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SUMMARY
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Residential demand response (RDR) is one of the demand side management (DSM) programs

for smart grid applications that are designed to enable utility companies to manage the user-

side electrical loads and also for consumers to voluntarily lower their demand. Instead of

adding more generators to the electrical power system, RDR programs pay residential energy

users to reduce consumption. Due to the complex interactions between residential custom-

ers and the power utility companies; in this thesis, RDR is studied using an optimization

approach for the reason that optimization of energy consumption, with consequent cost re-

duction, is among the primary problems of the present and future smart grid. In this thesis

optimal control models are formulated to study household energy management under time-

of-use (TOU) electricity pricing strategy.

The initial optimal control mathematical model is developed where consumers attempt to

find the best way to schedule their household electrical resources depending on the tariff

provided by the utility and the incentive offered during peak times. Under such a setting,

whenever customers have enough transferable appliances, significant energy cost savings can

be achieved with proper modelling of appliance usage in a household. Consumer behaviour
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plays a crucial role in ensuring that RDR is achieved. It has been discovered in this thesis

that; inconvenience, incentive, budget and coordination of appliances affect consumer’s energy

consumption behaviour. Other areas that need attention in order to further enhance the

solutions of the research question are investigated. It has been shown that by incorporating

the storage and photovoltaic (PV) generator the consumer can increase cost savings and

reduce their electricity peak consumption further as well as the total energy drawn from

the grid. Insights on the complexity of the optimization problem are provided, to allow

customers to better determine the trade-off between complexity, cost, and the need to schedule

their energy resources. The derived models provide a blueprint for integrating demand-side

management and scheduling of resources.

The other part of the study proposes an optimal energy management system that combines

DSM strategies for aggregated households; DR with a dedicated PV and battery which shows

that the aggregated consumption can reduce the power demanded from a distribution system

by a significant amount and thus relieve the power system network and afford some resid-

ential members significant collective savings. Further more, it is shown in this thesis that

knowledge on carbon emissions can incentivize investment in renewable energy at household

level. It is also demonstrated that the consumer’s preferences on the cost sub-functions of

energy, inconvenience and carbon emissions affect the consumption pattern. These results are

important for both the consumer and the electricity suppliers, as they illustrate the optimal

decisions considered in the presence of multiple sub-objectives.

In this work, field measurements are carried out to obtain the baseline appliance commit-

ment and these are compared with the optimal solutions obtained through the inconvenience

model.
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OPSOMMING

DIE OPTIMALE BESTUUR VAN HUISHOUDELIKE ELEKTRIESE LAS

GEDURENDE AANVRAAGKANTREAKSIE

deur

Ditiro Setlhaolo

Promotor(s): Prof. Xiaohua Xia

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Universiteit: Universiteit van Pretoria

Graad: Philosophiae Doctor (Elektriese Ingenieurswese)

Sleutelwoorde: aanvraagkantbestuur, aanvraagkantreaksie, huishoudelike bestuur

van energie, skedulering, nie-lineêre programmering van gemengde

heelgetalle, battery-energie-opgaarstelsel, fotovoltaïese, oplossing

van beperkte heelgetalprobleme, tyd van gebruik, ongerief.

Huishoudelike vraagrespons (HVR) is een van die vraagkantbestuur- (VKB) programme

vir slimnetwerktoepassings wat ontwerp is om elektrisiteitsmaatskappye toe te laat om

verbruikerskant- elektriese las te bestuur, asook om verbruikers toe te laat om hul elektriese

aanvraag vrywillig te verlaag. In plaas daarvan om meer elektrisiteit te genereer, betaal

HRV-programme huishoudelike verbruikers om hul verbruik te verlaag. Daar is komplekse

interaksies tussen huishoudelike verbruikers en die elektrisiteitsmaatskappye. Daarom is die

tesis dat HVR, benader vanuit ’n optimeringsperspektief, met gevolglike kostebesparing, een

van die hoofuitdagings van die toekomstige slimnetwerk is. In hierdie tesis word optimale be-

heermodelle geformuleer om huishoudelike energiebestuur onder die tyd-van-verbruik- (TVV)

prysstrategie te bestuur.

Die aanvanklike optimale beheer wiskundige model word ontwikkel sodat die verbruiker sy

elektrisiteitsverbruik skeduleer om gebruik te maak van die aansporing wat tydens spit-

stye gebied word. Sodoende kan noemenswaardige energiekostebesparings word, as ver-

bruikers oor genoeg verskuifbare elektriese toestel-laste beskik. Verbruikersgedrag speel ’n

deurslaggewende rol om HVR te verseker. Daar is in hierdie tesis bepaal dat ongerief, aanspor-
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ing, begroting, en koördinasie van toestelle verbruikers se energieverbruikgedrag beïnvloed.

Ander areas wat aandag nodig het ten einde oplossings te verbeter, word ook ondersoek.

Daar word getoon dat deur energiestoring en fotovoltaïese (FV) generators te gebruik, die

verbruiker sy kostebesparings kan vergroot en sy spitstydelektrisiteitsverbruik verder kan ver-

laag. Insigte in die ingewikkeldheid van die optimeringsprobleem word verskaf, ten einde ver-

bruikers te help om kompleksiteit, koste en die skedulering van energiehulpbronne te bestuur.

Die modelle verskaf ’n bloudruk vir geïntegreerde VBK- en toestelvlakskedulering.

Die volgende gedeelte van die studie stel ’n optimale energiebestuursisteem vir VBK-strategieë

met gesommeerde huishoudings voor. VR met ’n toegewyde FV-sel en battery word gebruik,

en daar is bevind dat die gesommeerde verbruik noemenswaardig verminder kan word. Dit

bring noemenswaardige gesommeerde besparings vir sekere huishoudings teweeg, en ver-

minder ook die las op die elektrisiteitsnetwerk. Die volgende gedeelte van die studie wys dat

kennis van koolstofvrystellings beleggings in hernubare energie kan aanspoor op huishoude-

like vlak. Daar word ook bewys dat verbruikersvoorkeure met betrekking tot energie, gerief,

en koolstofvrystellings verbruikpatrone affekteer. Die resultate is belangrik vir beide elektris-

iteitsverskaffers en vebruikers, en illustreer optimale besluite gegewe die kompromieë tussen

teenstrydige doeleindes.

In hierdie werk word veldmetings gebruik om basislyntoesteltoewydings te bepaal en te

vergelyk met optimale oplossings wat deur simulasie verkry is.
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT AND MOTIVATION

Balancing electrical energy supply and demand in a power system in real time has always

been a global practical challenge with the energy safety gap being below anticipated margins.

The major contributors of these challenges are the ever-mounting electricity demand due to

massive global urbanisation and aging infrastructure1,2 [1, 2]. During this type of situation,

interruptions are inevitable and consumers of all types are expected to take part in redu-

cing consumption. Traditionally utilities commit conventional peaking power plants in order

to increase the power generated to meet the rising demand3. The challenges with peaking

plants have been attributed to economic and environmental problems [3–5]. The other chal-

lenge that the global electricity sector is facing is the fight against climate change4. Because

of these challenges the world is moving towards new innovative methods where consumers

have to alter their energy consumption to the available generated power in order to reduce

their electricity costs and to maintain the reliability of the electrical grid [6]. Smart grid, as

a new promising technology that can mitigate these problems is currently being developed

by utilities to revolutionize the existing electrical grid by allowing two-way communications

to enhance the economics, reliability, efficiency and sustainability of the generation, trans-
1M. Clark, Aging US power grid blacks out more than any other developed nation, 17 July 2014.

<http://www.ibtimes.com/>.
2International Energy Agency IEA, Tackling investment challenges in power generation, 2007.<

https://www.iea.org/publications/freepublications/publication/tacklinginvestment.pdf>
3Enernoc, What is demand-side management?.<http://www.enernoc.com/our-resources/term-

pages/what-is-demand-side-management>
4COP17/CMP7, United Nations, Conference on climate change, 28-9 Dec. 2011, Durban, South Africa.<

http://www.cop17-cmp7durban.com>
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Chapter 1 Introduction

mission, distribution and utilization of electrical power [1, 7–9]. However, to achieve the full

benefits of smart grid, associated complex challenges such as; technological and policy issues

must be addressed first [7, 10–12].

Demand-side management (DSM) techniques are becoming a major step in the realization of

the smart grid systems. DSM are programs that have been shown over the years to contribute

to electrical energy reduction by commercial, industrial and residential consumers. Globally,

power utilities are gradually moving towards employing tools and programs that enable DSM

programs so as to enable utility companies to manage the user-side electrical loads and also

consumers to voluntarily lower their demand for electricity. Alternative to connecting more

conventional generators to the electrical power system, DSM programs pay electrical energy

users to lower their energy consumption. The utilities around the world pay for DSM capacity

because it is generally more economical and uncomplicated to acquire than conventional

generation3. DSM is a set of flexible and interconnected programs that permits customers a

substantial role in decreasing their general usage of electricity and shifting their load during

peak times and this fosters better efficiency and operations in electrical energy systems5.

DSM activities, which are classified into; energy response (energy efficiency and conservation

(EEC)) and demand response (DR), as shown in Figure 1.1, are becoming more popular due

to technological advances in smart grids and electricity market deregulation [13].

 

Demand Side Management 

Demand response 

(Load shifting; peak clipping and valley filling) 

Innovative pricing 
(TOU, CPP, …) 

Incentive based 

(DLC, EDRP, …)  

Energy response 

 

Conservation 
(Less output to consumers) 

Energy efficiency 
(Same output, less input) 

Figure 1.1: Demand side management components

5Sustainable energy regulation and policymaking for Africa, Module 14; Demand side management.<

http://africa-toolkit.reeep.org/modules/Module14.pdf>
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Chapter 1 Introduction

Energy efficiency and conservation programs entail encouraging customers to give up some

of their energy usage [14–18] in order to gain some economic benefits. The energy reduction

can be achieved through activities such as reducing the settings of thermostat [19, 20] or

retrofitting projects [21–23] such as replacing incandescent with energy saving bulbs.

Demand response (DR) on the other hand is a highly flexible program that can be custom-

ized to the energy consumption and financial objectives of participants. DR is defined as the

reduction in the consumption of electrical energy by customers from their expected consump-

tion in response to an increase in the price of electrical energy or to incentive payments6,7.

DR options are generally categorized as price-based and incentive-based programs [24]. It

is expected that demand response will be an important stepping stone towards practical

deployments of the smart grid [10].

EEC and DR are quite different; EE reduces kilowatt-hours used or it is an energy saving

strategy which uses less energy to provide the same service, while DR reduces kilowatts

of demand during peak hours of the day and both benefit in cost savings [25]. Although

DR alone can only help in load shifting rather than energy savings [26], it can promote

energy savings when used in conjunction with renewable energy, storage together and some

incentive [27, 28]. DR pays customers for reducing load during events, while EE involves an

initial investment repaid over time through lower energy bills. The combination of the two

can provide synergy: Combining the revenue stream of DR with the energy savings from EE,

building owners can get better financial outcomes than with either approach alone.

Due to the complex interactions between residential customers and the power utility com-

panies, DSM has often been studied using various techniques [10] from game theory [29,30],

optimization, and microeconomics [31, 32]. The optimization of energy consumption, with

consequent cost reduction, is one of the main challenges for the present and future smart

grid [33]. In this work, residential DR is studied using the optimization approach. In the

optimization approach, load shifting is proposed where a consumer attempts to find the best

way to schedule their resources depending on the electricity tariff provided by the utility. In

this thesis, it is shown that, under such a setting, whenever customers have enough trans-
6FERC, Demand Response Compensation in Organized Wholesale Energy

Markets.<http://www.ferc.gov/eventcalender>.
7V.E. CapGemini Consulting Tech., Demand Response: A Decisive Breakthrough for Europe CapGemini

Consulting Tech., 2009.< http://www.capgemini.com/insights-and-resources/by-publication//>
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Chapter 1 Introduction

ferable appliances, significant energy savings can be achieved. With proper modelling of

appliance usage in a household as well as taking into consideration the consumer’s options

of inconvenience, budget and proper coordination of appliances has been shown in this study

that it affects the appliance scheduling problem. Today the world is moving towards cleaner

energy strategies which are inevitable in smart grid applications. Therefore, it has also been

shown in this work that by incorporating the storage and PV generator the consumer can

further increase cost savings and reduce their electricity peak consumption as well as the

total energy drawn from the grid. Insights on the complexity of the optimization problem are

provided, to allow the customers to better determine the trade-off between complexity, cost,

and the need to schedule their energy resources. The derived models provide a blueprint for

integrating demand-side management and resource-level scheduling.

Initial research on DR programs focuses on large consumers, commercial and industrial due

to their large consumption [34]. Residential demand response (RDR) has also contributed

significantly to energy reduction, as has been proved by some experiments8,9 [35]. Consumer

participation is achieved by varying electricity prices as well as offering incentives [36] and

this in turn promotes system load balancing as a result of load shifting and curtailment,

which is vital for load reduction during peak times. Since DR was initially created to manage

peak load, it has been found in the USA that the residential segment simply cannot be

ignored as part of any utility’s energy management strategy. RDR diverts money that would

generally go to a fossil fuel power plant to homeowners instead through peak shifting/shaping

and better management of demand. Because of the foregoing; RDR also promotes reduction

on environmental impact from the electrical power system due to reduced commitment of

peaking plants.

Developing applicable models of residential resources for smart grid applications is a critical

issue to allow practical models of electrical energy usage patterns [37]. Many household

energy appliances and sources scheduling models have been formulated as different kinds of

optimization problems [25,26,28,38] albeit with shortfalls.
8The Battle Group, Quantifying demand response benefits, Energetics, 27 January 2007.

<http://sites.energetics.com/MADRI/battlegroupreport.pdf>
9A. Faruqui, S. Sergici, Discussion paper: the power of experimentation the new evidence on residential

demand response, The Battle Group (2008). < https://www.aham.org/GetDocumentAction/id/50282>
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Chapter 1 Introduction

1.2 RESEARCH OBJECTIVES AND SCOPE

The objectives of this research are to formulate an optimal control mathematical models on

household load and sources under demand response. The mathematical models are formulated

to help the residential consumer to save costs during a demand response program and also

to help the utility to balance the power system. The systems studied in this research are; a

single household with controllable loads, a single household consisting of all the three types

of loads, flexible, inflexible and night time loads. In this case the household is installed with

a battery as a storage system. Lastly multiple households are considered with each house

installed with a dedicated PV and storage system.

The hypothesis of the study is that household consumers can gain economic advantage when

their electrical energy resources and loads are controlled optimally during a time differentiated

electricity price. This also accords the utility companies the advantage of levelled demand or

reduced peak consumption. Other areas that need attention in order to further enhance the

solutions of the research question are also investigated.

This research focuses on the development of optimal control models in order to obtain insight

into the following issues:

• Optimal appliance scheduling under TOU electricity pricing strategy

• Effect of monetary incentive during peak times

• Inconvenience cost

• The effect of customer budget on consumption and energy cost saving

• Effect of storage systems on levelling of the energy consumption and cost savings

• Effect of PV generator and storage on energy consumption and cost savings.

• Effect of co-optimization of energy cost and carbon emissions on consumption patterns
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Chapter 1 Introduction

1.3 RESEARCH CONTRIBUTIONS

This research has contributed in the global study on household energy management and

control under a time differentiated electricity price in the following ways;

1. The first contribution of this research is in the development of an optimal control model

on household load scheduling. Because of the complexity of the models in this area most

literature has simplified these models to linear models. This research has extended these

models to mixed integer nonlinear optimization problem.

2. This research has incorporated the inconvenience cost which measures the disparity

between the baseline switching status obtained from field measurements to the solution pro-

posed by the simulations. In this work, the impact of the inconvenience cost coefficient on

the overall results is also investigated and found to affect the energy cost saving. The import-

ance of this investigation, which has not been carried out in related work, is that consumer

participation in a DR program may be affected by the degree at which they are willing to be

inconvenienced by the proposed optimal solution.

3. Coordination of appliances, which is incorporated in this research, is also hardly covered

by the literature. These coordination models are crucial to the appliance scheduling problem

because practically some appliances operate relative to another.

4. In this research, the effect of incentive offered during peak times in addition to time

differentiated electricity prices have been investigated. It was found out that consumers may

be willing to curtail their electrical load during peak times in response to the incentive.

5. It is also found out that a battery storage system can be used to balance the power

consumption in a household and reduce costs if scheduled optimally.

6. In this work, sensitivity analysis is performed to determine the effect of the consumer’s

willingness to pay, budget, on the energy cost saving. This analysis has not been performed

in any of the literature in this area.

7. Development of an optimal control model to investigate the joint influence of energy cost

due to appliance scheduling and carbon emissions is also carried out in this research. It is
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Chapter 1 Introduction

realised that carbon emissions costs could give customers an environmental motivation to

shift loads during peak hours. It is also demonstrated that the consumer’s preference on the

cost objectives of energy, inconvenience and carbon emissions affects the energy consumption

pattern and hence the cost. These results are important for both the consumer and the

electricity suppliers, as they illustrate the optimal decisions made in the presence of multiple

sub-objectives.

8. Investigation of optimal control of aggregated consumption by multiple household has also

been carried out in this work.

9. Field measurements are carried out to obtain baseline consumption patterns.

1.3.1 Publications

The journal publications and conference contributions from this research are:

1. D. Setlhaolo, X. Xia, J. Zhang, Optimal scheduling of household appliances for demand

response, Electric Power Systems Research 116 (2014) 24-28.

2. D. Setlhaolo, X. Xia, Optimal scheduling of household appliances with a battery storage

system and coordination, Energy & Buildings 94 (2015) 61-70.

3. D. Setlhaolo, X. Xia, Combined demand side management with coordination and eco-

nomic analysis, International Journal of Electrical Power and Energy Systems 79 (2016)

150-160.

4. X. Xia, D. Setlhaolo, J. Zhang, Residential demand response strategies for South Africa,

IEEE PES PowerAfrica Conf., 9-13 July 2012, Johannesburg, South Africa.

5. D. Setlhaolo, X. Xia, Optimal scheduling of household appliances incorporating appli-

ance coordination, Energy Procedia 61 (2014) 198-202.

6. D. Setlhaolo, X. Xia, Optimal scheduling of household appliances for household energy

management, 9th International Conference on Green Energy (IGEC-IX), 25-28 May

2014. Tianjin, China.
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7. D. Setlhaolo, X. Xia, Residential demand response with carbon emmissions, 1st Inter-

national Conference on Innovation for Sustainability under Climate Change and Green

Growth/Economy, 26-28 May 2015 Johannesburg, South Africa.

8. D. Setlhaolo, X. Xia, Optimal household energy management, 10th Southern African

Energy Efficiency Convention, 11-12 November 2015, Emperors Palace, Johannesburg,

Gauteng, South Africa. 1st Prize poster award.

1.4 THESIS LAYOUT

This thesis is organised in six distinct chapters as follows.

Chapter One is the introductory chapter of this thesis. In this chapter problem statement,

study motivation and research contributions of this study are provided.

Chapter Two provides an extensive literature review on this study and shows where this

study fits within the bigger picture of demand side management.

Chapter Three provides preliminary results on household appliance scheduling under DR

program. An optimization mathematical model is formulated with energy, incentive and

inconvenience as the sub-functions with the aim of according the consumer some economic

benefits and reduce inconvenience brought by the optimal solution to the baseline appliance

commitment. Also the utility benefits from levelized energy consumptions due to load shifting

and curtailment. The consumer’s main objective is to optimally schedule appliances as per

the time varying electricity price. In this chapter the effect of offering incentive during peak

times is investigated as well as the consumer’s inconvenience. The validity of these formulated

models and the effect of the consumer’s different preferences regarding energy cost saving and

inconvenience is also investigated.

Chapter Four begins with providing background on household appliance coordination and

battery energy storage systems. The effect of considering coordination of appliances and

the use of a dedicated storage system is modelled and investigated. The validity of this

formulated model and the effect of customer’s budget or willingness to pay on model solution

is investigated.
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Chapter 1 Introduction

Chapter Five provides an overview of residential demand response with dedicated PV gener-

ator and battery storage. The study in this chapter is performed on aggregated households.

In this chapter the study is twofold; the first part proposes an energy management system

that combines demand side management strategies with a view of minimizing the consumer’s

cost and reducing the power consumed from the grid. Appliance scheduling with a dedicated

PV generator and storage system under time-of-use tariff shows that customers can realize

cost savings and the power demanded from the grid is reduced by scheduling power usage

optimally. In the second part of this study, a model is developed to investigate the joint

influence or co-optimization of energy cost and CO2 emissions. In this chapter, economic

analysis is also performed.

Chapter Six presents a summary of all the work that has been carried out in this research.

Subsequent to the summary, the research conclusions that were drawn from this study as

well as recommendations for future work are provided.

Additional materials used in this work such as questionnaire, energy monitoring devices and

other related supplementary materials are included in the appendices.
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CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

STUDY

2.1 CHAPTER OVERVIEW

This chapter provides literature review and background study on residential energy control

under demand response as a demand side energy management strategy within which the topic

of this thesis falls.

2.2 DEMAND RESPONSE

According to the US Energy Information Administration’s 2013 Annual Energy Outlook

report, the residential sector currently makes more than 20% of total energy demand and

is increasing by 24% worldwide10 [39]. This shows that residential energy use makes up

a sizeable portion of the energy consumption. Since demand response (DR) was initially

created to manage peak load, it was found out that the residential segment simply cannot be

ignored as part of any utility’s energy management strategy. Household appliance scheduling

is a basic problem in DR, that can contribute in energy reduction at a time when the system

is under stress and also benefit consumers in reducing their energy cost11 [40].

Demand response is defined as; the reduction in the consumption of electrical energy by end

users from their expected consumption in response to an increase in the price of electric energy
10Residential demand response infographic. <http://www.comverge.com>
11W. W. Hogan, Providing Incentives for Efficient Demand Response, FERC EL09-68-000, 2009.

<http://http:www.hks.harvard.edu>
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Chapter 2 Literature review and background study

or to incentive payments6,7. Depending on the configuration of generation capacity, DR may

also be used to increase the load at times of high production and low demand. Initially DR

programs around the world were applied to large consumers, commercial and industrial, and

much of research has been done to quantify the impact of such programs8 [34, 41], however

both technological and policy challenges still remain. DR participants have both financial

and reliability benefits. Additional benefits include; more robust retail markets, additional

tools to manage customer load, risk management, market performance, linking wholesale and

retail markets and environmental benefits12.

2.2.1 DR options

Demand response options are mainly classified into two categories as shown in Figure 2.1.

Price based DR programs depend on consumer’s choice to participate by varying their con-

sumption in response to price signals from the utility. These programs are a way of providing

consumers with a choice to divert from the conventional flat pricing and to encourage an effi-

cient electricity market. Customers who are equipped with this information about DR have a

tendency of reducing their electricity consumption during high price periods. Incentive based

DR are reliability programs that offer incentives to customers who lower their consumption

during periods when the system is under stress or when needed [24, 42–44]. These programs

aim at providing economical benefits to both consumers and suppliers as well as environment

and reliability benefits to the entire world.

2.2.1.1 Price based DR

These are innovative time-based electricity pricing strategies where the utility varies the price

depending on the time-of-day, the day and status of the electricity network when the service

is provided. The general logical context of time-based pricing strategy is the anticipated

or observed change of supply and demand balance of the electrical energy. The time-based

pricing strategies include fixed TOU or dynamic pricing that reflects the current supply-

demand status of the electrical energy system, RTP, and status of the electricity network

(CPP, EDP, ED-CPP) programs.
12Global Energy Fund, The Electricity Economy; New opportunities from the transformation of the electric

power sector, August 2008.< http://www.globalenvironmentfund.com/media-room/reports/>
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Emergency DR programs (EDRP) 

Interruptible services (IS) 

Capacity market programs (CMP) 

D-Bidding/Buyback Programs 

(DBP) 

Ancillary Market Services (AMS) 

Time of use (TOU) 

Real time pricing (RTP) 

Critical peak pricing (CPP) 

Extreme day pricing (EDP) 

Extreme day CPP (ED-CPP) 

Figure 2.1: Demand response options

Time-based pricing for the provision of electrical power includes, but is not limited to the

following because both categories’ can be designed to achieve complimentary goals:

Time-of-use (TOU). The consumers are informed in advance on the electricity cost arising

from the energy consumed during the TOU periods. This strategy enables the consumers to

adapt their electricity consumption behaviour in line with the varying costs. This adaptation

is meant to manage the cost incurred by shifting to cheaper periods or reducing overall

consumption. The TOU pricing strategy has different energy rates and the simplest rate

typically involves only two pricing seasons, with higher rates for peaking season. An intricate

time-of-day tariff involves two or three pricing periods within a day namely; off-peak, standard
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Chapter 2 Literature review and background study

and peak periods. Highly complex and sophisticated rates however, may have a number of

shoulder periods and seasonal variations. Typically, South Africa’s only utility, Eskom, has

a two rates TOU strategy called Homeflex for some urban residential consumers. Homeflex

TOU pricing strategy has two different time periods in a year as shown in Table 2.1; high

demand period during winter months (June-August) and low demand period (September-

May). In each season, energy charges for the times of day differ according to the two rates;

peak (07:00-10:00 and 18:00-20:00) and off-peak on other times13. The units c/kWh is South

African cents/kWh.

Table 2.1: Homeflex TOU tariff structure for energy charges

2011/12

Energy charge

Summer
(September-May)

Low demand season

Winter (June-August)

High demand season

Peak c/kWh 65.86 174.87

Off-peak c/kWh 43.89 55.10

Real-time pricing (RTP). This DR pricing strategy features prices that vary hourly or sub-

hourly (generally 10-15 min time intervals) [45] all throughout the year and it may be for

some or the entire load of the customer. The utility or retailer notifies customers of the

rates on an hour or day-ahead basis reflecting the utility’s actual cost of generating and/or

purchasing electricity. Compared to TOU, RTP pricing strategy does not fix the price or the

time period in advance; hence it is a dynamic pricing strategy.

Critical peak pricing (CPP). This innovative pricing strategy has substantially high rates

during a few critical hours of the day or year. These are called when the utility anticipate

power system emergency conditions or high wholesale market prices and they are called either

on the day of the critical peak or a day before.

Extreme day pricing (EDP). This pricing strategy is like CPP but with the exception that

higher rates are applied in all hours of the day for all critical days of the year. The timing of

these hours is not known until a day ahead.

Extreme day CPP (ED-CPP). These pricing strategies are an alteration of CPP because the
13Eskom, Homeflex.<http://www.eskom.co.za/CustomerCare/TariffsAndCharges/Documents/Eskom%20Booklet.pdfp>
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peak rates only apply to the critical peak hours on extreme days. There is however no TOU

on the remaining days.

Each of these innovative pricing strategies exposes consumers to varying quantities of elec-

trical energy prices. Consumers have a chance to reduce more of their expected electrical

energy price by participating in high risk priced based DR programs. For example, dynamic

rates such as RTP are perceived to be the riskiest from the consumer’s point of view because

they are exposed to wholesale real time prices. However, the consumers on dynamic pricing

strategy will most highly be exposed to lowest average prices.

TOU pricing strategy has less uncertainty to consumers because consumers have the know-

ledge of the actual rates and the time at which they will be active well beforehand. This

also applies to rates that vary seasonally. Although TOU pricing strategies generally provide

higher price and time predictability in comparison to the dynamic pricing strategies, they

have highest average price.

2.2.1.2 Incentive based DR

Incentive based DR programs are instituted by the electricity suppliers, transmitters and

distributors. These programs offer incentives to the customers on their curtailed loads that

may be added to or separated from their normal retail electricity rate. The incentive offered

may be time-varying or fixed. When the grid operator anticipates a threat to power system

network reliability condition or when the energy prices are high, the load curtailments are

needed from consumers. Most of these programs do have tools in place to determine the

consumer’s energy consumption baseline, so retailers and the utility can monitor the extent

of the reaction customer’s load. In some of these programs, there is a monetary penalty

imposed on customers that fail to fulfil the requirements after contractual obligation when

events are broadcasted [41, 42, 46]. In exchange for a reduced load, utilities offer consumers

an incentive payment or bill credit.

Direct Load Control (DLC). These refer to programs where utilities or system operators

remotely "cycle" (turn off) consumer’s high consuming electrical equipment such as air con-

ditioners and electric water heaters (for residential) for a limited period of time to address

power system reliability contingencies.
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Emergency Demand Response Program (EDRP). These are primarily employed during

reliability-triggered events which causes reserve shortfalls. Consumers can opt for non-

participation by not reducing their loads thereby forgoing the incentive to be earned. Under

these programs, payment rate is typically specified ahead of time.

Capacity Market Program (CMP). CMP incentive programs are programs where customers

mainly pledge to allot their pre-specified electrical energy load curtailment as substitutes for

system capacity. Consumers who do not comply with their agreement are subject to penalties.

These types of incentive based DR programs can be viewed as some form of insurance [41].

As a trade-off for their commitment to reduce their energy load when ordered to do so by the

load serving entities, they receive guaranteed payments. These programs are comparable to

insurance because participants are paid to be on call or standby even though load curtailment

may not be announced in some periods.

Interruptible/curtailable service (I/C). Customers who participate in I/C service programs

receive a bill credit as a trade-off for an agreement to their electricity load curtailment when

the system is under stress. Consumers may be penalised for non-curtailment. Since the

I/C tariffs structure is offered by the utility, it differs from the EDRP and CMP incentive

programs. Traditionally, I/C programs have been offered only to the high energy consumption

customers such as industrial and commercial.

Demand Bidding/Buy Back. These demand bidding/buyback DR incentive programs are

mainly offered to large consumers of typically 1 MW or more. They primarily encourage

them to offer bids to reduce their loads as per the wholesale electricity market prices. Al-

ternatively, the customers identify the amount of electrical load they would like to reduce at

advertised rates. These programs give a way to kindle consumer’s reaction to price increase.

If the customer’s offer is lower than the bids of the suppliers, the load cuts are executed

and consumers are compelled to reduce their electrical energy consumption. The programs

are generally interesting to a lot of consumers because they permit them to receive higher

payments for their reduced load high rates even though they remain on fixed rates.

Ancillary Service Markets (ASM). In ancillary-service market programs, customers bid for

load reductions as operating reserves in ancillary markets handled by the grid operators such

as Independent System Operator (ISO) or Regional Transmission Organizations (RTO). The
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consumers whose offers are received and approved are paid the market price for their standby

commitment. At a time when the customer’s load reductions are required, notification is

sent to them by the grid operators and may be paid the spot market energy price. The

requirement for customers who participate in ASM markets is that they must be able to

adjust their load promptly upon an occurrence of a reliability event. The response time is

preferably within minutes rather than hours because it depends on the kind of the reserve

being met and the type of event.

These two categories of DR programs are interconnected and the various programs under

each category can be designed to achieve complimentary goals. A combination of EDRP and

RTP, and EDRP and TOU programs have been demonstrated by [34,41]. In this thesis, the

study of RDR modelling is studied considering TOU tariff as well as incentive during peak

periods.

2.2.2 Requirements for an effective DR

A DR program requires enabling technology for information accessibility, control and com-

munication between participants. In addition a robust policy framework is needed for proper

coordination and management of these programs. These are further elaborated below.

2.2.2.1 DR enabling technology

A key factor in household electrical energy management under a demand response for smart

grid applications is the enabling technology or an automatic energy management system that

allows the utilities, homeowners, and others participants to monitor, manage, control and

cut down on energy usage [47, 48]. The system consists of hardware and software. The

hardware importantly consists of the communication network that allows multiple household

appliances to be interconnected and individually identifiable by the processor. The processor

solves the optimization problem by optimizing the operation and scheduling of appliances

such that the least cost is achieved under given conditions [27]. The software however, is a

solver in which a predefined optimization model is solved. Although it may be true that most

of the communications and monitoring technologies needed for the general DR are currently

available, the challenges still remain with the optimization and control [11]. Developing

applicable models of residential loads for smart grid applications is a critical issue to allow
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practical models of electrical energy usage pattern [37].

Advanced metering infrastructure (AMI) is a DR enabling technology. It includes two way

communication networks, advanced meters and database management systems. A two-way

AMI is capable of providing energy efficiency and cost savings through automated remote

smart meter readings and remote outage detection, diagnosis, and restoration [49]. In addi-

tion, electric utilities or load serving entities can dispatch price signals to "smart" appliances

to inform them about an anticipated forthcoming high rates period. Depending on the con-

sumer’s reaction, optimal commitment of smart appliances can lower the energy consumption

through shifting of the load to lower-cost periods. This load shifting is done until the high-

cost period has ended. A two-way AMI communication networks has a greater capacity to

support various forms of DR6.

2.2.2.2 Home area network (HAN)

HAN is a type of local area network located within the user’s home and its multiple in-premise

appliances to be interconnected and individually identifiable. This accords the AMI system

individual home appliances load control, enhanced ability to measure, verify and dispatch

DR, and display feedbacks to consumers showing the itemised billing effects associated with

usage of various appliances14 [50, 51]. Therefore, it is the backbone of the communication

between smart meter and household appliances. A typical home with HAN is shown in Figure

2.2 that portrays the complex architecture of such a system. The basic components as shown

in the figure consist of: 1) The gateway that connects external information services to the

HAN. 2) The access point that form the wired or wireless network itself. 3) The network

operating system and network management software. 4) The end points such as thermostats,

meters, in home display devices, and appliances.

The importance of a HAN in smart grid Energy efficiency, demand response, and direct load

control are key components in realizing value in a Smart Grid deployment. Behavioural

energy efficiency utilizing real-time meter data, technology-enabled dynamic pricing, and de-

terministic direct load control are examples of demand-side management applications that

are enabled by high bandwidth, two-way, end-to-end communications in the Smart Grid. A
14Renesas, Renesas Solutions for Smart House/HEMS Product Development.<

http://www.renesas.com/edge_ol/features/11/index.jsp>

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2 Literature review and background study

Smart Grid that incorporates energy efficiency and demand response increases its value as a

long-term infrastructure investment and reduces the time required to achieve a satisfactory

return on investment in the short-term. The HAN is a subsystem within the Smart Grid ded-

icated to demand-side management (DSM), including energy efficiency and demand response.

A number of HAN aspects influence the Smart Grid infrastructure:

 

 

 

Figure 2.2: Typical smart home with HAN for smart grid applications. Adapted from

http://www.renesas.com/edge_ol/features/11/index.jsp, with permission.

2.2.2.3 DR policy framework

For coordinated and optimal operation of any DR program, a robust and coherent policy

framework is required. The purpose of this framework is to manage all assets and acquired

services and its associated policy instruments. The framework set the direction for the entire

management of the DR program to ensure that the performance of these activities offer

value for money and demonstrates sound stewardship in the delivery of the program. The

consequence of failure to properly manage and control these activities can result in increased

program and administrative costs, and the likelihood of compromising the outcomes of the
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Chapter 2 Literature review and background study

program. In addition, the framework pinpoints key policy instruments, professional ethics,

legislation, standards and requirements for integrated information systems that comprise the

basis for the management practices and controls [12,52,53].

2.2.3 Mathematical modelling of residential DR

2.2.3.1 General modelling of RDR

The electricity consumption in a household primarily depends on the power consumption

of the electrical appliances and the behaviour of the occupants using them [54–56]. Two

approaches to residential load profile modelling are presented by the literature: top-down

and bottom-up approaches [57–61]. The granularity of data in these two methods differs;

the former offers aggregated data whereas the latter offers fine and more informative data

in the area of household energy management. The top-down model is not concerned with

individual end-uses and their activities or behaviour [57, 62, 63]. Although top-down models

rely on readily available historic, aggregated energy data, which makes them straight-forward

to implement, this approach however, makes it harder to model changes in energy consump-

tion because of lack of data on how energy is consumed, therefore it makes it difficult to

recommend changes related to behaviour. In the bottom-up model, the load is constructed

from households’ individual appliances. This model has been shown to offer high resolution to

load modeling [58–61]. In this thesis, formulation of optimization model for residential energy

consumption under demand response is carried out using a bottom-up approach through in-

dividual appliance scheduling. It has been stated in [61] that in residential energy modelling,

the bottom-up method promotes efficiency.

Developing applicable models of residential loads for smart grid applications is a critical issue

to allow practical models of electrical energy usage patterns [37]. Due to the complex inter-

actions between residential customers and the power utility companies, DR has often been

studied using various techniques [10] from game theory [29,30], optimization, and microeco-

nomics [31,32]. The optimization of energy consumption, with consequent cost reduction, is

one of the main challenges for the present and future smart grid [33]. In this work, residen-

tial DR is studied using the optimization approach. Non optimal control modelling methods

have been proposed in the literature with [54,56] or without consideration of the consumer’s

behavior [64]. In [56] office occupant electricity consumption behaviour is studied through a
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Chapter 2 Literature review and background study

developed data mining approach. The following literature review subsection focuses on the

optimization mathematical modelling method adopted in this thesis. The advantage of this

method is that it offers optimum solution.

2.2.3.2 Optimization modelling of RDR

Research on residential demand response models for smart grid applications is currently

ongoing. In this thesis we portray the optimization mathematical models using Figure 2.3.

Formulation of an optimization model generally involves identifying inputs and outputs of a

desired model. Where the model could be deterministic or stochastic. A stochastic model

considers uncertainties while deterministic does not and in this thesis, deterministic models

are adopted because stochastic modelling is outside the scope of this thesis.
 

Deterministic 

optimization model 

Inputs:  

Appliances, Storage 

System, 

Consumer behaviour, 

Renewables 

Stochastic 

optimization 

model 

Model of 

randomness 

Optimal outputs: 

Energy cost, 

appliance scheduling, 

Inconvenience, 

Carbon emissions 

cost 

Constraints Scenario 

generation 

Figure 2.3: General layout of RDR optimization modelling

The general case of a user DR model that provides the basis for RDR is provided by [38],

where home appliances are classified into four major groups and the model is a structure of

utility functions and consumption constraints for appliances. The utility functions of these

different appliance categories have been provided and the general objective is to maximize

social welfare. However, the paper provides a general framework formulations and is thus

not directly implementable. Advancement in RDR has gained momentum recently. A novel

energy management system for RDR, the consumer automated energy management system

(CAES), which is an on-line application system, has been proposed in [65]. The objective of

the system is to minimize the electricity cost for operating appliances. In [66] mixed integer

linear programming (MILP) is used to schedule home appliances in order to minimize the
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Chapter 2 Literature review and background study

electricity cost. It is shown that a financial incentive can encourage residential consumers to

control their loads, as demonstrated by application of a plug-in hybrid electric vehicle (PHEV)

in [67]. The practical model of day-ahead scheduling of appliances is shown in [68]. This

model is applied to the scheduling of electric water heaters (EWH) subject to the respective

constraints.

General models on household appliance scheduling without storage or renewable energy gen-

erators are also presented in [25, 40, 68–72]. These models primarily present household ap-

pliance scheduling under demand response programs for smart grid applications. In [26, 28],

the scheduling problem is presented with a storage system either as a battery or PHEV; the

models of storage systems are also presented in [73,74]. A number of times the application of

photovoltaic (PV) and battery storage is considered without the scheduling problem, hence

as optimal scheduling of resources of various combinations of PV/wind/diesel/battery sys-

tem [75–82] on a distribution network. However, the shortfall of these models is that they

are presented as a simplified problem as linear problem (LP) or mixed integer programming

(MIP) problems, thereby forging some practical sub-functions and constraints. Despite these

efforts, challenges on modelling still remains because of the complex interactions between

residential consumers and the power utility companies. Optimization of energy consumption

with consequent cost reduction still remains one of the major challenges for the present and

future smart grid [33].

This research formulates a practical optimization model for a household energy management

and control to determine the optimal scheduling of home appliances under TOU electricity

prices. Other areas that need attention in order to further enhance solution are also investig-

ated. This problem is modelled as a mixed integer nonlinear program (MINLP) optimization

model with more practical operational constraints. The effect of a battery storage system,

PV and carbon emission are also investigated. Sensitivity analysis is performed on a number

of parameters to determine their impact on the solution. This research initially focuses on

one household and then considers aggregated households.

In this study a model is also developed to investigate the joint influence of price and CO2

emissions in a DR program and the motivation for this is that consumption habits may require

other incentives to change rather than the proposed financial incentive. This joint influence

is rarely covered by the literature. Knowledge of carbon emissions can incentivise investment
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Chapter 2 Literature review and background study

in renewable energy at household level. Governments can save lives and protect communities

from the threat of climate change by putting a price on carbon through a carbon tax15.

In [83], the problem is presented as a multi-objective problem between two subfunctions of

cost minimization through appliance scheduling and carbon emissions. The model is solved as

a Markov-chain load model in order to forecast the power demands of residential consumers

and a scheduling program for providing optimal schedules for smart appliances. In this

research, the problem is presented as an LP problem, as both sub-functions and constraints

are linear. In [84], the thesis evaluates two formulations to schedule smart home appliances

with respect to economic and environmental benefits. The thesis also focuses on the reduction

of computational time for the scheduling of smart home appliances as a mixed integer linear

programming (MILP) problem. In [84], the dynamic data for carbon footprint is available,

obtained from the Institution of Ecology at the Royal Institute of Technology. In South

Africa, however, there is currently a fixed rate of carbon emissions. A similar model to this

work is also presented in [85]; where a solution is proposed that models a multi-carrier energy

system in a smart grid with appliances scheduling, gas (CHP) and carbon emissions. The

objective is to determine an optimal policy that attains many rewards in the long run, where

the Monte Carlo method is used.

2.3 STORAGE AND RENEWABLE ENERGY SOURCES

2.3.1 Storage system

Battery energy storage systems (BESS) are an option to provide peak shaving and valley

filling of the residential load profile [86,87]. Electric vehicles and conventional batteries have

over the years been used as residential energy storage devices [88]. There are two main

applications of BESS in the residential sector. Firstly there is the off-grid hybrid energy

solution, where two or more different types of renewable energy sources are integrated together

with a storage device. This method is mostly applied to rural settlements where there is no

access to the grid power [89–91]. This has been extensively studied in literature [90, 91].

The second application of BESS is a backup system for a household connected to the grid19.

This application is motivated by unreliable and intermittent electrical power supply. In this
15S. Blaine, SA first African country to introduce carbon emissions tax, BDLive, 28 February 2013

<http://www.bdlive.co.za/national/science/2013/02/28/>
19PowerGen renewable energy < http : //powergen − renewable − energy.com/ >
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Chapter 2 Literature review and background study

application the BESS is connected to the grid. It can be available as a compact backup

electronic power supply system, interruptible power supply (UPS). Usually in an African set-

up, buying a UPS is not affordable to many because of its high cost due to its technological

enhancement features such as longer life and less maintenance. The ideal solution is to build

the system. These systems can be designed in any size, based on the application.

In [92], a detailed design of flat plate lead acid batteries for the study of power flow man-

agement for grid interconnection of PV and batteries has been carried out. In these refer-

ences [92, 93]; a detailed model of the battery as a storage system connected to PV system

under given regulatory conditions is presented, also battery sizing is performed [93]. Although

these provide in-depth study of the battery, our work however considers elementary usage of

the device. The following subsection gives a brief literature review on PV systems.

2.3.2 PV system

The use of renewable energy sources (RES) has become inevitable in today’s electrical energy

system because of their sustainability and their environmental advantage. In smart grid

applications, use of renewable energy sources at residential level cannot be ignored as many

countries including South Africa, have rolled out such systems mainly through household

roof-top connections.

South Africa has over the years implemented residential rooftop PV systems; however grid

connection of small-scale renewable electricity generation is yet to be implemented because

South Africa’s national energy regulator (NERSA) is currently in the process of developing

the regulatory framework on small-scale renewable embedded generation sources and the

guidelines on electricity reseller tariffs27. Some of the challenges with small-scale renewable

generation grid tie include but are not limited to reverse power flows and metering tariff

solutions. For this reason, in this work, we consider households with dedicated solar PV and

storage systems, without infeed to the grid. Therefore the purpose of the PV is to charge the

battery, which will in turn discharge during peak times to relieve the grid.

In [85], the thesis evaluates two formulations to schedule smart home appliances with respect

to economic benefits and environmental benefits.
27NERSA, response benefits, Energetics, 27 January 2007 <http://www.nersa.org.za/>
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Chapter 2 Literature review and background study

When dealing with renewable sources, the time it takes for the investment to reach break even

becomes very interesting to consumers. The payback period of investing in such a system

is an important determinant of whether to undertake the project, as longer payback periods

are typically undesirable for investment positions. Hence, in this work, economic analysis is

also carried out to aid the consumer. Residential demand response models integrated with

renewable energy sources are an active current global research area for smart grid applications.

In [26, 28], the scheduling problem is presented with a storage system either as a battery or

plug-in hybrid electric vehicle (PHEV); the models of storage systems are also presented

in [73, 74]. A number of times the application of photovoltaic (PV) and battery storage

is considered without the scheduling problem, hence as optimal scheduling of resources of

various combinations of PV/wind/diesel/battery system [75–82] on a distribution network.

However, the shortfall of these models is that they forgo some practical sub-functions and

constraints. In our case we have consider a nonlinear inconvenience cost sub-function and

nonlinear constraints such as the appliance’s continuous operation and the battery’s exclusive

operation.

2.4 CHAPTER SUMMARY

In this chapter, an extensive literature review on DSM’s strategy demand response is covered,

the topic under which this thesis falls. The different strategies, benefits and mathematical

modelling are reviewed and the area where our research fits is provided.
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CHAPTER 3

OPTIMAL SCHEDULING OF HOUSEHOLD

APPLIANCES FOR DEMAND RESPONSE

3.1 CHAPTER OVERVIEW

This chapter emanates from our published paper that bears the same title [25]. Residen-

tial demand response is studied through scheduling of typical home appliances in order to

minimize electricity cost and earn some incentive. A mixed integer nonlinear optimization

mathematical model is formulated under a time-of-use electricity tariff. The model formula-

tions consist of the energy cost model, the incentive model as well as the inconvenience. A

case study shows that a household is able to shift consumption in response to the varying

prices and curtail consumption due to incentive, through which the consumer may realize

an electricity cost saving. A sensitivity analysis of the inconvenience cost coefficient is also

performed. The analysis reveals that the total cost savings is influenced by the inconvenience

coefficient cost. The importance of this analysis is that the consumer is able to choose ac-

cording to their preferences with regard to the cost and the inconvenience. The results show

that; through optimal scheduling of appliances during a time varying electricity tariff, the

consumer can reduce their energy consumption during peak times through load shifting. The

consumer has an option to reduce their energy cost further by benefiting from peak incent-

ives which in turn they may contribute further in the system energy balance by reducing the

peak consumption. The inconvenience could be used by the consumer to gauge how much

the proposed optimal solution deviates from their baseline. This factor enables the consumer

to have an option on how much they may be willing to be inconvenienced, hence it could

affect the level of participation of the consumer in the DR program. The main contribution
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Chapter 3 Optimal scheduling of household appliances for demand response

of this chapter is consideration of the inconvenience level and the sensitivity analysis of the

inconvenience cost coefficient to the solution.

The remainder of this chapter is organized as follows: Section 3.3 focuses on defining the

problem and the optimization model formulations. Section 3.4 examines a case study used

in this paper. The solution methodology and simulation results are discussed in Section 3.5

and lastly a conclusion is drawn in section 3.6.

3.2 PROBLEM DEFINITION AND MODEL FORMULATION

3.2.1 Problem definition

An electricity-consuming household’s objective during a DR program is to gain some eco-

nomical benefits at a certain degree of inconvenience. To achieve this, the consumer’s main

objective is to be able to schedule appliances optimally as per the electricity price and at

a preferred inconvenience level. In this work, in addition to energy cost and inconvenience

minimization, we also consider the incentive offered during peak times. For this reason, the

objective function is characterized by three sub-functions, the electricity cost minimization,

incentive maximization and inconvenience minimization and the formulations are presented

in the subsequent subsection.

3.2.2 Mathematical model formulation

Considering a sampling time (∆t) of 10 minutes and a simulation horizon of 24 hours, the

mathematical model is formulated in this subsection. This model is an improvement of [68]

in that in this work we have considered the incentive and the inconvenience.

min Jc =
T∑
t=1

A∑
i=1

Pi[ρt · ui,t − βt · λ(ubli,t − ui,t)] ·∆t, (3.1)

Pi ≥ 0, βt > 0, i = 1, ...A, t = 1, ..., T, A = 10, T = 144,

ui,t =

 1, when appliance i is on at t;

0, when appliance i is off at t.
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Chapter 3 Optimal scheduling of household appliances for demand response

λ(ubli,t − ui,t) =

 1, if (ubli,t − ui,t) > 0;

0, if (ubli,t − ui,t) ≤ 0,

where t is the time index, t = 1, · · ·T , ∆t is the sampling time and T is the study horizon,

which is 24 hours. i is the appliance index and A is the total number of appliances. Pi is

the rated power of appliance i. ui,t and ubli,t are the optimal and baseline on/off status of

appliance i at time t, respectively. ρt is the electricity price at t and βt is the incentive at t.

The indicator function λ(ubli,t − ui,t) denotes a certain state in a model. It is either 1 or 0 to

allow consumers to earn an incentive only when they switch off their appliances during peak

times. If it is 1 an incentive is earned, otherwise there is no incentive. ubli,t is the appliance’s

baseline switching status while ui,t is the optimal switching status. The following constraints

are formulated to the objective function (3.1):

T∑
t=1

A∑
i=1

Pi[ρt · ui,t − βt · λ(ubli,t − ui,t)] ·∆t ≤ C. (3.2)

This constraint models the maximum cost that the consumer is willing to incur in one day, C,

and it is not more than R25 (R denotes the South Africa currency, rand)(1 Rand = 0.085USD),

as at 01 May 2015. This value is obtained from the consumers’ electricity bill.

Note that the inflexibility of many loads is usually not absolute, and they might be flexibly

adjusted within a range [26, 94, 95]. In this work, we assume that the appliances are flexible

within the consumers’ specified time ranges. For each appliance, the user indicates di and ei
as the beginning and end of the time interval in which the appliance is to be scheduled. Ni

is the allowable time interval or the time duration required to finish the normal operation of

appliance i. Given the predetermined parameters di, ei and Ni, in order to provide the needed

consumption for each appliance in times within interval [di, ei] it is required that,

ei∑
di

ui,t ≥ Ni. (3.3)

The constraint below ensures continuous operation of appliances [96]. In this chapter it is

applied to all appliances except appliances 3 and 7, the kettle and EWH. Practically the
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kettle’s normal operation does not exceed the sampling time while the geyser is a continuous

on/off appliance.

ei−(Ni−1)∑
di

ui,t · ui,t+1 · ui,t+2 · · · ui,t+(Ni−1) ≥ 1. (3.4)

Additional constraint is needed as follows, allowing operation of one appliance after the

other:

di2 ≥ di1 +Ni1. (3.5)

The current starting time slot of i2 should be after the starting time of i1 plus its run time.

For example, the clothes dryer follows the washing machine.

The consumer’s decision to continue participating in the program may not be determined

by only the energy cost saving and the incentive earned, but also by the inconvenience

that comes with the new schedule. The scheduling inconvenience (I) seeks to minimize the

disparity between the baseline and the optimal schedule. In this paper the postponement and

advancement of the schedule are both regarded as an inconvenience. The consumer therefore

also minimizes the objective function (3.6), the inconvenience:

I :=
T∑
t=1

A∑
i

(ubli,t − ui,t)2. (3.6)

The inconvenience level is then included in the main objective (3.1), therefore the modified

objective function that the consumer seeks to minimize is expressed as follows:

min J = Jc + αI, (3.7)

subject to constraints (3.2)-(3.5), where Jc is defined by equation (3.1), I is the scheduling

inconvenience as in (3.6) and α is a weighting factor, which represents how the consumer

favors the scheduling inconvenience. It is to be noted that the inconvenience as presented in

(3.6) is a unit less value. Therefore to express all sub-functions within the overall objective
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function (3.7) with the same unit, there is a need to use some form of cost coefficient to

express all sub-functions in the same units. In this work we assume that α is a fixed cost

value.

This problem has binary control variables ui,t, which are the optimal on/off status of appli-

ances, and the inputs are the appliance’s rated power Pi , the electricity prices ρt, the initial

appliances’ status ubli,t and the incentive βt. The results are the appliances’ optimal schedule,

the energy cost, the incentive and the schedule inconvenience.

3.3 CASE STUDY

Eskom’s hourly electricity tariff has been discretized into 10 minutes, since the model has

10 minutes’ sampling time and the optimization is over a 24-hour period. This encourages

shorter waiting periods for behaviour change. The scheduling period is achieved by deciding

whether to turn on the appliance at the beginning of each 10 minutes. The tariff is based

on Eskom’s TOU Homeflex structure for residential consumers as shown in Table 3.1. The

Homeflex 1 tariff has five charge components. Eskom’s peak times are 07 : 00 − 10 : 00

and 18 : 00 − 20 : 0016. From the information, only energy charges of 174.87c/kwh and

55.10c/kWh for the peak and off-peak high-demand period are used for calculations. A

typical household in South Africa has been used as a case study and ten appliances have

been selected and studied over a one-month weekday period. These are shown in Table 3.2.

Appliance rated power is specified by the appliance manufacturers and can be obtained from

the appliances. One month’s weekday data on appliance usage in the household under study

were collected, as well as the information on the allowable time duration required to finish

the normal operation of the appliance, Ni is obtained and the highest value is recorded in

Table 3.2. The information on di and ei as the beginning and end of the time interval in

which the appliance is to be scheduled is specified by the user, based on the usual or preferred

usage and this ties with usage data obtained. This is typical of a working class household

where most activities occur in the morning and after work. An incentive of R0.2/kWh is

used, which is guided by17 [70].
16Eskom Tariffs & Charges 2011/12.<http://www.eskom.co.za>.
17Southern California Edison, Scheduled load reduction program (SLRP) summertime energy management

solution with a cool payoff.<http://asset.sce.com/>.
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Table 3.1: Eskom’s Homeflex 1 tariff structure.

Charges

Demand Service

(R/day)

Network

(R/day)

Peak

energy

(R/kWh)

Off-peak

(R/kWh)

Envir.

Levy

(R/kWh)

High 2.45 3.04 1.7487 0.5510 0.02

Low 2.45 3.04 0.6586 0.4389 0.02

Table 3.2 shows parameters used and typically appliance 1 is scheduled twice in a day at least

30 and 50 minutes in the morning and evening respectively. It is to be switched on at any

time between t=30 (05:00) to t=42 (07:00) and t =196 (16:00) to t=120 (20:00) respectively.

Appliance 2 is scheduled once a day for at least 50 minutes any time from t=108 (18:00)

to t=114 (19:00). It is to be noted that the appliance’s baseline schedule is included in the

results in Table 3.3 for ease of comparison with the optimal results.

3.4 SIMULATION RESULTS AND DISCUSSION

The formulated model is solved with AIMMS software, which uses Aimms Outer Approxim-

ation Algorithm (AOA) that utilizes CPLEX and CONOPT as mixed integer programming

(MIP) and nonlinear programming (NLP) as solvers respectively. AOA is written with the

AIMMS GMP functions and can be customized by users to fine-tune the algorithm for their

specific problems. CPLEX is a very powerful tool for solving large and difficult MIP problems

and it uses a branch-and-bound algorithm for solving MIP problems. CONOPT is an efficient

large-scale NLP solver. AIMMS computes exact second order derivatives, which are used by

CONOPT to solve certain classes of NLP models much more efficiently. It was shown that

the algorithm finds a global optimum solution in a finite number of steps18. The solver offers

solutions to problems of the form:
18M. Hunting The AIMMS Outer Approximation Algorithm for MINLP,Paragon Decision Technology, Haar-

lem (2011) <http://www.aimms.com>.
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Table 3.2: Appliances data

No. Appliance Power rating

(kW)

Duration

Ni(Mins)

di ei

1 Stove 3.000 30 30 42

50 96 120

2 Microwave 1.230 10 96 114

3 Kettle 1.900 10 33 45

10 106 120

4 Toaster 1.010 10 30 42

5 Steam iron 1.235 48 96 126

6 Vacuum cleaner 1.200 30 48 62

7 Electric water heater 2.600 120 24 49

120 96 132

8 Dishwasher 2.500 150 120 144

9 Washing machine 3.000 45 96 132

10 Tumble dryer 3.300 30 96 122
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Chapter 3 Optimal scheduling of household appliances for demand response

minf(x), s.t.,



Ax ≤ b, Aeqx = beq(linear constraints)

c(x) ≤ d, ceq(x) = deq(nonlinear constraints)

Lb ≤ x ≤ Ub(variable bounds)

xi ∈ Z(integer decision variables)

xj ∈ {0, 1}, i 6= j(binary decision variables)

Table 3.3 shows the consumer’s baseline and the optimal schedule at α = 0.1. It shows that

the consumer can redistribute their load from their baseline schedule to different time slots

because of variable prices. According to Table 3.3 and Figure 3.1, the stove’s baseline schedule

is 30 minutes in the morning and evening at t=37 (06:10) to t=39 (06:30) and t=108 (18:00) to

t=112 (18:40), respectively. The solution suggests a different stove schedule in the evening at

times t=102 (17:00) to t=106 (17:40) and the same time for the morning is maintained. This

is logical in that the baseline time is within off-peak times and the inconvenience is minimized.

For the second appliance, the microwave, the baseline and optimal switching times are t=108

(18:00) and t=104 (17:20), as shown in Table 3.3. The two appliances’ operational times are

consecutive, which satisfies the continuous operation constraints (3.4). The EWH is excluded

from the continuous operation because practically it is a continuous on/off appliance. Figure

3.1 shows the switching status of appliances with the highest cost, EWH, dishwasher, clothes

dryer and stove. The costs are EWH=R7.2214, dishwasher=R3.401, dryer= R2.3846 and

stove=R2.18. The high prices are due to their high-rated power coupled with longer operation

time or scheduling within peak times. The solid stems show optimal switching status, while

the dotted ones show the baseline appliance commitment. Even though the clothes dryer is

only on for three slots, the cost is high because it is scheduled during peak time, possibly

because it has to follow the washing machine as per constraint (3.5). It can be seen that

for the EWH, the morning commitment is the same for both baseline and optimal solution,

whereas the schedules are different later due to the optimization algorithm trying to schedule

it outside the high-priced period. The rest of the results on the remaining appliances are

shown in Table 3.3; others remained in off-peak while a few shifted to overlap both peak and

off peak. This is what is expected for the consumer with a wider range of possible starting

and ending operational time of appliances, such as in this study.

The simulation results show that baseline cost with ubli,t is R25.37, while the current minimum

electricity cost with α = 0.1 is R18.80, a cost reduction of more than 25%. It is emphasized
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Chapter 3 Optimal scheduling of household appliances for demand response

Table 3.3: The baseline and optimal appliance commitment status.

No. Appliance ubl and uopt

1 Stove ubl1,t t37 − t39, t108 − t112

uopt1,t t37 − t39, t102 − t106

2 Microwave ubl2,t t108

uopt2,t t104

3 Kettle ubl3,t t39, t109

uopt3,t t39, t113

4 Toaster ubl4,t t31

uopt4,t t31

5 Iron ubl5,t t108 − t112

uopt5,t t97 − t101

6 Vacuum cleaner ubl6,t t54 − t56

uopt6,t t54 − t56

7 EWH ubl7,t t25 − t36, t105 − t116

uopt7,t t25 − t36, t103 − t112,t121, t122

8 Dishwasher ubl8,t t119 − t133

uopt8,t t121 − t135

9 Washing machine ubl9,t t111 − t115

uopt9,t t97 − t101

10 Tumble dryer ubl10,t t120 − t122

uopt10,t t118 − t120
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Figure 3.1: The baseline and optimal switching status of high cost appliances

that the amount of savings realized cannot be generalized because the amount of savings may

be affected by the price disparity between peak and off-peak prices; in our case off-peak price

is more than 30% of the peak price. The value realized can also be affected by the amount by

which appliances can be shifted. The results show that the appliances are generally shiftable

and this is because of the range that the consumer provided or their level of flexibility. The

results also show an earned incentive of R1.87. Figure 3.2 shows that the consumer’s morning

peak remained relatively the same at 4.5kWh t = 34(05 : 40). The evening peak of 10.5kWh

has been shifted from peak time t = 113(18 : 50) to off peak time t = 97(16 : 10) at a lower

value of 8.4kWh due to load redistribution. This redistribution of the load can assist the

stressed power system at peak times. The schedule inconvenience defined by (3.6) at α = 0.1

is 57.

Table 3.4 shows the solution of the sensitivity analysis of parameter, inconvenience weighting
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Figure 3.2: The load profile under both baseline and optimal schedule.

factor on the daily cost (Jc) and the inconvenience (I). A different weighting factor reflects

the consumer’s different preferences regarding financial cost and inconvenience. The high

value of alpha means a high penalty on inconvenience and the cost will assume a highest

value and smallest value of inconvenience. This is in agreement with (3.7), because α is

a tradeoff between the inconvenience and the cost. The weighting factor of appliances can

be made to vary between appliances; however for simplicity the authors have assumed a

uniform weighting factor. It is also to be noted that the selection of the proper value of α is

subjective, as it is dependent on the user’s preference. The different values are only a guide to

the consumer. In addition, in Table 3.3 the value of Jc reaches a ceiling of R24.995, which is

commensurate with constraint (3.2), that the consumer is willing to spend not more than R25

on that day. The weighting factor of 0 means the consumer’s decision is not influenced by the

inconvenience and at that time the inconvenience assumes the highest value of 73, while the

cost is at its lowest value of R12.87. The higher values of α mean high importance is placed

on the inconvenience, for example at α=100, Jc is highest at 24.995 and the inconvenience

is the smallest value of 3. This tradeoff between cost and inconvenience can help consumers

in making a choice on how much they are willing to be inconvenienced, which may affect the

level of participation in the program.
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Chapter 3 Optimal scheduling of household appliances for demand response

Table 3.4: Energy and inconvenience costs at different weighting factors.

α (R) Total cost

(Jc)(R)

Inconvenience

(I)

0 12.87 73

0.5 20.800 29

1 22.661 17

10 24.786 7

25 24.995 3

50 24.995 3

100 24.995 3

3.4.1 Further discussions

The optimal solution obtained is a suggestion to the consumer on cost minimization against

the inconvenience that comes with the new schedule. Once the optimal solution is obtained,

the reasonability of the optimal solution is analyzed. It is noted that the amount of savings

realized is comparatively high and cannot be generalized because the savings may be affected

by the price disparity between peak and off-peak prices; in our case off-peak price is 31.5%

of the peak price. The value realized is also affected by the amount at which appliances are

shifted. In this case study, all appliances were flexible within certain time ranges that were

specified by the consumer, hence the the relatively higher savings whereas the expectation was

that these would be lower when some appliances were considered inflexible. Future work will

consider households on a larger scale rather than one household. In addition, future studies

will consideration of storage system and photovoltaic generator as well as carbon emissions

saved. This will assist in determining the consumer’s energy cost, energy savings as well

carbon emissions mitigation. It is believed that if the consumer has all these knowledge

options, more energy could be saved that could reduce peak consumption and stabilise the

power system. This study also could motivate the consumer’s awareness on how much they

could reduce the environmental impact through knowledge of clean energy technologies.

Based on our work there is a possible future smart phone application for offering actional

information to end users that could be based on our optimization back end work with alpha as
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the use-selected parameter of various levels of inconvenience. It is anticipated that when this

level is too high, that means ”sacrifice” so a nonlinear incentive curve should be considered

or recommended.

3.5 CHAPTER SUMMARY AND CONCLUSION

The chapter gives preliminary results from a study using a formulated MINLP optimal control

model. A typical case study on a single household in South Africa has been carefully studied.

The study in this chapter provides two results; one on load shifting and curtailment, and the

other is on the effect of weighting factor on both the cost and inconvenience.

The study show that consumers reschedule their appliances through load shifting to lower

priced periods due to variable electricity prices from the price based demand response pricing

strategy of TOU tariff. It is also shown that an incentive offered during peak times can

cause load curtailment during those times in order for the consumer to benefit from incentive

prices. The consumer reduces the cost of electricity by more than 25% and also earned some

incentives. It is noted that the amount of savings realized cannot be generalized because

the savings may be affected by a number of factors, such as shiftable appliances and a price

difference between peak and off-peak times. Because of load shifting, the utility could benefit

from levelized load consumption on maintaining power system network stability.

Inconvenience level that measures the disparity between the proposed appliance schedule

against the baseline appliance switching status obtained from on site measurements has also

been studied and it is shown that at different values of the weighting factor α, the incon-

venience coefficient, the consumer has varying costs. From these results, the consumer is

able to know the inconvenience level that comes with the new schedule and be able to adjust

it according to his preferences relative to the cost. Therefore a final decision concerning

participation in the program could be made.
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CHAPTER 4

OPTIMAL SCHEDULING OF HOUSEHOLD

APPLIANCES WITH BATTERY STORAGE

AND COORDINATION

4.1 CHAPTER OVERVIEW

This chapter follows and improves on the foregoing chapter with these two aspects; the math-

ematical model formulation considers the effect of appliance coordination and also incorpor-

ates a battery storage system under time of use electricity tariff. This chapter is also based

on our published work that bears the same title [28]. Baseline power consumption measure-

ments of individual appliances considered were performed and demand profiles are graphically

presented. In this work, a mixed integer nonlinear programming mathematical model with

more practical operation constraints for appliance coordination and battery scheduling is

formulated and solved. The simulation results show effectiveness of the algorithm in that

by optimally scheduling appliances and battery storage system, cost saving, peak shaving

and valley filling are achieved through load shifting. The energy cost saving that might be

beneficial to consumers; and peak shaving and valley filling, which are of great importance to

the utility. It is found that consideration of appliance coordination yields smaller cost saving

because of interdependent operation. Without the battery and coordination, a cost saving of

22% and peak reduction from 10.355 kW to 8.405 kW are realized. Consideration of appliance

coordination gives a further cost saving of 1% and a relatively smaller peak reduction to 8.30

kW. The battery bank system promotes peak shaving and valley filling and a further cost

saving of about 6% and peak reduction to 5.175 kW. Sensitivity analysis, however, reveals
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

that the energy cost saving is sensitive to the consumer’s willingness to pay. This analysis

has not been performed in any of the literature in this area.

The remainder of this chapter is organized as follows: Section 4.3 focuses on defining the

problem and section 4.4. presents optimization model formulations. Section 4.5 provides

information on the data used in this chapter. The solution methodology is presented in

section 4.6 and measured, simulation results are presented and discussed in Section 4.7 and

lastly a conclusion is presented in section 4.8.

4.2 PROBLEM DEFINITION

The layout of the problem is shown in Figure 4.1. The energy flows are indicated by the

arrows. The reader will notice that the battery bank consumes power from the mains. This

will happen during off-peak times, while it feeds the load during peak times.

Grid power

Household appliancesGrid power + battery bank

Battery discharge

(Pb,t)

Battery charge 

 (Pb,t)

Direct grid power

 (Pm,t)

Power demanded by 

appliances (PA,t)

Figure 4.1: Layout of the presented problem

The optimal control problem of household appliance scheduling with storage entails control

inputs as the energy demand, the desired time of starting and completing tasks, appliance

rated power, the baseline schedule, TOU tariff, battery input and output efficiencies, as well as

capacity. The control decisions are the scheduling status of appliances, power flows from the

grid and battery state of charge (SOC), which has battery charging and discharging power

as control variables. The main objective is to determine the minimum cost of scheduling
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

these appliances, taking into account the necessary constraints and inconvenience level. This

problem is of great importance because worldwide research on DR, of which the main purpose

is to reduce energy consumption, particularly during peak times, has opened new possibilities

for advanced planning and control of supply and demand, especially at residential level where

appliance scheduling plays a major role. A major benefit of appliance scheduling is that home-

owners can compare the cost benefit among different inconvenience levels that come with an

optimal solution against the baseline schedule [25].

4.3 MATHEMATICAL MODEL FORMULATIONS

In this section, we formulate the mathematical model as an MINLP optimization problem

for the household appliance scheduling problem with a battery as storage device. First we

present the energy cost model, then the battery model and finally we formulate the problem’s

objective function, incorporating the battery and scheduling inconvenience.

An electricity-consuming household’s objective is to minimize its electricity cost during a

dynamic price tariff. The current work is an improvement of our previous work [25] and those

of [26, 68, 71] in that a number of practical operational constraints have been incorporated

and the battery has been considered.

Je =
T∑
t=1

A∑
i=1

Pi∆tρtui,t, (4.1)

Pi > 0, ρt > 0, i = 1, ..., A, t = 1, ..., T,

ui,t =

 1, when appliance i is on at t;

0, when appliance i is off at t,

where Je is the appliances’ energy cost function appliances, an index of appliances i ∈ A

(a set of appliances), t ∈ T , ∆t = 10 minutes, ρt is the electricity price and ui,t is the

appliances commitment status. In a household scheduling problem there are three main

types of constraints: appliance operation time, continuous operation and maximum cost or

maximum energy constraint. Additional constraints can be added, such as; coordination,
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

inconvenience and comfort constraints, if there are any [68,97]. The following constraints are

formulated to the objective function (4.1):

a) Maximum cost

T∑
t=1

A∑
i=1

(Piui,t + Pb,t)ρt∆t ≤ C. (4.2)

This constraint models the maximum cost that the consumer is willing to incur within the

control horizon. The parameter C is obtained from the consumer’s bill and Pb,t is the battery’s

charging power as elaborated further in section 4.3.0.1.

b) Appliance operation time

Given the predetermined parameters di, ei and Ni, as the start, end time of operation and

the allowable operation duration; to provide the needed consumption for each appliance, in

times within interval [di,ei] it is required that,
ei∑
t=di

ui,t = Ni + ki,∀i, (4.3)

where Ni ≤ (ei − di) and ki ∈ Z is the additional run time of appliance i. Note that this

constraint has been modified from the standard one that appears in [25, 26, 68, 71]. It now

offers flexibility to consumers in that they can choose to increase or reduce the run time

wherever possible. For example, if the estimated cooking time is 50 minutes, the consumer

can choose to increase or reduce it by ki.

c) Appliance continuous operation

This constraint ensures continuous operation of appliances. The importance of this constraint

is that it avoids interruption of appliance operation [96].
ei∑
t=di

ui,t · ui,t+1 · ui,t+2 · · · ui,t+(Ni−1) = 1. (4.4)

d) Appliance coordination

Coordination between household appliance commitment is very important because some

household appliances are committed relative to others, that is, operating one appliance may

necessitate operation of the other at the same or at a delayed time. The following algebraic
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constraint examples are used to model appliance coordination and reference is made to Table

4.1 for clarity.

Inequality (4.5) could be applied to an appliance with sequential operational tasks where

the first task cannot be performed concurrently with the second one. This constraint is also

applied to appliances that are not to be committed at the same time. An example from a

set of laundry appliances would be a washer/dryer combination machine; the washing (with

index i = 10) cannot be done at the same time as drying (i = 11).

u10,t + u11,t ≤ 1, t = 1, ..., T. (4.5)

The following inequality is necessary to ensure that, for example, the dryer follows the washing

machine:

d10 +N10 ≤ d11. (4.6)

If two appliances are on at the same time, such as the television (i = 12) and the decoder

(i = 14), then the equality is modeled as,

u12,t − u14,t = 0, t = 1, ..., T. (4.7)

If one appliance is off while the other is on, this is represented by the inequality constraint

(11). An example would be a DVD player and a decoder. The DVD player (i = 13) is off

when the decoder is on with the same television set. This is represented by;

u13,t + u14,t ≥ 1, t = 1, ..., T. (4.8)

An example of a television being off, then the DVD player is off, is represented by (4.9).

Another example would be television room lights being switched off when the television is

off.

u13,t = 0 if u12,t = 0. (4.9)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 4 Optimal scheduling of household appliances with BESS and coordination

To coordinate the lighting with the appliances used in their respective rooms, we use con-

straint (4.10). With reference to the laundry room, as indicated in Table 1; the only time

the laundry lights are off is if neither the washing machine nor the dryer is on.

u3,t =


1, if u10,t or u11,t = 1,

or u10,t = u11,t = 1,

0, if u10,t = u11,t = 0.

(4.10)

e) Appliance power consumption limits

0 ≤ Pi,t ≤ Pmaxi . (4.11)

4.3.0.1 Battery model

In our current work it is assumed that the household under study has a battery bank as a

storage device. The BESS is characterized by continuous charging and discharging power,

therefore Pb,t and P̄b,t are considered continuous variables. The general battery dynamics are

presented by the battery’s state of charge (SOC) [98,99];

Et = E0 + ηc

t∑
γ=1

Pb,γ∆t− ηd
t∑

γ=1
P̄b,γ∆t, 1 ≤ t ≤ T, (4.12)

where Et is the SOC of the battery, E0 is the initial SOC, whereas ηc
∑t
γ=1 Pb,γ∆t is the

battery energy during the charging period and ηd
∑t
γ=1 P̄b,γ∆t is the battery energy during

the discharge period. Note that at a time when the battery is consuming power, it is treated

as an appliance, whereas during discharging it acts as a source. ηc and ηd are the battery’s

charging and discharging efficiencies. The objective is to minimize the cost of charging and

maximize the cost of discharging the battery. Therefore the cost objective function for the

battery is as follows:

Jb =
T∑
t=1

Pb,tρt∆t, (4.13)

with continuous control variables Pb,t being the battery power during the charging

period.
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

a) Battery energy capacity limits

The battery capacity limits provide the upper and lower bounds to the battery capacity.

Emin ≤ Et ≤ Emax, t = 1, ..., T, (4.14)

where Emin and Emax are related through depth of discharge (DOD) as follows;

Emin = (1−DOD)Emax. (4.15)

b) Avoiding charging while discharging

We consider that battery charging and discharging operations are mutually exclusive. There-

fore the battery cannot charge and discharge at the same time; the constraint below is

applied. This constraint also allows the state of the battery to be idle while it is not charging

or discharging.

Pb,t.P̄b,t = 0; (4.16)

c) System power balance

The power demanded by the load at time t should be met by both the discharging battery

and the mains supply;

P̄b,t + Pm,t = PD,t, (4.17)

where

0 ≤ Pm,t ≤ Pmaxm .

P̄b,t is the battery power during discharge, Pm,t is the power from the grid and PD,t is the

aggregated power demanded by the appliances together with the battery at time t. Without

the battery, the power supplied by the grid is equivalent to the power consumed by the

aggregated household load, Pm,t = PD,t. Aggregated power consumed by appliances excluding

the battery is;
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PA,t =
A∑
i=1

Piui,t, (4.18)

while the aggregated consumption of the appliances and the battery is given by:

PD,t = PA,t + Pb,t. (4.19)

The total power consumption of appliances under consideration and the battery, PD in a day

is given by:

PD =
T∑
t=1

(PA,t + Pb,t). (4.20)

4.3.0.2 The inconvenience level

The purpose of the scheduling inconvenience (I) is to minimize the variation between the

baseline and the optimal schedule [25]. The consumer therefore also minimizes the incon-

venience given by:

I :=
T∑
t=1

A∑
i=1

(ubli,t − ui,t)2. (4.21)

The baseline ubli,t is obtained from the measured results as shown in Table 4.1.

4.3.1 The overall objective

The inconvenience cost and the battery sub-objectives are incorporated in the main objective,

therefore the final objective function that the consumer desires to minimize is expressed as

follows:

J = (Je + Jb) + αI∆t, (4.22)
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

where Je is the energy cost function as in (4.1) and Jb is the battery energy cost function as

shown in (4.13). It is to be noted that the inconvenience as presented in (4.21) is a unit less

value. Therefore to express all sub-functions within the overall objective function (4.22) with

the same unit, there is a need to use some form of cost coefficient to express all sub-functions

in the same units. In this work we use the tariff α = ρ(t) as an assumption. In the previous

chapter we had assumed the parameter α = 0.5 and a sensitivity of this parameter has been

tested on the same chapter which was shown to affect the solution. The assumption in the

current chapter however, assumes that the consumer is paid the equivalent amount to the

electricity charge on their inconvenience. To date, determining the cost coefficient that will

work both for the utilities and consumers remain one of the research gaps in this study.

The model obtained in (4.1)-(4.22) is the MINLP model with control variables ui,t, Pb,t, P̄b,t
and Pm,t.

4.4 MODEL PARAMETERS

A typical household in South Africa is used as a case study. Fourteen appliances are selected

and studied and results are shown in Table 4.1. Field measurements are conducted to obtain

baseline commitment and the profile of appliances under consideration. Appliance rated

power is specified by the appliance manufacturers and can be obtained from the appliances.

Data on appliance usage in the household under study were collected, as well as information

on the allowable time duration required to finish the normal operation of the appliance, Ni.

The information on di and ei as the beginning and end of the time interval in which the

appliance is scheduled is specified by the user, based on the usual or preferred usage. This is

shown in the last column of Table 4.1 where, for example appliance 4, di = 115 (19 : 10) and

ei = 129 (21 : 30) are the average time ranges at which the appliance is normally switched on.

This is typical of a working class household where most activities occur in the morning and

after work. Appliances considered are shown with their rated power and normal operation

time ranges. The baseline on appliance operation time is also shown.

The tariff structure used is based on South Africa’s TOU Homeflex 1 for household consumers.

The Homeflex 1 tariff has five charge components as service charge, transmission network

charge, environmental levy, peak and off-peak charges1. We model these into fixed and

variable charges as follows:
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Table 4.1: Appliances data

No. Appliance Rated power

Pi (kW)

Run-time

Ni,(mins)

Baseline ubli,t

Avg. di-ei
(Hrs)

Lights

1 Kitchen 0.011 As kitchen ap-

pliances

2 TV room 0.011 As TV

3 Laundry room 0.011 As laundry

appliances

Kitchen

4 Dishwasher 1.8 150 115-129

5 Breadmaker 1.5 150 117-131

6 Stove 2.0 30, 50 31-33, 112-116

swimming pool

7 1Hp pump 0.75 120 103-114

Heating

8 Space heating 2.4 120 108-119

9 EWH 3.0 120,120 30-41,103-114

Laundry

10 Washing machine 2.0 60 108-113

11 Clothes dryer 2.0 30 115-117

Entertainment

12 Television 0.133 180 103-120

13 DVD player 0.025 180 103-120

14 Decoder 0.07 180 103-120
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

Table 4.2: Battery data

Battery capacity 10kWh

ηc 75%

ηd 100%

DOD 50%

ρt = FC + VC ,

where FC is a fixed charge and consist of service charge, network charge and environmental

levy, while VC are peak and off-peak energy charges.

FC = R(2.96 + 3.68 + 2.00)/100,

and

VC =

 R1.7487, peak time, t ∈ [07:00,10:00),[18:00,20:00);

R0.5510, off-peak time, t ∈ [00:00,07:00),[10:00,18:00],[20:00,00:00].

The household under consideration is assumed to have a battery bank, which is the most

standard device used to store energy because of their relatively low price, relatively low

investment cost, high availability, reasonable performance and life characteristics [98]. Most

literature states that the lead acid battery has a discharge efficiency of 100%, whereas the

charging efficiency is in the range of 65-85% [87,98,99]. A point to note about the battery is

that for it to work with an AC network, there has to be conversion and inversion from AC

to DC and DC to AC. It is acknowledged that there are some losses within these electronic

modules. However, for our work the net efficiency has been used, that is, converter/battery

as charging efficiency and battery/inverter as discharging efficiency. Therefore the battery

data used are shown in Table 4.2. The minimum discharge capacity of 50% has been shown

to sustain the lifespan of the battery [98].

Other data shown in Table 4.3 are the maximum cost that the consumer is willing to incur

or the consumer’s budget. This value is obtained from the consumer’s bill. The maximum

power from the grid has an assumed power factor of 0.75. It is assumed that the appliances
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

Table 4.3: Other data

Daily maximum bill (C) R25

Maximum power from the mains(Pmaxm ) 230V ∗ 60A ∗ 0.75 ∗ 0.5 = 5.2kW

considered can consume a maximum of 50% of the household maximum power at any time

t.

A point to note on battery cost is that it entails capital cost, operational and maintenance

(O&M) costs. Since our study horizon is one day, we only consider O&M costs. However,

the impact of investment cost cannot be ignored during longer study periods [100–102].

In [103–105], the O&M cost of a lead acid battery has been estimated to a specific annual

value or some online sources estimate the annual O&M cost to be less than or equal to 2%

of capital cost. In this work, our estimate is guided by [103–105] that use a fixed value of 22

EUR/kW/year and we convert to a daily equivalent of R 0.8178kW/day.

4.5 SOLUTION METHODOLOGY

Field measurements were conducted to obtain the baseline commitment and the profile

of appliances under consideration. During these measurements the TOU tariff was used.

The MINLP optimization problem (4.1)-(4.22) is solved with an optimization solver, SCIP,

available in the Matlab interface OPTI toolbox. SCIP is currently one of the fastest non-

commercial solvers for MIP and MINLP. It is also a framework for constraint integer program-

ming and branch-cut-and-price20,21. It uses Interior Point Optimizer (IPOPT) and SoPlex

as nonlinear and integer algorithms. SoPlex is an advanced implementation of the revised

simplex algorithm for solving linear programs. It features preprocessing, exploits sparsity,

and provides primal and dual solving routines. It is the default LP solver in SCIP. IPOPT im-

plements an interior-point line-search filter method17,22 [106,107] The solver offers solutions

to problems of the form:
20SCIP: Solving Constraint Integer Programs.< http://scip.zib.de/>.
21T. Berthold, et al., Solving mixed integer linear and nonlinear problems using the SCIP Op-

timization Suite, ZIB-Report 12-27 (July 2012), TakustraÃ§e 7 D-14195 Berlin-Dahlem Germany.

<file:///C:/Users/User/Downloads/ZR-12-27%20(1).pdf>
22Opti Toolbox solvers. <http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Solvers>
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

minf(x), s.t.,



Ax ≤ b, Aeqx = beq(linear constraints)

c(x) ≤ d, ceq(x) = deq(nonlinear constraints)

Lb ≤ x ≤ Ub(variable bounds)

xi ∈ Z(integer decision variables)

xj ∈ {0, 1}, i 6= j(binary decision variables)

The measured results are compared with simulation results to demonstrate the effectiveness

of the algorithm.

4.6 MEASURED, SIMULATION RESULTS AND DISCUSSIONS

The consumption of the appliances considered for one household is monitored using an Efergy

E2 Classic energy monitor. The Efergy E2 Classic is a wireless electricity monitor that allows

monitoring of electrical energy consumption trends over time in households. It includes an

innovative software package that allows tracking energy usage on a computer. The measuring

device has three components, as shown in Figure 4.2, and a typical connection is shown in

Figure 4.3.

 

Figure 4.2: Efergy E2 classic energy monitor components
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EWH  Whole house excluding EWH 

Figure 4.3: Connection at the DB

Sensor unit: This component is hooked onto the electricity meter’s incoming supply cable

for aggregated household energy measurement but for individual appliance measurements,

it is connected to the live wire of the appliance three-core cable. This excludes the electric

water heater (EWH), which is supplied directly at the distribution board (DB); hence its

measurements are made at the DB. Transmitter unit: The purpose of the transmitter is

to link the sensor cable to the display unit through transmission of measured data. This

component captures data at least every 6 seconds. Display unit: The function of the unit

is to display energy usage information and demand profile and the cost of energy being

consumed. The numerical hourly average data are provided for analysis. This device is kept

at a distance of not more than 70m from the transmitter unit21.

The Efergy E2 Classic monitor has been shown to have 2% error22, which makes the results

reliable. South Africa’s residential load management (RLM) program, which enables the

municipal control of residential EWH, necessitates that the EWH be supplied differently from

other household appliances for ease of external control23. This residential unit is located in a
21< http://www.sustainable.co.za/efergy-e2-optical-wireless-electricity-monitor.html>.
22< http://efergy.com/manuals/e2classic_instructions_web2011.pdf>.
23R.S. Pandaram, Residential load management (RLM) in South Africa: challenges and solutions.
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

block of houses where the EWH control devices are located at a localized meter box, hence

the invisibility in the DB. Typical profiles of two appliances are shown in the figures below.

These are for the stove and the EWH. The aggregated profile for the appliances considered

is shown as the baseline profile in Figure 4.6.
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Figure 4.4: Demand profile for the stove
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Figure 4.5: Demand profile for the EWH

Since the occupants of the house are working class people and consumption that occurs at

night and during daytime when the occupants are not around or not active, it is the opinion

of the writers that the consumption is due to the EWH standby losses24. It is clearly seen,
<http://active.cput.ac.za/energy/past_papers/DUE/Pandaram.pdf>.

24Q. Caherine, J. Wheeler, R. Wilkinson, G. De Jager, Hot water usage profiling to improve geyser efficiency.

<http://www.erc.uct.ac.za/23-jesa-catherine-etal.pdf>
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

particularly in the evening, for both the stove and EWH that the consumption is during peak

times between 18:00 and 20:00. One of the challenges of using this measuring device is that

the cost comparison can only be made at monthly level.

The measured baseline cost of the EWH=R 11.82 and stove=R 6.0629 for the profiles shown

in Figures 4.4 and 4.5 and the TOU tariff as in section 4.2. The effectiveness of the algorithm

is demonstrated in the results obtained from our simulation results. The optimization solution

with the TOU tariff shows a shift in the consumption profile of appliances. Because of load

shifting, for example, the EWH shows one day’s cost of R 8.33. This shows a cost saving for

this appliance of 29.5%. The stove shows R 4.70; this gives a cost saving of 22.48%. It is

to be noted that our simulation results may show an over-estimation because, for example,

for the stove we assume fixed power consumption whereas in practice the appliance is a heat

regulator, hence the actual consumption is variable.

A very interesting observation is derived from Figure 4.5 in that the field measurements

show continuous consumption values of EWH. The assumption is made in this thesis that the

appliances consume maximum power rating whenever committed because it is very complex to

ascertain the actual consumption values and also that the optimization problem is discrete in

nature. This observation however, shows that the values reported could be an overestimation.

This could also be extended to other appliances such as stove.

The challenge with this meter, however, is that when performing individual appliance meas-

urements, the live wire from a three-core cable has to be exposed in order to monitor the

consumption and this may pose safety issues. Another challenge is that the monitoring device

can be used to make a cost comparison for one month for different tariffs. Since our study

horizon is 24 hours, the daily estimates may not reflect a true cost value for the day in con-

sideration. It is to be noted that for simplicity, in our simulation results we have excluded

standby losses.

The simulation results provided are with additional run time ki = 0 and α = ρ(t). In

our previous work [25] we tested different values of alpha where it was discovered that the

simulation result was sensitive to the value of alpha. The high value of alpha generated the

highest cost value and the lowest value of inconvenience. For alpha=0, the consumer’s decision

is not influenced by the inconvenience and during this time, the inconvenience assumes the
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

highest value, while the cost is at its lowest value. It is to be noted that the selection of the

proper value of alpha is subjective, as it is dependent on the user’s preference. At this stage

we can only make an assumption. In order to differentiate this current work with the previous

one, instead of assuming a fixed inconvenience cost coefficient, we now use the TOU tariff,

that is α = ρ(t), that is, the consumers opts to go with the utilities’ price. The trade-off

between the two sub-objective functions of cost and inconvenience can assist consumers in

making a choice on the extent they are willing to be inconvenienced, which may affect the

level of participation in the DR program.

Figure 4.6 shows simulation results obtained with coordination considered. The appliances’

baseline and optimal appliance schedules are shown. The profile shows the baseline and

optimal load profiles both with and without battery. It shows that the optimal solution

without battery offers shifted consumption and a reduced peak of 8.405 kW t=103, 106 and

107 (17:10, 17:40 and 17:50). The baseline has a peak of 10.355 kW at t = 112− 113 (18:40-

18:50). This shows a shifted peak consumption from peak. The energy consumed at peak

has also reduced by 18%. The baseline energy cost is R 31.77, while the optimal cost realized

without battery is R 24.76, a saving of 22%. This saving is relatively higher compared to

most results obtained with the TOU tariff owing to the high disparity between the peak and

off-peak Eskom prices; the latter is 30% of the former.

The battery SOC shows that the battery charges during off-peak from t = 0 (00:00) to t = 7

(01:00) and discharges from t = 102 (17:00) to t = 120 (20:00). Load profiles 1 as a relation

between the baseline and the optimal load profile without a battery is included here for ease

of comparison. Load profile 2 shows the load profiles obtained from the model solution with

and without the battery. It shows the contribution of the battery in peak shaving and valley

filling. The battery reduces the peak to 5.1750 kW (10% reduction) and cost reduction to

R 23.28. The utilization of the battery brings about a further cost reduction of 6% due to

the battery discharge during peak times to aid the power from the grid. a further saving of

6%.

Consideration of appliances coordination yields relatively smaller cost saving because of op-

eration independence. Without coordination, constraints (4.5)-(5.10) are ignored. Consider-

ation of appliance coordination gives a further cost saving 1% and a relatively smaller peak

reduction to 8.305 kW. This shows that the work that excludes coordination constraints may
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Figure 4.6: Simulation results: Battery state of charge, baseline and optimal load profiles,

impact of using battery and system power flows

show inflated residential demand response simulation cost savings.

The figure with power flows shows the power demanded by the load PD, the power from the

grid Pm and the power from the battery P̄b. It is shown that the power demanded by the

load is met by both Pm and P̄b, for example at t = 110 (18:20), PD = 8.305kW and this

load is met with Pm = 5.1750kW and P̄b = 3.13kW . These power flows satisfy constraint

(19).

4.6.1 Illustration of the logic constraints

It is the view of the authors that it is important to present an illustration of the logic

constraints (4.9) and (4.10) due to their importance in the problem solution and also that their

graphical solution hasn’t been presented before. In figure 4.7, the application of constraint
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

(4.9) to coordinate both the television use to the lights in the room has been met with both

appliances getting on and at almost the same time. The television and the lights in the room

are both on from 17:00 to 20:00 for a period of 3 hours.
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Figure 4.7: Stem results of TV room lights coordinated with television

In figure 4.8 is the illustration of constraint (4.10). It can be seen that commitment of both

appliances in the laundry room are coordinated with the lights in that room. However, it is

realised that the lights following appliances may cause intermittent use of electricity which

may affect the wear and tear of the lights. This as shown in sub-plot three with the lights

being off between the operation of appliances. This suggests that the constraint could be

improved to show continuous operation of lights tied to the start and finish of the operation

of all appliances within a reasonable time, say may be 15 minutes.

4.6.2 Sensitivity analysis of parameter C on the solution.

A sensitivity analysis is carried out to investigate the solution’s dependence on parameter

C, the consumer’s willingness to pay. The results obtained are shown in Table 4.4. We can

deduce from these results that the solution obtained is sensitive to how much the consumer is
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Figure 4.8: Stem results of laundry room lights coordinated with washing machine and

dryer
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Chapter 4 Optimal scheduling of household appliances with BESS and coordination

Table 4.4: Sensitivity of parameter C on the results

C (R) Energy cost,

(Je + Jb) (R)

Energy cost

saving (%)

Cost contribu-

tion by battery

(R)

Inconvenience

cost (R)

computational

time (sec.)

20 Infeasible 5.59

21 Infeasible 4.98

22 Infeasible 5.13

23 23.0708 27.3779 0.1569 16.1621 5.59

24 23.5728 25.7977 -0.2421 13.8411 6.98

25 24.5189 22.8196 -0.2421 12.5148 7.22

26 25.3298 20.2671 -0.5424 11.1886 7.32

27 25.4425 19.9123 -1.3307 10.5254 7.35

28 26.3096 17.1829 -1.3307 10.0437 7.58

29 27.2731 14.150 -1.3307 9.5620 7.85

30 28.5395 10.1636 -1.1553 9.1709 7.30

40 29.7478 6.3601 -2.1317 8.4796 7.11

50 29.7478 6.3601 -2.1317 8.4796 7.34

100 29.7478 6.3601 -2.1317 8.4796 7.83

willing to spend. When parameter C increases, the energy cost increases, the inconvenience

cost decreases, the cost saving decreases while the battery contributes more to cost reduction

until solution convergence. These results are commensurate with practical expectation in

that if the budget or willingness to pay is less, the minimization algorithm is stringent on

the energy cost and the inconvenience cost will henceforth be higher. This, however, shows

that the consumer can also use the cost to regulate the algorithm’s outcome. Thus in the

determination of energy cost saving by the consumer, the amount of savings is affected by

the consumer’s budget.

4.6.3 Further discussion

The problem presented above is deterministic; one could easily implement the presented

model’s output as inputs in an open-loop controller. However, because of uncertainty, ad-
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ditional information such as the modelling of the system’s stochastic behaviour should be

included in order to achieve real time implementation.

In an effort to work towards real time implementation, we are currently working on formu-

lating the model as stochastic to account for uncertain parameters because in practice, the

complexity of optimization is brought by the presence of uncertainty brought by some prac-

tical system’s unknown disturbances. The main challenge of real time implementation is in

accurate prediction of the load because of its uncertainty. In this case the uncertainty of the

load is practically attributed to both the appliance operation time and power consumption,

since they are dependent on; using the stove as an example, such things as the type of event,

food, heat regulation, environmental temperatures and even types of cooking devices used.

The television may also depend on the day and time of day usage. Comfort level also brings

about uncertainty on the load where the consumer may wish to schedule at a different time,

hence the need to allow for manual operation. The efficiency of the battery may also be

uncertain.

The complexity of dynamic optimization problems makes it hard for general purpose solvers

to compute solutions fast enough for a real-time implementation. The simulation package,

SCIP we are using is relatively fast with solution time of 7 seconds. SCIP is regarded as

one of the fastest non-commercial solvers for MIP and MINLP. However, tailored numerical

algorithms may be needed to overcome these challenges in real-time application. Real time

implementation require computers that are specifically designed for this purpose, which can

be done by faster and more effective tools that offer a platform to integrate software and

hardware while capitalizing on the latest computing technologies such as LabView or Matlab

combined with DSP.

4.7 CHAPTER SUMMARY AND CONCLUSION

The chapter gives our results from a study using the MINLP household appliance optimization

scheduling problem with the necessary constraints and a battery storage.

The optimal results show that consumers reschedule their appliances in response to variable

electricity prices, as demonstrated through a TOU tariff. The optimization solution shows

consumers can minimize energy cost by transferring their load from peak to off-peak times.
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This brings about a cost saving of 22%. Consideration of appliance coordination brings

variation in the results obtained. A further energy cost reduction of 6% is achieved by using

a battery, which promotes peak shaving as it discharges during peak times. However, since

the battery charges during off-peak times, it provides valley filling. This not only affects

the net energy cost saving for the household, but also promotes energy balance in the power

system, which the utility pursues as a global need. The battery does not bring about a

significant improvement when compared with load shifting, which yields a significant energy

cost saving because of the charging component of the battery, which has a power consumption

cost. Consideration of appliance coordination reduces the cost by a further 1%.

It has been found that the solution obtained is sensitive to input parameter C, the amount

the consumer is willing to pay. When C increases the energy cost also increases and the

inconvenience cost reduces. This is in line with practical expectations in that if the consumer

has a higher budget he is likely to have less inconvenience and high energy consumption cost.

This, however, shows that the consumer can also use their budget to regulate the algorithm’s

outcome.

In the next chapter we consider residential demand response with PV and consideration of

carbon emissions savings.
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CHAPTER 5

COMBINED RESIDENTIAL DEMAND SIDE

MANAGEMENT STRATEGIES WITH

COORDINATION AND ECONOMIC

ANALYSIS

5.1 CHAPTER OVERVIEW

This chapter improves the preceding chapters by modelling of residential demand response

for five households in South Africa instead of one. It is also based on our published work [108]

that bears the same title. This study is twofold; the first part proposes an energy management

system that combines demand side management strategies with a view of minimizing the con-

sumer’s cost and reducing the power consumed from the grid. Appliance scheduling with a

dedicated photovoltaic and storage system under time-of-use tariff shows that customers can

realize cost savings and the power demanded from the grid is reduced by scheduling power

usage optimally. In the second part of this study, we develop a model to investigate the joint

influence of price and CO2 emissions. A similar study has been performed in [109]. However,

unlike this reference our study considers not only a battery but also a PV generator. It is

found in this study that CO2 emissions could give customers an environmental motivation to

shift loads during peak hours, as it would enable co-optimization of electricity consumption

costs and carbon emissions reductions. It is also demonstrated that the consumer’s pref-

erences on the cost sub-functions of energy, inconvenience and carbon emissions affects the

consumption pattern. These results are important for both the consumer and the electricity

suppliers, as they illustrate the optimal decisions that needs to be made in the presence of
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Chapter 5 Combined residential DSM strategies with coordination and EA

multiple sub-objectives. Sensitivity analysis, however, reveals that the energy cost saving is

sensitive to the consumer’s choice of weighting factors. This analysis has not been performed

in any of the literature in this area.

The remainder of this chapter is organized as follows: Section 5.3 focuses on the problem

definition. Section 5.4 presents optimization model formulations. Section 5.5 provides inform-

ation on the data used in this study. The solution methodology and simulation results are

presented and discussed in Section 5.6 and 5.7 respectively. Section 5.8 presents economical

analysis of such a system and lastly a conclusion is presented in section 5.9.

5.2 PROBLEM DEFINITION

We consider set of households H with an index h as shown in Figure 5.1. The households

under study are assumed to be connected at a distribution bus Pbus. Figure 5.2 shows the

power flows in one household with a dedicated PV and storage system.

.   .   .h1 hH

i1 . . . iI i1 . . . iI

Pbus,t

Figure 5.1: Interconnection of the households

The nature of renewable energy sources makes it a challenge to integrate them in a power

system. The two primary challenging characteristics of renewable energy sources are their

unpredictability and their intermittency. In order to permit integration of renewables into

the grid, the voltage and current levels are to follow the grid code that aids proper system

synchronization for increased system reliability. The impact of both these challenging char-

acteristics can be mitigated by the application of batteries in the system. Each house has a
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Chapter 5 Combined residential DSM strategies with coordination and EA

Pflex,t

Pinflex,t

Pngt,t

Utility

Supply

Pm,t

Ppv,t

Pb,t

Pb,t≤ Ppv,t

Figure 5.2: Power flows in a household

dedicated PV-battery system and the purpose of the chapter is to formulate an optimal con-

trol model that seeks to minimize energy cost, the inconvenience and carbon emissions.

5.3 OPTIMIZATION MODEL

In this section a mathematical model is formulated for the optimal control of the system

presented in the previous section. The model formulations are presented as model objective

function followed by sub-functions and constraints.

5.3.1 Modeling objective function

A weighting factor method is applied in (5.1) to integrate the sub-objective functions into

one. The advantage of this approach is that the consumer has an option to choose the sub-

objective to use to control their consumption. Each household seeks to minimize the following

combined cost function:

min J = w1Je + w2JI + w3Jc (5.1)
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Chapter 5 Combined residential DSM strategies with coordination and EA

where w1, w2 and w3 are the weighting attached to these objectives according to the con-

sumer’s preference, and ∑3
j=1wj = 1. Je is the energy cost function as in (5.2), JI is the

inconvenience cost function shown in (5.4) while Jc is the carbon emissions cost objective

function given in (5.6).

5.3.1.1 Energy cost model

The energy cost objective function (5.2) minimizes the cost of energy consumed by households

through optimal scheduling of appliances and the battery using TOU electricity tariff.

Je = ρt∆t
H∑
h=1

T∑
t=1

(P hinf,t + P hngt,t + P hflex,t + P hb,t) (5.2)

where

P hflex,t =
H∑
h=1

T∑
t=1

K∑
k=1

P hk,tu
h
k,t (5.3)

P hk,t ≥ 0, ρt > 0, k = 1, ...K, t = 1, ..., T, h = 1, ...,H.

uhi,t =

 1, when appliance i is on in household h at t;

0, when appliance i is off in household h at t.

P hinf,t, P hflex,t and P hngt,t are appliance classifications denoting inflexible, flexible and night-

time load, respectively, and each household consists of these three types of loads. Flexible

loads can be adjusted according to the consumer’s preferences and night-time loads can be

committed during the night (22:00-0:500), while inflexible appliances are non-shiftable. k is

an index of controllable appliances. ηc
∑T
t=1 P

h
b,tρt∆tminimizes the cost of charging battery in

each household and ηc is the battery’s charging efficiency. uhi,t is the appliance commitment

status at time t in household h while uhk,t is the status of flexible appliance at time t in

household h. k is the index of flexible appliances and k ∈ K where K ⊂ A. P hk,t is the power

consumption of each flexible appliance in time t in household h.
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Chapter 5 Combined residential DSM strategies with coordination and EA

5.3.1.2 Inconvenience cost model

The scheduling inconvenience, I, minimize the disparity between the baseline and the optimal

schedule [28]. The consumer therefore also minimizes the inconvenience given by:

Ih :=
T∑
t=1

K∑
k=1

(ubl,hk,t − u
h
k,t)2. (5.4)

JI = ρt∆t
H∑
h=1

T∑
t=1

K∑
i=1

(ubl,hk,t − u
h
k,t)2. (5.5)

The baseline ubl,hk,t of controllable appliances is obtained from the measured results as explained

in data section.

5.3.1.3 Carbon emissions cost model

The carbon emissions model is the carbon footprint of the consumer from the grid electricity

usage offset by the injection of emission-free electricity from the PV system. The goal is to

minimize the cost of carbon emissions by a household [?, 85].

Jc =
H∑
h=1

T∑
t

λCM
h
C,t∆t, (5.6)

where Jc is the CO2 emission cost, λC , is the price of CO2 emission and Mh
C,t is the mass of

emitted CO2 in kilogram, that is computed as follows;

Mh
C,t = (P hA,t + P hb,t − P̄ hb,t − P

h
pv,t)αgrid, (5.7)

and with the assumption that P hb,t = P hpv,t, the equality (5.7) reduces to reduces to (5.8);

Mh
C,t = (P hA,t − P̄ hb,t) ∗ αgrid (5.8)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

66

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 5 Combined residential DSM strategies with coordination and EA

where αgrid is the CO2 emission rate of the grid, which is 0.99 kg of CO2/kWh for South

Africa’s utility,5 and is charged at λC = R0.1323/kg. P̄ hb,t is the battery’s power discharge.

Note that the charging of the battery is taken care of by the PV system.

5.3.2 Model constraints

5.3.2.1 Battery model

The PV-battery system is considered in this work because of the numerous benefits to both

the consumer and the utility. The PV system typically has a peak generation around mid-

day, which generally does not align well with on-site demand with more consumption in

the evening. Storage at the PV system is used to store this energy. PV energy, like other

renewable energy sources, is subject to rapid weather variations, and the result of this is

significant grid instability. In this work, a storage system is optimally charged and discharged

to compensate for these fluctuations. This improves the interconnection of PV systems to

the grid, and support grid stability. The battery model is presented with general battery

dynamics presented by the battery’s state of charge (SOC) [78, 79]. The battery energy

storage system is characterized by continuous charging and discharging power, therefore P hb,t
and P̄ hb,t are considered continuous variables at time step t.

Et =
H∑
h=1

(E0 + ∆t
t∑

γ=1
(ηcP hb,γ − ηdP̄ hb,γ)), 1 ≤ t ≤ T, (5.9)

where Et is the battery’s SOC, E0 is the initial SOC of the battery, whereas ηc
∑t
γ=1 P

h
b,γ∆t

and ηd
∑t
γ=1 P̄

h
b,γ∆t are the battery energy during the charging and discharge period, respect-

ively.

The following constraints are applied to the battery model:

Emin ≤ Eht ≤ Emax, t = 1, ..., T, (5.10)
5 Eskom Integrated report,2014 <http://http://www.integratedreport.eskom.co.za//>
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Chapter 5 Combined residential DSM strategies with coordination and EA

Emin = (1−DOD)Emax, (5.11)

P hb,t ∗ P̄ hb,t = 0, t = 1, ..., T, (5.12)

where (5.10) is the battery energy capacity limits, (5.11) is the relation between Emin and

Emax through the battery’s depth of discharge (DOD). (5.12) presents the exclusive operation

of the battery because the battery cannot charge and discharge at the same time. This

constraints also allows the battery to be in idle mode.

5.3.2.2 Power flows

The total power consumed by a set of all appliances (A) in one household at time step t is

given by:

A∑
i=1

P hi,t = P hinf,t + P hflex,t + P hngt,t, (5.13)

(P hinf,t, P hflex,t, P hngt,t) ≥ 0,

while the total power demanded by a household h at each time step is given by,

P ht =
A∑
i=1

P hi,t + P hb,t. (5.14)

The total power demanded by the load in household h at time t, P ht , is satisfied by the battery

power output P̄ hb,t, grid power (P hm,t) and the output (Ppv,t) charges the battery, hence the

power balance equation is given by,

P̄ hb,t + P hm,t = P ht , (5.15)
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Chapter 5 Combined residential DSM strategies with coordination and EA

where

0 ≤ P hm,t ≤ Pmaxm , (5.16)

where Pmaxm is the maximum power capped to the distribution board’s maximum power in

each household and is computed as; 230V ∗60A∗0.75 = 10.35kW , with nominal single phase

voltage and current ratings of 230V and 60A, and an assumed power factor of 0.75.

0 ≤ P hb,t ≤ Ppv,t. (5.17)

Constraint (5.17) bounds the battery charge to the PV output. The total power consumption

in each household in a day is given by (5.18). k is the controllable appliance index and K is

a set of controllable appliances. Pk,t is the rated power of controllable appliance k at time

t. uhk,t is the commitment status of appliance k in household h at time t and ρt is the TOU

electricity price at t.

P h =
T∑
t=1

(Pinf,t + Pngt,t +
K∑
k=1

Pk,tuk,t + ηcPb,t). (5.18)

The aggregated consumption as seen by the distribution bus from a set of serviced households

is given by;

Pbus,t =
H∑
h=1

T∑
t=1

(P hinf,t + P hngt,t +
K∑
k=1

P hk,tu
h
k,t + ηcP

h
b,t − ηdP̄ hb,t). (5.19)

The individual household energy consumption at time step t is capped to the capacity of the

distribution board installed in the house as in (5.20).

P hinf,t + P hngt,t +
K∑
k=1

P hk,tu
h
k,t + ηcP

h
b,t ≤ Pmaxm . (5.20)

5.3.2.3 Appliance operational constraints

Given the predetermined parameters of the controllable appliances; dhk , ehk and Nh
k , as the

beginning and end of the time to which each flexible appliance is to be scheduled, and the
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Chapter 5 Combined residential DSM strategies with coordination and EA

duration required to finish the normal operation of each controllable appliance in household

h, the following; inequality (5.21) holds.

eh
k∑

t=dh
k

uhk,t = Nh
k ,∀h,∀k, (5.21)

where

Nh
k ≤ (ehk − dhk). (5.22)

eh
k∑

t=dh
k

uk,t · uk,(t+1) · uk,(t+2) · · · uk,(t+(Nk−1)) = 1, t = 1, ..., T. (5.23)

u2,t − u6,t − u7,t = 0 (5.24)

d6 +N6 ≤ d7+1. (5.25)

0 ≤ Pk,t ≤ Pmaxk , (5.26)

where nonlinear constraint (5.23) models the non-interruptible operation of appliances. (5.24)

and (5.25) are coordination constraints. (5.24) coordinates lighting with the appliances used

in their respective rooms, using the the laundry room as a reference. The time the laundry

lights are off is when neither washing machine nor drier is on. (5.25) ensures that, for

example, the dryer follows the washing machine. The numerical indices in equality (5.24)

and inequality (5.25) correspond to the appliance number index as provided in Table 5.1.(5.26)

is the appliance power consumption limit.

T∑
t=1

(P hinf,t + P hngt,t +
K∑
k=1

Pk,tu
h
k,t + ηcP

h
b,t)ρt∆t = Ch. (5.27)
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Chapter 5 Combined residential DSM strategies with coordination and EA

This constraint models the maximum cost (Ch)that each household is willing to incur within

the control horizon. The parameter C is obtained from the consumer’s bill and provided in

the data section, Table 5.3.

The formulated model is MINLP optimal control problem with control variables uhk,t, P hb,t,

P̄ hb,t, and P hm,t.

5.4 DATA

Five apartments in a suburb in South Africa, connected to a common point as shown in

Figure 5.1 have been used as a case study. Each household is assumed to have a dedicated

PV and battery system.

5.4.1 Tariff

The tariff adopted is based on South Africa’s TOU Homeflex 1 tariff structure for household

consumers. The Homeflex 1 tariff has five charge components6 as network charge, service

charge, environmental levy, off-peak and peak charges. We model these into fixed and variable

charges as follows:

ρt = FC + VC ,

where FC is a fixed charge and consist of service charge, network charge and environmental

levy, while VC are peak and off-peak energy charges.

FC = R(2.96 + 3.68 + 2.00)/100,

and

VC =

 R1.7487, peak time, t ∈ [07:00,10:00),[18:00,20:00)

R0.5510, off-peak time, t ∈ [00:00,07:00),[10:00,18:00],[20:00,00:00].
6Eskom tariffs and charges 2011/2012 < http : //eskom.com >
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Chapter 5 Combined residential DSM strategies with coordination and EA

5.4.2 Appliance data

The maximum rated power of the appliances is specified by the manufacturers and it is

indicated on each appliance’s electric nameplates. Weekday data for a period of one month

on appliance usage in the households under study were collected. Table 5.1 shows common

flexible, inflexible and night-time loads with their respective power consumptions. Different

power ratings are due to different appliance brands and sizes. It must be noted that depending

on the type of consumer, flexibility of appliances differs as shown in Table 5.2 for the duration

at which appliances may be committed and this is depicted in Figure 5.3. In Table 5.2, for

example; stove usage commitment time ranges varies in all households. Household 1, h1,

proposes to commit stove usage any time from 06:00 to 21:00 making them more flexible on

this appliance whereas h4 is less flexible compared to the former with time ranges of 05:30

to 09:00. One of the practical reasons is that household with non-working family members

may be willing to have a less stringent/time scheduling horizon while working class families or

families with school-going children, may have to cook within specified times. This observation

motivates for further research into actual classification of appliance usage based on family

types. Table 5.2 also shows the measured maximum run-time, Nk, of appliance k.
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Table 5.1: Appliances types and power consumptions

Index (i) Appliance
Rated power Pi (kW)

h1 h2 h3 h4 h5

Flexible

1 Kitchen lights 0.11

2 Laundry room lights 0.11

3 Microwave 0.8 1.5 0.6 1.2 0.6

4 Stove 2.2 2.0 2.4 2.0 2.0

5 EWH 2.0 2.0 2.0 2.0 2.0

6 Washing machine 2.0 2.4 2.2 2.0 2.0

7 Clothes dryer/spin 2.0 0.6 2.0 0.6 0.6

8 Vacuum cleaner 0.8 0.8 0.4 0.8 0.35

9 DVD player 0.025 0.025 0.025 0.015 0.015

Inflexible

10 TV room lights 0.11

11 Refrigerator 0.35 0.4 0.25 0.35 0.15

12 Television 0.133 0.1 0.25 0.1 0.09

13 Decoder 0.07

Night loads

14 Breadmaker 1.5 1.5 1.6 1.2 -

15 Dishwasher 1.5 1.2 1.2 1.5 1.5 -
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Table 5.2: Appliance baseline data for flexible appliances

Appliance
Duration (dk, ek), Run-time Nk (min)

h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

Kitchen lights As kitchen appliances

Laundry room lights As laundry appliances

Microwave 06:00-21:00 04:00-18:00 08:00-11:00 05:30-09:00 01:00-19:00 6 8 6 6 9

Stove 06:30-15:00 06:00-15:00 08:00-11:00 05:30-09:00 01:00-15:00 54 45 48 62 36

EWH 06:00-15:00 09:15:00 23:00-04:00 16:00-23:00 - 180 120 180 180 180

Washing machine 10:00-15:00 18:00-22:00 15:00-17:00 16:00-22:00 01:00-19:00 60 60 60 60 60

Clothes dryer 10:00-15:00 18:00-22:00 15:00-17:00 16:00-22:0 01:00-19:00 30 30 30 30 15

Vacuum cleaner 10:00-18:00 09:00-12:00 08:00-15:00 08:00-14:00 01:00-19:00 12 24 16 18 10

DVD player 10:00:23:00 08:00-23:00 08:00-23:00 08:00-22:00 01:00-19:00 120 180 120 120 120
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Chapter 5 Combined residential DSM strategies with coordination and EA

Individual households shows that most of them portray different consumptions; h1 displays

different consumption behaviour with one evening peak. However, household h5 is the lowest

consumer with missing data for EWH which was non functioning at a time of data collec-

tion.

Based on the data obtained, we determined the percentage of flexible load in each household

as
∑T

t
Pflex,t∑T

t

∑A

i=1 P
h
i,t

∗100, and it is found that it ranges from 20-42%. Figure 5.4 shows the baseline

load profile for aggregated total load of the five households and the load for inflexible and

night loads. It is observed that the baseline has three peaks, morning, lunch and evening

peak, with morning as the highest peak at 09:00-10:00. This shows that the highest consumers

are stay-home families, as revealed in Figure 5.4 with h2, h1 and h3 as morning peak high

contributors.
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Figure 5.3: Baseline demand for each household

Table 3 provides data for the maximum budget that each household is willing to incur in the

study horizon. This data is obtained from the bill of each household.
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Figure 5.4: Aggregated baseline demand for five households

Table 5.3: Maximum budget C

Household h1 h2 h3 h4 h5

Maximum daily bill(C) (R) 15.90 23.08 12.16 22.57 10.23

5.4.3 Ppv and battery data

Each household is assumed to have the same battery and PV. The battery bank data is

provided in Table 5.2 and the data for PV is shown in Figure 5.5; this data is adopted

from [75]. The battery capacity is an assumed value of 10 kWh. The minimum discharge

capacity of 50% has been shown to sustain the lifespan of the battery [76].

Table 5.4: Battery data

Battery capacity 10kWh

ηc 75%

ηd 100%

DOD 50%
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Chapter 5 Combined residential DSM strategies with coordination and EA

5.5 SOLUTION METHODOLOGY

The MINLP optimization problem (5.1)-(5.27) is solved with an optimization solver, SCIP,

available in the Matlab interface OPTI toolbox. The simulation study is performed for 24

hours at a sampling time of 15 minutes. SCIP is currently one of the fastest non-commercial

solvers for MIP and MINLP. It is also a framework for constraint integer programming and

branch-cut-and-price20,21. It uses Interior Point Optimizer (IPOPT) and SoPlex as non-

linear and integer algorithms. SoPlex is an advanced implementation of the revised sim-

plex algorithm for solving linear programs. It features preprocessing, exploits sparsity, and

provides primal and dual solving routines. It is the default LP solver in SCIP. IPOPT is an

open-source solver for large-scale nonlinear programming. IPOPT implements a primal-dual

interior point method and uses line searches based on filter methods7,22. The solver offers

solutions to problems of the form:

minf(x), s.t.,



Ax ≤ b, Aeqx = beq(linear constraints)

c(x) ≤ d, ceq(x) = deq(nonlinear constraints)

Lb ≤ x ≤ Ub(variable bounds)

xi ∈ Z(integer decision variables)

xj ∈ {0, 1}, i 6= j(binary decision variables)

The measured results are compared with simulation results to demonstrate the effectiveness

of the algorithm.

5.6 SIMULATION RESULTS AND DISCUSSION

This section presents simulation results of two cases. Case 1 demonstrates an energy manage-

ment system that combines DSM strategies with a dedicated PV and storage system under

TOU tariff. Case 2 presents the results of an investigation on the joint influence of dynamic

electricity price and CO2 emissions in a DR program.
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Chapter 5 Combined residential DSM strategies with coordination and EA

5.6.1 Case 1

To make this case concise, we start looking at one household then aggregated households

with an objective; min J = w1Je + w2JI where w1 + w2 = 1. Simulation results are given at

assumed w1 = 0.2 and w2 = 0.8.
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Figure 5.5: Simulation of h3

The results in Figure 5.5 show one household’s results with the battery’s SOC, power flows

and Ppv. The battery charges at hour 11; at that time it is charged by the PV power.

The baseline cost of flexible appliances excluding the battery is R28.96. Optimal cost due

to appliances load shifting is R23.08, a cost saving of 20.08%. This cost could have been

R24.20 without the PV because of charging of the battery. The overall cost due to load

shifting, battery and PV is R20.83, a cost saving of 28.05%. This shows that the PV and

battery contribute 7.97%. Note that the contribution share is sensitive to the weighting

factors as demonstrated in case 2, therefore the consumers’ preferences affect the savings.

The inconvenience cost at these weighting factors however is R11.41, which one can argue
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Chapter 5 Combined residential DSM strategies with coordination and EA

that it is a relatively large value that may not be economical to the electricity suppliers.

The power is reduced from 6.794 kW at hour 19 to 4.58 kW owing to appliance shifting and

battery discharge.

Figure 5.6; shows the results of the aggregated households assumed to have the same weighting

factors of w1 = 0.2 and w2 = 0.8. The baseline power as seen by the distribution bus and the

optimal power seen by the same bus after optimal control: shows a total power reduction seen

by the distribution bus from 205.50 kW to 176.44 kW, a reduction of 14%. A total energy

cost reduction from R164.18 to R139.21 of 15.21% is realized by aggregated households. The

DR combined with PV and battery show that the aggregated strategy can reduce the power

demanded from a distribution system by a significant amount and thus relieve the power

system network and according some residential members significant collective savings. It

must be noted in Figure 5.6 that the maximum peak present in the morning still occurs

because the remaining part of the peak occurs after the peak times later than 10am and

since the prices at that time are relatively lower, the peak remains. This also applies to

the mid-day peak. This is also due to unavailability of PV power where the battery starts

charging at around 11:00. However, in the evening peak a significant reduction is realized,

since the TOU tariff is high during those times and the battery is fully charged. This also

shows the effectiveness of the optimizer scheduling both appliances and the battery.

5.6.2 Case 2

In this case we consider carbon emissions with the objective min J = w1Je + w2JI + w3Jc

where w1 + w2 + w2 = 1. We investigate the joint influence of dynamic electricity price and

CO2 emissions. As in case 1, we look at one typical household with typical controllable loads.

Figure 5.7 shows the results of the same household in case 1 with w1 = w2 = w3 = 0, where

the consumer does not place value on any of the sub-functions.

Simulation results in Figure 5.8 are given at w1 = 0, w2 = 0 and w3 = 1, that is, the case

of an environmentally sensitive consumer places high importance on the carbon emissions.

Both figures show that for different preferences, the consumption profile is different, hence

the costs also vary accordingly.

The effect of different combinations of the weighting factors on costs, considering extreme
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Figure 5.6: Simulation of aggregated households

cases, is summarized in Table 5.5. It is demonstrated that the consumer’s preferences on

the cost sub-functions of energy, inconvenience and carbon emissions affects the consumption

pattern. A different weighting factor shows the consumer’s different preferences regarding

the different costs. It is to be noted that the selection of the proper value of w is subjective,

as it is dependent on the user’s preference. The consumer could be guided by their level

of awareness and understanding on the sub-function costs. These results are important for

both the consumer and the electricity suppliers, as they illustrate the optimal decisions that

needs to be made in the presence of multiple objectives. This could offer flexibility to the

consumer.

In Table 5.5, five cases of preferences are presented, of which four are extreme and for compar-

ison, an additional non-extreme scenario is included. In the first scenario, the consumer does

not place any priority on any of the cost functions. In the second scenario, the consumer’s

priority is the energy cost and he does not care about the other two. The results concur with

practical expectation in that; where the consumer places more value, the respective cost will

be minimal. High value on energy cost, case 2, gives the lowest cost of R18.60, while high
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Figure 5.7: Simulation results for h3 with w1 = w2 = w3 = 0

value on inconvenience, case 3, gives the lowest inconvenience cost of R4.89 and high value

on carbon emissions cost gives the lowest value of R3.40. Case 5 is a typical non-extreme

preference with in-between values, where the cost of the battery is given by the cost of char-

ging the battery against the savings achieved form battery discharge. It is shown that the

other preferences may involve less cost of using the battery.

The simulation results for the aggregated households h1 to hH show carbon emissions saving

under the weighting factors that are assumed to be same for all households. The baseline

aggregated carbon emissions is 203.44 kg while the optimal solution gives a reduced carbon

emission of 174.67 kg, 14.14% savings. Carbon costs are respectively R26.91 and R23.11. This

shows that carbon emissions could give customers an environmental motivation to shift or

reduce loads during peak hours, as it would enable co-optimization of electricity consumption,

inconvenience and carbon emissions costs reductions. This could also be used to motivate

consumers to opt for more usage of renewable resources
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Figure 5.8: Simulation results for h3 with w1 = w2 = 0 and w3 = 1

5.7 ECONOMIC ANALYSIS

Since the problem modelled in this work entails combined DSM strategies, it is assumed that

the consumer does not bear the cost of demand response which is usually covered by the

utility, therefore, this economic analysis is performed on the usage of PV and battery system

on such a combined DSM strategy.

There are different methods used to perform economic analysis of systems in the literature.

These methods include but not limited to net present value (NPV), pay back period (PB)

and discounted present value (DPV) [18, 22, 100, 102, 104, 110]. In this chapter we adopt the

DPV method expressed in10 [110] to determine the time needed to recover an investment on

the usage of PV and battery system based on the discounted cash flows of the investment.
10Discounted present value calculator,< http : //www.aqua−calc.com/page/discounted−present−value−

calculator >
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Chapter 5 Combined residential DSM strategies with coordination and EA

Table 5.5: Effect of weighing factors on costs for a typical household

No. w1 w2 w3 Je (R) JI (R) Jc (R)

1 0 0 0 21.76 10.31 3.53

2 1 0 0 18.60 9.45 3.52

3 0 1 0 27.92 4.89 3.88

4 0 0 1 27.89 10.42 3.40

5 0.2 0.4 0.4 21.44 5.21 3.46

The discounted payback period accounts for the time when the invested capital has been

recovered or has reached a break even point.

DPV = FV

(1 + r)n , (5.28)

where FV represent future value of money in reference to today’s value, which is achieved

by discounting its present value, whereas n is the number of years, and r is the discount

or interest rate given as 5.75% for the current month, July 2015 as South African inflation

rate11. In order to make an economic analysis of the PV-battery system, certain assumptions

are made.

The PV and battery costs entails capital cost, operational and maintenance (O&M) costs as

shown in Table 5.4. Since our study horizon is one day we annualize our costs.

In [103–105, 111], the O&M cost of a PV-battery has been estimated to a specific annual

value or some online sources estimate the annual O&M cost to be around 2-2.5% of capital

cost and in this work we use less conservative value of 2.5%. Calculation of savings brought

by the optimal use of the PV-battery system is performed as follows.

The energy from the PV-battery system utilised by the consumer is given by annual energy

output to consumer (AEO) as in (28);
11Current market rates, South African reserve bank, July 2015, < http :

//www.resbank.co.za/Research/Rates/P ages/CurrentMarketRates.aspx. >
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Chapter 5 Combined residential DSM strategies with coordination and EA

Table 5.6: Approximate cost of components

Component Approximate cost (R)

Solar modules 59 550.00

Deep cycle battery 11 559.00

Inverter and accessories 7,172

Energy controllers 9,557

Installation cost 5,430

Sub total 93 268

Operation and maintenance cost (@2.5% fixed annual) 2 331.70

TOTAL 95 600.00

AEO =
T∑
t

P̄b,t∆t · 365. (5.29)

Then equality (29) is used to determine the percentage energy saving that is brought by the

use of PV-battery system;

%S = AEO

AEC
, (5.30)

the percentage of the consumers electric bill that is covered by the PV-battery system is

%S; obtained from the system’s annualised energy output, AEO and annualised energy

consumption AEC from the monthly electric bill from municipality which coincides with

the measured values determined from Figure 5.4. The annualised cost savings (AES) due to

PV-battery system is determined from the product of the annual bill charge and %S.

AES = %S ·AEC · ξ. (5.31)

Note that the monthly bill charge of R1.36kWh for South Africa is used as a flat electricity

price prior to DR, otherwise ξ = ρt. The energy cost saving for a typical household, say h4

is shown in Table 5.7.
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Chapter 5 Combined residential DSM strategies with coordination and EA

Table 5.7: Energy cost saving due to PV-battery system for h3

AEO (kWh/yr) AEC (kWh/yr) %S AES (R)

2086 7080 0.2946 28 582

The results in Table 5.7 show that the use of PV-battery system yields an annual energy cost

saving of R3089.90 to the consumer. This is within reasonable values of 20-45% reported in

most literature. Then this value of AES is used as the optimal benefit of using PV-battery

system in calculating the discounted present value. Table 5.7 shows the revenue for h4 from

solar energy sales and the household’s benefit on cost savings emanating from the proposed

optimal control strategy.
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Table 5.8: Payback Period

Years 0 1 2 3 4 5 6

Capital cost (93 268.00)

O&M (@2.5% Capital cost) (2331.70) (2331.70) (2331.70) (2331.70) (2331.70) (2331.70)

Optimal benefit 28 582 28 582 3 28 582 28 582 28 582 28 582

(93 268.00) 26 250.3 26 250.3 26 250.3 26 250.3 26 250.3 26 250.3

Discount factor @5.75% 1 0.95 0.89 0.85 0.80 0.576 0.72

Discounted cash flows (93 268.00) 24 822.98 23 473.27 22 196.94 20 990.02 19 848.71 18 769.47

Discounted PBP Years D-cashflows C-cashflows

0 (93 268.00) (93 268.00)

1 24 822.98 (68 445.02)

2 23 473.27 (44 971.76)

3 22 196.94 (22 774.81)

4 20 990.02 (1 784.80)

5 19 848.71 18 063.92

6 18 769.47 36 833.39

Payback period 4.09 years
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Chapter 5 Combined residential DSM strategies with coordination and EA

As can be seen in Table 5.8, the assumptions made are that the operation and maintenance

costs and optimal benefits are constant throughout the projected years into the future. This

assumption implies that exclusion of weighted sum of capital cost the pay back period is

reduced. It can be seen from the table that in this case, the payback period of h4 is 4.09

years. It is however acknowledged that this is an estimate based on the assumptions made.

A more precise results could be obtained from the actual sizing of the PV-battery system

and consideration of the wacc which cannot be reliably estimated at this point.

5.8 CHAPTER SUMMARY AND CONCLUSION

Optimal control strategy through optimal scheduling of resources during a demand response

program has been studied in this chapter. In this study, the first part, proposes an energy

management system that combines DSM strategies with a view to minimize the consumer’s

cost and reduce the power consumed from the grid, thereby promoting power system stabil-

ity. A combination of appliance scheduling, dedicated PV and a storage system under TOU

tariff shows that power drawn from the distribution bus reduces by 14% while cost savings

are 15.21%. This strategy of DR combined with PV and battery shows that the aggregated

strategy can reduce the power demanded from a distribution system by a significant amount

and thus relieve the power system network and afford some residential members significant

collective savings. The second part of this study shows that consumption habits may re-

quire other incentives to change in addition to the proposed energy and inconvenience cost.

Knowledge of carbon emissions can incentivize investment in renewable energy at household

level. It is also demonstrated that the consumer’s preferences on the cost sub-functions of

energy, inconvenience and carbon emissions affects the consumption pattern. These results

are important for both the consumer and the electricity suppliers, as they illustrate the op-

timal decisions that needs to be made in the presence multiple objectives. In the measured

data, however, it was discovered that the level of flexibility on the ‘assumed’ controllable

appliances may vary between households. Economic analysis on consideration of a PV and

battery system has also been studied where it has been shown that the payback period 4.09

has been estimated based on the data provided and the assumptions made.
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CHAPTER 6

SUMMARY, CONCLUSIONS AND FUTURE

WORK

6.1 SUMMARY

The objective of this research is to develop optimal control models to study residential load

control under demand response, TOU program. The study looked at the formulation of

a MINLP optimal control models for optimal scheduling of household resources. Simula-

tion results revealed that there is potential for the consumers to gain economic benefits and

smoothed power consumption for the utlity’s benefit. However, a number of factors dis-

covered in this research, as stated below, affects the level of savings. It is also shown that

consumer cost, valley filling and peak clipping could be enhanced further by considering other

resources.

Chapter Two provides an extensive literature review on demand response and residential

demand response.

Chapter Three provides initial formulation of a mixed integer nonlinear optimization math-

ematical model to study appliance scheduling under DR with consideration of the incentive

offered during peak times in addition to the time differentiated electricity prices, and also

the inconvenience. The results show that; through optimal scheduling of appliances during

a time varying electricity tariff, the consumer can reduce their energy consumption during

peak times through load shifting and curtail consumption due to incentive. The model also

minimizes the inconvenience that is brought by the proposed optimal appliance switching

status against the baseline. A sensitivity analysis of the inconvenience cost coefficient show

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 6 Summary, conclusions and future work

that the total cost savings is affected by the inconvenience coefficient cost. The importance

of this analysis is that the consumer is able to choose according to their preferences with

regard to the cost and the inconvenience. This study benefits the consumer economically

and the utility in terms of stabilising the power system network through peak reduction and

valley filling. Consideration of the inconvenience enables the consumer could affect the level

of participation of the consumer in the DR program.

Chapter Four of this research formulated the model and studied appliance scheduling in the

presence of a storage system and consideration of appliance coordination. In addition to

the preceding results, consideration of appliance coordination brings variation in the results

obtained. A further energy cost reduction is achieved by using a battery, which promotes

further peak shaving as it discharges during peak times. However, since the battery charges

during off-peak times, it provides valley filling. This not only affects an energy cost saving

for the household, but also promotes energy balance in the power system, which the utility

pursues as a global need. The battery does not bring about a significant improvement when

compared with load shifting, which yields a significant energy cost saving because of the

charging component of the battery, which has a power consumption cost. Consideration of

appliance coordination reduces the cost by a very small amount. It has been found that the

solution obtained is sensitive to the amount the consumer is willing to pay or the budget.

This, however, shows that the consumer can also use their budget to regulate the algorithm’s

outcome.

An optimal control model with a dedicated PV and storage system is formulated in Chapter

5. This part of the study considered multiple households and the first part, proposes an

energy management system that combines DSM strategies with a view to minimize the con-

sumer’s cost and reduce the power consumed from the grid, thereby promoting power system

stability. A combination of appliance scheduling, dedicated PV and a storage system under

TOU tariff shows that power drawn from the distribution bus as well as the cost savings

are reduced. This strategy of DR combined with PV and battery shows that the aggregated

strategy can reduce the power demanded from a distribution system by a significant amount

and thus relieve the power system network and afford some residential members significant

collective savings. The second part of this study shows that consumption habits may require

other incentives to change in addition to the proposed energy and inconvenience cost. Know-

ledge on carbon emissions can incentivize investment in renewable energy at household level.
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Chapter 6 Summary, conclusions and future work

It is also demonstrated that the consumer’s preferences on the cost sub-functions of energy,

inconvenience and carbon emissions affects the consumption pattern. These results are im-

portant for both the consumer and the electricity suppliers, as they illustrate the optimal

decisions made when there is multiple objectives.

6.2 CONCLUSIONS

The objectives of this study have been accomplished albeit with room for further study

as in the following subsection. The optimal control problem formulations verified through

simulations revealed the following conclusions from this research;

• In the presence of variable electricity prices, the consumer can shift their shiftable appli-

ances to less expensive off-peak prices. This can accord the consumer some economical

savings and the utility some balanced power drawn from the system.

• In addition to variable electricity prices, the incentive offered during peak times can

motivate the consumer to curtail their loads during peak times hence promoting more

savings and peak reduction.

• It has been found out that inconvenience cost affects the energy and cost savings because

the level of savings depends on the degree at which the consumer may be willing to be

inconvenienced by the proposed optimal schedule.

• Consideration of appliance coordination is vital to the appliance scheduling problem

in that it affects the solution as some appliances are scheduled relative to another, for

example the clothes drying follows the washing and the television is operated either with

the decoder or DVD player but not both appliances concurrently with the television

set.

• The other conclusion that emanates from this research is that the energy cost savings

are affected by the consumer’s budget or how much they are willing to pay. This could

be used by the consumer to regulate their consumption. However, if the consumer is not

budget constrained, this could work against the goal of DR of according consumers cost

savings while at the same time benefiting the utility with peak reductions or smoothing

of the power system consumption.
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Chapter 6 Summary, conclusions and future work

• In this research, it is also found out that the use of the storage system could accord

the consumer some daily savings when the storage system is scheduled optimally. This

also promotes valley filling and peak shaving which is of utmost importance for the

power system stability. However, the battery alone offers marginal savings due the

consumption during charging.

• When the battery is used with a PV system as dedicated systems, more energy savings

are realised and more reduction in the power consumption from the grid is achieved.

The economic analysis also shows that the consumer could recover their investment on

a dedicated PV and battery within 5 year period. It is also shown in this study that

the consumer could use not only the energy cost, inconvenience and budget to regulate

their consumption but also the knowledge on environmental impact. Therefore, the

developed model to investigate the joint influence of price and CO2 emissions revealed

that CO2 emissions could give customers an environmental motivation to shift loads

during peak hours.

6.3 FUTURE WORK

This topic is an active area of research and there is room for further improvement to achieve

an implementable models, however the list may not be exhaustive;

• The electricity consumption in a household primarily depends on the power consump-

tion of the electrical appliances and the behaviour of the occupants using them. Mod-

elling of consumer behaviour has remained one of the greatest challenges in this area

because assumptions are made that there is some similarity between consumers. It

is discovered from field measurements in this work that flexibility of appliances differs

depending on the type of consumer. One of the practical reasons is that household with

non-working family members may be willing to have a less stringent/time scheduling

horizon while working class families or families with school-going children, may have to

commit their appliances within specified times. This observation motivates for further

research into actual classification of appliance usage based on family types.

• There is a need to develop a scientific method to estimate or predict a pareto-optimal

value of inconvenience cost coefficient because it has been assumed that the coefficient
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Chapter 6 Summary, conclusions and future work

is equivalent to the TOU tariff which may not be profitable to the electricity suppliers.

• In the development of a model to investigate the joint influence of price and CO2 emis-

sions, it emerged that CO2 emissions could give customers an environmental motivation

to shift loads during peak hours, as it would enable co-optimization of electricity con-

sumption costs and carbon emissions reductions. Impact on environmental education

on DR needs further investigation.

• Impact of external weather on the cost savings also needs to be investigated in the

models because the location where DR savings are anticipated may also be affected by

external weather.

• In this work, a model for integrating DR and EE is introduced, however, more consider-

ation of these models to incorporate other types of both DSM strategies is still a major

research gap in this area because this type of integration has yet to reach the main-

stream; as organization, technical and policy barriers are hurdles in DSM programs as

already outlined in Chapter one.

• The optimal control formulations in this work are deterministic; however, world prob-

lems almost may invariably include some unknown parameters. This motivates the use

of stochastic and robust optimization models which utilize models of uncertain para-

meters in order to make the best decisions and consideration of performance metrics to

evaluate the performance of the stochastic model.
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APPENDIX A

ENERGY AUDIT DOCUMENTS

Due to the complexity of the research problem, it is provided in this section the documents

that were developed by the lead researcher. It was found necessary to solicit for the consent of

the participants in carrying out this exercise because of the involvement of human beings. The

initial stage involved qualitative data collection by means of an in-depth interview as per the

attached documents. After consent was granted, quantitative data collection in participating

households was performed.

Initially the quantitative data monitoring was applied systematically to an individual house-

hold and then to the multiple households.

A.1 CALL FOR PARTICIPATION DOCUMENTS

A.1.1 Letter of participation
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  Audit No._______________ 

Department of Electrical Electronic and Computer 

Engineering 

Hatfield, 0002, Pretoria 

E-mail: setlhaolo@tuks.co.za, dsetlhaolo@gmail.com 

 

 

 

Dear Sir/Madam 

Warmest greetings!  

 

REQUEST FOR PERMISSION TO DO ENERGY MESUREMENT IN YOUR 

HOUSEHOLD 

My name is Ms. D. Setlhaolo and I am conducting research for my Doctoral thesis 

involving measurement of energy consumption and behaviour patterns in 

households. This research is conducted under the supervision of Prof. X. Xia in the 

department of Electrical Electronic and Computer Engineering in University of 

Pretoria. 

I kindly solicit your help to realize our research objectives. 

In view of this, we would like to request your participation by answering our 

questionnaire and allowing us to measure your energy consumption for a period of 

at least ONE month. It is guaranteed that all information derived herein will be 

treated with utmost confidentiality. The benefits of participating in this exercise are 

free energy audit of your house and free recommendations that may help you save 

energy and money. There are no risks involved in this study. 

To ensure that this process delivers its intended results, further information is 

provided in the attached information documents; participant information sheet, 

consent forms and explanation of the audit exercise and energy monitors are 

provided.  A discussion meeting could also be arranged with you after signing of 

consent forms.  

Your agreement to participate is highly appreciated.  

 

Thank you for your kindness. 

Regards, 

 

Ditiro Setlhaolo 

0845432770,setlhaolo@tuks.co.za, dsetlhaolo@gmail.com 
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A.1.2 Energy audit process
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                              Audit No. ________________ 

Department of Electrical Electronic and Computer 

Engineering 

Hatfield, 0002, Pretoria 

E-mail: setlhaolo@tuks.co.za, dsetlhaolo@gmail.com 

 

 

 
Lead researcher: Ditiro Setlhaolo 
Contact number: 084 543 2770 

Participant information sheet 

You are invited to participate in research with the title:  Household energy use and management 
 

I am a doctoral student at the University of Pretoria and will be conducting energy audits about energy 

efficiency in Pretoria. The process to be followed is explained below: 

 

1) Monitoring electricity use in your home for the period of four weeks – the energy audit 
Time required:  Two 1-hour slots (for the installation and the removal of monitoring equipment) and 30 

minutes per week for evaluation. 

Duration of monitoring: 4 weeks 

Risks or benefits: No risks are envisaged. The benefits include personalised free feedback information 

about your household’s energy use and free advice on how to save energy and money.  

Schedule of participation: Appointments will be made with you at a time that suits you.  

Purpose of the monitoring: The installation of the monitoring equipment’s will be done by a trained 
energy advisor, who will come into your house and in collaboration with you, install energy monitoring 

devices. These devices will measure the amount of electricity used in your household and energy use of 

sampled appliances. One is installed at the distribution box in your home, but does not require cutting of 

any wires. Usage data is sent via a transmitter and collected by a receiver. This information can then be 

downloaded on a computer when the advisor or the researcher comes to remove the system.  Others are 

plugged in sockets before the appliances.  

 

The devices should not be a hindrance to you or anybody else in your household. You will be requested to 

keep the monitoring equipment’s safe and avoid changing anything in the set-up for the duration of the 

FOUR weeks. You will also be requested to provide the researcher with a recent copy of your electricity 

bill to compare your historical electricity usage to your current electricity use by means of municipal 

data. This, however, is not compulsory. 

 

Confidentiality and access to gathered data: To ensure that only the researcher has access to your 
personal information, you will be allocated an audit number. This will be used as your identifier 

throughout, and no personal information will accompany data usage. Only the lead researcher and the 

University’s academic staff will have access to the data usage (not personal information, just the audit 

number).  

 

2) Feedback 
Each household will receive written feedback about their household energy use within four weeks of the 

electricity monitor being removed from their homes.  More general feedback about the findings of the 

study as a whole will be published in the form of an article and may only be available after the completion 

of my doctoral studies, i.e. at the end of 2015. 

 

Thank you for volunteering to participate! 

Please note: 
The University of Pretoria will not be held liable for any damages or injuries incurred during participation 
in this project. 

 

Your rights: There are no risks involved in this study. Please take note that you are under no obligation 

to continue your involvement in the project. Should you wish to withdraw, it will be without negative 

consequences and all gathered information will be destroyed. 

 

The lead researcher can be contacted at the following number: 

 

Ditiro Setlhaolo 

Cell phone: 084 543 2770 

E-mail: dsetlhaolo@gmail.com 

 

If you have any questions, suggestions or requests, please contact me.  
 

_________________________________    

Ditiro Setlhaolo               

Lead Researcher       
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Department of Electrical Electronic and Computer 

Engineering 

Hatfield, 0002, Pretoria 

E-mail: setlhaolo@tuks.co.za, dsetlhaolo@gmail.com 

 

 

 

 

Explaining the energy Efergy E2 and Efergy socket monitors and how they work. 

 
 

1. Efergy E2 monitor 

 

The Efergy E2 is a wireless electricity monitor also allows you to electrical energy use in download 

your house. This makes it very easy to track your energy usage and the impact of the changes you 

make on your consumption and electricity bill. 

  

 
 

The device is not intrusive and does not require rewiring; no wires or cables need to be cut, removed 

or modified to perform this installation. 

The memory function stores your energy data so you can view it by day, week or month or as an 

average.  You can even view hourly data over the previous 8 months. 

 

All of this easily accessible information will help you to determine how best to reduce your energy 

use so you can start saving energy and money straight away. 

 

2. Energy monitoring socket 
 

 
 

 Please note that it is important for the devices not to be tampered with during this study. 

 

 

Contact details 
Lead researcher: Ditiro Setlhaolo 

Contact number: 084 543 2770   email: setlhaolo@tuks.co.za, dsetlhaolo@gmail.com 

The energy monitoring socket allows you to monitor individual 

electrical appliance by measuring not only the energy consumption but 

also how much they cost, hence you become aware of potential 

savings. 

 

The unit is simply installed by plugging into the wall socket and the 

appliance into the unit. The programming of the device will be 

performed by the energy auditor.  

 

Components and their functions; 

 CT sensor unit: This unit is clipped onto your electricity 

metre’s feed cable.  

 Transmitter unit : This unit links to the sensor cable and 

sends information to the display unit 

 Display unit: This unit displays the information on energy 

usage. It displays energy used (the recording is taken 
approximately every 10 minutes) and the cost of the energy 

in monetary units being consumed. The E2 also provides 

CO2 emissions, calculating the carbon footprint generated 

by your electricity usage 
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     Audit No. ___________________ 

Department of Electrical Electronic and Computer 

Engineering 

Hatfield, 0002, Pretoria 

E-mail: setlhaolo@tuks.co.za, dsetlhaolo@gmail.com 

 

 

 

 

Lead researcher: Ditiro Setlhaolo 

Contact number: 084 543 2770, e-mail: dsetlhaolo@gmail.com 

Consent form – Energy audit 

Please note: The University of Pretoria will not be held liable for any damages or injuries incurred 

during participation in this research. 

Please read the participant information sheet carefully before committing to participate in this 

study. 

I understand that there are no risks involved in this study and that I am free to withdraw from this 

study at any stage of the research. 

By signing this form I acknowledge and agree to the following: 

 I agree to participate in a four-week home energy audit and all that it entails; 

 I agree to provide the researcher with a recent copy of my electricity bill; 

 I agree to ensure that the equipment remains in my house for the duration of the 

monitoring period; 

 I agree to avoid changing the equipment set-up as installed by the advisor for the 

duration of the four weeks;  

 I acknowledge that data will be used by the lead researcher and academic staff of the 

University of Pretoria for the purposes of this research and may be used by other 

academic researchers in the future for the purposes of research and/or training. No 

personal information will accompany the usage data.  

Please sign the consent form below. 

I, ________________________________________, have read and understood the purposes of this study.  

Participant 

Signed:________________________________________ Date:_________________________________ 

Name in print:__________________________________________________ 

Researcher 

I have explained the study to the participant, and provided him or her with a copy of the 

participant information sheet. 

Signed:________________________________________ Date:_________________________________ 

Name in print:_________________________________________ 
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Department of Electrical Electronic and Computer 

Engineering 

Hatfield, 0002, Pretoria 

E-mail: setlhaolo@tuks.co.za, dsetlhaolo@gmail.com 

 

 

 

Lead researcher: Ditiro Setlhaolo 

Contact number: 084 543 2770, e-mail: dsetlhaolo@gmail.com 

Consent form – Interview  

Please note: The University of Pretoria will not be held liable for any damages or injuries incurred during 

participation in this project. 

Please read the participant information sheet carefully before committing to participate in this study. 

I understand that there are no risks involved in this study and that I am free to withdraw from this 

study at any stage of the research. 

By signing this form I acknowledge and agree to the following: 

 I agree to participate in the interview as part of this research; 

 I agree that the interview may be recorded; 

 I understand that the information will be used for research and educational purposes;  

 I acknowledge that no personal information will accompany the transcriptions of the 

interview;  

 I understand that an audit number will be used to identify me  for analysis and publication 

purposes; and  

 I acknowledge that data will be used by the lead researcher and academic staff of the 

University of Pretoria for the purposes of this study and may be used by other academic 

researchers in the future for the purposes of research and/or training. No personal 

information will accompany the usage data.  

Please sign the consent form below. 

I, ________________________________________, have read and understood the purposes of this study.  

Participant 

Signed:________________________________________ Date:_________________________________ 

Name in print:______________________________________________________________ 

Researcher 

I have explained the study to the participant, and provided him or her with a copy of the participant 

information sheet. 

Signed:________________________________________ Date:_________________________________ 

Name in print:_______________________________________________________________ 
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Audit No.:____________________ 

HOUSEHOLD ENERGY CONSUMPTION QUESTIONNAIRE 

Section A: HOUSING CHARACTERISTICS 
 

1.  This house/flat  is           Rented            Owned 

 
2. How long have you been living in this house?           Less than 1 year              More than 1 year 

 
3. Dwelling size and member status 

Dwelling size  Accommodation type (√) 

How many bedrooms?  Flat or apartment in a block of flats  

How many living rooms?  Cluster house in a complex  

How many floors?  Semi-detached house  

Studio yes no House on a separate yard  

How many square metres is the house/flat?    

 
4. Household member status and highest education level 

Member status (√) Highest education level (√) 

Total No. of occupants  Primary  

No. of adults  High school  

No.  employed  College and above  

Retired    

unemployed    

student    

Non-school going children    

Gender    

 

5. Total household gross monthly income and money spent on electricity. (√) 

Income Electricity cost 

NONE    NONE    

Less than R3,000   R1 - 300   

3,001-9,000    R301 - 400    

9,001-13,000   R401 - 800    

13,001-20,000  R801 – 1 200    

More than 20,000   R1 201 – 2 000    

DON’T KNOW   More than R2,000  

  DON’T KNOW  

 

6. Do you operate a home-based business or service?                  Yes      No 

 

7. Any of the following energy conservation measures available in the house? 

6.1 NONE    

6.2 CFL bulbs  Yes  no 

6.3 Solar technology Yes  no 

6.4 Geyser insulation Yes  no 

6.5 Geyser timer Yes  no 

6.6 Smart meter Yes  no 

6.7 DON’T KNOW  Yes  no 

 

8. On a typical week day is there someone at home all day?          Yes          No 

 

9. On a typical weekend is there someone at home all day?           Yes           No 

Section B: KITCHEN APPLIANCES 

Which categories shown best describes, on average, how often you use your kitchen appliances? 

 

Once a day 1 More than 
once a day 

2 Between once a day and once 
a week 

3 Once a 
week 

4 Never 5 
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Audit No.:____________________ 

 
 

Appliances 

How 
many in 
the 
house? 

How long have 
you been using 
it? 

Frequency of 
use as above 
(1,2,3,5) 

Not 
applicable 

1. Electric stove 

       Plates (state the number) 

    small   Medium   large 

    

2. oven       

3. Grill     

4. Microwave  

       Mostly used for 

  Cooking      Warming 

  defrosting    making tea 

    

5. Bread maker       

6.  Slow cooker      

7. Blender        

8. Sandwich maker      

9. Coffee maker     

10. Kettle     

11. Toaster        

12. Refrigerator 

       Type  

    side-by-side doors 

    top-and-bottom doors 

    Combined Fridge/Freezer 

    

13. Deep Freezer       

14. Any other electricity consuming  
kitchen appliances 

    

Section C: OTHER APPLIANCES 
 

Once a day 1 More than 
once a day 

2 Between once a day and once a 
week 

3 Once a 
week 

4 Never 5 

 

Appliances 
How many 
in the house 

How long have you 
been using it? 

Frequency of 
use (1,2,3,5) 

Not 
applicable 

1. Dishwasher      

2. Washing machine 

       Type  

    Top loader   side loader 

    Combined wash/dry 

    

3. Separate dryer       

4. Iron     

5. Hair dryers     

6. Computer     

7. Laptop     

8. Printer     

9. Fax machine     

10. Stereo     

11. Power drills     

12. Electric blankets     

13. Television     

14. VCR     

15. Decoder     

16.  Sewing machine     

17. Any other electricity consuming 
appliances 

    

Section D: HEATING AND COOLING 
 

Appliances 
How 
many 
in the 

How long have you 
been using it? 

Frequency of 
use (1,2,3,5) 

Not 
applicable 
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Audit No.:____________________ 

house 

1. Space heater       

2. Air conditioner       

3. ceiling fans     

4. Portable heater     

5. Under floor heating       

6. Geyser        

7. Gas heaters     

8. Any other electricity heating 
appliances 

    

 

Section E: INDOOR LIGHTS 
1.  On a typical weekday, please tell me the number of indoor lights normally turned on for each of the 

following time periods. Do not include any night lights in your count. 
 

Duration Not applicable 

1.1. Less than half a day   

1.2. More than half a day   

 
2. On a typical weekend, please tell me the number of indoor lights normally turned on for each of the 

following time periods. Do not include any night lights in your count. 

Duration Not applicable 

2.1. Less than half a day   

2.2. More than half a day   

 
3.  Are any indoor lights left on all night?              Yes           No 

 

Section F: INSULATION 
 

1. How many sliding glass doors does your home have? Count each pair of sliding glass doors as one 

door.  Enter the number................. 

  

2. Do you know if your ceiling is insulated?             Yes                  No 
 
3. Approximately, how many windows does your home have? 

 

1-3  3-6  6-9  9-12  12-15  More than 15  

 
4. Overall, would you say that your home is … 

Well insulated  Adequately 
insulated 

 Poorly 
insulation 

 No 
insulation 

 Don’t know  

 
Section G: OUTSIDE THE HOUSE/FLAT 
1. Do you have a pool? Yes  No 

  1.1. Do you a timer for the pool? Yes  No 

  1.2. Do you use a heater for the pool? Yes  No 

  1.3. Do you use a pool cover? Yes  No 

  1.4. Do you have lights for the pool? Yes  No 

  1.5. Do you use energy saving lamps for pool lights? Yes  No 

2. Do you have a garden? Yes  No 

  2.1. Do you have lights for the garden? Yes  No 

  2.2. Are they energy saving lights? Yes  No 
  2.3. Do you use a timer for the garden lights? Yes  No 

3. Do you have an electric fence? Yes  No 

4. Do you have electric gate? Yes  No 

 
Section H: MISCELLANEOS 
 

1. Which advertisement method sensitizes you most when it comes to energy saving? 

television  radio 
 Family and 

friends 
 

flyers 
 

seminars 
 

 
2. Refer to the following additional questions for further information. 
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Audit No.:____________________ 

2.1. Do you normally switch off appliances at the wall that are not in use? Yes  No 

2.2. Do you sometimes leave appliances on stand-by? Yes  No 

2.3. Do you know if your geyser has reduced temperature settings? Yes  No 

2.4. Do you normally close the fridge door quickly? Yes  No 

2.5. Do you use hot water bottles Yes  No 

2.6. Does your house/flat have window shutters? Yes  No 

2.7. Do you know if your geyser uses a timer? Yes  No 

2.8. Do you have a shower? Yes  No 

2.9. If so, does it use water saving shower heads? Yes  No 

2.10. Do you have special curtains that you use to control temperature in the house? Yes  No 

 
3. On a scale of 1-5 as shown below, kindly state with a (√) your level of inconvenience in participating or 

implementing energy saving activities in your house. 
 

1 2 3 4 5 

No inconvenience Slight inconvenience Neutral inconvenienced Highly inconvenienced 

 

 

Answers 

1 2 3 4 5 

3.1. Switching geyser off      

3.2. Replacing bulbs with energy saving      

3.3. Switch off unused appliances completely      

3.4. Switching off cell phone chargers      

3.5. Switching off lights      

 
 

4. Which activity do you feel the most inconvenience or a challenge to cope with? 

 
____________________________________________________________________________________ 
 
 

4.1. What is the main reason that brings this challenge? 

 
____________________________________________________________________________________ 
 

5. When you see the power alert on tv, do you 

 

1 2 3 4 

Switch off something Think of switching off something None Do not care 

 
6. Which appliance comes to mind when you think of switching off something? 

 
__________________________________________________________________________________________________ 

7. Any other remarks?  

 
_________________________________________________________________________________________________ 
 

_________________________________________________________________________________________________ 
 
_________________________________________________________________________________________________ 
 
_________________________________________________________________________________________________ 
 

 

 

THANK YOU VERY MUCH FOR YOUR KINDNESS TO PATICIPATE IN THIS STUDY. 
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