/rev) frequency harmonic in the spectrum measured by a stationary observer 
(Murray and Key, 2015). It was stated that obtaining these responses was the challenge in the 
investigation (Murray and Key, 2015). 

A one dimensional analytical analysis was performed in order to estimate the travelling pressure 
waves both up- and downstream of rotor cascade 2. The analysis was performed using an algorithm 
termed LINSUB (linear subsonic) which was developed to obtain the unsteady parameters from 
turbomachine geometries by using a two-dimensional geometric approximation; the algorithm work 
for a system operating within the subsonic region (Murray and Key, 2015; Whitehead, 1987). It was 
estimated that the upstream moving pressure wave component would be in the range of 292.3 Pa and 
the downstream moving pressure wave would have a magnitude of 584.7 Pa (Murray and Key, 2015). 

The upward and downward propagation of pressure waves means that engine ordered response from 
the upstream and downstream rotor rows may be contained within the pressure signal measured at 
the instrumented stator vane in row S2. The upstream rotor row has 36 blades and the downstream 
row has 30 blades. Therefore responses at 36th/rev and 30th/rev frequencies (as well as at integer 
multiples of these values) may be observed as well (Murray and Key, 2015). 
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A signal processing technique was developed in order reveal the engine ordered response spectra. 
Measurements were taken for a rotor accelerating, for this reason individual revolutions of the rotor 
were separated from one another (Murray and Key, 2015). The data from each revolution could then 
be Fourier transformed to obtain its response spectrum. The average speed over each revolution was 
captured in order to be used in a waterfall plot of the response. 

It was stated that the act of separating each individual rotation was equivalent to applying a 
rectangular window to that measurement (Murray and Key, 2015). Rectangular windows created 
undesirable effects in the frequency domain due to the abrupt separation of the signals which may 
lead to discontinuities in the frequency domain (Murray and Key, 2015).  

For this reason each individual rotation’s data was passed through a Kaiser window before performing 
a fast Fourier transform (FFT) on the measurement (Murray and Key, 2015). The Kaiser window was 
chosen because it facilitates a high degree of precision between frequency components which are 
very closely related in terms of frequency value yet have completely different magnitudes (Murray 
and Key, 2015). 

The frequency axis for each measurement was normalised by diving it by the blade pass frequency 
(BPF) (Murray and Key, 2015). This was done in order to make the Doppler shifts immediately apparent 
in the spectra (Murray and Key, 2015). 

Finally the spectrum obtained from the first revolution was subtracted from all of the response spectra 
of all subsequent revolutions (Murray and Key, 2015). This was done to make the small fluctuations 
related to resonant blade vibration obvious (Murray and Key, 2015). The response spectra from all 
revolutions could then be assembled into a waterfall plot for analysis (Murray and Key, 2015). 

Measurements were taken for an accelerating rotor with a sweep rate of approximately 2.2 RPM/s 
(Murray and Key, 2015). The sweep rate had to be specially chosen in order to capture the response 
(Murray and Key, 2015). The signal processed results for operation at both nominal and high loading 
compressor conditions are provided in Figure 1.3-34 (Murray and Key, 2015). 

 

Figure 1.3-34 Waterfall plot of pressure spectra. (a) Nominal loading. (b) High loading.(Murray and Key, 2015) 

It can be seen in the figures that blade response information has been successfully isolated for all 
three rotor rows (Murray and Key, 2015). It is noted that the first harmonic for rotor blade set R2, 
33rd/rev response, is however near non-existent in both the high loading condition and nominal 
loading condition plots (Murray and Key, 2015). The 66th/rev and 99th/rev harmonics for rotor row R2 
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are however clearly visible (Murray and Key, 2015). It was indicated that the spectra obtained for the 
pressure measurements for rotor row R2 were in general congruent with the blade tip timing 
approach findings (Murray and Key, 2015). 

It is important to note that the response behaviour of the upwind and downwind rotor rows were 
apparent in the waterfall plots. The 36th/rev and 30th/rev first harmonics, for blade rows R1 and R3 
respectively, are clearly visible as well as many of their integer harmonics (Murray and Key, 2015).  

A slice of the 99th/rev pressure spectrum’s magnitude was provided and can be seen in Figure 1.3-35. 

 

Figure 1.3-35 Magnitude of the 99th/rev pressure response (Murray and Key, 2015) 

It can be seen that the pressure response rises as the resonance is approached and then declines once 
it has been passed (Murray and Key, 2015). 

It was concluded that the spectral analysis with the signal processing methodology developed was 
able to identify the Doppler shifted blade response as blades pass through resonances (Murray and 
Key, 2015). This was performed using stationary stator vane mounted fast response pressure 
transducers (Murray and Key, 2015). The results were compared with simultaneously measured blade 
tip timing results and were found to be congruent (Murray and Key, 2015). Therefore a novel method 
for blade engine ordered vibration identification from downwind pressure measurements for an 
accelerating or decelerating rotor has been developed (Murray and Key, 2015). 
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1.3.5.3.4. Turbomachine Blade Vibration Identification from Casing BPF Measurements 
Turbomachine casing vibration has been shown to contain blade vibration information (Forbes and 
Randall, 2013; Rao and Dutta, 2012). Frequency components which are related to blade vibration are 
known as blade passing frequencies (BPF). As has already been stated the BPF is the product of the 
number of blades in a given stage and the rotor operating frequency (Rao and Dutta, 2012).  

In steam turbomachines the BPF is generated by flow off of the rotor blades which impinges upon the 
inner casing wall (Rao and Dutta, 2012). This causes excitation of the casing which can be measured 
externally by means of externally attached accelerometers (Forbes and Randall, 2013; Rao and Dutta, 
2012). The ease with which the casing vibration can be monitored when compared to other non-
intrusive methods is significant as no sealing arrangements or other casing alterations are required on 
the turbomachine (Rao and Dutta, 2012). 

During the observation of BPFs on steam turbomachines it was noticed that changes in the BPF may 
be related to unexpected off resonance vibration of rotor blades (Rao and Dutta, 2012). 

The casing vibration of a LP turbine in a 500 MWe thermal power plant was monitored in order to 
ascertain the condition of the blades (Rao and Dutta, 2012). The final three stages of the turbine under 
investigation had rotor rows with 48, 58 and 68 blades respectively (Rao and Dutta, 2012). The blades 
in these stages were free standing (Rao and Dutta, 2012). The turbine was operated at 3000 RPM (50 
Hz) resulting in expected BPFs for the final three blade rows to be 2400 Hz, 2900 Hz and 3400 Hz 
respectively (Rao and Dutta, 2012).  

When investigating the BPF for the stage with 48 blades it was noticed that in the region about the 
specific BPF of 2400 Hz sidebands appeared at 20 Hz intervals above and below the BPF (Rao and 
Dutta, 2012). It was stated that these sidebands occurring at 20 Hz intervals were completely 
unexpected as they have no integer valued (engine ordered) relation to the rotor speed (Rao and 
Dutta, 2012). Modulation at 50 Hz due to slight rotor imbalance is however normally expected in the 
spectrum (Rao and Dutta, 2012). The time-frequency plot of the casing vibration spectra with 
sidebands is shown in Figure 1.3-36 (a). 

 

Figure 1.3-36 BPF trend for LP turbine. (a) Before damaged blade replacement. (b) After replacement of damaged 
blades. (Rao and Dutta, 2012) 

During a maintenance outage the blades from the turbine were inspected for faults. Non-destructive 
testing lead to the identification of 14 blades with root cracks and 2 blades with cracks along the 
leading edge (Rao and Dutta, 2012). All of the flaws were significant as they could be identified visually 
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(Rao and Dutta, 2012). After maintenance and replacement of the damaged blades the casing 
vibration was monitored once again. The spectrum after maintenance can be seen in Figure 1.3-36 (b). 
It is clear from the figure that after the damaged blades were replaced the modulating sidebands at 
20 Hz no longer appeared about the BPF (Rao and Dutta, 2012).  

A premise to experimentally investigate the changes in the BPF in order to verify that it does indeed 
indicate changes in blade condition was thus found. A mock rotor setup consisting of a single bladed 
fan with three blades was constructed (Rao and Dutta, 2012). The fan was excited using a single air jet 
directed towards the blades (Rao and Dutta, 2012). A microphone was installed in line with the fan 
blades plane in the casing in order to obtain internal casing pressure readings (Rao and Dutta, 2012). 

The system was operated at 11.75 Hz resulting in a BPF of 35.25 Hz (Rao and Dutta, 2012). The air jet 
was installed such that it could be vibrated sinusoidally at a chosen frequency (Rao and Dutta, 2012). 
Frequency spectra about the BPF obtained for the experimental setup are provided in Figure 1.3-37. 

 

Figure 1.3-37 Experimentally obtained BPF trend. (a) Without Sidebands. (b) With sidebands. (Rao and Dutta, 2012) 

Without air pulsation no sidebands about the BPF were detected. With air jet pulsation set at 5 Hz, 
sidebands about the BPF become immediately apparent at BPF ± 5 Hz (Rao and Dutta, 2012). 
Modulation of the BPF by low frequency air excitation was therefore confirmed (Rao and Dutta, 2012).  

It was then postulated that the 20 Hz sidebands, found in the casing vibration measurement of the 
500 MWe steam turbine, was therefore directly related to the damaged blades’ behaviour (Rao and 
Dutta, 2012). 

The changes in the BPF were shown to be directly associated with changes in the blade’s behaviour in 
an experimental setting (Rao and Dutta, 2012). A novel non-intrusive method to monitor off EO blade 
vibration was thus developed. Blade behaviour measurement is achieved by monitoring the BPF 
amplitudes and surrounding spectrum (Rao and Dutta, 2012).  

If the BPF is monitored through the casing vibration no complex and expensive cabling or sealing 
arrangements are necessary making the method more desirable and reliable for implementation at 
power plants (Rao and Dutta, 2012).  
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1.3.6. Blade Effects and System Mode Response 
In the prior sections turbomachine blades were discussed from a predominantly isolated point of view. 
Specifically blades were seen as individual entities attached to a rigid support which respond in 
isolated and discrete modes.  

In practice turbomachine blades form part of an assembly system and do not respond in isolation of 
one another (Forbes, 2010, p. 17). They are coupled though attachment to the rotor shaft. This is 
generally achieved by an attachment hub with some or other attachment mechanism (such as fir tree 
root attachment) (Forbes, 2010, p. 17). Attachment of multiple blades to a rotor leads to physical 
coupling and associated response effects between the blades.  

The effect of coupling is often disregarded due to a high ratio of individual blade mass to rotor hub 
mass, as well as a high stiffness of the attachment geometry itself; this situation is termed light 
coupling (Forbes, 2010). When the ratio between the blade and hub mass is large enough as well as 
the stiffness of the attachment rotor high enough, the blades’ behaviour can be evaluated as 
uncoupled from one another (as was the assumption on most literature up until this point). 

The geometric, material, wear and attachment condition variance between blades lead to mistuning 
of the system (Campobasso and Giles, 2000; Castanier and Pierre, 2006; Forbes, 2010; Kaszynski et al., 
2013). When all of the blades’ geometric, material and coupling properties are equivalent then the 
system is referred to as tuned. A perfectly tuned rotor is however an idealisation as minor random 
deviations in the blade and disk assembly always exist (Castanier and Pierre, 2006). 

Mistuning can either increase or decrease the forced vibration response. An increase in forced 
response of one or more blades may lead to dangerous mechanical failures and so must be taken into 
account during the design phase (Campobasso and Giles, 2000; Castanier and Pierre, 2006).  

Outside of the design phase blade mistuning must be considered when investigating an experimentally 
obtained system response as it may explain unexpected response behaviours.  

Several definitions of mistuning have been proposed. The first is to define it as the difference between 
the nominal natural frequency of the bladed system with the natural frequency of an isolated blade 
responding free from the system (Forbes, 2010, p. 20). In this way the individual mistuning of a blade 
can be described. Another manner in which it is defined is as the percentage standard deviation of the 
change in blade natural frequencies experienced by isolated blades from the nominal natural 
frequency of all of the blades in the system (Forbes, 2010, p. 21). This provides a global 
characterisation of mistuning in a system (Forbes, 2010, p. 21). 

For the case of a tuned lightly coupled system mode shapes are dominated by individual blade modes 
(where all of the blades respond simultaneously in the same mode) (Forbes, 2010, p. 17). There may 
however be a relative phase angle difference between the response of the individual blades given a 
particular mode (Forbes, 2010, p. 17; Mengle, 1990). The mistuned mode shapes are also dominated 
by individual blade modes, they however appear in a slightly more complex form (Forbes, 2010, p. 17). 

This section presents findings from three separate studies into blade mistuning, coupling and their 
inter-relationship. The first study provides an introduction to mistuning and localised mode shapes 
from a lumped mass modelling perspective. This is done for both a lightly coupled and an uncoupled 
system (Forbes, 2010). The second study investigates the mistuning of an actual rotor geometry and 
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presents an analytically derived frequency domain indicator of mistuning (Kaszynski et al., 2013). The 
final investigation involves an depth review of mistuning, coupling, mode localisation, and expected 
excitation mode patterns (Castanier and Pierre, 2006). 

1.3.6.1. Analytical Modelling of Blade Mistuning and Lumped Mass Model Mode Shapes 
Due to geometric symmetry rotors are often modelled as cyclic symmetric systems. A single blade and 
attachment hub cross section can be modelled and a cyclic symmetry boundary condition applied to 
the relevant surfaces (Campobasso and Giles, 2000; Castanier and Pierre, 2006). The cyclic symmetry 
assumption allows drastic simplification of the physical model (Castanier and Pierre, 2006).  

Mistuning causes the cyclic symmetry assumption of the turbomachine structure to no longer hold. In 
terms of full dynamic finite element (FE) modelling and analysis mistuning presents some unique 
problems to which interesting evaluation methodologies have been developed (Castanier and Pierre, 
2006).  

A convenient means to analytically investigate minor differences between blades and their 
attachment geometries is by representing the assembly as a simplified lumped mass parameter model 
(Carrington et al., 2001). Individual blades are attached to the shaft via an elastic spring and damper. 
Similarly adjacent blades are coupled to one another by means of springs and dampers. Consider the 
four blade lumped mass model illustrated in Figure 1.3-38. 

 

Figure 1.3-38 Lumped mass parameter model 

The normalised governing equations of motion (EOM), derived for a general lumped mass rotor model 
as well as a discussion of the model, is provided in section ‘7.1.3 A3 – Analytical Blade and Assembly 
Models’ subsection ‘7.1.3.2 Lumped Mass Model’. These equations were used to investigate the mode 
shapes of coupled and uncoupled tuned and mistuned systems consisting of 10 blades. 

The normalised mode shapes of a perfectly tuned uncoupled system can be shown to be the identity 
matrix (Forbes, 2010, p. 26). This is because all of the masses respond regardless of one another. Due 
to their identical mass, stiffness and damping their response amplitudes are identical. 
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The tuned coupled situation is slightly more interesting. A lightly coupled system was achieved by 
keeping the ratio of the blade stiffness to the coupling stiffness, 𝑅𝑅, equivalent to 0.1 (Forbes, 2010, p. 
29,32). The blade stiffness refers to the stiffness between the blade and the shaft, whereas the 
coupling stiffness refers to the inter-blade stiffness. The coupling ratio is provided in Equation [1.3.55] 
(Forbes, 2010, p. 29). A perfectly uncoupled system would have a coupling value o 𝑅𝑅 = 0. 

 𝑅𝑅 =
𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 [1.3.55] 

The first four normalised mode shapes for a tuned coupled 10 bladed lumped mass model is given in 
Figure 1.3-39 (Forbes, 2010, p. 32). 

 

Figure 1.3-39 Mode shapes for tuned coupled system with R = 0.1. (Forbes, 2010, p. 32) 

The masses of the tuned systems are seen to displace together in discernible patterns. The behaviour 
of one mass has an effect on an adjacent mass due to the coupling. It is reported that the spatial 
distribution of the mode shapes for the tuned coupled system are harmonic (Forbes, 2010, p. 30). 

Mistuning was introduced into the above system by randomly altering the individual blades’ mass and 
stiffness values such that their isolated fundamental frequencies were within 5% of the nominal 
fundamental frequency (Forbes, 2010, p. 27,33). The first four mode shapes of a mistuned uncoupled 
and a mistuned coupled system is given in Figure 1.3-40 (Forbes, 2010). The coupled system’s coupling 
ratio was maintained at  𝑅𝑅 = 0.1  (Forbes, 2010, p. 35). It is important to note that the unique 
mistuning of the coupled and uncoupled systems is not the same (mistuning was applied randomly to 
both systems) (Forbes, 2010). 

 

Figure 1.3-40 Mode shapes for mistuned lumped mass models. (a) Uncoupled system. (b) Coupled system with R = 0.1. 
(Forbes, 2010, p. 27,35) 
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The response of a mistuned system is significantly different to that of a tuned system. The masses of 
the fully uncoupled mistuned system are seen to operate in complete isolation of one another. The 
response of the coupled mistuned system is similar to that of the uncoupled system, however adjacent 
masses are inherently affected due to the physical coupling. The same effect was noted for the tuned 
coupled system where adjacent masses have an effect on one another. 

It is reported that the response amplitude of the mistuned system is seen to increase significantly 
given the same excitation when compared to the tuned system. It is suggested that the difference 
arises due to the individual mass responding to the entire input excitation whereas in the tuned 
system the response is shared across all masses (Forbes, 2010). 

1.3.6.2. Experimental Investigation into Integrally Bladed Rotor Mistuning 
The effects of blade mistuning on an actual  integrally bladed rotor (IBR) was investigated by Kaszynski 
et al. (Kaszynski et al., 2013). The investigation involved automated optical 3D geometry 
measurement, finite element modelling and analysis processes (Kaszynski et al., 2013).  

The first process involved scanning the IBR geometry with an automated dual camera optical 
measurement system (Kaszynski et al., 2013). The accuracy of similar measurement systems was 
reported to be within 2.5 µm (Kaszynski et al., 2013). The optical measurement system provides a 
point cloud of the geometry’s outer surface. This requires significant post processing to generate a 
computer aided design (CAD) object (Kaszynski et al., 2013).  

In this particular investigation five separate optical scans were captured which provided five separate 
CAD geometries of the same IBR (Kaszynski et al., 2013). The optical technique and a low resolution 
point cloud obtained for a scan of the IBR is provided in Figure 1.3-41. 

 

Figure 1.3-41 Integrally bladed rotor. (a) Optical measurement system. (b) Low resolution point cloud. (Kaszynski et al., 
2013) 

Once the CAD objects had been generated they were then aligned and meshed so that finite element 
(FE) analyses could be performed (Kaszynski et al., 2013). It is important to note that the meshing itself 
can artificially introduce geometric differences into the model (Kaszynski et al., 2013). These artificial 
differences may lead to mistuning which is not related to the actual geometric variances of the 
physical system (Kaszynski et al., 2013). 

Once the meshing was complete a FE frequency analysis was performed on the various geometries. 
The nominal blade and hub geometry was determined by averaging across the aligned geometries to 
find the average IBR shape. Thereafter averaging was performed across all blade and hub cross 
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sections of the average IBR (Kaszynski et al., 2013). This was done in order to find the average blade 
and hub cross section geometry (Kaszynski et al., 2013). Finally, this average blade and hub cross 
section was used in a cyclic symmetric FE model to obtain the mean tuned system response (Kaszynski 
et al., 2013).  

The frequency response, in the region of the first bending and first torsional mode of the system, is 
presented in Figure 1.3-42. The frequency response obtained from all five scans; their average 
response and the cyclic symmetric tuned system’s response are plotted together. 

 

Figure 1.3-42 Blade mistuning of IBR. (a) First Bending Mode. (b) First torsional mode. (Kaszynski et al., 2013) 

It can be seen that multiple mistuned peaks appear near to the mean tuned peak response. There is 
also a slight shifting of the peak locations with respect to the mean tuned peak frequency location 
(Kaszynski et al., 2013).  

Multiple closely packed peaks near the mean tuned peak are expected as each blade geometry will 
differ only slightly from the norm of the system. The response amplitude of the mistuned system is 
also seen to increase significantly (Kaszynski et al., 2013). 

It is interesting to note that around the frequency response of the first bending mode two additional 
resonance peaks appear somewhat removed from the mean tuned peak, one large peak to the left of 
the mean tuned peak and a smaller one further to the right. Thus additional modes and mode shapes 
may appear due to even slight mistuning. 

The level of coupling between the blades was not mentioned in this investigation although the 
individual blade to hub mass ratio is assumed to be large. The entire IBR geometry is comprised of the 
same material. These observations may indicate that the system investigated is indeed lightly coupled. 

The investigation provided insight into the appearance of a slightly mistuned system in the frequency 
domain. Mistuning affects the resonant response amplitude and its associated position on the 
frequency axis. It also appears to bring about additional modes and mode shapes not present in a 
perfectly tuned system.  
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1.3.6.3. Survey of Mistuned Bladed Disk Vibration and System Response Modes 
The cyclic symmetric geometry of a bladed rotor introduces interesting system response mode shapes 
and blade effects. The individual blade modes, sometimes referred to as cantilevered blade modes, 
were important to investigate as they relate closely to the individual blade motion in the larger blade-
dominated system mode shapes (Castanier and Pierre, 2006). This is also true for the situation of 
forced vibration response  (Castanier and Pierre, 2006). Disk-dominated mode shapes refer to modes 
where the motion is mostly governed by the response of the attachment geometry as opposed to the 
blades (Castanier and Pierre, 2006). 

In FE investigations of cyclic symmetric structures it is commonplace to subdivide the geometry into 
the smallest geometric component, or sector, that can be used to reconstruct the full geometry 
(Castanier and Pierre, 2006). For a bladed disk the smallest sector comprises of a single blade and the 
associated segment of the attachment rotor (referred to as the disk) (Castanier and Pierre, 2006). For 
the ideal case of identical sectors the cyclic symmetric boundary conditions can be applied to the 
individual sector, thus facilitating a less expensive model to solve (Castanier and Pierre, 2006).  

An interesting characteristic of cyclically symmetric systems is that their response mode shapes are 
identical in each individual sector, except for a constant phase difference between sectors (Castanier 
and Pierre, 2006). Here, a sector refers to a section of the cyclic geometry responding at the same 
phase angle. This constant phase angle difference is known as the inter-blade phase angle for rotors 
(Castanier and Pierre, 2006). The interblade phase angle 𝜙𝜙ℎ  for a system with  𝑁𝑁  blades and 
responding with ℎ nodal diameters is provided in Equation [1.3.56]  (Castanier and Pierre, 2006). 

 𝜙𝜙ℎ =
ℎ ⋅ 2 ⋅ 𝜋𝜋
𝑁𝑁

 [1.3.56] 

The inter-blade phase angle difference for a tuned system was referred to in the work by Mengle and 
the relation derived found to be equivalent (where the travelling wave mode number is equivalent to 
the number of system nodal diameters; this is referred to as the harmonic index) (Mengle, 1990). 

In terms of system mode shapes, this inter-blade phase angle causes nodal lines to form across the 
geometry (Castanier and Pierre, 2006). The number of nodal lines that form, termed nodal diameters, 
gives the system mode shapes (Castanier and Pierre, 2006). Nodal diameters and associated system 
mode shapes for cyclically symmetric systems are illustrated in Table 1.3-5. 

Table 1.3-5 Nodal diameters and associated system mode shapes 

Nodal diameters: 1 2 3 4 
System mode 
shapes: 

    
The ideal cyclically symmetric case cannot however be found in practice due to reasons previously 
discussed. This leads to the situation previously referred to as mistuning. When the cyclic symmetry 
of a system breaks down, or in other words small random differences in the structure manifest 
themselves, they can have a significant impact on the dynamic response of the system as a whole 
(Castanier and Pierre, 2006).  
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For one, pure nodal diameter modes no longer exist for a mistuned system. Instead the mode shape 
is characterised by multiple harmonic content which can be excited by all EOs (Castanier and Pierre, 
2006). As discussed in the development of Model 1, mistuning means that the blade flutter response 
is excited at all engine harmonics causing Doppler shifting at all engine harmonics (Mengle, 1990). 
Another phenomenon that occurs due to mistuning is known as mode localisation; these effects will 
be discussed shortly (Castanier and Pierre, 2006). 

Mistuning is often introduced into analytical models by making small changes to the stiffness 
coefficients associated with individual blades (Castanier and Pierre, 2006). This was the case in terms 
of the lumped mass model investigated by Forbes where small random adjustments were introduced 
into the numerical model (Forbes, 2010). 

A FE model of an integrally bladed rotor was constructed to investigate the effects of mistuning and 
coupling effects (Castanier and Pierre, 2006). The geometry was based upon an industrial gas turbine 
rotor with 29 blades (Castanier and Pierre, 2006). The results for a tuned system’s dynamic response 
and a mistuned system’s dynamic response is provided in Figure 1.3-43. 

 

Figure 1.3-43 FE Model of an industrial bladed disk. (a) Tuned. (b) Mistuned. (Castanier and Pierre, 2006) 

The particular mode shape displayed for the tuned system, Figure 1.3-43 (a), consist of three nodal 
diameters (Castanier and Pierre, 2006). It is stated that for engine ordered response of a rotor due to 
excitation from disturbances in the flow field (upstream stator wake interaction) a travelling wave 
mode is generated (Castanier and Pierre, 2006). This is the same travelling wave mode referred to by 
Mengle (Mengle, 1990). The equation for the observed travelling wave mode number, given here as 
an absolute value, is provided in Equation [1.3.58]. 

 𝑘𝑘′ = |𝑘𝑘 +𝑚𝑚 ⋅ 𝐵𝐵| [1.3.57] 

Therefore the engine orders which would excite this 3 nodal diameter mode shape would be 3 (m = 
0), 26 (m = -1), 32 (m = 1) and so on (Castanier and Pierre, 2006). Thus for engine ordered response 
the system mode shape must be excited at an EO equivalent to the harmonic index of the particular 
system mode shape (Castanier and Pierre, 2006). Given the excitation conditions the expected system 
mode shapes can be obtained. 
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When evaluating the mistuned system’s response, Figure 1.3-43 (b), it is clear that pure modal 
diameters no longer exist and the mode shape is confined to a small region on the geometry (mode 
localisation) (Castanier and Pierre, 2006). 

Perfectly cyclic symmetric structures form part of a larger group of structures known as periodic 
structures (Castanier and Pierre, 2006). Periodic structures are made up of a set of identical 
substructures that are connected to one another by some or other dynamic relation (Castanier and 
Pierre, 2006). That dynamic relation between individual subsystems is known as coupling (Castanier 
and Pierre, 2006).  

If ever differences between the individual substructures exist, even when the differences are 
particularly small, the dynamic response of the system as a whole can change significantly (Castanier 
and Pierre, 2006). These differences in the substructure are called disorder (Castanier and Pierre, 
2006). In terms of bladed disk structures disorder is the same as mistuning and coupling refers to 
structural and aerodynamic coupling between adjacent blades (Castanier and Pierre, 2006). 

Bladed disks are a unique case of periodic structures for a couple of reasons (Castanier and Pierre, 
2006). Firstly, each near identical substructure receives engine ordered excitation (Castanier and 
Pierre, 2006). And secondly the systems are cyclic (Castanier and Pierre, 2006). Thus, it has already 
been shown that had the system been perfectly tuned the only response modes to be excited would 
be where the EO matches the harmonic index of the mode (Castanier and Pierre, 2006).  

However for a mistuned system, engine ordered excitation would result in multiple mode excitation 
(Castanier and Pierre, 2006). The particular modes that will be excited most intensely will have 
harmonic content which is equivalent to the engine order of excitation (Castanier and Pierre, 2006). 

One particularly destructive facet of disorder is the mode localisation phenomenon alluded to earlier 
(Castanier and Pierre, 2006). Mode localisation is the phenomenon whereby the dynamic response of 
an entire system becomes restricted to a small region of that system (Castanier and Pierre, 2006).  

Mode localisation was observed in the lumped mass model investigation by Forbes where for an 
uncoupled and lightly coupled system the dynamic response become confined to an individual mass 
or region surrounding an individual mass (Forbes, 2010). It was found that as disorder increases, or 
coupling decreases, the mode localisation phenomenon increases (both of these driving influences 
were noted in the lumped mass study by Forbes) (Castanier and Pierre, 2006; Forbes, 2010). 

Mode localisation leads to a forced response increase. This is due to the confinement of the energy 
entering the system to a small region (Castanier and Pierre, 2006). In the FE study of the gas turbine 
bladed rotor it was found that with some EO responses the magnitude of the mistuned system’s 
response was up to one and a half times bigger than that for the tuned system (Castanier and Pierre, 
2006). This value is in terms of the maximum response amplitude found over the frequency range of 
interest (Castanier and Pierre, 2006). This increase in response magnitude, with respect to the 
perfectly tuned system, is therefore significant (Castanier and Pierre, 2006).  

There is however a point at which an increase in random mistuning across the entire system results in 
a decreasing amplification of the maximum response (Castanier and Pierre, 2006). This point was 
found to be at approximately a standard deviation of random mistuning of 0.01 for the rotor geometry 
investigated (using the global mistuning estimation parameter) (Castanier and Pierre, 2006).  
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1.3.7. Tachometer Geometry Compensation and Shaft Torsional Vibration Estimation 
Accurate measurement of angular velocity and displacement of rotating equipment is important from 
an analysis and diagnostics point of view (Resor et al., 2005). Applications such as torsional vibration 
estimation and non-vibrating blade tip passing time estimation rely on tachometer signals originating 
from geometrically uniform multiple pulse per revolution (PPR) encoders (Resor et al., 2005). 
Geometrical uniformity refers to equal pulse width originating from a number of equally spaced (in 
terms of angle) references about the circumference of the rotating object (assuming measurement at 
a constant angular velocity). The tachometer signal can be used to estimate the shaft position, velocity 
and angular vibration over the measurement period. 

In terms of the pressure based methods, accurate shaft position and velocity measurements are used 
in the order tracking and synchronous averaging signal processing techniques to deliver the 
deterministic and stochastic pressure signals (Forbes and Randall, 2013). These techniques assume 
that the tachometer signal originates from a geometrically symmetric reference. 

Encoder based systems operate by means of a device, or reference object, attached to the rotating 
body from which geometrically uniform passing times can be sampled (Resor et al., 2005). Angular 
encoding devices and reference objects include keyways, splines, gear-teeth, optical rotary encoders 
and zebra-tape based systems (Resor et al., 2005).  

Transducers, such as eddy current proximity probes and fibre-optic reflective light intensity sensors, 
are capable of supplying multiple PPR signals from mechanical attachments such as gears, keyways 
and splines. Fibre-optic reflective light intensity sensors are suited to adhesive zebra-tape 
applications. Optical rotary encoders use a grated disk based system through which light is passed; a 
light sensor then detects a multiple PPR signal for each grating through which the light passes (Resor 
et al., 2005).  

The transducers supply a voltage change corresponding to the passing encoding reference; for 
example the transducer may supply a high or low voltage depending on the proximity of gear teeth 
(as is the case of an eddy current proximity sensor) or a high and low voltage corresponding to 
reflection or no reflection from the black and white segments of a zebra-tape (Resor et al., 2005). 

The most desirable encoder system is the high precision optical encoder; manufacturing processes are 
capable of delivering high density grating segments which are practically geometrically identical (Resor 
et al., 2005). Optical encoders are also capable of supplying direction of rotation. Although favoured, 
it may not be possible or feasible to implement optical encoder systems. Such cases include the 
retrofitting of equipment and/or when shaft access or size may be an issue (Resor et al., 2005).  

In such cases pre-existing rotating references may be used (such as gear teeth or splines) to generate 
the tachometer signal. Significant geometric variation is however inherent in such signals due to 
manufacturing, installation and measurement transducer positioning. An example of which is gear 
tooth spacing variation as well as surface finish variation (Resor et al., 2005). Rotating references are 
also limited to a set number of PPR (i.e. number of features (gear teeth) are equal to PPR) which may 
not supply the desired measurement angular resolution.  

An appealing alternative to pre-existing rotating references is the striped zebra-tape method. An 
adhesive tape, with a printed striped zebra pattern, is applied to an open section of the rotating shaft. 
It is preferred due to its simplicity and control over the tape pattern (Resor et al., 2005). Although 
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preferred to pre-existing rotating references, zebra-tape has a much higher geometric variation 
between segments when compared to high precision optical encoder devices (Resor et al., 2005).  

Variation in the zebra tape is attributed to uneven printing and errors resulting from installation (Resor 
et al., 2005). During installation the zebra tape may become slightly misoriented with the shaft leading 
to a situation where stripes are not exactly parallel with the axis of rotation. Furthermore the ends of 
the zebra tape may not match perfectly leading to either slightly wider or shorter segment at the butt 
joint (Janssens et al., 2010; Resor et al., 2005). 

Variation of the encoder geometry and fluctuations in the angular velocity of the rotating system leads 
to non-uniform time interval sampling of the encoder signal (Resor et al., 2005). An example of a 
uniform and non-uniform zebra tape is presented in Figure 1.3-44. The non-uniform example shows 
exaggerated effects of misprinting every fifth blade stripe as well as an enlarged butt joint. 

 

Figure 1.3-44 Zebra tape examples. (a) Geometrically uniform. (b) Zebra tape with exaggerated errors. (Resor et al., 
2005) 

Non-uniform time sampling leads to potentially significant errors and unwanted bias when used in 
conjunction with uniform time interval algorithms such as the discrete Fourier transform, shaft 
torsional vibration estimation, synchronous averaging or order tracking (Resor et al., 2005). 

The impact of encoder geometry variation on shaft torsional vibration is highlighted. Consider Figure 
1.3-45 which contains a reference signal and an encoder signal from a torsionally excited shaft. 

 

Figure 1.3-45 Method to obtain shaft torsional vibration from reference signal. (a) Reference signal. (b) Encoder signal. 
(Resor et al., 2005) 
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Passing times are captured corresponding to negative slope zero crossings (the times at which the 
encoder signal drops from a ‘high’ to a ‘low’ voltage). Assuming that the encoder geometry (zebra 
tape/optical encoder grating/gear teeth) on the rotating system is uniform, a reference vector 
containing zero crossing times for a non-vibrating system can be computed (Resor et al., 2005). The 
variables ‘N’ and ‘𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎’ in Equation [1.3.58] refer to the number of PPR (corresponding to the number 
of geometric reference features) and the shaft speed in hertz respectively. 

 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟(𝑛𝑛) =
𝑛𝑛

𝑁𝑁 ⋅ 𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎
  (𝑠𝑠) [1.3.58] 

The true zero crossing times less the reference zero crossing times can then be computed. The time 
difference vector is then used to compute an angular vibration array, 𝜃𝜃(𝑛𝑛), corresponding angular 
displacements at the true zero crossing times (Resor et al., 2005). 

 ∆𝑡𝑡(𝑛𝑛) = 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛) − 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟(𝑛𝑛)  (𝑠𝑠) [1.3.59] 

 
𝜃𝜃(𝑛𝑛) = ∆𝑡𝑡(𝑛𝑛) ⋅ 𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ 360  (deg) 

𝑂𝑂𝑂𝑂: 𝜃𝜃(𝑛𝑛) = ∆𝑡𝑡(𝑛𝑛) ⋅ 𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ 2 ⋅ 𝜋𝜋  (rad) [1.3.60] 

Assuming that the torsional vibration time interval is much smaller than the time interval associated 
with rotation of the shaft it is possible to compute a constant sampling time interval value (related 
to the angular displacement intervals) (Resor et al., 2005). 

 ∆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ 𝑁𝑁 [1.3.61] 

Finally by combining the constant time interval with the angular variation array the angular vibration 
as a function of time can be determined (Resor et al., 2005). 

 𝜃𝜃�𝑡𝑡(𝑛𝑛)� = 𝜃𝜃(𝑛𝑛) [1.3.62] 

 𝑡𝑡(𝑛𝑛) = ∆𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ 𝑛𝑛 [1.3.63] 

Resor et al. noted potential issues with the above model. Firstly the reference signal assumes a 
perfectly uniform encoder geometry and constant rotational speed (Resor et al., 2005). Neither 
assumption holds in practice which leads to non-uniform sampling times (Resor et al., 2005).  

Sources of geometric asymmetries have already been noted: non-constant shaft speed arises from 
fluctuations in the operation of the drive motor as well as by torsional oscillations in the shaft 
resulting in non-uniform time and angular sampling intervals (Resor et al., 2005).  

The model also assumes an infinitesimal time interval from which exact zero passing times are 
extracted (Resor et al., 2005). The accuracy of capturing the zero passing times is related to the 
sampling rate, zero passing threshold and the transducer’s performance across the entire geometric 
surface, none of which are perfect (Resor et al., 2005). Finally non-torsional vibration (lateral 
vibration of the shaft) may also contaminate the zero crossing times measurement (Resor et al., 
2005). An algorithm capable of compensating for encoder geometry variation for operation at a 
nominally constant shaft speed was thus sought. 
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Various solution routes were suggested. One suggestion involves recording the response of the 
system at a constant speed without torsional excitation in order to determine noise, this can then be 
removed from the signal at a later stage (Resor et al., 2005; Vance, 1988). A second author 
suggested that identification and correction for the errors is possible due to their unchanging nature, 
no method was however provided (Resor et al., 2005; Williams, 1996).  

A method was suggested to determine the geometric ratio for each segment of the passing 
reference geometry (such as the segment sizes of a zebra tape) during operation at a constant speed 
without torsional vibration for a single revolution. This is then used to generate a calibration file for 
later use (Resor et al., 2005; Wang et al., 1992). Methods of this nature are however not suited to 
systems where a near perfectly constant running speed is not possible, nor where shaft torsional 
vibration is unavoidable (due to rotating masses or loads) (Resor et al., 2005). Even with a calibration 
file if the system is changed significantly by adding loads then the calibration file may no longer be 
valid. 

A robust in situ calibration technique, based on synchronous averaging of the zero crossing times, 
was developed (Resor et al., 2005). Synchronous averaging of the tachometer signal over many 
revolutions is used to provide the average segment geometric ratios for an individual revolution of 
the shaft. This alleviates the issue of minor rotational speed fluctuations during data capture; this 
relaxes the requirement for a near constant shaft speed to a nominally constant shaft speed 
scenario.  

A corrected time difference vector is then computed using the averaged shaft segment ratios. This 
corrected time difference vector can then be used to correct the tachometer signal or compute the 
shaft torsional vibration directly (Resor et al., 2005). 

 𝜃𝜃(𝑛𝑛) = ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛) ⋅ 𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ 360  (deg) [1.3.64] 

 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛) =  𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −  ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [1.3.65] 

The geometric compensation algorithm developed by Resor et al. is presented in ‘7.1.4 A4 – Shaft 
Encoder Geometry Compensation Algorithm’.  

More recently an algorithm was developed to detect and correct for zebra tape butt joints (Janssens 
et al., 2010). A function was developed to determine the angular error associated with an imperfect 
butt joint across an individual revolution and then correct the tachometer signal by using a spline 
interpolation method coupled with a finite impulse response bandpass filter (Janssens et al., 2010). 
The method was reported to perform well for both steady state and run-up measurements (Janssens 
et al., 2010). The method is however restricted solely to correcting the error associated with a single 
butt joint and is thus not appropriate when multiple error sources are present.  

The consequences of not correcting for a geometrically non-uniform encoder/zebra tape have been 
highlighted. An in situ tachometer compensation technique for measurements taken at a nominally 
constant shaft speed has been suggested as well as an improved means for obtaining shaft torsional 
vibration from a non-uniform tachometer source. A robust method capable of correcting stationary 
geometry variations from a reference geometry, originating from multiple sources, in situ for non-
steady state operation is still however desired.   
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1.4. Scope of Research 
The purpose of this study is to investigate internal pressure signal modelling and solution route 
techniques for the purpose of turbomachine blade behaviour identification. This study is done with 
relation to other current and applicable non-intrusive blade vibration measurement methodologies.  

Intrusive is defined as a method which requires direct blade and/or rotor shaft alteration in the vicinity 
of the rotor cascade. Alteration of the casing in order to facilitate measurements is not considered as 
intrusive.  Various assumptions and theoretical and physical limitations apply to the investigation. 

Focus is placed on pressure and direct blade behaviour measurements taken at a nominally constant 
rotor speeds. This is done in order to approximate steady state operating conditions. Run-up tests 
may be used to determine critical resonance speeds by means of strain gauges attached to the surface 
of blades, they may however also be used for additional analyses. 

Of the casing pressure signal literature reviewed, obtaining blade vibration characteristics from 
nominally constant rotor operation has been experimentally attempted by Forbes et al. and by a 
reference in the work of Mengle (Forbes and Randall, 2013; Mengle, 1990). Mathioudakis investigated 
minor blade faults, not specifically vibration, at nominally constant speeds (Mathioudakis et al., 1991). 
Ratz et al. used run-down tests (Ratz et al., 2013). The work by Rao and Dutta as well as Murray and 
Key used run-up tests (Murray and Key, 2015; Rao and Dutta, 2012). Obtaining blade vibration 
characteristics at a nominally constant shaft speed is specifically advantageous from a condition 
monitoring point of view as the majority of turbomachine operation is at nominally constant speeds. 

Derivations and investigations are confined to axial flow turbomachines, the effects of nearby rotor 
rows or additional downwind stator rows on the pressure signal are not considered. Pressure 
measurements are confined to the plane in which the rotor operates, therefore blade vibration 
measurement up- and/or downwind of the rotor is not included in the investigation. Only a single 
isolated rotor cascade is considered with one set of upwind stators. Blades passing through upstream 
stator wakes is considered as the primary forced excitation source. Fluid-structure interaction studies, 
whether by FE and CFD coupling or from basis analytical equations, are outside the scope of research. 

Amendments to the internal pressure models suggested by Mengle, Forbes et al. and Ratz et al. are 
proposed using insight obtained from all of the investigations reviewed in literature (Forbes and 
Randall, 2013; Mengle, 1990; Ratz et al., 2013). The applicability of these reformulated models and 
their constituent components are investigated using numerical and experimental investigations. 

An available test bench was modified in order to facilitate direct internal casing pressure 
measurements by means of an acoustic pressure transducer. Casing vibration measurements obtained 
on the outer casing surface, used to infer blade vibration characteristics, are not investigated. 

Testing is restricted to the current operational limits of the experimental setup (with a maximum 
rotational speed of 1470 RPM). Excitation was created by means of the available upwind air jets 
approximating upwind stator vanes. The existing experimental test bench has a total of 24 available 
air nozzles with which to create the excitation. However only a limited number of these could be 
operated simultaneously due to the available pressure source. The number of air nozzles used as well 
as their usage configuration are considered. 
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A rotor blade and hub assembly was designed and manufactured to operate with the available test 
bench. The hub design allowed multiple blade stagger angles. Investigations were however limited to 
a single blade stagger angle. Consideration of fundamental frequency excitation was included in the 
blade design. Replacement of individual blades on the hub is possible. 

Alternative excitation configurations were achieved by choosing the number of active air jets and their 
configurations. Multiple rotor and hub configurations were explored by means of altering one or more 
of the blades’ geometries on the rotor assembly. Alteration of a blade’s geometry was limited to a 
region sufficiently removed from its tip. This was done in order to maintain similarity between the tip 
and casing conditions regardless of the root condition of the blade.  

This is in contrast to the work done by Mathioudakis et al. which specifically altered the surface 
condition and blade angle which effectively changed the physical conditions at the blade tip 
(Mathioudakis et al., 1991). Similarly, in the work by Forbes et al. and Ratz et al. a ‘damaged’ blade of 
reduced thickness was used, this directly altered the blade tip conditions and associated pressure 
signature about the tip (Forbes and Randall, 2013; Ratz et al., 2013). None of the literature reviewed 
specifically considered blade alteration at a location sufficiently removed from the casing wall.  

One blade in one experimental configuration was fully instrumented by means of strain gauges in 
order to determine a blade’s actual response during steady operation. 

All the casing pressure based literature reviewed only considered single degree of freedom (SDOF) 
blade models. In terms of Model 1 a SDOF sinusoid was considered and in terms of Model 2 a single 
spring-mass-damper system was considered. A SDOF model may be sufficient to describe the blade 
vibration effect on the internal pressure signal, it is however limited to a single resonant frequency. A 
MDOF model, based upon experimental modal analysis FRF reconstruction techniques, is used here in 
a novel way to generate the blade forced response model for inclusion in the internal pressure signal 
models. Use of this model is evaluated using strain gauge measurements. 

The measurement techniques described, in the pressure based models and investigations, do not 
make much provision for individual blade behaviour identification and isolation. In contrast the BTT 
approach is capable of monitoring the condition of individual blades. It becomes increasingly difficult 
to isolate the pressure waves associated with individual blade behaviour when measuring the casing 
vibration (as it provides the cumulative response of all of the blades), or when measuring at an axial 
location removed from the rotor row of interest (due to the mixing of flow off of blades). An 
investigation into the advantages of measuring the pressure signal in the rotor plane and the use of 
novel windowing techniques to isolate individual pressure waves about blades are investigated. 

The reformulated internal pressure models, for in plane steady state pressure measurement, are 
expressed as inverse problems in order to obtain blade vibration characteristics. Such an inverse 
problem approach to blade vibration identification from pressure and SG signals was not found in 
literature and is considered novel. An optimisation strategy is suggested. It is evaluated for the 
resolution of reduced inverse problems. Analyses are performed in order to determine the viability of 
using such an approach to obtain blade vibration information from experimentally obtained signals. 

An improved means to model blade vibration in an internal pressure signal, in order to infer blade 
vibration characteristics, is the primary deliverable of this investigation.  
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1.5. Document Overview 
The literature reviewed provides an in depth investigation into many aspects related to a 
turbomachine’s internal pressure signal and the associated blade vibration within. Due to the volume 
of literature considered, integral and supplementary topics were separated from one another at the 
beginning of the section. This was done in order to direct the reader towards the crucial themes whilst 
still providing a wide synopsis of relevant topics. The following document overview sketches the same 
picture by directing the reader towards the primary topics under investigation whilst highlighting 
which topics may be considered as supplementary. 

Theoretical development of the pressure signal method is explored in Chapter 2. The chapter begins 
by critically discussing relevant aspects of the literature reviewed. This is followed by the development 
of alternative pressure signal models and an associated multiple degree of freedom blade vibration 
model. A signal processing based method for the purpose of separating individual pressure waves 
associated with the behaviour of individual blades is presented. Finally the chapter suggests an 
optimisation based method for the identification of blade physical characteristics. This is done by 
presenting the internal pressure signal and associated models in an inverse problem format. The 
essential topics within this section are the blade vibration and internal pressure signal models 
developed. Only the blade vibration model components of the full inverse problem are solved for 
using the inverse methodology (reduced inverse problems referred to earlier). 

Chapter 3 outlines the experimental setup and instrumentation used in experimental investigations. 
The system’s frequency response is characterised both numerically and experimentally. One of the 
goals of the characterisation is to determine the mistuning in the system, both from the global 
assembly perspective as well as each individual blade’s relative mistuning. Run-up tests are used to 
determine the critical operating speeds at which blades resonate in their fundamental modes. These 
critical speeds are briefly compared with selected analytically obtained critical speeds. Chapter 3 is 
not crucial to understanding the topics at hand, it does however provide a roadmap for experimental 
repeatability. 

Investigations into the experimentally obtained signals is the topic of Chapter 4. The chapter begins 
by comparing the blade vibration models, developed in Chapter 2, with direct on blade response 
measurements obtained from strain gauges. There-after the internal pressure signal is explored. The 
results and discussion of results are both included in this section. 

Conclusions drawn and suggestions for future research opportunities are presented in Chapter 5. The 
future research section inherently provides a scope conformity check and ensures that the scope and 
work performed is in alignment. 

Chapters 6 and 7 provide the research references and appendix respectively. The appendix constitutes 
a large percentage of the document as a whole (approximately a third). It contains all non-integral 
derivations, additional literature, photographs of the experimental setup and additional results from 
the various investigations. Many aspects required in order to repeat this investigation are provided in 
this section, it is therefore mostly supplementary to the document and can be seen in a supportive 
yet non-integral role.  
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Chapter 2 Theoretical Development 
2.1. Introduction to Theoretical Development 
Obtaining turbomachine blade vibration indicators from an internal pressure signal, measured by a 
stationary observer on the inner casing wall, presents various challenges. Challenges include how to 
accurately describe the internal pressure phenomena, how to depict the blades’ forced response, how 
to separate out the pressure signal contributions stemming from individual blades and finally a means 
to synthesize this information into a format which may allow extraction of blade vibration information. 

Many aspects of the internal pressure signal, which contains blade vibration, were addressed in the 
literature review. The first section of the theoretical development will compare the various models, in 
light of all of the information gathered. These models include both the internal pressure signal models 
as well as the physical blade forced response models. The literature discussion provides a platform for 
the development of adjusted internal pressure and blade vibration models. 

In light of all of the literature discussion two adjusted internal pressure models are developed in the 
next section. These two models originate from the two separate models introduced in the literature 
review, namely Model 1 and Model 2. The development explores what similarities and differences are 
expected to be seen in the frequency domain given the two models and their adjustments. 

The following section advances the blade forced response model provided by Forbes et al. (Forbes and 
Randall, 2013). Instead of basing the blade response transfer function on a SDOF spring-mass-damper 
system, an alternative MDOF transfer function based on experimental modal analysis frequency 
response function (FRF) reconstruction techniques is suggested (repurposing of a pre-existing 
technique). Further, a means to model the upwind stator forcing function is developed. 

It is believed that the pressure distribution which occurs about individual blades may contain 
information about the behaviour of those individual blades. The question has to be asked how to 
separate the individual waves. The development of a separation methodology based on windowing 
techniques follows the section on blade forced response. The separation technique will be used to 
isolate individual waves about blades from experimental measurements. Signal processing techniques 
discussed in literature will then be applied to the separated signals to identify whether or not they are 
able to identify unique information about the individual blades behaviour. 

The final section in the chapter presents the synthesized ideas of the previous sections in an inverse 
problem format. The inverse problem is designed to compare the combined internal pressure models 
and the blade forced response model with actual blade vibration containing pressure signals. It is 
suggested blade vibration models first be compared to actual on blade vibration measurements using 
a reduced version of the inverse problem format. Depending on the internal pressure model included 
in the problem statement, separation of the pressure waves about individual blades using the above 
mentioned windowing technique becomes important. It is proposed that the inverse problem be 
solved using standard optimisation techniques which minimise the error between the measured signal 
and the analytically generated signal by changing the internal pressure model parameters. 

The ability to resolve the casual factors of the observed internal pressure signal, specifically those 
attributed to blade vibration, provides an indication as to the usefulness of pressure based methods 
for the purpose of blade vibration information extraction. This is in terms of both signal processing 
and direct data analysis thereof, as well as for the inverse problem formulation. 
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2.2. Literature Discussion 
Many aspects of turbomachine blade vibration, from an internal pressure measurement perspective, 
we addressed in the literature review. The inter-play of these ideas and their consequences are 
explored in this section. 

2.2.1. Comparison of Casing Pressure Signal Models 
In Chapter 1 two internal pressure models were introduced. Model 1 was based upon the work of 
Mengle and Model 2 on the work of Forbes et al. (Forbes and Randall, 2013; Mengle, 1990). It is not 
clear in the development of Model 2 if the authors were aware of Model 1. A contribution of this work 
is to compare their relative behaviour and discuss the models’ applicability. 

In principle Model 1 is based upon the propagation of travelling waves originating from vibrating 
turbomachine blades and what is expected to be observed down- or up-wind of the source of 
vibration. This was done specifically for internal pressure observation from a stationary point on the 
casing. Due to the fact the vibration source is moving with relation to the observation point, Model 1 
investigates how this will cause Doppler shifting of the observed blade vibration frequency 
components in the pressure signature. 

Model 2 relies on the effect that blade vibration has on the otherwise stationary pressure distribution 
which forms about the blades during steady state observation (stationary from the rotor reference 
frame perspective). It was proposed that as the blades vibrate they cause the internal pressure 
distribution, which forms about the blades, to arrive either earlier or later when compared to a non-
vibrating blade situation. It is suggested that this phenomenon causes phase modulation of the 
otherwise stationary pressure signal. 

Both models use a Fourier series representation of the internal pressure signal, and both models 
predict that the blade vibration will appear about certain rotor harmonics. Significant differences 
between the models exist and will now be explored in this subsection. 

Model 1 commences by defining the pressure of a fluid moving through an individual cascade of a 
turbomachine by means of wave equations which describe blade vibration induced vortices. The 
pressure distribution measured at the casing is therefore affected by oscillation of all of the 
turbomachine blades reacting as a system. Provision for both tuned and mistuned response has been 
included in the development of the model. 

Pressure signal measurement down- and upwind of the rotor plane is considered as well as the effects 
of nearby stator and rotor rows. The resulting periodic expression devised for the pressure signal, 
measured at some axial distance 𝑥𝑥 downwind from the source of vibration by a stationary observer 
on the casing, is given by the Fourier series in Equation [2.2.1] (Mengle, 1990). 

 𝑝𝑝�𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑡𝑡, 𝑥𝑥� = � 𝑓𝑓𝑚𝑚(𝑥𝑥) ⋅ 𝑒𝑒𝑗𝑗[(𝑘𝑘+𝑚𝑚⋅𝐵𝐵 )⋅(𝜃𝜃+Ω⋅𝑡𝑡)] ⋅ 𝑒𝑒𝑗𝑗[𝜔𝜔⋅𝑡𝑡]
∞

𝑚𝑚=−∞

 [2.2.1] 

It is stated that any unsteady linearised flow quantity in a turbomachine (in this case pressure 
fluctuations due to blade vibration) can be written using the rotor reference frame formulation of 
Equation [2.2.1] (Mengle, 1990). This formulation can then be transformed to the casing reference 
frame by means of a simple linear angular velocity relation provided that the rotor speed remains 
nominally constant over the time interval of investigation (Mengle, 1990).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2 Theoretical Development CB Church
   

64 

It is further stated that the Fourier coefficients of Model 1 are independent of rotor frame 
measurement position  𝜃𝜃  (Mengle, 1990). Specifically, they are tuned according to the pressure 
fluctuations arising solely from bladed hub assembly vibration. This effectively means that the 
circumferential pressure distribution, due purely to rotation of the assembly, is not taken directly into 
account in the formulation of Model 1. 

Model 2 begins by taking the steady state pressure distribution, due solely to rotation of the cascade 
in the rotor plane, into account. The effect of individual blade vibration on this stationary pressure 
distribution is then added at a later stage. The proposed internal pressure distribution, which includes 
blade vibration,  derived in the formulation of Model 2 and represented as a Fourier series is repeated 
in Equation [2.2.2] (Forbes and Randall, 2013). 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+Ω(𝑡𝑡)+𝛼𝛼𝑟𝑟+𝛾𝛾𝑖𝑖]) ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝑥𝑥(𝑡𝑡)𝑟𝑟])
∞

𝑖𝑖=0

� [2.2.2] 

It is important to note that pressure field measurement in the rotor plane may not be as feasible or 
simple to implement when compared to measuring the response down- or upwind of the vibration 
source for an actual turbomachine. Being able to describe the pressure phenomena related to blade 
vibration at a location removed from the source plane is advantageous in terms of implementation 
practicality. This method is however limited by what can be observed down- or upwind of the vibration 
source. 

Model 2 does not develop the pressure effect due to blade vibration in terms of propagating pressure 
waves and their associated fluid dynamics (with respect to induced vortices). Instead the displacement 
of a blade tip 𝑥𝑥(𝑡𝑡) is considered to alter the phase angle at which the otherwise stationary pressure 
waves arrive at the acoustic transducer. This method facilitates construction and implementation of a 
physical blade vibration model based on the geometry and material properties of a turbomachine 
bladed assembly (assuming that the physical assembly’s properties are known within a certain 
tolerance). The effects of nearby stator and rotor rows were not explored in the development of 
Model 2, neither were axial attenuation effects on the frequency components mentioned. This is 
because in rotor plane measurements were taken. 

An improved solution route for both Model 1 and Model 2 would be to take the physical forced 
response behaviour of the turbomachine blade assembly into account and then relate that to the fluid 
behaviour and expected wave propagation effects though that fluid. This may require a fluid-structure 
interaction study starting from the governing momentum and continuity equations.  

An alternative to a direct analytical study of the underlying physics would be a combined FE and CFD 
fluid-structure investigation. Although this fluid-structure interaction study may be difficult or costly 
to implement in practice, it may provide a better numerical approximation of the actual conditions 
within the casing.  

When comparing the form of the Fourier series in Models 1 and 2 several distinct differences become 
immediately clear. The first difference is noticed in the summing process. Model 1 sums across all 
integers from negative infinity to positive infinity whereas Model 2 only considers positive integers 
from zero to infinity. Therefore Model 2 assumes that the frequency content is symmetric about zero 
and the Fourier coefficients are inherently adjusted accordingly (by ensuring that the amplitudes are 
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doubled to take the neglected negative part of the spectrum into account). This assumption allows 
consideration of only the positive Fourier coefficients. This is similar to the assumption made in the 
development of Model 1 in that only positive frequencies can actually be observed. 

The second significant difference in the models is that Model 2 only considers the real parts of each 
individual term in the series. In practice only fluctuating pressure magnitudes can be observed by a 
single stationary observer on the casing. So when comparing a numerically obtained pressure signal 
to a measured pressure signal only the real components of the series will be of value to compare. 

All of these model differences must be compared and evaluated when considering the development 
of a similar expression for the pressure signal. 

The pressure relations derived in Model 1 and Model 2, rewritten into the trigonometric format, are 
presented in Equations [2.2.3] and [2.2.4] respectively. The conversion and rearrangement process is 
outlined in section ‘7.1.2 A2 – Reformulation of Internal Pressure Signal Equation’. 

 𝑝𝑝(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) = � 𝑓𝑓𝑚𝑚(𝑥𝑥) ⋅ �
cos�(𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ (𝜃𝜃 + Ω ⋅ 𝑡𝑡) + 𝜔𝜔 ⋅ 𝑡𝑡�  +
𝑗𝑗 ⋅ sin�(𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ (𝜃𝜃 + Ω ⋅ 𝑡𝑡) + 𝜔𝜔 ⋅ 𝑡𝑡�

�
∞

𝑚𝑚=−∞

 [2.2.3] 

 𝑃𝑃𝑟𝑟(𝑡𝑡) =  �𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ cos (𝑖𝑖 ⋅ [𝜃𝜃 + Ω(𝑡𝑡) + 𝛼𝛼𝑟𝑟 + 𝛾𝛾𝑖𝑖]  + 𝑖𝑖 ⋅ [𝑥𝑥(𝑡𝑡)𝑟𝑟])
∞

𝑖𝑖=0

 [2.2.4] 

As was stated, Model 1 refers to the effect of Doppler shifting of the flutter response frequency due 
to travelling wave modes, and Model 2 refers to phase modulation of the internal pressure signal due 
to individual blade vibration. Both explanations attempt to describe the appearance of repeated non-
integer engine order frequencies in the measured pressure spectrum. From inspection of both models 
it can be concluded that the observed sideband frequencies, related to non-engine order blade 
vibration, are connected to some integer multiple of rotor speed.  

When comparing the internal pressure relations, in a trigonometric format, it is seen that only certain 
engine harmonic multiples in Model 1 will be Doppler shifted. The specific engine harmonics are 
controlled by the travelling wave number 𝑘𝑘 (the harmonic index) and the number of blades 𝐵𝐵 in the 
relation (𝑘𝑘 +𝑚𝑚 ⋅ 𝐵𝐵).  

Model 1 is therefore designed to describe the entire system’s modal response in terms of the number 
of nodal diameters active at any given time. This is important to note as cyclically symmetric structures 
are part of the periodic structures family and so respond in specific and discernible patterns.  

As has already been stated, if flutter ensues and mistuning is significantly present in the system then 
the wave number 𝑘𝑘  can take any integer value within its set. This results in the case of Doppler 
frequency shifting about all engine harmonics (as (𝑘𝑘 +𝑚𝑚 ⋅ 𝐵𝐵) can take any integer value) (Mengle, 
1990).  

The Doppler shifted solution for the casing observed flutter frequency 𝜔𝜔, deduced in the formulation 
of Model 1, is presented in Equation [2.2.5] for the case of a constant phase angle 𝜎𝜎 (Mengle, 1990).  

 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 1
′ = 𝜔𝜔 + (𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ Ω  [2.2.5] 
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Similarly Equation [2.2.6] presents the case of a non-constant phase angle 𝜎𝜎 (Mengle, 1990). 

 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 1
′ = 𝑚𝑚 ⋅ 𝛺𝛺 + 𝜔𝜔 [2.2.6] 

In both the above relations the travelling mode number 𝑘𝑘 must be part of the set 𝑘𝑘 ∈  {1,2, … , B − 1} 
and the index 𝑚𝑚 ∈ ℤ. 

The effect of mistuning investigated in the development of Model 1 is congruent with the later 
discussion on the effects of mistuning. Both discussions concluded that because of mistuning there 
will be multiple sources of harmonic content in the response signature. The discussion on mistuning 
emphasized that the presence of the various system mode shapes depends on the level of mistuning 
as well as the excitation frequency. 

In order to analyse Model 1 from a phase modulation point of view it is useful to rearrange the 
trigonometric formulation one final time. The rearranged formula is presented in Equation [2.2.7]. 

 𝑝𝑝(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) = � 𝑓𝑓𝑚𝑚(𝑥𝑥) ⋅ �
cos�𝑡𝑡 ⋅ �(𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ Ω +𝜔𝜔� + (𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ 𝜃𝜃�  +
𝑗𝑗 ⋅ sin�𝑡𝑡 ⋅ �(𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ Ω + 𝜔𝜔� + (𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ 𝜃𝜃�

�
∞

𝑚𝑚=−∞

 [2.2.7] 

It can be seen that according to the equation no phase modulation actually occurs. This is because 
only a single component in the periodic expressions is dependent on time. Each frequency component 
is simply phase shifted by a fixed amount. The would-be carrier frequencies are simply functions of 
the rotor frequency and blade vibration frequency.  

Therefore no modulation sidebands related to blade vibration are expected about engine harmonics 
if this model is assumed. A simple plot of the scenario defined by Equation [2.2.7] is provided in Figure 
2.2-1. The model is plotted for arbitrarily chosen rotor speed and blade flutter frequencies. Only the 
real components have been plotted, the wave number 𝑘𝑘 is assumed as 1 (one nodal diameter) and 
the number of blades has been chosen as 5. The Fourier coefficients have also been assumed as unity. 

 

Figure 2.2-1 Pressure distribution from Mengle relation for arbitrary rotor speed and blade flutter frequency 

It is clear from the example that the relation predicts a frequency shift for each Fourier term due to 
blade vibration as opposed to phase modulation.  
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The effect of Doppler frequency shifting is more apparent when only considering positive frequency 
components (as suggested by Mengle) and allowing (𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) to take any integer value (assuming 
a mistuned system). This situation is presented in Figure 2.2-2. 

 

Figure 2.2-2 Alternative pressure distribution from Mengle relation for arbitrary rotor speed and blade flutter frequency 

One final note on the Doppler shifting effect mentioned in the development of Model 1. Consider the 
observed travelling wave mode number 𝑘𝑘′ in Equation [2.2.8] (Mengle, 1990). 

 𝑘𝑘′ = 𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵 [2.2.8] 

Observed travelling wave mode numbers 𝑘𝑘′ are in general not symmetric about 0. They are only 
symmetric about zero when 𝑘𝑘  is either 0 or when 𝑘𝑘  assumes all possible values (for the case of 
mistuning). Due to the symmetry of the Fourier transform, the asymmetry of the travelling wave mode 
results in frequency content which is termed doubly symmetric. This is due to a folding of frequency 
content about zero hertz (Mengle, 1990). This may have repercussions on Fourier pressure signal 
reconstructions using the expression derived in Model 1. 

According to Model 2 each engine harmonic is phase modulated by the blade tip vibration. This tip 
vibration is multiplied by the integer related to the specific harmonic (Forbes and Randall, 2013). 
Therefore, as the number of Fourier terms increases, so do the phase modulation amplitudes for each 
term linearly increase.  

Model 2 has not specifically made provision for the individual blades to oscillate at specific phase 
angles with respect to one another. This is important for the case for tuned vibration where the phase 
angle between sectors assumes a specific value due to the presence of travelling wave modes (discrete 
number of nodal diameters depending on the excitation conditions).  

However no system is ever perfectly tuned, and because of this a contribution of each system mode 
is expected to be present simultaneously (Castanier and Pierre, 2006). As was stated, the contribution 
of each mode, and the effect of mode localisation, depends on the excitation frequency and the level 
of mistuning (Castanier and Pierre, 2006). Therefore when viewing Model 2 from Model 1’s 
perspective, it can be seen that during its development mistuning has been intrinsically included 
without directly realising it. The contribution of each travelling wave mode is constant when assuming 
this model. 
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In terms of Model 2 the effect of mistuning may however not be of concern when evaluating the 
pressure distribution about an individual blade. This is because the pressure distribution is 
investigated about the individual blade regardless of the combined system’s response. 

An arbitrary example of phase modulation based on the pressure relation derived in Model 2 can be 
seen in Figure 2.2-3. Once again all Fourier terms are assumed as unity for the example and rotor 
speed and blade natural frequency are arbitrarily chosen. 

 

Figure 2.2-3 Model 2 arbitrary example of phase modulation in pressure relation 

The frequency of the modulating term in the expression remains constant at the blade response 
frequency. This results in sidebands occurring at fixed distances from the carrier frequencies. The 
sideband amplitudes are however no longer constant.  

It is clear from the figure that ambiguity exists as to which sideband belongs to which carrier term. 
This is due to the carrier frequencies occurring at lower frequencies to the message signal (resulting 
in intersecting of frequency ranges), and multiple carrier and sideband sets occurring in close 
proximity to one another. The sideband spacing predicted by Model 2 is provided in Equation [2.2.9]. 

 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 2
′ = 𝑚𝑚 ⋅ Ω ± 𝑛𝑛 ⋅ 𝜔𝜔 [2.2.9] 

In the equation both parameters 𝑛𝑛 and 𝑚𝑚 are positive integers. The parameter 𝑛𝑛 has been included 
to emphasize that phase modulation causes multiple sideband peaks per carrier peak. 

Unlike Model 1, Model 2 captures the presence of all engine harmonics in the pressure signal. All 
harmonics will be observed, however the harmonics about which phase modulation occurs may be 
governed by the harmonic index describing the number of nodal diameters present in the system’s 
response. 

Within the signal processing (SP) procedures, mentioned in the development of both models, a 
method is described to remove the pressure signal void of blade vibration from the full pressure signal. 
This is done in order to obtain a signal comprised predominantly of blade vibration information (or 
simply to emphasize blade vibration). Both models suggest a time domain based method which 
requires aligning of the pressure signals to perform the operation. In neither models’ development is 
a frequency domain method mentioned to perform this task. Removing the deterministic signal from 
the full signal in the frequency domain may overcome certain issues and difficulties associated with 
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time domain operations as the magnitude components of the deterministic peaks will lie directly at 
the required frequencies. The phase information of the deterministic peaks are irrelevant as the 
process requires the time domain information to already be aligned (in phase). Murray and Key 
successfully performed this operation in the frequency domain (Murray and Key, 2015). 

Both models indicate that blade vibration information is present in the pressure signal once it has 
been denuded of engine harmonics and other deterministic phenomena (provided that the system is 
not operating at a blade resonance). A difference in the deterministic peak magnitudes, due to blade 
vibration approaching and passing through resonance, may however be present. This phenomenon is 
not explored in the development of either model. It is therefore clear that only non-integer engine 
order blade response or flutter may be investigated using the stochastic signals isolated in the direct 
use of these models (along with noise and other vibration not associated with the rotor geometry and 
speed of operation). 

Sufficient broad spectrum energy must be entering the system in order to excite the various natural 
frequencies and associated mode shapes outside of resonance conditions to an observable state. 
Forbes et al. noted that the noise entering the system is however band limited, although no 
explanation is provided for this (Forbes and Randall, 2013). The main source of excitation energy is 
however due to impingement of the rotor blades by upstream stator wakes. The closer a deterministic 
peak lies to a natural frequency greater the amount of energy will be entering that particular mode. 
As a result resonance of that particular mode will ensue.  

Even though blade response amplitudes are magnified at resonance, the above mentioned SP 
techniques are not able to separate the blade natural frequency information from the deterministic 
portion of the signal. Once again it is seen that the ensemble averaging procedure described by Forbes 
et al., when performed on the stochastic part of the pressure signal, is expected to only be suitable 
for non-engine order (EO) vibration situations only (Forbes and Randall, 2013). The same restriction 
applies to non-EO flutter identification by means of Mengle’s suggested approach (Mengle, 1990). 

The premise behind the ensemble averaging procedure developed by Forbes et al. is similar to a 
conclusion drawn by Mengle. Namely that within a certain frequency range only a single stochastic 
peak will actually be related to the blades’ response frequency given a particular carrier frequency (or 
Doppler shift). The frequency range suggested in Model 1 is the blade passing frequency 𝐵𝐵 ⋅ Ω 
(assuming that the interblade phase angle is constant and only positive frequencies are observable). 
This is because it is assumed that only a single travelling-wave mode is present for the system 
investigated.  

Had the interblade phase angle been non-constant multiple modes would be present in the pressure 
signal simultaneously and an alternative method would have to be applied in order to determine the 
participation of each mode before blade vibration can be estimated (Mengle, 1990).  

According to Model 2, within each frequency range (the size of the rotational speed Ω) two peaks will 
occur due to the modulation effect (carrier plus and minus vibrational frequency repeated for each 
carrier frequency). If it is observed that sideband peaks do not appear about each engine harmonic 
then it may be prudent to treat the blade vibration situation in a similar manner to Model 1 where 
only a single travelling-wave mode is present in the pressure signal. This would require an adjustment 
of the appropriate analytical pressure relation. 
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In terms of measurement sensor requirements, Mengle’s method requires two stationary observers 
to be placed on the casing at the same axial distance from the rotor. It is also noted that the angular 
distance between the two observers must be specially chosen (Mengle, 1990). This is done in order to 
relieve the indeterminacy of the observed frequency equation. The solution derived in Model 1 for 
blade vibration identification is repeated in Equation [2.2.10]. 

 
{𝜔𝜔1𝑛𝑛} = (𝑘𝑘 ⋅ Ω + 𝜔𝜔𝑂𝑂𝑂𝑂𝑂𝑂

′ ) + 𝑛𝑛 ⋅ 𝐵𝐵 ⋅ Ω 

{𝜔𝜔2𝑛𝑛} = (𝑘𝑘 ⋅ Ω − 𝜔𝜔𝑂𝑂𝑂𝑂𝑂𝑂
′ ) + 𝑛𝑛 ⋅ 𝐵𝐵 ⋅ Ω [2.2.10] 

The parameter 𝑛𝑛 in the simultaneous equations is a positive integer. 

A similar indeterminacy problem exists when using the solution presented in Model 2. Either the actual 
frequency of vibration must be known within plus and minus half the rotor frequency, or 
measurements must be taken at at least two different operating speeds (Cox and Anusonti-Inthra, 
2014; Forbes and Randall, 2013).  

The possible advantage of using two observers to obtain the rotor response frequency was however 
not explored in the development of Model 2. It would be a significant advantage if only a single 
observer is required to perform this operation or no additional information is required to resolve the 
blade frequency of vibration. The solution derived by Forbes, for measurement at a single operating 
frequency, is presented in Equation [2.2.11]. The solution determined by Cox et al. is given in Equation 
[2.2.12]. 

 𝜔𝜔𝑁𝑁 =
∆𝜔𝜔𝑁𝑁𝑁𝑁 + 𝑞𝑞 ⋅ Ω

2
 [2.2.11] 

 𝜔𝜔𝑁𝑁 = �
Ω1 ⋅ 𝑓𝑓𝑠𝑠𝑠𝑠2 − Ω2 ⋅ 𝑓𝑓𝑠𝑠𝑠𝑠1

Ω2 − Ω1
� [2.2.12] 

The pressure relation used by Cox et al. for the evaluation of Equation [2.2.12] is simplified when 
compared to both Mengle and Forbes’ relations (given in Equations [2.2.1] and [2.2.2]). The pressure 
relation explored by Cox et al. is repeated in Equation [2.2.13] (Cox and Anusonti-Inthra, 2014). 

 𝑃𝑃𝑛𝑛 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(−1,1) +
(2 ⋅ 𝑆𝑆𝑆𝑆𝑆𝑆)0.5

6.6
⋅ cos(2 ⋅ 𝜋𝜋 ⋅ 𝑏𝑏 ⋅ Ω ⋅ 𝑡𝑡 + 𝜖𝜖 ⋅ cos(2 ⋅ 𝜋𝜋 ⋅ 𝜔𝜔 ⋅ 𝑡𝑡)) [2.2.13] 

It is clear from Equation [2.2.13] that only a single carrier frequency is considered with a single 
modulating signal operating at a single unchanging frequency. In terms of Mengle’s work the blade 
flutter frequency is Doppler shifted at multiple integer products of engine harmonics (Mengle, 1990). 
With respect to the work of Forbes carrier frequencies are estimated to occur at all engine harmonics 
along with the blade vibration signal being multiplied by integers corresponding to each Fourier term 
(Forbes and Randall, 2013).  

Both cases result in ambiguity of which sideband is related to which carrier frequency. The issues 
associated with sideband ambiguity are however not present with the simplified model as the 
spectrum obtained from the equation results in a single carrier frequency with associated sidebands 
that can easily be observed in the frequency domain. This is thus a highly unrealistic model to use 
when investigating the proposed improvement in the solution. 
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The unsteady pressure relation derived in Model 1, observed in the rotor reference frame, is noted to 
have been derived independently using a completely alternative methodology (Mengle, 1990; Smith, 
1973). A rotor cascade is represented as a row of vortices using a series expression (Smith, 1973). The 
resultant relation is provided in Equation [2.2.14] (Smith, 1973). 

 𝛾𝛾(𝑦𝑦) = 𝛾̅𝛾(𝑦𝑦) ⋅ 𝑒𝑒𝑗𝑗⋅𝜔𝜔⋅𝑡𝑡 =  �
Γ
𝑠𝑠
⋅ 𝑒𝑒𝑗𝑗⋅�𝜔𝜔⋅𝑡𝑡+

𝜙𝜙−2⋅𝜋𝜋⋅𝑟𝑟
𝑠𝑠 ⋅𝑦𝑦�

∞

𝑟𝑟=−∞

= �
Γ
𝑠𝑠
⋅ 𝑒𝑒𝑗𝑗⋅[𝜔𝜔⋅𝑡𝑡+𝛽𝛽⋅𝑦𝑦]

∞

𝑟𝑟=−∞

 [2.2.14] 

Equation [2.2.14] is said to be equivalent to the unsteady pressure measured on the rotor reference 
frame provided in the development of Model 1 (Mengle, 1990). This finding strengthens the argument 
that blade frequency content will only be observed at every 𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵 frequency component in the 
casing reference frame unless significant mistuning is present (Castanier and Pierre, 2006; Mengle, 
1990).  

Further the Doppler shifting argument provided in the development of Model 1 was used to 
successfully identify frequency components in the experimental investigation by Murray and Key 
(Murray and Key, 2015). The frequency content findings may need to be implemented in an updated 
model in order to better capture the casing pressure signal. 

Model 2 was investigated from more than just a theoretical point of view. Model 2 was directly used 
to generate an internal pressure signal based on the geometry and operating conditions of an actual 
experimental setup. Measurements were taken from the experimental setup and were shown, after 
signal processing, to provide the same narrow band peak spacing estimator as the analytically 
generated internal pressure signal. This adds confidence to the accuracy and ability of the model.  

Further, some of the experimental measurements, taken in the investigation of Model 2, were made 
available. After following the same signal processing procedure outlined by Forbes et al. similar results 
to the basis material were obtained (Forbes and Randall, 2013). These results can be viewed in section 
‘7.3 Appendix C – Example Application of CPS Method’. 

After evaluation of the models it is clear that Model 1 is concerned with the travelling waves 
emanating from a whole moving cascade as well as the Doppler shifting effect on the observed blade 
flutter frequencies. It is tailored for measurement downwind of the rotating source by a stationary 
observer. These travelling wave modes are believed to manifest as vortices about the blades. The 
model was constructed taking the fact that the system is cyclically symmetric into account. 

Model 2 concentrates on the modulating effect individual blade vibration has on the otherwise 
stationary pressure distribution that is generated about the rotor. Model 1 is concerned with 
measuring the Doppler effects outside of the rotor plane, whereas Model 2 concentrates on in plane 
measurements. The stationary casing measurement location, in plane or downwind, has been shown 
to affect the observable phenomena. Model 2 does not account for the cyclic symmetry of the system. 

2.2.2. Discussion on Alternative Casing Pressure Methods 
Various additional casing pressure and vibration investigations were reviewed as part of the literature. 
This section explores their contribution to the understanding of the internal pressure signal and the 
effects of these contributions to a more appropriate internal pressure model. 
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As was stated, the effect of blade vibration on the internal pressure distribution for operation at 
speeds traversing resonances, may cause the deterministic pressure peak heights to change. This was 
the conclusion of the study done by Ratz et al. (Ratz et al., 2013).  

The study showed that as the rotor moves through resonance conditions some of the deterministic 
peak amplitudes (occurring at certain integer multiples of blade passing frequencies) spike (Ratz et al., 
2013). This is significant in that the overall pressure amplitude is affected by blade vibration as the 
system moves through resonances. Therefore the internal pressure signal (in terms of Model 2) may 
not only be phase modulated but somewhat amplitude modulated by the level of blade vibration as 
well, even for operation at nominally constant rotor speeds. 

The scope suggested that only internal pressure measurements would be considered for investigation. 
In none of the models and methods thus far had any of the experimentally obtained internal pressure 
measurements been used to isolate pressure waves about individual blades specifically for the 
purpose of blade vibration analysis. Outer casing vibration does not provide the localised internal 
effects about individual blades. Therefore if the behaviour of an individual blade does not affect the 
global casing response significantly then identifying individual anomalies associated with the 
behaviour of that blade would be difficult using external casing measurements.  

In the study by Mathioudakis et al. it was shown that the surface condition and angle of individual 
blades caused a unique signature within the pressure distribution (Mathioudakis et al., 1991). 
Therefore by investigating the individual pressure waves about individual blade tips it may be possible 
to provide an indicator of their individual condition and response behaviour.  

A further finding in the study by Mathioudakis was that the fault signatures could only be observed 
when measured in the rotor plane which contained the artificial damage (Mathioudakis et al., 1991). 
The unique fault signatures decayed to the point of being unobservable both one stage up- and 
downwind of the source. A similar conclusion was drawn by Mengle in that certain frequency 
components may decay exponentially along the axial length of the machine. This leads to a situation 
where specific frequency components related to blade vibration cannot be observed in a plane 
removed from the source. It is for this reason that in plane measurements, although possibly less 
practical than measurement downwind, is of sole consideration in this investigation. 

The investigation by Mathioudakis et al. was however significantly different to the other studies 
considered in that blade vibration identification was not directly investigated or of interest. Only the 
effect of introducing local minor damage effects to the blades was studied (Mathioudakis et al., 1991). 

The investigation by Murray and Key was able to isolate torsional blade vibration emanating from 
different rotor rows. This was achieved by making use of stationary observers installed within stator 
vanes attached to the casing of an experimental compressor (Murray and Key, 2015).  

It was once again noticed that as the system moves through a resonance that the pressure amplitudes 
peak. This reinforces the belief that not only the phase angle, but the amplitude of the pressure 
distribution is directly related to the blades behaviour. 

It was found that the fast response sound pressure transducer had to have a particularly high 
frequency response in order to capture the vibration behaviour (Murray and Key, 2015). Thus the 
blade frequency content of interest, sampling frequency and associated measurement equipment 
must be simultaneously considered for appropriate measurement and acquisition device choice. 
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A novel signal processing methodology was implemented in order to investigate the signal (Murray 
and Key, 2015). Data from individual revolutions were separated. Due to the disruptive nature of the 
separation process a Kaiser window was passed over each revolution’s measurement (Murray and 
Key, 2015). In order to make the blade response phenomena visible in the spectra the spectrum from 
the first revolution was subtracted from all following revolutions spectra. This is similar to the engine 
harmonic deletion process discussed by Mengle, Kurkov and Forbes et al., it is however performed in 
the frequency domain as opposed to the time domain (Forbes and Randall, 2013; Kurkov, 1981; 
Mengle, 1990). The measurements for individual revolutions could then be assembled into a full 
waterfall plot which clearly emphasized trends within the data. 

It is important to note that measurements were taken for an accelerating rotor moving through known 
resonance regions and not at constant steady state conditions. Further the vane mounted pressure 
sensors do not necessarily detect the same information as a casing mounted sensor as they are directly 
within the flow path. 

The final casing pressure signal study reviewed tracked the changes of the BPF and surrounding 
spectrum for the case of low frequency non-engine order blade flutter (Rao and Dutta, 2012). For the 
specific geometry and operation conditions the carrier frequencies were much higher than the blade 
vibration frequencies making the sideband peaks associated with the modulation effect apparent.  

The investigation showed that casing vibration measurements could be used to diagnose undesirable 
blade behaviour from an actual steam turbine. As soon as damaged blades were replaced on the steam 
turbine rotor that the sideband peaks no longer appeared about the BPFs. 

The phenomenon was recreated using an experimental setup, the modulation of the pressure signal 
could be externally controlled and easily identified in the pressure spectrum. Of all of the methods 
investigated this one would be the most convenient and lightweight on resources to implement. 

2.2.3. Comparison of Casing Pressure Signal Methods with Blade Tip Timing Approaches 
Blade tip timing (BTT) approaches and casing pressure signal (CPS) methods both attempt to capture 
blade vibration information, they are however completely different in their approaches. Due to the 
current interest in BTT technologies it is important to provide a relative standing between the two 
techniques. This topic is addressed here. 

In both direct and indirect BTT it is only possible to capture a limited number of points of the blade’s 
actual response cycle. The number of points that you capture, per revolution, is exactly related to the 
number of BTT sensors installed on your turbomachine. This situation leads to a highly aliased signal 
which requires advanced curve fitting techniques in order to determine the blade’s response 
amplitude and frequency of vibration (Diamond et al., 2014a).  

Further, most methods require that your data acquisition setup must be designed and optimised for 
operation at a particular speed in order to capture a particular response mode. Recall that this is done 
in order to achieve a high pulse spacing on resonance (PSR) to capture the mode of interest. The 
amplitude of the individual blade vibration must also be large enough such that the available sensors 
and data acquisition systems are able to measure a discernible change in time of arrival (TOA). This is 
done in order to infer the amplitude, frequency and phase of response. According to literature, this 
generally means that the rotor must be operated at or through resonances in order to pick up blade 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2 Theoretical Development CB Church
   

74 

vibration information. Operation at or through critical speeds for any approach, both BTT based and 
CPS based, is however highly undesirable (due to blade fatigue accumulation among others). 

Another considerable issue with BTT is that current implementations rely on highly accurate 
measurement of the shaft position. This measurement is ideally performed near to the blades’ roots 
such that an accurate estimate of the theoretical non-vibrating blades’ positions can be made.  

When considering implementation on long shafts, with multiple rotor and stator cascades stacked 
consecutively, access to an available portion of the shaft near to the rotor row of interest may be 
difficult or impossible to obtain. Measuring the shaft angular position at an axial location far removed 
from the rotor row of interest may lead to undesirable shaft torsional vibration effects in the 
tachometer signal. These effects may be completely unrelated to the actual blade vibration or 
conditions at the root locations. 

Casing pressure signal (CPS) methods on the other hand are based on measuring a continuous 
pressure signal. Unlike direct BTT, the pressure signal can be captured at a range of nominally constant 
shaft speeds because there is no longer a pulse spacing on resonance requirement. The pressure signal 
may not be inherently aliased, as is the case for BTT, but it contains a large amount of information 
completely unrelated to the blades’ behaviour.  

The pressure signal contains blade vibration information about the rotor row of interest (for all blades 
simultaneously), as well as a pressure signature related to the rotation of the shaft and periodic effects 
from both up- and downwind rotor and stator rows. The signal will also contain noise stemming from 
various other fluid and mechanical sources. Where BTT attempts to infer blade behaviour from a 
scarcity of information, CPS endeavours to uncover it from an excessive amount of unrelated or 
heavily mixed information. Further BTT approaches use a direct measurement of individual blades’ 
behaviour to infer vibration characteristics. CPS must on the other hand infer blade behaviour through 
the behaviour of another medium (namely the fluid moving through the turbomachine). 

It is of interest to develop a CPS method capable of separating the behaviour of individual blades. BTT 
approaches directly capture information related to the behaviour of individual blades. This is 
particularly important when considering the response of a mistuned system as the amplitudes of 
response for the individual blades may differ significantly. This effect may not be captured or obvious 
when evaluating a global pressure signal which contains the simultaneous behaviour of all of the 
blades in the cascade of interest (along with all of the other sources of pressure information). This is 
further compounded if the pressure field is measured downwind or upwind of the rotor row of interest 
through succeeding stator and rotor stages. 

The majority of CPS methods reviewed requires that the blade vibration be non-engine ordered. 
Model 1 was specifically designed for the case of self-excited flutter occurring at a frequency which is 
not an integer relation of the shaft speed. Similarly Model 2 was used for the case of turbomachine 
operation at a rotor speed which is not an integer multiple of the natural frequency of the blade being 
investigated. BTT, as has been stated, requires operation at or near to resonances in order to pick up 
tip displacements associated with blade vibration. 

Similar to the BTT approach, the signal processing techniques involved in the CPS methods require 
accurate measurement of the shaft position. So the same concerns regarding tachometer sensor 
position apply for CPS methods that were outlined for BTT methods. Both BTT and CPS techniques 
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which rely on zebra tape encoder systems require some form of geometry compensation to be applied 
to the measured tachometer signal. As has already been stated, bias and errors may result in the use 
of uncorrected tachometer signals because the signal processing algorithms inherently assume 
linearly spaced time domain sampling which may not be the case for the measured signal. 

In the formulation of both BTT approaches and CPS methods single degree of freedom (SDOF) blade 
response models are generally assumed. In terms of BTT the response model normally takes the form 
of a simple sinusoid where the unknown values are solved for by means of auto-regression or other 
similar curve fitting techniques.  

Attempts have been made to implement multiple degree of freedom models for use in the BTT 
approach (see ‘7.2 Appendix B – Additional BTT Literature’). Due to the freedom that MDOF systems 
provide, improvements in blade vibration estimation was noticed.  

This however is not the case for the CPS methods. In terms of Mengle’s work the blades are assumed 
to be responding sinusoidally at an individual flutter frequency. Similarly in the work done by Forbes 
at al. a SDOF sinusoidal blade tip solution response is based on a single spring-mass-damper system 
(Forbes and Randall, 2013; Mengle, 1990). The advantages of a multiple degree of freedom (MDOF) 
implementation have yet to be seen. Alternatively a FE model based or Euler-Bernoulli beam approach 
may be able to capture the system’s response more accurately. 

BTT has the advantage that an estimate can be made on both the frequency and physical deflection 
amplitude of vibration. In terms of CPS, attempts have been made to infer the frequency of vibration 
or one of the first few natural frequencies of the turbomachine blades. An amplitude value obtained 
via a CPS based method will however be in terms of pressure changes. This may not necessarily be 
linearly related to actual blade deflection amplitude. It may however be possible to relate blade 
deflection amplitude to the associated pressure response amplitude, although no attempts to do this 
were noticed in the literature reviewed. 

Although it is not the topic of this study, external casing vibration has been shown to contain blade 
vibration information. In terms of practicality and ease of implementation this sort of methodology 
would be far preferred to both BTT and internal pressure signal CPS methods. This is because neither 
casing nor blade and attachment mechanism alteration is required. Although the likelihood of 
identifying the behaviour of individual blades from a method of this description may be low as direct 
access to phenomena related to individual blades is not available. 

An advantage of implementing a CPS method based on direct internal pressure measurements is that 
the signal may contain information related to the performance and other operating aspects of the 
turbomachine. Thus a CPS based method may be used to monitor multiple aspects of an operating 
machine whereas BTT will only be able to capture blade behaviour information.  

Both CPS and BTT have associated advantages and disadvantages. CPS methods may be able to 
supplement current BTT approaches to provide a more comprehensive indicator of the blades 
condition and behaviour (as well as give an estimation of the global conditions within the casing 
environment). The passing pressure waves, associated with the individual blades, may also be able to 
provide an additional tip time of arrival estimation if used in conjunction with a BTT approach.  
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2.3. Pressure Signal 
The development of an accurate internal casing pressure model may not only provide insight into the 
form of the signal characteristics, it may also provide pointers for blade vibration identification from 
said signal. This section focuses on the development of internal pressure relations based upon the 
work of both Mengle and Forbes et al. (Forbes and Randall, 2013; Mengle, 1990). Observations from 
the alternative pressure investigations reviewed in the literature study have also been incorporated. 

Consider the schematic of an axial flow turbomachine which contains a single set of stator vanes and 
a single set of rotor blades in Figure 2.3-1. It is important to note that the nomenclature from this 
point forward remains constant and can be referred to at the beginning of the dissertation. 

 

Figure 2.3-1 Axial turbomachine schematics. (a) Rotor and stator on infinitely long shaft. (b) Two dimensional flow 
across rotor. 

In the figure  𝑈𝑈� and  𝑊𝑊�  refer to the flow which is parallel to the casing and shaft, as well as the flow 
relative to the stagger angle 𝛾𝛾 respectively.  𝑇𝑇 � is the flow in the circumferential direction. The chord 
length at the blade tip is 𝐶𝐶 and the blade-to-blade gap is 𝑆𝑆. The rotor is operating at a shaft speed 
of Ω. 

Two stationary observers have been placed on the casing wall, namely 𝑂𝑂1 and 𝑂𝑂2. 𝑂𝑂1 is in line with 
the centre of the rotating blades and 𝑂𝑂2 is in line with the outer edge of the blades’ tips downwind of 
the first observer. A set of 𝑉𝑉 upwind stators are assumed to be stationary non-vibrating elements. This 
is fixed such that they do not contribute oscillatory information to the pressure signal (they only direct 
flow onto the downwind rotor blades). A total of 𝐵𝐵 blades are on the rotor row of interest. 

The range of motion that the blade tips may exhibit during flap modes, first torsional mode and 
combinatorial flap and torsional modes is illustrated Figure 2.3-1 (b). Edgewise motion has been 
neglected in the schematic as it was found that only the first few response modes are of interest. 

It is assumed that the casing pressure signal, measured flush with the casing wall by the stationary 
observers, is directly related to the blade tip behaviour. If we start our analysis by neglecting waves 
propagating from the vibrating blades as vortices (Model 1), and maintain that only phase modulation 

(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2 Theoretical Development CB Church
   

77 

of the rotating pressure profile due to blade tip vibration can be observed then the two observers are 
expected to register completely different signals depending on the blade mode shape excited. 

If a flap mode is excited then the two observers are expected to register a highly similar signal. If 
however a purely first torsional mode is excited then 𝑂𝑂2 may capture the torsional response behaviour 
whereas observer 1 will not (assuming that the torsional mode occurs about an axis which runs 
lengthwise along the blade at its center). Further, if a combinatorial mode ensues then 𝑂𝑂2 may capture 
all of the response behaviour whereas 𝑂𝑂1 will only be sensitive to the bending component of the 
mode. Combinatorial modes are also however outside of the response range of interest. 

If we now consider the effect of wave vortices propagating from the blade tip, differences in the 
measured signal may still be expected due to axial attenuation of certain of the vibrating frequency 
components emanating from the blades. Once again 𝑂𝑂1  may only register flap mode response 
whereas 𝑂𝑂2 will be exposed to all response modes. If the torsional mode frequency information does 
not attenuate axially then both 𝑂𝑂1 and 𝑂𝑂2 should be able to pick up both types of responses. 

Consider the development of an internal pressure profile due solely to system rotation in Figure 2.3-2. 
The pressure profile due solely to system rotation is called the stationary pressure distribution or 
stationary wave because when observed from the rotor frame of reference the profile about the rotor 
should be unchanging with respect to time. This is of course based on the provision that no blade 
vibration or other effects are present in the signal. The development of this model is constructed upon 
the work by Forbes et al. and Ratz et al. (Forbes and Randall, 2013; Ratz et al., 2013). 

 

Figure 2.3-2 In plane pressure model without blade vibration. (a) Without noise. (b) With Noise. 

In the first figure it can be seen that the angular distance between blades is 𝜃𝜃𝑠𝑠, the rotor is moving in 
a clockwise direction at Ω and an angular reference frame, measured in the rotor frame of reference 
from an arbitrary datum, is 𝜃𝜃. The pressure ahead of the blades are shown as high pressure (HP) 
regions whereas pressures behind the blades are shown as low pressure regions (LP). This is assuming 
that the system is operating as a compressor (as will be the convention for the dissertation).  

There is a single stationary pressure observer on the casing indicated as 𝑂𝑂1. The stationary casing 
observer is in the same plane as the blade and hub assembly (at the same position as 𝑂𝑂1 in Figure 
2.3-1). Figure 2.3-2 (b) simply shows the inclusion of Gaussian noise in the pressure profile. 

The stationary pressure distribution about blade 𝑟𝑟, as seen from the rotor reference frame, can be 
represented by the Fourier series in Equation [2.3.1]. 

(a) (b) 
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 𝑃𝑃𝑟𝑟(𝑡𝑡) = � 𝑃𝑃𝑖𝑖 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜔𝜔0⋅𝜃𝜃])
∞

𝑖𝑖=−∞
 [2.3.1] 

The Fourier coefficients 𝑃𝑃𝑖𝑖 and the basis angular frequency 𝜔𝜔0 are tuned to the stationary pressure 
distribution using a Fourier transformation. It must be noted that the Fourier formulation assumes 
linearity. The Fourier coefficients contain information about both the amplitude and phase angle of 
the distribution. The series can be fitted to any stationary distribution about the rotor.  

Due to the fact that the sound pressure transducer can only identify real pressure magnitudes, and 
that in the frequency domain information is symmetric about zero hertz, it is only necessary to use 
the real and positive part of the frequency spectrum to reconstruct the pressure signal. Further the 
function has a period of 2 ⋅ 𝜋𝜋 which results in the basis angular frequency 𝜔𝜔0 being equal to unity. 
Therefore the deterministic pressure relation can be updated to Equation [2.3.2]. 

 𝑃𝑃𝑟𝑟(𝜃𝜃) = 𝑅𝑅𝑅𝑅 ��𝑄𝑄𝑖𝑖 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃])
∞

𝑖𝑖=0

�  [2.3.2] 

The Fourier coefficient 𝑄𝑄0 is equivalent to 𝑃𝑃0 and 𝑄𝑄𝑛𝑛 = 2 ⋅ 𝑃𝑃𝑛𝑛 for 𝑛𝑛 ∈  ℕ>0. 

If we assume that the rotor speed remains nominally constant and want to describe the above relation 
from the casing reference frame then a linear transformation is required. The same stationary 
observer transformation used by Mengle may be used here (Mengle, 1990). This is done in order to 
convert from measurement in the rotor frame to the casing frame. The resulting relation is highly 
similar to that found by Forbes et al. and is provided in Equation [2.3.3] (Forbes and Randall, 2013). 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝑄𝑄𝑖𝑖 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+Ω⋅t])
∞

𝑖𝑖=0

� [2.3.3] 

It is now appropriate to add the effect of blade tip vibration to the signal. As has already been 
stated, the blade tip behaviour is assumed to affect when exactly the stationary pressure wave, 
about each blade, arrives at the casing observer. The stationary wave arrives sooner or later 
depending on the arrival of the tip at the casing observation point. A single stationary blade and 
associated pressure distribution schematic is provided in Figure 2.3-3. Once again the direction of 
blade rotation, rotation speed and HP/LP blade sides have been indicated in the diagram. 

 

Figure 2.3-3 Stationary pressure distribution about non-vibrating blade 
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The early and late arrival of the stationary wave, due to blade vibration, are illustrated in Figure 
2.3-4 (a) and (b) respectively. The first blade flap mode has been included for descriptive purposes. It 
can be seen that the arrival time of the stationary wave is simply time shifted according the angular 
position of the blade tips. 

 

Figure 2.3-4 Pressure distribution about vibrating blades. (a) Blade bending in direction of rotation. (b) Blade bending in 
opposite direction of rotation. 

The arrival time of the stationary pressure wave is related to the blade tip’s displacement. The arrival 
time difference occurs in terms of angular displacement of the blade tip, therefore the translational 
tip displacement must be rewritten in terms of an angular displacement. The angular tip displacement 
about blade 𝑟𝑟, 𝜓𝜓(𝑡𝑡)𝑟𝑟 , in terms of the translational displacement, 𝑥𝑥(𝑡𝑡)𝑟𝑟  and the blade length 𝐿𝐿 is 
indicated in Equation [2.3.4]. The angle subtended is assumed to be small. 

 𝜓𝜓(𝑡𝑡)𝑟𝑟 = sin(𝑥𝑥(𝑡𝑡)𝑟𝑟 𝐿𝐿⁄ ) ≈ 𝑥𝑥(𝑡𝑡)𝑟𝑟 𝐿𝐿⁄  [2.3.4] 

The pressure profile, in the casing reference frame, which now includes blade vibration is therefore 
given by Equation [2.3.5]. The pressure distribution is about blade 𝑟𝑟. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝑄𝑄𝑖𝑖 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+Ω⋅t+𝜓𝜓(𝑡𝑡)𝑟𝑟])
∞

𝑖𝑖=0

� [2.3.5] 

The system however contains 𝐵𝐵 blades. And the stationary pressure distribution measured captures 
the passing of all blades. Therefore in order to differentiate between individual blades, by isolating 
the nominal angle at which the individual blade tip occurs about the rotor circumference, an additional 
parameter must be included in the formulation. When measured from an arbitrary angular position 𝜃𝜃 
in the rotor reference frame the individual blades occur at a distance 𝑟𝑟 ⋅ 𝜃𝜃𝑠𝑠 apart from one another 
where the parameter 𝑟𝑟 is an integer between 0 and the number of blades 𝐵𝐵. The resulting internal 
pressure spectrum is provided in Equation [2.3.6]. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝑄𝑄𝑖𝑖 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+Ω⋅t+𝜓𝜓(𝑡𝑡)𝑟𝑟+𝑟𝑟⋅𝜃𝜃𝑠𝑠+𝜆𝜆𝑟𝑟])
∞

𝑖𝑖=0

� [2.3.6] 
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Due to the cyclic symmetric nature of the rotor geometry the individual blades may be oscillating at 
specific phase angle differences with respect to one another. A phase angle parameter for each blade, 
namely 𝜆𝜆𝑟𝑟, is included to capture this phase angle difference between the blades. 

The values that the phase angle parameter may take are of course controlled by the level of mistuning 
in the system, the excitation conditions and the rotor geometry. If the system is responding in a single 
travelling wave mode then the nodal diameters must be estimated in order to determine the phase 
angle for each separate sector and associated blades. By including the parameter as an open value it 
can be tuned to the actual response phase angle of each individual blade without having to evaluate 
the effect of mistuning on the whole system. Thus individual blades can be evaluated separately. 

It was noted in the study by Ratz et al. that as the blades pass through resonance the deterministic 
peaks’ amplitudes reach a maximum value as well (Ratz et al., 2013). Therefore the pressure 
amplitude, and not only the phase angle, may also be a function of the blades tips’ behaviour. Thus, 
in order to account for this amplitude modulating effect the above relation can be multiplied by the 
blades tips’ behaviour. Consideration must be made as to whether the amplitude modulation is due 
to the angular displacement of the blades, their angular velocity or some combination of both.  

When the blades pass through resonance both the amplitude of response and frequency of response 
increase. The blade tip must traverse a larger distance at a higher frequency, this means that the blade 
tip speed relative to its root position is increasing as it approaches resonance.  

It was found in the study by Ratz et al. that the deterministic pressure amplitude decreases again after 
resonance has been passed (Ratz et al., 2013). This result was echoed in the work done by Murray and 
Key (Murray and Key, 2015). The frequency of the response is still increasing once the rotor has moved 
just past resonance, the tip displacement is however decreasing once resonance has been passed 
because a smaller angular distance is traversed by the blade tip. Therefore the tip speed, in terms of 
tip angular displacement, is also decreasing. The pressure amplitudes are therefore believed to be 
related to the tip speed 𝜓̇𝜓(𝑡𝑡)𝑟𝑟  rather than the tip angular displacement 𝜓𝜓(𝑡𝑡)𝑟𝑟.  

If the effect is considered from the casing reference frame point of view, then it can be argued that as 
the blade tip moves towards the observer (in the direction of the rotor spin) the observed velocity is 
higher than when it moves opposite to rotor spin. Therefore this velocity oscillation at nominally 
constant rotor speed may cause amplitude modulation of the measured pressure signal. A suggested 
amplitude modulation effect of the tip speed is included in Equation [2.3.7]. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = (1 + Γ ⋅ 𝜓̇𝜓(𝑡𝑡)𝑟𝑟) ⋅ 𝑅𝑅𝑅𝑅 ��𝑄𝑄𝑖𝑖 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+Ω⋅t+γr+𝜓𝜓(𝑡𝑡)𝑟𝑟+𝑟𝑟⋅𝜃𝜃𝑠𝑠])
∞

𝑖𝑖=0

� [2.3.7] 

A tuning parameter Γ has been included in the formulation. If Γ is equal to zero then there is no 
amplitude modulation effect. As Γ increases the effect of amplitude modulation increases. Thus by 
tuning the parameter the effect of amplitude modulation can be controlled in the formulation.  

In order to obtain the angular velocity of the blade tip the angular displacement must be differentiated 
with respect to time. It is irrelevant if this operation is performed in either the time domain or the 
frequency domain and so can be performed where it is most convenient. Care must just be taken to 
ensure that no artificial effects are introduced into the signal due to the differentiation operation. 
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The effects of amplitude modulation, and appropriate demodulation concerns, are the same as for 
phase modulation. An amplitude modulated sinusoidal frequency, with a higher carrier frequency than 
modulating frequency, shown in the Fourier domain is illustrated in Figure 2.3-5. The frequencies have 
been chosen arbitrarily, the only concern was that the carrier frequency be significantly greater than 
the modulating frequency. 

 

Figure 2.3-5 Amplitude modulation with higher carrier frequency than modulating frequency 

It is clear from the figure that because the carrier frequency is much higher than the modulating 
frequency there is no overlapping of modulating (or message) frequency content. Therefore standard 
demodulation techniques based upon Bedrosian’s theorem may be applied in order to recover the 
message signal from the overall signal in this example.  

Another significant difference between phase and amplitude modulation for these particular models 
can be seen. Only one pair of sidebands appear about the carrier peaks. This is in contrast to the 
multitude of sidebands which occur due to phase modulation. The consequence of this difference can 
only be investigated when investigating an actual pressure signal. 

The case for lower carrier frequency to modulating frequency is now illustrated. The moment the 
modulating frequency is higher than the carrier frequency there is overlapping of the frequency 
content, as was the case for phase modulation. This has been illustrated in Figure 2.3-6. 

 

Figure 2.3-6 Amplitude modulation with lower carrier frequency than modulating frequency 
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It can be seen in the figure that two sidebands per carrier exist. It is easy enough to determine which 
peak relates to which carrier in the simple example as only a single pair of sidebands exist per carrier 
frequency. However as soon as multiple carrier frequencies exist the differentiation between sideband 
peaks and which carrier frequency they are related is expected to become more difficult. This is further 
compounded when multiple modulating (message) frequencies are present in the signal.  

An example of amplitude modulation of the form expressed in Equation [2.3.7] for multiple carrier 
(stationary pressure) signals is provided in Figure 2.3-7. The Fourier coefficients are assumed to be 
unity, and the message signal (blade vibration) is assumed as a SDOF sinusoid with an amplitude of 
0.1 (i.e. the modulating term in the expression is chosen as (1 + 0.1 ⋅ sin(2 ⋅ 𝜋𝜋 ⋅ 128.8 ⋅ 𝑡𝑡))). 

 

Figure 2.3-7 Amplitude modulation with multiple carrier frequencies lower than a single modulating frequency 

In the final illustration both phase and amplitude modulation are mixed. The magnitude of the 
amplitude modulating term is maintained at 0.1 and the phase modulation amplitude is unity. The 
frequency of both modulation mechanisms is set at 128.8 Hz and the carriers are integer multiples of 
19Hz. The Fourier coefficients are assumed as unity as well. The resulting frequency domain 
representation of the signal is supplied in Figure 2.3-8. 

 

Figure 2.3-8 A mixture of phase and amplitude modulation with multiple carrier frequencies 
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There is now complete ambiguity as to which sideband peak is related to which modulation 
mechanism and carrier frequency as they now lie on top of one another at all 𝑛𝑛 ⋅ Ω ± 𝜔𝜔. 

Equation [2.3.7] is reformulated into the trigonometric equivalent in Equation [2.3.8]. The 
reformulation process is the same as mentioned before and is presented in section ‘7.1.2 A2 – 
Reformulation of Internal Pressure Signal Equation’. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = �1 + Γ ⋅ 𝜓̇𝜓(𝑡𝑡)𝑟𝑟� ⋅�𝑄𝑄𝑖𝑖 ⋅ cos (𝑖𝑖 ⋅ [θ + Ω ⋅ t + 𝜓𝜓(𝑡𝑡)𝑟𝑟 + 𝑟𝑟 ⋅ 𝜃𝜃𝑠𝑠 + 𝜆𝜆𝑟𝑟] )
∞

𝑖𝑖=0

 [2.3.8] 

A stationary observer can only detect the pressure at an individual point about the circumference of 
the casing. We therefore require only a point measurement with respect to time and not the entire 
distribution with respect to all points about the circumference 𝜃𝜃.  

If we assume that observations are being recorded at  𝜃𝜃  equal to zero radians we see that the 
expression becomes independent of measurement angle 𝜃𝜃. This can be done as the observation point 
is arbitrary with respect to the rotor reference frame and that the phase angle of response is variable. 
The 𝜃𝜃 independence was first noted in the development of Model 1 (Mengle, 1990). The trigonometric 
form of the equation, independent of 𝜃𝜃 is given in Equation [2.3.9]. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = �1 + Γ ⋅ 𝜓̇𝜓(𝑡𝑡)𝑟𝑟� ⋅�𝑄𝑄𝑖𝑖 ⋅ cos (𝑖𝑖 ⋅ [Ω ⋅ t +𝜓𝜓(𝑡𝑡)𝑟𝑟 + 𝑟𝑟 ⋅ 𝜃𝜃𝑠𝑠 + 𝜆𝜆𝑟𝑟] )
∞

𝑖𝑖=0

 [2.3.9] 

A stationary casing observer views the spinning internal pressure distribution from an arbitrary 
position. If the rotor is operating at Ω then the stationary observer can be seen as moving about the 
pressure distribution, as seen from the rotor reference frame, at −Ω. 

A method is required to compare the relation given in Equation [2.3.9] to actual pressure 
measurements. This is done in order to see how well it describes the underlying casing pressure 
behaviour. Fortunately a few of the parameters in the expression are known or can be estimated a 
priori. 

The rotor is known to be operating at a nominally constant speed, therefore the rotor speed can be 
continuously measured and an average value used. The expression was developed to describe the 
distribution about an individual waveform. So if it is possible to separate the passing waves, associated 
with individual blades, and then perform further signal processing on these waves the behaviour of 
individual blades may be able to be extracted. The splitting of pressure waves about individual passing 
blades is the topic of a following section. 

The Fourier coefficients, for the stationary wave, can be obtained by synchronously averaging the 
separated signal to determine the average waveform per revolution. Assuming that the blade 
vibration is asynchronous (aspects of the blade vibration occur at speeds which are not integer 
multiples of the rotor speed) then the synchronous averaging process should average out the phase 
and amplitude modulation effects directly related to the blades’ vibration. The synchronous averaging 
process is performed using a tachometer signal which was measured simultaneously. 

The tachometer signal used to perform the synchronous averaging can then be used to reconstruct 
the deterministic full time length pressure signal. This signal should now be free of blade vibration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2 Theoretical Development CB Church
   

84 

effects which are not at integer multiples of the rotor speed. A Fourier transform can then be applied 
to this signal in order to obtain the stationary pressure distribution’s Fourier coefficients.  

The phase angle offset at which the measurements are taken is not known, therefore a constant phase 
angle offset parameter can be used to tune the simulated signal to match a measured signal. The 
unknown phase angle is introduced into the equation and is represented by  𝜈𝜈 . The resulting 
expression is provided in Equation [2.3.10]. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = �1 + Γ ⋅ 𝜓̇𝜓(𝑡𝑡)𝑟𝑟� ⋅�𝑄𝑄𝑖𝑖 ⋅ cos (𝑖𝑖 ⋅ [Ω ⋅ t + 𝜓𝜓(𝑡𝑡)𝑟𝑟 + 𝜈𝜈] )
∞

𝑖𝑖=0

 [2.3.10] 

The phase angle 𝜈𝜈 is however limited to 𝜈𝜈 ∈ [−𝜋𝜋, 𝜋𝜋] radians as the period of the stationary pressure 
distribution is 2 ⋅ 𝜋𝜋.  

The remaining unaccounted for information is the blade angular displacement and velocity with 
respect to time as well as the tuning parameter Γ. Once the angular displacement is known with 
respect to time the angular velocity follows trivially. The amplitude modulation tuning parameter must 
be adjusted according to the measurements and cannot be directly inferred.  

The phase angle at which the blade vibrates relative to the system’s response has not yet been 
discussed. Although this topic will be covered during the development of the blade forced response 
model a brief comment will be made. Had the system been tuned and multiple distributions about all 
blades considered then the global behaviour of the system could be introduced by linking the blades’ 
individual phase angles according to the system mode shapes described in nodal diameters. The blade 
tip angular displacement is a function of the blade material and geometric properties as well as the 
excitation force. This is the subject of the succeeding section. 

The effect of pressure measurements at blade EO resonances will now be explored. If we assume that 
the blade vibrates as a SDOF sinusoid (the most common assumption for both BTT and CPS methods) 
then we can represent the angular displacement and velocity as Equations [2.3.11] and [2.3.12] 
respectively. 

 𝜓𝜓(𝑡𝑡)𝑟𝑟 =  𝐴𝐴 ⋅ sin(𝜔𝜔 ⋅ 𝑡𝑡 + 𝜙𝜙) [2.3.11] 

 𝜓̇𝜓(𝑡𝑡)𝑟𝑟 = 𝜔𝜔 ⋅ 𝐴𝐴 ⋅ cos(𝜔𝜔 ⋅ 𝑡𝑡 + 𝜙𝜙) [2.3.12] 

These terms are substituted into Equation [2.3.10] to yield Equation [2.3.13]. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = (1 + Γ ⋅ 𝜔𝜔 ⋅ 𝐴𝐴 ⋅ cos(𝜔𝜔 ⋅ 𝑡𝑡 + 𝜙𝜙)) ⋅�𝑃𝑃𝑖𝑖 ⋅ cos (𝑖𝑖 ⋅ [Ω ⋅ t + 𝐴𝐴 ⋅ sin(𝜔𝜔 ⋅ 𝑡𝑡 + 𝜙𝜙) + 𝜈𝜈] )
∞

𝑖𝑖=0

 [2.3.13] 

Modulation will result in observed sidebands at locations indicated in Equation [2.3.14]. 

 𝜔𝜔′ = 𝑖𝑖 ⋅ Ω ± 𝜔𝜔 [2.3.14] 

The multipliers 𝑖𝑖 are part of the set 𝑖𝑖 ∈ ℤ. 
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Finally, if the system is being excited at an integer EO Ε of the rotor speed then the observed sidebands 
will coincide with the rotor harmonics, the observed sidebands for this case is given in Equations 
[2.3.15] and [2.3.16]. 

 𝜔𝜔′ = 𝑖𝑖 ⋅ Ω ± 𝐸𝐸 ⋅ Ω = Ω(𝑖𝑖 ± Ε) [2.3.15] 

Due to the fact that 𝑖𝑖 ∈ ℤ and 𝐸𝐸 ∈ ℕ>0, the observed vibration frequencies reduce to: 

 ∴ 𝜔𝜔′ = 𝑖𝑖 ⋅ 𝛺𝛺 [2.3.16] 

Therefore the frequency locations of the sidebands will be indistinguishable from the engine 
harmonics for the case of resonant response. The engine harmonics’ amplitudes will however peak at 
resonance, as was found by Ratz et al. (Ratz et al., 2013). 

Therefore, so long as the system is being operated just off the desired resonance of a blade being 
investigated then information regarding its behaviour will be present in the stochastic part of the 
pressure signal. This is of course subject to sufficient broad spectrum energy entering the system in 
order to excite modes off of engine harmonics. 

By performing the signal processing (SP) procedure suggested by Forbes et al. on pressure 
measurements approaching EO vibration, the narrow band side peaks will appear with increasing 
magnitudes as the EO is approached (Forbes and Randall, 2013). This increase in sideband peak 
amplitude is attributed to the response level (angular displacement and velocity) increasing. Further 
the sideband peaks should disappear at the EO excitation point as the SP techniques remove all engine 
ordered response. Once the EO excitation point has been passed the narrow band side peaks are 
expected to reappear once again and then decrease in magnitude.  

The significance of this effect is that the narrow band side peaks may be used to identify resonance 
points from a pressure signal. It may thus be used to monitor the system’s behaviour. If individual 
blade’s pressure distributions can be separated out of the entire pressure signal and the SP procedure 
applied to these signals it may be possible to obtain an indicator of the individual blade’s behaviour. 

Up until this point only the modulating effects of individual blade vibration on the stationary pressure 
distribution about that blade have been discussed. As was said, this was based on the original work in 
the development of Model 2.  

The global pressure response due to system modes forming and the Doppler shifting of frequency 
content due to that system response has not been handled thus far (Model 1). We start by considering 
the observed blade frequencies due to blade vibrational effects on the internal spinning lobes; the 
expression is expanded in Equations [2.3.17] to [2.3.20] (Mengle, 1990). 

 𝜔𝜔′ = 𝜔𝜔 + 𝑘𝑘′ ⋅ Ω [2.3.17] 

 𝑘𝑘′ = 𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵 [2.3.18] 

 ∴ 𝜔𝜔′ = 𝜔𝜔 + (𝑘𝑘 + 𝑚𝑚 ⋅ 𝐵𝐵) ⋅ Ω [2.3.19] 

 ∴  𝜔𝜔′ = 𝜔𝜔 + 𝑘𝑘 ⋅ Ω + 𝑚𝑚 ⋅ 𝐵𝐵 ⋅ Ω [2.3.20] 
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In the equations the parameter 𝑚𝑚 is an integer, the travelling wave mode number 𝑘𝑘 lies within the 
set 𝑘𝑘 ∈ {0,1,2, … ,𝐵𝐵 − 1} and 𝐵𝐵 is the number of blades on the rotor of interest. 

We can split the observed frequencies into three sections. Namely where the parameter 𝑚𝑚 is less than 
zero, equal to zero and greater than 0. This results in two sections for the observed frequencies, 
namely frequencies less than zero for m less than zero, and observed frequencies greater than zero 
for 𝑚𝑚 equal to and greater than zero.  

The observed wave numbers 𝑘𝑘′ are in general not symmetric about zero. The Fourier transform of a 
real time domain signal is however symmetric about zero hertz. Therefore the observed frequencies 
must also be symmetric in the frequency domain. This is referred to as frequency folding. 

In order to find the symmetric observed frequencies, due to negative observed travelling wave 
numbers, the symmetry of the observed wave numbers must be explored. For every negative wave 
number there now exists a positive value of the magnitude (and similarly for every positive value 
there exists a negative value). The observed wave numbers for positive and negative 𝑚𝑚 values are 
presented in Equations [2.3.21] and [2.3.22] respectively. 

 𝑘𝑘+′ = 𝑘𝑘 +𝑚𝑚≥0 ⋅ 𝐵𝐵 [2.3.21] 

 𝑘𝑘−′ = |𝑚𝑚<0| ⋅ 𝐵𝐵 − 𝑘𝑘 [2.3.22] 

The observed blade response frequencies due to positive 𝑚𝑚 values are given by Equation [2.3.23]. 

 𝜔𝜔+′ = 𝑚𝑚≥0 ⋅ 𝐵𝐵 ⋅ Ω + 𝑘𝑘 ⋅ Ω + 𝜔𝜔 [2.3.23] 

The observed frequencies due to negative 𝑚𝑚 values are a little trickier to handle. Before we apply 
folding to reveal them it may be useful to review the observed frequencies due to negative 𝑚𝑚 values 
in an expanded form, this is given in Equation [2.3.24]. 

 𝜔𝜔−′ = 𝑚𝑚<0 ⋅ 𝐵𝐵 ⋅ Ω + 𝑘𝑘 ⋅ Ω +𝜔𝜔 [2.3.24] 

The observed frequencies must be symmetric in the frequency domain, therefore the observed 
frequencies due to negative 𝑚𝑚 values in the positive half of the frequency spectrum can be given by 
Equation [2.3.25]. 

 𝜔𝜔−′ = |𝑚𝑚<0| ⋅ 𝐵𝐵 ⋅ Ω − 𝑘𝑘 ⋅ Ω − 𝜔𝜔 [2.3.25] 

It is now possible to combine Equations [2.3.23] and [2.3.25] to obtain an expression for all observed 
blade response frequencies regardless of the value of m. The result is provided in Equation [2.3.26]. 

 𝜔𝜔′ = |𝑚𝑚| ⋅ 𝐵𝐵 ⋅ Ω ± (𝑘𝑘 ⋅ Ω + 𝜔𝜔) [2.3.26] 

Once again the parameter 𝑚𝑚 in Equation [2.3.26] may take any integer value. 

Symmetry is now achieved in the frequency domain due to the doubly symmetric nature of the system 
stemming from the folding of the observed travelling mode wave numbers 𝑘𝑘′.  

It can be now seen that two observed frequency peaks, per value of 𝑚𝑚, exist in each frequency range 
of length  𝐵𝐵 ⋅ Ω  and that both are related to blade vibration. Mengle had already alluded to the 
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problem that two peaks will exist per blade passing frequency range when only the positive half of the 
frequency spectrum was considered (Mengle, 1990).  

In the formulation the absolute value of the original observed flutter frequencies was taken and results 
in the same solution as was found in Equation [2.3.26]. Therefore the same difficulties in identifying 
the blade flutter frequencies still exists.  

The originally suggested solution involved determining the observed travelling wave number by using 
a second stationary observer placed on the casing. The second stationary observer had to be placed 
at an angular offset equal to the angular distance between two blades (at the arbitrary axial distance 
𝑥𝑥 downwind of the rotor row of interest). An alternative to this solution route is rather sought. 

It would be interesting to apply the ensemble averaging process on full time domain measured signals 
using a frequency range of blade passing frequency (BPF) rather than rotor frequency Ω. This is done 
in order to see if two peaks related to vortex generation and system tuned response appear separate 
from the other stochastic information. This was suggested by the work of Mengle (Mengle, 1990). 

The problem now arises as to how to express the observed frequency content in the time domain. 
Even though there exists a symmetry in the frequency domain, considering only positive 𝑚𝑚 values and 
adjusting the provided expression simply leads to a cancelling of specific terms in the pressure relation 
developed by Mengle (this can easily be deduced when reviewing the components +𝜔𝜔,−𝜔𝜔, +𝑘𝑘 ⋅
Ω 𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑘𝑘 ⋅ Ω) (Mengle, 1990).  

The trigonometric form of Model 1 was shown to not modulate the signal but rather simply shift 
frequency components by a certain amount given the travelling wave mode number 𝑘𝑘, the rotor speed 
Ω and the number of blades 𝐵𝐵. If we express the global pressure spectrum, with shifted blade vibration 
frequencies, in the same form as the trigonometric representation of Model 1 we obtain 
Equation [2.3.27]. 

 𝑃𝑃(𝑡𝑡) = � 𝐷𝐷𝑚𝑚 ⋅ �cos�𝑡𝑡 ⋅ (𝑚𝑚 ⋅ 𝐵𝐵 ⋅ Ω + 𝑘𝑘 ⋅ Ω + 𝜔𝜔)�  + 𝑗𝑗 ⋅ sin�𝑡𝑡 ⋅ (𝑚𝑚 ⋅ 𝐵𝐵 ⋅ Ω + 𝑘𝑘 ⋅ Ω + 𝜔𝜔)��
∞

𝑚𝑚=−∞

 [2.3.27] 

In this formulation the only observed frequencies will be those that are Doppler shifted to BPF 
(Mengle, 1990; Murray and Key, 2015). In practice the pressure spectrum contains all blade passing 
harmonics. The assertion that all blade passing harmonics are contained in the pressure signal is 
supported by the experimental work done by Forbes et al. (Forbes and Randall, 2013). From 
experimental measurements and signal processing all blade passing harmonics are clearly seen.  

According to Model 1 Doppler shifting of the blade vibration signal is however expected to only occur 
about certain engine harmonics. Therefore the above suggested model is incomplete from a physical 
point of view as it does not describe the full pressure spectrum within the casing. 

It was shown that the Doppler shifts occur in symmetric pairs about certain engine harmonics due to 
the folding phenomenon (Mengle, 1990). It may therefore be useful to rather employ an expression 
similar to that derived originally by Forbes et al. in order to describe the full pressure signal  (Forbes 
and Randall, 2013). The expression must be constructed to contain both all engine harmonics and 
symmetric Doppler shifted terms about certain chosen harmonics simultaneously.  
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The symmetry of the Doppler shifts allows modelling the phenomenon as a modulation effect. 
Specifically, as though it modulates the global pressure signal captured by the stationary observer on 
the casing.  

At this point it is unknown whether or not the best representation of the phenomenon would be phase 
or amplitude modulation and thus an investigation must be performed to determine which would best 
suit the application. Initially a phase modulation form of the signal is proposed to be investigated, this 
is provided in Equations [2.3.28] and [2.3.29]. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝐷𝐷𝑖𝑖′ ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜈𝜈]+𝑗𝑗⋅[𝐼𝐼(𝑖𝑖)⋅Λ⋅sin(𝑘𝑘⋅Ω⋅t+𝜔𝜔⋅𝑡𝑡+𝜒𝜒)])
∞

𝑖𝑖=0

� [2.3.28] 

 𝐼𝐼(𝑖𝑖) = �1, 𝐼𝐼𝐼𝐼 𝑖𝑖 ≡ {1 ⋅ 𝐵𝐵, 2 ⋅ 𝐵𝐵, … ,𝑛𝑛 ⋅ 𝐵𝐵} 
0, 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  [2.3.29] 

The parameter 𝑘𝑘 lies within the set 𝑘𝑘 ∈ {0,1,2, … ,𝐵𝐵 − 1}, 𝐷𝐷0′ = 𝐷𝐷0 and 𝐷𝐷𝑖𝑖′ = 2 ⋅ 𝐷𝐷𝑖𝑖 for 𝑖𝑖 ∈ ℤ+. 

In the formulation an indicator function 𝐼𝐼(𝑖𝑖) is used to specify about which specific engine harmonic 
sidebands should appear. The indicator values are chosen depending on the rotor geometry. The rotor 
geometry of interest is the number of blades on the rotor. The expression is constructed such that the 
frequency content is mirrored about BPFs (as was found in the Equation [2.3.26]). Thus a symmetric 
pair of sidebands have been artificially forced about the BPFs. Further, the expression now retains the 
presence of all engine harmonics in the full pressure signal. 

An additional tuning parameter Λ has been included in the formulation in order to allow scaling of the 
vibration response. The phase angle at which the blade vibration occurs relative to the full system’s 
response is contained within the blade phase angle parameter 𝜒𝜒. This parameter is equivalent to the 
blade phase angle parameter in the forced response expression derived from experimental modal 
analysis techniques. The full pressure system has an offset phase angle  𝜈𝜈 . Finally the Fourier 
coefficients 𝐷𝐷𝑖𝑖′ are equivalent to those developed for the model based on the stationary pressure 
wave (see Equation [2.3.10]).  

An advantage of Equation [2.3.28] is that the sidebands due to phase modulation of the stationary 
pressure wave can be easily included by adding the blade vibration in terms of angular displacement 
(as well as the amplitude modulation due to blade tip angular velocity). A major disadvantage of the 
expression is that it is no longer directly based on the physics describing vortex generation and global 
system mode response in terms of nodal diameters. It is based solely on observations from the 
expected observed blade vibration frequencies. Therefore there is no guarantee that it will produce 
the same true effect in either the frequency or time domain.  

It is important to illustrate that the relation does indeed place blade vibration frequency components 
at the expected locations. The frequency content of a simplistic three bladed system will now be 
illustrated using the above developed relation.  

It is assumed that the system is tuned, therefore only one travelling wave mode is present. The blade 
vibration frequency is chosen as 19 Hz and the rotor speed as 125 Hz such that it can be seen where 
the frequency content is shifted to (in order to adhere to the conditions of Bedrosian’s theorem). The 
case for the travelling wave mode number 𝑘𝑘 equal to zero is shown in Figure 2.3-9. 
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Figure 2.3-9 Pressure response for reformulated Model 1 with k = 0 

According to Equation [2.3.26] the blade vibration sidebands must occur about the BPFs at a distance 
of 𝜔𝜔  for the case of 𝑘𝑘  equal to zero. It is clear in the figure that this is indeed what happens as 
sidebands at 19 Hz appear about every third BPF. The case for 𝑘𝑘 equal to 1 is shown in Figure 2.3-10. 

 

Figure 2.3-10 Pressure response for reformulated Model 1 with k = 1 

For this specific case (𝑘𝑘 = 1) the sidebands are expected to occur at a distance of 1 ⋅ Ω +ω about the 
BPFs. It can be seen in the figure that this is indeed the case with sidebands occurring at a distance of 
144 Hz about the BPFs. 

The case of mistuning must now be included in the model. It is known that no system is perfect, 
therefore a small amount of mistuning will always be present. A combination of all travelling wave 
modes is expected to occur simultaneously for the mistuned case.  

The strength of each individual mode’s presence in the full pressure signal depends on the excitation 
conditions and level of mistuning. Using the same simple system which contains three blades, and 
plotting the responses for all possible 𝑘𝑘-values separately you obtain Figure 2.3-11. 
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Figure 2.3-11 Pressure response for reformulated Model 1 with all possible k values plotted separately 

As expected, when all possible 𝑘𝑘 values are plotted simultaneously then the Doppler shifting effect is 
seen to occur about all engine harmonics. 

An expression which captures all possible 𝑘𝑘 -values simultaneously has been proposed in 
Equation [2.3.30]. All possible modes are included using a sum. Each component of the sum has an 
associated tuning parameter Λ𝑘𝑘, depending on the strength of its contribution the parameter can be 
scaled accordingly. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝐷𝐷𝑖𝑖′ ⋅ 𝑒𝑒�𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜈𝜈]+𝑗𝑗⋅�∑ [𝐼𝐼(𝑖𝑖)⋅Λk⋅sin(𝑘𝑘⋅Ω⋅t+𝜔𝜔⋅𝑡𝑡+𝜒𝜒)]𝐵𝐵−1
𝑘𝑘=0 ��

∞

𝑖𝑖=0

� [2.3.30] 

Using Equation [2.3.30] to generate a signal with all possible k-values occurring simultaneously (all 
with a scaling factor Λ at unity) is presented in Figure 2.3-12. 

 

Figure 2.3-12 Pressure response for reformulated Model 1 with all possible k values 

Once again sidebands appear about each engine harmonic when all 𝑘𝑘- values are simultaneously 
present. The ability to tune each of the system modes present separately has been included in the 
parameter Λ𝑘𝑘. Therefore the relation is able to be adjusted according to the excitation conditions, the 
level of mistuning and the system’s geometry. 

The case for amplitude modulation must now be explored. It was seen that phase modulation of the 
signal causes multiple sidebands to pear about each BPF. According to the expected observed 
frequencies, provided in Equation [2.3.26], only a single pair of sidebands should be present about 
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each engine harmonic. Amplitude modulation of the signal is expected to only cause a single pair of 
sidebands per carrier frequency. The replacement of the phase modulation with amplitude 
modulation is illustrated in Equation [2.3.31]. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ����[𝐼𝐼(𝑖𝑖) ⋅ Λk ⋅ sin(𝑘𝑘 ⋅ Ω ⋅ t + 𝜔𝜔 ⋅ 𝑡𝑡 + 𝜒𝜒)]
𝐵𝐵−1

𝑘𝑘=0

 � ⋅ 𝐷𝐷𝑖𝑖′ ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜈𝜈])
∞

𝑖𝑖=0

� [2.3.31] 

The effect of the adjustment is shown in Figure 2.3-13. The same system was plotted (three blades on 
a rotor operating at 125 Hz with the blades vibrating at 19 Hz), for all possible values of 𝑘𝑘  each 
occurring at the same magnitude. 

 

Figure 2.3-13 Pressure response for reformulated Model 1 with all possible k values using amplitude modulation 

It can be seen now that only a single pair of sidebands appear about each engine harmonic. Therefore 
the amplitude modulation representation of the phenomenon may be more appropriate than the 
phase modulation representation. As was previously mentioned, this is because it places only a single 
pair of symmetric sidebands per travelling wave mode number 𝑘𝑘 as opposed to multiple sidebands 
per travelling wave mode number 𝑘𝑘.  

As a final check the expression was used to plot the frequency response for a tuned system with a 
single 𝑘𝑘-value of zero. It is therefore expected that the sidebands occur about every third engine 
harmonic (at the BPF). 

 

Figure 2.3-14 Pressure response for reformulated Model 1 with k=0 using amplitude modulation 

It can be seen that the final form of the expression, Equation [2.3.31], best describes the pressure 
distributions behaviour when reviewing it from a Model 1 perspective.  
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2.4. Blade Vibrational Response Representation 
Being able to represent a blade’s behaviour accurately is an integral part of the pressure signal 
representation. Most research has suggested that simply fitting a SDOF sinusoid to the blade response 
is sufficient. A more advanced technique was proposed by Forbes et al. whereby the blade is 
represented by a single spring-mass-damper (SMD) system (Forbes and Randall, 2013). The SMD is 
based upon the geometric and material properties of a single blade. The response of this 
representation to a forcing function is then used to create the blade’s forced response. 

Multiple alternative representation techniques have been considered for the purpose. They include 
the use of a full dynamic FE model to represent the blade geometric and material properties along 
with a time based integration scheme to obtain the systems response to a harmonic input. 
Alternatively the blades are represented as simplified Euler-Bernoulli beams, the same time domain 
integration procedure would be required to obtain the system’s response in this case.  

We have assumed that the pressure profile about the casing inner wall, in line with the rotor and hub 
assembly, is influenced solely by the blade tip’s behaviour. It is therefore believed that a full FE or 
Euler-Bernoulli approach, which requires time domain integration, may be too costly or complex to 
employ as a response representation for use in an inverse problem scenario.  

A lumped mass model approach would also not be appropriate as we are only interested in individual 
blade tips local effect on the pressure distribution, the physical coupling of blades is therefore believed 
to be inconsequential for this purpose because it can be modelled as separate to the whole system. 

The question must be asked what can be gained by modelling a blade as a multiple degree of freedom 
(MDOF) system as opposed to the first two systems suggested (SDOF sinusoid or SMD system).  

Firstly under forced response the blades are not being excited strictly by a sinusoidal or harmonic force 
acting at a single frequency. The excitation, impingement of the blades by upstream stator wakes, is 
more closely matched to an impulse excitation which occurs at the blade passing frequency (BPF). 
Thus, it is believed that in addition to being excited at all engine harmonics, broad spectrum energy is 
entering the system via various excitation mechanisms.  

Further the blade and hub assemblies are never perfectly tuned and so will be influenced by all of the 
rotor harmonics to differing degrees. It can be seen that a SDOF sinusoidal model will not be able to 
capture the response to multiple excitation frequencies simultaneously.  

The SDOF SMD system, suggested by Forbes at al., captures the response more closely to reality when 
compared to the SDOF sinusoidal model. This is because it is based directly on the blades geometry 
and material properties (Forbes and Randall, 2013). It is capable of representing the response to a 
range of input frequencies as well as broad spectrum energy entering the system through additional 
sources of noise.  

However a SDOF SMD system only facilitates estimation of a single natural frequency, therefore the 
frequency response function (FRF) for the blade will have a single peak at the fundamental frequency 
and then taper off. The true FRF will have additional peaks related to the remaining natural 
frequencies across the full excitation region. This is important because we assumed that excitation 
occurs over a large frequency range at multiples of the shaft speed (due to impingement of upstream 
stator wakes) as well as due to broad spectrum noise. 
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Excitation at rotor harmonics will inherently lie near to the additional natural frequencies. Their 
interaction with the system supplies unique information to the individual blade’s response. They will 
therefore have a unique effect on the pressure spectrum. Further, the relative response magnitudes 
at all engine harmonics follow the form of the blade’s FRF and so by inclusion of additional natural 
frequencies the response magnitudes of each engine harmonic will be more closely related to the true 
response nature. The inclusion of this unique blade behaviour information may be able to be used to 
separate it from the complex pressure distribution. 

Reconstruction of full FRFs, by adding individual SDOF FRFs, has been widely used in experimental 
modal analysis. Methods such as the Ewins-Gleeson, peak-picking and circle fitting algorithms, among 
others, have been proposed for this purpose (Ewins and Gleeson, 1982; Ewins, 1995; Kennedy and 
Pancu, 1947).  

An approach based on adding a certain number of individual SDOF FRFs to represent a chosen number 
of modes is therefore suggested. The number of SDOF systems included depends on which modes are 
expected to have a significant influence on the blade response. In the literature reviewed it was found 
that only the first few modes and associated mode shapes play a significant role with respect to blade 
vibration, therefore a natural limit to the number SDOF FRFs added to the model exists.  

We start our derivation by stating that the time domain tip response is the inverse Fourier transform 
of the frequency response, this is given in Equation [2.4.1].  

 𝑥𝑥(𝑡𝑡)𝑟𝑟 =  ℱ−1�𝑋𝑋(𝑗𝑗 ⋅ 𝜔𝜔)�  [2.4.1] 

The blade response in the frequency domain is simply the convolution of the blade’s transfer 
function 𝐻𝐻 and the forcing function 𝐹𝐹. This is indicated in Equation [2.4.2]. 

 {𝑋𝑋(𝑗𝑗 ⋅ 𝜔𝜔)} = [𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔)] ⋅ {𝐹𝐹(𝑗𝑗 ⋅ 𝜔𝜔)}  [2.4.2] 

The blade transfer function and forcing function will be tackled separately. We start with the blade 
displacement transfer function, represented as the sum of individual SDOF FRFs, in Equation [2.4.3].  

 𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔) =  �
𝐴𝐴𝑟𝑟

𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 + 𝑗𝑗 ⋅ 𝜂𝜂𝑟𝑟 ⋅ 𝜔𝜔𝑟𝑟2

𝑁𝑁

𝑟𝑟=1

  [2.4.3] 

The formulation assumes a system with structural damping. Each individual mode has a modal 
damping ratio of  𝜂𝜂𝑟𝑟. The natural frequency of each mode is 𝜔𝜔𝑟𝑟 and the modal constants 𝐴𝐴𝑟𝑟 scale the 
amplitude of each mode in the sum.  

The modal damping ratio can either be assumed given the material and geometric properties of the 
rotor and hub assembly structure, or determined from experimental observations. If experimental 
modal test data is available then the half power point method described by Ewins may be used to 
estimate the damping (Ewins, 1995). Modal damping estimation from the half power points is shown 
in Equation [2.4.4]. 

 𝜂𝜂𝑟𝑟 =
𝜔𝜔𝑎𝑎2 − 𝜔𝜔𝑏𝑏

2

2 ⋅ 𝜔𝜔𝑟𝑟2
  [2.4.4] 
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The method used to obtain the half power points, 𝜔𝜔𝑎𝑎 and 𝜔𝜔𝑏𝑏, for modal damping constant estimation 
is shown in Figure 2.4-1. 

 

Figure 2.4-1 Modal damping estimation using half power points 

As was previously stated, if the modal damping cannot be obtained experimentally then a value must 
be chosen and tuned according to the material and geometric properties of the blades. The damping 
however does not change where the resonance peaks lie, and so long as the system is assumed to be 
lightly damped it is not expected to have a significant impact on the form of the frequency response 
function (FRF). 

An example FRF constructed by using the above proposed methodology is presented in Figure 2.4-2. 
Three natural frequencies were chosen for demonstration at 128.8 Hz, 710 Hz and 790 Hz. Modal 
damping for all modes was assumed as 0.01, and the modal constants from modes 1 to 3 were 
arbitrarily chosen as 1, 0.5 and 0.5. 

 

Figure 2.4-2 Example MDOF FRF constructed from individual FRFs 

An artefact of the construction methodology is the generation of anti-resonances in between each 
SDOF system added. Anti-resonances occur in the FRF because the SDOF systems are added at the 
same phase angle, and at each resonance (and anti-resonance) there is a 180° phase shift. These anti-
resonances cause undesirable discontinuities in the FRF which may not be attributed to actual physical 
behaviour.  Therefore, in order to ensure that they do not form each individual receptance must be 
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added at 180° phase difference to the prior SDOF receptance. This adjustment phase shift to prevent 
the occurrence of anti-resonances has been included in Equation [2.4.5]. 

 𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔) = ���
𝐴𝐴𝑟𝑟

𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 + 𝑗𝑗 ⋅ 𝜂𝜂𝑟𝑟 ⋅ 𝜔𝜔𝑟𝑟2
�

𝑁𝑁

𝑟𝑟=1

 ⋅ 𝑒𝑒𝑗𝑗⋅𝜋𝜋⋅𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟,2)� ⋅ 𝑒𝑒𝑗𝑗⋅𝜒𝜒  

 

[2.4.5] 

The function 𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟, 2) is a remainder function and returns a 1 if 𝑟𝑟 is even or 0 if 𝑟𝑟 is odd. The blade 
response phase angle  𝜒𝜒  has also been included in the formulation so that it can be adjusted 
accordingly, the phase angle is limited to the range 𝜒𝜒 ∈ [−𝜋𝜋,𝜋𝜋]. 

An anti-resonance free example, using the above mentioned method, is given in Figure 2.4-3. 

 

Figure 2.4-3 Example MDOF FRF constructed without anti-resonances 

A problem still exists with the above system. Even if the three resonance peak amplitudes are correctly 
scaled with respect to their relative heights on the FRF, their absolute magnitude with respect to unit 
input force is still unknown.  

When obtaining a receptance from an analytical study the modal constants are obtained from the 
system mode shapes (or via the eigenvectors obtained when solving the eigen-problem with the mass, 
stiffness and damping matrices for the numerically derived case).  

In terms of experimental modal analysis, the receptance peak heights (modal constants) can be 
obtained directly from the experimentally obtained FRF. If the input force is known (as is the case 
when the system is excited with a modal hammer) the response in terms of force can be obtained. 
This information is however unknown for the system developed thus far. 

In this case a scaling factor can be estimated from a SDOF spring-mass-damper (SMD) approximation 
or FE analysis of a blade. This scaling factor can then be used to adjust the global FRF’s heights 
appropriately. The SDOF transfer function for a SMD system is repeated in Equation [2.4.6]. 

 𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔)𝑟𝑟 =
1 𝑘𝑘𝑟𝑟⁄

(𝜔𝜔𝑟𝑟2 − 𝜔𝜔2) + 𝑗𝑗 ⋅ 𝜂𝜂𝑟𝑟 ⋅ 𝜔𝜔 𝜔𝜔𝑟𝑟⁄  
 [2.4.6] 
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The scaling factor is represented by 𝜏𝜏 in the final form of the system FRF. 

 𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔) = τ ⋅ ���
𝐴𝐴𝑟𝑟

𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 + 𝑗𝑗 ⋅ 𝜂𝜂𝑟𝑟 ⋅ 𝜔𝜔𝑟𝑟2
�

𝑁𝑁

𝑟𝑟=1

 ⋅ 𝑒𝑒𝑗𝑗⋅𝜋𝜋⋅𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟,2)� ⋅ 𝑒𝑒𝑗𝑗⋅𝜒𝜒  

  

[2.4.7] 

  𝜏𝜏 =
�𝐻𝐻�1�
𝐴𝐴1

  

 

[2.4.8] 

The parameter �𝐻𝐻�1� is the fundamental peak height obtained from a SDOF blade approximation. 

The next concern is how to represent the blade forcing function. It is important to note that the blade 
transfer function describes the blade’s physical response with respect to a unit harmonic input force. 
Therefore the forcing function model used must be harmonic in nature.  

Forbes et al. described the input force using a Fourier series (Forbes and Randall, 2013). The Fourier 
series is inherently a sum of harmonic terms and so is a good choice to describe the input force from 
a formulation point of view.  

In the work of Forbes et al. it was stated that the Fourier coefficients can be chosen such that any 
excitation shape can be obtained, however no indication as to the shape that was used to model the 
input force simulated for Model 2 was provided (Forbes and Randall, 2013). An appropriate input 
forcing shape model is therefore sought. 

As the blades pass through an upstream wake the force applied by the upstream wake is expected to 
increase (due to a larger amount of the flow being present on the blade’s surface). The force is 
expected to peak when all of the flow from the upstream stator is being directed onto the blade. Once 
the blade starts to move beyond the stream the force applied by that individual stream is once again 
expected to decrease. A method to describe this phenomenon is required. 

It is proposed that the periodic input force be modelled as a sum of individual univariate Gaussian 
distributions in the time domain. Each time a blade passes an upstream stator wake a Gaussian shaped 
force distribution is applied to a blade (with respect to time). This will provide the expected force 
increase, peak and decrease. A Fourier transform can then be applied to the time domain forcing 
function signal in order to convert it to a harmonic form. The univariate Gaussian distribution with 
mean 𝜇𝜇 and standard deviation 𝜎𝜎 is given in Equation [2.4.6]. 

 𝑔𝑔(𝑡𝑡|𝜇𝜇,𝜎𝜎) = �
1

𝜎𝜎√2 ⋅ 𝜋𝜋
� ⋅ 𝑒𝑒

−(𝑡𝑡−𝜇𝜇)2
2⋅(𝜎𝜎)2  [2.4.9] 

The forcing pulse signal is therefore the sum of the individual Gaussians. The periodic force with 
respect to time is provided in Equation [2.4.10]. For simplicity the force applied by each upstream 
stator is assumed to be equivalent. This assumption is addressed further on. 

 𝑔𝑔(𝑡𝑡|𝜇𝜇𝑖𝑖 ,𝜎𝜎) = ��
1

𝜎𝜎√2 ⋅ 𝜋𝜋
� ⋅ 𝑒𝑒

−(𝑡𝑡−𝜇𝜇𝑖𝑖)2
2⋅(𝜎𝜎)2

𝑛𝑛

𝑖𝑖=1

 [2.4.10] 
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It is proposed that the standard deviation of the Gaussian is to be a function of the rotor speed and 
the angle through which the blade passes the upstream stator wake. Thus as the rotor speed increases 
the amount of time that the force is applied to the blade, per upstream stator, decreases as is 
expected. If the maximum height of the Gaussian sum is limited to unity then as the speed approaches 
infinity the individual input forces approach unit impulse excitation. 

The use of a Gaussian has an added advantage. For very closely packed blades, as is the case on a real 
rotor, two adjacent blades may be experiencing flow from the same upstream stator at particular 
time. Only the magnitude of the force applied to each blade by the stream would be different. The 
force depends on the position of the blades as they move past the stator. The leading blade will start 
to experience flow from the upcoming stator before the lagging blade does. Representing the force 
acting on the blades as Gaussians facilitates simple mixing of the forces acting simultaneously on an 
individual blade. 

For steady operation and blades experiencing flow from multiple upstream stators simultaneously the 
force on the blades should never drop to zero (as a force is being constantly applied to the blade). Had 
the system been modelled as a set of impulses the forces acting on the blade would however always 
return to zero, and as per the argument this is not expected in practice.  

If the blades are very closely packed then the angle through which each blade will be excited by each 
upstream stator can be estimated as the circumference divided by the number of blades. This relation 
is given in Equation [2.4.11].  

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
2 ⋅ 𝜋𝜋
𝐵𝐵

   𝑟𝑟𝑟𝑟𝑟𝑟 [2.4.11] 

If the blades are not closely packed (for example when using an experimental hub and blade assembly 
with a large angular spacing between blades) the angle must be estimated using a different approach.  

An estimate can be obtained by using the radius from the center of the shaft to the tip, R, and the 
effective tip chord length 𝐶𝐶′. The effective chord length is a function of the chord length and the 
stagger angle 𝛾𝛾. The alternative relation is given in Equation [2.4.12]. 

 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 2 ⋅ sin−1 �
𝐶𝐶′

2 ⋅ 𝑅𝑅�
=  2 ⋅ sin−1 �

𝐶𝐶 ⋅ sin(𝛾𝛾)
2 ⋅ 𝑅𝑅 �    𝑟𝑟𝑟𝑟𝑟𝑟  [2.4.12] 

Finally the standard deviation can be calculated using the above derived angle and the rotor speed Ω. 
It is chosen that the standard deviation be half the amount of time that it takes the blade to pass 
through the wake. This is done so that approximately 95% of the force is applied over the duration 
that it takes a blade to move through the angle 𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (all of the force is applied within two standard 
deviations). 

 𝜎𝜎 =
𝜃𝜃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
2 ⋅ Ω

  [2.4.13] 

The last step in the formulation of a time based forcing function is to specify the mean values for each 
of the normal distributions. This is simply the set of the blade passing times, which is a direct function 
of the blade passing frequency.  
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The blade passing frequency (BPF) can be calculated by multiplying the number of upstream stators 𝑉𝑉 
by the rotor speed in Hertz. Thus an excitation time point for each upstream stator has been 
established. The relation for the time points at which the blades pass the upstream stator vanes is 
provided in Equation [2.4.14]. 

 𝜇𝜇𝑖𝑖 = 𝑖𝑖 ⋅ 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑖𝑖 ⋅ 𝑉𝑉 ⋅ 𝑓𝑓𝑅𝑅  [2.4.14] 

The parameter 𝑖𝑖 is simply a counter restricted to the positive set of integers. 

Equation [2.4.9] has been used to create an exemplar periodic force model based on Gaussian 
distributions. The blade forcing function has a blade passing frequency of 16 Hz and the standard 
deviation of the Gaussians is 0.00625 seconds. The example is illustrated in Figure 2.4-4. 

 

Figure 2.4-4 Blade forcing function 

Thus far the model has assumed a noise free environment in the casing. This is however not the case 
in practice. Similar to the model developed by Forbes at al., a Gaussian noise term is simply added to 
the time based forcing function (Forbes and Randall, 2013). The noise is given by  𝑛𝑛(𝑡𝑡)  in 
Equation [2.4.15]. 

 𝑔𝑔(𝑡𝑡|𝜇𝜇𝑖𝑖,𝜎𝜎) = 𝑛𝑛(𝑡𝑡) ⋅��
1

𝜎𝜎√2 ⋅ 𝜋𝜋
� ⋅ 𝑒𝑒

−(𝑡𝑡−𝜇𝜇𝑖𝑖)2
2⋅(𝜎𝜎)2

𝑛𝑛

𝑖𝑖=1

 [2.4.15] 

For the same arbitrary forcing example above the effect of noise with a signal-to-noise ratio of 35 on 
the forcing function has been illustrated in Figure 2.4-5. 

 

Figure 2.4-5 Blade forcing function with Gaussian noise 
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A final example of a forcing function, where the force applied by each upstream stator wake is 
equivalent, is shown in Figure 2.4-6. It can be seen that the forcing function never drops to zero, a 
constant minimum force is always being applied to the blades along with the force peaks due to 
passing stator vanes. It is the author’s opinion that this would be a valid case in practice when at no 
point in time is the single blade not experiencing flow from the upstream stators. 

 

Figure 2.4-6 Blade forcing function with mixing Gaussians 

The Fourier transform can now be applied to the time domain signal in order for it to be convolved 
with the blade transfer function. This is shown in Equation [2.4.16]. 

 𝐹𝐹(𝑗𝑗 ⋅ 𝜔𝜔) = ℱ �𝑛𝑛(𝑡𝑡) ⋅��
1

𝜎𝜎√2 ⋅ 𝜋𝜋
� ⋅ 𝑒𝑒

−(𝑡𝑡−𝜇𝜇𝑖𝑖)2
2⋅(𝜎𝜎)2

𝑛𝑛

𝑖𝑖=1

� = ℱ�𝑔𝑔(𝑡𝑡|𝜇𝜇𝑖𝑖 ,𝜎𝜎)� [2.4.16] 

An example of a force response spectrum for a system operating at 16 Hz, along with the addition of 
white noise, using the above mentioned formulation is provided in Figure 2.4-7. 

 

Figure 2.4-7 Force response spectrum for forcing function operating at 16 Hz 

It can be seen in the figure that excitation occurs at multiple engine harmonics. It is also interesting to 
note that the formulation captures a decreasing harmonic force value with a near constant noise floor. 
The noise added was Gaussian and so the constant noise floor level is expected. The amount of energy 
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associated with the higher frequency engine harmonic excitation is expected to fall (this has been 
noted in the literature reviewed). The characteristics of the forcing function are therefore as expected 
when comparing it to the model derived by Forbes (Forbes and Randall, 2013; Forbes, 2010, p. 152). 

The maximum force applied at any point, given in the time domain Gaussian formulation, was 1N. 
Further the transfer function of the blade is written in terms of expected response to unit harmonic 
force. Therefore the convolution of the two halves results in a relation which must still be multiplied 
with an estimation of the true force magnitude in order to obtain the tip response.  

A constant phase angle offset 𝜒𝜒 was included in the blade transfer function formulation. This term can 
be factored out so that the phase angle of the blade response to the forcing function can be varied 
with respect to the stationary pressure distribution about the individual blades. These adjustments 
are included in Equation [2.4.17]. The magnitude tuning parameter is included as 𝑀𝑀. 

 {𝑋𝑋(𝑗𝑗 ⋅ 𝜔𝜔)} = 𝑀𝑀 ⋅ [𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔)] ⋅ {𝐹𝐹(𝑗𝑗 ⋅ 𝜔𝜔)} ⋅ 𝑒𝑒𝑗𝑗⋅𝜒𝜒 [2.4.17] 

Finally, we are interested in the angle that the blades subtend and not the displacement, therefore all 
that is required is to divide the above relation by the blade length (assuming small angle theory). 

 {Ψ(𝑗𝑗 ⋅ 𝜔𝜔)} =
𝑀𝑀
𝐿𝐿
⋅ [𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔)] ⋅ {𝐹𝐹(𝑗𝑗 ⋅ 𝜔𝜔)} ⋅ 𝑒𝑒𝑗𝑗⋅𝜒𝜒 [2.4.18] 

The parameter Ψ is the blades angular displacement in the frequency domain. An example of a blade 
tip frequency response spectrum, using the same blade transfer function as before for response to a 
forcing function of the form described above (operating at 16 Hz), is shown in Figure 2.4-8. 

 

Figure 2.4-8 Blade tip frequency response spectrum to Gaussian based input force 

It can be seen in the figure how the blade transfer function and forcing function interacts across the 
frequency domain of interest. Further, the addition of Gaussian noise to the system has made the 
original form of the blade transfer function apparent.  

It is important to consider the case where the upstream stator wakes do not apply the same force, as 
may be the case in practice. The assumption that the upstream stators apply the same force (for the 
sake of simplicity) was previously mentioned. Comparison of this model with actual on blade 
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measurements will then allow verification of this model’s predicted forcing behaviour in both the time 
and frequency domains. Differences in the forces applied by the streams are attributed to 
manufacturing tolerances and unique geometric and operating conditions within the turbomachine.  

Consider the hypothetical case of a rotor with two upstream stators. The second stator is assumed to 
provide exactly half the force of the first. Once again Gaussian noise has been included in the signal 
illustrated in Figure 2.4-9. 

 

Figure 2.4-9 Time domain blade forcing function with two upstream stators with difference force values 

In the frequency domain it can be seen that every second rotor harmonic occurs at a reduced 
magnitude when compared to the ideal case where all forcing wakes apply the same force. This is 
illustrated in Figure 2.4-10. 

 

Figure 2.4-10 Frequency domain blade forcing function with two upstream stators with difference force values 

A further layer of complexity can be added by increasing the number of upstream stators to 4 and 
randomly assigning a force value for each for investigation. A section of the time domain forcing 
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function for the case of stators 1 to for supplying force values of 1 N, 0.53 N, 0.81 N and 0.68 N 
respectively is shown in Figure 2.4-11. Once again Gaussian noise has been included in the model. 

 

Figure 2.4-11 Time domain blade forcing function with four upstream stators with difference force values 

The frequency representation of the same forcing function is shown in Figure 2.4-12. 

 

Figure 2.4-12 Frequency domain blade forcing function with four upstream stators with difference force values 

A closer look at the frequency response is provided in Figure 2.4-13. 

 

Figure 2.4-13 Zoomed in frequency domain blade forcing function with four upstream stators with difference force values 

It can be seen that the order in which the force peaks change remains constant in the frequency 
domain. Thus the force from each individual upstream stator and the order in which the force changes 
can be identified. 
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Finally geometric differences in the construction of the stator row results in a case where each 
upstream wake impinges on the blade slightly sooner or later depending on the assembly’s geometry. 
An exaggerated time domain representation of this scenario is given in Figure 2.4-14. 

 

Figure 2.4-14 Time domain blade forcing function with four upstream stators with difference force values for an 
asymmetric rotor 

The equivalent frequency domain representation of the forcing function is supplied in Figure 2.4-15. 

 

Figure 2.4-15 Frequency domain blade forcing function with four upstream stators with difference force values for an 
asymmetric rotor 

Once again a closer look at the frequency domain reveals the effects of the asymmetry. 

 

Figure 2.4-16 Zoomed in frequency domain blade forcing function with four upstream stators with difference force values 
for an asymmetric rotor 
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The order in which the blade is impinged upon by the upstream stators in no longer easily identifiable 
from the FRF by simple visual inspection. The trend has been destroyed by the exaggerated 
differences. The above FRF convolved with the previously employed blade transfer function is shown 
in Figure 2.4-17. 

 

Figure 2.4-17 Combined blade tip response for excitation at different forcing values in a stemming from an asymmetric 
upstream stator row 

Although the forcing function is highly erratic, the form of the response FRF clearly follows the blade 
transfer function. 

As was previously stated, within a real turbomachine stator rows are not expected to be perfectly 
symmetric. Further, each stator stream is expected to apply a slightly different nominal force due to 
geometric differences in the upstream stator row. Small fluctuations in the nominal force are 
attributed to noise in the stream. By allowing modification of each stator wake may provide a better 
model fit when comparing it to actual forcing conditions within the rotor. 

The representation discussed above is just a model of the physical blade response based upon 
observations and insight from literature reviewed. Only experimental investigations which directly 
measured the blade’s response to the upstream stator wakes will be able to confirm or refute the 
applicability of this model. They will be able to answer questions such as: is the model flexible enough 
to be fitted to actual data? How sensitive is the model to slight variances in initial condition guesses? 
An experimental investigation which explores the validity of this model is provided in section ‘4.2 
Observations from SG Measurements’. The investigation also focuses on the same aspects, however 
for the blade transfer function model. 

It is believed that by using the tuning parameters carefully the above system, in terms of both the 
MDOF blade transfer function and the proposed  blade forcing function, can be successfully modified 
to represent an accurate response of blade to upstream stator wakes. However, as has been stated, 
only numerical and experimental investigations will be able to tell.  
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2.5. Individual Wave Separation through Novel Time-Domain Windowing 
The individual waves, associated with the passing of single blades, may contain discernible blade 
behaviour information from one another in the time and frequency domains. This was shown in the 
work of Mathioudakis and predicted by the works of Mengle and Castanier et al. (Castanier and Pierre, 
2006; Mathioudakis et al., 1991; Mengle, 1990).  

Specifically Mathioudakis showed that changing an individual blade’s stagger angle or surface 
condition directly alters the form of the passing wave  (Mathioudakis et al., 1991). Phenomena related 
to this may be observed through visual inspection of the passing wave forms or associated response 
spectra (Mathioudakis et al., 1991).  

According the work of Mengle, depending on the level of mistuning and excitation conditions each 
blade, or symmetric section of blades, could be responding at different phase angles even if they are 
responding at the exact same frequency (Mengle, 1990). When taken in the light of the work by Forbes 
et al. this phase angle difference may affect when each individual stationary pressure distribution, 
about a blade, arrives at a stationary observer on the casing (Forbes and Randall, 2013). This effect is 
however much more subtle than those expressed by the work of Mathioudakis (Mathioudakis et al., 
1991). 

With respect to the work of Castanier et al. mistuning may cause mode localisation which directly 
affects the response amplitude of each blade (Castanier and Pierre, 2006). A mistuned blade may be 
responding at a completely different amplitude when compared to the mean response amplitude of 
all of the blades. Thus by separating the pressure distribution about each blade each response 
amplitude may be individually observed, which would not be possible without a wave separation 
methodology.  

Thus the individual pressure distributions about individual blades may provide insight into the blades’ 
response phase angles, amplitudes of response and geometric tip conditions. A means to separate the 
wave forms about individual blades it sought for two reasons. Firstly in order to investigate the wave 
forms about individual blades to obtain individual blade behaviour information, and secondly for the 
purpose of modelling a response spectrum. 

In signal processing a window refers to an interval about which the signal is forced to zero. A function 
is generally used to shape the transition from the window boundary to the interior of the window. 
Windowing has applications in statistical analysis of large datasets, spectral analysis and filter design 
to name a few. It can help emphasize or clarify otherwise hidden components of a signal. They may 
be used when only a short length of signal exists which is not perfectly periodic causing errors when 
transforming it to the frequency domain. 

Depending on the choice of window it may influence the signal’s frequency content, amplitude 
content or both. Windowing may also cause or reduce a phenomenon known as spectral leakage. 
Spectral leakage is the phenomenon whereby energy associated with specific frequency content is 
artificially spread across a wider frequency band resulting in errors in the observed spectrum. 

Therefore a window must be carefully selected depending on the intended application. For our 
purpose windowing will be used to isolate specific periodic time-domain information. It is intended to 
have a minimal impact on the amplitude and frequency content of the signal whilst simultaneously 
minimising spectral leakage.  
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A rectangular window is the simplest form of window. Outside of the window domain all of the sample 
points are simply replaced by zero values whereas within the window domain the signal is multiplied 
by unity (remains unchanged). An example of an arbitrary rectangular window is presented in Figure 
2.5-1. 

 

Figure 2.5-1 Example of a rectangular window 

As discussed in the work of Murray and Key, a rectangular window may introduce undesirable effects 
in the frequency spectrum due to the abrupt change at the boundaries (Murray and Key, 2015). It is 
for this reason that smooth transition windows have been designed.  

A rectangular window however does not attenuate the amplitude content of a signal, this is a desirable 
facet of the window. We therefore desire a window with a controllable and continuous smooth 
transition from the boundary to an interior with a ‘flat top’ of unity magnitude.  

Combination windows which provide the ‘flat top’ associated with the rectangular window and a 
smooth controllable boundary have been designed. Depending on their design they may provide a 
best compromise situation between amplitude attenuation and spectral leakage whilst still providing 
an acceptable frequency resolution for certain applications. 

Generally windows are symmetric about their center. They often have a single tuning parameter which 
provides control over the symmetric window shape by changing the boundary slopes. Further, they 
are frequently defined using piecewise functions which can make direct implementation tedious. 

Once a time domain window has been generated the component wise product of the window and the 
signal in the time domain will result in the windowed signal. The process may also be used in the 
frequency domain by the convolution of the window spectrum and original signal’s spectrum. The 
time domain implementation is illustrated in Equation [2.5.1].  

 𝑓𝑓̅(𝑡𝑡)𝑖𝑖 = 𝑊𝑊(𝑡𝑡)𝑖𝑖 ⋅ 𝑓𝑓(𝑡𝑡)𝑖𝑖  [2.5.1] 

Each component of the original signal 𝑓𝑓(𝑡𝑡) is operated on individually by the window 𝑊𝑊(𝑡𝑡). The 
parameter 𝑖𝑖 is just the index of the vectors. 

Unlike window functions in general, it is desired that the solution chosen facilitates independent 
control over the left and right window slope gradients. This will enable isolation not only of individual 
pressure blade waves, but portions of individual pressure blade waves as well. It is also desired that a 
continuous function which describes the entire window be chosen for implementation simplicity. 
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A class of functions exist known as sigmoid functions. They are able to generate an ‘S’ function shape 
where the slope, height and abscissa midpoint of the curve are all controllable. The logistic function, 
presented in Equation [2.5.2], is one such sigmoidal curve (Bishop, 2009, p. 197). 

 𝑙𝑙(𝑡𝑡) =  
ℎ

1 + 𝑒𝑒−𝑠𝑠(𝑡𝑡−𝑡𝑡0) [2.5.2] 

The parameters  ℎ ,  𝑠𝑠  and 𝑡𝑡0  control the height, gradient and midpoint of the logistic function 
respectively. The larger the value of parameter 𝑠𝑠 the steeper the sigmoidal curve. The sigmoid has an 
initial function value of zero. An example plot of the logistic sigmoid centered at zero and with a slope 
parameter of 2 is given in Figure 2.5-2. 

 

Figure 2.5-2 Logistic sigmoid 

It is proposed that sigmoidal functions can be used to construct a window like signal to isolate passing 
blade waves and components of passing blade wakes. We are only interested in windows which tend 
towards an amplitude of unity, therefore the height parameter is simply set to one. A single sigmoid 
only provides half of the window, therefore a second sigmoid will have to be employed to obtain the 
right hand side of the window. As was stated, independent control of the window sides is desired, 
therefore two slope parameters will need to be used. 

The center of the two sigmoid functions cannot be at the same location to prevent interference with 
one another. Therefore in order to define the width of the window an offset will have to be included 
in the formulation for both halves. If the offset value is equivalent then the sigmoid will be symmetric 
about its chosen center location. If the offset values are however not equivalent, but the slope 
parameters are equivalent, then the sigmoidal window will still be symmetric, however no longer 
about the chosen center time point.  

Simply adding two sigmoid functions together will result in the curve no longer starting at zero and 
peaking at one. All function values will be shifted by the positive height value. This can be simply 
subtracted from the window signal once it has been constructed. The updated sigmoidal window 
function is given in Equation [2.5.3]. 

 𝑊𝑊(𝑡𝑡) =
1

1 + 𝑒𝑒−𝑠𝑠1(𝑡𝑡−𝑡𝑡0+Δ1) +
1

1 + 𝑒𝑒𝑠𝑠2(𝑡𝑡−𝑡𝑡0−Δ2) − 1 [2.5.3] 

Time (s)

-5 -4 -3 -2 -1 0 1 2 3 4 5

f(t
)

0

0.2

0.4

0.6

0.8

1

Logistic Sigmoid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2 Theoretical Development CB Church
   

108 

In the equation 𝑠𝑠1,2 and Δ1,2 control the slope and sigmoid offsets on the left and right hand sides 
respectively. In this form of the equation if the slope parameters are not chosen carefully the window 
may not peak at one and severe amplitude attenuation of the signal will result due to the windowing.  

An alternative method to normalise the window between 0 and 1 was thus sought. It is therefore 
chosen to rather subtract the minimum window value from the window signal and then divide all 
points by its maximum signal value. This effectively forces all values outside of the window boundaries 
to zero and a peak value of one. This procedure is provided in Equations [2.5.4] and [2.5.5]. 

 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) =
1

1 + 𝑒𝑒−𝑠𝑠1(𝑡𝑡−𝑡𝑡0+Δ1) +
1

1 + 𝑒𝑒𝑠𝑠2(𝑡𝑡−𝑡𝑡0−Δ2) [2.5.4] 

 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) =
𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) − min�𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)�

max�𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)� − min�𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)�
 [2.5.5] 

An example of a symmetric sigmoidal window, with the center of the individual sigmoids positioned 
at plus and minus 4 seconds about the center which is at zero seconds is provided in Figure 2.5-3. Both 
slope parameters have been chosen as 2. 

 

Figure 2.5-3 Sigmoidal window 

The shape that the window assumes as the slope parameters approach their limits will now be 
illustrated. As the slope parameters 𝑠𝑠1,2 approach their upper limit of ∞ the window approaches a 
rectangular window form. This is shown for a window with 𝑠𝑠1,2 = 1𝐸𝐸4 and Δ1,2 = 1 𝑠𝑠 in Figure 2.5-4. 

 

Figure 2.5-4 Sigmoidal window as slope parameters approach ∞ 

Time (s)
-10 -8 -6 -4 -2 0 2 4 6 8 10

f(t
)

0

0.2

0.4

0.6

0.8

1

Sigmoidal Window

Time (s)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f(t
)

0

0.2

0.4

0.6

0.8

1

Sigmoidal Window

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2 Theoretical Development CB Church
   

109 

The lower slope limit is zero. A sigmoidal window with slope parameters 𝑠𝑠1,2 = 0.33 and offset of 
Δ1,2 = 1s is plotted alongside a normalized Gaussian distribution with a standard deviation of 5 
seconds in Figure 2.5-5.  

 

Figure 2.5-5 Sigmoidal window as slope parameters approach zero 

It can be seen that as the slope parameters approach zero a bell shaped curve similar to the normal 
distribution is achieved. It is important to note that normal distributions have been successfully used 
as windowing functions. 

The individual blade pressure waves pass the stationary casing observer once every revolution. 
Therefore, depending on the number of revolutions, there will be a number of pressure waves 
associated with each individual blade. If the wave passing times can be determined then a window 
like function can be constructed to capture all of the passing waves associated with the behaviour of 
an individual blade. This signal can then be used for spectral and/or other analysis purposes.  

Therefore the final step in the window generation process is to add all of the individual windows for 
all of the blade passing times of interest. The final form of the windowing function is presented in 
Equations [2.5.6] and [2.5.7]. The individual blade passing times are given as 𝑡𝑡0,𝑖𝑖 in the expression and 
the number of revolutions by 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟. 

 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑡𝑡, 𝑡𝑡0,𝑖𝑖, 𝑠𝑠1,2,Δ1,2� = � �
1

1 + 𝑒𝑒−𝑠𝑠1�𝑡𝑡−𝑡𝑡0,𝑖𝑖+Δ1�
+

1
1 + 𝑒𝑒𝑠𝑠2�𝑡𝑡−𝑡𝑡0,𝑖𝑖−Δ2�

�
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟

𝑖𝑖=1

 [2.5.6] 

 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡) =
𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) − min�𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)�

max�𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)� − min�𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)�
 [2.5.7] 

The offset values  Δ1,2  must be chosen in order to capture the maximum amount of information 
associated with the passing of an individual blade pressure wave. Consider the pressure distribution 
representation in Figure 2.5-6 for an arbitrary 5 bladed system rotating at Ω.  
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Figure 2.5-6 Individual pressure wave isolation 

The stationary observer (SO) will always encounter the HP side of a passing wave first (once again 
assuming that the turbomachine is operating as a compressor). The HP side will therefore appear as 
the left hand side of the individual pressure wave in a time domain plot. Similarly the LP side of the 
wave will appear on the right hand side of the wave. Therefore offset Δ1 is associated with the HP side 
and offset Δ2 is associated with the LP side of the passing pressure waves. 

If the entire passing wave for an individual blade is to be isolated then the maximum offset values can 
be chosen such that the interval about the wave is the same size as the time difference between the 
passing wave and the next passing wave. This interval has been represented as Δ1 + Δ2 in the figure. 
The offsets that achieve this are provided in Equations [2.5.8] and [2.5.9]. 

 Δ1 = �
𝑡𝑡0,𝑖𝑖 − 𝑡𝑡0,𝑖𝑖−1

2 � [2.5.8] 

 Δ2 = �
𝑡𝑡0,𝑖𝑖 − 𝑡𝑡0,𝑖𝑖+1

2 � [2.5.9] 

It may be of interest to determine if the HP wave sides contain different blade vibration information 
when compared to the LP sides. If the left (HP) side of a passing wave is of interest then the windows 
can be constructed such that the right boundary slope passes through the middle of the pressure 
wave, the offset values for left wave side isolation is given in Equation [2.5.10]. Similarly if the right 
(LP) side of the wave is of interest to isolate then the offset values provided in Equation [2.5.11] can 
be used. 

 Δ1 = �
𝑡𝑡0,𝑖𝑖 − 𝑡𝑡0,𝑖𝑖−1

2 � , Δ2 = 0 [2.5.10] 

 Δ1 = 0, Δ2 = �
𝑡𝑡0,𝑖𝑖 − 𝑡𝑡0,𝑖𝑖+1

2 � [2.5.11] 
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Due to the formulation of the window function, the slope of the window’s side that passes through 
the center of the pressure waves (for separation of the left and right sides of the pressure wave) can 
be individually steepened. This is done to better separate the left and right halves of the pressure 
wave. Further, the transition at the outer boundary can remain gradual. 

The opinion that individual pressure distributions which form about individual blade tips contain 
information about that blade’s behaviour is supported by the works of both Forbes et al. and 
Mathioudakis (Forbes and Randall, 2013; Mathioudakis et al., 1991). Whether or not enough unique 
information exists within this distribution’s behaviour of over time in order to estimate blade forced 
response is however still unknown. Only by experimental investigation can this assertion be validated, 
although enough evidence exists in order to warrant such a study. Experimental investigations for this 
purpose can be seen in section ‘4.3 Pressure Signal ’. 

A means to isolate waves associated with the passing of individual blades has been suggested. The 
function proposed generates a window like form about the individual waves of interest. Both slopes 
on the left and right hand side of the windows are individually controllable. Depending on the choice 
of slope and offset values a ‘flat top’ can be achieved for the window which will prevent amplitude 
attenuation of the pressure wave signal whilst simultaneously providing a smooth transition from the 
window boundary to the interior.  
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2.6. Inverse Problem Formulation 
Both models and signal processing techniques were developed to describe and isolate the inner casing 
wall pressure signal associated with turbomachine blade vibration. The purpose of this section is to 
combine one of the suggested internal pressure models with the blade forced response vibration 
model and present it in the form of an inverse problem. The goal of solving the entire inverse problem 
would be to resolve information about the blades’ actual behaviour from internal pressure 
measurements. It is important to note that even though the inverse problem is outlined for a pressure 
signal, the constituent blade vibration components (blade transfer function and forced response 
model) may first be fitted in a reduced inverse problem format to actual on blade response 
measurements. A basic schematic of the inverse problem proposed is presented in Figure 2.6-1.  

 

Figure 2.6-1 Schematic of inverse problem 

Measured pressure and tachometer signals are used to obtain all unknown parameters associated 
with the internal pressure model, save those related directly to blade vibration. The full internal 
pressure model, with unknown blade vibration, is compared with the measured pressure signal using 
an optimisation based approach.  

As was stated, this is done in order to estimate the unknown blade vibration characteristics. The 
signals are compared by minimising the error difference between the measured and partially 
artificially generated pressure signals by changing the unknown blade vibration characteristics. The 
unknown blade vibration characteristics, and the internal pressure model’s associated tuning 
parameters, are the design variables solved for during the resolution of the inverse problem. 

Before the inverse problem is formally defined it may be useful to briefly discuss issues associated 
with the pressure models developed in literature and the suggested reformulated expressions derived 
from those models. 

Model 1 was developed to describe the system’s combined blade and hub assembly global pressure 
response. Depending on the level of mistuning in the assembly and the excitation conditions, certain 
travelling wave mode components are expected to be present in the global pressure signal. The blade 
vibration was represented as a SDOF sinusoid with an individual associated flutter frequency 𝜔𝜔. This 
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flutter frequency is Doppler shifted by a certain amount depending on the system mode/modes 
present (in terms of nodal diameters), the number of rotor blades 𝐵𝐵 and the rotor speed. 

The model was shown to be an incomplete representation of the internal pressure signal as it does 
not account for the presence of all rotor harmonics within that signal. The original representation was 
reformulated to include both Doppler shifted blade vibration effects and all engine harmonics 
associated with the passing of all blades.  

The blade vibration information, due to Doppler shifting, was represented as modulation of the 
otherwise stationary pressure signal. The suggested representation of the blade vibration as a 
modulation effect is based upon the symmetry of the Doppler shifting phenomenon in the frequency 
domain.   

Multiple additional parameters were included to allow freedom for fine tuning of the reformulated 
model to an actual pressure signal. The specific goal of solving an inverse problem, based on the 
expression derived from Model 1, would be to obtain the individual flutter frequency 𝜔𝜔. The additional 
tuning parameters are also design variables which must be solved for simultaneously in order to obtain 
the flutter frequency. 

Unlike Model 1, Model 2 was originally developed considering the effect of individual blade vibration 
on the surrounding pressure wave. The reformulated Model 2 expression provides the pressure 
response about an individual blade with consideration for both amplitude and phase modulating 
effects. The model was designed for forced response conditions as opposed to self-excited flutter. 

Once again tuning parameters were included to allow fine tuning of the model with respect to an 
actual measured pressure signal. The model was designed to facilitate any blade tip forced response 
model. Whether that model is a SDOF sinusoid, a dynamic FE model or constructed using experimental 
modal analysis techniques is irrelevant in terms of the full pressure model’s formulation. All that is 
required from the model is a time domain tip forced response signal. This investigation will however 
only consider the blade tip response modelled using the repurposed experimental modal analysis 
technique described in a prior section. 

The reformulated version of Model 1 is only suitable for solving the global blade and hub assembly’s 
response as opposed to an individual blade response. This is because it was designed taking the 
cumulative system’s effect on the pressure signal into account. Model 2 can however be formulated 
using the pressure wave about an individual blade or about all  𝐵𝐵  blades in the assembly 
simultaneously. 

In terms of the reformulated Model 2 the most important design variables are those associated with 
the blade transfer function. This is assuming that the experimental modal analysis blade vibration 
representation is used as opposed to a SDOF representation. The specific design variables contained 
within the transfer function are the modal damping, modal constants and blade natural frequencies. 
Once again the remaining tuning parameters are there to provide the model with freedom to better 
fit the measured pressure signal, although they may also indicate certain physical effects and 
phenomena within the measured signal. 

The success of the original models’ and associated signal processing (SP) techniques abilities to 
unearth useful information was hindered by the ambiguity of the off engine harmonic frequency 
content captured in the pressure signal. As was previously stated, this off engine harmonic frequency 
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content (stochastic content) is said to contain the desired blade vibration information (specifically for 
off EO operation).  

The question has to be asked if there is enough unique information in the stochastic part of the 
pressure signal to factor out the blades’ vibrational response given either of the two reformulated 
models. And if so how to proceed with extraction of that unique information. Hence the formulation 
of an inverse problem. 

As has already been stated, certain components of the pressure models are known or can be extracted 
prior to attempting the inverse problem. These components are common to both reformulated 
models and have been alluded to in the SP schematic of Figure 2.6-1. The identification and extraction 
of these components are described in the initial portion of establishing the inverse problem.  

Various options are available for setting up the inverse problem. The first requirement is to decide 
which reformulated model to explore and then consider the implications of that choice.  

The reformulated expression based on Model 2 is initially chosen for investigation. A repercussion of 
choosing Model 2 is that either the full pressure signal is evaluated with all blades, and thus models 
for all blades must be included, or individual waves about blades can be investigated.  

The model will however not be able to provide information about the Doppler shifting of frequency 
content. This is if the Doppler shifting phenomenon is indeed present in measurements taken in line 
with the rotor (as opposed to measurements taken downwind of the rotor row of interest as 
investigated by Mengle and Murray and Key (Mengle, 1990; Murray and Key, 2015)). 

Given the underlying assumption that the casing pressure signal is directly related to a blade tip’s local 
behaviour, and that the effect of adjacent blade tips is assumed to have a negligible impact on the 
pressure signal directly about the individual blade tip of interest, it is possible to investigate the effect 
that an individual blade has on an individual pressure distribution about that blade. This is the premise 
for isolating the pressure waves about the individual blades, even though the blades are structurally 
coupled through the hub and attachment mechanism.  

Therefore, instead of solving for all blades simultaneously (each with a set of its own design variables), 
a smaller inverse problem may be tackled. The consideration of individual waves about blades will 
become apparent further on in the development of the model. 

The associated pressure relation equivalent to Equation [2.3.10], provided in the Fourier Euler format, 
is shown in Equations [2.6.1] and [2.6.2].  

 𝑃𝑃𝑟𝑟(𝑡𝑡,𝒙𝒙) = (1 + Γ ⋅ 𝜓̇𝜓(𝑡𝑡,𝒚𝒚)𝑟𝑟) ⋅ 𝑅𝑅𝑅𝑅 ��𝑄𝑄𝑖𝑖 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜓𝜓(𝑡𝑡,𝒚𝒚)𝑟𝑟+𝜈𝜈])
∞

𝑖𝑖=0

� [2.6.1] 

 𝒙𝒙 ⊇ (Γ, 𝐲𝐲) [2.6.2] 

The full set of design variables which must be obtained is referred to as 𝒙𝒙. A subset of the design 
variables 𝒙𝒙 is the set 𝒚𝒚 shown in Equation [2.6.1]. The subset 𝒚𝒚 refers to all of the design variables 
associated with the blade vibration forced response expressions (angular displacement and velocity). 
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As was stated, it is useful to first separate the pressure information that can be obtained trivially 
(outside of the optimisation problem), from that which cannot. The only variables in Equation [2.6.1] 
that can be determined from a measured pressure signal and tachometer signal without significant 
signal processing are the time 𝑡𝑡 and the nominal rotor speed Ω.  

A signal void of blade vibration is required for the estimation of the Fourier coefficients 𝑄𝑄𝑖𝑖. Either this 
signal must be measured experimentally, or an alternative method to derive a blade vibration free 
signal is required.  

Direct experimental measurement of a signal without blade vibration is difficult to achieve in practice. 
This is because it may not be possible to simply ‘switch off’ the excitation on an actual turbomachine. 
Even if the upwind stator excitation can be removed there is still slight excitation due to gravitational 
effects (assuming that the turbomachine’s drive shaft is parallel with the ground).  

It may be possible to operate the turbomachine, with upwind stator excitation, sufficiently far away 
from any resonance that a near blade vibration free signal can be measured. It is suggested that a 
better solution would be a means to estimate a blade vibration free signal directly from the measured 
pressure signal of interest itself. The reason given is that a blade vibration free signal derived from the 
original signal will have the most appropriate waveform given the operating speed and excitation 
conditions. Further, the signal’s phase will be very closely aligned with the original signal’s phase as it 
is derived directly there from. 

It has been shown that the deterministic pressure signal, obtained directly from the measured 
pressure signal with blade vibration, may be used to estimate a vibration free signal (specifically for 
off EO resonance) (Forbes and Randall, 2013; Forbes, 2010). Therefore the Fourier coefficients 𝑄𝑄𝑖𝑖  may 
be extracted from the stationary pressure distribution once the signal has been post processed to 
obtain the deterministic signal.  

As has already been stated, the deterministic pressure signal 𝑃𝑃𝐷𝐷 is obtained through a synchronous 
averaging and reconstruction process using the measured pressure signal 𝑃𝑃𝑀𝑀  and the tachometer 
signal. The synchronous averaging procedure uses the tachometer signal to find the average pressure 
waveform over a single revolution. This is termed the synchronously averaged pressure signal 𝑃𝑃𝑆𝑆𝑆𝑆.  

The synchronous averaging process averages out the non-engine order pressure information (such as 
the modulation effects due to blade vibration and Gaussian noise). The average signal over a single 
revolution is then repeated over the full time length, with aid from the tachometer signal, to produce 
a deterministic pressure signal 𝑃𝑃𝐷𝐷. 

As was stated the reconstruction process, using the synchronously averaged pressure signal 𝑃𝑃𝑆𝑆𝑆𝑆, will 
deliver a deterministic signal which is fairly well synchronised with the original measured pressure 
signal. An expression for the deterministic pressure signal 𝑃𝑃𝐷𝐷 (the signal without blade vibration) is 
provided in Equation [2.6.3]. 

 𝑃𝑃𝐷𝐷(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝑄𝑄𝑖𝑖 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜈𝜈])
∞

𝑖𝑖=0

� [2.6.3] 

The first design variable which cannot be calculated directly or inferred from the signal processing 
step is the stationary wave’s phase angle 𝜈𝜈. The phase angle is common to both the deterministic and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2 Theoretical Development CB Church
   

116 

fully combined pressure signals. An option now exists to either solve for this phase angle along with 
other design variables in the full signal representation, or to obtain it separately if possible.  

The question must be asked what can be gained by taking either route. By solving for the value 
separately it means that the remaining optimisation problem has one fewer design variable to solve 
for, thus making the remaining problem smaller to solve. It however requires an additional 
optimisation process, so it can be argued that nothing is therefore gained by splitting it into a step of 
its own.  

Recall that the individual blade phase angle 𝜒𝜒 must also be aligned with respect to time. Therefore the 
individual blade phase angle 𝜒𝜒 is dependent on the whole pressure distribution’s phase angle 𝜈𝜈. So by 
determining 𝜈𝜈  first and holding it constant in the remaining problem, any negative interaction 
between these two design variables can be avoided. Negative interaction refers to the effect of 
changing 𝜈𝜈 which misaligns the blade vibration phase 𝜒𝜒 resulting in a longer solve time.  

So, in order to make the remaining optimisation process smaller and to prevent a relative slip between 
the two phase angles it is chosen to first obtain 𝜈𝜈 separately and then to solve for the remaining design 
variables in a second step. 

Once the phase angle value for 𝜈𝜈 has been obtained it can be used to shift the deterministic pressure 
signal to better line up with the measured pressure signal.  

A generic error function 𝐸𝐸 is proposed to evaluate the differences between the measured signal and 
the deterministic signal. The generic error function can take many forms such as the mean square 
error (MSE), the root mean square error (RMSE) or an appropriate p-norm formulation. A discussion 
on error function choice and the associated ramifications of that choice is provided further on in this 
section. The generic error function is shown in Equation [2.6.4].  

 𝐸𝐸𝐷𝐷𝐷𝐷 = 𝐸𝐸(𝑃𝑃𝑀𝑀 ,𝑃𝑃𝐷𝐷) [2.6.4] 

The only unknown in this initial optimisation process is the phase angle 𝜈𝜈. Further, the only constraints 
required are those on the phase angle 𝜈𝜈. The proposed constraints can be seen in Equation [2.6.5]. 

 
−𝜋𝜋
𝐵𝐵

≤ 𝜈𝜈 ≤
π
𝐵𝐵

 [2.6.5] 

The reconstruction process is expected to align the deterministic pressure waves with the original 
measured pressure signal with a fair amount of precision. This is because the deterministic signal is 
derived directly from the measured pressure signal and associated tachometer signal. Therefore only 
a slight phase adjustment of the deterministic pressure wave may be necessary to optimise its 
alignment in the time domain.  

Had the stationary (or deterministic) pressure signal been obtained from an alternative source (such 
as measurement at a different rotor speed), then the phase alignment step would become more 
important as it cannot be assumed that the two signals will inherently line up (in terms of phase angle). 
It would also have to be ensured that the waves associated with specific blades in the additional signal 
line up with those in the measured signal (i.e. the wave about blade 1 from signal 1 is aligned with the 
wave about blade 1 in signal 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2 Theoretical Development CB Church
   

117 

In order to prevent the entire signal from being shifted too far forwards or backwards the shift is 
limited to within the maximum angle that the blade subtends. Once the phase angle 𝜈𝜈  has been 
obtained the first optimisation process is complete. 

When evaluating the full pressure relation given in Equation [2.6.1] it can be seen than a variable 
which scales the velocity based amplitude modulation is thus far unaccounted for. The scaling factor 
Γ is the first identified design variable for estimation by the second optimisation process. Since the 
magnitude of amplitude modulation is completely unknown bounds and limits about zero may have 
to be best tuned to obtain this design variable. 

A diversion from the optimisation process must now be taken in order to obtain the individual 
measured pressure and deterministic signals about individual blades from the full measured signal. 
This step was referred to earlier when choosing to only investigate the pressure waves about 
individual blades instead of for all blades simultaneously.  

The unshifted deterministic and measured pressure signals are passed through a splitting algorithm 
which applies the windowing process discussed in the previous section. The algorithm requires 
estimation of the individual wave passing times. These times can either be obtained from the 
deterministic pressure signal itself, or by blade passing time measurements obtained through the use 
of proximity, or similar, sensors installed near the stationary sound pressure observer. 

A total of 𝐵𝐵 deterministic and 𝐵𝐵 measured pressure signals will be obtained from the splitting process 
(as there are 𝐵𝐵 rotor blades on the rotor row of interest). From the 𝐵𝐵 deterministic and 𝐵𝐵 measured 
pressure signals a pair of signals associated with a single blade are chosen for further analysis. The 
previously obtained phase shift 𝜈𝜈 can now be applied to the split deterministic signal of interest to 
best line it up with the split measured pressure signal associated with the same blade. 

Thus far we have obtained or confirmed the pressure relation values of the variables 𝑡𝑡, 𝑄𝑄𝑖𝑖, Ω and 𝜈𝜈. 
The only outstanding variables are those associated with the blade vibration displacement and 
velocity terms. This is given by the subset of design variables 𝒚𝒚. In order to separate the known and 
unknown blade vibration related variables the effect of blade vibration on the deterministic signal will 
be considered.  

The blade tip angular vibration in the time domain is obtained through an inverse Fourier transform 
of its frequency domain representation. This is because the blade vibration model is constructed in 
the frequency domain. The blade vibration, in terms of velocity, is obtained by differentiating the 
displacement with respect to time. As was stated, the differentiation may be performed in either the 
time or frequency domains. These operations are shown in Equations [2.6.6] and [2.6.7]. 

 𝜓𝜓(𝑡𝑡,𝒚𝒚)𝑟𝑟 =  ℱ−1�Ψ(𝑗𝑗 ⋅ 𝜔𝜔,𝒚𝒚)�  [2.6.6] 

 𝜓̇𝜓(𝑡𝑡,𝒚𝒚)𝑟𝑟 =
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜓𝜓(𝑡𝑡,𝒚𝒚)𝑟𝑟) [2.6.7] 

As was previously stated, the blade vibration in the frequency domain is the convolution of the blade 
transfer function and the forcing function. The frequency representation of the blade vibration is 
repeated in Equations [2.6.8] and [2.6.9]. 
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 {Ψ(𝑗𝑗 ⋅ 𝜔𝜔,𝒚𝒚)} =
𝑀𝑀
𝐿𝐿
⋅ [𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔, 𝒛𝒛)] ⋅ {ℱ(𝑔𝑔(𝑡𝑡))} ⋅ 𝑒𝑒𝑗𝑗⋅𝜒𝜒 [2.6.8] 

 𝒚𝒚 ⊇ {𝑀𝑀,𝜒𝜒, 𝒛𝒛} [2.6.9] 

The forcing function can be estimated from the known blade and upstream stator geometry, rotor 
speed and time vector 𝑡𝑡 using the Gaussian based modelling process outlined in a previous section.  

The length of the blade 𝐿𝐿  is assumed to be known. Two further design variables are seen in the 
equation. The first is the forcing function scaling factor 𝑀𝑀 and the second is the blade response phase 
angle 𝜒𝜒. Reasonable limits must be set for the force scaling factor. Estimates as to what the minimum 
and maximum force limits are expected to be must thus be obtained. The blade vibration response 
phase angle cannot shift more than 2 ⋅ 𝜋𝜋 (as the system period is 2 ⋅ 𝜋𝜋), its limits are therefore set 
to −𝜋𝜋 ≤ 𝜒𝜒 ≤ 𝜋𝜋. 

The blade transfer function design variables are all that remains to be estimated. The set of design 
variables strictly associated with the blade transfer function are contained in the vector 𝒛𝒛. The vector 
contains the modal constants 𝐴𝐴𝑟𝑟, the modal damping ratios 𝜂𝜂𝑟𝑟 and the blade natural frequencies 𝜔𝜔𝑟𝑟. 
A suitable frequency response range 𝜔𝜔 for the blades must be chosen for reconstruction of the time 
domain response representation. The blade transfer function is given in Equation [2.6.10].  

 𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔) = ���
𝐴𝐴𝑟𝑟

𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 + 𝑗𝑗 ⋅ 𝜂𝜂𝑟𝑟 ⋅ 𝜔𝜔𝑟𝑟2
�

𝑁𝑁

𝑟𝑟=1

 ⋅ 𝑒𝑒𝑗𝑗⋅𝜋𝜋⋅𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟,2)� [2.6.10] 

If only the first three modes are to be investigated (N=3) then a total of 9 variables’ values must be 
estimated.  

Stationary bench tests can be used to obtain estimates of the modal damping constants 𝜂𝜂𝑟𝑟. If access 
to bench test results are not available then reasonable estimates for the modal damping constants, 
based on the material and geometric properties of the blades, will have to be made. These values can 
then be set as design variables with critically chosen boundary limits. 

The blade transfer function is the blade’s unit response to a unit harmonic input force. Therefore work 
may be necessary to estimate the modal constants 𝐴𝐴𝑟𝑟. A FE or stationary bench test may provide 
insight into the parameters choice. Limits and inequality relationships may need to be set in order to 
constrain these values appropriately if they are set as design variables and not simply included as 
numerical estimates. 

The remaining outstanding design variables are the individual blade’s natural frequencies. Estimates 
based on the blade’s geometry and material properties will provide the best starting point for an 
optimisation process to pin-point their values. If this is not possible, coarser design variable boundary 
limits may be set. For example limits based on the knowledge that the fundamental frequency is lower 
than the second natural frequency, and so on, may be used.  

It is also important to consider whether or not centrifugal stiffening will have a significant effect on 
the blade’s operational natural frequencies. This phenomenon may affect the initial parameter 
guesses given the operating speed. According to the literature reviewed, centrifugal stiffening is 
expected to only influence the bending mode values. The degree to which it influences the values can 
only be estimated through numerical or experimental processes. For this particular investigation both 
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FE based and experimental investigations were used and will be commented on in the relevant 
sections. 

Finally, an error function has to be chosen to compare the measured pressure signal against the full 
analytically derived pressure signal. This error function is once again the objective function of the 
second optimisation process to be minimised over.  

Once again a generic error function E between the analytically generated pressure signal 𝑃𝑃𝐴𝐴 and the 
measured pressure signal 𝑃𝑃𝑀𝑀 is chosen, this been provided in Equation [2.6.11]. Alternative error 
functions may be explored and minimised over in order to investigate different facets of the problem, 
as was stated these functions are discussed further on. The generic error function between the 
measured and analytically derived signals is provided in Equation [2.6.11] 

 𝐸𝐸𝑀𝑀𝑀𝑀 = 𝐸𝐸(𝑃𝑃𝑀𝑀 ,𝑃𝑃𝐴𝐴) [2.6.11] 

The optimisation processes, for both optimisation problems, will now be provided in the standard 
optimisation format. Equations [2.6.12] to [2.6.15] outline the first optimisation process, namely the 
estimation of the phase angle 𝜈𝜈. 

 Minimise the following cost function:  
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴:𝑓𝑓(𝜈𝜈) =  𝐸𝐸�𝑃𝑃𝑀𝑀 ,𝑃𝑃𝐷𝐷(𝜈𝜈)�  [2.6.12] 

 Where:  

  𝑃𝑃𝐷𝐷(𝜈𝜈) = 𝑅𝑅𝑅𝑅 ��𝑄𝑄𝑖𝑖 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜈𝜈])
∞

𝑖𝑖=0

� [2.6.13] 

 The cost function is subject to the following inequality constraints 

Υ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (Υ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝒙𝒙) ≤ 0): 
 

 ν −
𝜋𝜋
𝐵𝐵
≤ 0 [2.6.14] 

 −ν −
𝜋𝜋
𝐵𝐵
≤ 0 [2.6.15] 

The first optimisation process only has a single design variable and two inequality constraints 
associated with that individual design variable. Analytical gradient and Hessian arrays may be resolved 
if the problem proves difficult to solve (these terms will be explained further on). A standard gradient 
based approach is recommended for this problem. 

Similarly Equations [2.6.16] to [2.6.38] provides the standard format for determining the remaining 
outstanding design variables. Various proposed numerical values for the constraints have been 
included in the formulation. 

 Minimise the following cost function:  
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴:𝑓𝑓(𝒙𝒙) =  𝐸𝐸�𝑃𝑃𝑀𝑀 ,𝑃𝑃𝐴𝐴(𝒙𝒙)�  [2.6.16] 

 The independent variables are defined as:  
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 𝒙𝒙 ⊇ {Γ,𝒚𝒚} [2.6.17] 

 The pressure model associated with the independent variables is given by:  

 𝑃𝑃𝐴𝐴(𝒙𝒙) =  (1 + Γ ⋅ 𝜓̇𝜓(𝑡𝑡,𝒚𝒚)𝑟𝑟) ⋅ 𝑅𝑅𝑅𝑅 ��𝑄𝑄𝑖𝑖 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜓𝜓(𝑡𝑡,𝒚𝒚)𝑟𝑟+𝜈𝜈])
∞

𝑖𝑖=0

�  [2.6.18] 

 𝜓𝜓(𝑡𝑡,𝒚𝒚)𝑟𝑟 =  ℱ−1�Ψ(𝑗𝑗 ⋅ 𝜔𝜔,𝒚𝒚)� [2.6.19] 

 A subset of the independent variables contains the following parameters:  
 𝒚𝒚 ⊇ {M, χ, 𝒛𝒛} [2.6.20] 

 These parameters are used in the following equations:  

 {Ψ(𝑗𝑗 ⋅ 𝜔𝜔,𝒚𝒚)} =
𝑀𝑀
𝐿𝐿
⋅ [𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔, 𝒛𝒛)] ⋅ [𝐹𝐹(𝑗𝑗 ⋅ 𝜔𝜔)] ⋅ 𝑒𝑒𝑗𝑗⋅𝜒𝜒 [2.6.21] 

 𝐹𝐹(𝑗𝑗 ⋅ 𝜔𝜔) = ℱ�𝑔𝑔(𝑡𝑡|𝜇𝜇𝑖𝑖,𝜎𝜎)� [2.6.22] 

 𝑔𝑔(𝑡𝑡|𝜇𝜇𝑖𝑖 ,𝜎𝜎) = 𝑛𝑛(𝑡𝑡) ⋅��
1

𝜎𝜎√2 ⋅ 𝜋𝜋
� ⋅ 𝑒𝑒

−(𝑡𝑡−𝜇𝜇𝑖𝑖)2
2⋅(𝜎𝜎)2

𝑛𝑛

𝑖𝑖=1

 [2.6.23] 

 The final subset of the design variables are:  
 𝒛𝒛 ⊇ {𝐀𝐀r,𝛚𝛚r,𝜼𝜼𝑟𝑟} [2.6.24] 

 The remaining component of the cost function is the blade transfer function:  

 𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔, 𝒛𝒛) = ���
𝑨𝑨𝑟𝑟

𝝎𝝎𝑟𝑟
2 − 𝜔𝜔2 + 𝑗𝑗 ⋅ 𝜼𝜼𝑟𝑟 ⋅ 𝝎𝝎𝑟𝑟

2�
𝑁𝑁

𝑟𝑟=1

 ⋅ 𝑒𝑒𝑗𝑗⋅𝜋𝜋⋅𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟,2)� [2.6.25] 

 𝒙𝒙 ⊇ {Γ, M, χ,𝛚𝛚r,𝜼𝜼𝑟𝑟} 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 ∈ {1,2,3} [2.6.26] 

 The cost function is subject to the following inequality constraints 

 Υ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (Υ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝒙𝒙) ≤ 0): 
 

 Γ − 0.5 ≤ 0 [2.6.27] 

 −Γ + 0.5 ≤ 0 [2.6.28] 

 M − 2.0 ≤ 0 [2.6.29] 

 −M + 0.1 ≤ 0 [2.6.30] 

 χ − 𝜋𝜋 ≤ 0 [2.6.31] 

 −χ − 𝜋𝜋 ≤ 0 [2.6.32] 

 ωr − 𝑓𝑓𝑟𝑟,ℎ𝑖𝑖𝑖𝑖ℎ ⋅ 2 ⋅ 𝜋𝜋 ≤ 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 ∈  {1,2,3} [2.6.33] 
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 −ωr + 𝑓𝑓𝑟𝑟,𝑙𝑙𝑙𝑙𝑙𝑙 ⋅ 2 ⋅ 𝜋𝜋 ≤ 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 ∈  {1,2,3} [2.6.34] 

 ηr − 0.025 ≤ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 ∈  {1,2,3} [2.6.35] 

 −η𝑟𝑟 + 0.005 ≤ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 ∈  {1,2,3} [2.6.36] 

 Ar − 𝐴𝐴𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ≤ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 ∈  {1,2,3} [2.6.37] 

 −A𝑟𝑟 + 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 ∈  {1,2,3} [2.6.38] 

The second optimisation problem is far larger than the first, in terms of both design variables and 
inequality constraints. There are nearly two inequality constraints for every design variable. Further, 
analytically evaluating the gradient and Hessian for this problem is not possible.  

The gradient vector, simply referred to as the gradient, is a vector which contains the partial 
derivatives of the objective function with respect to the design variables (Arora, 2011). In terms of 
gradient based optimisation, the gradient provides the direction towards a local minimum given the 
current design variables’ values and the cost function (in this case the cost function is the generic error 
function) (Arora, 2011).  

The Hessian matrix is obtained through differentiation of the gradient vector with respect to all of the 
design variables (Arora, 2011). It is therefore simply the second-order partial derivative matrix of the 
cost function with respect to all of the design variables (Arora, 2011). Similar to the gradient which 
provides information as to the direction in which minimisation must occur, the Hessian provides 
information regarding whether or not a local maximum, minimum or inflection point has been found. 

Difficulty, in terms of analytical evaluation of the Hessian and gradient, is attributed to the fact that 
blade vibration is transformed to the time domain through an inverse Fourier transform. In order to 
obtain the analytical gradient and Hessian differentiation of the objective function with respect to all 
of the design variables is required. Further, the blade vibration in terms of velocity is the derivative of 
the displacement (which requires an inverse Fourier transformation as well).  

It may simply not be possible to supply the analytical gradient and Hessian to a gradient based 
optimisation algorithm. In terms of gradient based approaches, the gradient and Hessian terms will 
then have to be numerically estimated at each step in the optimisation process in order to provide the 
algorithm with a minimisation direction and optimal solution estimate. Numerical estimation of the 
gradient and Hessian, as opposed to analytical evaluation, can be quite an expensive operation 
depending on the number of design variables and constraints contained in the problem. 

Another issue with the formulation is the orders of magnitude of the various design variables and 
inequality constraints. The orders of magnitude of the different design variables vary greatly. For 
example the damping coefficients have an order of magnitude of -2 whereas the natural frequencies 
have an order of magnitude of 2 or 3 (when in Hertz).  

The orders of magnitude of the design variables in the constraint and cost functions plays an important 
role in the rate of convergence for gradient based approaches. This is because they affect the 
condition number of the Hessian (Arora, 2011). The greater the order of magnitude difference 
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between the design variables, the worse the condition number of the Hessian becomes, this results in 
a system which is ill-conditioned.  

Simply rescaling the design variables in the cost and constraints functions, such that they are within 
the same order of magnitude, may improve the convergence rate of a gradient based approach 
significantly by improving the Hessian’s condition number (Arora, 2011).  

The inequality constraints in this particular problem can be easily scaled between -1 and 1 by simply 
dividing each inequality through by the numerical value associated with that inequality. If a system is 
highly ill-conditioned then the initial design variables guesses have a major impact on the solution 
derived. Poorly chosen initial guesses may result in large solution errors. The effect of rescaling the 
inequality constraints and cost function design variables can only be obtained through numerical 
investigation of the problem, thus until this particular problem has been numerically or experimentally 
investigated the direct consequences of rescaling the inequality constraints is unknown. 

The question has to be asked if the problem is well-posed or ill-posed. In order for a problem to be 
well-posed three conditions have to be met. Namely that the solution exists, that the solution is 
unique (at least within the interval of investigation) and that the solution to the problem changes 
continuously with respect to the initial conditions and boundary conditions  (Hadamard, 1902).  

Many useful inverse problems are however ill-posed. Techniques have been developed to aid in 
solving ill-posed problems such as regularisation of the cost function (regularisation refers to including 
penalty terms in the objective function). Regularisation of the cost function will be discussed once the 
error functions have been outlined. 

It can be postulated that due to the ambiguity of the blade vibration frequency components, the error 
surface being optimised over will be highly modal. A highly modal problem results in a case where 
multiple solutions exist for the same problem. Multiple solutions automatically cause the problem to 
be ill-posed (as the solution is non-unique).  

In cases where a high degree of modality exists, starting estimates for the design variables are 
extremely important. One initial design variable set 𝒙𝒙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,1  may easily converge to the desired 
solution whereas a second slightly different set  𝒙𝒙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,2  may converge to an undesirable local 
minimum. Multiple starts with randomised initial guesses may then be required to obtain the 
sensitivity of the system to the initial guesses or to estimate the best possible solution given the 
problem.  

The postulate regarding the modality of the problem remains just that, until numerical results have 
been critically evaluated. However for the purpose of the discussion it is assumed that the problem is 
ill-posed in order to develop a robust solution methodology. 

A useful tool for understanding the modality of the problem as well as how well or ill-posed the 
problem is, is to investigate the virtual problem. The virtual problem allows one to generate a 
‘measured’ signal artificially where all of the design variables are pre-chosen and thus known. Multi-
start optimisations, which use randomly generated initial design variable guesses, are then used to 
explore facets of the model. A further discussion on the virtual problem is provided further on. 

The discussion will now focus on the error function choice. The error 𝑒𝑒 between two corresponding 
components of a measured and analytically derived pressure vector is given in Equation [2.6.39] 
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 𝑒𝑒𝑖𝑖 =  𝑃𝑃𝑀𝑀,𝑖𝑖 − 𝑃𝑃𝐴𝐴,𝑖𝑖 [2.6.39] 

The parameter 𝑖𝑖 is once again simply the vector index. The time stamp for both vectors at index 𝑖𝑖 is 
equivalent (as both pressure arrays are functions of time in this formulation). The various error 
functions considered are provided in Equations [2.6.40] to [2.6.46].  

 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿 =  �|𝑒𝑒𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

 [2.6.40] 

 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
⋅�|𝑒𝑒𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

 [2.6.41] 

 𝐸𝐸𝑆𝑆𝑆𝑆 =  �|𝑒𝑒𝑖𝑖|2
𝑁𝑁

𝑖𝑖=1

 [2.6.42] 

 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
⋅�|𝑒𝑒𝑖𝑖|2
𝑁𝑁

𝑖𝑖=1

 [2.6.43] 

 𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅 = ��|𝑒𝑒𝑖𝑖|2
𝑁𝑁

𝑖𝑖=1

 [2.6.44] 

 𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
⋅�|𝑒𝑒𝑖𝑖|2
𝑁𝑁

𝑖𝑖=1

 [2.6.45] 

 
𝐸𝐸𝑝𝑝−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = ��|𝑒𝑒𝑖𝑖|𝑝𝑝

𝑁𝑁

𝑖𝑖=1

�

1
𝑝𝑝

 [2.6.46] 

In order, the errors are the absolute linear error (LIN), the mean absolute error (MAE), the square 
error (SE), the mean square error (MSE), the root square error (RSE), the root mean square error 
(RMSE) and the generic p-norm expressed as an error function.  

The MAE, MSE and the RMSE are simply the LIN, SE and RSE which have been normalised with respect 
to the number of items being compared. The normalisation is useful for comparing relative errors 
derived from different data sets of different lengths. Their behaviours are however similar to their 
non-normalised counterparts and so will not be discussed as isolated error functions further. 

As the power of the errors increase so do their sensitivity to outliers increase. Sensitivity here refers 
to how the error function weights the individual component errors 𝑒𝑒𝑖𝑖. A high sensitivity to outliers 
means that large component errors have a higher weighting than small errors. An outlier will only have 
a linear effect in the LIN error, it will however have a quadratic effect in the SE or RSE. Depending on 
the p-value chosen for the p-norm error, the sensitivity to outliers increases as the p-value increases.  

A high sensitivity to outliers’ means that the objective function may over-fit the error data instead of 
providing a more general solution. In terms of the noisy measured pressure data, a high sensitivity to 
outliers may not be appropriate as fitting to the general trend is the objective.  
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The p-norm error is equivalent to the absolute linear error for a p-value of 1, similarly the p-norm error 
is equivalent to the square error for a p-value of 2. As the value for p approaches infinity, the objective 
function and optimisation process approaches the mini-max optimisation problem. The mini-max 
problem aims to minimise the maximum error between any two components of the error set 𝑒𝑒𝑖𝑖. It is 
therefore tuned to optimising over the greatest outlier value in the problem. 

A comparison of the various error functions’ behaviours, for increasing and decreasing component 
error values 𝑒𝑒𝑖𝑖, is shown in Figure 2.6-2. The p-value for the 𝑝𝑝∞-norm was chosen arbitrarily high at p 
equal to 150 for evaluation purposes. 

 

Figure 2.6-2 Comparison of error functions with logarithmic error function values 

The only error function presented which does not have a near p-norm equivalent is the MSE. It can be 
seen that any outlier value evaluated using the MSE will have a significant effect on the actual overall 
error function value. For all other error terms which have a p-norm equivalent it can be seen that as 
the p-value increases the summed error magnitudes decrease and the error function flattens out.  

In terms of gradient based approaches, a smooth convex error surface with a measureable gradient is 
preferred. This is because the error surface gradient directly affects the rate of convergence of an 
optimisation algorithm. Further a smooth convex shaped bottom allows a prediction to be made as to 
whether or not the actual minimum has been found (i.e. in the Hessian information). 

A decision needs to be made in order to choose the most appropriate error function for the problem 
at hand. As was previously stated, we are not interested in fitting the model to the extreme outliers, 
therefore it is proposed that a high p-value error function or the mini-max problem would not be 
appropriate as they are designed to specifically minimise over the largest outlier values.  

An error value normalised to the number of terms added is an advantage as errors from different 
investigations may then be directly compared. The quadratic errors provide a continuous convex error 
surface which facilitates an exit point for a gradient based optimisation approach. The error function 
therefore initially chosen to compare the measured and analytically derived pressure signals is the 
RMSE. If it is found that the error function does not perform well, an alternative may be chosen from 
the provided set. 

Returning to the assumption that the inverse problem is inherently ill-posed, it was stated that 
regularisation of the cost function may be useful. Regularisation of the cost function works by applying 
a penalty factor to the objective function being minimised over. The penalty factor is a function of the 
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problem’s constraints. As the constraints are violated a penalty is added to the cost function driving 
up the error value.  

Therefore, instead of supplying the equality and inequality constraints to a constraints based 
optimisation algorithm, the constraints are rather included directly in the penalty term (PT). The 
generic form of the cost function with included penalty term is shown in Equation [2.6.47] (Arora, 
2011). 

 𝑓𝑓(𝒙𝒙,𝜅𝜅) = 𝐸𝐸(𝑃𝑃𝑀𝑀 ,𝑃𝑃𝐴𝐴(𝒙𝒙)) + 𝑃𝑃𝑃𝑃�Υ𝑒𝑒𝑒𝑒(𝒙𝒙),Υ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝒙𝒙), 𝜅𝜅� [2.6.47] 

As was stated the penalty term is a function of the equality constraints Υ𝑒𝑒𝑒𝑒, the inequality constraints 
Υ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and a positive scalar penalty factor 𝜅𝜅 (Arora, 2011). Depending on the choice for the penalty 
factor, the cost function will be penalised more or less harshly (Arora, 2011). A common penalty term 
is the quadratic penalty term and is shown in Equation [2.6.48] (Arora, 2011). 

 𝑃𝑃𝑃𝑃�Υ𝑒𝑒𝑒𝑒(𝒙𝒙),Υ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝒙𝒙), 𝜅𝜅� = 𝜅𝜅 ⋅ ���Υ𝑒𝑒𝑒𝑒,𝑖𝑖(𝒙𝒙)�2 + ��max �0,Υ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖(𝒙𝒙)��
2

𝑚𝑚

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1

� [2.6.48] 

The investigation of interest only contains inequality constrains, therefore the penalty term reduces 
to Equation [2.6.49]. 

 𝑃𝑃𝑃𝑃�Υ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝒙𝒙), 𝜅𝜅� = 𝜅𝜅 ⋅ ���max �0,Υ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖(𝒙𝒙)��
2

𝑚𝑚

𝑖𝑖=1

� [2.6.49] 

It can be seen that the quadratic penalty function only penalises the cost function when the constraint 
is violated. Multiple options for penalty functions exist such as the set of barrier functions (Arora, 
2011). The barrier functions would be an appropriate choice for this problem as they are only 
applicable when inequality constraints exist, as is the case for this problem (Arora, 2011).  

Barrier functions, such as the inverse barrier function or the log barrier function, create a barrier about 
the feasible region defined by the inequality constraints (Arora, 2011). As the constraints approach 
their limits, the barriers approaches infinity. This means that an initial guess must be chosen within 
the feasible set of design variables or else the optimisation will end prematurely (Arora, 2011). An 
advantage of the quadratic penalty function is that initial guesses may be chosen outside of the 
feasible set (Arora, 2011). Many nonlinear constrained optimisation algorithms have intelligent pre-
integrated penalty functions and so the cost function does not need to be manually regularised. 

An optimisation strategy to solve the proposed inverse problem must now be formulated. Multiple 
options exist, however a strategy based on the problem at hand is desired. It is known that the larger 
of the two optimisation problems analytical gradient and Hessian information is unavailable. It is 
assumed that the problem is ill-posed due to the highly modal nature of the analytical pressure signal 
relation. Strategies such as gradient based approaches, stochastic approaches (approaches which do 
not use gradient information to find local minima), and combinatorial gradient and stochastic 
approaches may be considered. 

Stochastic approaches have been found to sometimes work well under highly modal conditions where 
no analytical gradient information is available. A stochastic approach such as the particle swarm (PSO) 
algorithm, or the genetic algorithm (GA), with multiple randomly generated particles (or individuals) 
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may be able to cover a larger portion of the error surface when compared to a strictly gradient based 
approach. 

Stochastic approaches may however take a long time to converge to the local minimum once a 
favourable area on the error surface has been identified. Therefore a stochastic based approach may 
be used to determine reasonable initial guesses for a gradient based approach and then the process 
terminated after a limited number of iterations. 

A gradient based approach, even without analytical gradient and Hessian information, may converge 
quickly once a good starting point near a local minimum has been estimated. Due to the lack of 
analytical gradient and Hessian information and the assumed highly modal nature of the problem a 
combinatorial based approach has therefore been proposed. It also provides a measure of the relative 
performance of the two different approaches without having to perform additional studies. 

This investigation is however not a comparison of different optimisation algorithms, therefore the 
specific choice of the gradient-based and/or stochastic algorithms to be combined is somewhat 
arbitrary. An informed trial and error approach in the numerical investigation will provide better 
insight into this issue and the choices made. A PSO and interior-point gradient based algorithm 
combination is initially suggested. The full solution process proposed, including signal processing and 
optimisation, for this specific inverse problem is provided in Figure 2.6-3.  

 

Figure 2.6-3 Optimisation and signal processing flow chart 

In the above schematic an additional signal processing technique has been included. Namely the order 
tracking process. Order tracking was suggested as a part of the signal processing in work of Forbes et 
al. (Forbes and Randall, 2013). As was previously stated, it is a phase resampling technique which 
supplies a signal which contains specific number of linearly resampled points (a specific number of 
points per revolution).  
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Order tracking removes smearing of frequency domain components due to slight rotor speed 
fluctuations when used on measurements taken at a nominal rotor speed. It may however denude the 
signal of unique components which is the reason for including it from an evaluative point of view. Until 
an experimental comparison between an order tracked signal and synchronously averaged signal is 
performed, the repercussions or benefits of including the process will remain unknown. This 
investigation is performed as part of the signal processing investigation in Chapter 4. 

If the optimisation process is unable to converge to one or more of the design variables associated 
with the blade natural responses then there may perhaps not be enough unique information in the 
pressure signal to describe that particular mode. For example if insufficiently broad spectrum energy 
is entering the blade or a rotor harmonic peak supplying energy to that particular mode is too far 
removed from the resonance of interest. Another concern would be if the given experimental setup 
and instrumentation choices allow capture of the missed modes. Depending on the position and 
orientation of the sound pressure transducer bending modes may be visible and torsional blade modes 
may not. Stationary bench tests may provide insight here. 

As was previously stated, an alternative to using the split measured signal and deterministic signal 
about an individual blade would be to use the full measured pressure signal and then multiple 
individual blade representations simultaneously (obtained through the same splitting procedure). In 
this way the travelling wave modes and associated nodal diameters can be included in the design of 
the problem by forcing a constant phase angle difference between the blades (or sections of blades 
given the number of modal diameters). The global behaviour and blade coupling can therefore be 
included in the inverse problem. 

The global version problem will however scale up the number of design variables and constraints 
significantly. This is because each individual blade already has quite a large number of design variables 
associated with it. Even if the modal constants, modal damping ratios, force and velocity scaling 
parameters are assumed to be equivalent for all blades, a larger number of independent variables are 
still expected (namely the natural frequencies for each of the blades included in the investigation). 

An advantage of the global approach would be that information about all blades’ behaviours will be 
used simultaneously to determine the combined blade and hub assembly’s response. Further, given 
that no system is perfect, a certain level of mistuning will always be present. Mistuning will cause 
mode localisation. This means that at least one of the blades (or sector contains blades) will be 
responding at a higher amplitude than the others and thus may provide more tangible information 
than the other blades. In the original process each blade may have to be evaluated separately in order 
to resolve the inverse problem. 

A second alternative to using the individual waves about blades to obtain a global pressure response 
indicator would be to use the relation based upon the work of Mengle (reformulated Model 1) 
(Mengle, 1990).  

In this way the travelling wave mode number (or number of nodal diameters) may be directly 
incorporated into the optimisation problem without having to individually include all blades 
simultaneously. The Fourier coefficients and system phase angle 𝜈𝜈 may be obtained in the same way 
as previously described. Therefore only the cost function of the second optimisation process and the 
associated constrains will be affected. Consider Equation [2.6.50].  
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 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ���1 + �[𝐼𝐼(𝑖𝑖) ⋅ Λk ⋅ sin(𝑘𝑘 ⋅ Ω ⋅ t + 𝜔𝜔 ⋅ 𝑡𝑡 + 𝜒𝜒)]
𝐵𝐵−1

𝑘𝑘=0

� ⋅ 𝐷𝐷𝑖𝑖′ ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜈𝜈])
∞

𝑖𝑖=0

� [2.6.50] 

The number of design variables which requires solving for is significantly reduced in this model when 
compared to the reformulated pressure Model 2. The design variables associated with this model are 
the response scaling factors Λk, the blade vibration phase angle 𝜒𝜒 and the overall phase angle of the 
analytical signal with respect to the measured signal 𝜈𝜈 which is obtained in an initial optimisation step. 
A major disadvantage of the model in its current form is that the blade response is modelled as a SDOF 
sinusoid and so would not be appropriate for evaluation of blade forced response with multiple forcing 
frequencies. 

The use of a numerical investigation in order to determine how well- or ill-posed the inverse problem 
is has already been mentioned. Prior to using either of these models on an actual pressure signal it is 
suggested that an ideal virtual problem be solved to determine if the technique is feasible.  

As was stated, a virtual problem allows one to set up a ‘measured’ pressure signal with known design 
variables. The problem can initially be solved for without adding additional noise to the signal. This is 
done in order to determine if it is first possible to resolve the blade vibration characteristics from the 
models in the first place. This allows direct evaluation of the proposed solution strategy (in terms of 
algorithm choice and combination) and indicates if one’s chosen error function is appropriate given 
the data. The ideal virtual problem will indicate the modality and smoothness of the error surface 
regardless of noise. 

If it is possible to resolve the blade vibration characteristics given the model and an ideal noise free 
signal then the next step would be to investigate an increasingly noisy signal. The interaction between 
the blade vibration amplitude and the signal to noise ratio (SNR) can then be established. Minimum 
SNR thresholds can then be established for a particular blade vibration amplitude. The virtual problem 
route makes sense of the inverse problem. 

It must be noted that these models and methods have been generated for the case of non-engine 
ordered blade vibration and they are not expected to provide significant insight into the case of 
resonant vibration.  

Further, as was stated in the scope and beginning of this section, the initial aim would be to fit 
components of the pressure model to signals which definitely contain the blade vibration phenomena 
of interest. For example fitting the blade vibration models to actual direct blade vibration signals (such 
as on blade SG signals). Only once the constituent internal pressure model components have been 
proven to adequately describe the phenomena would it be prudent to attempt the full inverse 
problem. Such a rigorous combined stochastic and gradient based approach may not be necessary to 
solve the reduced inverse problems. It is important to note that solving the full inverse problem is 
outside the scope of this project. 

An alternative method for obtaining blade vibration characteristics from a pressure signal has been 
suggested. The performance of the methodology depends heavily on the presence of blade vibration 
information within the signal and the ability to differentiate unique components of the signal. The 
following chapter outlines the experimental setup and experimental methodology employed to obtain 
casing pressure signals.
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Chapter 3 Experimental Setup and Characterisation 
3.1. Experimental Setup and Characterisation Introduction 
An experimental test setup was designed and built for the purpose of investigating blade vibration 
measurement techniques such as BTT and CPS based methods. Various design considerations and 
modifications were outlined in the scope of the project and were incorporated into the design. 

The critical components of the experimental setup, with respect to CPS techniques, are the hub and 
blades as well as the sound pressure transducer and associated mounting arrangements. The blade 
and hub assembly designs required analytical characterisation and investigation prior to manufacture. 
This was done in order to determine the expected blade and assembly response during operation. This 
also provided insight into the required instrumentation and instrumentation positioning.  

After manufacture these components were experimentally characterised in order to ensure that they 
responded as expected according to the FE investigation. A second significant motivation for the 
modal characterisation of the hub and blade assembly exists. In order to analyse the internal pressure 
signatures, from both a signal processing and inverse problem perspective, it is important to know 
what each individual blade’s expected behaviour is as well as the behaviour of the system as a whole. 

The following two sections explores the experimental test bench design and main mechanical 
components. This is followed by the individual blade design and analytical analysis. Three different 
blade designs were considered, each was designed to have a different fundamental frequency. This is 
achieved by altering the basis ‘healthy’ blade geometry at a location far remove from the blade’s tip.  

A dynamic finite element (FE) investigation was used to obtain the expected blade natural frequencies 
at both stationary and across a range of operating conditions. The experimental test bench’s 
operational limits were incorporated into the investigation. The FE analysis provided analytical 
Campbell diagrams with associated EO resonance locations (critical speeds). 

A general instrumentation list and schematic is then provided. The instrumentation used places limits 
on what can be observed, given the instrumentation’s sensitivity and the data acquisition system’s 
maximum sampling rate. A blade instrumentation plan, based on the FE investigation, is also included.  

Various experimental configurations are suggested. Four blade and hub assembly configurations are 
suggested (by making use of the three different blade designs), as well as three different excitation 
configurations (given the experimental setup’s design). 

Experimental modal analyses are performed on the various blade and hub assemblies in order to 
obtain both the system and individual blades response spectra to various excitation sources. The 
unconstrained hub and blade assemblies’ response spectra and operational mode shapes were 
obtained using a scanning laser vibrometry system. Thereafter the individual blades’ behaviours, in 
the installed position in the experimental setup, were obtained using a modal hammer approach. Run-
up tests were performed to obtain the critical operating speeds given the various hub and assembly 
configurations as well as excitation configurations. The data was obtained using strain gauges attached 
to the surfaces of individual blades. The run-up tests, coupled with the individual blade modal 
response test results, provided the expected engine order excitation locations. 

Finally a brief overview of the steady state data capture methodology and associated concerns are 
discussed.  
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3.2. Brief Description of the Experimental Test Bench 
The test bench was designed such that upstream stator excitation could be simulated using a 
combination of air nozzles attached to a high pressure air source. A CAD rendering of the complete 
experimental setup is presented in Figure 3.2-1. 

 

Figure 3.2-1 Experimental test bench 

The shaft, onto which the mock turbomachine hub and blades assembly is attached, is connected to 
an electric motor via an inline flexible shaft coupling. The flexible shaft coupling arrangement was 
chosen in order to minimise noise stemming from the operation of the motor and aid in system 
alignment. The shaft is aligned by means of two floating plumber block bearings which can be fixed 
into place after the alignment process.  

The electric motor is capable of providing a range of rotational speeds from approximately 0 RPM to 
1470 RPM by means of a motor controller. The shaft direction of rotation can be controlled manually 
by changing the attachment of the motor’s poles to a power source. 

The casing around the hub and blade assembly was designed such that instrumentation pallets could 
be removed and replaced as required. Alteration of these pallets allows multiple sensor configurations 
for a range of BTT and CPS tests. Once pallet was modified for CPS measurements. 

The end of the drive shaft was fitted with a slip ring mount. This mount has the dual purpose of locking 
the blade and hub assembly onto the tapered end of the shaft as well as allows attachment to a slip 
ring system for data acquisition of blade mounted sensors such as strain gauges. 

A schematic of the test bench and associated mechanical components is provided in the following 
section.
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3.3. Experimental Test Bench Design and Components 
Figure 3.3-1 contains a schematic of the experimental test bench and its main components. 

 

Figure 3.3-1 Schematic of experimental test bench 
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The component list associated with Figure 3.3-1 is provided in Table 3.3-1. 

Table 3.3-1 Experimental test bench component list 

# Component # Component 
1 Electric motor (5.5 kW at 1470 RPM) 8 Sensor mounting plate 
2 Flexible shaft coupling 9 Microphone 
3 Shaft with tapered end 10 Microphone mounting block 
4 Plumber block and bearing 11 Bench 
5 Zebra tape 12 Bearing mount 
6 Drum housing 13 Motor mount 
7 Drum   

The drum housing and associated components are presented in Figure 3.3-2. The tapered end of the 
shaft to which the hub assembly mounts is clear in this section view. 

 

Figure 3.3-2 Cross section of drum housing 

The components indicated on the drum housing figure are provided in Table 3.3-2. 

Table 3.3-2 Drum housing components 

# Component # Component 
14 Air jet ring 18 Slip ring coupling 
15 Air jet 19 Slip ring coupling attachment bolt 
16 Turbine blade 20 Slip ring 
17 Turbine blade attachment hub   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 3 Experimental Setup and Characterisation CB Church
   

  133 
 

The sensor mounting plate and attachments for CPS measurements are illustrated in Figure 3.3-3. The 
sensor mounting plate was designed such that the centre of a blade tip would pass the sound pressure 
transducer during operation. The design includes provision for two eddy current proximity probes to 
be placed on either side of the sound pressure transducer parallel to the drive shaft. The eddy current 
proximity probes serve two purposes, firstly they provide average blade passing times and secondly 
they may be used to differentiate between individual blades passing the sound pressure transducer. 

 

Figure 3.3-3 Cross section of sensor mounting plate and attachments 

The components associated with Figure 3.3-3 are presented in Table 3.3-3. 

Table 3.3-3 Sensor mounting plate components 

# Component # Component 
21 Sensor mounting plate 24 Split bush 
22 Eddy current probe 25 Microphone set screw 
23 Microphone   

The blade attachment hub was designed to support convenient changing of individual blades as well 
as allow multiple blade stagger angle orientations. The attachment hub design is presented in Figure 
3.3-4.  

 

Figure 3.3-4 Blade attachment hub 

The possible blade stagger angle orientations are 0°, 30°, 45°, 60° and 90°. Due to the reversibility of 
the motor velocity, the 45° stagger angle is specified among the other blade stagger angles. 
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3.4. Turbomachine Blades and Analytical Characterisation 
3.4.1. Blade Design 
Three separate blade designs were considered for manufacture. The designs were chosen such that 
three distinctly different fundamental blade frequencies exist with minimal geometrical differences 
along the length of the blade, and near identical blade geometries at the tip. Before manufacture the 
blade natural frequencies were estimated using the finite element (FE) package ANSYS™ (“ANSYS® 
Academic Research, Release 16.1,” 2015). The full FE investigation is provided in section ‘7.4.1 D1 – 
FE Analysis Configuration’. Significant results from this investigation are discussed in the succeeding 
section. The blade designs along with significant dimensions are provided in Figure 3.4-1. 

 

Figure 3.4-1 Blade designs. (a) Blade cross section. (b) Healthy Blade. (c) Damaged blade 1. (d) Damaged blade 2. 

The ‘healthy’ blade was designed to have a fundamental frequency of approximately 125 Hz, 
‘damaged blade type 1’ was designed to have a fundamental frequency of approximately 20 Hz lower 
than the healthy blade, and finally ‘damaged blade type 2’ was designed to have its fundamental 
frequency between the healthy blade and ‘damaged blade type 1’ at approximately 115 Hz.  

The material chosen for the preliminary FE investigation was a generic aluminium alloy. The blade’s 
actual material of manufacture was 6082-T6 round bar. A hot wire cutting process was used to 
produce the blades. It is noted that the manufacturing process may have altered the heat treatment 
condition of the raw material. This is not considered to be of concern as each of the blade’s dynamic 
responses are individually characterised by means of experimental modal testing. 

The blade length, excluding the attachment radius, was chosen as 112 mm. All of the blades had a 
thickness of 2mm and a constant chord length of 40mm. The blades are attached to the hub by means 
of two machine screws. Damage was achieved on the two alternate blades by cutting 2mm wide slots 
at the radius end on the blades to a depth of either 12mm or 8mm depending on the blade type. 

The succeeding section outlines the FE modal results of the finalised designs corresponding to the 
blade geometries provided in Figure 3.4-1. 
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3.4.2. Analytical Modal Response of Individual Blades 
As was stated, a finite element (FE) modal analysis was performed using ANSYS™ to ascertain the 
natural frequencies and mode shapes of the different blade geometries in their installed positions 
(“ANSYS® Academic Research, Release 16.1,” 2015).  

The general analysis choices are provided in ‘7.4.1 D1 – FE Analysis Configuration’ section ‘7.4.1.1 Fifth 
Model’ along with mode shape visualisations. The blades were modelled attached to the hub in a 
symmetric fifth configuration as the hub could accommodate 5 blades at any time. The cyclic 
symmetry boundary condition was applied to the symmetric models.  

Table 3.4-1 presents the first 5 theoretical natural frequencies and mode shapes for the various blade 
types (at stationary conditions). Due to the simple blade geometry, void of tapering and twisting, all 
modes are of a pure form, i.e. first bending is purely a bending mode and so on. 

Table 3.4-1 Analytical stationary blade natural frequencies 

Mode Blade Type 1: Healthy Blade Type 2: Damaged 1 Blade Type 2: Damaged 2 
Freq. 
(Hz) 

Mode Shape Freq. 
(Hz) 

Mode Shape Freq. 
(Hz) 

Mode Shape 

1 127.08 First bending 105.22 First bending 116.40 First bending 
2 733.55 First torsional 620.08 First torsional 676.96 First torsional 
3 791.15 Second bending 707.18 Second bending 744.43 Second bending 
4 2110.80 First edgewise 870.23 First edgewise 1393.80 First edgewise 
5 2214.70 Third bending 1976.7 Second torsional 2107.70 Second bending 

The effects of rotation on mode natural frequencies were investigated in the same study. The change 
in natural frequencies versus a change in rotational speed for the first three modes of a healthy blade 
is presented in Campbell diagram Figure 3.4-2. The first 100 EO lines are provided in the same plot. 

 

Figure 3.4-2 Campbell diagram of healthy blade 
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The Campbell diagram was generated using 11 pre-stress analyses in order to determine the natural 
frequencies across the range of 0 RPM to 1400 RPM. The pre-stress analyses were performed by 
setting a rotational speed boundary condition about the center of rotation. Once the pre-stress was 
applied a FE modal analysis could be performed in order to obtain the natural frequencies of the 
system given the particular rotor speed. 

It was seen that a negligible increase in natural frequency occurred due to centrifugal stiffening for all 
three modes and for all three different blade geometries over the operational range. It is also noted 
that as the shaft speed increases the spacing between critical resonance speeds increases. 

With respect to the healthy blade Campbell diagram, it can be seen that the smallest change occurred 
for the first torsional mode. This is in line with the expected behaviour as centrifugal stiffening was 
only expected to significantly influence the flap modes. The change in natural frequency 1, 2 and 3 
over the speed range was 2.3 Hz, 0.4 Hz and 3.2 Hz respectively. The natural frequencies (NF) for all 
blade types at 0 RPM and 1400 RPM for the first three natural frequencies are given in Table 3.4-2. 

Table 3.4-2 Natural frequencies for all blade types at 0 RPM and 1400 RPM 

Blade 1st NF at 0 
RPM (Hz) 

1st NF at 1400 
RPM (Hz) 

2nd NF at 0 
RPM (Hz) 

2nd NF at 1400 
RPM (Hz) 

3rd NF at 0 
RPM (Hz) 

3rd NF at 
1400 
RPM (Hz) 

Healthy 127.1 129.4 733.4 733.8 791 794.2 
Damaged 
Blade 1 

105.7 108.3 622.6 622.9 708.8 712.2 

Damaged 
Blade 2 

116.6 119 678 678.4 745.5 748.8 

The change in natural frequencies over the speed range of interest are given in Table 1.3-3. 

Table 3.4-3 Change in natural frequencies for all blades over speed range of interest 

Blade Change in 1st NF (Hz) Change in 2nd NF (Hz) Change in 3rd NF (Hz) 
Healthy 2.3 0.4 3.2 
Damaged Blade 1 2.6 0.3 3.4 
Damaged Blade 2 2.4 0.4 3.3 

The Campbell diagrams for the two remaining blade geometries are provided in section ‘7.4.4 D4 – 
Analytical Campbell Diagrams for Damaged Blades’. The same conclusions were drawn, the change in 
natural frequencies for all first three modes, due to rotational speed effects are negligible over the 
considered shaft speed operating range.  

The FE Campbell diagram results were stored such that changes in natural frequencies, due to 
operational speed, could be easily queried at a later stage for comparison with experimental results 
for rotor operation at any specific speed within the range investigated (namely 0 RPM to 1400 RPM). 

A total of 8 blades were manufactured. Five were of the healthy type, two were of damaged type 1 
and one was of damaged type two. The actual blade and hub assembly manufactured can be seen in 
section ‘7.5.3 E3 – Images of Experimental Setup’ subsection ‘7.5.3.3 Blade and Hub Assembly 
Components’. 
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3.5. Instrumentation 
3.5.1. General Instrumentation 
This section provides a general overview of the instrumentation setup used during run-up and steady 
state testing. The experimental setup’s instrumentation schematic is provided in Figure 3.5-1. 

 

Figure 3.5-1 Experimental setup instrumentation schematic 

The corresponding instrumentation list is provided in Table 3.5-1. 

Table 3.5-1 Experimental setup instrumentation guide 

Item Number Item 
1 Optical tachometer sensor 
2 Eddy current proximity probe 1 
3 Sound pressure transducer 
4 Eddy current proximity probe 2 
5 Eddy current proximity probe amplifier 
6 Slip ring system 
7 Analog strain gauge amplifier 1 
8 Analog strain gauge amplifier 2 
9 Analog strain gauge amplifier 3 
10 Data acquisition system 
11 Laptop 
12 Signal generator 
13 Motor speed controller 
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An OROS™ OR35 data acquisition system was used for all data capture purposes. The system has 8 
available input channels, and a maximum sampling rate of 102.4 kHz. The system is limited to five 
input channels when sampling at the maximum sampling frequency. The system is capable of 
interfacing with AC voltage, DC voltage and powered ICP® measurement devices. The available 
NVGate® software allows interfacing with the device. The program has built in modal analyses 
algorithms which were used in the individual blade modal testing (see section ‘3.7.2 Blade Response 
at Installed Position’). All measurements were taken at the maximum sampling rate of 102.4 kHz. 

All of the measurement instrumentation was externally powered with the exception of the sound 
pressure transducer as this device was a powered ICP® instrument. The sound pressure transducer 
was a pre-polarised ¼” free-field microphone with a maximum dynamic range of 165 dB (maximum 
sound pressure level without clipping the measured response). The calibrated instrument has a flat 
frequency response at 0dB from 20 Hz to 10 kHz and a near flat response from 10 kHz to 100 kHz 
(calibration was performed at 251.2 Hz). The instrument has a lower limiting frequency in the range 
of 0.25 Hz to 3 Hz with associated noise in the range of 3 dB. The calibration report for the specific 
microphone used is given in section ‘7.5.2 E2 – Sound Pressure Transducer Calibration Report’. 

The blade mounted strain gauges were powered by analogue strain gauge amplifiers which interfaced 
with the data acquisition system via a DC voltage coupling. The amplifiers required calibration in order 
to match the DC voltage output with the displayed micro-strain value on the SG amplifier. 

The assembly was arranged such that the sound pressure transducer lay in a plane centered with the 
blade and hub assembly such that the center of the blade tips pass by the sensor. As was previously 
mentioned, the microphone was flanked by two eddy current proximity probes which facilitated blade 
passing time estimation and differentiation of individual blades. 

A full instrumentation list along with associated calibration values, make and model numbers can be 
found in section ‘7.5.1 E1 – Instrumentation List’. Images of the instrumentation can be seen in section 
‘7.5.3.5 Instrumentation and Sensors’. 

3.5.2. Blade Mounted Vibration Measurement Sensors 
Strain gauges (SG) were used to directly measure the response of various blades during operation and 
modal analyses. The instrumentation positions for all blade geometries are indicated in Figure 3.5-2. 

 

Figure 3.5-2 Strain gauge positioning. (a) Healthy blade. (b) Damaged blade type 1. (c) Damaged blade type 2. 
(a) (b) (c) 
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All SG configurations were of the full bridge type. Therefore the application positions are mirrored on 
both sides of the blades. The full bridge configuration was chosen in order to maximise sensitivity to 
response deflection whilst simultaneously negating the effects of temperature change on the strain 
measurements. 

Only one of each blade geometry type was instrumented. The unaltered healthy blade was 
instrumented with three full bridges. Two of the bridges were designed to capture bending modes 
and the remaining bridge was chosen to measure torsion.  

The SG position choice was chosen such that the gauges would be sufficiently far away from geometric 
stress raisers (such as the blade attachment radius and damage slots) whilst still being near to 
positions of maximum strain depending on the mode of interest. The bridge closest to the blade 
attachment point (set at 33mm from the bottom end of the blade) was positioned to capture the first 
flap mode. The second torsional bridge, positioned 67mm from the bottom of the blade, was 
positioned to capture the first torsional mode. And finally the second bending bridge was positioned 
at a distance of 84mm from the blade bottom to capture the second flap mode. The FE analysis behind 
the position choices are presented in section ‘7.4.3 D3 – Strain Gauge Positioning for Healthy Blade’. 

The two damaged blades were only instrumented with a single full bridge each. These bridges were 
positioned in order to capture natural mode 1, the first flap mode. 

After data acquisition it was noticed that the measured voltage of one of the gauges on the healthy 
blade wandered. This could have been due to multiple causes. Causes such as incomplete cohesion of 
the gauge to the blade surface due to an adhesive fault, or a bubble captured under the gauge during 
application for example. The particular faulty gauge was the one nearest to the bottom of the blade 
(positioned at 33mm from the bottom in order to capture the first flap mode).  

It was seen that the frequency content captured by the gauge was the same as that captured by the 
second bending gauge on the blade. This was confirmed by comparison with the data obtained by the 
second bending gauge on the same blade. 

After later inspection it was found that only one half of the full bridge (attached to one side of the 
blade) was affected. Therefore only the voltage magnitudes captured would be influenced by the 
damaged gauge.  

A near linear wandering pattern was observed, therefore it was chosen to linearly detrend the data 
captured by this SG and consider only the frequency content and relative voltage amplitudes. This was 
done as opposed to converting all of the SG measurements from a direct voltage reading to a micro-
strain value. The DC offset of the remaining SG measurements was determined during post processing 
and subtracted from the signals such that they oscillate about a zero mean. 
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3.6. Experimental Configurations 
Multiple geometric and excitation configurations were explored for data acquisition. This section 
outlines the experimental configurations considered. 

3.6.1. Blade and Hub Configurations 
As was previously stated, a total of 5 healthy blades, 2 damaged blades type 1 and 1 damaged blade 
type 2 were manufactured. This allowed multiple setup configurations. A front view of the hub and 
blade assembly is presented in Figure 3.6-1.  

 

Figure 3.6-1 Blade and hub numbering convention (front view, clockwise rotation) 

It was chosen that the stagger angle of the blades, as defined in the theoretical development chapter, 
be arbitrarily set to 30° for all configurations. All measurements are taken for clockwise rotation of 
the system. The blades are numbered counter clockwise in the figure. The numbering coincides with 
the order in which the stationary observer on the casing will be passed by the blades. Signal processing 
will ensure that the in all measurements the blade order will always begin with the passing of blade 1.  

Four separate configurations were considered. The configurations build on top of one another, in each 
new configuration a single healthy blade is replaced with a damaged blade. The four blade and hub 
assembly configurations are: 

1. All blades are of the healthy type 
2. Blade 5 is replaced with damaged blade type 1 
3. Blade 2 is replaced with damaged blade type 2 
4. Blade 3 is replaced with damaged blade type 1 

The dynamic behaviour of all of the configurations, and individual blades, were experimentally 
determined using modal tests. These tests are outlined in section ‘3.7 Experimental Characterisation 
of Turbine Blade and System Response’. 

3.6.2. Excitation Configurations 
A toroidal ring containing 24 high pressure air jet attachment nozzles was installed upwind of the rotor 
hub and blade assembly. These nozzles direct high pressure air onto the turbomachine blades in order 
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to approximate upwind stator vane excitation conditions. Previous experimental work on the test 
bench found that with the available high pressure air source a maximum of four jets could be used 
simultaneously in order to produce a significant excitation condition. Four separate excitation 
configurations were considered: no air excitation, one jet excitation, two jet excitation and four jet 
excitation. A side view of the casing and attachment legend are provided in Figure 3.6-2. 

 

Figure 3.6-2 Excitation nozzles from side view of casing section. (a) Side view of casing section. (b) Jet attachment 
legend. 

A front view of the casing with the different excitation configurations is given in Figure 3.6-3. The 
position of the sound pressure transducer can be seen in the top left quadrant of the figure. 

 

Figure 3.6-3 Front view of excitation nozzles. (1) No attachment. (2) 1 jet configuration. (3) 2 jet configuration. (4) 4 jet 
configuration. 

(a) (b) 
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All configurations, save the single jet configuration, ensure that symmetric excitation conditions exist 
during operation. In practice the upstream stator configurations would be symmetric about the shaft 
and hence the consideration. 

It was found that running the motor below 200 RPM was not feasible due to hardware related issues. 
For safety concerns the motor was not operated at its maximum speed. The maximum measurement 
speed was generally limited to the vicinity of 1400 RPM. This reduced the operational range to 
200 RPM – 1400 RPM.  

When no air excitation was applied it was noticed that a small excitation condition still existed. This 
periodic excitation is attributed to gravitational effects. During each rotation a single blade 
experiences a range of alternating forces related to moving through a maximum and minimum pull 
due to gravity. These excitation forces were however significantly smaller than that the air excitation. 
They are therefore assumed to be negligible during operation with air excitation.  

The excitation frequency ranges, for the three air excitation configurations, are given in Table 3.6-1. 

Table 3.6-1 Frequency excitation ranges for air excitation configurations 

Excitation 
Configuration 

Excitation frequency at 200 RPM 
(3.33 Hz) (Hz) 

Excitation frequency at 1400 RPM 
(23.33) (Hz) 

1 jet 3.33 23.33 
2 jets 6.66 46.66 
4 jets 13.33 93.33 

Although the excitation ranges do not directly coincide with any of the blades’ fundamental 
frequencies, multiple engine order excitation possibilities for all natural frequencies of interest exist.  

Three even number analytical engine order (EO) excitation conditions and associated critical speeds 
were chosen for comparison with experimentally obtained critical speeds. The analytically estimated 
critical speeds of the three different blade geometries for excitation of their fundamental modes by a 
single excitation jet is given in Table 3.6-2. 

Table 3.6-2 Analytical critical speeds for chosen EO excitation of blade fundamental frequencies 

Excitation Healthy Blade Damaged Blade 1 Damaged Blade 2 
Fundamental 
Frequency (Hz) 

127.08 105.22 116.40 

EO 6 (RPM) [Hz] 1270.8 [21.18] 1052.40 [17.54] 1164.00 [19.4] 
EO 8 (RPM) [Hz] 953.40 [15.89] 789.00 [13.15] 873.00 [14.55] 
EO 12 (RPM) [Hz] 635.4 [10.59] 525.60 [8.76] 582.00 [9.70] 

The various blade designs and excitation configurations provide multiple different excitation and 
response scenarios.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 3 Experimental Setup and Characterisation CB Church
   

  143 
 

3.7. Experimental Characterisation of Turbine Blade and System Response 
Experimental modal analyses were performed in order to validate the analytically expected natural 
frequencies and mode shapes, as well as to provide an indication of the expected response during 
operation. Both the system response to uniform hydrostatic excitation and the individual blade 
response to impact excitation were investigated and are presented in the two succeeding sections. 

3.7.1. Unconstrained System Response 
The unconstrained system response was determined using a scanning laser vibrometer. The test setup 
can be viewed in section ‘7.5.3 E3 – Images of Experimental Setup’ subsection ‘7.5.3.6 Scanning Laser 
Vibrometer’.  

Excitation was achieved by hanging the blade and hub assembly by elastic chords in front of a speaker. 
The speaker was attached to an amplifier which received a signal generated by the laser vibrometer. 
A chirp excitation was used to excite the assembly. Multiple points across the entire assembly were 
chosen for scanning. An average of 15 excitation and response measurements were taken for each 
measurement point chosen. The average response spectrum, containing the first three blade natural 
frequencies, obtained for blade and hub assembly configuration 1 is presented in Figure 3.7-1.  

 

Figure 3.7-1 Average response spectrum of unconstrained assembly in configuration 1 

Figure 3.7-2 is a closer look at the response spectrum in the vicinity of blade mode 1 (the blades’ mode 
1 was calculated in the FE analysis to be in the region of 127 Hz). It can be seen that multiple individual 
peaks exist in the vicinity of mode 1. Unexpected additional peaks appear near 140 Hz and 172.5 Hz. 

 

Figure 3.7-2 Average response spectrum of unconstrained config. 1 in vicinity of mode 1 
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The three separate peaks in the vicinity of mode 1 are related to slight differences in the fundamental 
frequencies of all of the individual healthy blades. Depending on the specific resonance frequency 
peak chosen, in the region of 127 Hz, one or more blades exhibit mode 1 bending.  

The differences between the excitation frequencies can be seen to cause the blades to oscillate at 
different phase angles and have different maximum response magnitudes (for the specific blade-
dominated system mode shape investigated). Two operational mode shapes obtained for 
configuration 1 and at slightly different response frequencies in the vicinity of 127 Hz have been 
provided in Figure 3.7-3. The individual blades are numbered from 1 to 5 starting with 1 at the 12 
o’clock position, with blades 2 to 5 following clockwise (the positioning of the blades remains constant 
for all operational mode shape figures presented in this section as well as those to follow).   

 

Figure 3.7-3 Operational mode shapes for configuration 1. (a) Response at 125.94 Hz. (b) Response at 127.19 Hz. 

The blades which respond at the same phase angle are seen to have closer fundamental frequencies 
when compared to the other blades, this is confirmed in the succeeding section. For the case of 
excitation at 127.19 Hz blades 1 and 3 respond at a 180° phase angle difference to blades 2 and 5. 

It is interesting to note that at approximately 170 Hz all five blades oscillate in their first bending mode 
at the same phase angle. A similar occurrence is seen for the second bending mode for excitation at 
822 Hz (higher than the expected mode 2 frequency). These mode shapes are shown in Figure 3.7-4. 

 

Figure 3.7-4 Operational mode shapes for configuration 1. (a) Mode 1 bending at 172 Hz. (b) Mode 2 bending at 822 Hz. 
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Thus unexpected system modes were uncovered, no such modes was noticed in the cyclic symmetric 
FE modal analysis and investigation. As expected the blade dominated torsional modes occur in the 
vicinity of 710 Hz.  

In configuration 2 blade 5 was replaced with a blade of reduced fundamental frequency (damaged 
blade type 1). The individual blade’s fundamental frequency was expected to be approximately 20 Hz 
lower than that of the healthy blades. The operational mode shapes for excitation of configuration 2 
near the blade dominated mode 1 can be seen in Figure 3.7-5. 

 

Figure 3.7-5 Operational mode shapes for configuration 2. (a) Mode 1 bending at 110 Hz. (b) Mode 1 bending at 134 Hz. 

As expected the fundamental mode of blade 5 is seen to be excited at a much lower frequency than 
the other blades. Further, there is sympathetic excitation of the adjacent blades due to the physical 
coupling of the system. Due to the increase in mistuning mode localisation has now occurred.  

Once again additional unexpected modes which cause all blades to oscillate at the same phase angle 
appear. Due to the replacement of an individual blade the frequencies at which these modes occur is 
seen to reduce. These operational mode shapes for these cases are provided in Figure 3.7-6. 

 

Figure 3.7-6 Operational mode shapes for configuration 2. (a) Mode 1 bending at 169 Hz. (b) Mode 2 bending at 813 Hz. 

The response amplitude of the changed blades, blade 5, is much lower than that of the other 4 blades 
for these particular modes. 
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In configuration 3 blade 2 was replaced with a blade of reduced fundamental frequency, where the 
reduction was in the order of 10 Hz (damaged blade type 2). The system response in the vicinity of 
excitation frequency of blades 5 and 2 can be seen in Figure 3.7-7 (a) and (b) respectively. 

 

Figure 3.7-7 Operational mode shapes for configuration 3. (a) Mode 1 bending at 109 Hz. (b) Mode 1 bending at 118 Hz. 

Once again sympathetic excitation of the adjacent blades and mode localisation is noticed. When the 
system was excited at approximately 140 Hz blades 1, 3 and 4 can be seen to respond at the greatest 
magnitudes with blade 1 responding at 180° phase difference to blades 3 and 4. This is illustrated in 
Figure 3.7-8 (a). 

 

Figure 3.7-8 Operational mode shapes for configuration 3. (a) Mode 1 bending at 139 Hz. (b) Mode 1 bending at 165 Hz. 

Once again modes exists where all the blades oscillate in phase with one another. Once again these 
particular modes occur at reduced frequencies when compared to the previous two configurations. 
This is illustrated in Figure 3.7-8 (b) (as the average blade natural frequencies decrease with the 
replacement of healthy blades with damaged ones). 
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In terms of configuration 4 blade 3 is replaced with a blade of similar fundamental frequency to blade 
5 (damaged blade type 1). The operational mode shapes won’t be presented in this section, however 
it is again seen that blades of similar geometry respond at the same excitation frequency. Mode 
localisation is still present as well as sympathetic excitation due to movement of adjacent blades when 
the blades of different geometry are excited. 

The mistuning of the system was shown to cause unexpected modes and mode shapes. For the case 
where all of the blades were most similar, namely configuration 1, it was seen that at slightly different 
excitation frequencies, in the vicinity of the expected blade fundamental mode, slightly different 
system modes were achieved. Multiple peaks occur in the vicinity of the mean tuned peak value (mean 
mode frequencies across all blades) on the system’s response FRF. This was expected according to the 
literature reviewed. It was further seen that the individual blade response amplitudes differed 
significantly between blades under the same excitation and with similar fundamental frequencies. 

The operational mode shapes obtained provides insight into the expected system response during 
operation. Given the data acquisition system it was not possible to instrument and measure the 
response of all of the blades simultaneously. Several conclusions can be drawn from this investigation 
which can be used when investigating the experimentally obtained internal pressure signals. 

When configuration 1 is excited in the vicinity of the blade mode 1 (for the healthy blade) all of the 
blades are expected to respond at different phase angles depending on the system mode and nodal 
diameters. When any of the other configurations are excited in the vicinity of the damaged blades’ 
natural frequencies only slight participation of the adjacent blades is expected. This is because the 
damaged blades have natural frequencies which are far removed from the healthy blades. 

During the analysis an additional mode may be found where all of the blades respond in the same 
blade mode shape and at the same phase angle irregardless of the configuration. 

It is important to note that both the forcing function and boundary conditions for the unconstrained 
system differ significantly from the installed (on shaft) position. The system’s behaviour in the 
unconstrained position only provides an indication of what is to be expected when installed on the 
rotor.  

In the installed operating position the blades are expected to be impinged upon by the high pressure 
air nozzles (and by a modal hammer during the individual blade modal response investigation). These 
are completely different excitation mechanisms when compared to the uniform hydrostatic pressure 
applied to the one side of the assembly by the speaker during the unconstrained excitation.  

Further, in the installed position, the hub is forced onto the tapered end of the shaft. Thus the hub 
attachment is seen to be significantly stiffer in the installed position when compared to the 
unconstrained configuration.  

The blades are a fair approximation of Euler-Bernoulli beams, and as such are highly sensitive to the 
boundary conditions. Therefore it is expected that the blade natural frequencies and associated mode 
shapes in the installed position may differ slightly from those found in the unconstrained condition. 

The remaining average response spectra and operational mode shapes for all configurations can be 
found in section ‘7.5.5 E5 - Unconstrained System Response’.  
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3.7.2. Blade Response at Installed Position 
A modal test was performed with the hub and blade assembly installed on the experimental setup. 
This was done in order to determine the response spectra of the individual blades at stationary 
installed conditions. Measurements were taken by both the installed strain gauges (SG) on the various 
blades and the sound pressure transducer (microphone) during these investigations.  

Excitation was achieved by a nylon tipped modal hammer. Various excitation locations across the 
length of the blades were investigated. Trial and error was used to determine a suitable excitation 
point on each of the blades. In general this point was found to be approximately one third of the length 
of the blade measured from the radius on the blade. The blades were oriented in the experimental 
setup such that the centre of their tips coincided with the sound pressure transducer installed in the 
casing. One modal SG response set for excitation of blade 1 on configuration 1 is provided in Figure 
3.7-9, the microphone’s response for the same measurement is provided in Figure 3.7-10. 

 

Figure 3.7-9 Response spectra for blade 1 in configuration 1 measured by 3 SGs 

 

Figure 3.7-10 Response spectra for blade 1 in configuration 1 measured by sound pressure transducer 

The microphone was in general less sensitive to the torsional modes in comparison with the torsional 
SG measurements and all flapwise mode measurements (both SG and microphone based). The first 
harmonic of the fundamental frequency was always present in the microphone’s results, and often 
the second flapwise bending mode produced a greater response amplitude than the first. 
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Table 3.7-1 provides the results for all of the blades and for all of the assembly configurations. The 
symbols ‘H’, ‘D1’ and ‘D2’ refer to blade types healthy, damaged 1 and damaged 2 respectively. The 
individual blade mistuning (BMT), percentage difference of natural frequency to nominal natural 
frequency, has also been indicated in the table. 

Table 3.7-1 Individual blade fundamental responses for different experimental configurations at stationary conditions 

Blade Configuration 1 
blade  fundamental 
frequency (Hz) 

Configuration 2 
blade  fundamental 
frequency (Hz) 

Configuration 3 
blade fundamental 
frequency (Hz) 

Configuration 4 
blade fundamental 
frequency (Hz) 

 NF (Hz) BMT (%) NF (Hz) BMT (%) NF (Hz) BMT (%) NF (Hz) BMT (%) 
1 128.1#* 

 
1.570 128.1#* 

 
5.641 128.1#* 

 
7.865 128.1#* 

 
13.103 

2 125.0* 
 

0.888 125.0* 
 

3.084 112.5#* 
 

5.271 111.9# 
 

1.201 
3 126.3* 

 

0.143 126.3* 
 

4.156 126.3* 
 

6.349 100.0#* 
 

11.708 
4 125.6* 

 

0.412 125.0* 
 

3.084 125.0* 
 

5.254 124.4* 
 

9.836 
5 125.6#* 

 

0.412 101.9#* 
 

15.966 101.9#* 
 

14.197 101.9# 
 

10.030 
Mean 126.12 0.685 

 
121.26 6.386

  
118.76 7.787 113.26 9.175 

𝝈𝝈 1.072194 9.746507 10.06451 11.41098 
%∆𝝈𝝈 0.005034 0.048806 0.033437 0.041616 

#SG measurement. *Microphone measurement. Measured with SG on blade. 𝝈𝝈 = Standard Deviation. 

Depending on the configuration certain blades had SGs installed (as mentioned in a prior section). All 
SG measurements and sound pressure transducer measurements were compared to produce the 
table. Depending on whether the value was obtained by both a SG on the blade and the microphone 
or by a SG on another blade and the microphone an indicator has been specified. 

The analytically obtained fundamental frequencies for the healthy, damaged blade type 1 and 
damaged blade type 2 were found to be approximately 127 Hz, 105 Hz and 116 Hz respectively. It can 
be seen that all of the natural frequencies, for modes 1 to 3, are within ±5 Hz of the analytically 
obtained natural frequencies. These differences are attributed to manufacturing tolerances. 
Therefore it is expected that the critical resonance speeds, as predicted in section ‘3.6.2 Excitation 
Configurations’, remain fairly close to the actual critical resonance speeds. These speeds will be 
confirmed in the succeeding section which investigates the run-up resonance responses.  

With respect to configuration 1, the slight differences in the individual blade natural frequencies were 
seen to causing mistuning effects in the previous section. It was seen that, given a particular excitation 
frequency blades 2 and 4 oscillated in phase whilst blades 1 and three were 180. 

A global measure of the system’s mistuning has been included in the table. Namely the mean 
percentage standard deviation change (%∆𝜎𝜎) of the blades natural frequency with respect to the 
configurations nominal (mean) natural frequency. The global mistuning for configuration 1 was found 
to be significantly smaller than the remaining three configurations. Configuration 2 was found to have 
the largest level of mistuning, followed by configuration 4 and 3 respectively. 

The response spectra obtained for stationary measurements, both SG and sound pressure transducer 
based, under modal hammer excitation for all of the individual blades and geometric configurations 
can be seen in ‘7.5.6 E6 – Response Spectra of Individual Blades’.  
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3.7.3. Run-up Blade Responses 
A run-up investigation was performed in order to obtain experimental critical resonance speeds for 
steady state measurement speed choice. Investigations were performed on the first three 
experimental configurations as each investigation provided additional response information with an 
additional SG measurement (SGs applied to the damaged blades which replaced healthy blades). The 
expected resonance speeds for configuration 4 were inferred from this information.  

Due to hardware limitations not all SGs on all blades could be measured simultaneously. Table 3.7-2 
contains the instrumentation scheme for the investigation. The parameters B1, B2 and T1 refer to 
strain gauges optimised to measure the first flap, second flap and first torsional modes respectively. 
As was previously mentioned it was found that SG optimised to capture B2 on blade 1 provided the 
same information as SG B1 on the same blade. This result is confirmed here. 

Table 3.7-2 Ramp-up instrumentation 

Blade Ramp-Up 1 – Configuration 1 Ramp-Up 2 – Configuration 2 Ramp-Up 3 – Configuration 3 
1 B1, B2, T1 B1 B1 
2 Not instrumented Not instrumented B1 
3 Not instrumented Not instrumented Not instrumented 
4 Not instrumented Not instrumented Not instrumented 
5 Not instrumented B1 B1 
Due to the fact that the SGs only supply point information for one blade, on a hub and assembly 
configuration, it is only possible to deduce that blades, of a similar design, would have similar 
responses under the same excitation conditions. No information would be available to determine the 
relative phase angle in between individual blades using the SG measurements to determine the 
system’s full response. 

Measurements were taken for all four excitation configurations as well: namely no air excitation, 1 jet, 
2 jet and 4 jet excitation. The run-up SG responses for configuration 1 with 1 air jet being used to 
excite the system is given in Figure 3.7-11. 

 

Figure 3.7-11 Run-up investigation of configuration 1 with 1 jet 
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It can be seen that the greatest amplitudes occur at 594 RPM and 965.7 RPM (EO 13 and 8 
respectively). As the number of jets increased from 1 to 2 and then finally to 4 it was found that the 
response amplitudes decreased significantly.  

The greatest response amplitude found during the evaluation of configuration 1 was 0.39 V at 
approximately 966 RPM. The largest response amplitude for the 2 jet configuration was found to be 
0.29 V (at 967 RPM), and finally 0.24 V (at 967 RPM) for the 4 jet configuration. This trend, of 
decreasing response amplitude, was found across all run-up measurements. Therefore, as the number 
of active jets increased the relative applied force, per blade, decreased. 

All of the run-up responses for configurations 1 through 4 under 0, 1, 2 and 4 jet excitation can be 
seen in ‘7.5.7 E7 – Run-Up Resonance Detection’. An example of a run-up test, performed for 
configuration 3 under 1 jet excitation, is provided in Figure 3.7-12. 

 

Figure 3.7-12 Run-up configuration 3 with 1 jet 

The responses from three separate blades were recorded and compared in this run-up investigation. 
In order to better present the data, the run-up information for blade 1 and 5 was re-plotted on top of 
the full signals at reduced amplitudes so that the resonance locations could be clearly seen in the 
figure.  

It can be seen from the figure that the critical speeds, for individual blades of different fundamental 
frequencies, are still individually excited at their own blade natural frequencies. Even though the 
blades are structurally coupled through the hub and attachment shaft. Blades 1, 2 and 5 all lie adjacent 
of one another, and so sympathetic excitation of the surrounding blades was expected due to the 
physical coupling. The coupling effect was seen in the unconstrained system response characterisation 
investigation. Further, it can be seen that many of the individual blade resonances are close to one 
another. Therefore by choosing to excite the system at one blade’s resonance, a measurement of 
another blades response will often be in the vicinity of its individual resonance. 
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The observed fundamental EO responses at experimentally determined operational speeds for the 
three different blade geometries and single jet excitation is provided in Table 3.7-3.  

Table 3.7-3 Observed operational speed and fundamental EO response relationships for 1 jet excitation 

Healthy blade (B1 & B2) Damaged blade type 1 (B1) Damaged blade type 2 (B1) 
Speed (RPM) [Hz] EO Speed (RPM) [Hz] EO Speed (RPM) [Hz] EO 
594.0 [9.90] 13 514.5 [8.56] 12 567.6 [9.46] 12 
647.3 [10.78] 12 565.6 [9.43] 11 623.3 [10.39] 11 
703.6 [11.73] 11 623.3 [10.39] 10 687.7 [11.46] 10 
824.6 [13.74] 10 691.0 [11.52] 9 760.2 [12.67] 9 
862.4 [14.73] 9 782.1 [13.04] 8 860.8 [14.35] 8 
965.7 [16.10] 8 888.1 [14.80] 7 979.8 [16.33] 7 
1107 [18.45] 7 1040 [17.33] 6 1151 [19.18] 6 
1300 [21.67] 6 1251 [20.85] 5 1290 [21.50] 5 

The table was generated using observations from multiple single jet excitation run-up measurements. 
It is important to note that the resonance speeds are approximated for all blades of the same type 
because only 1 blade of each type was instrumented. Further, the overall system behaviour is 
expected to change with the swapping of a blade for a configurational change, and as such the critical 
speeds are only approximations. The experimentally obtained critical resonance speeds, for EOs 12, 8 
and 6 are all within 30 RPM (0.5 Hz) of the chosen analytically obtained values for all blade geometries.  

The observed fundamental EO and critical speeds for operation with 2 and 4 jets are available in Table 
3.7-4 and Table 3.7-5 respectively. 

Table 3.7-4 Observed operational speed and fundamental EO response relationships for 2 jet excitation 

Healthy blade (B1 & B2) Damaged blade type 1 (B1) Damaged blade type 2 (B1) 
Speed (RPM) [Hz] EO Speed (RPM) [Hz] EO Speed (RPM) [Hz] EO 
419.7 [7.00] 9  375.7 [6.26] 8 428.4 [7.14] 8 
477.3 [7.96] 8 433.3 [7.22] 7 489.7 [8.16] 7 
550.7 [9.18] 7 512.9 [8.55] 6 569.5 [9.49] 6 
645.4 [10.76] 6 621.2 [10.35] 5 683.6 [11.39] 5 
779.5 [12.99] 5 776.8 [12.95] 4 855.7 [14.26] 4 
964.7 [16.08] 4 1046 [17.43] 3 1147 [19.11] 3 
1294 [21.57] 3     

Table 3.7-5 Observed operational speed and fundamental EO response relationships for 4 jet excitation 

Healthy blade (B1 & B2) Damaged blade type 1 (B1) Damaged blade type 2 (B1) 
Speed (RPM) [Hz] EO Speed (RPM) [Hz] EO Speed (RPM) [Hz] EO 
479.8 [8.00] 4 252.7 [4.21] 6 286.9 [4.78] 6 
647 [10.78] 3 307.1 [5.12] 5 344.5 [5.74] 5 
967 [16.12] 2 387.4 [6.46] 4 430.9 [7.18] 4 
  514.6 [8.58] 3 572.1 [9.54] 3 
  777.8 [12.96] 2 848.4 [14.14] 2 

As was previously stated, these run-up resonance locations, obtained from the responses of individual 
blades, were used to generate a steady measurement plan.
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3.8. Experimental Methodology 
The purpose of this section is to briefly outline the methodology and related choices used to obtain 
steady state internal pressure measurements. This section is further used to outline the associated 
concerns with the signal processing performed on those measurements. 

The experimental characterisation of the blade and hub assembly provided the resonance locations 
(in terms of operating speed) for the various experimental and excitation configurations. Direct on 
blade measurements confirmed the analytical predictions for the blades’ resonance response 
behaviour (namely the locations of the critical speeds).  

This information is used in tandem with the instrumentation and data acquisition system’s 
characteristics in order to outline the data capture limitations from a signal processing point of view. 
It further provides insight into the measurement plan used to obtain a library of different 
measurement scenarios in terms of the various assembly and excitation configurations at and about 
resonant conditions. 

A range of nominally constant speed measurements were to be taken. This was done for all hub 
assembly and excitation configurations. It was chosen that each steady state record be 10 seconds in 
length.  

All measurements were taken at the maximum sampling rate of the data acquisition system, namely 
at 102.4 kHz. This provided the finest time resolution possible given the available equipment. The 
sampling rate and sample length provided a frequency resolution of approximately 0.1 Hz with a 
maximum effective bandwidth of approximately 51.2 kHz (taking the Nyquist-Shannon sampling 
theorem into account).  

Taking the sound pressure transducer’s lower and upper limiting frequencies into account for a 
relatively flat sensor response (3 Hz to 100 kHz), frequency content in the range of approximately 3 Hz 
to 51.2 kHz could be successfully captured using this measurement scheme. Given the instrumentation 
and sampling frequency, this content is expected to be without significant sensor noise nor sampling 
related aliasing.  

Taking the measurement scheme limitations into account, the slowest rotor speed which could be 
considered for once per revolution frequency content capture was 180 RPM (3 Hz). Given the sampling 
rate, no maximum operating speed existed for once per revolution frequency content capture.  

The first 3 blade natural frequencies, for all blade geometries, were all well within the flat 0 dB 
response region of the sound pressure transducer (namely 3Hz to 10 kHz) for direct measurement (i.e. 
not Doppler shifted). The calibration report for the sound pressure transducer, which contains its 
response curve, has been provided in section ‘7.5.2 E2 – Sound Pressure Transducer Calibration 
Report’. 

Only the fundamental blade response modes were found to be significantly present during the run-up 
resonance investigations. Measurement speed choice was based solely on these observed resonances.  

For hub and blade assembly configuration 1 measurements were taken at resonance, resonance ± 5 
RPM (0.083 Hz), resonance ± 10 RPM (0.167 Hz) and resonance ± 20 RPM (0.333 Hz). This was done 
for EO resonances 13, 12 and 8 with 1 jet excitation, EOs 6 and 4 with 2 jet excitation and finally EOs 
3 and 2 with 4 jet excitation. EO 8 with 1 jet excitation was found to have the largest response 
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amplitude when compared to all other EOs observed for all excitation conditions. The data obtained 
using hub and assembly configuration 1 was the primary data set for analysis. All other data obtained 
is considered as supplementary for the purpose of further investigations.  

For the remaining assembly configurations, which contained ‘damaged’ blades of reduced 
fundamental frequencies, measurements were taken at various critical and non-critical speeds for all 
excitation configurations. The speed locations were chosen across the operational range of the 
experimental setup.  

Due to the proximity of the resonances of the different blade types, measuring at the resonance of 
one blade type was often found to be within a close proximity to the resonance of another (see the 
measurement plan mentioned below as well as the run-up resonance plots for configurations 2 to 4). 
Measurements were also taken in between resonance peaks. Thus a multitude of on and just off 
resonance measurements were obtained using this measurement scheme. 

As was stated, all of the measurements taken provided a library of different excitation and response 
conditions from which example or batch cases could be investigated. The steady measurement plan 
is provided in section ‘7.6 Appendix F – Steady Measurement Plan’. The run-up resonance 
investigation used for this purpose can be found in section ‘7.5.7 E7 – Run-Up Resonance Detection’. 

A signal processing methodology, which outlines the steps taken in order to separate the waves about 
individual blades and into the deterministic and stochastic parts, has been provided in section ‘7.5.8 E8 
– Signal Processing Methodology’. It is important to note that the signal processing methodology was 
developed to provide a wide range of interim and result signals which could be evaluated, all signals 
will not however be used for evaluation and analysis. 
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Chapter 4 Investigations and Results 
4.1. Introduction to Investigations and Results 
The pressure signal within a turbomachine casing is complex. It contains multiple constituents 
stemming from various sources. Some of the components and associated sources are well understood 
and others less so. 

Analytical models have been developed to describe the internal turbomachine casing conditions. 
Construction of the analytical models covers many broad topics. Topics such as how to model the 
blades’ response, how to describe the upstream stator forcing behaviour as well as how to incorporate 
the blade vibration signature into the internal pressure signal have been theoretically explored. The 
performance and flexibility of the constituent and combined models must now be ascertained.  

It is from these analytical models that hope is placed in order to obtain an indicator of blade response 
behaviour from steady state turbomachine internal pressure measurements. The blade vibration 
signature within the pressure signal as a whole is slight. Investigations must be performed in order to 
determine whether or not any useful blade vibration characteristics may be extracted from such a 
signal given the models, signal processing and optimisation techniques developed and discussed. 

An existing experimental setup was modified for the purpose of this investigation. Multiple blade and 
hub as well as excitation configurations were considered. This was done in order to provide a library 
of response data at nominally constant rotor speeds. The library was developed taking multiple run-
up SG response measurements into account. It is from this data collection that case examples can be 
further investigated. The blade and hub assemblies were characterised at stationary conditions using 
proven experimental modal analysis techniques to ensure that their response behaviour at stationary 
conditions is well understood before investigating their interaction with the internal pressure signal. 

The purpose of this chapter is to bring together all of the theory developed in Chapter 2 by comparing 
and incorporating it with experimental measurements. Questions such as: how well does the blade 
response model fit the actual blade response behaviour, and what can be learned from internal 
pressure signals observations needs to be answered. 

The proceeding section explores aspects of the steady state SG measurements recorded. This is done 
in order to provide a better picture of the forced response behaviour during operation. The effect of 
centrifugal stiffening on the blades’ fundamental frequencies is initially examined. The investigation 
into centrifugal stiffening will indicate the applicability of the system and individual blade 
characterisation done at stationary conditions. Excessive change in the fundamental frequencies 
during operation may indicate that the stationary characterisation observations are no longer 
applicable for later steady state behaviour inference.  

Once the topic of centrifugal stiffening has been covered, the measured SG responses are used to 
explore crucial aspects of the blade forced response model. This model consists of the blade transfer 
function model and the blade forcing function model. Reduced forms of the inverse problem are used 
to solve for blade vibration characteristics from SG measurements.  

The second section explores what can be learned through inspection of the internal pressure signal 
using the signal processing techniques discussed. Finally the observations from the signal processing 
results and SG measurements are incorporated into the inverse problem with the pressure models.  
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4.2. Observations from SG Measurements 
The behaviour of two chosen blades’ was monitored during steady state data acquisition (first bending 
SG on blade 1 for configuration 1 and the SG on blade 5 for configuration 2). The SG data is used to 
confirm that minimal blade centrifugal stiffening is present, investigate the true form of the forcing 
and response behaviour (given the experimental setup) as well as to provide blade transfer function 
parameter estimates. The waterfall plot of blade 1’s response during 1 jet excitation is shown in Figure 
4.2-1. 

 

Figure 4.2-1 Waterfall plot of SG responses measured on blade 1 configuration 1 under 1 jet excitation conditions 

For configuration 1 under 1 jet excitation it was chosen that measurements be taken at and about 
fundamental EO resonances 13, 12 and 8 (which occur at approximately 594 RPM, 643 RPM and 966 
RPM respectively). It can be seen on the above waterfall plot that three clear fundamental resonance 
peaks are noticed in the vicinity of the stated critical speeds, corresponding to the three chosen EO 
resonances. An alternate power-frequency view of the same waterfall plot is provided in Figure 4.2-2. 

 

Figure 4.2-2 Frequency-Power view of SG waterfall plot for configuration 1 under 1 jet excitation 

Under closer qualitative investigation is can be seen that the first two flapwise bending natural 
frequencies do not shift significantly (shifting is attributed to the centrifugal stiffening phenomenon). 
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These findings are aligned with the numerical FE investigation’s results. The first and second bending 
mode peaks are seen to remain near stationary in Figure 4.2-3 (top view of the initial waterfall plot). 

 

Figure 4.2-3 Frequency-Angular Velocity view of SG waterfall plot for configuration 1 under 1 jet excitation 

Qualitative observations from the SG measurements suggest that centrifugal stiffening is negligible 
for both blades 1 and 5 in assembly configurations 1 and 2 respectively. Recall that the FE analysis 
predicted a maximum shift of the healthy blade’s fundamental frequency of approximately 2.3 Hz and 
similarly a maximum shift of 2.6 Hz for the fundamental frequency of damaged blade type 1 (operating 
at 1400 RPM). The waterfall plots of all of the SG data upon which these initial qualitative observations 
have been produced can be found in section ‘7.7.1 G1 – Waterfall Plots of Full SG Responses’. A more 
concrete approach is however required before inferences can be made about the actual impact of 
centrifugal stiffening on the blade fundamental frequencies across the measurement range. 

The SG responses across all hub and assembly configuration 1 blade 1 measurements were averaged 
in order to obtain a robust estimate of the blade transfer function form during steady operation (the 
blade forcing behaviour is averaged out in this process as the only constant across the measurements 
is the blade geometry). The averaged response was then further filtered and smoothed. This was done 
in order to minimise the noise and remaining forcing components present in the signal. The averaged 
and filtered SG response for hub and assembly configuration 1 can be seen in Figure 4.2-4. 

 

Figure 4.2-4 Average SG response measured on blade 1 for all configuration 1 steady state measurements 
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The fundamental frequency of blade 1 in configuration 1, picked from the filtered and smoothed 
response curve, was found to be approximately 128.8 Hz. A total of 144 independent steady state 
measurements were used to construct the average response. The average rotor speed for all 
configuration 1 measurements was approximately 772.0 RPM (with a standard deviation of 
approximately 162.4 RPM). The FE model predicts an increase of approximately 0.68 Hz for operation 
at 772 RPM for the healthy type blade. Recalling that the stationary fundamental frequency for blade 
1 was found to be 128.1 Hz, the increase of 0.7 Hz is within 3% of the expected value.  

It is important to note that the averaging process flattens out the response leading to an average 
response spectrum with resonance peaks which have artificially higher damping than had no averaging 
been performed. Consider the exaggerated example presented in Figure 4.2-5. A total of 5 separate 
blade responses, within increasing fundamental frequencies simulating exaggerated centrifugal 
stiffening, are plotted along with the averaged response. 

 

Figure 4.2-5 Blade averaging peak smearing effect 

So long as the centrifugal stiffening remains small, with respect to the resonance peak locations, the 
flattening effect is expected to have a minimal impact on the resulting average spectrum. 

Similar to the process performed on the blade 1 configuration 1 measurements, the averaged and 
filtered response for blade 5 in configuration 2 is provided in Figure 4.2-6. A total of 158 independent 
experimental measurements were used to construct the average response plot. The collection of 
measurements used have a mean rotor speed of 805.8 RPM and a standard deviation of 227.0 RPM. 

 

Figure 4.2-6 Average SG response measured on blade 5 for all configuration 2 steady state measurements 
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The fundamental frequency obtained from the above plot for configuration 2 blade 5 is 103.5 Hz. The 
stationary fundamental frequency was measured to be 101.9 Hz during the modal analysis. This results 
in a frequency increase of approximately 1.6 Hz. The FE analysis predicts an increase of approximately 
0.85 Hz for damaged blade type 1 operating at approximately 806 RPM. The increase in fundamental 
frequency is therefore nearly double that predicted by the FE model, the shift is however still small in 
comparison to the value of the stationary fundamental frequency itself (101.9 Hz).  

A later investigation, which fits the analytical blade transfer function to the averaged and filtered 
curve, predicts an increase in fundamental frequency to within 20% of the expected value, taken with 
respect to the FE investigation’s results. The result obtained is much closer to the FE analysis’s results. 

The increase in fundamental frequencies, for both blades 1 and 5 in configuration 1 and 2, were found 
to be small in comparison to their stationary fundamental frequencies (well within 5% for both 
blades). The stationary characterisation results of the remaining blades is therefore still expected to 
be applicable, this is attributed to the similarity of the various blade geometries. The shift in the blade 
fundamental frequencies, due to centrifugal stiffening, is expected to be approximately within the 
maximum bounds obtained for the FE systems. Namely within 2.3 Hz for all healthy blades, 2.6 Hz for 
all damaged blades type 1 and 2.3 Hz for all damaged blades type 2 for operation up to 1400 RPM. 

The averaged and filtered responses were used in order to obtain an approximation of the forcing 
function form. Recall that the blade response 𝑋𝑋 is a function of the blade transfer function 𝐻𝐻 and the 
forcing function 𝐹𝐹. This relation is repeated in Equation [4.2.1]. 

 {𝑋𝑋(𝑗𝑗 ⋅ 𝜔𝜔)} = [𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔)] ⋅ {𝐹𝐹(𝑗𝑗 ⋅ 𝜔𝜔)}  [4.2.1] 

Therefore in order to obtain an estimate of the forcing function’s behaviour, the average blade 
transfer function estimate is factored out from the full response, as is indicated in Equation [4.2.2]. 

 {𝐹𝐹(𝑗𝑗 ⋅ 𝜔𝜔)} =
{𝑋𝑋(𝑗𝑗 ⋅ 𝜔𝜔)}
[𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔)] [4.2.2] 

Consider the captured SG response for assembly configuration 1 under 1 jet excitation operating at 
574 RPM (9.6 Hz, approximately 20 RPM lower than fundamental EO 13) shown in Figure 4.2-7. 

 

Figure 4.2-7 SG response for configuration 1 under 1 jet excitation operating at 574 RPM 
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It can be seen that the blade’s forced response is very similar to what was expected during the 
development of the blade forced response model. Namely that the blade is excited across a large 
frequency range by both Gaussian white noise and rotor harmonics. This trend was noticed during the 
evaluation of all SG measurements for both configuration 1 and 2 measurements. Dividing the 
individual blade response through by the average SG response, obtained from the averaging process, 
yields an approximate form of the forcing function, the resulting spectrum is given in Figure 4.2-8. 

 

Figure 4.2-8 Extracted blade forcing function for configuration 1 under 1 jet excitation operating at 574 RPM 

Additional examples of individual SG response and extracted forcing function plots for configurations 
1 and 2 under all excitation schemes is provided in section ‘7.7.5 G5 – Exemplar SG Response and 
Forcing Function Forms’. Examples presented are chosen at and about various resonance conditions. 

The relationship between the force applied by the upstream stators and the measured response (in 
volts) is unknown, therefore only relative magnitudes are considered for investigation. Upon 
inspection of the forcing behaviour, it is once again seen that the blade is excited at integer multiples 
of the rotor speed, as was the behaviour of the theoretical forcing model. Further the forcing 
magnitude is seen to decrease and then remain fairly constant after a specific point. There is also a 
fairly large amount of wide spectrum noise in the forcing function. This behaviour was noted for both 
configurations 1 and 2 under 1 jet excitation conditions. The waterfall plot for the extracted forcing 
function form, across all configuration 1 measurements with 1 jet excitation, is given in Figure 4.2-9. 

 

Figure 4.2-9 Waterfall plot of extracted blade forcing function for configuration 1 under 1 jet excitation 
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Similar to the spectra obtained for the theoretical forcing function, it can be seen that the excitation 
rotor harmonics taper off after a particular point. The remaining waterfall plots determined for the 
forcing function form from configurations 1 and 2, under 1, 2 and 4 jet excitation can be seen in section 
‘7.7.2 G2 – Waterfall Plots of SG Forcing Function Spectra’. 

During the investigation of the proposed forcing function model, it was indicated that if the force 
applied by the various upstream stator vanes differed then it may be possible to identify excitation 
from the different streams. A comparison is quantitatively accomplished by visually inspecting the 
rotor harmonics adjacent to one another. Consider the forcing function form obtained for blade and 
hub assembly 1 under 2 jet excitation whilst operating at 627 RPM (10.44 Hz) given in Figure 4.2-10. 

 

Figure 4.2-10 Extracted blade forcing function for configuration 1 under 2 jet excitation operating at 627 RPM 

Taking a closer look at the above plot from approximately 600 to 800 Hz, shown in Figure 4.2-11, it is 
clear that every second rotor harmonic, within the range of interest shown, generally occurs at a 
reduced magnitude in the frequency range of interest.  

 

Figure 4.2-11 Zoomed in view of blade forcing function for configuration 1 under 2 jet excitation operating at 627 RPM 

When compared to the Gaussian based forcing model spectra, this implies that the forces applied by 
the two upstream nozzles do indeed differ by a set amount. Upon qualitative inspection of the whole 
spectrum it is clear that the trend is however not quite as prominent as that found during the 
development of the ideal situation. Namely that every second frequency harmonic peak is always at a 
distinctly different amplitude across the full response spectrum and that there is a clear decrease in 
the rotor harmonics’ peak amplitudes after a specific point.  
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This result is however expected as the experimental setup and excitation system is not ideal. Pressure 
losses in the air supply to the various nozzles, due to the presence of multiple non-ideal connectors 
and manufacturing tolerances, lead to a situation where each nozzle is not capable of supplying the 
exact same forcing pressure stream at the exact same angle of attack. This causes an asymmetry in 
the forcing phenomenon about the circumference of the experimental setup which is noticeable in 
the SG measurements in both the time and frequency domains.  

In the final qualitative example of the forcing function evaluation, consider the blade forcing form 
obtained for configuration 1 under 4 jet excitation. Depending on the cyclic symmetry of the excitation 
system a pattern of four repeating harmonic peaks is expected in the forcing spectrum. The example 
chosen is for operation at 988 RPM (16.46 Hz, approximately 20 RPM above fundamental resonance 
EO 2 for 4 jet excitation) and is shown in Figure 4.2-12. 

 

Figure 4.2-12 Extracted blade forcing function for configuration 1 under 4 jet excitation operating at 988 RPM 

A closer look at a section of the spectrum shows that a distinct harmonic forcing pattern is indeed 
present, and that pattern repeats for every 4 harmonics. However, once again under qualitative visual 
inspection of the spectrum, the prominence of the trend is diminished when compared to the ideal 
geometrically symmetric noise-free situation, as explored during the theoretical development of the 
forcing function model. This case is shown in Figure 4.2-13. 

 

Figure 4.2-13  Zoomed in view of blade forcing function for configuration 1 under 4 jet excitation operating at 988 RPM 
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The relative peak height of every set of four peaks remains fairly constant in the chosen range. 
Specifically it can be seen that the first peak of every set of four generally remains the highest in the 
chosen interval of investigation. 

The visual based observations however do not provide an indication as to whether or not the proposed 
time domain forcing function model, based upon the sum of individual Gaussian peaks representing 
the periodic force applied to the blades, will be able to be tuned to the actual behaviour. 

The forcing function model was fitted to the steady state SG measurements taken for both 
configurations in order to understand its ability to describe the underlying behaviour. Recall that the 
model was based upon the number of upstream stators, the blade and hub geometry and the rotor 
angular velocity. A nonlinear constrained optimisation technique was used to fit this model to the 
experimental results (first reduced inverse problem). The design variables were chosen as follows: 

• The individual relative stream peak magnitudes, the total number depending on the number 
of jets in the system (as each upstream jet may apply a slightly different nominal force value). 
They are scaled relative to one another by limiting their numerical values to between 0 and 1. 

• The width of the Gaussian pressure peaks, added to produce the forcing function, are defined 
by a single standard deviation value. Recall that it is expected that as the system’s rotational 
speed increases the amount of time that the force is applied to the blade decreases. The 
percentage angle, per revolution, that the stator stream applies a force to the blade is used 
to define the standard deviation of the individual Gaussians added. This percentage value is 
the second design variable. 

• A scalar force multiplier is the third design variable. It is used in order to align the overall 
magnitude of the model with the measurement’s magnitude. The multiplier is chosen to be in 
the form of two design variables 𝑎𝑎 and 𝑏𝑏 such that the overall multiplier is given by: 𝑎𝑎 ⋅ 10𝑏𝑏 

• The fourth design variable is the signal to noise (SNR) ratio of the forcing function 
• The fifth and final design variable is system’s angular velocity in RPM 

The system’s angular velocity and number of jets determine the number of Gaussian shaped pulses 
per revolution, as per the theoretical development. The only constraints in the problem pertain to the 
design variables’ upper and lower limits, namely the lower bounds (LB) and upper bounds (UB). The 
measured system’s angular velocity, 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 , was used in order to provide bounds for the angular 
velocity design variable. The limits chosen have been presented in Table 4.2-1. 

Table 4.2-1 Boundary conditions for design variables of blade forcing function fitting problem 

Limit Relative 
jet height 

Gaussian 
std. dev. % 

Scalar force 
multiplier ‘a’ 

Scalar force 
multiplier ‘b’ 

SNR Angular velocity 
(RPM) 

LB 0.01 1e-15 1e-7 0 5 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 − 0.1 ⋅ 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀  
UB 1 1 10 5 1000 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 + 0.1 ⋅ 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 

As was stated, it is chosen that the relative upstream jet heights are scaled between approximately 0 
and 1. The Gaussian standard deviation percentage per revolution, which defines the force pulse 
widths, was also defined between nearly 0 and 1 (where a value of 1 corresponds to a full 360° of 
constant applied force per revolution, and a near zero value implies an impulse excitation).  

The combination of the design variables 𝑎𝑎 and 𝑏𝑏 allow scaling of the forcing function to be between 0 
and 1e6. The signal to noise (SNR) ratio bounds allows a wide range additive noise to the signal. The 
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only design variable assumed to be known with some confidence is the system rotational speed (as it 
was measured). It was therefore chosen to allow this design variable to only shift by a maximum of 
±10% from the measured value. The large width of the remaining design variable bounds was chosen 
due to insufficient knowledge about their true nature. 

The chosen initial design variable guesses, for all initial forcing function form optimisations, are 
presented in Table 4.2-2. As was previously stated, the initial guess for the angular velocity value was 
obtained from the measured rotor’s angular velocity. The initial pulse width was chosen such that it 
approximates a near impulse excitation (approximately 0.004° in the stationary reference frame). The 
physical significance of the forcing pulse width is explored further on. 

Table 4.2-2 Initial conditions for blade forcing function fitting problem 

Item Relative 
jet height 

Gaussian 
std. dev. % 

Scalar force 
multiplier 𝒂𝒂 

Scalar force 
multiplier 𝒃𝒃 

SNR Angular velocity 
(RPM) 

Guess 0.9 1e-5 1 1 500 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀  
The initial design variable guesses were held constant for all excitation and geometric configuration 
measurements. This was done in order for the optimisation results to be directly comparable to one 
another. A total of 285 optimisation problems were solved across all of the excitation and geometric 
configurations. A detailed table which compares all of the results has been provided in section 
‘7.7.3 G3 – SG Forcing Function Fitting Results’.  

The mean square error (MSE) between the absolute of the experimentally derived forcing function 
vector and the absolute of the numerically generated forcing function vector was minimised over 
during the optimisations. All optimisations employed the gradient based ‘interior-point’ algorithm. 
Once each optimisation problem had been solved the coefficient of determination, 𝑅𝑅2, was calculated 
from the result to provide a goodness of fit measurement for the model.  

The MSE values obtained are only comparable between datasets of the same forcing excitation 
conditions (i.e. a 1 jet excitation MSE can only be compared to another 1 jet excitation MSE). This is 
because the forcing magnitude between the excitation conditions differed. As the number of jets 
increased, so did the nominal excitation magnitude of each pulse decrease. Therefore forcing 
magnitudes between sets differed, and it is on these magnitudes that the MSEs were calculated. 
The 𝑅𝑅2 value is however directly comparable between sets as it is inherently scaled between 0 and 1. 
A summary of the results outlined in the appendix can be seen in Table 4.2-3. 

Table 4.2-3 Summary of SG Based forcing function fitting results 

Data Set Number 
of Items 

Mean 
𝑹𝑹𝟐𝟐 

Std. Dev. 
𝑹𝑹𝟐𝟐 

Min 𝑹𝑹𝟐𝟐 Max 𝑹𝑹𝟐𝟐 Mean 
iterations 

Mean 
Function 
Count 

Complete 285 0.3694 0.2574 0 0.7974 49.6877 500.4386 
Config. 1 Jets 1 62 0.6352 0.0479 0.5220 0.7974 21.3226 180.6935 
Config. 1 Jets 2 31 0.3048 0.1456 0 0.4967 44.8065 451.9355 
Config. 1 Jets 4 42 0.0447 0.0771 0 0.2605 98.7381 1063.20 
Config. 2 Jets 1 71 0.5901 0.0902 0.2413 0.6985 22.7746 189.1127 
Config. 2 Jets 2 36 0.2522 0.0807 0.0941 0.4374 35.3333 339.0278 
Config. 2 Jets 4 43 0.0833 0.1183 0 0.3519 102.6512 1095.90 
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A couple of trends in the data are noticed. Firstly as the number of jets (and design variables) increases 
so does the model’s predictive ability (as defined by the 𝑅𝑅2 value) decrease significantly. So does the 
expense of the problem increase (as defined by the number of iterations and cost function 
evaluations). Further, the nature of certain higher jet excitation configurations could not be captured 
at all resulting in 𝑅𝑅2 values of 0. 

The best single fit was found for a configuration 1 measurement under 1 jet excitation (𝑅𝑅2 of 0.7974). 
Within the same dataset the worst correlation between the experimentally and numerically derived 
results achieved a coefficient of determination of 0.5220. The mean 𝑅𝑅2 value for the dataset is over 
60%, the highest of all the all datasets. The best fit model is presented in Figure 4.2-14. 

 

Figure 4.2-14 Best forcing function form fit with 𝑹𝑹𝟐𝟐 = 𝟎𝟎.𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕 (config. 1 with 1 jet operating at 594 RPM) 

Similarly the worst fit for the same dataset (configuration 1 under 1 jet excitation operating at 
961 RPM) is provided in Figure 4.2-15. 

 

Figure 4.2-15 Worst forcing function form fit in config. 1 with 1 jet excitation with 𝑹𝑹𝟐𝟐 = 𝟎𝟎.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 (operating at 961 RPM) 
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It can be seen in both examples that the optimisation technique is able to place the harmonic 
excitation peaks at the desired frequency locations. It is proposed that the erratic nature of the 
excitation’s forcing magnitude behaviour limits the ability of the forcing function model to capture the 
response fully. 

The best coefficient of determination, obtained for the higher jet excitation scenarios (both 2 and 4 
jet), was found for a configuration 1 measurement where the assembly was under 2 jet excitation 
(𝑅𝑅2 ≈ 0.5). The specific case had an angular velocity of 655 RPM. This result is given in Figure 4.2-16. 

 

Figure 4.2-16 Best higher jet forcing function form fit with 𝑹𝑹𝟐𝟐 = 𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 (operating at 655 RPM in config. 1 with 2 jets) 

It can be seen that the numerical model places an excitation peak pattern corresponding to one jet 
having a much higher nominal forcing value than another. Specifically the algorithm obtained the two 
relative peaks heights to be 0.6446 and 0.2007. Therefore it is estimated that the one forcing peak has 
a nominal magnitude which is more than 3 times larger than the other, as was expected from the prior 
discussion on the non-deal nature of the excitation. Further it is clear from the experimental results 
that this trend is partially present in the true forcing behaviour across the spectrum investigated.  

In general the forcing function model performed poorly when it was fitted to excitation conditions 
containing multiple jets. This is when it is compared to the single jet measurement optimisations. The 
mean 𝑅𝑅2  for all single jet measurements was found to be 0.6111, whereas the 2 and 4 jet cases 
achieved average 𝑅𝑅2 values of 0.2765 and 0.0642 respectively. The blade forcing conditions within the 
casing become increasingly complex as the number of jets increase. 

Focus is now placed on the best forcing function results set, namely configuration 1 under 1 jet 
excitation. The physical significance of the forcing function’s angle, as defined by the individual 
Gaussians’ standard deviation, will be investigated using this dataset. Further optimisation analyses 
of the forcing behaviour is also limited to this dataset. 

Recall that it was suggested that the angle through which the blades pass a forcing stream is related 
to the actual forcing behaviour. Further, it was suggested that this angle could be estimated from the 
geometry of the system and incorporated into the forcing function’s model. The upstream nozzles 
were placed at a radius of 154mm in the experimental setup. The blades each had a width of 40mm 
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and they were all installed at a stagger angle of 30°. This results in an effective forcing angle of 
approximately 7.5° (as defined in the theoretical development). This is illustrated in Figure 4.2-17. 

 

Figure 4.2-17 Blade forcing location and angle through which force subtends 

It is expected that the majority of the force is applied to the individual blades within this angle. The 
design variable associated with this is the percentage standard deviation multiplier. The multiplier 
provides the percentage standard deviation per revolution that the force is applied to an individual 
blade in the model.  

Recall that approximately 68% of a normal distribution lies within 1 standard deviation, 95% within 2 
standard deviations and 98% within 3 standard deviations. Therefore, by converting the design 
variable solution from a percentage of the angle per revolution into degrees it is possible to obtain 
the forcing angle as predicted by the model. The forcing angle converted to degrees for 98% of the 
force application (within 3 standard deviations) is given in Figure 4.2-18. 

 

Figure 4.2-18 Forcing function width investigation for configuration 1 under 1 jet excitation 

It is first noticed that the predicted angle, for the third standard deviation where at least 98% of the 
force has been applied, is consistently less than the physical angle across the blade (7.44°). Further 
the predicted angle never drops below half of the effective blade excitation width in degrees over the 
interval of interest.  

The question has to be asked if this indeed makes physical sense. Firstly, at no point is a near ideal 
impulse excitation estimated. Recall that the initial guess provides at effective angle (in terms of the 
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third standard deviation) of 0.01°. The algorithm was therefore able to increase this value to within 
the physical realm.  

Further, at no point does the algorithm estimate the forcing angle to be greater than the actual 
effective blade angle of 7.5°. It is also interesting to note that as the system’s angular velocity increases 
so does the effective angle decrease. There is however not enough information across the 
measurement region to suggest whether or not the relation is linear or otherwise diminishing. The 
results of this analysis do however provide information to make clearer boundary condition choices 
for this particular design variable and provide confidence in the model’s physical significance. 

For the case of 1 jet excitation the individual peak height parameter becomes redundant (due to the 
presence of the scaling multiplier defined by 𝑎𝑎 and 𝑏𝑏). This parameter can therefore be left out for 
future analyses containing only single jet excitation conditions. 

The values for the scalar multiplier parameter  𝑎𝑎  were found to be between 1.84 and 2.68. The 
parameter 𝑏𝑏 was found to converge to approximately 2.99 for all items in the configuration 1 set with 
1 jet excitation. Recall that an initial guess of 1 was made for both of these in the previous study. 

The SNR design variable did not change significantly during all optimisations. For configuration 1 under 
1 jet excitation the design variable stayed within the vicinity of the starting guess (500) with a mean 
value of 502 and a standard deviation of 0.31. The value was not driven to zero indicating that noise 
is indeed an important component of the signal. 

The final design variable which will be commented on in some detail is the system’s angular velocity 
in RPM. For configuration 1 under 1 jet excitation the maximum difference between the initial guess 
angular velocity value and the tuned angular velocity value was found to be 0.0624 RPM. The smallest 
difference was found very close to 0. The mean difference was 0.0020 RPM with a standard deviation 
of 0.0096 RPM. These figures indicate that the upper and lower bounds initially suggested can be 
tightened significantly. Previously bounds of 10% were used about the angular velocity initial guess. 
This meant that for the slowest experimental measurement in the data set bounds of approximately 
60 RPM were used. If this limit is now set to 0.1% then the tuned values are still well within the bounds. 

The performance and flexibility of the forcing function model is tested for a final time using a multi-
start optimisation approach. The best and worst case scenarios from configuration 1 with 1 jet 
excitation are used to see if the model’s predictive capability can be improved. This also gives an 
indication as to the system’s sensitivity to initial conditions. The new adjusted upper and lower 
bounds, chosen for the problem by taking the prior analysis into account, are given in Table 4.2-4 

Table 4.2-4 Boundary conditions for design variables of multi-start blade forcing function fitting problem 

Limit Gaussian std. 
dev. % 

Scalar force 
multiplier ‘a’ 

Scalar force 
multiplier ‘b’ 

SNR Angular velocity (RPM) 

LB 0.00185 0.5 2 5 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 − 0.001 ⋅ 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀  
UB 0.00925 5 4 1000 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 + 0.001 ⋅ 𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀 

The forcing pulse width is effectively limited to between 2° and 10° (originally between 0° and 360°) 
for 98% of the force application angle in order to take the blade geometry into account. 

Initial guesses are obtained by generating a Latin hypercube with 1000 samples for the now 5 design 
variables. Unlike before where the initial guess remained constant and the measurement derived 
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forcing function changed; now the forcing function signals from best and worst case scenarios for a 
set are held constant and the initial guesses are changed.  

The Latin hypercube method allows an initial guess sampling scheme which is random yet still 
simultaneously uniformly distributed over each design variable, provided that a large enough sample 
set is chosen. The results from the investigation are provided in Table 4.2-5 and Table 4.2-6. 

Table 4.2-5  Results of multi-start forcing function investigation for best case from configuration 1 with 1 jet excitation 

Value Gaussian 
std. dev. 
% [deg] 

Scalar 
force 
multi. 𝒂𝒂 

Scalar 
force 
mult. 𝒃𝒃 

SNR 
(x500) 

Angular 
velocity 
(RPM) 

MSE 𝑹𝑹𝟐𝟐  Iter. Func. 
Evals. 

Mean 0.005 
[5.4] 

1.5695 2.9675 0.9219 593.95 4.6009 0.6476 28.3 252.7 

Std. 
Dev. 

0.0020 
[2.16] 

0.6875 0.2718 0.3369 0.11 24.9787 0.2517 13.5 120.7 

Min 0.0019 
[2.052] 

0.500 2.0000 0.01 593.36 1.6582 0 2 48 

Max 0.0092 
[9.936] 

4.1329 3.9999 1.9470 594.52 611.313 0.8046 132 998 

Table 4.2-6  Results of multi-start forcing function investigation for worst case from configuration 1 with 1 jet excitation 

Value Gaussian 
std. dev. 
% [deg] 

Scalar 
force 
mult. 𝒂𝒂 

Scalar 
force 
mult. 𝒃𝒃 

SNR 
(x500) 

Angular 
velocity 
(RPM) 

MSE 𝑹𝑹𝟐𝟐  Iter. Func. 
Evals. 

Mean 0.0041 
[4.428] 

1.6146 2.9729 0.9139 961.10 6.0181 0.4189 27.4 243.1 

Std. 
Dev. 

0.0020 
[2.16] 

0.8899 0.2436 0.3321 960.15 5.1531 0.2407 13.4 123.7 

Min 0.0019 
[2.052] 

0.500 2.0000 0.0100 960.15 3.2126 0 2 38 

Max 0.00920 
[9.936] 

4.9873 4.0000 1.9427 962.07 105.75 0.6602 95 944 

The mean coefficient of determination for the best case scenario is found to be within 10% of 0.7974 
(value obtained in the prior optimisation). The best fit achieved an 𝑅𝑅2 value of 0.8046, which is less 
than a 1% improvement on the previously obtained value for the best case scenario. This indicates 
that the initial guess for the best case scenario in the first optimisation was close to the ideal. The 
minimum 𝑅𝑅2 value obtained for the best case scenario was found to be zero, thus a very poor initial 
guess will not be able to converge to a useful result. The standard deviation of the 𝑅𝑅2 value, 0.2517, 
indicates that the system is quite sensitive to initial guesses.  

When taking the prior optimisation results into account, from the configuration 1 set under 1 jet 
excitation, it can be said that so long as a good initial guess is provided then the forcing function model 
has a good chance at fitting the frequency peak locations. However the goodness of the fit is sensitive 
to the forcing function’s frequency peak magnitudes which may be highly erratic. 

The worst case scenario optimisation was able to achieve a best fit of 𝑅𝑅2 equal to 0.6602. This is an 
improvement of approximately 25% on the initial value of 0.5220. This indicates that there was room 
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for improvement in both the result and associated initial guesses. The mean 𝑅𝑅2 value was however 
found to be approximately 20% less than that obtained in the original optimisation. This once again 
echoes the sensitivity of the model to the initial guesses.  

The results indicate that there is room for improvement on the optimisation’s results by simply 
choosing better starting points for the optimisation algorithm. This is most apparent when comparing 
the mean 𝑅𝑅2 values with the maximum 𝑅𝑅2 values for both the best and worst case scenarios. Further, 
poor choices of initial guesses will lead to a poor fit of the model. The model is however reasonably 
flexible when it comes to fitting single jet excitation conditions. 

The focus of the discussion is now shifted to fitting the blade transfer function model to the 
experimentally obtained SG results. This fitting procedure is the second reduced inverse problem 
considered (second component of the pressure model independently solved for using SG 
measurements). The filtered and smoothed average blade response spectra are once again used for 
this purpose. The goal of the analysis is to obtain estimates of the blade transfer function’s parameters 
and to better understand the model’s flexibility and ability to fit the true response behaviour. Recall 
that the MDOF blade transfer function can be modelled as the sum of individual SDOF system FRFs. 
This relation is repeated in Equation [4.2.3]. 

 𝐻𝐻(𝑗𝑗 ⋅ 𝜔𝜔) = ���
𝐴𝐴𝑟𝑟

𝜔𝜔𝑟𝑟2 − 𝜔𝜔2 + 𝑗𝑗 ⋅ 𝜂𝜂𝑟𝑟 ⋅ 𝜔𝜔𝑟𝑟2
�

𝑁𝑁

𝑟𝑟=1

 ⋅ 𝑒𝑒𝑗𝑗⋅𝜋𝜋⋅𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟,2)�  [4.2.3] 

The initial conditions of the design variables, namely the modal constants 𝐴𝐴𝑟𝑟 , the blade natural 
frequencies 𝜔𝜔𝑟𝑟 and the modal damping 𝜂𝜂𝑟𝑟, are initially estimated using an automated form of the 
peak-picking algorithm, as described in the theoretical development. There after the model is tuned 
to the experimentally derived results using a non-linear constrained optimisation algorithm in order 
to obtain optimised parameter estimates.   

The mean square error (MSE) was chosen as the error function for this purpose. The difference 
between the log10 filtered and smoothed response and the log10 of the absolute transfer function 
(found using Equation [4.2.3]) defines the individual error vector  𝑒𝑒𝑖𝑖  between each point in the 
numerical model and the smoothed and filtered spectrum.  

By minimising over the log10 individual error values the error weighting between small and large errors 
shift significantly (recall the discussion on error functions). Specifically small errors are weighted closer 
to larger errors than would have been the case if just the absolute errors were employed.  

Wide bounds are set about the design variables for this initial investigation as little knowledge 
pertaining to the true values is known. These bounds are defined in Table 4.2-7. 

Table 4.2-7 Boundary conditions for design variables of blade transfer function fitting problem 

Limit 𝐴𝐴𝑟𝑟1(V) 𝐴𝐴𝑟𝑟2(V) 𝐴𝐴𝑟𝑟3(V) 𝑓𝑓𝑛𝑛𝑛𝑛,1 (Hz) 𝑓𝑓𝑛𝑛𝑛𝑛,2 (Hz) 𝑓𝑓𝑛𝑛𝑛𝑛,3 (Hz) 𝜂𝜂𝑛𝑛𝑛𝑛,1 𝜂𝜂𝑛𝑛𝑛𝑛,2 𝜂𝜂𝑛𝑛𝑛𝑛,3 
LB 0.1 0.1 0.1 90 650 785 5e-4 5e-4 0 
UB 300 300 300 135 780 1350 0.0350 0.0350 0.9999 

The SGs applied to blade 1 in configuration 1 and blade 5 in configuration 2, for the purpose of steady 
state measurement evaluation, were only sensitive to flapwise bending modes. They were insensitive 
to any torsional modes that were identified during the stationary characterisation. As per the scope, 
interest in only the first few modes is considered. For the purpose of this evaluation the modes are 
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therefore limited to the first two flapwise bending modes, as found in the characterisation and steady 
state evaluation. For all blades the first two bending modes lie within 0 Hz and 1000 Hz. 

It is important to note that an additional SDOF system was included in the evaluation (defined by 𝐴𝐴𝑟𝑟3, 
𝑓𝑓𝑛𝑛𝑛𝑛,3 and 𝜂𝜂𝑛𝑛𝑛𝑛,3). This was done in order to better tune the higher frequency portion response spectrum 
to the measurement derived spectrum. Specifically, the mode was added after the second flapwise 
bending mode in order to account for the remaining higher order modes excluded from the model, 
this is similar to adjusting the response model’s mass line (an experimental modal analysis technique). 

The resulting model found for blade 1 in configuration 1 from the filtered and smoothed response 
spectrum is provided in Figure 4.2-19. 

 

Figure 4.2-19 Estimate of blade transfer function using filtered and smooth blade response spectrum for blade 1 in 
configuration 1 

Similarly, the model resulting from optimising over the filtered and smoothed response spectrum 
obtained for blade 5 in configuration 2 is provided in Figure 4.2-20. 

 

Figure 4.2-20 Estimate of blade transfer function using filtered and smooth blade response spectrum for blade 5 in 
configuration 2 

The initial optimisation choices and results for the above two curves is presented in Table 4.2-8. 
Additionally the maximum number of iterations was set to 2000, the maximum number of function 
evaluations was set to 3000 and the function value stopping criterion was chosen as 1e-9. All 
optimisation runs were found to cease when the default minimum step size of was reached (as 
opposed to stopping once the minimum function value was achieved). 
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Table 4.2-8 Results of optimisation to fit blade transfer function model to averaged and smoothed response spectra 

Item Blade 1 Configuration 1 Blade 5 Configuration 2 
Algorithm Interior point Interior point 
𝐴𝐴𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  [102.3393, 26.5445, 39.8168] [74.6994, 16.7175, 25.0762] 
𝑓𝑓𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (Hz) [128.8000, 769.6000, 923.5200] [104.1000, 689.5000, 827.4000] 
𝜂𝜂𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  [0.0155, 0.0049, 0.0000] [0.0259, 0.0049, 0.0000] 
Iterations 176 133 
Function evaluations 1810 1349 
𝑀𝑀𝑀𝑀𝑀𝑀(log10|𝑥𝑥| − log10|𝑦𝑦|)   9.7786e-03 8.322499e-03 
𝑀𝑀𝑀𝑀𝑀𝑀(|𝑥𝑥| − |𝑦𝑦|)  5.1166e-09 6.5154e-09 
𝑅𝑅2  0.9527 0.9426 
𝐴𝐴𝐴𝐴  [57.0444, 30.2125, 171.5708] [67.8708,   25.5915, 251.5964] 
𝑓𝑓𝑛𝑛𝑛𝑛 (Hz) [128.7176, 774.1028, 798.1213] [102.8947, 689.8195, 785.0000] 
𝜂𝜂𝑛𝑛𝑛𝑛  [0.0136, 0.0114, 0.7865] [0.0350, 0.0193, 0.9999] 

Both optimisation runs required more than a 1000 function evaluations and more than 100 iterations 
in order to solve the problems to within the desired tolerances. The individual function evaluations 
were however relatively inexpensive to perform when compared to the forcing function optimisation 
investigations resulting in a shorter run time. 

It can be seen that the additional SDOF system added, for both optimisation investigations, resulted 
in an artificial mode close to the second bending mode with an extremely high modal damping factor. 
As was mentioned, this accounted for the remaining higher order modes which were disregarded from 
the MDOF model. 

Both models have a coefficient of determination greater than 90%, indicating a high goodness-of fit 
between the models of the smoothed and filtered spectra. This means that both models are able to 
account for nearly all of the variability in the data, given the good starting point obtained from the 
automated peak-picking procedure. 

It is interesting to note that the fundamental frequency determined for blade 5 (in configuration 2) in 
the curve fitting process, namely 102.89Hz, aligns more closely with the expected centrifugal stiffening 
value of 0.85 Hz for operation at 805 RPM (expected value from the FE analysis). This result was 
referred to in the earlier discussion on centrifugal stiffening. The fitted curve suggests that the 
increase in the fundamental frequency, due to centrifugal stiffening, is approximately 0.99 Hz, closer 
than the previously estimated value of 1.6 Hz.  

Further the fundamental frequency estimated for blade 1 in configuration 1 only shifted by 
approximately -0.1 Hz (when compared to the value derived from the fitted and smoothed curve). This 
is results in an approximated increase in fundamental frequency of 0.62 Hz which is still within 10% of 
the FE analysis predicted value of 0.68 Hz. 

The question has to be asked if the optimised design variable results make physical sense. Consider 
the results for blade 1 in configuration 1. The natural frequencies obtained are within a close tolerance 
when compared to the experimentally obtained values (obtained during both the stationary 
characterisation and the operating averaged, filtered and smoothed results to which the model is 
fitted). Specifically, the values for both bending mode natural frequencies are within 1% of the 
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stationary characterisation’s results. The magnitudes of the modal constant values are somewhat 
arbitrary as they were measured in volts without a clear link between input force magnitude and 
response displacement magnitude. Finally the modal damping constants for the two real bending 
modes for blade 1 show that the system is indeed lightly damped (the modal damping values are in 
the vicinity of 0.01 and 0.02), as was the expectation for the structure.  

The final damping values, obtained for the dummy modes, are many times higher than that of the first 
two for both result sets. This final dummy mode had to take into account all of the remaining modes’ 
contributions into the system in order to align the mass line of the frequency response. 

As was previously stated, this analysis was performed with initial guesses derived from proven 
experimental modal analysis techniques. The sensitivity of the optimisation problem to poor initial 
condition choice was however not captured in the analysis. Therefore a second multi-start analysis 
was set up in order to investigate the model’s predictive ability from a range of initial conditions. This 
provides an indication as to the robustness of the blade transfer function model. The result also 
indicates what the best expected fit could be given the model and experimentally derived frequency 
response. 

A Latin hypercube was generated for the problem with 1000 initial guess entries. The ranges for the 
design variable guesses were taken across the original lower and upper problem bounds. The full 
results set of fitting the blade transfer model to the experimentally obtained response spectrum of 
both blade 1 in configuration 1 and blade 5 in configuration 2 can be seen in section ‘7.7.4 G4 – Multi-
Start SG Blade Transfer Function Fitting Results’. A summary of the most important results is provided 
in Table 4.2-9 and Table 4.2-10. 

Table 4.2-9 Summary of results of multi-start SG blade transfer function optimisation problem for blade 1 in config. 1 

Item Mean Std. Dev. Max Min 
MSE 6.2649e-09 1.1608e-08 1.2352e-07 2.9361e-09 
𝑅𝑅2  0.9440 0.0934 0.9735 0 
Iter. 163.2440 18.6413 296 73 
Func. Evals. 1674.30 196.4343 3009 748 
Table 4.2-10 Summary of results of multi-start SG blade transfer function optimisation problem for blade 5 in config. 2 

Item Mean Std. Dev. Max Min 
MSE 1.1459e-08 2.4136e-08 1.8766e-07 5.3583e-09 
𝑅𝑅2  0.9238 0.1050 0.9429 0 
Iter. 144.2900 13.8475 238 71 
Func. Evals. 1471.20 143.7380 2424 724 

When reviewing the multi-start results for blade 1 in configuration 1 it can be seen that the best run 
obtained an 𝑅𝑅2 value of 0.9735 (recall that the initial investigation obtained an 𝑅𝑅2 value of 0.9527). A 
mean 𝑅𝑅2 value of 0.9440 with a standard deviation of 0.0934 indicates that the model is usually able 
to converge to a reasonable result, even if the initial guesses are far off. The minimum 𝑅𝑅2 value of 
zero indicates that if the starting points are chosen extremely far away from the optimised solution 
then the algorithm may fail. So long as a reasonable guess is made then it is expected that the model 
will perform well. The results for blade 5 in configuration 2 echo those of blade 1 in configuration 1. 
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The discussion will now focus on the implications of the SG investigations’ findings on the 
reformulated pressure models developed in Chapter 2. Consider the reformulated internal pressure 
model based on the work by Mengle, namely reformulated Model 1, presented in Equation [4.2.4] 
(Mengle, 1990). Recall that the blade vibration was represented as a SDOF sinusoid in this model and 
not as a combination of the blade transfer function and forcing function. 

 

𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ���1 + ��𝐼𝐼(𝑖𝑖) ⋅ Λk ⋅ (𝑘𝑘 ⋅ Ω + 𝜔𝜔) ⋅ cos�(𝑘𝑘 ⋅ Ω +𝜔𝜔) ⋅ 𝑡𝑡 + 𝜒𝜒��
𝐵𝐵−1

𝑘𝑘=0

� ⋅ 𝐷𝐷𝑖𝑖′
∞

𝑖𝑖=0

⋅ 𝑒𝑒�𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜈𝜈]+𝑗𝑗⋅�∑ �𝐼𝐼(𝑖𝑖)⋅Λk⋅sin�(𝑘𝑘⋅Ω+𝜔𝜔)⋅𝑡𝑡+𝜒𝜒��𝐵𝐵−1
𝑘𝑘=0 ��� 

[4.2.4] 

The Doppler shifting effect of the blade vibration signal has been represented as both amplitude and 
phase modulation in the above equation (in the development the two effects were handled 
separately). The amplitude modulation has been represented as the tip velocity by simply taking the 
time derivative of the tip displacement as it stands in the exponential of the function. 

Recall that in the work of Mengle that the model was initially based on flutter response at an individual 
wave number (and individual response frequency 𝜔𝜔), and that if a significant amount of mistuning was 
present then the excitation occurs at all wave numbers 𝑘𝑘 (Mengle, 1990).  

Through qualitative visual inspection of the SG results it was seen that all blade forcing phenomena 
had both a Gaussian noise component and a rotor harmonics component (see section ‘7.7.5 G5 – 
Exemplar SG Response and Forcing Function Forms’).  At no point was the system responding at a 
single dominant frequency (as would be the case under self-excited flutter). Further, all geometric hub 
and assembly configurations were mistuned somewhat. In the stationary characterisation it was found 
that configuration 1 was the least mistuned and configuration 2 was the most mistuned from the 
overall system’s mistuning point of view.  

The combination of these findings have a direct impact on the application of the reformulated 
Model 1. Due to Doppler shifting at all possible wave numbers  𝑘𝑘 , the blade response which is 
represented as the combination of the indicator function 𝐼𝐼, scaling function Λ𝑘𝑘 and SDOF sinusoid can 
be simply replaced with a SDOF sinudoid responding at the individual frequency  𝜔𝜔 . This new 
representation is however at the expense of being able to scale each of the wave number 
contributions individually. The resulting expression is shown in Equation [4.2.5]. The ability to scale 
the blade response amplitude has been maintained by inclusion of the scaling factor Λ. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��[1 + Λ ⋅ 𝜔𝜔 ⋅ cos(𝜔𝜔 ⋅ 𝑡𝑡 + 𝜒𝜒)] ⋅ 𝐷𝐷𝑖𝑖′ ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜈𝜈]+𝑗𝑗⋅𝑖𝑖[Λ⋅sin(𝜔𝜔⋅𝑡𝑡+𝜒𝜒)])
∞

𝑖𝑖=0

� [4.2.5] 

The SDOF blade response can now be replaced with the combined blade transfer function and forcing 
function response model which was shown to fit the true blade behaviour (as the response occurs at 
harmonics of shaft speed with a Gaussian noise component). This is shown in Equation [4.2.6]. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ���1 + Λ ⋅ 𝜓̇𝜓(𝑡𝑡)𝑟𝑟� ⋅ 𝐷𝐷𝑖𝑖′ ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜈𝜈]+𝑗𝑗⋅𝑖𝑖[Λ⋅ψ(t)r])
∞

𝑖𝑖=0

� [4.2.6] 
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Taking into consideration that the blade response model inherently allowed response magnitude 
scaling and rearrangement of the formulation results in Equation [4.2.7]. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ���1 + Λ ⋅ 𝜓̇𝜓(𝑡𝑡)𝑟𝑟� ⋅ 𝐷𝐷𝑖𝑖′ ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜈𝜈+ψ(t)r])
∞

𝑖𝑖=0

� [4.2.7] 

Equation [4.2.7] is equivalent to reformulated Model 2 (see Equation [2.3.10]). Therefore at the 
expense of being able to scale each wave number contribution separately, the blade response model 
can be based upon the true geometric, material and forcing behaviour of the system. 

In summary, the SG investigations indicated that significant shifting of the fundamental frequency 
peaks, due to centrifugal stiffening, is not expected across the measurement range for all blade 
geometries considered. This was predicted during the initial FE investigation into the various blade 
geometries. 

The blade forcing function model was fitted to the experimentally obtained forcing forms to differing 
degrees of success. The multi-start optimisation approach applied to the forcing function inverse 
problem indicates that if work is done to obtain better starting points, a great improvement on the fit 
can be achieved (when compared to the mean fit across a wide range of initial guesses). The success 
of the optimisation is however extremely sensitive to the initial guess. The blade forcing model 
performed poorly when more than 1 jet was exciting the system which suggests that work should be 
made to better understand the forcing phenomena form. 

The results from analysing the Gaussian standard deviation pulse width estimator indicate that the 
forcing function form, in the time domain, makes physical sense as the forcing angle was never greater 
than the actual angle in which the force is applied (when converting the percentage multiplier to an 
angle within which 98% of the force will be applied). Nor did the angle approach impulse excitation. 

The blade transfer function model was successfully fitted to experimentally derived blade transfer 
function forms. The coefficients of determination for these inverse problems indicated that the model 
is capable of being fitted to different frequency response forms to a high degree, somewhat regardless 
of poor initial guess choices (as the initial optimisation and multi-start optimisation obtained mean 𝑅𝑅2 
values of above 0.9 with relatively small standard deviations). This indicates that the model has a high 
degree of flexibility and robustness. In order to obtain the fit an additional artificial mode had to be 
incorporated in order to line up the mass line of the systems which accounts for the excluded modes. 

Further, the damping factors obtained indicate that the system is lightly damped, as was expected for 
the hub and blade assembly design. The multi-start optimisation approach was not able to improve 
on the fits to a significant degree, although it may be difficult to improve on system’s whose mean 𝑅𝑅2 
values are already above 0.9. 

It is still unknown whether or not errors incurred from poorer forcing function fit will diminish or 
propagate when exploring the inverse pressure problem. However tighter bounds for all design 
variables have been established which may aid in the solving of the problem. 

Finally pressure model choice for further investigations was motivated, through manipulation of 
reformulated Model 1 an equivalent to reformulated Model 2 is found. The proceeding section 
explores the experimentally obtained pressure signals from a signal processing point of view.  
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4.3. Pressure Signal Observations and Model Assumptions Review 
The main objective of the following study is to explore the possibilities and issues associated with 
identifying blade behaviour indicators directly from experimentally obtained steady state internal 
pressure casing signals. Aspects of the internal pressure signals will be evaluated in light of the 
proposed reformulated pressure models, and their implications on those models discussed. The 
experimentally obtained signals are analysed using signal processing techniques and observation. 

It is however first useful to briefly analyse the assumptions made during the development of the 
original pressure models and their associated significances. This is done in order to ascertain the 
pressure models’ applicability with respect to the specific internal pressure conditions and blade 
response for the experimental setup. Certain assumptions are common to both models, and will be 
handled simultaneously. The principal assumptions made during the development and evaluation of 
the original Model 1, for an isolated rotor cascade in a turbomachine, are as follows (Mengle, 1990): 

1. The net casing pressure field can be obtained through linear superposition of each individual 
blade’s pressure signal contribution. 

2. The cascade is isolated and the flow from upstream stators is uniform (or at the very least the 
flow is not excessively sheared). 

3. The inter-blade response phase angle is constant (thus only a single travelling wave mode 𝑘𝑘 
exists). 

4. The blade response is non-integral EO flutter occurring at a single frequency. 

The principal assumptions made during the development and evaluation of the original Model 2 are 
as follows (Forbes and Randall, 2013; Forbes, 2010): 

1. Physical blade coupling, which may be explored using the hub-to-blade mass ratio, is light. The 
blades’ response behaviour can therefore, for all intents and purposes, be treated as 
uncoupled and individual blade behaviour may be evaluated and modelled separately. 

2. Pressure at the casing wall is directly related to the pressure profile about blade tip, and that 
pressure profile follows the blade motion during steady state operating conditions. 

3. Changes in natural frequencies, due to centrifugal stiffening, is negligible across the 
operational range of interest. 

The first assumption for Model 1 and the combination of the first two assumptions for Model 2 can 
be seen as equivalent. Namely that the effect of individual blade vibration on the pressure signal is 
independent and thus the pressure effects of each individual blade tip may be evaluated separately. 
This is the premise for separating the pressure distributions about each blade tip and evaluating those 
signals separately (for instance using the suggested sigmoidal time domain windowing technique 
provided in the theoretical development). The physical blade coupling component, assumption 1 of 
Model 2, can however be commented on independent of the pressure models. 

According the work by Forbes, the physical coupling between blades and their subsequent response 
independence, can be evaluated to some degree by considering the individual blade-to-hub mass 
ratios (so long as the hub and blades are made of the same material, which is the case) (Forbes, 2010). 

The system is seen as lightly coupled when the hub-to-blade mass ratio is small (Forbes, 2010). In this 
case the hub-to-blade mass ratio for the healthy blade design is approximately 1:0.03 (i.e. the mass of 
one healthy blade is approximately 3% of the hub mass). The hub-to-blade ratio decreases for all blade 
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designs of reduced fundamental frequency (as does the associated physical coupling effects). 
Although no indication as to what the minimum required mass ratio must be was found, it is proposed 
that the maximum ratio of 1:0.03 is small enough. This result is supported by the run-up resonance 
investigations for assembly configurations 2 and 3 where SGs were applied to adjacent blades. 
Consider the run-up resonance investigation for configuration 2 with 1 jet excitation in Figure 4.3-1. 

 

Figure 4.3-1 Ramp-up configuration 2 with 1 jet 

Recall that blade 1 is of the healthy design and blade 5 is damaged blade type 1 (blade 5 has a 
significantly reduced fundamental frequency). Further blades 1 and 5 are adjacent to one another. It 
can be seen that the individual blades, with different root geometries, respond independently as they 
move through their own critical speeds. Further, their resonance behaviour does not appear to 
generate visually observable sympathetic vibration from the adjacent blades during the run-up (as 
would be the case for significant inter-blade coupling). Their response however never drops to zero. 
All run-up resonance investigations can be seen in section ‘7.5.7 E7 – Run-Up Resonance Detection’. 

It is important to stress that the suggestions made on physical coupling do not conclusively prove that 
the pressure fields about the blade tips are independent of one another. It only indicates that the 
blades may be sufficiently uncoupled that their physical response behaviour can be evaluated and 
modelled separately. The independence of the pressure response about individual blade tips must still 
be ascertained. 

The second assumption of Model 1, namely that the cascade is isolated with uniform upstream flow, 
inherently holds. This is because the experimental setup only consisted of a single open air rotor 
excited by upstream stator nozzles. The air stream supplied by the nozzles was nominally constant as 
the source was a high pressure compressed vessel. The nozzles were also installed in a stationary 
position. Therefore no significant periodic fluctuations in the upstream air supply are expected over 
the measurements (recall that 10 second steady state measurements were taken). Neither are back-
pressure effects present as no downwind blading or geometries are present near to the outlet. 

The upstream flow generated solely by the blades’ rotation is also uniform as the rotor is open to the 
atmosphere on both sides. Recall that this assumption was made because additional stators and rotors 
affect what can be captured from the pressure signal both up- and down-wind of the rotor row of 
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interest. Further, the pressure signal is captured in line with the rotor plane, and so the effects of axial 
attenuation or additional Doppler shifting of certain signal frequency components is not of concern. 

The third assumption of Model 1, namely that the interblade-phase angle is constant resulting in a 
single travelling wave number 𝑘𝑘, does not strictly hold. Recall that for this assumption to hold the 
system had to be perfectly tuned. This was found to not be the case during the characterisation of all 
configurations. This assumption was made so that the theoretical pressure response could be 
simplified for evaluation purposes (as one wave mode may be dominant given the geometry and 
excitation). When the assumption does not hold 𝑘𝑘 may assume all possible 𝐵𝐵 values. Recall that this 
results in blade response Doppler shifting about all harmonics of rotor speed (Mengle, 1990).  

The fourth and final assumption made during the development of the original Model 1 was that the 
blade response is non-integral EO flutter. The need for non-EO response was so that the engine 
harmonics, in the pressure signal, could be separated from the blade vibration components in the 
frequency domain. In this investigation measurements were taken both at EO resonances and about 
engine ordered resonances. With respect to the original Model 2, the formulation was inherently 
designed for off EO harmonic forced response evaluation. 

The second component of the assumption was that the blade response mechanism be flutter at a 
single frequency. During the evaluation of the SG response signals it was seen that the blades did not 
respond at an individual frequency as they were excited at multiple rotor speed harmonics. The 
magnitude of each harmonic was however governed by the number of active jets and the system’s 
cyclic symmetry. Therefore the blade response cannot be accurately modelled as a single sinusoid.  

In the previous section it was shown that the reformulated Model 1 could be represented as the 
reformulated Model 2 by sacrificing the ability to scale each travelling wave mode component 
individually. In this way the sinusoidal blade response could be replaced by the blade response model 
presented in the theoretical development. It must also be noted that in the reformulation the Doppler 
shifting was expressed as modulation of the otherwise stationary pressure distribution about the 
blades. This is the same mechanism identified by Forbes et al. (Forbes and Randall, 2013). Although 
Model 1 was designed for flutter at an individual frequency, it was successfully used for blade forced 
response evaluation for a rotor moving through an EO resonance (Murray and Key, 2015). 

Assumption 3 for Model 2 is the final principal assumption considered. It was assumed that centrifugal 
stiffening is negligible across the operational testing range. This assumption was made so that the 
system modal characterisation, performed at stationary conditions, would hold when evaluating the 
response at speed (Forbes and Randall, 2013). In this investigation centrifugal stiffening was not 
assumed as negligible for all blades as it was evaluated both experimentally and with FE analyses. 

Recall that the maximum fundamental frequency shift was predicted to be within approximately 3 Hz 
for system operation up to 1400 RPM. The actual centrifugal stiffening for the healthy blade and 
damaged blade type 1 was found to be very closely aligned with the FE model’s predictions. Taking 
these findings into account it is assumed that centrifugal stiffening is also negligible for the blades 
which were not instrumented and tested at speed. This is because their geometry, material properties 
and stationary characterisation results were similar to those blades which were tested at speed.  

Taking the assumptions review and SG findings into account, the reformulated pressure Model 2 will 
be the basis for modelling and assessing the internal pressure conditions from this point forward.  
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The next step is to investigate the impact of intentionally changing the environment within the casing. 
Conditions such as the blade excitation scheme, blade root geometry and rotor speed can be 
independently controlled. Although the hub design facilitated investigating different blade stagger 
angles, all blades were held at a constant stagger angle of 30°. The surface condition of all of the blade 
tips remained unchanged. Understanding their impact on the internal pressure signal will prevent 
attributing pressure signal features to inappropriate mechanisms such as blade vibration effects. 

The average pressure waveform about the casing is chosen for this investigation. It was shown in the 
previous section that averaging across all of the SG measurements averaged out the forcing behaviour. 
Similarly, by averaging the pressure measurements it is expected that the majority of the blade forced 
vibration effects on the pressure signal are averaged out. The differences between the average signals, 
for a particular configuration and excitation scheme, can then be confidently compared and their 
impact attributed. Consider the average pressure waveform about hub and blade assembly 
configuration 1, taking all single jet pressure measurements into account. This is provided in Figure 
4.3-2. 

 

Figure 4.3-2 Average pressure waveform for configuration 1 under 1 jet excitation 

As the blade approaches the stationary observer a rise in pressure is noted. As the blade passes the 
stationary observer a pressure drop is seen. These phenomena are congruent with the system acting 
as a compressor. The form of the single jet pressure distribution about the blades is however quite 
different from the damped impulse distribution described in the work by Forbes (Forbes, 2010). 
However, as the number of excitation jets increases, the pressure waveform starts to approach the 
form described by Forbes (Forbes, 2010). An example case is shown in Figure 4.3-3 for configuration 
1 under four jet excitation. It is important to note that all of the pressure distributions considered are 
ordered such that the first wave is associated with the passing of blade 1, and so forth. 

 

Figure 4.3-3 Average pressure waveform for configuration 1 under 4 jet excitation 
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The number of active pressure jets has a direct impact on the pressure distribution form about the 
individual blades. Further, it was noticed that as the number of jets increased, the maximum pressure 
range for the distributions decreased. 

This finding is in line with what was noticed when investigating the SG signals. Namely that as the 
number of jets increased the maximum forcing range seen by the SGs decreased. Recall that this effect 
was attributed to losses in the pressure feed pipes. As the number of jets increase so does the number 
of pipe connectors and branches in the pressure system increase, and so does the nominal force 
applied to the blades decrease. All average pressure waveforms can be seen in section ‘7.8.1 H1 – 
Average Pressure Waveforms’.  

It was therefore confirmed for this experimental setup that the fluid forcing behaviour has a direct 
impact on the average form of the pressure distribution measured at the casing wall. The next 
condition investigated is the effect of changing the blade root geometry on the average pressure 
waveform.  

Recall that in order to obtain blades of differing fundamental frequencies, slots were cut into the blade 
roots. These slots are expected to have a significant impact on the local pressure distribution about 
the slot region. The impact of changing the root condition on the casing pressure distribution, 
measured near to the blade tips, must be surveyed. 

Consider the normalised average pressure waveforms about blades 1 and 5 for 1 jet excitation for all 
four configurations presented in Figure 4.3-4. The signals were once again averaged over and there 
after normalised between 0 and 1. This was done such that a direct comparison between pressure 
distributions from different measurement sets could be made. Recall that blade 5 was replaced in 
configuration 2 and that blade 1 remained unchanged though all configurations.  

 

Figure 4.3-4 Average pressure waveform under 1 jet excitation for all configurations. (a) Blade 1. (b) Blade 5. 

Through visual observation it can be seen that the number of pressure signal features (major peaks 
and troughs) about the individual blades remains fairly constant. There is no significant change in the 
pressure wave forms or number of prominent features once blade 5 is replaced (recall that 
replacement occurs in configuration 2). The variance between all of the configurations’ averaged and 
normalised pressure waveforms appears to remain the same regardless of the root conditions. It is 
important to note that the most important regions in the signals to inspect are those closest to the 
main pressure rise and drop. This is because these features are directly aligned to the passing of 
individual blades. Further, during the development of the original Model 2 these pressure waveforms 
were assumed to follow the blade tip behaviour (this assumption must still be investigated). 
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The average pressure distribution for configuration 4 appears to follow that of configuration 1, 
similarly the pressure distribution for configuration 2 remains in line with that of configuration 3. This 
tendency is noted to remain constant across all blade tip pressure fields. Further, this trend was 
noticed for all average wave forms about all blades, the individual plots can be seen in section ‘7.8.1 
H1 – Average Pressure Waveforms’ subsection ‘7.8.1.5 Comparison of Average Pressure Distributions’. 
It is therefore believed that this pattern cannot be attributed to a change in blade root conditions. 

A means to quantify the difference between the normalised average pressure distribution forms about 
individual blades is desired. This is done in order to quantify the above visual observations. The 
variance in the difference between average normalised wave forms about individual blades is chosen 
for this purpose (i.e. quantifies the impact of changing a blade root condition between configurations). 
Consider Table 4.3-1 which compares average normalised pressure distributions about blades from 
the four different configurations. Blades changed between configurations are shown in bold. 

Table 4.3-1 Variance heat map in normalised average pressure wave form about blades given 1 Jet excitation 

Config. Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 
Config. 1/Config. 2 0.000601 0.000734 0.001022 0.001308 0.000872 
Config. 1/Config. 3 0.000724 0.000517 0.001155 0.000912 0.000453 
Config. 1/Config. 4 0.000469 0.000602 0.000861 0.000659 0.002598 
Config. 2/Config. 3 8.65E-05 0.000378 0.000168 0.000217 0.001657 
Config. 2/Config. 4 0.000803 0.001374 0.00049 0.000551 0.000886 
Config. 3/Config. 4 0.000814 0.000699 0.000467 0.000523 0.004033 

Recall that blade 5 was changed in the swap to configuration 2, blade 2 was changed in the swap to 
configuration 3 and finally blade 3 was changed in the swap to configuration 4. It can be seen that the 
maximum variance in the difference between configuration wave forms for individual blades is 
erratically spread across the heat map. This is regardless of whether a blade was changed between 
configurations or not. Had the blade root conditions changed the mean casing pressure distribution 
significantly then the maximum variances would have been expected to follow the blade replacement 
regime. This would thus produce an observable pattern. It can be seen that this is not the case. 

Consider two examples from the above heat map.  The maximum variance between configuration 1 
and 2 was found for blade 4, which remained unchanged between configurations. Similarly the 
maximum variance between configuration 2 and configuration 3 was for blade 5, which was also left 
unchanged between configurations. Similar trends were noticed for 2 and 4 jet excitation, the relevant 
variance heat maps for all excitation schemes can be seen in section ‘7.8.2 H2 – Variance Heat Maps 
for Average Wave Forms’. Further, no correlation is observed between the three different variance 
heat maps. The only condition which is changed between heat maps is the excitation scheme. Had the 
same variance trends (such as hot spot maxima and minima locations) been noticed between the 
different heat maps then that may have indicated that root conditions effects play a role. 

These findings do not conclusively rule out root geometry effects on the average casing pressure form. 
They do however suggest that a change in blade geometry sufficiently far from the blade tip, such as 
the root slots in this case, has a negligible impact on the average pressure distribution measured at 
the casing. They further indicate that even large changes in fundamental blade behaviour has a 
negligible impact on average pressure waveforms. It is noted that no investigation into quantifying 
‘sufficiently far’ was made. 
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The next internal condition to be considered is the rotor speed. It is at this point that blade vibration 
cannot be completely uncoupled from the internal pressure signal and the analytical pressure model 
must be considered. The reformulated Model 2, upon which all further investigations are based, is 
provided in the Euler format in Equation [4.3.1]. The change in rotor speed and excitation conditions 
will be used to investigate the phase and amplitude modulation effects as described by the model. 
Note that in the model, amplitude modulation has been specified to occur about unity (maximum Γ is 
one). Similarly phase modulation of the pressure signal components occurs about zero degrees. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 �(1 + Γ ⋅ 𝜓̇𝜓(𝑡𝑡)𝑟𝑟) ⋅�𝑄𝑄𝑖𝑖 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜓𝜓(𝑡𝑡)𝑟𝑟+𝜈𝜈])
∞

𝑖𝑖=0

� [4.3.1] 

As has been stated, the internal pressure measurements were taken at and about EO resonances. This 
was achieved by changing the rotor speed. Therefore a better understanding of the blade forced 
response behaviour will be presented before returning to the effect of rotor speed on the internal 
pressure signal. 

For pressure measurements taken off of EO resonance speeds, the modulation effects attributed to 
the fundamental peak are expected to be averaged out over many revolutions. This is because the 
blade fundamental behaviour is not in phase with the rotor speed. Therefore a stationary casing 
observer will measure the pressure signal with the blade fundamental response peak having an effect 
at a different phase angle during each subsequent revolution.  

For engine ordered operation the effects of fundamental blade vibration are in phase with the rotor 
speed. A single stationary casing pressure observer will therefore always observe the blade’s 
fundamental vibration effects on the pressure signal at the same blade response phase angle for each 
revolution (a common issue noted for synchronous blade vibration identification via BTT methods). 

The blade response will however always have engine ordered frequency components. This is because 
the blade is being excited at multiple engine harmonics when under forced excitation conditions. 
These engine ordered components will inherently be scaled by the blade transfer function. Further, 
the closer a harmonic peak lies to a resonance, the greater that peak’s magnitude will be. The effects 
of these conditions may be illustrated with on blade SG response measurements at and off of 
resonance. Consider Figure 4.3-5 which contains excitation at and about a fundamental resonance. 

 

Figure 4.3-5 SG response about EO 12 for config. 1 under 1 jet excitation. (a) At resonance. (b) 20 RPM above resonance. 
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It can be seen in Figure 4.3-5 (a) that an engine harmonic lies at the fundamental peak, whereas in 
Figure 4.3-5 (b) the fundamental peak is flanked by two nearby engine harmonics. The excitation peaks 
are inherently in phase with the stationary pressure distribution about the blades. It can be seen that 
the response peaks are scaled relative to one another according to the blade transfer function. Both 
examples are from single jet excitation conditions, both measurements are within 20 RPM of one 
another. The harmonic peak located at resonance has a significantly larger amplitude when compared 
to both flanking peaks for the off-resonance excitation (approximately twice the response amplitude 
height). This is for near identical speed and forced excitation conditions. 

In terms of any blade forced response containing signal, there will always be blade frequency response 
components in phase with the rotor speed. And these components are scaled by the blade transfer 
function. Further, the closer a harmonic peak lies to a resonance peak the greater that specific peak 
response amplitude will be magnified. These findings are significant in that they can help to identify 
when forced blade vibration is present in a pressure signal by evaluating the phase and amplitude of 
pressure features within that signal.  

If we briefly consider a signal processing methodology which removes engine harmonic behaviour 
(such as the ensemble averaging method described by Forbes et al., or the integral engine order 
denuding process described by Mengle), then the fundamental response peak information will be 
removed if a signal corresponding to Figure 4.3-5 (a) is used (Forbes and Randall, 2013; Mengle, 1990). 
However, remnants of the fundamental peak might still be present if the process is applied to a signal 
corresponding to Figure 4.3-5 (b). This is the entire premise for the ensemble averaging methodology. 
If the entire response is considered and the harmonics are not removed then the response is still 
scaled by the blade transfer function regardless of the excitation conditions. 

Now that a clearer picture of the response behaviour has been provided, the effects of changing the 
rotor speed on the average pressure signal will be investigated. Figure 4.3-6 contains a waterfall plot 
of the average pressure distributions for all configuration 1 measurements under 1 just excitation. 

 

Figure 4.3-6 Waterfall plot of synchronously averaged pressure wave forms for configuration 1 under 1 jet excitation 
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Recall that steady state measurements for configuration 1 under 1 jet excitation were taken about 
blade 1’s fundamental EOs 8, 12 and 13 (found at approximately 966 RPM, 643 RPM and 594 RPM 
respectively). Upon review of all corresponding SG measurements, it can be seen that blade 1 is always 
responding to the forced excitation (blade vibration behaviour is present in all measurements). 
Measurements at the three predicted critical speed locations have been plotted in black on the figure. 

The first effect noticed is that the average pressure range for one revolution, averaged over multiple 
revolutions, increases with the rotor speed. The range is defined as the absolute difference between 
the maximum and minimum pressures (corresponding to the pressure peak ahead of the blade tip and 
trough behind the blade tip respectively). This effect was noticed for all average pressure distribution 
waterfall plots. Additional waterfall plots can be seen in section ‘7.8.3 H3– Waterfall Plots of 
Synchronously Averaged Configuration 1 Pressure’.  

An investigation was performed in order to better understand the rotor speed and pressure response 
range relationship. This was done in order to understand if pressure fluctuations could be attributed 
to blade vibration from direct observation of the signal or not (as this effect was included in the 
reformulation of Model 2). The alternative situations would be that pressure fluctuations are solely a 
function of rotor operation, geometry and upstream excitation conditions (and thus are not associated 
specifically with blade vibration); or the pressure fluctuations are too erratic or small to make a 
confident call as to their effect.  

It was found that a linear fit best suited the maximum pressure range and angular velocity relationship. 
The best linear fit example is provided in Figure 4.3-7 (a least squares approach was employed). A 
goodness of fit of 𝑅𝑅2 equal to 0.99 was achieved for this dataset (the mean 𝑅𝑅2 value achieved across 
all configurations and excitation schemes was found to be 0.94). Selected investigation result plots 
and a results table is provided in section ‘7.8.4 H4 – Selected Pressure Range Plots and Linear Fit Table’. 

 

Figure 4.3-7 Pressure range and linear fit for configuration 2 under 1 jet excitation 

According to the reformulated Model 2, if blade vibration does indeed cause the pressure field 
magnitude about the blade tip to fluctuate, then as rotor operation approaches a critical speed so 
does the pressure response fluctuation amplitude increase. This is because the amplitude modulation 
is a direct function of the blade transfer function. The amplitude increase should then be about the 
expected pressure value given the specific operating speed. Further, the theoretical vibration-free 
pressure range magnitude can now be estimated. 
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In terms of investigating the average pressure distribution about the casing, non-EO pressure 
fluctuations associated with blade vibration will be averaged out as they are out of phase with the 
rotor operation. The engine ordered blade vibration induced pressure components will still however 
be preserved in the average signal. This is because they are in phase with operation of the system. It 
is important to once again stress that their magnitude will be scaled by the blade transfer function. 

There is however a catch. The pressure observer is not placed on the rotating blade tip. It therefore 
does not see the full response amplitude range change as the blade moves through its vibration path. 
The single stationary observer was placed on the casing wall. The instantaneous fluctuation amplitude 
captured by the stationary observer therefore depends on the angular position of the observer 
relative to the phase of the blade response. The blade response phase angle is a function of the forcing 
phase angle. This issue was alluded to earlier as a common issue associated with synchronous BTT.  

Therefore, as the rotor approaches a critical speed the potential to capture a larger amplitude 
fluctuation exists. However, as was stated, the point along the path of the blade’s response (and 
associated pressure magnitude fluctuation) captured is wholly dependent on the relative phase angle 
between the observer and the blade response. Therefore the full potential may not be realised. 

The same issues exists when investigating the phase modulation aspect of the blade vibration model. 
Consider the case of an assembly with and without a vibrating blade presented in Figure 4.3-8. 

 

Figure 4.3-8 Angular distance between blades. (a) Undeformed shape. (b) Deformed shape. 

If the blades are not vibrating (or their vibration does not have an effect on the pressure signal) then 
the arrival time of the pressure features, associated with the passing of the blade, should remain 
constant. If however one or more blades are vibrating then the pressure wave features’ arrival times, 
measured at the stationary casing observer, should be affected. Once again pressure features refer to 
a pressure peak, or trough, which would rotate in steady state about the casing had no blade vibration 
been present (i.e. the rotating angular position is only affected by the blade tip behaviour). 

Once again, as the rotor approaches a critical speed then the absolute magnitude between the 
expected arrival time, for a signal which contains no blade vibration, and the actual arrival time should 
increase. This is because the pressure features’ arrival times are dependent on the blade’s phase 
angles (i.e. it was assumed that the pressure fields follow the blade tips during steady operation). 
However, this phenomenon is once again being measured from the casing wall and the actual 
magnitude observed depends on the relative phase angle between the observation point and the 
individual blade’s vibration phase. Thus as the system approaches resonance, the potential to observe 

(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 4 Investigations and Results CB Church
   

  186 
 

a larger phase shift of pressure signal features is present. Once again that potential is not necessarily 
realised by the stationary observer. 

It was therefore found that when looking at individual response indicators in the pressure signal, such 
as the pressure distribution’s peaks and troughs (or maximum amplitude ranges about blades), the 
same issues associated with BTT methods are found. Specifically, only a single point measurement of 
a feature, along the blade response path, is observed during synchronous rotor operation. This 
situation therefore requires multiple sensors and fitting algorithms to overcome the aliasing of these 
observations.  

Further, the pulse spacing on resonance condition (PSR) must also be considered for optimal sensor 
positioning given a particular mode of interest and operating speed (recall that the PSR was a measure 
of how much of an individual response oscillation is captured due to sensor positon, rotor speed and 
excitation over one revolution of the rotor, see section ‘1.3.4 Blade Tip Timing Approach’). According 
to this case a single stationary pressure observer, used to obtain pressure feature arrival times or local 
pressure fluctuations, does not gain anything over the established BTT approaches. 

One advantage of using pressure signals over blade passing times however exists. The pressure signal 
form about a moving blade contains multiple features (such as peaks and troughs and their associated 
magnitudes). In a BTT signal only individual peaks associated with the passing of a blade are present. 
Therefore the locations and amplitudes of these multiple features in the pressure signal might be 
useful when used in an advanced fitting procedure for the purpose of obtaining blade vibration 
information. 

It is however still of interest to determine if it is possible to identify blade vibration components, in 
terms of phase and amplitude modulation effects, in the measured pressure signals via simple signal 
processing and visual observation techniques. This will provide confidence in the proposed 
reformulated model as well as aid in evaluating the assumption that the pressure waves do indeed 
follow the individual tip behaviour during steady operation (and are thus linearly separable). 

Consider the effects of both amplitude and phase modulation on pressure signal features presented 
in Figure 4.3-9 (a). 

 

Figure 4.3-9 (a) Modulation effects on pressure signal features. (b) Change in feature angular displacement due to phase 
modulation. 
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It can be seen in the figure that amplitude modulation is expected to cause the pressure signal 
features’ amplitudes to fluctuate about their mean values. It can also be seen that phase modulation 
is expected to cause those specific pressure features to arrive sooner or later than anticipated 
(depending on the blade vibration). The case of phase modulation will be explored first.  

A means to determine if the pressure signal features are following the tip is desired (being phase 
modulated). Consider Figure 4.3-9 (b). If blade vibration is not present then the angular displacement 
between two features is expected to remain constant, even between measurements taken at different 
operating speeds. This is because this angle depends only on the rotor’s geometry. If two adjacent 
blades are however vibrating, then the change in this angle is expected to follow the blade vibration.  

It is important to once again stress that the stationary observer is however placed on the casing. And 
so the measured change in angle, due to forced EO vibration, will be constant in every subsequent 
rotation. If however the blades are vibrating and a rotor operating condition, such as angular velocity, 
is changed then a change in the angle between two blades may be expected. This can therefore be 
used to identify whether forced blade vibration is present in the pressure signal or not. 

The effect of stochastic vibration must also be considered.  Off-EO vibration will cause this angle to 
fluctuate slightly between rotations. If however the average pressure signal across multiple 
revolutions is used then this stochastic component is expected to be averaged out.  

The operating speed and data acquisition sampling rate however place limits on what minimum 
magnitude of response is observable. Consider a rotor operating at a constant speed of 24 Hz (1440 
RPM) and recall that the data acquisition sampling rate was chosen at 102.4 kHz (see sections ‘3.5.1 
General Instrumentation’ and ‘3.8 Experimental Methodology’. This results in approximately 4267 
samples per revolution or 11.85 samples per degree that the rotor turns. Therefore, between two data 
points the rotor has moved an angular distance of approximately 0.084°. The radius from the center 
of the rotor to the blade tips was designed to be 162 mm. Thus the arc length subtended by the blade 
tip, between the two measurement points, is approximately 2.2 mm.  

The change in the magnitude of the measured tip displacement, due to blade vibration, must therefore 
be larger than the minimum observable phenomenon in order to be considered as blade actual 
vibration. Which in this case is an arc length of 2.2 mm or angular displacement of 0.084°. 

The change in angle between blades 1 and 2, across all configuration 1 measurements (under 1 jet 
excitation) is provided in Figure 4.3-10. The maximum blade pressure peak was the feature used. 

 

Figure 4.3-10 Change in angular displacement between blades 1 and 2 in configuration 1 with 1 jet excitation 
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The change in angular position between the blade pressure peaks has been plotted along with the 
fundamental peak heights obtained from the SG measurements. The SG measurements were 
recorded simultaneously. The predicted minimum observable angle has also been plotted as a 
function of the rotor speed and sampling rate. Recall that the configuration 1 experiments obtained 
under 1 jet excitation conditions were about three resonance locations. Three resonance peaks are 
clearly seen in the SG results as well as in the change in angle results. 

Firstly it can be seen that the forced blade vibration components are large enough to be considered 
(the change in angles are above the minimum threshold). It can also be seen that as the SG 
measurements peak, so does the angular displacement change follow that trend in general. However, 
as expected, the full amplitude potential is not achieved. As has been stated, this is because the 
stationary observer is on the casing and only a potential for that observer to be exposed to a maximum 
phase angle change exists.  

This is a crucial finding as it indicates (for this particular measurement) that the pressure phase 
response, about the blade tip, is a function of the blade transfer function. Thus the assumption that 
the pressure field follows the blade tip motion might be validated for this case. It is important to note 
that the phase modulation effect was first predicted in the work of Forbes which strengthens this 
argument (Forbes and Randall, 2013). Additional phase modulation due to forced response plots has 
been provided in section ‘7.8.5 H5 – Selected Phase Modulation Due to Forced Response Plots’. 

The congruency, between the change in blade angle due to the forced response and the fundamental 
peak height, was evaluated by using a correlation analysis between the two curves. The correlation 
coefficient is scaled between zero and one. A value of 1 indicates perfect correlation, and value of zero 
no correlation. The results of the correlation analysis are presented in Table 4.3-2. 

Table 4.3-2 Correlation between SG peak trend and change in blade peak pressure angle 

Jets Configuration 1 Configuration 2 
B1/B2 B2/B3 B3/B4 B4/B5 B5/B1 B1/B2 B2/B3 B3/B4 B4/B5 B5/B1 

1 0.1763 0.0365 0.2055 0.2554 0.345 0.0842 0.017 0.0278 0.0198 0.1134 
2 0.2941 0.4739 0.4409 0.1418 0.1195 0.1439 0.0598 0.0018 0.3933 0.4867 
4 0.068 0.0503 0.0603 0.2204 0.2049 0.445 0.5241 0.366 0.0034 0.6575 

The absolute correlation value itself is not of great importance, the relative value between the blade-
to-blade angle measurements, given a particular excitation scheme and configuration, however is. 
This is because the pressure distribution about a particular blade is expected to follow the SG trend 
for that blade. This is however taking into consideration that the casing observer is stationary, 
mistuning is present and there is a large amount of noise in the system. 

In configuration 1 the SG measurements used were obtained from blade 1. Therefore, the highest 
correlation is expected for measurements which take the pressure distribution about blade 1 into 
account. The remainder of the blades in configuration 1 did however have similar fundamental 
frequencies to blade 1, and so similar correlation values are not unexpected.  

In the stationary characterisation blade 3 was found to have the closest fundamental frequency to 
blade 1. Further, its mistuning was second only to blade 1. Therefore mode localisation effects are 
expected to affect these two blades most significantly. Recall that mode localisation may cause this 
by producing the larger response amplitudes on the most highly mistuned blades and smaller response 
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amplitudes on the remaining blades. The 2 jet excitation scheme, for configuration 1, performed the 
poorest with neither of the blade 1 pressure data sets (B1/B2 and B5/B1) having the highest 
correlation with the SG results. 

When reviewing the results for configuration 2 the expected trend is more prominent. Measurements 
were taken at and off of expected critical speeds of both blade 1 and blade 5. The SG was applied to 
blade 5, and all of the highest correlations were found for angular fluctuations which include a blade 
5 pressure feature. Particularly for the 2 jet data set, both blade 5 containing results obtained the 
highest correlation with the SG measurements. 

It is important to note that due to the unexpected maxima in the correlation analysis this investigation 
only gives an indication that the pressure field about the tip follows the tip behaviour. It does not 
conclusively prove it. The sample size is also too small to perform a significant statistical evaluation of 
the information. Therefore at the bare minimum these findings indicate that the pressure features, 
about the blades, move relative to one another. Further, this effect might be attributed to blade 
vibration. This is still however an important finding. 

The next step is to investigate whether or not the features’ magnitudes are subject to amplitude 
modulation. The pressure range measure, used previously, cannot be applied here as it requires more 
than one feature to calculate. The feature points will most likely be at different blade vibration phase 
angles. This causes the results to be somewhat senseless when compared to blade behaviour 
information, although the pressure range would be expected to peak at resonance. 

The pressure range investigation does however provide a starting point to investigate individual 
features. The pressure distributions about blades were found to fluctuate about nearly zero. The range 
increased linearly. It is therefore expected that the pressure peaks increase linearly. Similarly the 
pressure troughs are expected to decrease linearly. It may therefore be possible to fit a straight line 
through the data in order to remove this linear trend from the data.  

Once the data is about zero then the absolute of the values can be taken in order to compare their 
magnitudes. Once again the peak amplitudes might follow the fundamental peak behaviour obtained 
from the SG measurements. This would indicate that amplitude modulation is a function of blade 
behaviour and is therefore a prudent component to include in the pressure model. The converse is 
also a possible outcome, namely that simply not enough information is available to say that the 
features magnitudes are amplitude modulated. 

The results of the correlation between the change in peak magnitudes and the SG trend is presented 
in Table 4.3-3. 

Table 4.3-3 Correlation between SG peak trend and change in blade peak pressure angle 

Jets Configuration 1 Configuration 2 
B1 B2 B3 B4 B5 B1 B2 B3 B4 B5 

1 0.1415 0.0408 0.1857 0.2153 0.0059 0.3042 0.3110 0.1454 0.4307 0.3301 
2 0.3524 0.4704 0.6930 0.2083 0.0094 0.1873 0.5094 0.2578 0.3036 0.4559 
4 0.4103 0.5995 0.4422 0.0218 0.0456 0.3124 0.2622 0.2664 0.2813 0.3900 

If the amplitude modulation effects did indeed play a role, then the configuration 1 measurements 
should show the greatest correlation with blade 1 (B1). Similarly the configuration 2 measurements 
should show the greatest correlation with blade 5 (B5). It is however clear from the correlation analysis 
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that this is not the case. It appears that the blade vibration is not correlated with the amplitude 
fluctuations at all.  

As was stated, this could be due to a number of reasons. Firstly the pressure fluctuations, potentially 
caused by the blade vibration, may simply be smaller in magnitude than the noise inside the casing. 
Further, the number of revolutions used in the averaging procedure may not have been able to 
completely remove that noise from the signal. This is a highly likely reason as the casing environment 
is extremely noisy to start with.  

The second reason could be that the blade vibration has no effect on the pressure magnitude 
fluctuations. This was a suggested effect, however it was not supported by findings in literature or by 
these experimental results. This is still a significant result though as it simplifies the reformulated 
models by allowing the exclusion of the amplitude modulation effect. This reduces the number of 
design variables and calculations required to solve for during the evaluation of the full inverse 
problem. Recall that the blade angular velocity would need to be calculated from the blade angular 
displacement through differentiation of the signal. The need to simplify the model will shortly be 
shown to be an issue of great importance. 

In terms of using a single pressure feature for the purpose of blade vibration identification from a 
steady state signal, it was found that similar issues associated with synchronous BTT methods exist. 
This method is however not completely at a loss though. This is because the angles between features 
can be measured over time. Changes in these angles, over long operational durations, may indicate 
that individual blade’s integrity is changing. This method may therefore still be used as an online 
condition monitoring solution to identify if individual blades are vibrating and their integrity changing. 

The resulting simplified reformulated Model 2 is provided in Equation [4.3.2]. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝑄𝑄𝑖𝑖 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[Ω⋅t+𝜓𝜓(𝑡𝑡)𝑟𝑟+𝜈𝜈])
∞

𝑖𝑖=0

� [4.3.2] 

The resulting model is equivalent to that developed by Forbes, save the updated blade forced 
response model 𝜓𝜓(𝑡𝑡)𝑟𝑟  (Forbes and Randall, 2013; Forbes, 2010). Now that the assumptions related to 
the model, pressure effects and blade vibration model effects have been investigated it is important 
to review certain aspects related to evaluating this model. As has been stated, the goal of which would 
be to obtain blade vibration information from an internal pressure signal. 

It was seen that the average number of function evaluations required to solve for the blade transfer 
function parameters, from SG measurements, in the multi-start investigation was approximately 1670 
(blade 1 in configuration 1). Further, the multi-start investigation required approximately 250 function 
evaluations to obtain a result for the best case scenario forcing function fit.  

Fitting the blade transfer function had many more design variables than fitting the forcing function, 
hence the larger number of function evaluations. The complete internal pressure model however has 
more design variables than both these reduced problems combined. Further, the pressure signal is 
expected to have a significantly reduced blade vibration component when compared to the direct on-
blade SG measurements. Therefore the number of required function evaluations for the full inverse 
problem is expected to increase significantly as they do not scale linearly with the number of design 
variables as well as due to the reduced prominence of the blade vibration effect in the signal itself. 
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Further, in order to capture blade phase modulation the required sampling rate was shown to be 
extremely high. And in order to have a high enough frequency resolution a significantly long enough 
signal had to be captured (a 10 second length signal provides a frequency resolution of 0.1 Hz). In this 
case a sampling rate of 102.4 kHz was used and the record length was 10 seconds. 

Therefore in order to near perfectly reconstruct the pressure signal, using Fourier coefficients 
obtained from the deterministic signal, the minimum number of sums required would be in the order 
of 51.2 × 103 (the frequency bandwidth). This is in order to fully describe the phenomenon without 
down-sampling the data.  

In order to evaluate the model, each sum must handle a vector which contains approximately 1 × 106 
data points (sampling rate multiplied by the sample length). Thus a single function evaluation would 
be extremely expensive to perform using the full signals obtained. This coupled with the expected 
number of function evaluations required causes a traditional optimisation approach to be infeasible 
for this problem (at the specified resolution).  

Methods have however been developed to handle optimisation problems which are extremely 
expensive to solve. One solution is to generate a cheaper surrogate model from a number of 
measurements, and then use the surrogate model in the optimisation process. A second solution 
methodology would be to solve the problem at a reduced resolution (resample at a lower sampling 
rate and decrease the signal length) and increase the data’s resolution as the optimisation converges 
to a result. A final proposed solution would be to investigate which Fourier components are of a 
significant magnitude and evaluate the sum with only these components before considering the full 
dataset.  

The final proposed solution will be briefly discussed. The complex Fourier coefficients are simply the 
full set of frequency information for a particular signal (it includes both phase and magnitude 
information). The absolute of the Fourier coefficients for an individual pressure measurement, 
sigmoidally windowed about blade 1, is provided in Figure 4.3-11. 

 

Figure 4.3-11 Absolute of the Fourier coefficients for blade 1 in configuration 1 under 1 jet excitation at 961 RPM 

It is clear from the figure that the magnitude of the frequency information decreases with an increase 
in frequency. The majority of the important information lies within a small band of the full frequency 
spectrum (full band is 51.2 kHz). Further, the blade vibration is expected to modulate all frequency 
components related to features about the blade under investigation. Therefore, it may be possible to 
simply reduce the number of working Fourier coefficients in the model sum in order to provide a 
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significantly cheaper function to evaluate. The desired bandwidth can be continuously altered during 
the full optimisation run, and the final iterations can use the full spectrum. 

The final concern regarding evaluating the above model, using a full pressure signal, is that the 
individual blades are most likely not responding at the same phase angle. Further, due to the blade 
mistuning, the inter-blade phase angle is not expected to be constant. Another effect of the blade 
mistuning is that the response amplitudes of the individual blades are also expected to differ. This 
results in different pressure feature phase shift magnitudes for each of the blades. 

Taking all of these concerns into consideration a means to separate pressure features related to 
individual blade behaviour was desired. This is supported by the assumptions made in the 
development of both models, namely that the overall pressure response can be obtained by linear 
superposition of the individual blade contributions. These assumptions were evaluated earlier in this 
section. The blades were found to be lightly coupled. Further, the pressure investigation has suggested 
that the pressure waves about the individual blades are somewhat independent. 

When compared to the evaluation of individual pressure features about blades, this bulk methodology 
should capture all of the features associated with an individual blade over an entire record length. 
Bulk feature evaluation of individual blades is the driving force behind the proposed inverse solution 
methodology (i.e. fitting the model to all pressure features associated with one blade). Using bulk 
feature measurements and fitting, noise associated with using a single feature is mitigated.  

A windowing technique, based on combining sigmoid functions, was provided for this purpose in the 
theoretical development section (and as was stated used to evaluate frequency components of 
pressure waveforms about individual blades). A brief discussion of this windowing technique is the 
final component of the pressure signal investigation. 

The windowing technique was designed such that it could capture the majority of the features 
associated to individual blades. This was to be done without attenuating the signal features associated 
with those individual blades. Consider Figure 4.3-12. 

 

Figure 4.3-12 Sigmoidal windowing technique for a full signal 

The sigmoidal windows are placed about the desired blade pressure signal features by using blade 
passing times (in this instance blade 1). The blade passing times were obtained from eddy current 
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proximity probes installed into the casing about the sound pressure transducer. They could have 
however been estimated using prominent signal features (specifically the peak and trough from a 
passing blade). A closer look at the same windowing technique, however on the deterministic portion 
of the same signal, is provided in Figure 4.3-13. 

 

Figure 4.3-13 Sigmoidal windowing about blade 1 deterministic pressure signal in configuration 1 under 1 jet excitation 

It can be seen from the figure that the windowing technique does not attenuate the signal features 
close to the pressure features near to the blade tip. Further, it provides a smooth transition between 
the blades. Recall that this was the desired behaviour of the window. 

In summary, the principal underlying pressure model assumptions were evaluated. Each assumption 
was individually considered. Taking the assumptions evaluation and SG findings into account it was 
decided that reformulated pressure Model 2 would be used to analytically represent the signal. It must 
be stressed that this is at the expense of being able to sort and characterise the individual wave mode 
contributions individually. 

The hub-to-blade mass ratio, in conjunction with the run-up resonance investigations, indicate that all 
of the configurations are indeed lightly coupled. Thus the physical blade tip behaviours may be 
considered in isolation of one another for evaluation and modelling purposes. 

It was found that as the number of excitation jets increases, so does the pressure waveform approach 
the damped exponential form described by Forbes (Forbes, 2010). Altering the blade root condition 
was not found to have an effect on the average pressure distribution features about blades when 
captured at the casing wall. 

It was shown that regardless of whether the system is being operated at or off of an engine ordered 
resonance, there will always be blade response frequency components which are in phase with the 
rotor operation. Further the blade response, including rotor harmonics about the resonance peaks, 
will be scaled by the blade’s transfer function.  

Indications were found to suggest that the pressure features about individual blades were indeed 
phase modulated. In simpler terms it suggests that they do indeed follow the blade tip motion. The 
pressure features were however not found to be amplitude modulated, and this resulted in the final 
pressure model taking the same form as provided by Forbes (Forbes and Randall, 2013). 
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Individual pressure feature evaluation, for the purpose of blade vibration identification, was found to 
suffer the same issues as those experienced by synchronous BTT approaches. Namely that multiple 
measurements need to be taken about the circumference of the rotor in order to obtain data across 
the full response of the blade. These measurements would then need to be fitted using advanced 
curve fitting techniques. 

A brief look into the implications of using the full signals in the optimisation was made. It was found 
that it would be extremely expensive to evaluate, when considering the full signals. Alternative 
approaches were provided, one of which was discussed. A significant advantage of using the inverse 
problem formulation along with pressure signals captured about blades is that the behaviour of 
individual blades can be monitored. All other CPS based methods reviewed took the blade assembly’s 
response into account. 

Finally an example use of the windowing technique was provided. The need for the windowing 
technique was discussed, it was found that the blades do not necessarily move in phase with one 
another and neither are their response magnitudes expected to be the same. Therefore, features 
associated with individual blades would have to be evaluated separately. Hence further justification 
for the windowing technique. 

The succeeding section contains the final conclusions of this investigation along with recommended 
avenues of future research.
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Chapter 5 Conclusions and Future Research 
5.1. Conclusions 
The need for a means to non-intrusively monitor the behaviour of turbomachine blades during steady 
state operation was outlined during the introduction of this study. It was stated that the failure of 
even a single blade during operation could result in the catastrophic failure of an entire turbomachine.  

The internal casing pressure signal was identified as a possible alternative source of blade behaviour 
information which can be captured non-intrusively. The signal itself comprises multiple constituents 
which must be assembled in such a way as to describe the true nature of the pressure phenomena 
within the casing. The purpose of this investigation was to study aspects of analytically modelling the 
internal casing pressure signal along with its elemental components. Focus was placed on modelling 
the blade behaviour itself within that signal. Blade response modelling inherently crosses all blade 
vibration measurement approaches. Therefore robust and inexpensive blade models are of great 
interest to develop and explore. 

Two separate internal pressure models were uncovered during the literature review. Both analytical 
expressions describe the internal pressure signal from a single stationary casing measurement 
location. Both achieved this by using Fourier series representations (Forbes and Randall, 2013; Forbes, 
2010; Mengle, 1990; Ratz et al., 2013). Both models were used in independent studies to investigate 
internal pressure signals. Further, both studies had some degree of success in uncovering blade 
resonance locations, using these models, during transient turbomachine operation (Murray and Key, 
2015; Ratz et al., 2013). These models were the basis for the reformulated internal pressure models.  

This investigation concentrated on pressure and SG measurements taken at nominally constant rotor 
operation. This was done for the purpose of evaluating and modelling blade vibration behaviour. 
Although this is not entirely novel, the majority of literature surveyed concentrated on transient rotor 
operation. An advantage of evaluating steady state system operation is that condition indicators can 
be obtained during long uninterrupted runs. They may therefore serve as early warning systems. This 
is as opposed to relying on transient measurements to provide condition indicators. 

Before steady state operating measurements were taken, the hub and blade assemblies and 
associated components were thoroughly characterised. Both system characterisation and individual 
blade response characterisations were performed. The various configurations’ responses were 
confirmed to be near to those estimated during FE analysis investigations. During the run-up 
resonance investigations, the instrumented blades were shown to respond at their estimated critical 
speeds. The results from the various characterisations performed complemented one another. These 
characterisations were found to be extremely useful when investigating the system’s response during 
steady operation. 

Results from the SG investigations and assumptions review facilitated alterations to the reformulated 
analytical internal pressure Model 1. This produced the same expression as the reformulated Model 2. 
The implications of making the required changes were discussed. Taking the success of other 
independent studies into account, along with this finding, a higher degree of confidence is gained in 
the models themselves. Specifically with regards to their predicted internal casing pressure behaviour 
as a function of blade tip behaviour. Both the models’ behaviour and applicability were investigated 
extensively in the theoretical development and experimental investigations. 
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Common to all blade vibration measurement methodologies, both intrusive and non-intrusive, is the 
blade vibration and associated blade vibration model. As has been stated, in terms of this investigation 
it is an integral component of the pressure signal under investigation. Therefore care was taken in the 
choice of model for the purpose of representing its presence in the pressure signal. Multiple blade 
response representations were suggested in literature. Models considered included simple sinusoids, 
combinations of sinusoids (to obtain MDOF systems), lumped mass representations, Euler-Bernoulli 
beam representations and both partial and full FE representations. Brief reviews of these methods 
were provided in the appendix (see section ‘7.1.3 A3 – Analytical Blade and Assembly Models’). 

It was concluded that the sinusoidal models were too simplistic to capture the desired blade behaviour 
sufficiently. The lumped mass approach, although useful for evaluating a full systems response 
economically, was still incapable of providing the desired individual blade response resolution. 
Although capable of providing the desired tip response resolution the Euler-Bernoulli beam, partial 
and full FE models were on the other hand considered too expensive to evaluate in an inverse problem 
formulation. This is because they would have a significant effect on the number of design variables, 
for a model which is already expensive to evaluate. 

It was found that the repurposed experimental modal analysis methodology, used to reconstruct a 
system’s frequency response, was not only able to fit the measured SG data to a high degree, it also 
provided physical indicators of the system itself. The ability to resolve physical indicators accurately 
provides confidence in the model and allows blade condition inference from the results. Fitting the 
repurposed model to SG measurements is an example of one of the reduced inverse problems which 
was successfully solved.   

When the fitting results were compared to the expected response parameters they made physical 
sense (such as a direct comparison of the modal damping). This provides assurance in the model’s 
applicability to the problem. The technique allows easier modelling of the system’s response to a 
chosen number of degrees of freedom, when compared to the other MDOF methods considered.  

The method also facilitates modelling the forcing behaviour separately (both stochastic and forced). 
This allows similar physical checks on the forcing function fitting results. The repurposed technique is 
therefore not only useful for CPS based methods, it is useful for other techniques which hope to model 
the blade’s response in an inexpensive MDOF manner whilst still providing links to the true physical 
nature of the system. It is believed that the repurposed technique has been used in a novel way in this 
investigation. 

Following from the above discussion, it can be said that another useful component of the blade 
response model is the forcing function model. In this investigation a time-domain based signal 
construction methodology was suggested, implemented and experimentally evaluated. The model 
was evaluated by using blade SG response measurements in an inverse problem format. Specifically, 
the stream forcing behaviour was modelled as a series of Gaussian shaped force pulses applied to a 
region of a blade. Similar to the fitting of the blade transfer function, this model was fitted to 
experimental measurement using standard gradient based optimisation techniques. 

Once again the forcing model was useful in the sense that certain of the design variables, once found 
after fitting the model to experimentally derived results, could be compared to the physical make-up 
of the experimental setup, geometry and operating conditions. This allows a sanity check between the 
expected behaviour and the fitted behaviour.  
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The model was less capable of being fitted to higher jet excitation conditions, however qualitative 
comparisons between the theoretical forcing model behaviour and the experimentally derived forcing 
behaviour showed some degree of correspondence in forcing form in the frequency domain. It is 
believed that the model is a useful step towards accurately describing all upstream flow based forcing 
behaviour. This forcing model is considered as entirely novel for modelling the forces applied to 
turbomachine blades, although work must be done to improve its performance. 

It is therefore believed that an improved means to model blade response (both stochastic and forced) 
has been provided. The full SG response spectra showed that the blades were indeed excited by both 
noise and engine ordered harmonics. Therefore a single sinusoid would not be an appropriate model 
to capture the full complex behaviour of a blade in a turbomachine. Recall that an improved means to 
model blade behaviour was a primary deliverable of this investigation. 

It must be stressed again that models which allow direct comparison with expected physical behaviour 
are believed to be of more use than those which cannot. This is because they allow extraction of 
physical quantities. These physical quantities can be used to report on the condition of a system whilst 
simultaneously providing the sanity check as mentioned earlier.  

An investigation into an actual internal pressure signal was made. The investigation started by 
reviewing the assumptions related to the models developed. The applicability of all assumptions, and 
their implications was discussed. 

During the investigation indications were found to corroborate the belief that blade vibration causes 
the phase of pressure signal features to shift. An investigation into the possibility of amplitude 
modulation of pressure signals returned inconclusive results. These findings had a significant impact 
on the reformulated Model 2. It was specifically found that the model reduces to that expressed in 
the work of Forbes (Forbes and Randall, 2013).  

This has both positive and negative repercussions for the use of the model in an inverse problem 
setting. In terms of negative repercussions, it means that there are fewer unique features in the 
pressure signal related to the blade vibration than were expected. This has an impact on the ability of 
fitting the model to resolve blade vibration information from an internal pressure signal, which already 
masks its signature. On the other hand, it means that the internal pressure model itself is less 
expensive to evaluate which is useful as the model is already costly. 

In the pressure investigations section the need and usefulness of the sigmoid based windowing 
technique was touched upon. The blades do not necessarily vibrate at the same phase angle and with 
the same amplitude. Therefore, in terms of the inverse problem formulation, it is prudent to solve for 
the blade vibration in a blade by blade fashion. The sigmoidal windowing technique is believed to 
separate pressure features related to the blade behaviour without attenuating them whilst 
simultaneously allowing a smooth transition between pressure fields surrounding blades. The window 
is especially capable of being stretched to fit the response shape of interest as to not attenuate 
important pressure features. 

A full inverse problem formulation, in order to obtain blade response characteristics, was theoretically 
developed. As was stated, components of the inverse problem methodology were successfully used 
to fit the SG data to components of the suggested analytical pressure models. An inverse problem 
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methodology to blade vibration resolution in a pressure signal was not encountered in literature, and 
is therefore considered novel. A discussion on its feasibility and practicality is provided further on.  

Unlike other CPS methodologies encountered, the full inverse formulation for pressure distributions 
about individual blades has the potential to uncover the behaviour of individual blades. All other CPS 
methodologies reviewed evaluated the cumulative effect of blade vibration. This was done either by 
monitoring the casing vibration or by direct measurement of the full pressure field within the casing. 
The ability to pin point individual problem blades is an extremely useful facet of this formulation. 

It was however found that evaluating the objective function of the full inverse problem is extremely 
expensive to perform and so an alternative or modified solution route to that which was provided is 
desired. Suggestions in the relevant sections and in the section to come have been made. 

Feasibility and practical implementation of the above discussed ideas are possibly the most important 
concerns to address from an engineering perspective. The forced blade response model will first be 
considered separately from its presence in the pressure signal.  

As was stated, all blade vibration measurement methodologies, intrusive and otherwise, require a 
blade response model. When the SDOF sinusoid is fitted to blade response measurements the 
amplitude, frequency of response and phase angle are solved for. In terms of the blade response 
model presented in this work, similar variables must be obtained. For each degree of freedom 
considered, a natural frequency, modal damping value and modal amplitude must be resolved. On top 
of that the forcing function’s design variables must be obtained, and then finally the combined forced 
response amplitude and phase angle. Both models can be used in fitting procedures to obtain an 
indication of blade vibration, however the model presented in this work provides direct estimation of 
both the physical condition of the blade and the forces acting on the blade.  

The model suggested in this work may be more expensive to implement, however the potential gains 
in terms of understanding how the blade is behaving and its conditions are extremely useful. It is both 
a feasible and practical alternative when the source of blade vibration information is measured 
directly. Such is the case for BTT approaches. Within the current BTT curve fitting algorithms the blade 
response model can be substituted with the model developed in this investigation. Further, the 
number of degrees of freedom can be individually chosen in a case to case manner. 

The next question regarding feasibility and practicality pertains to using the internal pressure model 
in an inverse problem formulation. Namely for the purpose of obtaining blade vibration information. 
In order for the method to be feasible the blade vibration must cause a measurable pressure effect. If 
indeed the fluid in the casing is being excited sufficiently by the blade vibration then the inverse 
problem approach would have to be far less expensive than the one presented here. Specifically for 
the purpose of online condition monitoring. Further, the internal pressure sensors must be both fast 
enough to capture the response whilst simultaneously robust enough to survive the internal casing 
environment. For these reasons, the use of an internal pressure signal for steady state blade vibration 
measurement is still uncertain and further research is required. 

Modelling and evaluating a turbomachine’s internal casing pressure signal requires consideration of 
multiple facets. If used in conjunction with other non-intrusive methodologies it may prove to be a 
highly useful and robust blade vibration measurement solution. The succeeding section suggests 
further avenues of investigation surrounding the topics explored in this investigation. 
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5.2. Future Research 
The modelling of a turbomachine’s internal casing pressure signal is a challenging task. One solution 
route would be to initially determine an appropriate representation of the pressure signal, without 
blade vibration, and then thereafter consider what effect blade vibration would have on the signal. 
This was the route followed in the theoretical development of this investigation (and by Forbes et al.), 
it is however by no means the only appropriate solution methodology for modelling an internal 
pressure signal (Forbes and Randall, 2013).  

For example the inverse operation, namely determining a pressure signal which comprises solely of 
blade vibration, and then including the effects of system rotation and flow, may be an alternative 
route. This was the solution route followed by Mengle, namely that the signal construction started in 
the rotating reference frame considering the effects of blade vibration on the fluid and was then 
moved into the stationary casing reference frame via a linear transform (Mengle, 1990).  

Further investigations can be performed to determine the equivalency of these two signal 
construction routes and associated models. In this work the reformulated model based on the work 
of Mengle, namely Model 1, required representing the Doppler shifting as a modulating effect in order 
to achieve an appropriate representation of the phenomenon in the frequency domain. And then only 
after simplification of that signal were the two analytical models found to be somewhat equivalent. 

In this investigation a Fourier series of the blade vibration free pressure signal was considered, and 
there-after blade vibration added on top of that signal. The Fourier series representation was found 
to be an expensive model to evaluate. This is attributed to the required number of individual sums in 
the series to produce the full time length signal. Alternative surrogate pressure models may however 
prove to be more appropriate, flexible or economical to evaluate. In terms of the literature reviewed, 
no alternatives to the Fourier series representation were found. If multiple pressure measurements 
are used then a radial basis function, or similar, representation may be built to provide an appropriate 
alternative. 

The internal pressure models were developed assuming quasi steady state rotor conditions (rotors 
operating at a nominally constant speed over the measurement duration). An appropriate means to 
represent a transient (run-up or run-down) pressure signal with blade vibration was not investigated. 
Transient conditions may prove to be a useful source of blade vibration information as the blade’s 
behaviour changes as the system moves through critical speeds. A means to model transient pressure 
conditions was not found during the literature reviewed. In the literature reviewed it was found that 
transient based pressure measurements were useful for blade vibration identification (Murray and 
Key, 2015; Ratz et al., 2013). 

Pressure measurements were only obtained in line with the rotor row of interest, further 
investigations as to what blade vibration information is available up- and down-wind of the vibration 
source during steady state measurement conditions may also prove useful. Effects such as axial 
attenuation of the blade vibration signal, in terms of modulating effects, may be obtained in an 
investigation of this description. Further, in practice rotor rows do not act in isolation and so the effect 
of nearby stators and rotors to the response of blades in the rotor row of interest must be investigated 
to gain a holistic signal representation. Questions such as: what is the effect of measuring one stage 
up or down from the rotor row of interest can be further investigated. 
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The blade forcing function model, namely a time domain based set of Gaussian shaped forcing stream 
pulses, was flexible enough to be tuned to the single jet excitation condition with reasonable results 
(in terms of the SG investigations). No other forcing function models, in either the time or frequency 
domain, were found in the literature. In the work of Forbes et al. it was briefly mentioned that 
representing the forcing function as a Fourier series allowed the forcing shape to take any form, an 
indication as to how that forcing shape was developed was not provided (Forbes and Randall, 2013; 
Forbes, 2010). The Gaussian time domain based representation was a first step towards modelling the 
forces acting on the turbomachine blades.  

The optimal shape of the pressure forcing pulses was not investigated, and a more appropriate time 
domain forcing shape may be required to fit the higher jet excitation conditions. For example a dual 
sigmoid based shape, such as that proposed for the time domain windowing technique, may provide 
a more flexible force shape distribution. This is because a larger number of tuning variables are 
available to adjust the forcing pulse shape. It is believed that a more appropriate forcing shape could 
be better tuned to the actual conditions.  Further, in this investigation it was assumed that the forcing 
shape from each upstream nozzle was equivalent, the repercussions of this assumption were however 
not investigated. 

One such means to investigate a more appropriate forcing shape would be to remove the blade 
transfer function from a direct blade response measurement, such that only the forcing component 
remains, and then to fit different time domain based forcing shapes to that signal (as was performed 
for the one forcing shape proposed in this investigation). 

The MDOF blade transfer function model, based on experimental modal analysis frequency response 
reconstruction techniques, proved effective for fitting the actual blade transfer function form. It is 
however more expensive to evaluate than either a single sinusoid or the combination of summing two 
sinusoids to create a MDOF solution form. It is however believed to be much less expensive to evaluate 
than a FE based physical model. The model proved useful for the purposes of this investigation, 
however an in depth comparison of this model with other blade behaviour models may prove useful 
not only for internal pressure based models, but BTT based methodologies as well.  

Recall that BTT based models generally use a simplistic sinusoid, or in certain formulations a pair of 
sinusoids, to describe the blade response behaviour. It was however shown that during forced 
excitation the blade responds at multiple frequencies, indicating that an appropriate MDOF model 
may better tune to the actual behaviour. This is why it is believed that a direct comparison of blade 
response models and their ability to be tuned to measurements would be useful.  

Further, a noteworthy advantage of using the experimental modal analysis frequency response 
reconstruction technique described in this investigation is that the tuning parameters can be 
evaluated with respect to actual physical systems. This is done in order to ascertain if they do indeed 
make physical sense. This is not possible when using simple sinusoids to describe the blade response. 

A single stationary observer was employed to obtain pressure measurements in this investigation. The 
advantages of rather using multiple stationary pressure observers to obtain a glimpse of the pressure 
distribution within the casing were not investigated. An investigation into what can be gained by using 
multiple casing pressure observers, in terms of both pressure modelling and signal processing, is 
therefore suggested. In this investigation stationary observers were placed in line with the center of 
the rotor row of interest, a multiple sensor investigation may provide insight into the actual optimal 
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sensor positioning. The repercussions of slight changes in the sensor position were not investigated in 
this study. 

The scope of this investigation was limited to analytical blade and pressure models. A numerical fluid-
structure interaction study was outside the scope of this investigation. A comparison between a fluid-
structure interaction study and the analytical model predictions would be useful to investigate how 
well the analytical models actually describe the fluid-blade interaction. This can be further 
supplemented by obtaining a pressure field measurement in the casing as opposed to a point 
measurement. 

The final recommended avenue of investigation, and potentially the most significant, is to attempt the 
full inverse problem. First by making use of a virtual problem to understand the dynamics and issues 
associated with solving the problem (how well- or ill-posed the problem is), and then on a full pressure 
signal with known blade behaviour characteristics.  

It was shown in the investigation that the objective function of the traditional error minimisation 
formulation is extremely expensive to evaluate. This is due to the required sampling rate and 
measurement length. Certain factors need to be accounted for when attempting the full problem: 

• The number of function evaluations required to solve the problem. It was shown that a large 
number (in the order of 200) was required to solve either of the reduced inverse problems 
based upon SG measurements. 

• Understanding that the number of design variables is much greater in the full inverse problem 
(the sum of design variables from both reduced blade vibration problems is still smaller than 
that of the full model). The number of iterations does not necessarily scale linearly with the 
number of design variables. This may result in many more iterations to solve the problem. 

• The pressure signal will contain a weaker blade vibration component than the SG signals as it 
is not a direct measure of the blade behaviour. 

Therefore, it may simply not be feasible to attempt the full problem using traditional means. An 
alternative would be to build a cheaper surrogate model based upon the proposed model and perform 
the majority of the optimisation iterations on that model. Another alternative would be to find a way 
to evaluate the sum in the full model in a more efficient manner. This is because the sum in the 
formulation is the bottleneck in evaluating the error required for minimisation. Or finally abandon 
traditional optimisation methodologies entirely and find a method better suited to expensive function 
evaluations (such as modelling the changes in pressure with radial basis functions). 

This study has shown that there are still many investigative avenues available with respect to internal 
casing pressure signal based methods. A combination of additional studies may therefore yield an 
effective alternative to the current intrusive and non-intrusive blade vibration measurement schemes. 
Further, a clearer understanding of the internal conditions would be useful in the development of all 
non-intrusive blade vibration measurement schemes by providing greater understanding of the true 
internal turbomachine conditions. 

Casing pressure signal based methods are still highly under-researched when compared to the amount 
of literature available on methods such as the BTT approaches.  An inclusive approach which combines 
the information gathered from multiple non-intrusive methodologies would provide the greatest 
confidence in an online condition monitoring solution for turbomachinery blading. 
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7.1. Appendix A – Derivations, Blade Models and Algorithms 
7.1.1. A1 - Derivation of Bessel Representation of Pressure Signal 
Let the pressure around blade ‘r’ be represented by the Fourier series in Equation [8.1.1] (Forbes, 
2010, p. 69): 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+Ω(𝑡𝑡)+𝛼𝛼𝑟𝑟+𝛾𝛾𝑖𝑖 +𝑥𝑥(𝑡𝑡)𝑟𝑟])
∞

𝑖𝑖=0

� [7.1.1] 

An equivalent form of Equation [7.1.1] with the blade vibration isolated is given in Equation [7.1.2]: 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+Ω(𝑡𝑡)+𝛼𝛼𝑟𝑟+𝛾𝛾𝑖𝑖 ]) ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝑥𝑥(𝑡𝑡)𝑟𝑟])
∞

𝑖𝑖=0

� [7.1.2] 

It is assumed that the blade responds at an individual discrete frequency (Forbes, 2010, p. 68). The 
form of the blade vibration can thus be chosen as Equation [7.1.3] (Forbes, 2010, p. 68): 

 𝑥𝑥(𝑡𝑡)𝑟𝑟 = 𝑋𝑋𝑘𝑘 ⋅ sin (𝑘𝑘 ⋅ Ω(𝑡𝑡) +  𝛾𝛾𝑘𝑘) [7.1.3] 

The sine term in Equation [7.1.3] can be converted into an Euler equivalent; this is given in Equation 
[7.1.4]: 

 𝑥𝑥(𝑡𝑡)𝑟𝑟 = 𝑋𝑋𝑘𝑘 ⋅
𝑒𝑒𝑗𝑗⋅(𝑘𝑘⋅Ω(𝑡𝑡)+ 𝛾𝛾𝑘𝑘) − 𝑒𝑒−𝑗𝑗⋅(𝑘𝑘⋅Ω(𝑡𝑡)+ 𝛾𝛾𝑘𝑘)

2 ⋅ 𝑗𝑗
 [7.1.4] 

Substitution of Equation [7.1.4] into the blade vibration portion of Equation [7.1.2] yields 
Equation [7.1.5]. 

 
𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝑥𝑥(𝑡𝑡)𝑟𝑟]) = 𝑒𝑒

𝑗𝑗⋅𝑖𝑖�𝑋𝑋𝑘𝑘⋅
𝑒𝑒𝑗𝑗⋅�𝑘𝑘⋅Ω(𝑡𝑡)+ 𝛾𝛾𝑘𝑘�−𝑒𝑒−𝑗𝑗⋅�𝑘𝑘⋅Ω(𝑡𝑡)+ 𝛾𝛾𝑘𝑘�

2⋅𝑗𝑗 �
= 𝑒𝑒

𝑖𝑖�𝑋𝑋𝑘𝑘⋅
𝑒𝑒𝑗𝑗⋅�𝑘𝑘⋅Ω(𝑡𝑡)+ 𝛾𝛾𝑘𝑘�−𝑒𝑒−𝑗𝑗⋅�𝑘𝑘⋅Ω(𝑡𝑡)+ 𝛾𝛾𝑘𝑘�

2 �
 [7.1.5] 

Noticing that the blade vibration portion of the Fourier series in Equation [7.1.2] has a Laurent series 
expansion equivalent in terms of Bessel functions it is possible to reformulate the blade vibration 
representation (Forbes, 2010, p. 69; Milton, 2011). The result of the reformulation is provided in 
Equation [7.1.8]. 

 𝑒𝑒
𝑥𝑥
2⋅�𝑧𝑧−

1
𝑧𝑧� = �𝑧𝑧𝑛𝑛 ⋅ 𝐽𝐽𝑛𝑛(𝑥𝑥)

∞

−∞

 [7.1.6] 

 𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑧𝑧 = 𝑒𝑒(𝑘𝑘⋅Ω(𝑡𝑡)+ 𝛾𝛾𝑘𝑘) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 = 𝑖𝑖 ⋅ 𝑋𝑋𝑘𝑘  [7.1.7] 

 ∴ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝑥𝑥(𝑡𝑡)𝑟𝑟]) = �𝐽𝐽𝑛𝑛(𝑋𝑋𝑘𝑘 ⋅ 𝑖𝑖) ⋅ 𝑒𝑒𝑛𝑛⋅𝑗𝑗⋅(𝑘𝑘⋅Ω(𝑡𝑡)+ 𝛾𝛾𝑘𝑘)
∞

−∞

 [7.1.8] 

Therefore the pressure distribution around blade ‘r’ with the blade vibration represented using a 
Bessel function equivalent is given in Equation [7.1.9]. 
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 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+Ω(𝑡𝑡)+𝛼𝛼𝑟𝑟+𝛾𝛾𝑖𝑖 ]) ⋅�𝐽𝐽𝑛𝑛(𝑋𝑋𝑘𝑘 ⋅ 𝑖𝑖) ⋅ 𝑒𝑒𝑛𝑛⋅𝑗𝑗⋅(𝑘𝑘⋅Ω(𝑡𝑡)+ 𝛾𝛾𝑘𝑘)
∞

−∞

∞

𝑖𝑖=0

� [7.1.9] 

The final form of the pressure distribution around blade ‘r’ is achieved by converting from the Euler 
representation to a trigonometric form, multiplying out all of the terms, taking the real of the result 
and rearranging. The final form is provided in Equation [7.1.10]. 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = � � 𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ 𝐽𝐽𝑛𝑛(𝑖𝑖 ⋅ 𝑋𝑋𝑘𝑘) ⋅ cos[𝑖𝑖 ⋅ (θ + Ω(t) + 𝛼𝛼𝑟𝑟 + 𝛾𝛾𝑖𝑖) + 𝑛𝑛 ⋅ (𝑘𝑘 ⋅ Ω(𝑡𝑡) + 𝛾𝛾𝑘𝑘)]
∞

𝑛𝑛=−∞ 

∞

𝑖𝑖=0

 [7.1.10] 

7.1.2. A2 – Reformulation of Internal Pressure Signal Equation 
A reformulation of the pressure equation derived by Forbes and Randall into a more familiar form is 
possible through simple trigonometric manipulation. The original equation presented by Forbes and 
Randall in Equation [1.3.41] is presented below (Forbes and Randall, 2013): 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+Ω(𝑡𝑡)+𝛼𝛼𝑟𝑟+𝛾𝛾𝑖𝑖]) ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝑥𝑥(𝑡𝑡)𝑟𝑟])
∞

𝑖𝑖=0

� [7.1.11] 

It was noticed that specifying the blade vibration in terms of translation is erroneous as phase 
modulation must be specified in terms of a change in phase angle. It is therefore chosen that the blade 
vibration be specified in terms of angular displacement of the blade tip and not pure translational 
displacement. The blade tip vibration, in terms of angular displacement, is given below: 

 𝑃𝑃𝑟𝑟(𝑡𝑡) = 𝑅𝑅𝑅𝑅 ��𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜃𝜃+Ω(𝑡𝑡)+𝛼𝛼𝑟𝑟+𝛾𝛾𝑖𝑖]) ⋅ 𝑒𝑒(𝑗𝑗⋅𝑖𝑖⋅[𝜓𝜓(𝑡𝑡)𝑟𝑟])
∞

𝑖𝑖=0

� [7.1.12] 

The symbol gamma, 𝜓𝜓, is chosen to represent the blade vibration. The angular displacement of the 
blade tip can however be written in terms of the tip’s translational displacement: 

 𝜓𝜓(𝑡𝑡)𝑟𝑟 = 𝑥𝑥(𝑡𝑡)𝑟𝑟/𝐿𝐿 [7.1.13] 

Where L is the length of the blade.  

The first step in the reformulation is a substitution of the exponential multipliers: 

 𝐿𝐿𝐿𝐿𝐿𝐿 𝑋𝑋 =  𝑖𝑖 ⋅ [𝜃𝜃 + Ω(𝑡𝑡) + 𝛼𝛼𝑟𝑟 + 𝛾𝛾𝑖𝑖] 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌 =  𝑖𝑖 ⋅ [𝜓𝜓(𝑡𝑡)𝑟𝑟] [7.1.14] 

Through substitution of X and Y and by converting from Euler’s representation of the Fourier series to 
the equivalent trigonometric form we obtain: 

 𝑃𝑃𝑟𝑟(𝑡𝑡) =  𝑅𝑅𝑅𝑅 ��𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ [cos(𝑋𝑋) + 𝑗𝑗 ⋅ sin(𝑋𝑋)] ⋅ [cos(𝑌𝑌) + 𝑗𝑗 ⋅ sin(𝑌𝑌)]
∞

𝑖𝑖=0

� [7.1.15] 

Expanding the above relation reveals: 
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 𝑃𝑃𝑟𝑟(𝑡𝑡) =  𝑅𝑅𝑅𝑅 ��𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ [cos(𝑋𝑋) ⋅ cos(𝑌𝑌) + 𝑗𝑗 ⋅ (cos(𝑋𝑋) ⋅ sin(𝑌𝑌) + sin(𝑋𝑋) ⋅ cos(𝑌𝑌)) − sin(𝑋𝑋) ⋅ sin (𝑌𝑌)]
∞

𝑖𝑖=0

� [7.1.16] 

If only the real part of the equation is considered we are left with: 

 𝑃𝑃𝑟𝑟(𝑡𝑡) =  �𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ [cos(𝑋𝑋) ⋅ cos(𝑌𝑌) − sin(𝑋𝑋) ⋅ sin (𝑌𝑌)]
∞

𝑖𝑖=0

 [7.1.17] 

Recalling the following trigonometric relation: 

 cos(𝑋𝑋 + 𝑌𝑌) =  cos(𝑋𝑋) ⋅ cos(𝑌𝑌) − sin(𝑋𝑋) ⋅ sin (𝑌𝑌) [7.1.18] 

We obtain: 

 𝑃𝑃𝑟𝑟(𝑡𝑡) =  �𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ cos (𝑋𝑋 + 𝑌𝑌)
∞

𝑖𝑖=0

 [7.1.19] 

Re-substitution the exponential multipliers reveals: 

 𝑃𝑃𝑟𝑟(𝑡𝑡) =  �𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ cos (𝑖𝑖 ⋅ [𝜃𝜃 + Ω(𝑡𝑡) + 𝛼𝛼𝑟𝑟 + 𝛾𝛾𝑖𝑖]  + 𝑖𝑖 ⋅ [𝜓𝜓(𝑡𝑡)𝑟𝑟])
∞

𝑖𝑖=0

 [7.1.20] 

The terms can finally be grouped: 

 𝑃𝑃𝑟𝑟(𝑡𝑡) =  �𝐴𝐴𝑖𝑖 ⋅ 𝑃𝑃 ⋅ cos (𝑖𝑖 ⋅ [𝜃𝜃 + Ω(𝑡𝑡) + 𝛼𝛼𝑟𝑟 + 𝛾𝛾𝑖𝑖 + 𝜓𝜓(𝑡𝑡)𝑟𝑟] )
∞

𝑖𝑖=0

 [7.1.21] 

It is clear from the result that all Fourier terms of the pressure signal around a blade are phase 
modulated by the vibration of the blade. 

7.1.3. A3 – Analytical Blade and Assembly Models 
Numerical models provide a means to explore the relationship between excitation phenomena and 
the physical response of a blade or assembly. These models are based upon the underlying equations 
of motion (EOM) and are constructed and investigated using dynamic FE methods. The basis EOM, 
with viscous damping, is presented in Equation [7.1.22]. 

 [𝑀𝑀]{𝑥̈𝑥} + [𝐶𝐶]{𝑥̇𝑥} + [𝐾𝐾]{𝑥𝑥} = {𝑓𝑓(𝑡𝑡)} [7.1.22] 

Various effects may be explored using numerical models such as the influence of physical flaws in the 
blades, synchronous and asynchronous excitation as well as inter-blade effects resulting from 
coupling. The numerical models may also form the basis for response identification algorithms. 

Three physical blade models are considered for this purpose; namely the Euler-Bernoulli beam model, 
the lumped mass model and the FE model. 
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7.1.3.1. Euler-Bernoulli Beam Model 
The simplest of the models considered is the Euler-Bernoulli (EB) beam approximation of a single 
turbine blade. A ten degree of freedom (DOF) Euler-Bernoulli beam model, with 2DOF permitted at 
each node, is illustrated in Figure 7.1-1. The first two DOF are fixed at the shaft attachment point. 

 

Figure 7.1-1 2DOF Euler-Bernoulli beam model 

The model’s ability to capture complex mode shapes accurately is governed by the chosen number of 
DOF per node as well as the number of elements; a single element consists of two nodes attached to 
one another at a prescribed distance apart. Three translational and three rotational DOF are possible 
at each node; the translational DOF are alighted with Cartesian axes positioned at each node and 
rotational DOF about those Cartesian axes. 

The blade vibration as a function of time can be obtained once the global mass, stiffness and damping 
matrices have been composed from the elemental mass and stiffness matrices. The stator passing 
excitation may be modelled as a periodic impulse excitation acting on an individual or group of 
translational DOF; the time response of the entire blade is obtained through time based integration 
of the EOM; one such approach is the Runge-Kutta integration scheme.  

The process described thus far will provide an individual blade’s response relative to a stationary 
attachment point. Various rotating scenarios can be modelled by fixing the stationary attachment 
point of the blade to a point representing the surface of the shaft and then rotating the surface point 
about the centre of the shaft along with the vibrating beam; this is most easily achieved by 
transforming the blade’s time based displacement, which is in a Cartesian coordinate system, to a 
cylindrical coordinate system. 

Rotating scenarios of interest may include rotation at a constant angular velocity, acceleration or 
deceleration of the rotor as well as the effects of torsional vibration of the attachment shaft. It is 
important to note that these effects must be included when formulating the stator passing excitation; 
torsional vibration will provide excitation at the blade attachment point and so special consideration 
must be paid in order to model this accurately.  

Multiple blades can be modelled by first simulating their individual time responses using a Runge-
Kutta integration approach and then attaching them to the rotating shaft at prescribed angular 
displacements. In this way blade differences can be introduced and the time response of the full rotor 
obtained.  

The inter-blade coupling effects of the entire assembly cannot be modelled with this approach. Inter-
blade coupling effects refers to the response of the entire assembly as an interconnected structure 
where the vibration of one component may affect the response of another. In a weakly coupled 
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system the behaviour of one blade can be seen to produce negligible influence on another blade 
attached to the same structure. 

There are a few limiting assumptions associated with the use of an Euler-Bernoulli based approach, 
these assumptions are (Reddy, 2010): 

• Sections which are plane before deformation remain plane after deformation 
• Plane sections which rotate about the axis of bending remain perpendicular to the centroidal 

axis (axis running along the centroid of the beam) 
• Plane sections retain their geometric dimensions during deformation (no Poisson effect) 

One major result of these assumptions is that the only non-zero strain is along the longitudinal axis of 
the beam (Reddy, 2010). Errors may also be incurred when twisting of the blade is present; such is the 
case when the torsional modes of the EB beam are excited. 

The EB approach provides a simple means to model the vibration response of a turbine blade in a 
weakly coupled system; it is however incapable of modelling inter-blade effects nor the effect of 
complex blade geometries on the actual response. The lumped mass approach is better suited to 
investigations where coupling is present and is discussed in the succeeding section. 

7.1.3.1.1. Euler-Bernoulli Beam Formulation 
An Euler-Bernoulli beam element consists of two nodes attached to one another with prescribed mass 
and stiffness properties associated to the DOF at each node. A total of 6 DOF are possible at each 
node; namely three translational and three rotational frequencies alighted by local Cartesian 
coordinate axes placed at each node.  

It may suffice to investigate vibration in an individual plane by restricting the number of DOF per node 
to the DOF associated with the in plane motion; such is the case if bending about the weak axis is of 
interest. A scenario capable of capturing the first two bending modes is given in Figure 7.1-1 where 
vertical translation and in plane rotation are considered; in plane axial translation along the x-axis has 
been neglected. A significant decrease in computation time can be achieved by limiting the number 
of DOF per node when the model is used in a dynamic investigation; however cognisance of lost modes 
and mode shapes and their influence must be considered when applying these simplifications.  

The consistent elemental mass and stiffness matrix for the 2DOF per node Euler-Bernoulli beam model 
is presented below. 

 𝑘𝑘 = �
𝐸𝐸𝐸𝐸
𝐿𝐿3
� ⋅ �

12 6𝐿𝐿 −12 6𝐿𝐿
4𝐿𝐿2 −6𝐿𝐿 2𝐿𝐿2

12 −6𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 4𝐿𝐿2

� [7.1.23] 

 𝑚𝑚 = �
𝜌𝜌𝜌𝜌𝜌𝜌
420

� ⋅ �

156 22𝐿𝐿 54 −13𝐿𝐿
4𝐿𝐿2 13𝐿𝐿 −3𝐿𝐿2

156 −22𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 4𝐿𝐿2

� [7.1.24] 

The individual mass and stiffness matrices are combined in a simple FE process to produce a global 
mass and stiffness matrix. It is important to note that the only boundary condition is the attachment 
of the beam to the rotor; this is accomplished by partitioning the global mass and stiffness matrices 
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to not include the DOF at the attachment point. The Euler-Bernoulli approach allows an individual 
blade to be discretised to any desired resolution and thus any desired total number of DOFs. 

From the global mass and stiffness matrix appropriate damping matrices can be formulated. One such 
formulation is Rayleigh damping (Bathe, 1996).  

 [𝐶𝐶] = 𝛼𝛼[𝑀𝑀] + 𝛽𝛽[𝐾𝐾] [7.1.25] 

If the damping of two modes is known then the constants α and β can be determined directly by 
solving a set of simultaneous equations (Heyns, 2009). 

 𝜙𝜙𝑖𝑖𝑇𝑇[𝐶𝐶]𝜙𝜙𝑗𝑗 = 2 ⋅ 𝜔𝜔𝑖𝑖 ⋅ 𝜉𝜉𝑖𝑖 ⋅ 𝛿𝛿𝑖𝑖  [7.1.26] 

 ∴ 𝜙𝜙𝑖𝑖𝑇𝑇[𝛼𝛼[𝑀𝑀] + 𝛽𝛽[𝐾𝐾]]𝜙𝜙𝑗𝑗 = 2 ⋅ 𝜔𝜔𝑖𝑖 ⋅ 𝜉𝜉𝑖𝑖 ⋅ 𝛿𝛿𝑖𝑖  [7.1.27] 

 𝜙𝜙𝑖𝑖𝑇𝑇[𝑀𝑀]𝜙𝜙𝑗𝑗 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜙𝜙𝑖𝑖𝑇𝑇[𝐾𝐾]𝜙𝜙𝑗𝑗 = 𝜔𝜔𝑖𝑖
2 [7.1.28] 

 ∴ 𝛼𝛼 + 𝛽𝛽 ⋅ 𝜔𝜔𝑖𝑖
2 = 2 ⋅ 𝜔𝜔𝑖𝑖 ⋅ 𝜉𝜉𝑖𝑖  [7.1.29] 

For the case where more than two modes’ damping is known (or assumed) a least squares or similar 
curve fitting approach can be used. Once α and β have been determined it is possible to find the 
damping ratios associated with all of the modes (Bathe, 1996). 

 𝜉𝜉𝑖𝑖 =
𝛼𝛼 + 𝛽𝛽 ⋅ 𝜔𝜔𝑖𝑖

2

2 ⋅ 𝜔𝜔𝑖𝑖
 [7.1.30] 

The major advantage of using Rayleigh damping is that the individual mode damping parameters for 
the first two modes can be obtained by means of a simple modal test and then used to obtain the 
parameters 𝛼𝛼 and 𝛽𝛽. 

Depending on the material characteristics it may be necessary to use hysteretic damping; hysteretic 
damping can however not be evaluated in the time domain and thus a viscous damping approximation 
of hysteretic damping can be used (Heyns, 2009). 

7.1.3.2. Lumped Mass Model 
An illustration of a lumped mass (LM) approach, consisting of four blades attached to a common shaft, 
is provided in Figure 7.1-2. Each blade is represented by a single mass; adjacent blades are coupled to 
one another with individual damping and stiffness ratios and all masses are coupled to ground (the 
common shaft) similarly with individual damping and stiffness ratios  (Carrington et al., 2001; Gallego-
Garrido et al., 2007b). 
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Figure 7.1-2 Lumped mass model 

The normalised mass, stiffness and damping matrices associated with this configuration are presented 
in “7.1.3.2.1 Lumped Mass Model Matrices”. 

The response of the system can be obtained using the same formulation of the basis equations of 
motion (EOM) given in Equation [7.1.22]. The response of the system to synchronous excitation at a 
particular EO can be determined through Runge-Kutta integration of the EOM; a suggested sinusoidal 
forcing function is presented in Equation [7.1.31] (Carrington et al., 2001). 

 𝑓𝑓𝑖𝑖(𝑡𝑡) = 𝐹𝐹0𝑖𝑖 ⋅ sin(𝐸𝐸𝐸𝐸 ⋅ 𝛺𝛺 ⋅ 𝑡𝑡 + (2𝜋𝜋 ⋅ 𝐸𝐸𝐸𝐸 ⋅ 𝑖𝑖) 𝐵𝐵⁄ ) [7.1.31] 

The index ‘i’ refers to the ith blade, F0i is the amplitude of the force applied to the ith blade, Ω is the 
angular speed of the rotor, B is the total number of blades (Carrington et al., 2001). 

The LM approach can successfully investigate coupling effects under a variety of different physical 
configurations. The simplicity of the model allows fast computation of these configurations. The 
disadvantage to this approach is found in the reduction of the blade geometry and physical properties 
to individual mass, stiffness and damping systems which cannot capture higher order mode shapes or 
the effect of complex blade geometries. 

7.1.3.2.1. Lumped Mass Model Matrices 
The normalised global mass, stiffness and damping matrices proposed by Carrington et al. for the 
configuration given in section “7.1.3.2 Lumped Mass Model” are presented below (Carrington et al., 
2001). 

 𝑴𝑴 =
1
𝑚𝑚1

⋅ �
1
0
⋮
0

0
𝑚𝑚2
⋮
0

⋯
⋯
⋱
0

0
0
⋮
𝑚𝑚𝐵𝐵

� [7.1.32] 
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 𝑲𝑲 =
𝜔𝜔𝑛𝑛1
2

𝑘𝑘1
⋅

⎣
⎢
⎢
⎢
⎡
𝑘𝑘1 + 𝑘𝑘12 + 𝐾𝐾𝐵𝐵1 −𝑘𝑘12 0 ⋯ ⋯ −𝑘𝑘1𝐵𝐵

−𝑘𝑘12 𝑘𝑘2 + 𝐾𝐾12 + 𝑘𝑘23 −𝑘𝑘23 0 ⋯ 0
0 −𝑘𝑘23 𝑘𝑘3 + 𝑘𝑘23 + 𝑘𝑘3𝐵𝐵 −𝑘𝑘3𝐵𝐵 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

−𝑘𝑘1𝐵𝐵 0 ⋯ ⋯ −𝑘𝑘3𝐵𝐵 𝑘𝑘𝐵𝐵 + 𝑘𝑘3𝐵𝐵 + 𝑘𝑘𝐵𝐵1⎦
⎥
⎥
⎥
⎤

 [7.1.33] 

 

𝑪𝑪

=
2 ⋅ 𝜁𝜁1 ⋅ 𝜔𝜔𝑛𝑛1

𝑐𝑐1
⋅

⎣
⎢
⎢
⎢
⎡
𝑐𝑐1 + 𝑐𝑐12 + 𝑐𝑐𝐵𝐵1 −𝑐𝑐12 0 ⋯ ⋯ −𝑐𝑐1𝐵𝐵

−𝑐𝑐12 𝑐𝑐2 + 𝑐𝑐12 + 𝑐𝑐23 −𝑐𝑐23 0 ⋯ 0
0 −𝑐𝑐23 𝑐𝑐3 + 𝑐𝑐23 + 𝑐𝑐3𝐵𝐵 −𝑐𝑐3𝐵𝐵 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

−𝑐𝑐1𝐵𝐵 0 ⋯ ⋯ −𝑐𝑐3𝐵𝐵 𝑐𝑐𝑏𝑏 + 𝑐𝑐3𝐵𝐵 + 𝑐𝑐𝐵𝐵1⎦
⎥
⎥
⎥
⎤

 [7.1.34] 

The parameter B is the blade index. 

7.1.3.3. FE Model 
The FE element approach suffers none of the drawbacks associated with the EB or LM approaches. 
Complex blade geometries, blade materials and geometric differences, and assembly configurations 
can easily be modelled and their response to a variety of excitation phenomena found. The influence 
of rotary effects such as centrifugal stiffening can be included in the investigation to provide a 
simulation more closely correlated to the actual physical problem.  

Computer aided designs (CAD) of the actual rotor assembly can be directly imported into many of the 
available packages; model updating can be performed once physical experiments of the actual system 
have been executed. 

The fluid-structure interaction can be modelled through additional computational fluid dynamics 
(CFD) investigations; this will add a more realistic dimension to the boundary conditions of the 
problem. 

Unlike the EB or LM approaches a full dynamic time based FE or CFD approach is relatively expensive 
to run. The increased accuracy in the simulated response may be negligible when inter-blade coupling 
is weak and the blade geometry uncomplicated. As was previously found higher order resonances 
resulting in complex mode shapes are not of interest and so an EB approach may more than suffice. 

7.1.4. A4 – Shaft Encoder Geometry Compensation Algorithm 
An algorithm which compensates for encoder geometry variations, developed by Resor et al., is 
presented in this section (Resor et al., 2005). The algorithm is applicable for measurements taken at 
nominally constant shaft speeds.  

Encoder geometry variations lead to a non-uniform time sampling scenario which may contribute 
significant errors and bias when measurements are used within algorithms which assume a uniform 
time sampling situation (such as the discrete Fourier transform) (Resor et al., 2005). 

Determine the discrete zero crossing time interval from the sampling rate (Resor et al., 2005). 

 ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 [7.1.35] 

Generate a zero crossing time vector for each 𝑛𝑛𝑡𝑡ℎ crossing (Resor et al., 2005). 
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 𝑡𝑡(𝑛𝑛) = 𝑛𝑛 ⋅ ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑛𝑛

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 [7.1.36] 

Calculate the time required for each revolution ‘j’ (Resor et al., 2005). 

 𝑇𝑇𝑗𝑗 = 𝑡𝑡�(𝑗𝑗 + 1) ⋅ 𝑁𝑁� − 𝑡𝑡(𝑗𝑗 ⋅ 𝑁𝑁) [7.1.37] 

The parameter 𝑗𝑗 is the revolution index starting at 1 and 𝑁𝑁 are the number of encoder segments per 
revolution. 

Assuming that the shaft speed is constant over a single revolution, the percentage of time that each 
encoder segment ‘n’ occupies for each revolution ‘j’ can be determined (Resor et al., 2005): 

 𝑟𝑟𝑗𝑗(𝑛𝑛) =
𝑡𝑡�(𝑗𝑗 − 1) ⋅ 𝑁𝑁 + 𝑛𝑛 + 1� − 𝑡𝑡�(𝑗𝑗 − 1) ⋅ 𝑁𝑁 + 𝑛𝑛�

𝑇𝑇𝑗𝑗
, 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁. [7.1.38] 

By averaging over all revolutions, the average percentage of time that each encoder segment 
occupies can be resolved. The effects of shaft torsional vibration are averaged out by this process 
because it is assumed that the torsional vibration is independent of encoder passage times (i.e. 
torsional shaft vibration is asynchronous to shaft rotation) (Resor et al., 2005). 

 𝑟𝑟(𝑛𝑛) =
1
𝑀𝑀
⋅�𝑟𝑟𝑗𝑗(𝑛𝑛), 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁
𝑀𝑀

𝑗𝑗=1

 [7.1.39] 

The parameter 𝑀𝑀 refers to the number of revolutions considered. 

The average segment ratios can then be used to correct for variations in the encoder geometry 
(Resor et al., 2005).  

A time difference vector is created using the true encoder zero crossing times and a reference signal 
assuming an ideal uniform encoder geometry (Resor et al., 2005). 

 ∆𝑡𝑡(𝑛𝑛) = 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛)−
𝑛𝑛

𝑁𝑁 ⋅ 𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎
, 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁 ⋅ 𝐵𝐵 [7.1.40] 

The shaft speed is assumed constant over each individual revolution. A vector containing the shaft 
speeds for each revolution, in hertz, is presented below (Resor et al., 2005). 

 𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑗𝑗) =
1

𝑡𝑡(𝑁𝑁 ⋅ 𝑗𝑗 + 1) − 𝑡𝑡(𝑁𝑁 ⋅ 𝑗𝑗)
 [7.1.41] 

The average shaft speed can be determined by taking the mean of the shaft speeds over all 
revolutions ‘B’ (Resor et al., 2005). 

 𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑗𝑗
⋅�𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑗𝑗)
𝐵𝐵

𝑗𝑗=1

 [7.1.42] 

This average shaft speed can be substituted into Equation [7.1.40] (Resor et al., 2005). 
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 ∆𝑡𝑡(𝑛𝑛) = 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛) −
𝑛𝑛

𝑁𝑁 ⋅ 𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
, 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁 ⋅ 𝐵𝐵 [7.1.43] 

Equation [7.1.43] assumes equal encoder segment widths. The previously computed ratios can now 
be used to correct the time difference vector (Resor et al., 2005). 

 ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛) = ∆𝑡𝑡(𝑛𝑛) ⋅
1 𝑁𝑁⁄
𝑟𝑟(𝑛𝑛) [7.1.44] 

Finally the time corrected vector can be used to calculate the shaft vibration (Resor et al., 2005). 

 𝜃𝜃(𝑛𝑛) = ∆𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛) ⋅ 𝑓𝑓𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ 360  (𝑑𝑑𝑑𝑑𝑑𝑑) [7.1.45] 
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7.2. Appendix B – Additional BTT Literature 
7.2.1. B1 – General BTT Theory 
7.2.1.1. Synchronous vs Asynchronous BTT 
BTT techniques originate from the 1960s where asynchronous vibration of rotor blades was 
investigated (Heath and Imregun, 1996). Asynchronous response occurs at frequencies which are not 
integer multiples of rotational speed; it generally occurs due to aerodynamic instabilities such as 
flutter, rotating stall and acoustic resonance (Zielinski and Ziller, 1997).  Due to the fact that the 
response resonant frequency and phase of an asynchronously vibrating blade is arbitrary with respect 
to the angular velocity, a single measurement point can be utilised with classic sampling and sub-
sampling techniques to illicit response information (Heath and Imregun, 1996). This is because the 
single measurement point is exposed to the full range of response amplitudes given a long enough 
measurement period. 

The question of synchronous response measurement is a more complex issue to solve. The 
synchronous (also known as engine-ordered or integral order) response phenomenon is characterised 
by vibration at frequencies which are at integer multiples of the engine rotation speed. The response 
vibration can be due to mechanical effects (residual unbalance of rotors and non-concentric casings) 
or aerodynamic effects (irregular pressure distributions due to engine intake geometry or upstream 
stator blades) (Zielinski and Ziller, 1997).  

The problem with synchronous response is that the phase remains constant with respect to an 
arbitrarily fixed datum (Heath and Imregun, 1996); this means that a single stationary measurement 
point will always encounter the same response instant along the dynamic behaviour response cycle 
of the vibrating blade. A single parameter technique was introduced to handle this problem in 1970 
and became the standard method up until a more advanced two parameter plot method was 
introduced in 1996 (Heath and Imregun, 1996).  An example of four BTT probes capturing synchronous 
data points for a non-accelerating or decelerating response is illustrated in Figure 7.2-1, it is clear that 
each probe captures the same response amplitude each time the true signal is sampled. 

 

Figure 7.2-1 Synchronous BTT sampling 

7.2.1.2. Direct vs Indirect BTT 
The early single parameter and two parameter plot methods required that data be collected across 
the entire resonance region of the blades; this is done by sweeping the rotational speed of the rotor 
across all natural frequencies of interest (Carrington et al., 2001). This procedure is followed such that 
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the measurement points are exposed to a full range of excitation amplitudes at varying frequencies; 
this is similar to the exposure of a sensor to an asynchronous response. These methods have been 
termed indirect approaches and are capable of supplying both the response amplitude of a blade and 
the response vibrational frequency. A typical single parameter BTT system is presented in Figure 7.2-2. 

 

Figure 7.2-2 Indirect single parameter BTT experimental setup  (Heath and Imregun, 1996) 

Integral to the direct methods is the probe spacing on the resonance (PSR) concept. It is a measure of 
the percentage of the response waveform measured during one oscillatory cycle measured by the 
probes (Gallego-Garrido et al., 2007b). If the PSR is low then the response measurements become 
undersampled which results in a loss of accuracy. The PSR is directly influenced by the turbine’s 
angular velocity; it was found that the AR methods perform increasingly poorly as the angular velocity 
increases as this causes the PSR to decrease (Grant, 2004). The PSR concept is presented in Figure 
7.2-3; the true response is sinusoidal and two data sets with differing PSR values are used to fit the 
data. 

 

Figure 7.2-3 Probe spacing on resonance  (Gallego-Garrido et al., 2007b) 
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In light of the synchronous sampling example, presented in Figure 7.2-1 it becomes clear how useful 
a high PSR can be for curve fitting a model to the actual response (in this case fitting a sinusoid). 

The direct measurement approaches are more suitable for online condition monitoring schemes when 
compared to the indirect methods. Indirect methods can only be applied when a rotor is being swept 
through a range of angular speeds and so does not lend itself to monitoring a rotor operating at steady 
state conditions. This however does not completely disqualify the indirect methods from any form of 
usefulness; they may be applied during run up or shut down of a rotor using the same experimental 
equipment as an online direct system; they can provide crucial vibration information during these 
critical transient events. 

7.2.2. B2 – Autoregressive Methods 
7.2.2.1. General Theory 
One of the simplest of the curve fitting techniques applied to the direct BTT approach is the auto-
regressive (AR) method. Due to its popularity, and the fact that it forms the basis for some of the most 
advanced current BTT methods, the basis theory will be presented here.  

The physics of the problem is assumed to adhere to the following equation of motion (EOM) in the 
form of an ordinary differential equation (ODE) (Carrington et al., 2001): 

 𝑥̈𝑥 + 𝜔𝜔𝑛𝑛2 ⋅ 𝑥𝑥 = 0 [7.2.1] 

The assumed blade tip response solution is a single degree of freedom (SDOF) sinusoidal response 
where the forcing frequency is assumed to be the tuned synchronous response at resonance (𝜔𝜔𝑓𝑓 =
 𝜔𝜔𝑛𝑛) (Carrington et al., 2001).  

 𝑥𝑥 = 𝐴𝐴𝑛𝑛 cos(𝜔𝜔𝑛𝑛𝑡𝑡 + 𝜙𝜙𝑛𝑛) + 𝐷𝐷 [7.2.2] 

An alternative, yet equivalent form, of the previous equation is presented here (Carrington et al., 
2001): 

 𝑥𝑥𝑗𝑗 = 𝐴̂𝐴 ⋅ cos�𝜔𝜔𝑛𝑛 ⋅ 𝑡𝑡𝑗𝑗� + 𝐵𝐵� ⋅ sin�𝜔𝜔𝑛𝑛 ⋅ 𝑡𝑡𝑗𝑗� + 𝐷𝐷 [7.2.3] 

Where the index j denotes the specific probe from which a measurement is taken.  

Let the ODE be discretised about time 𝑡𝑡𝑗𝑗 (two possibilities exist, namely ±∆𝑡𝑡) using a second order 
Taylor expansions of the tip response x (Carrington et al., 2001): 

 
𝑥𝑥�𝑡𝑡𝑗𝑗 + ∆𝑡𝑡� = 𝑥𝑥�𝑡𝑡𝑗𝑗� + (∆𝑡𝑡 ⋅ 𝑥̇𝑥)𝑡𝑡𝑗𝑗 + �

∆𝑡𝑡2

2
⋅ 𝑥̈𝑥�

𝑡𝑡𝑗𝑗

 

𝑥𝑥�𝑡𝑡𝑗𝑗 − ∆𝑡𝑡� = 𝑥𝑥�𝑡𝑡𝑗𝑗� − (∆𝑡𝑡 ⋅ 𝑥̇𝑥)𝑡𝑡𝑗𝑗 + �
∆𝑡𝑡2

2
⋅ 𝑥̈𝑥�

𝑡𝑡𝑗𝑗

 

[7.2.4] 

If the expressions in Equation [7.2.4] are summed and the acceleration term made the subject of the 
formula we obtain (Carrington et al., 2001): 

 𝑥̈𝑥 =
𝑥𝑥�𝑡𝑡𝑗𝑗 + ∆𝑡𝑡� − 2𝑥𝑥�𝑡𝑡𝑗𝑗� + 𝑥𝑥�𝑡𝑡𝑗𝑗 − ∆𝑡𝑡�

∆𝑡𝑡2
=
𝑥𝑥𝑗𝑗+1 − 2𝑥𝑥𝑗𝑗 + 𝑥𝑥𝑗𝑗−1

∆𝑡𝑡2
 [7.2.5] 
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The time steps, ∆𝑡𝑡, between the three measurement points (𝑥𝑥𝑡𝑡+1,𝑥𝑥𝑡𝑡  and 𝑥𝑥𝑡𝑡−1) must be constant in 
order for the expression in Equation [7.2.5] to hold (Carrington et al., 2001). This is important to note 
as it puts a physical constraint on the actual BTT physical setup; for the AR methods to work the probes 
have to be placed equidistant apart such that ∆𝑡𝑡 remains constant.  

It is now possible to substitute the Taylor approximations back into the ODE and rearrange the 
problem into the standard AR format  (Carrington et al., 2001): 

 𝑥̈𝑥 + 𝜔𝜔𝑛𝑛2 ⋅ 𝑥𝑥 = 0 [7.2.6] 

 
𝑥𝑥𝑗𝑗+1 − 2𝑥𝑥𝑗𝑗 + 𝑥𝑥𝑗𝑗−1

∆𝑡𝑡2
+ 𝜔𝜔𝑛𝑛2 ⋅ 𝑥𝑥𝑗𝑗 = 0 [7.2.7] 

 𝑥𝑥𝑗𝑗+1 − 2𝑥𝑥𝑗𝑗 + 𝑥𝑥𝑗𝑗−1 + 𝜔𝜔𝑛𝑛2 ⋅ 𝑥𝑥𝑗𝑗 ⋅ ∆𝑡𝑡2 = 0 [7.2.8] 

 𝑥𝑥𝑗𝑗+1 + 𝑥𝑥𝑗𝑗(𝜔𝜔𝑛𝑛2 ⋅ ∆𝑡𝑡2 − 2) + 𝑥𝑥𝑗𝑗−1 = 0 [7.2.9] 

 𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎1 = 𝜔𝜔𝑛𝑛2 ⋅ ∆𝑡𝑡2 − 2,𝑎𝑎2 = 1,  
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜  𝑥𝑥𝑗𝑗 = 𝑥̅𝑥𝑗𝑗 + 𝐷𝐷 

𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏 (𝑗𝑗 − 1)𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

[7.2.10] 

 �𝑥̅𝑥𝑗𝑗 + 𝐷𝐷�+ 𝑎𝑎1 ⋅ (𝑥̅𝑥𝑗𝑗−1 + 𝐷𝐷) +  𝑎𝑎2 ⋅ (𝑥̅𝑥𝑗𝑗−2 + 𝐷𝐷) = 0 [7.2.11] 

 𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥𝚥𝚥� = 𝑥𝑥𝑗𝑗 [7.2.12] 

 𝑥𝑥𝑗𝑗 + 𝑎𝑎1 ⋅ 𝑥𝑥𝑗𝑗−1 + 𝑎𝑎2 ⋅ 𝑥𝑥𝑗𝑗−2 = 𝐷𝐷(1 + 𝑎𝑎1 + 𝑎𝑎2) [7.2.13] 

 𝑥𝑥𝑗𝑗 + 𝑎𝑎1 ⋅ 𝑥𝑥𝑗𝑗−1 +  1 ⋅ 𝑥𝑥𝑗𝑗−2 = 𝐷𝐷(2 + 𝑎𝑎1) [7.2.14] 

Equation [7.2.13] is in the standard AR problem format. Consider the form of the equation with j = 3: 

  𝑥𝑥3 + 𝑎𝑎1 ⋅ 𝑥𝑥2 +  1 ⋅ 𝑥𝑥1 = 𝐷𝐷(2 + 𝑎𝑎1) [7.2.15] 

 [𝑥𝑥3 + 𝑥𝑥1] = [𝑥𝑥2 1] ⋅ �
−𝑎𝑎1

𝐷𝐷(2 + 𝑎𝑎1)� [7.2.16] 

If Equation [7.2.16] is expanded with a dataset of N terms and we solve using the least squares 
approach we obtain: 

 
�

𝑥𝑥3 + 𝑥𝑥1
𝑥𝑥4 + 𝑥𝑥2

⋮
𝑥𝑥𝑁𝑁 + 𝑥𝑥𝑁𝑁−2

� = �

𝑥𝑥2
𝑥𝑥3
⋮
𝑥𝑥𝑁𝑁

1
1
⋮
1

� ⋅ �
−𝑎𝑎1

𝐷𝐷(2 + 𝑎𝑎1)� 
[7.2.17] 

 
𝒃𝒃 = 𝑿𝑿𝑿𝑿 [7.2.18] 

 
∴ 𝒂𝒂 = (𝑿𝑿𝑇𝑇𝑿𝑿)−1𝑿𝑿𝑇𝑇𝒃𝒃 [7.2.19] 

Therefore for a single revolution with N probes the AR parameter a1 and the offset D can be 
determined. From the AR parameter a1 the natural frequency of vibration can be directly calculated 
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(𝑎𝑎1 = 𝜔𝜔𝑛𝑛2 ); the amplitude and phase of the solution form can then be determined by solving a 
simultaneous set of equations by making use of any two measured points of amplitude and time. 

 𝑥𝑥1 = 𝐴𝐴 ⋅ cos(𝜔𝜔𝑛𝑛 ⋅ 𝑡𝑡1) + 𝐵𝐵 ⋅ sin(𝜔𝜔𝑛𝑛 ⋅ 𝑡𝑡1) + 𝐷𝐷 
𝑥𝑥2 = 𝐴𝐴 ⋅ cos(𝜔𝜔𝑛𝑛 ⋅ 𝑡𝑡2) + 𝐵𝐵 ⋅ sin(𝜔𝜔𝑛𝑛 ⋅ 𝑡𝑡2) + 𝐷𝐷 

[7.2.20] 

There is unfortunately an inherent problem with this simple least squares approach; the issue is with 
severe biasing of the model to the noise in the experimental data (sometimes termed over-tuning). 
Noise in the system is inherently correlated in the 𝑿𝑿𝑇𝑇𝑿𝑿 term in the solution of a. 

Various improvements to the simple AR method have been suggested and investigated. Consider the 
two degree of freedom system response and BTT sampling of that response is presented in Figure 
7.2-4. 

 

Figure 7.2-4 Example of a two DOF system (Gallego-Garrido et al., 2007b) 

The improvements to the simple AR formulation were designed to overcome two limitation of AR. The 
first limitation is the poor fit that a SDOF model will provide to a response which may clearly require 
a higher order approach (as is the case seen in Figure 7.2-4). This improvement is provided by 
expanding the SDOF solution model to a multiple degree of freedom (MDOF) domain. This allows the 
model to better capture the true underlying physics of the response but requires the determination 
of more AR parameters (depending on the number of DOFs that the model is expanded to).  

Gallego-Garrido et al. outlines two MDOF approaches; the first is termed the Prony methods and 
works on the assumption that the sample of data can be represented as the sum of damped 
exponentials; all of the AR parameters ai are therefore assumed to be unknown (Gallego-Garrido et 
al., 2007a). The second MDOF family of methods is termed the exact methods; a solution form of 
sinusoidal motion with two harmonic components is assumed which then requires the determination 
of two unknown frequencies (and thus two unknown autoregressive parameters) (Gallego-Garrido et 
al., 2007a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 7 Appendices CB Church
   

  222 
 

The second limitation to the AR methods is the inherent over tuning to noise in the measurements. 
The first improvement proposed to tackle this problem was termed global auto-regression (GAR); GAR 
works by solving for all blades response over all of the revolutions simultaneously and thus provides 
an average over the entire data set (Carrington et al., 2001). This improvement is limited by the 
computing power as it may become excessively expensive to solve over the entire data set of all blades 
simultaneously.  

The second improvement suggested pre- and post-multiplying the observations matrix X (see Eq. 21) 
with matrices which contain delayed observations. These matrices, Xi, are termed instrumented 
variable (IV) matrices. The solution is therefore of the form: 

 
∴ 𝒂𝒂 = �𝑿𝑿𝒊𝒊𝑇𝑇𝑿𝑿�

−1𝑿𝑿𝒊𝒊𝑇𝑇𝒃𝒃 [7.2.21] 

The use of IV matrices avoids the inherent noise correlation with the 𝑿𝑿𝑇𝑇𝑿𝑿 term in the original solution 
formulation. 

The MDOF AR methods were compared by Gallego-Garrido et al. in a study in 2007 (Gallego-Garrido 
et al., 2007b). The methods were compared for a range of EOs with increasing levels of noise with 
simulated data. In order to simulate blade tip response data Gallego-Garrido et al. made use of a 
simple mathematical model where blades were simulated as cantilever beams with two bending 
modes of vibration; blades are coupled with springs and dampers. A four bladed example model is 
presented in Figure 7.2-5.  

 

Figure 7.2-5 Four bladed disk model (Gallego-Garrido et al., 2007b) 

The case of an actual EO of 6 is presented in Figure 7.2-6. The exact methods can be seen to perform 
very well up to extremely high noise levels. For this particular case the MDOF global AR method with 
instrumented variables (MGARIV) method performs the best out of all of the Prony based methods. A 
95% confidence interval (CI) about the actual EO of 6, represented in grey, is also plotted. Response 
amplitudes were not reported in the study. 
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Figure 7.2-6 Comparison of MDOF AR methods for the determination of EO (Gallego-Garrido et al., 2007b) 

The AR methods as a whole are very well documented with many publications investigating the 
accuracy and performance of the AR varients (Diamond et al., 2014b). Carrington et al. investigated 
the relative performance of the determinant method (DET), the SDOF global autoregressive method 
(GAR) and the SDOF global autoregressive method with instrument variables (GARIV); a numerical 
lumped spring mass damper model was used to simulate the blades response and interblade coupling 
effects (Carrington et al., 2001). Coupling effects refer to the siutation where a blade no longer 
operates in isolation and must be viewed from an assembly level. 

As was already stated the MDOF AR methods were compared by Gallego-Garrido et al. with a similar 
numerical model approach. Later Gallego-Garrido et al. experimentally compared two Prony based 
MDOF methods and two exact MDOF methods (Gallego-Garrido et al., 2007a). Grant expermintally 
compared the AR method with an indirect method developed by Heath (the two parameter plot 
method) (Grant, 2004; Heath, 2000). The overall results from these investigations found that the AR 
family of techniques were able to accurately infer the amplitude, frequency and phase of vibration 
(Diamond et al., 2014b). 

7.2.2.2. Outline of Autoregressive Methods 
A short summary of the AR improvement schemes from the first SDOF methods through to the more 
advanced MDOF methods is outlined below (Carrington et al., 2001; Gallego-Garrido et al., 2007b): 

• SDOF methods: 
o GAR: Global AR 

 Solve for all blades and all revolutions simultaneously for a single a1 and D 
parameter 

 Provides an average over the entire data set 
o GARIV: GAR with instrumental variables (IV) 

 Premultiply with IV matrix which contain delayed observations 
• 𝑿𝑿𝒊𝒊𝒃𝒃 = 𝑿𝑿𝒊𝒊𝑿𝑿𝑿𝑿 

• ∴ 𝒂𝒂 = �𝑿𝑿𝒊𝒊𝑇𝑇𝑿𝑿�
−1𝑿𝑿𝒊𝒊𝑇𝑇𝒃𝒃 

 Avoids inherent noise correlation within 𝑿𝑿𝑇𝑇𝑿𝑿 term 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 7 Appendices CB Church
   

  224 
 

• MDOF methods: 
o Prony based methods: Assumption that the sample of data can be represented as the 

sum of damped exponentials. All of the AR parameters ai are therefore assumed to be 
unknown. 
 MAR: Multiple-frequency AR 

• Expand AR for a multiple-degree of freedom system with a chosen 
number of modes 

o An additional autoregressive parameter ai is added for each 
additional mode 

 MGAR: Multiple-frequency GAR 
• Solve all revolutions simultaneously for all autoregressive parameters 

 MGARIV: Multiple-frequency GAR with IV 
• Decrease level of bias by avoiding inherent noise correlations 

 MGARMA: MGAR with Moving Average 
• Assume that white noise is an input into the system 
• White noise treated as random entries with a zero mean normal 

distribution and unit variance 
o Exact methods: Assume a solution form of sinusoidal motion with two harmonic 

components. There are therefore only two unknown frequencies (a1=unknown, a3=a1 
and a4=unknown) 
 ES: Exact (E) with purely sinusoidal (S) assumption 

• MARES 
• MGARES 
• MGARIVES 

 EP: Exact solution (E) using Prony’s method (P) 
• MAREP 
• MGAREP 
• MGARIVEP 

7.2.3. B3 – Circumferential Fourier Fit 
The circumferential Fourier fit (CFF) method assumes a SDOF blade response solution; it uses an order 
tracking approach to estimate the amplitude, phase and DC offset of vibration (Diamond et al., 2014b; 
Joung et al., 2006). The method is limited in that it requires the frequency of vibration to be provided 
(Diamond et al., 2014b).  

In order to perform the CFF a minimum of three sensors are required to obtain the three unknowns 
of amplitude, phase and DC offset. For the case of synchronous excitation of a weakly coupled system 
individual blades oscillate with harmonics of EO (Joung et al., 2006). It is important to note that the 
CFF algorithm does not calculate the response frequency (EO); it must be supplied with it. A least 
squares approach is then used to determine the unknown parameters. The CFF equation to be solved 
is presented below. 
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 �

𝛿𝛿1
𝛿𝛿2
𝛿𝛿3
𝛿𝛿4

� =

⎣
⎢
⎢
⎡1
1
1
1

sin(𝐸𝐸𝐸𝐸 ⋅ 𝜃𝜃1)
sin(𝐸𝐸𝐸𝐸 ⋅ 𝜃𝜃2)
sin(𝐸𝐸𝐸𝐸 ⋅ 𝜃𝜃3)
sin(𝐸𝐸𝐸𝐸 ⋅ 𝜃𝜃4)

cos(𝐸𝐸𝐸𝐸 ⋅ 𝜃𝜃1)
cos(𝐸𝐸𝐸𝐸 ⋅ 𝜃𝜃2)
cos(𝐸𝐸𝐸𝐸 ⋅ 𝜃𝜃3)
cos(𝐸𝐸𝐸𝐸 ⋅ 𝜃𝜃4)⎦

⎥
⎥
⎤
�

𝐷𝐷𝐷𝐷
𝐴𝐴 ⋅ cos(𝐸𝐸𝐸𝐸 ⋅ 𝜙𝜙)
𝐴𝐴 ⋅ sin(𝐸𝐸𝐸𝐸 ⋅ 𝜙𝜙)

� [7.2.22] 

 (𝜹𝜹) = [𝑴𝑴](𝒑𝒑) [7.2.23] 

The parameters DC, A and φ represent the dc offset, amplitude of the response and the phase angle 
respectively. The parameter θ is the same as above, namely the circumferential angle of each sensor. 
An example of a CFF is shown in Figure 7.2-7 for the case of four data points from four sensors. 

  

Figure 7.2-7 Magnitude as a function of sensor position (adapted from (Joung et al., 2006))  

The positions of the sensors can be optimised if the EO of the vibrating system is known. A good 
circumferential spacing of sensors results in a large condition number for the matrix M (Joung et al., 
2006). Large spacing of sensors however causes the measured data to be sensitive to whole rotor whirl 
and unbalance and so a trade-off must be found (Joung et al., 2006).  

7.2.4. B4 – Bayesian Curve Fitting 
In order to overcome the curve fitting issues associated with AR, Diamond proposed using a different 
curve fitting technique altogether; he suggested use of a Bayesian linear regression methodology 
(Diamond et al., 2014a). Similar to the basic AR approaches the Diamond method first assumes a SDOF 
model for the blade vibration (Diamond et al., 2014a): 

 𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝐴𝐴 ⋅ cos(𝜔𝜔 ⋅ 𝑡𝑡𝑖𝑖) + 𝐵𝐵 ⋅ sin(𝜔𝜔 ⋅ 𝑡𝑡𝑖𝑖) + 𝐶𝐶 [7.2.24] 

The index ‘i’ refers to a specific blade displacement and TOA measurement within a set of N 
measurements. The model parameters A, B and C are then calculated from a standard Bayesian linear 
regression formulation.  

Before Bayesian linear regression can be defined for fitting the sinusoid, consider the general form of 
linear regression where the model is a linear combination of non-linear functions of the input variables 
(Bishop, 2009): 

 𝑦𝑦(𝒙𝒙,𝒘𝒘) = 𝑤𝑤0 +  � 𝑤𝑤𝑗𝑗 ⋅ 𝜙𝜙𝑗𝑗(𝒙𝒙)
𝑀𝑀−1

𝑗𝑗=1

 [7.2.25] 
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Adjustable target parameters w, or design variables, are the target outputs of a regression 
optimisation. These are the parameters which are to be fitted with observations (sometimes called 
training variables). The non-linear functions φj are termed basis functions. The total number of 
parameters to be fitted are M where the parameter w0 provides a fixed offset and is sometimes called 
the bias parameter (Bishop, 2009). By allowing φ0 to be unity (φ0(x) = 1) equation 25 can be rewritten 
into a more convenient form. 

 𝑦𝑦(𝒙𝒙,𝒘𝒘) = � 𝑤𝑤𝑗𝑗 ⋅ 𝜙𝜙𝑗𝑗(𝒙𝒙)
𝑀𝑀−1

𝑗𝑗=0

= 𝒘𝒘𝑇𝑇Φ(𝒙𝒙) [7.2.26] 

The matrix φ is termed the design matrix and forces the linear combination of non-linear functions of 
the observations x. A commonly used linear regression model is the polynomial; consider the cubic 
polynomial regression model below. 

 𝑦𝑦(𝒙𝒙,𝒘𝒘) = 𝑤𝑤0 ⋅ 1 + 𝑤𝑤1 ⋅ 𝑥𝑥1 + 𝑤𝑤2 ⋅ 𝑥𝑥2 + 𝑤𝑤3 ⋅ 𝑥𝑥3 [7.2.27] 

 𝒘𝒘 = [𝑤𝑤0 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3]𝑇𝑇 [7.2.28] 

 𝚽𝚽 = �

𝜙𝜙0(𝒙𝒙1) 𝜙𝜙1(𝒙𝒙1) ⋯ 𝜙𝜙𝑀𝑀−1(𝒙𝒙1)
𝜙𝜙0(𝒙𝒙2) 𝜙𝜙1(𝒙𝒙2) ⋯ 𝜙𝜙𝑀𝑀−1(𝒙𝒙2)

⋮
𝜙𝜙0(𝒙𝒙𝑁𝑁)

⋮
𝜙𝜙1(𝒙𝒙𝑁𝑁)

⋱
⋯

⋮
𝜙𝜙𝑀𝑀−1(𝒙𝒙𝑁𝑁)

� 

 

[7.2.29] 

 ∴ 𝚽𝚽 =

⎣
⎢
⎢
⎡1 (𝒙𝒙1)1 (𝒙𝒙1)2 (𝒙𝒙1)3

1 (𝒙𝒙2)1 (𝒙𝒙2)2 (𝒙𝒙2)3
⋮
1

⋮
(𝒙𝒙𝑁𝑁)1

⋮
(𝒙𝒙𝑁𝑁)2

⋮
(𝒙𝒙𝑁𝑁)3⎦

⎥
⎥
⎤
 

 

[7.2.30] 

Since there is a presupposition of the solution form being a linear combination of sinusoids the same 
process can be performed for the SDOF sinusoidal model. 

 𝑥𝑥𝑖𝑖(𝑡𝑡,𝑤𝑤) = 𝐴𝐴 ⋅ cos(𝜔𝜔 ⋅ 𝑡𝑡𝑖𝑖) + 𝐵𝐵 ⋅ sin(𝜔𝜔 ⋅ 𝑡𝑡𝑖𝑖) + 𝐶𝐶 [7.2.31] 

 𝒘𝒘 = [𝐴𝐴 𝐵𝐵 𝐶𝐶]𝑇𝑇 [7.2.32] 

 ∴ 𝚽𝚽 = �
cos (𝜔𝜔𝑡𝑡1)

⋮
cos (𝜔𝜔𝑡𝑡𝑁𝑁)

sin(𝜔𝜔𝑡𝑡1)
⋮

sin(𝜔𝜔𝑡𝑡𝑁𝑁)

1
⋮
1
� [7.2.33] 

Now that the regression model has been defined it would be useful to take a closer look at the 
mechanics behind Bayesian linear regression, namely Bayes’ theorem (Bishop, 2009). 

 𝑝𝑝(𝒘𝒘|𝐷𝐷) =
𝑝𝑝(𝐷𝐷|𝒘𝒘) ⋅ 𝑝𝑝(𝒘𝒘)

𝑝𝑝(𝐷𝐷)
 

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝒘𝒘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

[7.2.34] 

Bayes theorem states that the posterior distribution p(w|D), or the likelihood of the design variables 
w given the observed data D, is proportional to the likelihood of the observed data D given the design 
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variables w multiplied by a prior assumption of the form of w (Bishop, 2009). The denominator p(D) 
is a normalisation constant which ensures that the posterior distribution is valid and integrates to 
unity (the area under a distribution must integrate to one in order to be valid) (Bishop, 2009). In simple 
terms, Bayes’ theorem states: 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∝ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ⋅ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 [7.2.35] 

Bayes theorem allows prior assumptions of the solution form to have an influence on the solution. 
Next it is important to define the Gaussian, or normal, distribution with mean μ and variance σ2. The 
underlying probability density functions are assumed to be Gaussian in nature. 

 𝓝𝓝(𝑥𝑥|𝜇𝜇,𝜎𝜎2) =
1

(2𝜋𝜋𝜎𝜎2)0.5 ⋅ exp �−
1

2𝜎𝜎2
(𝑥𝑥 − 𝜇𝜇)2� [7.2.36] 

In order to get an expression for the posterior distribution we first define the prior distribution of the 
weights having a mean of m0 and a covariance of S0. 

 𝑝𝑝(𝒘𝒘) =  𝓝𝓝(𝒘𝒘|𝒎𝒎0,𝑺𝑺0) [7.2.37] 

The likelihood function, or the probability of the observations t given inputs X, adjustable weights w 
and precision β (inverse of the variance) is given by (Bishop, 2009): 

 𝑝𝑝(𝒕𝒕|𝑿𝑿,𝒘𝒘,𝛽𝛽) =  �𝓝𝓝(𝑡𝑡𝑛𝑛|𝒘𝒘𝑇𝑇𝝓𝝓(𝒙𝒙𝑛𝑛),𝛽𝛽−1)
𝑁𝑁

𝑛𝑛=1 

 [7.2.38] 

Due to the choice of Gaussian prior and likelihood the posterior distribution will also be Gaussian 
(Bishop, 2009). The posterior distribution is therefore:  

 𝑝𝑝(𝒘𝒘|𝒕𝒕) =  𝓝𝓝(𝒘𝒘|𝒎𝒎𝑁𝑁,𝑺𝑺𝑵𝑵) [7.2.39] 

 𝒎𝒎𝑁𝑁 = 𝑺𝑺𝑁𝑁(𝑺𝑺0−1𝒎𝒎0 + 𝛽𝛽𝚽𝚽𝑇𝑇𝒕𝒕) [7.2.40] 

 𝑺𝑺𝑁𝑁−1 = 𝑺𝑺0−1 + 𝛽𝛽𝚽𝚽𝑇𝑇𝚽𝚽 [7.2.41] 

No prior information is assumed to be known about the design parameters. Therefore a zero mean 
non-informative prior is chosen. The prior covariance and mean are therefore: 

 𝒎𝒎0 =  𝟎𝟎 [7.2.42] 

 𝑺𝑺0 = 𝛼𝛼−1𝑰𝑰 [7.2.43] 

The parameter α is also termed a precision parameter; it controls the confidence in the prior guess of 
w. After substituting the prior mean and covariance into equations 40 and 41 the results of the 
problem formulation becomes (Diamond et al., 2014a): 

 𝒘𝒘 = 𝒎𝒎𝑁𝑁 = 𝛽𝛽𝑺𝑺𝑁𝑁𝚽𝚽𝑇𝑇𝒕𝒕 [7.2.44] 

 𝒘𝒘 = [𝐴𝐴 𝐵𝐵 𝐶𝐶]𝑇𝑇 [7.2.45] 
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 𝑺𝑺𝑁𝑁−1 = 𝛼𝛼𝑰𝑰 + 𝛽𝛽𝚽𝚽𝑇𝑇𝚽𝚽 [7.2.46] 

 𝚽𝚽 = �
cos (𝜔𝜔𝑡𝑡1)

⋮
cos (𝜔𝜔𝑡𝑡𝑁𝑁)

sin(𝜔𝜔𝑡𝑡1)
⋮

sin(𝜔𝜔𝑡𝑡𝑁𝑁)

1
⋮
1
� [7.2.47] 

In this specific implementation of Bayesian linear regression the prior guess has been chosen to be 
uninformative. The parameter α is therefore chosen to be very small as little confidence is placed in 
the prior knowledge. Conversely the parameter β assumes a large value as little tolerance to noise will 
be allowed. 

It is clear from the formulation of the problem that no constraints are placed on the positioning of the 
BTT probes; this is the case with the AR formulation which requires probes to be spaced equidistant 
apart. It was reported that the Diamond algorithm performs best when the probes are placed at 
arbitrary irregular intervals from one another (Diamond et al., 2014a). No explanation for this 
phenomenon was however offered.  

It is in the author’s opinion that by forcing the probes to be equidistant apart translates to allowing 
the angular positions of the probes to be integer multiples of one another. Therefore probe three may 
measure a TOA that is 2 ⋅ ∆𝑡𝑡 away from probe one. The vibration is synchronous so therefore it is 
conceivable that the second measurement will capture an amplitude value which is close to another 
measurement and thus provides little additional information to the problem. The situation is 
illustrated in Figure 7.2-8. 

 

Figure 7.2-8 Synchronous sampling with limited informative sampling 

The fundamental difference between the Diamond method and the AR methods is found in the next 
step of Diamond’s formulation (Diamond et al., 2014a). Instead of calculating the vibration 
frequencies from the measurements, a range of EOs (and thus vibration frequencies) are supplied to 
the algorithm. For each EO supplied the probability that it fits the measurements is then determined 
(along with variance about the probability). The most probable EO is then chosen from the set of EOs 
supplied to the algorithm.  

The probability and standard deviation for each choice of EO are given by (Diamond et al., 2014a): 

 𝑝𝑝(𝑤𝑤) ∝ Π𝑵𝑵(𝜇𝜇,𝜎𝜎2) = Π𝑖𝑖−1𝑁𝑁 𝑵𝑵�𝑡𝑡𝑖𝑖�𝑥𝑥(𝑡𝑡𝑖𝑖),𝜎𝜎2(𝑡𝑡𝑖𝑖)� [7.2.48] 
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 𝜎𝜎2(𝑡𝑡𝑖𝑖) =
1
𝛽𝛽

+ [cos(𝜔𝜔𝑡𝑡𝑖𝑖) sin(𝜔𝜔𝑡𝑡𝑖𝑖) 1]𝑺𝑺𝑁𝑁 �
cos(𝜔𝜔𝑡𝑡𝑖𝑖)
sin(𝜔𝜔𝑡𝑡𝑖𝑖)

1
� [7.2.49] 

An example of the Diamond implementation is presented in Figure 7.2-9. The underlying frequency of 
vibration was chosen to have an actual EO of 24. A signal to noise ratio (SNR) was set to 10%. EO 
integers ranging from 0 to 50 were evaluated; the EO with the highest probability of occurring was 
determined to be the true EO of 24. Other EOs of high probability were 18, 22, 19 and 3; Diamond 
prescribes their high probabilities to the sub-sampled nature of the measured TOAs (Diamond et al., 
2014a). 

 

Figure 7.2-9 Example of Diamond method (Diamond et al., 2014a) 

During his investigation Diamond compared his new method to the simplest of the AR methods; his 
method was found to be far superior in determining both the EO and the amplitude of vibration. The 
method used to generate the tip response was however not discussed. 

In a later study Diamond compared his method’s ability to infer the correct amplitude of vibration to 
both AR and CFF. The tip response, as a function of time, was generated with the use of a one fifth FE 
model of a bladed disk (generally referred to as a blisk). The blade was excited using periodic impulse 
forces in order to simulate the effects of stator vanes (Diamond et al., 2014b). The FE model and 
response of the blade, both in the time domain and the frequency domain, is presented in Figure 
7.2-10.  

 

Figure 7.2-10 One fifth FE model with tip time and frequency response. (a) CAD drawing of one fifth model. (b) Simulated 
time and frequency responses. (Diamond et al., 2014b)  
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It is important to note that the response elicited is that of a SDOF system; only a single blade was 
modelled and so no inter-blade coupling effects could be generated. Secondly only the first bending 
mode of the blade was excited which supplies a near perfect sinusoid. One of the result sets from the 
study is presented in Figure 7.2-11.  

 

Figure 7.2-11 Amplitude errors for various BTT methods. Figure (b) is an enlarged version of Figure (a). (Diamond et al., 
2014b) 

The Diamond method was able to very closely infer the actual response amplitude (along with the 
frequency of vibration reported as an EO); the standard deviation of the amplitude error for the 
Diamond 2 method ranged between -2% and -8%. The CFF method was able to infer the correct 
amplitude of vibration within a standard deviation of -20% to 30% (Diamond et al., 2014b). This is 
highly significant as the Diamond method inferred both the response amplitude and frequency from 
the BTT measurements whereas the CFF was supplied with the correct frequency of vibration and was 
still unable to achieve the same level of accuracy of the Diamond method. 
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7.3. Appendix C – Example Application of CPS Method 
The experimental setup, developed by Forbes for the purpose of investigating internal pressure signals 
containing blade vibration information, is given in Figure 7.3-1. Approximation of stator vane 
excitation of the turbine blades was achieved by high pressure air nozzles directed towards the turbine 
blades. A nozzle as well as the sensor mounting point are indicated in the figure. 

 

Figure 7.3-1 CPS experimental setup. (1) Air jets. (2) Accelerometer and microphone mounting position. (Forbes and 
Randall, 2013) 

The test rig comprises of a 19 flat blade arrangement contained within the casing (Forbes and Randall, 
2013). A total of 6 high pressure air jets were used to excite the blades during operation (Forbes and 
Randall, 2013). The configuration was such that air excitation could be turned on and off at will. 

The casing vibration and the internal pressure signal were measured by means of an accelerometer 
and sound pressure transducer respectively (Forbes and Randall, 2013).  

Two test rig configurations were considered. Configuration 1 consisted of 19 identical blades and 
configuration 2 consisted of 18 identical blades and one ‘flawed’ blade. The dimensions of the 19 
identical ‘healthy’ blades were 100mm x 50mm x1.2mm (length by width by thickness). The faulty 
blade had a reduced thickness of 0.9 mm (Forbes and Randall, 2013). 

The natural frequencies of the blades were determined using a stationary test bench and are given in 
Table 7.3-1 (Forbes and Randall, 2013). 

Table 7.3-1 First two bending natural frequencies from stationary bench test (Forbes and Randall, 2013) 

Nominal Blade Thickness → 1.2 mm 0.9 mm 
Mode excited ↓ 
1st Bending mode natural frequency (Hz) 117.4 69 
2nd Bending mode natural frequency (Hz) 726 432 
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The natural frequencies for the ‘healthy’ blades was determined by averaging the stationary test 
bench results over all blades. The analytically and experimentally derived ensemble averages for 
operation at 1200 RPM (for the ‘healthy’ blade arrangement) is presented in Figure 7.3-2. It is 
important to note that the experimentally obtained results are for operation with air excitation 
present. 

 

Figure 7.3-2 Narrow band peak spacing for operating at 1200 RPM. (a) Analytically derived NBPS. (b) Experimentally 
derived NBPS. (Forbes and Randall, 2013) 

The blades’ natural frequencies can be estimated by measuring the NBPS. The difference frequency is 
given by Equation [7.3.1] (Forbes and Randall, 2013). 

 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑘𝑘 ⋅ Ω + 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) − (𝑚𝑚 ⋅ Ω − 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) [7.3.1] 

The equation can be rearranged to make the natural frequency the subject of the formula. 

 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + (𝑚𝑚 − 𝑘𝑘) ⋅ Ω

2
=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑞𝑞 ⋅ Ω

2
 [7.3.2] 

The parameters 𝑘𝑘, 𝑚𝑚 and 𝑞𝑞 are positive integers, 𝑘𝑘 is less than 𝑚𝑚 and the 𝑁𝑁𝑁𝑁𝑁𝑁S and Ω are given in 
hertz. 

In order to estimate the natural frequency of a blade in a turbine operating at 1200 RPM (20 Hz) (with 
the measured NBPS from the analytical model of 16.5 Hz) the value for the integer ‘q’ must first be 
determined. In order to estimate ‘q’ the blade’s natural frequency must be known within ±0.5 the 
rotor operating frequency. The statically determined second bending natural frequency of 726 Hz is 
used for this purpose (Forbes and Randall, 2013). 

 𝑞𝑞 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
2 ⋅ 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

Ω
� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �

2 ⋅ 726 − 16.5
20

� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(71.775) = 72 [7.3.3] 

In the expression the ceil function rounds up to the nearest integer. 

The value for q is rounded upward with the ‘ceil’ function because the expected natural frequency of 
the rotating system is higher than that of a non-rotating system due to centrifugal stiffening (Forbes 
and Randall, 2013). Thus the estimated natural frequency of the rotating blade is: 

 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
16.5 + 72 ⋅ 20

2
= 725.25 𝐻𝐻𝐻𝐻 [7.3.4] 

(a) (b) 
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The motive behind using the second bending natural frequency for analysis (as opposed to the 
fundamental frequency) is not provided in the source material (Forbes and Randall, 2013). 

Tests were performed to investigate if narrow band peaks would form under the condition of no air 
excitation. The ensemble averaged derived for operation of the healthy configuration at 2000 RPM 
with no air excitation is provided in Figure 7.3-3. 

 

Figure 7.3-3 Experimentally obtained ensemble average for operation at 2000 ROM with no air excitation (Forbes and 
Randall, 2013) 

It is clear from the figure that there is no significant appearance of narrow band peaks. The 
experimentally obtained ensemble average results for operation at 2000 RPM for the ‘healthy’ and 
‘unhealthy’ configurations are illustrated in and. 

 

Figure 7.3-4 Experimentally obtained ensemble average for healthy configuration operating at 2000 ROM with air 
excitation(Forbes and Randall, 2013) 

 

Figure 7.3-5 Analytically (a) and experimentally (b) obtained ensemble average for unhealthy configuration operating at 
2000 ROM with air excitation (Forbes and Randall, 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 7 Appendices CB Church
   

  234 
 

A portion of the experimental measurement recordings were made available online for further 
analysis. Specifically the set obtained at the 2000 RPM operating speed for both the healthy and 
unhealthy configurations as well as for the presence and absence air excitation. The signal processing 
and ensemble averaging procedures outlined in the literature review were followed independently in 
order to confirm the above results. An overlay of a portion of the time domain results for the case of 
no air excitation, divided into the stochastic and deterministic parts, is provided in Figure 7.3-6. 

 

Figure 7.3-6 Portion of time domain signal processed pressure data for healthy configuration without air excitation 

The ensemble average determined for the case of no air excitation can be seen in Figure 7.3-7. 

 

Figure 7.3-7 Independently obtained ensemble average for healthy configuration without air excitation 

Similarly the results obtained for the healthy and unhealthy configurations, operating at 2000 RPM, 
are provided in Figure 7.3-8 and Figure 7.3-9 respectively. 

 

Figure 7.3-8 Independently obtained ensemble average for healthy system with air excitation 
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Figure 7.3-9 Independently obtained ensemble average for unhealthy system with air excitation 

A summary of the ensemble average results is provided in Table 7.3-2. 

Table 7.3-2 Summary of ensemble average results 

Simulation Analytical NBPS (Hz) Experimentally derived 
NBPS (Hz) 

Independently Derived 
NBPS (Hz) 

2000 RPM no air no 
fault 

N/A None None 

2000 RPM air no 
fault 

4.9 4.9 4.89 

2000 RPM air fault 15.8 15.8 15.64 
The blade natural frequency estimation method outlined above was independently performed on all 
of the ensemble average results; a summary is provided in Table 7.3-3. 

Table 7.3-3 Summary of estimated blade natural frequencies 

Simulation Analytical Blade Natural  
Frequency (Hz) 

Experimental Blade 
Natural Frequency (Hz) 

Independently Derived 
Blade Natural 
Frequency (Hz) 

2000 RPM no 
air no fault 

N/A None None 

2000 RPM air 
no fault 

733 733 735.0463 

2000 RPM air 
fault 

441.5 441.5 457.3714 

A counting scheme was employed to determine the average number of time based deterministic 
peaks occur per revolution. The results are summarised in Table 7.3-4. 

Table 7.3-4 Average number of deterministic peaks per revolution 

Recording Average peaks per revolution 
2000 RPM no air no fault 19.000 
2000 RPM air no fault 19.003 
2000 RPM air fault 18.000 
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The counting scheme was implemented to ascertain whether or not the deterministic part of the 
pressure signal could be used for BTT. An example of a section of the deterministic pressure signal 
over one revolution is given in Figure 7.2-10. The once per revolution (OPR) counter is also shown. 

 

Figure 7.3-10 Deterministic pressure signal for healthy configuration with air excitation 

It is interesting to note that the counting scheme ‘misses’ one blade every revolution for the unhealthy 
configuration (where one ‘healthy’ blade is replaced with a thinner ‘faulty’ blade). For the case where 
no high pressure air excitation existed as well as for the healthy blade configuration 19 blades were 
counted per revolution. For the faulty configuration only 18 blades were counted. 

Through independent signal processing of the basis measurements similar NBPS values were obtained. 
This resulted in similar estimations of the blade natural frequencies to the source findings. It is 
interesting to note that once the deterministic portion of the signal was separated from the combined 
full signal the same number of peaks as blades form. Therefore it may be possible to collect blade tip 
times of arrival using the internal pressure signal given the experimental methodology and equipment 
used in the source investigation.  
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7.4. Appendix D – FE Analyses 
7.4.1. D1 – FE Analysis Configuration 
7.4.1.1. Fifth Model 
A fifth cyclic symmetric model was created for the various blade geometries in order to analytically 
determine mode shapes and natural frequencies. Element sizes were reduced until a negligible change 
in the fundamental frequency was found. 

Category Healthy Blade Damaged Blade 1 Damaged Blade 2 
Geometry and Mesh 

   
Model 
statistics 

Bodies 4 4 4 
Nodes 28622 49406 47366 
Elements 16033 29344 27965 

Natural 
frequencies 
(Hz) 

Mode 1 127.08 105.22 116.40 
Mode 2 733.55 620.08 676.96 
Mode 3 791.15 707.18 744.43 

Mode Shape 1 (1B) 
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Mode Shape 2 (1T) 

   
Mode Shape 3 (2B) 

   
Bonded contact was chosen between all of the bodies in each investigation (portion of hub, 2 screws 
and the blade). A fixed support was applied to the inner surface of the hub that would have been in 
contact with the rotating shaft. A cyclic symmetry condition was applied to all of the fifth models. No 
harmonic modes were reported on. 

A generic aluminium alloy linear elastic material model was chosen for the investigation. The material 
properties used are presented in Table 7.4-1. 

Table 7.4-1 FE analysis material properties 

Property Value 
Density 2770 kg/m3 
Young’s modulus 70 GPa 
Poisson’s ratio 0.33 
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7.4.2. D2 - Analytical Investigation for Strain Gauge Position Choice 
Table 7.4-2 provides the results of a FE investigation to determine improved SG application loci for the 
‘healthy blade'. The same model considerations as the preceding section were maintained. 

Table 7.4-2 Mode shapes and strain distributions for strain gauge choice on healthy blade 

Mode Strain and scale 
(m/m) 

X-Y Strain Y-Z Strain Vector Principal 

1 (1B) Maximum Principal

 

   
2 (1T) Elastic Shear

 

   
3 (2B) Maximum Principal
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7.4.3. D3 – Strain Gauge Positioning for Healthy Blade 
A modal finite element (FE) analysis was performed in order to better position the SG application loci. 
Improved sensitivity to modes 1 through 3 were sought for the healthy blade. Modes 1 through 3 refer 
to flap bending mode 1, torsional mode 1 and flap bending mode 2 respectively. The results of this FE 
analysis are presented in ‘7.4.2 D2 - Analytical Investigation for Strain Gauge Position Choice’.  

Figure 7.4-1 illustrates the strain gauge position choices for the healthy blade geometry derived from 
the FE analysis and the SG relative sizes. All SGs used were coupled as full bridges, therefore the strain 
gauge positions are mirrored on both sides of the blade. 

 

Figure 7.4-1 Strain Gauge Positions 

The SG positions were chosen such that the sensors would be exposed to maximum strain conditions 
given the mode under investigation. At the same time the gauges were placed away from stress raisers 
to reduce their impact on the measured values. This was particularly important with the placing of the 
bending strain gauges on the damaged blade geometries due to the slots cut just above the radius on 
the blade. 

The application loci for the damaged blades was inferred from this analysis. Only one set of full bridges 
per damaged blade was installed and investigated; the gauge was placed with sensitivity to mode 1 
flap bending. Only one instrumentation setup per blade geometry was installed and investigated.  
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7.4.4. D4 – Analytical Campbell Diagrams for Damaged Blades 
The Campbell diagrams generated for the two damaged blade geometries are presented in Figure 
7.4-2 and Figure 7.4-3. EOs 1 to 100 are provided on the plots.  

 

Figure 7.4-2 Campbell diagram of damaged blade 1 

 

Figure 7.4-3 Campbell diagram of damaged blade 2 

The change in natural frequency value due to centrifugal stiffening, for the first three modes and for 
both blade geometries, is estimated to change minimally across the operating range of interest. The 
torsional modes (mode 2) is the least sensitive to an increase in rotational speed. 
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7.5. Appendix E – Experimental Setup, Characterisation and Methodology 
7.5.1. E1 – Instrumentation List 
Instrumentation utilised during testing and experimental setup validation are listed in Table 7.5-1. 

Table 7.5-1 Instrumentation list 

# Name Sensitivity/ GF/ 
Calibration 

Make & 
Model/ Serial 

Notes 

1 Impulse force 
hammer 

2.15 mV/N PCB Modal 
086C03 (SN 
8133) 

Modal hammer with nylon tip 

2 Microphone* 2.00 mV/Pa PCB 378C01 0.25” free-field pre-polarised 
microphone and preamplifier  

3 Dual uniaxial 
strain gauges 

2.07 HBM 1-DY13-
3/350 

Utilised in full bridge configuration 
for bending measurements 

4 Dual torsion 
gauges 

2.04 HBM K-XY4-3-
25-350-3-05 

Utilised in full bridge configuration 
for torsion measurements 

5 Data acquisition 
module 

N/A OROS OR35 
901056 

DAQ operated with NVGate 9.10.008 
software 

6 Strain gauge 
amplifier 1  

0.547 µε/mV 
(variable linear 
output) 

Vishay P-3500 Experimentally obtained output 
sensitivity (divide measured strain by 
number of active SGs in full bridge) 

7 Strain gauge 
amplifier 2 

0.515 µε/mV 
(variable linear 
output) 

Vishay P-3500 Experimentally obtained output 
sensitivity (divide measured strain by 
number of active SGs in full bridge) 

8 Strain gauge 
amplifier 3 

0.535 µε/mV 
(variable linear 
output) 

Vishay P-3500 Experimentally obtained output 
sensitivity (divide measured strain by 
number of active SGs in full bridge) 

9 Optical fibre 
switch 

N/A Optel Thevon 
152 G8 

Tachometer used with 79 PPR zebra 
tape 

10 Proximity 
transducer 

8.000 mV/µm 
(range of 2 mm) 

Meggitt TQ401 Eddy current probe used with 
IQS450 signal conditioner 

11 Scanning laser 
Doppler 
vibrometer 

N/A Polytec PSV-
400 

PSV-400 scanning head, PSV-400 
Junction Box, OFV-500 Controller 
with PSV 8.8 acquisition software 

*The calibration report for the microphone is provided in the succeeding section. 
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7.5.2. E2 – Sound Pressure Transducer Calibration Report 
The calibration report for the sound pressure transducer is provided in Figure 7.5-1. 

 

Figure 7.5-1 PCB 378C01 calibration report 
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7.5.3. E3 – Images of Experimental Setup 
7.5.3.1. Test Bench 

 

Figure 7.5-2 Experimental test bench 

7.5.3.2. Drum 

 

Figure 7.5-3 Front view of drum with air nozzles, hub and blade assembly and slip ring 
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Figure 7.5-4 Rear view of drum with excitation nozzle attachment points 

7.5.3.3. Blade and Hub Assembly Components 

 

Figure 7.5-5 Blade and hub assembly with set of healthy blades 
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Figure 7.5-6 Hub with blade attachment holes and locating recess 

 

Figure 7.5-7 Instrumented healthy blade 

 

Figure 7.5-8 Set of damaged blades 
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7.5.3.4. Sensor Plate and Attachments 

 

Figure 7.5-9 Sensor plate with attached microphone mount, microphone and proximity probes 

 

Figure 7.5-10 Inside view of drum with sensor plate, microphone and proximity transducers 

7.5.3.5. Instrumentation and Sensors 

 

Figure 7.5-11 OROS OR35 data acquisition system 
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Figure 7.5-12 Eddy current probe signal conditioner and amplifier 

 

Figure 7.5-13 Shaft tachometer with 79 PPR zebra tape 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 7 Appendices CB Church
   

  249 
 

 

Figure 7.5-14 Analog strain gauge amplifier 

 

Figure 7.5-15 Modal hammer 
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7.5.3.6. Scanning Laser Vibrometer 

 

Figure 7.5-16 Scanning laser vibrometer set-up 

 

Figure 7.5-17 Hub and blade assembly positioned in scanning laser vibrometer setup  
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7.5.4. E4 – Relative Tip Distances 
Tip distances were measured, in terms of voltages, using eddy current proximity probes on the leading 
and lagging edges of the turbine blades’ tips. The higher the voltage the closer the tip was to the 
sensor. ‘ED 1’ refers to the leading edge and ‘ED 2’ refers to the lagging edge of tip. The unique pattern 
of tip distances, in terms of voltage, is used to identify individual blades passing the microphone. 

7.5.4.1. Configuration 1 
Table 7.5-2 Tip distances configuration 1 

Blade ED 1 (V) 
(order) 

ED2 (V) 
(order) 

Attached Sensors Sensor 
designation 

Notes (Nat. Freq. 
(Hz)) 

1 1.75 (3) 1.45 (3) Mode 1, Mode 2, Mode 3 B1, T1, B2 Healthy (128.1) 
2 1.15 (4) 1.34 (4) None N/A Healthy (125.0) 
3 1.10 (5) 0.759 (5) None N/A Healthy (126.3) 
4 2.32 (2) 2.48 (2) None N/A Healthy (125.6) 
5 2.41 (1) 2.50 (1) None N/A Healthy (125.6) 

7.5.4.2. Configuration 2 
Table 7.5-3 Tip distances configuration 2 

Blade ED 1 (V) 
(order) 

ED2 (V) 
(order) 

Attached Sensors Sensor 
designation 

Notes (Nat. Freq. 
(Hz)) 

1 1.24 (4) 1.38 (3) Mode 1 B1 Healthy (128.1) 
2 1.26 (3) 1.09 (5) None N/A Healthy (125.0) 
3 1.07 (5) 1.20 (4) None N/A Healthy (126.3) 
4 2.31 (1) 2.23 (1) None N/A Healthy (125.6) 
5 1.57 (2) 1.50 (2) Mode 1 B2 Damaged 1 (101.9) 

7.5.4.3. Configuration 3 
Table 7.5-4 Tip distances configuration 3 

Blade ED 1 (V) 
(order) 

ED2 (V) 
(order) 

Attached Sensors Sensor 
designation 

Notes (Nat. Freq. 
(Hz)) 

1 1.79 (2) 1.83 (2) Mode 1 N/A Healthy (128.1) 
2 0.2 (5) 0.5 (5) Mode 1 B3 Damaged 2 (112.5) 
3 1.2 (4) 1.3 (4) None N/A Healthy (126.3) 
4 2.3 (1) 2.23 (1) None N/A Healthy (125.6) 
5 1.4 (3) 1.38 (5) Mode 1 B2 Damaged 1 (101.9) 

7.5.4.4. Configuration 4 
Table 7.5-5 Tip distances configuration 4 

Blade ED 1 (V) 
(order) 

ED2 (V) 
(order) 

Attached Sensors Sensor 
designation 

Notes (Nat. Freq. 
(Hz)) 

1 1.65 (2) 1.81 (2) Mode 1 N/A Healthy (128.1) 
2 0.3 (5) 0.5 (5) Mode 1 B3 Damaged 2 (112.5) 
3 0.75 (4) 1.07 (4) None N/A Damaged 1 (100.0) 
4 2.3 (1) 2.4 (1) None N/A Healthy (125.6) 
5 1.48 (3) 1.45 (3) Mode 1 B2 Damaged 1 (101.9) 
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7.5.5. E5 - Unconstrained System Response 
All observed mode shapes have blade 1 at the 12 o’clock position counting clockwise to blade 5. 

7.5.5.1. Configuration 1 
Figures 8.10-1 to 3 show the average unconstrained response spectrum of the assembly. 

 

Figure 7.5-18 Average response spectrum of unconstrained hub and blade assembly in config. 1 

 

Figure 7.5-19 Average response spectrum of unconstrained config. 1 in vicinity of mode 1 

 

Figure 7.5-20 Average response spectrum of unconstrained config. 1 in vicinity of modes 2 and 3 
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Table 7.5-6 illustrates selected operational mode shapes obtained for unconstrained configuration 1. 

Table 7.5-6 Unconstrained hub & blade assembly operational mode shapes for configuration 1 

Mode 1 Bending at 125.94 Hz (1B) Mode 1 Bending at 127.19 Hz (1B) 

  
Mode 1 Bending at 172.5 Hz (1B) Mode 2 Twisting at 707.81 Hz (1T) 

  
Mode 3 Bendingat 786.25 Hz (2B) Mode 3 Bendingat 821.56 Hz (2B) 
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7.5.5.2. Configuration 2 
The average velocity response spectrum for configuration 2 is provided in Figure 7.5-21, Figure 7.5-22 
and Figure 7.5-23. 

 

Figure 7.5-21 Average response spectrum of unconstrained hub and blade assembly in config. 2 

 

Figure 7.5-22 Average response spectrum of unconstrained config. 2 in vicinity of mode 1 

 

Figure 7.5-23 Average response spectrum of unconstrained config. 2 in vicinity of modes 2 and 3 
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Table 7.5-7 contains a selection of the operational mode shapes for configuration 2. 

Table 7.5-7 Unconstrained hub & blade assembly operational mode shapes for configuration 2 

Mode 1 Bending at 109.53 Hz (1B) Mode 1 Bending at 133.75 Hz (1B) 

  
Mode 1 Bending at 168.59 Hz (1B) Mode 2 Twisting at 708.44 Hz (1T) 

  
Mode 3 Bending at 788.91 Hz (2B) Mode 3 Bending at 812.66 Hz (2B) 
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7.5.5.3. Configuration 3 
The average response spectra for configuration 3 is presented in Figure 7.5-24, Figure 7.5-25 and 
Figure 7.5-26. 

 

Figure 7.5-24 Average response spectrum of unconstrained hub and blade assembly in config. 3 

 

Figure 7.5-25 Average response spectrum of unconstrained config. 3 in vicinity of mode 1 

 

Figure 7.5-26 Average response spectrum of unconstrained config. 3 in vicinity of modes 2 and 3 
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Table 7.5-8 illustrates a selection of the operational mode shapes obtained for configuration 3. 

Table 7.5-8 Unconstrained hub & blade assembly operational mode shapes for configuration 3 

Mode 1 Bending at 109.38 Hz (1B) Mode 1 Bending at 118.44 Hz (1B) 

  
Mode 1 Bending at 139.38 Hz (1B) Mode 1 Bending at 165.00 Hz (1B) 

  
Mode 2 Twisting at 652.50 Hz (1T) Mode 2 Twisting at 652.50 Hz (1T) 
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Mode 3 Bending at 790.31 Hz (2B) Mode 3 Bending at 808.44 Hz (2B) 
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7.5.5.4. Configuration 4 
The average response spectra for configuration 4 is presented in the following figures. 

 

Figure 7.5-27 Average response spectrum of unconstrained hub and blade assembly in config. 4 

 

Figure 7.5-28 Average response spectrum of unconstrained config. 4 in vicinity of mode 1 

 

Figure 7.5-29 Average response spectrum of unconstrained config. 4 in vicinity of modes 2 & 3 
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Table 7.5-9 illustrates a selection of the operational mode shapes obtained for configuration 4. 

Table 7.5-9 Unconstrained hub & blade assembly operational mode shapes for configuration 4 

Mode 1 Bending at 105.63Hz (1B) Mode 1 Bending at 109.38 Hz (1B) 

  
Mode 1 Bending at 122.50 Hz (1B) Mode 1 Bending at 136.88 Hz (1B) 

  
Mode 1 Bending at 160.00 Hz (1B) Mode 2 Twisting at 652.50 Hz (1T) 
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Mode 3 Bending at 686.88 Hz (2B) Mode 3 Bending at 697.50 Hz (2B) 

  
Mode 2 Twisting at 708.13 Hz (1T) Mode 3 Bending at 738.38 Hz (2B) 

  
Mode 3 Bending at 782.50 Hz (2B) Mode 3 Bending at 799.38 Hz (2B) 
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Combined Mode 1 and Mode 3 Bending at 937.5 Hz (1B and 2B) 
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7.5.6. E6 – Response Spectra of Individual Blades 
The response spectra of the individual blades to a hammer impact are presented in this section. 
Investigations were performed for all experimental configurations.  

The individual blades were positioned such that the leading edge of their tip were in line with the 
microphone during the hammer impact.  

Depending on the configuration certain blades were instrumented with SGs on the surface. The SG 
responses to the impacts on the individual blades were recorded (for all cases whether the SGs were 
present on the blade under investigation or not). 

The SGs were found to be sensitive to hammer impacts on adjacent non-instrumented blades. 

7.5.6.1. Configuration 1 
The response of three SGs, all present on blade 1, was measured during the investigation of 
configuration 1.  

 

Figure 7.5-30 Response spectra for blade 1 config. 1. (a) SG Spectra. (b) Pressure spectrum.  

 

Figure 7.5-31 Response spectra for blade 2 config. 1. (a) SG Spectra. (b) Pressure spectrum. 
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Figure 7.5-32 Response spectra for blade 3 config. 1. (a) SG Spectra. (b) Pressure spectrum. 

 

Figure 7.5-33 Response spectra for blade 4 config. 1. (a) SG Spectra. (b) Pressure spectrum.   

 

Figure 7.5-34 Response spectra for blade 5 config. 1. (a) SG Spectra. (b) Pressure spectrum.  
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7.5.6.2. Configuration 2 
Three SGs were instrumented during hammer impact modal analysis of blade and hub configuration 
2. Two SGs sensitive to mode 1 and 3 (bending modes 1 and 2) were recorded on blade 1. A SG present 
on blade 5 (sensitive to mode 1) was also recorded. 

 

Figure 7.5-35 Response spectra for blade 1 config. 2. (a) SG Spectra. (b) Pressure spectrum. 

 

Figure 7.5-36 Response spectra for blade 2 config. 2. (a) SG Spectra. (b) Pressure spectrum. 
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Figure 7.5-37 Response spectra for blade 3 config. 2. (a) SG Spectra. (b) Pressure spectrum. 

 

Figure 7.5-38 Response spectra for blade 4 config. 2. (a) SG Spectra. (b) Pressure spectrum. 

 

Figure 7.5-39 Response spectra for blade 5 config. 2. (a) SG Spectra. (b) Pressure spectrum. 
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7.5.6.3. Configuration 3 
Three SG responses were used to generate response spectra during the investigation of configuration 
3. The SGs were positioned on blades 1, 2 and 5. 

 

Figure 7.5-40 Response spectra for blade 1 config. 3. (a) SG Spectra. (b) Pressure spectrum.  

 

Figure 7.5-41 Response spectra for blade 2 config. 3. (a) SG Spectra. (b) Pressure spectrum. 
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Figure 7.5-42 Response spectra for blade 3 config. 3. (a) SG Spectra. (b) Pressure spectrum. 

 

Figure 7.5-43 Response spectra for blade 4 config. 3. (a) SG Spectra. (b) Pressure spectrum. 

 

Figure 7.5-44 Response spectra for blade 5 config. 3. (a) SG Spectra. (b) Pressure spectrum. 

  

Frequency (Hz)

0 100 200 300 400 500 600 700 800 900 1000

S
ig

na
l (

V
)

10 -4

10 -3

10 -2

10 -1
Response Spectra of SG Measurements for Blade 3 Configuration 3

SG1: Bending 1 on Blade 1

SG2: Bending 1 on Blade 5

SG3: Bending 1 on Blade 2X: 126.9

Y: 0.007145X: 112.5

Y: 0.004289

X: 101.9

Y: 0.003289

X: 768.8

Y: 0.001601

X: 788.1

Y: 0.003187

Frequency (Hz)

0 100 200 300 400 500 600 700 800 900 1000

P
re

ss
ur

e 
(P

a)

10 -4

10 -3

10 -2

10 -1

Response Spectrum of Pressure Measurements for Blade 3 Configuration 3

X: 126.3

Y: 0.02877 X: 147.5

Y: 0.01689

X: 253.1

Y: 0.007376

X: 661.9

Y: 0.009503

X: 788.1

Y: 0.08805

X: 915

Y: 0.01392

Frequency (Hz)

0 100 200 300 400 500 600 700 800 900 1000

S
ig

na
l (

V
)

10 -4

10 -3

10 -2

10 -1
Response Spectra of SG Measurements for Blade 4 Configuration 3

SG1: Bending 1 on Blade 1

SG2: Bending 1 on Blade 5

SG3: Bending 1 on Blade 2
X: 125.6

Y: 0.005819

X: 769.4

Y: 0.001846

X: 730

Y: 0.001696

X: 785

Y: 0.005332

Frequency (Hz)

0 100 200 300 400 500 600 700 800 900 1000

P
re

ss
ur

e 
(P

a)

10 -4

10 -3

10 -2

10 -1

Response Spectrum of Pressure Measurements for Blade 4 Configuration 3

X: 125

Y: 0.01546

X: 788.1

Y: 0.07651

X: 729.4

Y: 0.009696

X: 658.8

Y: 0.005872

X: 910

Y: 0.009853

Frequency (Hz)

0 100 200 300 400 500 600 700 800 900 1000

S
ig

na
l (

V
)

10 -4

10 -3

10 -2

10 -1
Response Spectra of SG Measurements for Blade 5 Configuration 3

SG1: Bending 1 on Blade 1

SG2: Bending 1 on Blade 5

SG3: Bending 1 on Blade 2X: 101.9

Y: 0.02899

X: 687.5

Y: 0.0009868X: 601.3

Y: 0.0006029

Frequency (Hz)

0 100 200 300 400 500 600 700 800 900 1000

P
re

ss
ur

e 
(P

a)

10 -4

10 -3

10 -2

10 -1

Response Spectrum of Pressure Measurements for Blade 5 Configuration 3

X: 204.4

Y: 0.02274

X: 101.9

Y: 0.03515

X: 585.6

Y: 0.003181

X: 687.5

Y: 0.00467

X: 790

Y: 0.004636

(a) 

(a) 

(a) 

(b) 

(b) 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 7 Appendices CB Church
   

  269 
 

7.5.6.4. Configuration 4 
Three SG responses were recorded during the investigation of configuration 4. A SG was present on 
blades 1, 2 and 5. 

 

Figure 7.5-45 Response spectra for blade 1 config. 4. (a) SG Spectra. (b) Pressure spectrum. 

 

Figure 7.5-46 Response spectra for blade 2 config. 4. (a) SG Spectra. (b) Pressure spectrum. 
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Figure 7.5-47 Response spectra for blade 3 config. 4. (a) SG Spectra. (b) Pressure spectrum. 

 

Figure 7.5-48 Response spectra for blade 4 config. 4. (a) SG Spectra. (b) Pressure spectrum. 

 

Figure 7.5-49 Response spectra for blade 5 config. 4. (a) SG Spectra. (b) Pressure spectrum. 
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7.5.7. E7 – Run-Up Resonance Detection 
Run-up investigations were only performed on the first three experimental configurations. 

7.5.7.1. Configuration 1 
SGs were applied to the surface of blade 1 in order to capture the response of the first three modes. 
The position of SG ‘Bending 1’ was optimised to capture blade 1’s first mode; the position of SG 
‘Bending 2’ was optimised to capture blade 1’s third mode and finally SG ‘Torsional 1’ was optimised 
to capture blade 1’s second mode. 

 

Figure 7.5-50 Ramp-up configuration 1 with 0 jets 

 

Figure 7.5-51 Ramp-up configuration 1 with 1 jet 

Rotational Speed (RPM)
200 400 600 800 1000 1200 1400

R
es

po
ns

e 
S

ig
na

l (
V

)

-0.1

-0.05

0

0.05

0.1

Ramp-Up Investigation Configuration 1 with 0 Jets

Bending 1

Bending 2

Torsional 1

X: 1012

Y: -0.1096

X: 976

Y: -0.09168

X: 803.3

Y: 0.04445

X: 1114

Y: 0.07404

Rotational Speed (RPM)

200 400 600 800 1000 1200 1400

R
es

po
ns

e 
Si

gn
al

 (V
)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Ramp-Up Investigation Configuration 1 with 1 Jet

Bending 1

Bending 2

Torsional 1

X: 594

Y: 0.4081

X: 647.3

Y: -0.3158

X: 703.6

Y: 0.276

X: 965.7

Y: -0.3956

X: 1107

Y: 0.3664

X: 1300

Y: -0.2792

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 7 Appendices CB Church
   

  272 
 

 

Figure 7.5-52 Ramp-up configuration 1 with 2 jets 

 

Figure 7.5-53 Ramp-up configuration 1 with 4 jets 
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7.5.7.2. Configuration 2 
Two SGs were measured during the second run-up investigation. SG ‘Blade 1’ was optimised to capture 
the first mode of blade 1; similarly SG ‘Blade 5’ was optimised to capture the first mode of blade 5. 
Blade 5 is changed to ‘damaged blade 1’ in configuration 2. 

 

Figure 7.5-54 Ramp-up configuration 2 with 0 jets 

 

Figure 7.5-55 Ramp-up configuration 2 with 1 jet 
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Figure 7.5-56 Ramp-up configuration 2 with 2 jets 

 

Figure 7.5-57 Ramp-up configuration 2 with 4 jets 
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7.5.7.3. Configuration 3 
Three SG responses were measured during the third run-up investigation. SG ‘Blade 1’ was positioned 
to capture mode 1 on blade 1 (healthy blade); SG ‘Blade 5’ was positioned to capture mode 1 on blade 
5 (damaged blade 1); and finally SG ‘Blade 2’ was positioned to capture mode 1 on blade 2 (damaged 
blade 2). 

 

Figure 7.5-58 Ramp-up configuration 3 with 0 jets 

 

Figure 7.5-59 Ramp-up configuration 3 with 1 jet 
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Figure 7.5-60 Ramp-up configuration 3 with 2 jets 

 

Figure 7.5-61 Ramp-up configuration 3 with 4 jets 

  

Rotational Speed (RPM)

200 400 600 800 1000 1200 1400

R
es

po
ns

e 
S

ig
na

l (
V

)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Ramp-Up Investigation Configuration 3 with 2 Jets

Blade 1 & 0.4X

Blade 5 & 0.3X

Blade 2

X: 428.4

Y: 0.1696

X: 569.5

Y: 0.1926

X: 489.7

Y: -0.1641

X: 683.6

Y: 0.1837

X: 855.7

Y: -0.1975

X: 973.7

Y: 0.1237

X: 1147

Y: 0.224

Rotational Speed (RPM)

200 400 600 800 1000 1200 1400

R
es

po
ns

e 
S

ig
na

l (
V

)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Ramp-Up Investigation Configuration 3 with 4 Jets

Blade 1 & 0.4X

Blade 5 & 0.3X

Blade 2

X: 1267

Y: 0.1321

X: 1023

Y: 0.1272

X: 966.1

Y: -0.1448

X: 848.4

Y: 0.1242

X: 779.6

Y: -0.1263

X: 642

Y: 0.0859

X: 572.1

Y: 0.1265

X: 515.3

Y: -0.1344

X: 486.6

Y: 0.1048

X: 430.9

Y: -0.0837

X: 388.9

Y: 0.07658

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 7 Appendices CB Church
   

  277 
 

7.5.8. E8 – Signal Processing Methodology 
Various signal processing (SP) techniques were used to transform the measured data into different 
forms for later analysis. The first signal processing steps are outlined in Figure 7.5-62. 

 

Figure 7.5-62 Tachometer compensation and signal cropping 

The signals TACHO, PRES, BTT 1, BTT2 and SG refer to the measured tachometer, pressure, eddy 
current proximity probes 1 and 2, and the strain gauge (SG) signals respectively. All signals undergo 
an analogue to digital conversion during measurement by the data acquisition (DAQ) system. 

The tachometer and eddy current probe measurements were for reference and SP purposes. They 
required pre-processing in order to convert them from noisy voltage recordings to individual 
tachometer and blade passing times. These processes are designated ‘CLEAN’ in the flow chart. 

The tachometer signal required geometry compensation because it was captured using an optical 
sensor and zebra tape arrangement. Compensation was achieved by using the algorithm developed 
by Resor et al. (Resor et al., 2005). The compensation algorithm is provided in section ‘7.1.4 A4 – Shaft 
Encoder Geometry Compensation Algorithm’.  

Finally all of the time domain signals were then be cropped to full revolutions using the tachometer 
pulse times and number of pulses per revolution (PPR). Everything before the first pulse and after the 
final once per revolution (OPR) pulse was deleted from each signal. The sampling frequency and 
cropped signal length could then be used to generate a time signal. 

No further SP was required on the SG signal, therefore the SG and time signals were then passed 
through a fast Fourier transform (FFT) algorithm in order to obtain the SG frequency response 
spectrum. 
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The following SP steps are outlined in Figure 7.5-63. 

 

Figure 7.5-63 BTT averaging, order tracking and synchronous averaging processes 

The first SP step shown in the diagram was to estimate the times at which the blades pass the 
microphone (BPASS) and the times centered between the blades passing times (CUT). Assuming that 
the leading edge of the blade tip was captured by sensor BTT 1 and the lagging edge was captured by 
sensor BTT 2, the blade passing estimates and cut estimates could be obtained by using Equations 
[7.5.1] and [7.5.2] respectively. In the equations BTT1 is a vector which contains the times at which the 
blades pass sensor BTT 1 and similarly BTT2 is a vector containing the times at which the blades pass 
sensor BTT 2. These times are obtained in the SP step labelled ‘BTT AVG’. 

 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
𝐵𝐵𝐵𝐵𝑇𝑇1 + 𝐵𝐵𝐵𝐵𝑇𝑇2

2
 [7.5.1] 

 𝐶𝐶𝐶𝐶𝑇𝑇𝑛𝑛 =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛+1 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆𝑛𝑛

2
 [7.5.2] 

The vector lengths were the same as the signals were cropped to full revolutions only using the 
common tachometer signal. Further, for each revolution the individual blades passed sensors BTT 1 
and BTT 2 only once. 

The tachometer signal was used to order track (OT) the pressure, blade passing and cut signals. The 
OT process supplies linearly resampled signals (with a certain number of chosen samples per 
revolution). Similarly the tachometer signal was used to synchronously average (SA) the pressure, 
blade passing and cut signals.  

The synchronous averaging process supplies the average signal form for a single revolution, averaged 
over all revolutions. The OT signals were also synchronously averaged. Due to the OT process there 
were a specific number of sample points per revolution making the synchronous averaging process 
simple to implement. The results of this step are two data sets, one set contains OT and synchronously 
averaged data (OT & SA) and the second which only contains synchronously averaged data (SA). 
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In a separate step the eddy current signals, BTT 1 and BTT 2, were compared with stationary eddy 
current measurements in order to identify the blade passing order (used to differentiate between the 
individual blades given a particular assembly configuration). This process is outlined in Figure 7.5-64. 

 

Figure 7.5-64 Blade passing order 

The BTT signals obtained after the cropping process were used. There after the synchronous averaging 
process was used to obtain a robust estimate of the measured eddy current voltages over a single 
revolution. The voltage peaks were related to individual passing blades, the synchronous averaging 
process supplied average passing peaks which could be isolated. These peak measurements were then 
compared to the stationary eddy current measurements. The stationary eddy current measurements 
are available in section ‘7.5.4 E4 – Relative Tip Distances’. Finally the order in which the blades pass 
the microphone, for each individual measurement, could be inferred via the comparison. 

The synchronously averaged pressure signals could then be used to obtain the stochastic signal, this 
process is outlined in Figure 7.5-65. This was done for both the order tracked and SA & OT data. 

 

Figure 7.5-65 Process to obtain stochastic signal 

First each tachometer signal was used to rebuild a full time length synchronously averaged signal. The 
tachometer signal provided the actual data lengths for each revolution and so the synchronously 
averaged data could simply be stretched according to the revolution data length by means of an 
interpolation algorithm. The full time length synchronously averaged signal was termed the 
deterministic signal (DET in the diagram). Obtaining the stochastic signal (STO in the diagram) was a 
simple subtraction of the deterministic signal from the full pressure signal. Once again this process is 
performed on both data sets, namely the OT & SA data set as well as the SA data set. 

The blade passing (BPASS) and cut (CUT) times could then be used to split the data sets into signals 
about individual blades. It was also used to provide as signal sets isolated ahead of the moving blades 
(HP blade side) and behind the moving blades (LP blade side) (once again assuming that the 
turbomachine is operating as a compressor and not a turbine).  

As the blade tips passed the microphone the pressure ahead of each blade tip was captured first 
followed by the pressure behind each individual blade tip. The splitting process utilised the sigmoidal 
windowing process outlined in the theoretical development in order to split the signal. 

When viewed in the time domain there was a pressure drop associated with each blade passing the 
microphone because the system was operating as a compressor. With time running from left to right 
on the ordinate axis, and signal windowing boundaries located at the estimated blade passing times, 
the signal to the left (in the time domain) of the blade passing times were associated with the HP signal 
portion (for each passing blade). Similarly the signals to the right of the blade passing times were 
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associated with the LP signal portion (for each passing blade). Thus these halves of the individual blade 
passing waves were terms the left and right sides (‘LEFT’ and ‘RIGHT’ in the diagram). The splitting 
procedure is provided in Figure 7.5-66. 

 

Figure 7.5-66 Splitting procedure 

In the diagram the signals split about individual blades are differentiated with the subscript ‘B’. 
Similarly signals split into the left and right halves have subscripts ‘L’ and ‘R’ respectively. The 
subscripts ‘BL’ and ‘BR’ refer to data sets obtained for individual blade passing waves which have been 
split into left and right halves about the blade passing times. 

A total of 30 additional data sets were created using this process, 15 from the OT & SA data as well as 
15 from the SA data. The splitting procedure was also be performed on the synchronously averaged 
data (average waveform over an individual revolution) in order to find the average individual blade 
passing waveform. Once again the sigmoidal windowing function was used to perform this operation. 

Given the order in which the blades pass the microphone, from a previous step, it was possible to 
reorder the data such that blade 1 always passes the microphone first in the data set. The first SP step 
ensure that only full revolutions of data were present in the signal from the cropping process. In this 
way datasets from different measurements could be directly compared, blade for blade, as the modal 
behaviour of each individual blades was known from the experimental characterisation. This 
reordering process has not been shown. 

The final SP procedure is spectral analysis and ensemble averaging of the spectra. This process had to 
account for the effective frequency range given the measurement instrumentation (3 Hz to 51.2 kHz). 
This process is outlined in Figure 7.5-67. 

 

Figure 7.5-67 Fourier transform and ensemble averaging process 
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All signals, separated and not, were moved into the frequency domain via the fast Fourier transform 
(FFT). The locations of the deterministic peaks were then obtained in order to perform the ensemble 
averaging process on the different signals. It is about these deterministic peaks that the signals can be 
averaged in the frequency domain using the procedure developed by Forbes et al. (Forbes and Randall, 
2013). This resulted in full pressure and stochastic pressure ensemble averages, from both OT and 
non-OT sets, which can be compared for different measurements. 

A summary of the main signal processes performed on the measured signals is provided here: 

1. Measure/Simulate casing pressure signal (CPS) along with associated tachometer, BTT signals 
and SG signals 

2. Perform geometry compensation on the tachometer signal 
3. Crop all time domain signals to full revolutions only 
4. Perform FFT on SG signal 
5. Determine blade passing and cut time locations 
6. Find blade passing order 
7. Order track all signals 
8. Synchronously average all signals (both order tracked and not) 
9. Build full length deterministic signals from synchronously averaged signals 
10. Subtract deterministic signal from full pressure signal to obtain stochastic signals 
11. Split CPS signals using the sigmoidal windowing function 

a. Into left and right halves 
b. About individual blades 
c. About individual blades and into left and right halves for each blade 

12. Perform FFT on pressure, deterministic and stochastic signals 
13. Find deterministic peaks from deterministic frequency response spectra 
14. Use deterministic peaks to ensemble average pressure and stochastic signals 
15. Repeat steps 1 through 14 for all measurements 
16. Generate ensemble average waterfall plots from all ensemble averages 

Due to multiple measurements being taken at a range of operational speeds the spectra and ensemble 
averages from different speeds can be combined into waterfall plots. Trends in the data may be found 
using this technique. All the signal processes outlined provide a range of time and frequency domain 
information which can be evaluated and compared.  

The SP also supplies various derived signals which can be used in the experimental evaluation of the 
inverse problem. It is important to note that not all of the SP results will be investigated or commented 
on, the procedure was simply followed in order to provide a library of different signals from raw 
measurements. 
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7.6. Appendix F – Steady Measurement Plan 
The following tables contain the experimental measurement plans for configurations 1 through 4. 
Measurement speeds were chosen at and about resonance of interest. The resonance speeds were 
experimentally estimated using run-up investigations (see previous appendix). The resonance speeds, 
obtained from individual blades have been designated H for the healthy blade (blade 1 config. 1), D1 
for damaged blade type 1 (blade 5 config 2) and D2 for damaged blade type 2 (blade 2 config 3). 

Table 7.6-1 Steady measurement plan for blade and hub assembly configuration 1 

Number of Jets Observation Speed (RPM) EO Notes 
0 200, 800 N/A Reference 
1 574, 584, 589, 594*, 599, 604, 614. 13  
1 623, 633, 638, 643*, 648, 653, 663. 12  
1 948, 955, 961, 966*, 971, 975, 976, 986. 8  
2 626, 635, 641, 646*, 651, 656, 666. 6  
2 948, 957, 963, 968*, 973, 978, 988. 4  
4 627, 637, 642, 647*, 652, 657, 667. 3  
4 947, 957, 962, 967*, 972, 977, 987. 2  

*Resonance speed of H. 

Table 7.6-2 Steady measurement plan for blade and hub assembly configuration 2 

Number of Jets Observation Speed (RPM) Notes 
0 200, 800 Reference 
1 593*, 608, 622#, 635, 648*, 670, 692#, 698, 704*, 742, 760, 780#, 

800, 837, 893#, 929, 964*, 1003, 1042#, 1075, 1107*, 1181, 1255*#, 
1278, 1301*. 

 

2 618#, 632, 645*, 712, 758, 778*#, 798, 872, 965*, 1006, 1046#, 1169, 
1292*. 

 

4 387#, 436, 485*, 500, 515#, 580, 645*, 712, 778#, 870, 962*, 996, 
1030. 

 

*Resonance speed of blade H. # Resonance speed for blade D1.  

Table 7.6-3 Steady measurement plan for blade and hub assembly configuration 3 

Number of Jets Observation Speed (RPM) Notes 
0 200, 800 Reference 
1 566#, 599, 622#~, 643, 692#, 771, 861*~, 962*, 980~, 1037#, 1153~, 

1247, 1290*~. 
 

2 572~, 617#, 682~, 769, 858~, 961*, 1037, 1149~, 1289*.  
4 486*, 519, 571~, 638, 781#, 849~, 897, 962*, 1014.  

*Resonance speed of blade H. # Resonance speed for blade D1.  ~Resonance speed for blade D2. 

Table 7.6-4 Steady measurement plan for blade and hub assembly configuration 4 

Number of Jets Observation Speed (RPM) Notes 
0 200, 800 Reference 
1 454, 515, 568#, 594*, 621#~, 641, 684~, 761~, 779#, 961*, 1103*, 

 
 

2 512#, 570~, 618#, 642*, 857~, 965*, 1042#, 1148~, 1295*.  
4 384#, 431~, 479*, 516#, 572~, 647*, 779#, 850~, 968*.  

*Resonance speed of blade H. # Resonance speed for blade D1.  ~Resonance speed for blade D2. 
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7.7. Appendix G – SG Response Results 
7.7.1. G1 – Waterfall Plots of Full SG Responses 
7.7.1.1. Configuration 1 

 

Figure 7.7-1 Waterfall plot of SG responses measured on blade 1 configuration 1 under 1 jet excitation conditions 

 

Figure 7.7-2 Frequency-Power view of SG waterfall plot for configuration 1 under 1 jet excitation 

 

Figure 7.7-3 Frequency-Angular velocity view of SG waterfall plot for configuration 1 under 1 jet excitation 
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Figure 7.7-4 Waterfall plot of SG responses measured on blade 1 configuration 1 under 2 jet excitation conditions 

 

Figure 7.7-5 Frequency-Power view of SG waterfall plot for configuration 1 under 2 jet excitation 

 

Figure 7.7-6 Frequency-Angular velocity view of SG waterfall plot for configuration 1 under 2 jet excitation 
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Figure 7.7-7 Waterfall plot of SG responses measured on blade 1 configuration 1 under 4 jet excitation conditions 

 

Figure 7.7-8 Frequency-Power view of SG waterfall plot for configuration 1 under 2 jet excitation 

 

Figure 7.7-9 Frequency-Angular velocity view of SG waterfall plot for configuration 1 under 4 jet excitation 
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7.7.1.2. Configuration 2 

 

Figure 7.7-10 Waterfall plot of SG responses measured on blade 5 configuration 2 under 1 jet excitation conditions 

 

Figure 7.7-11 Frequency-Power view of SG waterfall plot for configuration 2 under 1 jet excitation 

 

Figure 7.7-12 Frequency-Angular velocity view of SG waterfall plot for configuration 2 under 1 jet excitation 
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Figure 7.7-13 Waterfall plot of SG responses measured on blade 5 configuration 2 under 2 jet excitation conditions 

 

Figure 7.7-14 Frequency-Power view of SG waterfall plot for configuration 2 under 2 jet excitation 

 

Figure 7.7-15 Frequency-Angular velocity view of SG waterfall plot for configuration 2 under 2 jet excitation 
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Figure 7.7-16 Waterfall plot of SG responses measured on blade 5 configuration 2 under 4 jet excitation conditions 

 

Figure 7.7-17 Frequency-Power view of SG waterfall plot for configuration 2 under 4 jet excitation 

 

Figure 7.7-18 Frequency-Angular velocity view of SG waterfall plot for configuration 2 under 4 jet excitation 
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7.7.2. G2 – Waterfall Plots of SG Forcing Function Spectra 
7.7.2.1. Configuration 1 

 

Figure 7.7-19 Forcing function waterfall plot for configuration 1 under 1 jet excitation conditions 

 

Figure 7.7-20 Forcing function waterfall plot for configuration 1 under 2 jet excitation conditions 
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Figure 7.7-21 Forcing function waterfall plot for configuration 1 under 4 jet excitation conditions 

7.7.2.2. Configuration 2 

 

Figure 7.7-22 Forcing function waterfall plot for configuration 2 under 1 jet excitation conditions 
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Figure 7.7-23 Forcing function waterfall plot for configuration 2 under 2 jet excitation conditions 

 

Figure 7.7-24 Forcing function waterfall plot for configuration 2 under 4 jet excitation conditions
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7.7.3.  G3 – SG Forcing Function Fitting Results 
The following table contains the results obtained during the fitting of the SG derived forcing function results. A nonlinear constrained optimisation problem 
was set up to fit the forcing function model to the SG measurement derived forcing form. The mean square error (MSE) between the absolute of the model 
and the absolute of the measurement derived results was minimised over. The response magnitude of the different excitation schemes (number of jets) 
differed, therefore the MSE is not comparable between excitation schemes. The coefficient of determination, 𝑅𝑅2, provides a goodness of fit between the 
model and the experimentally derived results and so may be used to compare between excitation schemes. 

Table 7.7-1 SG based forcing function fitting results 

Data Set Number 
of Items 

Mean 
MSE 

Std. Dev. 
MSE 

Min 
MSE 

Max 
MSE 

Mean 𝑹𝑹𝟐𝟐 Std. Dev. 
𝑹𝑹𝟐𝟐 

Min 𝑹𝑹𝟐𝟐 Max 𝑹𝑹𝟐𝟐 Mean 
iterations 

Mean Function 
Count 

Whole 285 2.2004 1.668 0.3508 7.2315 0.3694 0.2574 0 0.7974 49.6877 500.4386 
Config. 1 135 2.2226 0.7937 0.8114 4.0330 0.3756 0.2725 0 0.7974 50.8 517.5481 
Config. 2 150 2.1804 1.4240 0.3508 7.2315 0.3637 0.2437 0 0.6985 48.6867 485.0400 
Jets 1 133 2.8874 1.0451 1.6582 7.2315 0.6111 0.0767 0.2413 0.7974 22.0977 185.1880 
Jets 2 67 2.0646 0.9446 1.1292 4.6042 0.2765 0.1174 0 0.4967 39.7164 391.2687 
Jets 4 85 1.2324 0.6895 0.3508 2.6501 0.0642 0.1014 0 0.3519 100.7176 1079.80 
Config. 1 Jets 1 62 2.7634 0.4415 1.6582 3.7201 0.6352 0.0479 0.5220 0.7974 21.3226 180.6935 
Config. 1 Jets 2 31 1.9340 0.9329 1.1292 4.0330 0.3048 0.1456 0 0.4967 44.8065 451.9355 
Config. 1 Jets 4 42 1.6373 0.5253 0.8114 2.6501 0.0447 0.0771 0 0.2605 98.7381 1063.20 
Config. 2 Jets 1 71 2.9957 1.3654 1.8335 7.2315 0.5901 0.0902 0.2413 0.6985 22.7746 189.1127 
Config. 2 Jets 2 36 2.1771 0.9532 1.1434 4.6042 0.2522 0.0807 0.0941 0.4374 35.3333 339.0278 
Config. 2 Jets 4 43 0.8369 0.5979 0.3508 2.5726 0.0833 0.1183 0 0.3519 102.6512 1095.90 

The best coefficient of determination was found for configuration 1 under 1 jet excitation operating at 593.95 RPM (value of 0.7974). Within the same set 
(configuration 1 under 1 jet excitation) the worst fit was found for the measurement taken at 961.12 RPM (with a coefficient of determination of 0.5220). 
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7.7.4. G4 – Multi-Start SG Blade Transfer Function Fitting Results 
The results from fitting the blade transfer function model to the filtered and smoothed SG response spectra using 1000 initial guesses generated from a Latin 
hypercube is provided in Table 7.7-2. 

Table 7.7-2 Multi-start SG blade transfer function fitting results 

Blade 1 Configuration 1 Blade 5 Configuration 2 
Item Mean Std. Dev. Max Min Item Mean Std. Dev. Max Min 
𝐴𝐴1  58.7219 9.9258 107.5351 0.1 𝐴𝐴1  68.8764 12.5013 127.3938 0.1 
𝐴𝐴2  26.1586 20.9280 211.6096 0.1 𝐴𝐴2  26.9515 20.9488 215.1739 0.1 
𝐴𝐴3  163.9035 40.7130 207.6449 0.1 𝐴𝐴3  207.5299 91.2715 300.0000 0.1 
𝑓𝑓𝑛𝑛1 (Hz) 128.6089 1.7033 134.8707 103.3669 𝑓𝑓𝑛𝑛1 (Hz) 103.0794 2.2972 1350 91.3985 
𝑓𝑓𝑛𝑛2 (Hz) 755.9164 37.7755 780 650 𝑓𝑓𝑛𝑛2 (Hz) 694.7925 23.0866 780 650.0001 
𝑓𝑓𝑛𝑛3 (Hz) 813.7635 78.8885 1343.50 785 𝑓𝑓𝑛𝑛3 (Hz) 825.0826 90.7880 1343.4 785.0000 
𝜂𝜂1  0.0147 0.0040 0.350 0.0000 𝜂𝜂1  0.0350 0.0002 0.350 0.0294 
𝜂𝜂2  0.0146 0.0089 0.350 0.0001 𝜂𝜂2  0.0230 0.0078 0.350 0.0024 
𝜂𝜂3  0.7243 0.1392 0.9999 0.0117 𝜂𝜂3  0.8378 0.3308 0.9999 0.0173 
MSE 6.2649e-09 1.1608e-08 1.2352e-07 2.9361e-09 MSE 1.1459e-08 2.4136e-08 1.8766e-07 5.3583e-09 
𝑅𝑅2  0.9440 0.0934 0.9735 0 𝑅𝑅2  0.9238 0.1050 0.9429 0 
Iter. 163.2440 18.6413 296 73 Iter. 144.2900 13.8475 238 71 
Func. Evals. 1674.30 196.4343 3009 748 Func. Evals. 1471.20 143.7380 2424 724 
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7.7.5. G5 – Exemplar SG Response and Forcing Function Forms 
7.7.5.1. Configuration 1: SG Derived Data Measured on Blade 1 

 

Figure 7.7-25 SG response obtained for operation at approximately EO 13 under 1 jet excitation 

 

Figure 7.7-26 Extracted SG forced response form for operation at approximately EO 13 under 1 jet excitation 

 

Figure 7.7-27 SG response for operation at approximately 5 RPM above EO 8 under 1 jet excitation 

 

Figure 7.7-28 Extracted SG forced response form for operation at approximately 5 RPM above EO 8 under 1 jet excitation 
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Figure 7.7-29 SG response for operation at approximately EO 6 under 2 jet excitation 

 

Figure 7.7-30 Extracted SG forced response form for operation at approximately EO 8 under 2 jet excitation 

 

Figure 7.7-31 SG response for operation at approximately 10 RPM below EO 4 under 2 jet excitation 

 

Figure 7.7-32 Extracted SG forced response form for operation at approx. 10 RPM below EO 4 under 2 jet excitation 
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Figure 7.7-33 SG response for operation at approximately 20 RPM above EO 3 under 4 jet excitation 

 

Figure 7.7-34 Extracted SG forced response form for operation at approx. 5 RPM above EO 8 under 4 jet excitation 

 

Figure 7.7-35 SG response for operation at approximately EO 2 under 4 jet excitation 

 

Figure 7.7-36 Extracted SG forced response form for operation at approx. EO 2 under 4 jet excitation 
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7.7.5.2. Configuration 2: SG Derived Data Measured on Blade 5 

 

Figure 7.7-37 SG response of blade 5 at resonance of blade 1 at approximately 648 RPM under 1 jet excitation 

 

Figure 7.7-38 Extracted SG forced response form of blade 5 at approximately 648 RPM under 1 jet excitation 

 

Figure 7.7-39 SG response of blade 5 at resonance of blade 5 at approximately 1042 RPM under 1 jet excitation 

 

Figure 7.7-40 Extracted SG forced response form of blade 5 at approximately 1042 RPM under 1 jet excitation  
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Figure 7.7-41 SG response of blade 5 at resonance of blade 5 at approximately 619 RPM under 2 jet excitation 

 

Figure 7.7-42 Extracted SG forced response form of blade 5 at approximately 619 RPM under 2 jet excitation 

 

Figure 7.7-43 SG response of blade 5 at resonance of blade 1 at approximately 1292 RPM under 2 jet excitation 

 

Figure 7.7-44 Extracted SG forced response form of blade 5 at approximately 1292 RPM under 2 jet excitation 
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Figure 7.7-45 SG response of blade 5 at resonance of blade 1 at approximately 486 RPM under 4 jet excitation 

 

Figure 7.7-46 Extracted SG forced response form of blade 5 at approximately 486 RPM under 4 jet excitation 

 

Figure 7.7-47 SG response of blade 5 at resonance of blade 5 at approximately 778 RPM under 4 jet excitation 

 

Figure 7.7-48 Extracted SG forced response form of blade 5 at approximately 778 RPM under 4 jet excitation  
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7.8. Appendix H – Pressure Results 
7.8.1. H1 – Average Pressure Waveforms 
7.8.1.1. Configuration 1 

 

Figure 7.8-1 Average pressure waveform for configuration 1 under 1 jet excitation 

 

Figure 7.8-2 Average pressure waveform for configuration 1 under 2 jet excitation 

 

Figure 7.8-3 Average pressure waveform for configuration 1 under 4 jet excitation 
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7.8.1.2. Configuration 2 

 

Figure 7.8-4 Average pressure waveform for configuration 2 under 1 jet excitation 

 

Figure 7.8-5 Average pressure waveform for configuration 2 under 2 jet excitation 

 

Figure 7.8-6 Average pressure waveform for configuration 2 under 4 jet excitation 
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7.8.1.3. Configuration 3 

 

Figure 7.8-7 Average pressure waveform for configuration 3 under 1 jet excitation 

 

Figure 7.8-8 Average pressure waveform for configuration 3 under 2 jet excitation 

 

Figure 7.8-9 Average pressure waveform for configuration 3 under 4 jet excitation 
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7.8.1.4. Configuration 4 

 

Figure 7.8-10 Average pressure waveform for configuration 4 under 1 jet excitation 

 

Figure 7.8-11 Average pressure waveform for configuration 4 under 2 jet excitation 

 

Figure 7.8-12 Average pressure waveform for configuration 4 under 4 jet excitation 
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7.8.1.5. Comparison of Average Pressure Distributions 
7.8.1.5.1. 1 Jet Excitation 

 

Figure 7.8-13 Normalised average pressure for 1 jet excitation 

 

 

 

Figure 7.8-14 Individual normalised average pressures. (a) Blade 1. (b) Blade 2. (c) Blade 3. (d) Blade 4. 9 (e) Blade 5. 
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7.8.1.5.2. 2 Jet Excitation 

 

Figure 7.8-15 Normalised average pressure for 2 jet excitation 

 

 

 

Figure 7.8-16 Individual normalised average pressures. (a) Blade 1. (b) Blade 2. (c) Blade 3. (d) Blade 4. 9 (e) Blade 5.  
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7.8.1.5.3. 4 Jet Excitation 

 

Figure 7.8-17 Normalised average pressure for 2 jet excitation 

 

 

 

Figure 7.8-18 Individual normalised average pressures. (a) Blade 1. (b) Blade 2. (c) Blade 3. (d) Blade 4. 9 (e) Blade 5.  
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7.8.2. H2 – Variance Heat Maps for Average Wave Forms 
The variance heat maps between the individual average blade wave forms can be seen in Table 7.8-1, 
Table 7.8-2 and Table 7.8-3. 

Table 7.8-1 Variance heat map in average wave form about blades given 1 Jet excitation 

Config. Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 
Config. 1/Config. 2 0.000601 0.000734 0.001022 0.001308 0.000872 
Config. 1/Config. 3 0.000724 0.000517 0.001155 0.000912 0.000453 
Config. 1/Config. 4 0.000469 0.000602 0.000861 0.000659 0.002598 
Config. 2/Config. 3 8.65E-05 0.000378 0.000168 0.000217 0.001657 
Config. 2/Config. 4 0.000803 0.001374 0.00049 0.000551 0.000886 
Config. 3/Config. 4 0.000814 0.000699 0.000467 0.000523 0.004033 

Table 7.8-2 Variance heat map in average wave form about blades given 2 Jet excitation 

Config. Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 
Config. 1/Config. 2 0.000838 0.001702 0.000968 0.000801 0.001681 
Config. 1/Config. 3 0.003585 0.003461 0.003972 0.003752 0.003437 
Config. 1/Config. 4 0.000868 0.00205 0.00121 0.001032 0.001989 
Config. 2/Config. 3 0.002981 0.002475 0.003152 0.002873 0.00296 
Config. 2/Config. 4 0.000194 0.000237 0.000318 0.000451 0.000225 
Config. 3/Config. 4 0.002889 0.002789 0.003216 0.00317 0.003507 

Table 7.8-3 Variance heat map in average wave form about blades given 4 Jet excitation 

Config. Blade 1 Blade 2 Blade 3 Blade 4 Blade 5 
Config. 1/Config. 2 0.000429 0.000496 0.000587 0.000751 0.001134 
Config. 1/Config. 3 0.000397 0.000486 0.000307 0.000349 0.000717 
Config. 1/Config. 4 0.000813 0.001036 0.000941 0.000742 0.001244 
Config. 2/Config. 3 0.000545 0.000431 0.000285 0.00024 0.001967 
Config. 2/Config. 4 0.000121 0.000216 0.00014 0.000125 9.19E-05 
Config. 3/Config. 4 0.000862 0.000509 0.000464 0.000362 0.001985 
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7.8.3. H3– Waterfall Plots of Synchronously Averaged Configuration 1 Pressure Signals 

 

Figure 7.8-19 Waterfall plot of synchronously averaged pressure wave forms for configuration 1 under 1 jet excitation 

 

Figure 7.8-20 Waterfall plot of synchronously averaged pressure wave forms for configuration 1 under 2 jet excitation 

 

Figure 7.8-21 Waterfall plot of synchronously averaged pressure wave forms for configuration 1 under 4 jet excitation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 7 Appendices CB Church
   

  309 
 

7.8.4. H4 – Selected Pressure Range Plots and Linear Fit Table 
The following plots contains pressure range fits. Best and worst case fits have been included. 

 

Figure 7.8-22 Pressure range and linear fit for configuration 1 under 1 jet excitation 

 

Figure 7.8-23 Pressure range and linear fit for configuration 2 under 1 jet excitation 

 

Figure 7.8-24 Pressure range and linear fit for configuration 2 under 1 jet excitation 

Angular Velocity (RPM)

550 600 650 700 750 800 850 900 950 1000

Pr
es

su
re

 R
an

ge
 (P

a)

200

250

300

350

400

450

500

550

600

Pressure Range and Linear Fit for Configuration 1

 With 1 Jet Excitation and an R 2  Value of 0.89

Pressure Range Data Point

Linear Fit: y = (0.584)x+(-30.65)

Angular Velocity (RPM)

600 700 800 900 1000 1100 1200 1300

P
re

ss
ur

e 
R

an
ge

 (P
a)

200

300

400

500

600

700

800

Pressure Range and Linear Fit for Configuration 2

 With 1 Jet Excitation and an R 2  Value of 0.83

Pressure Range Data Point

Linear Fit: y = (0.453)x+(67.749)

Angular Velocity (RPM)

600 700 800 900 1000 1100 1200 1300

Pr
es

su
re

 R
an

ge
 (P

a)

50

100

150

200

250

300

Pressure Range and Linear Fit for Configuration 2

 With 2 Jet Excitation and an R 2  Value of 0.98

Pressure Range Data Point

Linear Fit: y = (0.269)x+(-85.471)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 7 Appendices CB Church
   

  310 
 

 

Figure 7.8-25 Pressure range and linear fit for configuration 2 under 1 jet excitation 

 

Figure 7.8-26 Pressure range and linear fit for configuration 4 under 1 jet excitation 

Table 7.8-4 contains an evaluation of all of the linear fits for the various configurations and excitation 
schemes. 

Table 7.8-4 Evaluation of linear fit to pressure range data 

Jets ↓ Config. → 1 2 3 4 Mean  Std. Dev. 
1 0.89 0.83 0.93 0.8 0.863 0.051 
2 0.97 0.98 0.98 0.98 0.978 0.004 
4 0.97 0.99 0.97 0.99 0.980 0.010 
Mean 0.943 0.933 0.960 0.923 0.940 0.022 
Std. Dev. 0.038 0.073 0.022 0.087 0.055 0.021 
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7.8.5. H5 – Selected Phase Modulation Due to Forced Response Plots 

 

Figure 7.8-27 Change in angular displacement between blades 2 and 3 in configuration 1 with 1 jet excitation 

 

Figure 7.8-28 Change in angular displacement between blades 5and 1 in configuration 2 with 2 jet excitation 

 

Figure 7.8-29 Change in angular displacement between blades 5and 1 in configuration 2 with 4 jet excitation 
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