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In this study, a measurement and verification (M&V) cost minimisation model is proposed to

deal with both the M&V modelling and sampling uncertainties. In order to find the optimal

solutions in terms of the modelling accuracy level, and the sample size, the M&V cost that

includes the modelling cost, sampling cost, and overhead cost is formulated as the objective

function, in which the modelling cost is developed as a function of the modelling accuracy

in terms of the coefficient of variation of the room mean square error (CV(RMSE)), and the

sampling cost, which is directly related to the sample size.

In order to illustrate the effectiveness of the proposed model, an optimal M&V modelling

and sampling strategy is designed for a traffic intersection lamp retrofit project. In addition,

partial optimal M&V plans designed with optimal sampling but non-optimal modelling so-

lutions, or with optimal modelling but non-optimal sampling solutions are employed as the

benchmark. Comparisons between the optimal and non-optimal solutions show advantageous

cost savings performance in the execution of sampling and modelling activities for the case

study. More precisely, the optimal solutions reduce the sampling cost by 55% and the to-

tal M&V cost by 14% against the solutions obtained by optimal modelling but non-optimal

sampling solutions.

To test the applicability and flexibility of the proposed model for the cost-effective design of
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similar traffic light retrofit projects, simulations have been carried out to evaluate the model

performance when applying the model to M&V projects with different characteristics. The

simulation results show that the proposed model is able to offer flexible trade-offs between

the modelling and sampling uncertainties; namely, using more accurate baseline models and

smaller sample sizes or less accurate baseline models but greater sample sizes to accommodate

different practical needs in executing M&V projects with different characteristics.

The major contributions of this study can be highlighted as follows: 1) a M&V modelling

cost model is developed, which is able to offer a quantitative analysis of the M&V baseline

model uncertainty and cost; and, 2) a M&V cost minimisation model is proposed to handle

both the M&V modelling and sampling uncertainties cost-effectively. The effectiveness and

flexibility of this model are demonstrated by a case study and simulations.
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OPSOMMING

N KOSTE-EFFEKTIEWE BENADERING TOT DIE METING EN

VERIFIKASIE MONSTERNEMING EN MODELLERING ONSEKERHEDE

HANTEER

deur

Zadok Olinga

Studieleier(s): Prof. X. Xia

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese

Universiteit: Universiteit van Pretoria

Graad: Master of Engineering (Electrical Engineering)

Sleutelwoorde: M&V, onsekerheid, steekproefneming, modellering, energie, doel-

treffendheid,

In hierdie studie word ’n meet-en-verifieer (M&V) kosteverminderingsmodel voorgestel wat

onsekerhede in beide die M&V modellering sowel as die steekproefnemingsproses in ag neem.

Om die optimale oplossings te vind in terme van die modelleringsakkuraatheid en steekproef-

grootte, word die M&V koste geformuleer as ’n objektiewe funksie wat die modelleringskoste,

steekproefnemingskoste en oorhoofse koste insluit. Die modelleringskoste is ’n funksie van die

modelleringsakkuraatheid in terme van die koëffisiënt van variasie van die wortel-gemiddelde-

kwadratiese fout (CV(RMSE)) en die steekproefnemingskoste, wat direk verwant is aan die

steekproef grootte.

Om die effektiwiteit van die voorgestelde model te illustreer word ’n optimale M&V

modellerings- en steekproefnemingstrategie ontwerp vir die vervanging van gloeilampe by

’n verkeerskruising. Semi-optimale M&V strategieë, naamlik M&V strategieë met opti-

male steekproefneming maar nie-optimale modellering, en met optimale modellering maar

nie-optimale steekproefneming, word as maatstaf gebruik. Vergelykings tussen optimale en

nie-optimale oplossings wys voordelige kostebesparings in die steekproefneming- en model-

leringsproses vir die gevallestudie. Om presies te wees, die optimale oplossings verminder die

steekproefnemingskoste met 55% en die algehele M&V koste met 14% teenoor oplossings met
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optimale modellering maar nie-optimale steekproefneming.

Om die toepaslikheid en buigsaamheid van die voorgestelde model te toets vir die koste-

effektiewe ontwerp van soortgelyke verkeersligprojekte is simulasies uitgevoer om die prestasie

van die model te evalueer met die toepassing van die model op M&V projekte met verskillende

eienskappe.

Die resultate van die simulasies wys dat die voorgestelde model in staat is om buigsame kom-

promieë tussen modellerings- en steekproefnemingsonsekerhede te tref. Dit word bereik deur

die gebruik van meer akkurate basislynmodelle en kleiner monstergroottes, of minder akku-

rate basislynmodelle maar groter monstergroottes om aan die verskillende praktiese vereiestes

in die uitvoering van M&V projekte met verskillende eienskappe te voldoen.

Die hoof bydrae van hierdie studie kan as volg uiteengesit word: 1) ’n M&Vmodelleringskoste-

model is ontwikkel, wat in staat is om ’n kwantitatiewe analise van die M&V basislynmod-

elonsekerheid en -koste aan te bied; 2) ’n M&V kosteverminderingsmodel is voorgestel om

beide die M&V modellerings- en steekproefnemingsonsekerhede op ’n koste-effektiewe manier

te hanteer. Die effektiwiteit en buigsaamheid van hierdie model is gedemonstreer deur middel

van ’n gevallestudie en simulasies.
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LIST OF ABBREVIATIONS

ASHRAE American Society Of Heating, Refrigeration And Air-conditioning Engineers

CDM clean development mechanism

CFL compact fluorescent lamp

CV sampling coefficient of variation

CV(RMSE) coefficient of variation of the root mean square

DSM demand side management

ECM energy conservation measure

EE energy efficiency

EEDSM energy efficiency and demand side management

FEMP federal energy management program

GP-MCEM Gaussian process modelling and a Monte Carlo expectation maximisation

GUM guide to the expression of uncertainty in measurement

IPMVP international performance measurement and verification protocol

ISO international standards organisation

kW kilowatt

kWh kilowatt-hour

LED light emitting diode

MBE mean bias error

M&V measurement and verification

OLS ordinary least squares

PF power factor

RMSE root mean square error

R South African Rand

SANAS South African National Accreditation System

SRS simple random sampling

SSD sample size determination

SVM support vector machines

SANS South African national standard

VSD variable speed drives

W watt
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NOMENCLATURE

Symbols

λ0 the search starting point to solve the optimisation model

Ȳi the sample mean in the ith group

A2n the quantity 2-aspect fittings at a traffic intersection

A3n the quantity 3-aspect fittings at a traffic intersection

A4n the quantity 4-aspect fittings at a traffic intersection

A4rn the quantity 4-aspect fittings with turning arrows at a traffic intersection

ai the procurement cost per meter in the ith group

bi the installation cost per meter in the ith group

Cm the M&V modelling cost for one model

Cs the sampling cost for a M&V project

CVi the coefficient of variation of the ith group

CVm the CV(RMSE) of a M&V baseline model

E1 the energy consumption at an intersection with individual aspect retrofits

E2i the energy consumption at an intersection with complete set retrofits

Gn the quantity of green signal lamps at a traffic intersection

ni the optimum sample size for the ith group

p the required relative precision

Rn the quantity of red signal lamps at a traffic intersection

Um the total modelling uncertainty

Us the total sampling uncertainty

Yn the quantity of yellow signal lamps at a traffic intersection

z the z-value of a normal distribution curve that corresponds to a desired confidence level
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Subscripts

i group counter

j sample counter

m modelling

s Sampling
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CHAPTER 1

INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Global energy demand is high, and it is projected to increase by 37% by the year 2040 from

its 2014 levels [1]. Along with the need to produce more energy is the need to produce and

use it efficiently to reduce carbon emissions [2]. Recently in South Africa, the increased

energy demand has manifested itself in the form of energy shortages that have led to load

shedding [3]. Energy efficiency (EE) and demand side management (DSM)programmes have

been proposed as a means to alleviate the energy crisis [4]. Most of the EE projects in

South Africa are sponsored by Eskom, and for the purposes of project financing and decision

making, measurement and verification (M&V) is used to quantify the savings from EE and

DSM projects, and to also track the performance of those projects over the contractual periods

[5].

International guidelines for M&V state that no credible M&V savings can be reported with-

out a measure of uncertainty. The main sources of quantifiable uncertainty are measurement

uncertainty, modelling uncertainty, and sampling uncertainty [6]. The quantification and

alleviation of uncertainty is a contributor to M&V cost because it requires engineering pro-

fessionals to perform baseline modelling, sampling, and meter installation. The International

Performance Measurement and Verification Protocol (IPMVP) and and the Federal Energy

Management Program (FEMP) recommend that M&V cost does not exceed 10% of the aver-

age annual savings being assessed [6, 7]. Other guidelines give cost limits based on the IPMVP
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Chapter 1 Introduction

M&V option being used. The costs range from a minimum of 1% of the annual measured

savings for IPMVP Option A to a maximum of 10% for IPMVP Option D [8],[9]. Therefore,

researchers, M&V practitioners, and energy efficiency project participants are eager to find

cost-effective solutions to handle M&V uncertainties.

1.1.2 Research gap

A lot of research has been done on M&V baseline modelling. Some of these works also focus

on modelling uncertainty [10, 11, 12, 13, 14]. More recently there has also been work focused

on M&V sampling uncertainty [15, 16]. However, there is no historical research focussed on

combined uncertainty analysis.

The research carried out in this dissertation aims to examine sampling, and modelling uncer-

tainties together as a way of minimising M&V cost whilst offering M&V practitioners flexibil-

ity in designing an optimal M&V plan, which either has high sampling uncertainty with low

modelling uncertainty, or high modelling uncertainty with low sampling uncertainty. This

study pays less attention to measurement uncertainty, because the most frequently used high

accuracy power meters have gradually become affordable due to the fast developing meter

design and manufacturing technologies. However, efforts on dealing with sampling and mod-

elling uncertainties are currently believed to be the most significant contributors to the entire

M&V cost, especially when both the modelling and sampling techniques are used during the

M&V process.

A traffic light retrofit project is used to illustrate the performance of the method developed

during this research, and a sensitivity analysis is carried out to show its applicability to other

M&V projects.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

This research focuses on a traffic signal lamp retrofit project. For this project, individual

incandescent traffic signal lamps are replaced with individual energy efficient light emitting

diode (LED) lights or complete combined incandescent traffic signal lamp sets are replaced

with combined LED signal lamp sets.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

The objective is to develop a cost effective approach to handling M&Vmodelling and sampling

uncertainties as a way of giving M&V practitioners flexibility in decision making at the M&V

plan phase of the project. The decisions involve the sample size to be used and the required

model accuracy.

The following are the research questions:

• Can there be a trade-off between sampling accuracy and modelling accuracy?

• Can the modelling and sampling uncertainties in M&V be minimised while meeting a

minimal M&V project cost?

• What is the effect of the sampling coefficient of variation (CV) on the model accuracy?

• Can a minimum M&V cost be achieved while meeting uncertainty criteria such as the

90/10 criteria which, is a commonly used criteria in M&V?

1.3 RESEARCH GOALS

The goal of this research is to develop a cost effective approach to handling M&V sampling and

modelling uncertainties. This will be achieved by developing and solving a cost minimisation

problem that takes into account the modelling cost and the sampling cost inherent in M&V

projects in conjunction with sampling and modelling uncertainties.

1.4 OVERVIEW OF STUDY

This dissertation is organised as follows. Chapter 2 provides an overview of existing literature

on M&V practice and contributions to the study of uncertainty in M&V. Chapter 3 sets out

to develop a cost minimisation model for M&V by examining the sampling and modelling

uncertainties. Chapter 4 lays out a case study on traffic signal lamp retrofit that is used to

demonstrate the approach developed in chapter 3. The results are presented and discussed

in chapter 5. Chapter 6 gives a conclusion to the dissertation.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 2

LITERATURE STUDY

2.1 CHAPTER OVERVIEW

This chapter presents literature related to energy efficiency (EE), how measurement and

verification is used in EE projects, the impact of uncertainty in M&V, and it delves into

existing contributions to the study of uncertainty in M&V. Furthermore, it describes the

research problem, the research approach and the contribution of this research.

2.2 THE ROLE OF ENERGY EFFICIENCY IN MEETING SOUTH

AFRICAN ENERGY NEEDS

Globally it is widely accepted that energy used for industrial development, and domestic use is

a finite resource that needs to be used efficiently and generated cleanly. Global energy demand

is set to grow by 37% by 2040 [1]. Reflecting this increased energy demand, South Africa

has recently been experiencing load shedding in an effort to address its energy shortages. EE

is one of the most cost effective solutions adopted for alleviating the energy shortage [1]. In

South Africa, energy efficiency has been advocated in government white papers and policy

documents [4].

In south Africa, energy efficiency is implemented through the DSM initiative. DSM refers to

collaborative programmes aimed at reducing electricity demand by encouraging efficient en-

ergy use, particularly at peak periods (7:00 - 10:00 and 18:00-20:00) [4]. This can be achieved

by shifting loads to off-peak periods, and by reducing the overall energy consumption through

the installation of EE devices like LED lights, variable speed drives (VSD). Energy consump-
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Chapter 2 Literature study

tion can also be lowered by more efficient use of heating, ventilation and air-conditioning

(systems), and optimising processes [4, 17].

2.3 MEASUREMENT AND VERIFICATION EXPLAINED

M&V provides an unbiased and repeatable process to quantify energy and demand savings in

EE [6] and DSM projects [6] in more than 15 countries in Europe [18], North America [18],

and Asia [19]; including South Africa [5].

In energy efficiency projects M&V is important because it reduces the risk of poor project

performance according to a standard accepted by project stake holders [7], which encourages

investment in EE projects [5]. It is also used to track and evaluate the performance of EE

project activities, and it provides a level of confidence in EE efforts, which is critical to

participation in global initiatives like the United Nations Clean Development Mechanism

(CDM).

Figure 2.1: The M&V stages in the implementation of EE and DSM activities according to

Eskom guidelines [5]

.

Figure 2.1 shows a typical time line for the implementation of EE projects, and the general

equation for obtaining energy savings using M&V methodologies. Energy savings cannot be

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 2 Literature study

measured directly therefore they are obtained through the deduction of the post implemen-

tation energy consumption from the baseline energy consumption. This assumes that the

conditions under which this comparison is achieved are the same. To ensure that this is

true, an adjustment of the baseline might be necessary in the post implementation phase.

Therefore the savings can be more accurately obtained by deducting the post implementation

energy consumption from the adjusted baseline energy consumption[6].

M&V guidelines are provided in the IPMVP, which gives common practice recommendations

and principles for quantifying energy and water savings [6]. Similar and widely reference

guidelines based on the IPMVP are the M&V guideline of the American Society of Heating,

Refrigeration and Air Conditioning Engineers (ASHRAE) [20] and the FEMP for federal

energy projects in the USA [7]. Due to the wide implementation of EE initiatives, other

guidelines have been drawn up for specific countries such as the South African M&V guideline

for Demand Side Management projects [5] and the Australian best practice guideline [21].

The International Standards Organisation (ISO) has also released a standard for M&V, which

establishes general principles and guidelines for the M&V process [22]. Furthermore, the

South African National Standard (SANS) 50010 has been released to provide M&V guidelines

for projects eligible under the 12I and 12L tax incentive program in South Africa [23].

The above guidelines provide M&V methodologies, and examples to guide M&V practitioners

in calculating energy savings for EE and DSM projects. According to the IPMVP, M&V

methodologies can be grouped into four M&V methods; namely, Option A, Option B, Option

C, and Option D [6], which are listed in Table 2.1. IPMVP Options A, and B, are suited

to energy subsystems that can be segregated from the complete energy consuming system

[24]. An example of this is an energy efficiency project where only the lights in a building are

being retrofitted. The lights form a subsystem that can be isolated for M&V, while the whole

building with HVAC, computers and other electronic devices forms the energy system. When

it is necessary to M&V the whole facility energy consumption, IPMVP Option C, and Option

B are more suitable. They do not account for sub-facility energy consumption separately [24].

Typically, where HVAC system or building envelop retrofits are being carried out, Option C,

and D are more applicable.

Option A is defined in the IPMVP text as a partially measured isolated retrofit with only

key parameters being measured [24]. An example of this approach is measuring the power

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2 Literature study

consumption of one fluorescent tube in a factory with the same tubes installed on the same

floor, and those tubes are on a set lighting schedule.

When all the parameters of an energy consuming system are measured for M&V this is

called IPMVP Option B [24]. An example of this is a retrofit of a chemical boiler in a

paper mill where the input energy, the input paper pulp, the output pulp are all measured.

In this instance, the whole paper mill is the energy system, and the chemical boiler the

subsystem.

Option C is used to M&V whole facilities, and the interactions within the facility energy

system are ignored [24]. Case in point are the HVAC and building envelop retrofits as

mentioned above.

Option D requires the use of calibrated computer simulations to model the system energy

performance, and then to calculate the energy savings once certain parameters are altered in

that system [24].

Table 2.1: IPMVP options and their descriptions[6]

IPMVP Option Description

A Partially measured isolated retrofit with only key parameters being measured

B Retrofit isolation with full parameter measurement

C Complete Facility Measurement

D Calibrated Simulation (whole facility or sub facility)

2.4 M&V IN SOUTH AFRICA

In South Africa M&V has been used for various EE projects under the DSM programme [5].

This has allowed the development of methodologies, and policies for M&V. In [25], a M&V

methodology is developed for the mass roll-out of solar water heaters for domestic houses in

South Africa. Through an assessment of the performance of some of the Solar water heating

programmes, it is shown that compliance with the existing South African standards in the

field of EE is affecting the confidence, and reliability of the reported energy savings according

to currently existing M&V standards [25].

Within the industrial sector, the mining sector is one of the primary and obvious targets for
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EE schemes due to the high electricity demand in this sector. Typical schemes involve the

optimisation of compressed air, ventilation and, water pumping systems. An example of this

is given in [26], which involves optimising the pressure set point profile of a pumping system,

and fixing leaks that appear in the piping system [26]. M&V has been applied to calculate

the energy savings that have been achieved from these projects.

Manufacturing plants are also major consumers of electricity in South Africa, and M&V

methodologies have been developed for EE projects that involve lighting retrofits [27], motor

controllers [10], to name a few. In [27], a methodology is developed for a lighting retrofit

project where energy savings are achieved by replacing the old and inefficient lighting fixtures

with new, and more efficient lighting fixtures. And in [10], a motor sequencing controller

is installed to reduce the energy consumption of a conveyor belt in a plant. The M&V

methodology in [10] involves developing a baseline adjustment model that correlates energy

consumption to the production rate of the plant.

Beyond DSM projects such as those mentioned above, supply side energy conservation

projects have also been implemented in South Africa, and M&V methodologies have been

developed for them. In particular, this has been done with the country’s utility Eskom. In

[28], a M&V methodology is developed for a load shifting programme implemented in the

utility’s power plants. Beside energy savings, the project is also implemented with a view to

carbon emissions reductions, which are also measured and verified [28].

As mentioned previously the M&V process is pivotal in assisting stakeholders in making deci-

sions about investing in EE projects. The role of M&V in performance contracting projects is

outlined in [29]. This study develops a M&V methodology for performance contracting that

is aimed at convincing private developers to engage in the performance contracting program

[29]. Further work that develops methodologies that promote EE projects via the guarantees

of M&V is given in [30]. This work outlines M&V methodologies developed for the utility

Eskom for various DSM activities.

All the projects, and methodologies are part of the M&V environment in South Africa but

not an exhaustive account of all the EE measures implemented. These measures are widely

implemented under the DSM program [5] as part of the country’s strategy to reduce energy

consumption [4].
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2.5 UNCERTAINTY IN M&V

Any statement of reported savings by the M&V process includes some degree of uncertainty

since no measurement, model or sample can be 100% accurate [7]. Stating the uncertainty

in measured savings lends the savings report more credibility, and it provides the financial

backers of a energy conserving measure (ECM) project with more confidence in decision

making [20]. In general, the level of uncertainty in any given project is proportional to the

complexity of the ECM. The aim of M&V projects should be to limit the uncertainty in

the reported savings. This can be achieved by minimising the errors in measurement, and

modelling processes [7].

Uncertainties can be grouped into quantifiable uncertainties, and unquantifiable uncertainties.

When IPMVP Option A is used, inexact estimates of parameter values, and inadequate

positioning of meters can lead to unquantifiable uncertainties. Furthermore, poor estimation

of the interactive effects inherent in some IPMVP Option A or Option B projects can also

results in unquantifiable uncertainties. There are three types of quantifiable uncertainty;

namely, measurement uncertainty, modelling uncertainty and sampling uncertainty [6].

2.5.1 Measurement uncertainty

Measurement uncertainty results from instrumentation error caused by poor measurement

equipment calibration, data tracking errors, and human error in data capturing. Measurement

uncertainty is unavoidable although it can be mitigated with proper data handling protocols

and the use of high accuracy, calibrated metering equipment such as Class 1, Class 2, and

Class 3 meters that have precision of +/-1.5%, +/-2.5%, and +/-4% respectively [31, 32, 33,

34]. For three phase energy metering, it is recommended that Class 0.5 meters be used for

active power, and Class 2 meters for reactive power for M&V in South Africa [35].

Input data uncertainty has been tackled in [36], where Gaussian Process Modelling and a

Monte Carlo Expectation Maximisation (GP-MCEM) framework is used to develop baseline

energy models that take measurement uncertainty into account. These models have the

benefit of reducing M&V cost by reducing the amount of M&V data [36]. Additionally,

popular guidelines for evaluating uncertainty in measured data are provided in the Guide

to the Expression of Uncertainty in Measurement (GUM) [31]. The general approach to
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handling measurement uncertainty advocated in the GUM is describing a measurement using

a measurement model in the form of a functional relationship between input and output

quantities such as current, and voltage and resistance [37].

2.5.2 Modeling uncertainty

Calculating energy savings includes comparing actual energy consumption at the post-

implementation phase of a project to the modelled baseline energy consumption. But base-

line energy consumption during the post-implementation period cannot be measured [24, 6].

Therefore, a baseline model needs to be established to calculate the energy that would have

been consumed in the post-implementation phase, which leads to modelling uncertainty [6].

Modelling techniques are widely used to characterise the relationship between energy con-

sumption, and a number of energy driving factors such as temperature, production, facility

occupancy rate, etc. These techniques include linear regression [13], support vector machines

[38], Gaussian Process Modelling [36], cross-validation [39], and the use of neural networks

[40]. Modelling uncertainty is unavoidable when using the whole facility and the calibrated

simulation approach but not a factor when using IPMVP Options A and B because all the

factors relevant to measuring energy consumption (namely power) are fully measured. How-

ever, modelling uncertainty can be mitigated by ensuring right function form is used for

models, and key parameters are included in the models [6].

A number of existing M&V research articles typically focus on baseline model development.

In [10], linear regression modelling is used to develop a baseline adjustment model for a

conveyor belt retrofit project. The model accuracy is judged using mean bias error (MBE)

and the coefficient of variation of the root mean square error (CVRMSE). In the same manner,

baseline modelling for building retrofits carried out using the whole facility approach employs

multivariate linear regression with key energy governing factors, such as the outdoor dry bulb

temperature [13, 12]. Baseline modelling has also been done using the calibrated simulation

approach, which is IPMVP option D. This approach uses energy consumption modelling

software such as ’Quest’ to model and simulate building energy consumption [11].

In [41], simple linear regression is extended using cross-validation so that the amount of

uncertainty in the baseline model can be better estimated. The approach is also used in

deciding how much data is needed for baseline estimation. Cross-validation is also used in
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[39] for the M&V of a whole building using IPMVP Option C. It is shown that normalised

root-mean-square-error (RMSE), and median absolute relative total error are critical to the

consideration of modelling uncertainty in determining energy savings [39].

Other regression based modelling approaches include support vector machines (SVM), which

has been used to forecast building energy consumption in a tropical region [38], and ordinary

least squares (OLS) used in [42] to evaluate empirically-based energy consumption models

for centrifugal water chillers.

Unlike prevailing modelling approaches that focus on uncertainty in the baseline model,

[43] proposes that baseline models should be evaluated according the ratio of the expected

uncertainty in the savings against the total savings. The study focuses on handling modelling

uncertainty on project savings rather than the baseline model itself since baseline development

is not the ultimate interest of M&V [43].

2.5.3 Sampling uncertainty

Practically, there are projects with large quantities of EE devices spread over large geo-

graphical areas, such as large scale lighting retrofit [15], solar water heater roll out [44], and

residential rebate programs [45]. Due to budgetary constraints not all devices can be metered,

and so sampling is used, which introduces sampling uncertainty into the reported savings [46].

Sampling uncertainty is avoidable for a small population project where meters are applied

to all involved EE units, or when the whole facility IPMVP option is used where the energy

usage of an entire facility is captured by a single measurement point [6]. Sampling uncer-

tainty is also mitigated through the use of a sufficient sample size and appropriate sampling

methods. These methods include simple random sampling, stratified random sampling, and

cluster sampling to name a few [47, 48].

In order to satisfy the 90/10 criterion for CDM projects with minimal cost, an optimal sam-

pling plan is developed in [15] that balances the sampling uncertainties across different lighting

groups with different level of uncertainties. A further study [16] proposes improvements to

longitudinal CDM sampling designs for lighting retrofit projects. Both ensure cost savings

by ensuring an optimal number of samples is used to handle sampling uncertainty.
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2.6 M&V COST

Achieving a higher level of M&V accuracy by reducing M&V uncertainties usually implies

greater cost [20]. However M&V budgets tend to be limited. IPMVP and FEMP recommend

that M&V cost does not exceed 10% of the average annual savings being assessed [6, 7].

Other guidelines give cost limits based on the IPMVP M&V option being used. Among

these the measurement and verification handbook developed by the Systems Engineering

and Management Corporation recommends that the M&V cost be limited to 5% for IPMVP

Option A and to 10% for Option B and C of the average annual savings being assessed[8].

The California Evaluation Framework goes further in breaking down M&V cost according

to the IPMVP option selected. It recommends a cost limit of 1% - 3% for Option A, 3%

- 5% for Option B, 1% - 10% for Option C and 3% - 10% for Option D [9]. Typically

M&V costs increase as the complexity of the ECM increases [7]. Therefore, researchers,

M&V practitioners, and energy efficiency project participants are eager to find cost-effective

solutions to handle M&V uncertainties.

According to the IPMVP, the cost of measuring and verifying energy savings depends on

many factors as given in [6]. Among those factors are certain key factors that are related to

uncertainty mitigation. These are the following [6]:

• The IPMVP M&V option selected; typically this is decided by the nature and complex-

ity of the EE project;

• The quantity and complexity of meters and other measurement equipment;

• The sample size of EE devices to be measured;

• The level of engineering skill needed to develop the M&V plan;

• The complexity of baseline models used to describe the energy performance of a system;

• M&V accuracy requirement.

The above-mentioned factors contribute to the cost of meter procurement, installation, data

collection, and the M&V labour cost associated with the level of M&V practitioners. These

costs can be grouped into sampling cost and modelling cost. The sampling cost includes the
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cost of meter procurement and installation. The meter procurement cost depends on detailed

meter specifications. The modelling cost includes the cost of M&V expertise in estimation and

handling of uncertainty that is related to the number of independent variables, the complexity

of these variables, the complexity of the system being modelled, and the required confidence

and precision.

2.7 SAMPLING IN M&V

According to the Eskom M&V guidelines [5], established statistical methods for sampling can

be employed to limit the quantity of measurement while meeting predetermined accuracy

levels, and encouraging project sponsorship [5].

It is seldom necessary to consider an entire population in order to make a some fairly strong

statistical inferences about it. It is possible to make inferences using just a random sample

[49]. According to the central limit theory, regardless of the shape of the distribution of

the population, the shape of the sample distribution of the mean approximates a normal

distribution with sample mean ȳ and sample standard deviation s/
√
n where the sample size

n is sufficiently large. Therefore the sample mean is an unbiased estimate for the population

mean µ. This allows for the use of sample data to make statistical inferences [49]. Most M&V

projects assume a normal distribution [6], and for normally distributed populations, any size

sample n is considered sufficiently large [50].

There are numerous sampling methods used in M&V as mentioned in [48]. The following

subsections will expand on these methods.

2.7.1 Simple random sampling

Simple random sampling is the most commonly used method of sampling [15]. It is equivalent

to “drawing n names from a hat". The defining feature is that the final sample could be any

set of n distinct names, and all such sets are equally likely [46].

Because simple random sampling is the simplest way of sampling, it provides the basis for

the development of sampling theory. For this reason it is used as a basis for comparison with

other sampling methods [51]. It is most suitable for use when sampling a relatively large,
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homogenous population of elements [51] and when more efficient sampling techniques are not

viable[48]. Furthermore, because of its simplicity, simple random sampling is practical when

there is limited information about the population to be sampled and also in situations where

data collection can be performed efficiently [48].

However, because of its methodology, simple random sampling has some inherent disadvan-

tages. These disadvantages are as follows [51]:

• Because simple random sampling requires that all elements be identified and labeled

before sampling, it becomes expensive and impractical where large populations of ele-

ments are involved,

• Since each sample has an equal probability of being chosen, simple random sampling

may result in samples spread over a large geographical area, which again becomes

impractical because of cost,

• Simple random sampling is not useful in situations where it is necessary to focus on

subgroups of elements within a population.

Its simplicity means that simple random sampling is often chosen as the method for sam-

pling within M&V projects [15]. However, as mentioned above, when the population to be

sampled is large, non-homogenous and spread over a large geographical location it makes

simple random sampling impractical, and therefore, other methods of sampling need to be

considered.

2.7.2 Stratified random sampling

As mentioned in the previous subsection, simple random sampling is not suitable when the

population is non-homogenous, and it is necessary to focus on subgroups of elements within

a population. A sampling approach that can be used in those instances is stratified random

sampling. Stratified random sampling is suitable in situations where there is significant

variation within elements of the population to be sampled but not within sub-groups of that

population. It is then necessary to group elements into relatively homogenous subgroups

called ‘strata’ [48]. Each stratum can then be sampled more efficiently using the simple

random sampling approach.
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For stratified random sampling to be used the population must be divided into strata that are

mutually exclusive and exhaustive [51]. These two terms can be defined as follows [48]:

• Mutually exclusive means that every element in the population should be put into only

one group,

• Exhaustive means that no population element can be excluded from stratification.

Because population elements grouped into strata are more homogenous than when the entire

population is considered, samples taken from the strata will have less variation and con-

sequently lead to more accurate estimates being made [48]. Where the population density

varies across a region, stratification can ensure that accurate estimates can be made with

equal accuracy for different sub-regions [48].

2.7.3 Cluster sampling

Cluster sampling is unlike simple random sampling and stratified random sampling where the

sampling is done on the population elements. Instead the population elements are divided up

into more ‘natural’ sub-groupings called ‘clusters’ and those clusters are then sampled instead

of the individual elements within the clusters . An example of this is grouping CFL lights

according to different geographical areas and sampling those geographical areas [48].

The following are key features of cluster sampling [51]:

• The process of selecting elements for clustering might be stepwise. For example, having

city blocks as clusters and households as units within the clusters might involve first

selecting a sample of city blocks then selecting a sample of households from the selected

city blocks. These sampling steps are referred to as ‘stages’ and a sampling plan might

involve many stages,

• Different sampling techniques such as simple random sampling or stratified random

sampling can be used to select clusters,

• More than one sampling frame might be involved in the process of cluster sampling.

An example can be a list of countries at the first stage of sampling, followed by a list
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of townships within those counties at the second stage, then a list of schools in each

township selected, etc,

• After the first stage of sampling, only those clusters chosen are used to compile the

sampling frame.

The main advantages of cluster sampling are its feasibility and its cost-effectiveness depending

on the spread of the population to be sampled [51]. A case in point is when elements to be

sampled are spread over a wide area such as a continent, the only feasible and cost-effective

solution will be to use cluster sampling [48].

The key disadvantage of cluster sampling is that the standard errors obtained from it tend

to be larger than those obtained from other sampling methods. This is because units within

each cluster are usually homogenous with respect to multiple criteria. Therefore, selecting

multiple units from a cluster, as is typical in cluster sampling, is redundant. The result of

this redundancy is high standard errors of estimates [51].

2.7.4 Multi-stage sampling

Multistage sampling is a complex form of cluster sampling, which involves the use of multiple

stages of cluster sampling to achieve greater efficiency in the sampling [51]. In some situa-

tions the clusters selected in the first stage of sampling might be too large that it becomes

prohibitively expensive to sample each element in each cluster. Furthermore, as mentioned

in the previous subsection, the units within each cluster might be too homogenous, which

leads to redundancy [51]. To reduce the sampling cost and reduce redundancy, it might be

better to sample the units within the clusters as another stage of sampling. In effect, data

will only be collected for the second stage, or other proceeding stages of sampling other than

the original clusters after the first stage of sampling [48].

2.7.5 Sample accuracy (confidence and precision)

The IPMVP recommends that sampling should be done in a "statistically meaningful way".

To this end it cites confidence and accuracy criteria such as the 90/10 criteria for CDM or

the common 80/20 criteria as recommended in [52], [6].
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The accuracy of the estimate involves constructing a confidence interval within which one is

sufficiently sure that the true population value lies or equivalently, placing a bound on the

probable error of the estimate [49]. According to [49], for any chosen sample, the confidence

interval z is described as

z = 100(1− α), (2.1)

where α is the chosen precision, say 10% or 5% which would give a confidence of 90% and 95%

respectively [49]. An interpretation of the above equation is as follows. Say if the confidence

is given as 90% under simple random sampling, then for 90% of the possible samples of size

n, the interval covers the true value of the population mean µ [49]. Note that the confidence

interval cannot be given without an implied precision value [6].

2.7.6 Sample size determination

The point of sample size determination (SSD) is to make sure a representative sample of EE

measures is taken without unnecessary cost. Sample size determination methods have been

grouped into two, namely; the frequentist methods, and the Bayesian methods [47].

2.7.6.1 Frequentist methods

Frequentist methods of SSD deal with problems that have a normal distribution with a known

variance. The sample size can then be determined based on a given confidence and precision

interval [47].

If the confidence interval is z and the precision p then the initial sample size for simple

random sampling is calculated as [49]

n0 = z2CV 2

p2 (2.2)

Where the CV is the coefficient of variation defined as CV = s/µ, that is the standard

deviation s divided by the mean µ.
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If the overall population N is not large relative to the sample size n, then a finite correction

factor needs to be applied to the above equation. Which is given as [49]

n = n0N

n0 +N
= CV 2z2N

CV 2z2 +Np2 , (2.3)

2.7.6.2 Bayesian methods

Bayesian methods on the other hand have been developed from the realization that it is often

impossible to take more than one sample and that a simple sample may not be sufficiently

large to allow clear cut inferences to be made. Bayesian methods are said to employ the

optimizing of utility functions to find the right sample size. A key advantage of Bayesian

sampling methods over the frequentist methods is that they can allow for uncertainty that is

inherent in any estimate [47].

2.8 MODELLING

Energy savings in EE projects cannot be measured directly. To measure them it is necessary

to compare a modelled baseline energy consumption profile to a measured post implementa-

tion energy profile under similar conditions. However at the post implementation phase the

baseline profile cannot be obtained. For this reason, baseline service level adjustment models

have to be developed to bring both time periods under the same set of conditions [6].

M&V baseline adjustment models typically compare energy consumption of EE measures

with criteria such as ambient temperature, quantity or rate of production or occupancy

rates. Regression analysis is typically used to develop these models [6] although Bayesian

modelling, and Gaussian modelling have also been used [43], [53].

In regression modelling several metrics are recommended by the IPMVP for quantifying

model quality. They are the coefficient of determination (R2), the coefficient of variation

of the root mean square error (CVRMSE) and the coefficient of variation of the standard

deviation (CVSTD), which is used for mean models [43].

The coefficient of determination found in most statistical texts is commonly used in engineer-
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ing to describe the strength of the relationship between a dependent variable and a set of

independent predictor variables. A R2 value closer to unity indicates a stronger relationship

and a value closer to 0 indicates a poor relationship [54]. For linear models R2, the CVRMSE,

and CVSTD are given by the following equations [43]:

R2 = 1−
∑(yi − ŷi)2∑(yi − ȳ)2 , (2.4)

CV RMSE = 1
ȳ

√
[
∑(yi − ŷi)2

n− p
], (2.5)

CV STD = 1
ȳ

√
[
∑(yi − ȳ)2

n− p
], (2.6)

where:

yi The actual value i,

ȳ The mean value,

ŷ The predicted value,

n The number of observations,

p The number of parameters in the regression model.

R2 is bounded between 0 and 1, while the CVRMSE and the CVSTD are both bounded

between 0, and infinity. For a model to be considered a good model, the CVRMSE or the

CVSTD must be closer to 0 and R2 closer to 1. R2 represents that variation of the actual

data yi about the modelled value ŷ compared to the variation of the actual data about the

average value ȳ. However, the CVRMSE or CVSTD are normalized differently to the R2

value. They represent the variation of the actual data yi about the predicted value ŷ, in

case of the CVRMSE or the variation of the actual data about the mean value ȳ, in case

of the CVSTD, all normalised by the data mean. This difference dictates the suitability of

each metric as goodness-of-fit measures. R2 tends to be dependent on the slope of the data

while the CV depends on the spread of the data. Consequently if the aim of a M&V study

is to evaluate how well a baseline energy model captures the variation in data then R2 is the

useful metric, while if the aim is to obtain the uncertainty in the savings prediction then the

CVRMSE is more useful [43].
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2.9 RATIONAL FOR THIS STUDY

It is evident that a number of existing M&V studies focus on handling M&V modelling

uncertainty, especially during the process of baseline model development. There are also

studies on dealing with sampling uncertainty, and guidelines to reduce measurement uncer-

tainty. However, no specific study has considered a combined uncertainty analysis among

the M&V measurement, sampling, and modelling uncertainties towards an optimal M&V

plan. Combined analysis would involve examining measurement and sampling uncertain-

ties, measurement and modelling uncertainties, sampling and modelling uncertainties, or a

combination of all three types of uncertainties, which often exist in M&V practice.

This work aims to examine sampling and modelling uncertainties together whilst minimising

M&V cost, which offers M&V practitioners flexibility in designing an optimal M&V plan

that either has high sampling uncertainty with low modelling uncertainty or high modelling

uncertainty with low sampling uncertainty. This study pays less attention to measurement

uncertainty as it is commented that measurement uncertainty makes a negligible contribution

to the overall uncertainty for electricity metering cases where population variance is not

unusually low [55]. However, efforts on dealing with sampling and modelling uncertainties

are believed to be the most significant contributors to the entire M&V cost, especially when

both the modelling and sampling techniques are used during the M&V process.

2.10 CONTRIBUTION OF THIS STUDY

This study proposes an M&V cost minimisation model to deal with both the M&V modeling

and sampling uncertainties with minimal cost. In order to find the optimal solutions in terms

of the modelling accuracy level and the sample size, the M&V cost that includes the modelling

cost, sampling cost, and overhead cost is formulated as the objective function, in which the

modelling cost is developed as a function of the modelling accuracy in terms of CV(RMSE)

and the sampling cost is directly related to the sample size.

In order to illustrate the effectiveness of the proposed model, an optimal M&V modelling

and sampling strategy is designed for a traffic lighting retrofit project. In addition, partially

optimal M&V plans designed with optimal sampling but non-optimal modelling solutions, or

with optimal modelling but non-optimal sampling solutions are employed as the benchmark.
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To test the applicability and flexibility of the proposed model for the cost-effective design

of similar traffic lighting projects, simulations have been carried out to evaluate the model

performance when applying the model to M&V projects with different characteristics.

The major contributions of this study can be highlighted as follows: 1) an M&V modelling

cost model is developed, which is able to offer quantitative analysis of the M&V baseline

model uncertainty and cost; 2) an M&V cost minimisation model is proposed to handle

both the M&V modelling and sampling uncertainties cost-effectively. The effectiveness and

flexibility of this model are demonstrated by a case study and the simulation results.
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CHAPTER 3

M&V COST MINIMISATION MODEL

DEVELOPMENT

3.1 CHAPTER OVERVIEW

In this section, a M&V cost minimisation model is developed to design optimal M&V plans

that handle both the M&V modelling and sampling uncertainties cost-effectively. For this

purpose, typical M&V cost factors are reviewed, and a model is developed to characterise the

relationship between the M&V modelling cost, and accuracy. In addition, the formulation

of combined M&V uncertainties including both the modelling, and sampling uncertainties

are introduced under different practical scenarios. Based on the M&V cost, and modelling

analysis, a general M&V cost minimisation model is developed, in which the sum of sam-

pling, and modelling costs are considered as the objective function, and the M&V accuracy

requirements are formulated as the constraints of the optimisation model.

3.1.1 M&V modelling cost analysis

There are numerous factors affecting M&V cost as mentioned in various guidelines, and

protocol documents [6, 7]. Most of these M&V cost factors are related to the handling of

M&V uncertainties; namely, the M&V measurement, sampling, and modelling uncertainties,

in order to achieve the desired M&V accuracy. Thus, the M&V project cost can also be

categorised into the metering cost, sampling cost, modelling cost, and the overhead cost.

The metering cost normally includes the meter procurement, calibration, installation, and

commissioning cost. The amount of the metering budget is decided by the required meter
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Chapter 3 M&V cost minimisation model development

Table 3.1: CVRMSE values and the estimated modelling cost

CVRMSE (%) Modelling Cost (R)

5 223 750

10 155 500

15 130 500

20 103 000

25 92 000

30 74 750

device specifications, and the service level of calibration, installation from different suppliers

[56]. Sampling cost is directly related to the sample size; a greater sample size implies a

higher sampling cost. The modelling cost includes the level of M&V professionals involved in

improving the model accuracy. The modelling cost also depends on the modelling techniques

to be used, and the complexity of the system being modelled. The overhead cost should be

a constant including reporting, communication, documentation, and management.

The metering cost can be obtained from various measurement service suppliers and the sam-

pling cost is proportional to the required sample size. However, the modelling cost cannot

be easily estimated as the required expertise from M&V professionals, and the modelling

complexities vary in different projects. In this study, the quoted and approved modelling

costs for more than 300 M&V projects from a South African National Accreditation System

(SANAS) accredited M&V inspection body under the South African National EEDSM pro-

gramme are assessed and analysed [23]. Although the M&V modelling cost is complicated,

and different for different projects, the modelling accuracy plays an important role in deciding

the M&V modelling cost. In this study, the CV(RMSE) values are taken as the key indicator

to evaluate the modelling accuracy. Models with a lower CV(RMSE) indicate a higher M&V

modelling accuracy.

To obtain a modelling cost model, regression analysis is applied to the data in Table 3.1.

Linear regression being a common form of regression analysis is compared to exponential

regression to fit the data. The comparisons are made based on the coefficient of determination

R2 and the CV RMSE. A high R2 value and a low CV RMSE value indicate a model with

a good fit and a high accuracy. Table 3.2 shows the results of the regression analysis on the

M&V cost data. Figure 3.1 shows the results of linear fitting and exponential fitting.
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Chapter 3 M&V cost minimisation model development

Table 3.2: Modelling cost fitting data

Fitting criteria Linear model Exponential model

R2 0.903 0.975

CV RMSE 0.130 0.082

y = -5502.9x + 226217

R² = 0.9034

y = 251937e-0.042x

R² = 0.9749
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Figure 3.1: M&V modeling cost vs CV(RMSE)

It is found that the exponential M&V modelling cost model has a coefficient of determination

R2=0.975 with CV (RMSE) = 0.082 while the linear modelling cost model has R2=0.903

and CV (RMSE)=0.130. Therefore, the exponential model is believed to be more accurate

to represent M&V modelling cost against the CV(RMSE). The M&V modelling cost to be

used for the M&V cost minimisation is given in Equation (3.1).

Cm = 251937e−0.042CVm , (3.1)

where CVm denotes the CV(RMSE) of an M&V baseline model while Cm denotes the M&V

modelling cost for one baseline model.

3.1.2 M&V sampling cost

In addition to the M&V modelling cost, the M&V metering, sampling and the overhead

cost are given as follows. Let ai denote the procurement and bi represent the installation,

calibration, and commission cost for the ith type of metering device to be used for M&V, ni
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Chapter 3 M&V cost minimisation model development

denote the sample size of the ith type of metering device. Then the metering and sampling

cost can be denoted by Equation (3.2) [15],

Cs = (ai + bi)ni, (3.2)

where:

Cs The metering and sample cost of a M&V project.

ai The procurement cost per meter

bi The installation cost per meter

ni The sample size for which meters are installed

i M&V project.

Let Co denote the overhead cost of an M&V project, then the overall M&V project cost is a

combination of the modeling cost, metering and sampling cost, and the overhead cost.

3.2 COMBINED M&V UNCERTAINTY ANALYSIS

In this study, both the modelling and sampling uncertainties will be considered and handled

in designing a cost-effective M&V plan. As introduced in the IPMVP, the uncertainties

in M&V can be combined in either an additive or multiplicative way provided that they

are independent. Independence means that the random errors affecting one uncertainty

component do not affect the other [6]. In order to quantify both the sampling and modelling

uncertainty together, the combined uncertainty U is calculated by

U =
√
Um2 + Us2, (3.3)

where Um and Us denotes the combined modelling and sampling uncertainties, respec-

tively.

Practically, different combinations of uncertainties may exist in various M&V projects. As

illustrated in Figure 3.2, energy efficiency activities may range from simple EE lighting re-

placement actions to a holistic EE strategy that improves all lighting, water heating, and

space heating/cooling systems. For the M&V process of various EE projects, when measure-

ment uncertainties are negligible, the combined sampling and modelling uncertainties can be

categorised into different scenarios as follows:
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Chapter 3 M&V cost minimisation model development

CFLs Geysers

AirconsLEDs

Figure 3.2: Illustration of combined uncertainty analysis.

1) Combined sampling uncertainty analysis. Given a large-scale lighting retrofit

project that includes both CFL and LED technologies, modelling uncertainty is negligi-

ble as the lighting energy consumption is well characterised by the product of wattage

and usage time. However, sampling uncertainty needs to be handled for M&V in this

case. As introduced in [15], sampling uncertainties can be cost-effectively handled by

applying a stratified sampling approach. To apply the optimisation approach in [15],

the lighting population is firstly stratified into different strata by the CV of the energy

usage of individual lamps. The optimal sample size can then be assigned to each stra-

tum for sampling. In this scenario, combined sampling analysis will be applied across

different lighting strata.

The sampling uncertainty in the ith lighting stratum is described as by the sample

standard error and is defined as

Usi = cviȲi√
ni
, (3.4)

where:
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Chapter 3 M&V cost minimisation model development

cvi the sampling CV of the ith stratum,

ni the required sample size in the ith lighting stratum,

Ȳi the sample mean.

The combined sampling uncertainty across each lighting stratum is expressed as

Us =

√√√√ I∑
i=1

(
Ni

N

)2
· (cviȲi)2

ni
, (3.5)

where:

I the total number of lighting strata,

Ni the population size of the ith stratum,

N the combined project population.

2) Combined modelling uncertainty analysis. Given a small scale energy conservation

project that aims to improve the energy efficiency of several water heaters, and air

conditioners, sampling uncertainties do not exist when each device is measured for

M&V. However, energy baseline models need to be established to adjust the baseline

under post-retrofit conditions for savings determination. For projects with both water

heaters, and air conditioners involved, the baseline model may be designed as a function

that characterises the relationship between the total energy usage between the heating

or cooling degree days over the reporting period [12]. Alternatively, separate models

can be designed for both the water heaters, and the air conditioners in order to improve

the modelling accuracy. When one baseline model is developed, no combined modelling

uncertainty analysis is required. But when two or more models are applied in one M&V

project, the combined modelling uncertainty must be performed to evaluate the total

modelling uncertainty.

Given an M&V project with J baseline models, uncertainty for each model is formulated

as

Umj = CVmj Ȳj , (3.6)

where Ȳj is the average baseline energy consumption, and CVmj is the CV(RMSE) of
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Chapter 3 M&V cost minimisation model development

the jth model. The combined modelling uncertainty is given by

Um =

√√√√ J∑
j=1

(
Ni

N

)2
· Um2

j . (3.7)

where:

J is the total number of baseline models,

Ni the population size of the ith stratum,

N the combined project population.

3) Combined modelling and sampling uncertainty analysis. In some cases, an energy

conservation project could have various types of technologies or devices involved; in this

instance, both the modelling and sampling efforts need to be made for M&V. In this

case, combined sampling uncertainty includes the sampling uncertainties across all the

strata while the combined modelling uncertainty includes the modelling uncertainties

of each individual baseline model. The total uncertainty includes both the combined

sampling, and modelling uncertainties, which is calculated by Eq. (3.3).

3.3 M&V OPTIMISATION MODEL

In this subsection, an M&V optimisation model is developed to handle both the M&V sam-

pling, and modelling uncertainties cost-effectively. The aim of the optimisation is to achieve

the desired M&V accuracy with minimal M&V cost. As introduced in Subsection 3.1.1, the

M&V cost includes metering, and sampling cost, modelling cost, and overhead cost. The

M&V accuracy is defined in terms of the combined modelling and sampling accuracy, which

is set to meet the 90/10 criterion in this study. As introduced in [6], the relationship be-

tween the 90/10 criterion accuracy, and the combined sampling and modelling uncertainty is

characterised by

p = z × U
Ȳ

, (3.8)

where p is the relative precision and z is the z score related to a confidence level [6].

Let an M&V project have I sampling strata and J models for the baseline adjustment, it

is expected to find the optimal sample size ni in each sampling stratum, and the optimal

accuracy level CVmi for each baseline model that achieve the desired M&V accuracy with

minimal M&V cost. This is an optimisation problem that aims to find the optimal solutions
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Chapter 3 M&V cost minimisation model development

λ=(CVm1, . . . , CV mJ , n1, . . . , nI), which minimises the overall M&V cost f(λ)

f(λ) =
J∑

j=1
251937e−0.042CV mj +

I∑
i=1

(ai + bi)ni + C0, (3.9)

subject to the constraints

p = z × U
Ȳ

≤ 10%, (3.10)

where U is the total uncertainty that is calculated by the Eqs. (3.3)-(4.6).

3.4 CHAPTER SUMMARY

A M&V cost minimisation model that takes into account the M&V modelling and sampling

cost has been developed. The M&V modelling cost has been formulated as a function of the

CV(RMSE) by exponentially fitting practical M&V cost data to the estimated CV(RMSE)

values for multiple M&V projects. Through the use of stratification on EE device populations

with varying sample CV values and modelling requirements, it is shown that it is possible to

have a combined uncertainty analysis for any given M&V project. The overall uncertainty is

set to be less than or equal to the 90/10 confidence and precision requirements; this forms

the constraint for the optimisation problem. Solutions to the optimisation problem provide

CV(RMSE) values for each model in a M&V project, and sample sizes for each sampling

group within a M&V project. The next chapter presents a case study used to demonstrate

the effectiveness of the optimisation approach developed in this chapter.
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CHAPTER 4

CASE STUDY: TRAFFIC INTERSECTION

SIGNAL LAMP RETROFIT

4.1 CHAPTER OVERVIEW

In this chapter a case study is presented to illustrate the cost effective handling approach

developed in this thesis. The focus is a traffic lamp (aspect) retrofit project implemented in

South Africa. Background on the project is given, this includes technical details about the

functioning of the intersections, how the intersections are grouped for sampling is explained,

and finally a M&V cost minimisation problem is framed in the context of this case study,

and solved in the next chapter. Discussions are also provided to solve the proposed M&V

cost minimisation model.

4.2 TRAFFIC INTERSECTIONS PROJECT BACKGROUND

A traffic light retrofit project that replaces 56 W incandescent signal lamps with an equal

number of 15 W LED signal lights has been implemented in several municipalities in South

Africa. A number of 2 200 traffic intersections have been retrofitted by more than 125 000

LED signal lamps. Due to different conditions of existing traffic light systems, the lamp

retrofits have been done in two ways. One solution is to replace 56W signal lamps, which

include red, amber, and green coloured ones within a traffic light sets with 15W LED lamps.

The other is to change the whole traffic light sets, which include 4-aspect, 3-aspect, and 2-

aspect ones with new whole sets fitted with LEDs. Since this project is financially sponsored

by the local government, the energy savings of this project need to be accurately quantified
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Chapter 4 Case Study: Traffic intersection signal lamp retrofit

by an M&V process. Figures 4.1-4.3 illustrate the scope of the traffic lamp retrofits, the

configuration of typical intersections and a timing diagram that corresponds to that config-

uration.

Figure 4.1 is an illustration of what single aspects (lamps) looks like compared to the combined

aspects. The replacement of a single aspect involves removing a particular aspect (Red,

Yellow and Green) and replacing it with another single LED aspect. While the combined

aspect retrofit involves removing the whole lamp fitting and replacing it with a new LED

fitted lamp fitting.

Figure 4.1: Image showing individual aspects and a combined aspects

Figure 4.2 shows a planning diagram of a traffic intersection in Pretoria, South Africa. In this

diagram, signal lamps are grouped for the sake of control. A particular set of signal lamps is

switched onto Red, Yellow or Green depending on the phase of operating. This is done via a

timing schedule. An example of this timing schedule is shown in Figure 4.3.
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Chapter 4 Case Study: Traffic intersection signal lamp retrofit

Figure 4.2: A planning image of a intersection showing signal groups
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Chapter 4 Case Study: Traffic intersection signal lamp retrofit

Figure 4.3 shows a timing diagram for a traffic intersection in Pretoria. In this figure the solid

green line indicates when the signal lamp groups are set to a steady green state, the dashed

green line shows when the signal lamp groups are set to a flashing green state. The blank

spaces are all when the signal lamp groups are set to Red. A single cycle of operation lasts

85 seconds, and repeats throughout the day. Throughout all these changes in operational

phase, the energy consumption vacillates since the quantity of lights varies across signal lamp

groupings.

Figure 4.3: Timing diagram for the intersection in figure 4.2

4.3 INTERSECTION CLASSIFICATION

As shown in Figures 4.2-4.3 the energy consumption at any given intersections varies through-

out a day of operation. This variation is dependent on the number of phases of operation,

and the quantities of lamps. Different phases of operation, require different configurations

of the traffic lamps to implement them, and these different configurations require varying

quantities of lamps to implement. Because of this, the traffic intersections can be grouped

into large intersections, which includes intersections with 3 or more phases of operations,

and small intersections that includes all intersections with no more than 2 phases of opera-

tion. The large intersections have been retrofitted with complete sets of lamp fittings, while
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Chapter 4 Case Study: Traffic intersection signal lamp retrofit

the smaller intersections have been retrofitted with individual lamp fittings as illustrated in

Figure 4.1.

Given the two different light retrofit scopes, the energy consumptions of a few intersections

have been recorded over a short period for both complete-set retrofit and individual retrofit

traffic intersections. Based on metered data gathered during the test sampling, it is found that

the average energy consumption of the intersections with individual signal lamp retrofits is

1.91 kWh with a maximum standard deviation of 0.382, while the average energy consumption

of intersections with combined traffic set retrofits is 1.415 kWh with a standard deviation of

0.708. According to the installation database, there are 1320 intersections with individual

signal lamps retrofitted and 880 intersections with traffic lamp set retrofits. According to

the test sampling, sampling CV of the daily energy consumption of the 1320 intersections is

less than 0.2 while the CV of the 880 traffic lamp set retrofit intersections is taken as 0.5.

The traffic intersections are classified into two groups for stratified sampling according to

the different sampling CV values of each stratum. Strata 1, henceforth known as Group I

contains the complete-set retrofit intersections and strata 2 henceforth known as Group II

contains all the individual retrofit intersections.

Optimal sample sizes for each strata will be decided by the model (3.9)-(4.4). The same

sample size will be used at both the baseline, and post-retrofit periods. Since each stratum

of will have varying levels of uncertainty in their daily energy consumption, meters with

different accuracies, and prices will be installed randomly at selected intersections from each

stratum.

4.4 M&V APPROACH

In order to reliably quantify the energy savings for this traffic light retrofit project, the project

boundary, metering, sampling plan, baseline calculation, and baseline adjustment approaches

need to be specifically designed.

The project boundary includes all the 2 200 traffic intersections, and all the LED signal lamps.

For the M&V purpose, it is applicable to measure the daily energy consumption either in

terms of the traffic intersections or individual LED signal lamps. In order to reduce the

sampling population, which will consequently reduce the sample size, and sampling cost, it

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 4 Case Study: Traffic intersection signal lamp retrofit

is decided that the energy consumption per traffic intersection will be measured. Therefore,

the IPMVP Option C: the whole facility measurement approach is applied to this M&V case

study.

4.5 BASELINE METHODOLOGY

The following section presents the M&V plan, as well as the sampling and metering

plan:

1. The electricity use of each intersection is considered as independent from that of the

city and of other traffic intersections concerned in the project,

2. Each traffic intersection is fed electricity through a single mains at an adjacent circuit

board. It is therefore taken as a whole facility; for this reason IPMVP option C is used

to M&V this project,

3. The electrical parameters relevant to this project will be the daily power consumption

for each intersection, which will be measured using metering equipment,

4. Once a required sample size has been obtained, the daily average power consumption

will be obtained by installing meters at randomly selected intersections,

5. The same sample size will be used at the baseline period as well as the post implemen-

tation period.

There are two traffic light baseline modelling approaches introduced in [57]. The daily energy

consumption per intersection can be formulated as the quantity of each type of signal lamps in

terms of different lamp colours. For instance, the daily energy consumption per intersection

E1 can be denoted by

E1 = β0 + β1Rn + β2Yn + β3Gn, (4.1)

where β0, β1, β2, and β3 are regression coefficients; Rn, Yn, and Gn are the quantity of Red,

Yellow, and Green signal lamps, respectively. Alternatively, the energy consumption for the

traffic set retrofit is given as

E2 = α0 + α1A2n + α2A3n + α3A4n + α4Arn. (4.2)
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Chapter 4 Case Study: Traffic intersection signal lamp retrofit

where α0, α1, α2, α3 and α4 are regression coefficients; A2n and A3n denote the quantity

of 2-aspect and 3-aspect traffic light sets, respectively; A3n and Arn denotes the quantity

of the 4-aspect fittings with pedestrian signals, and 4-aspect fittings with turning arrows,

respectively.

The baseline energy consumption will be the aggregated energy consumption of each intersec-

tion in the project multiplied by the number of days in the baseline measurement period. The

two baseline models (4.1)-(4.2) will be applied for baseline adjustments under the post-retrofit

period.

4.6 OPTIMISATION MODEL FOR THE CASE STUDY

The optimisation model developed in section 3 is applied to the case study presented in this

section to solve the cost minimisation and uncertainty handling problem. The initial values

presented in Table 4.2. The optimisation model is presented below for the two groups of

intersection retrofits.

f(λ) = 251937e−0.042CV m1 + 251937e−0.042CV m2 + (a1 + b1)n1 + (a2 + b2)n2 + C0, (4.3)

subject to the constraints

p = z × U
Ȳ

≤ 10%, (4.4)

where U is the total uncertainty that is calculated by the Eqs. (3.3)-(4.6).

where,

U =
√
U2

m + U2
s , (4.5)

Um =

√√√√ J∑
j=1

(
Ni

N

)2
· Um2

j . (4.6)

Us =

√√√√ I∑
i=1

(
Ni

N

)2
· (cviȲi)2

ni
, (4.7)
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Chapter 4 Case Study: Traffic intersection signal lamp retrofit

Ȳ = N1Y1 +N2Y2
N1 +N2

. (4.8)

where:

CVm1 the required modelling CVRMSE of Group I

CVm2 the required modelling CVRMSE of Group II

CV1 the sampling CV for Group I

CV2 the sampling CV for Group II

p the required precision (10%)

z the z-value associated with the required confidence (90%)

n1 the required sample size of Group I

n2 the required sample size of Group II

N the overall project population

Um the overall modelling uncertainty

Us the overall sampling uncertainty

U the overall project uncertainty

To obtain optimal sample sizes and model accuracies, the cost minimisation model in

Eqs. (3.9)-(4.4) is solved using the case study specific information given in Table 4.2. The opti-

misation problem in Eqs. (3.9)-(4.4) is a non-linear problem and it is solved using “MATLAB"

simulation software, specifically the fmincon optimisation function. The following settings

are employed for the optimisation function are given in Table 4.1. They are the tolerance

on the function value, tolfun, the tolerance on the constraints, tolcon, and the termination

tolerance on the design variables, and tolx.

Table 4.1: The optimisation settings

Parameter Value

tolfun 10−45

tolcon 10−45

tolx 10−45

The optimal sample sizes are integers which are obtained using integer programming algo-

rithms. The topic of this thesis deals with the practical problem of minimising M&V project

cost, therefore, integer sample sizes are obtained from the optimisation. Once the optimal
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Chapter 4 Case Study: Traffic intersection signal lamp retrofit

solution has been found, the sample sizes are rounded up using the MATLAB ‘ciel’ function.

Mathematically, the sample sizes are sub-optimal solutions. The starting point of the opti-

misation is arbitrarily chosen as λ0 = (0.3,0.10,20,50). With lower bounds lb = (0,0,0,0) and

upper bounds ub = (1, 1, ∞, ∞). The optimal solutions to the case study are given in Table

5.1.

In Table 4.2, the meter unit price for Group I is R500 and R1500 for Group II. The disparity

in meter price is due to the fact that group two has more uncertainty associated with it,

reflected in its higher CV of sampling value. Therefore, it requires much more sophisticated

metering equipment, which is more expensive. The same is reflected in the meter installation

cost. The simulations are done at 90% confidence and 10% precision; the same criteria

required by the CDM methodology.

The rest of the initial values for the optimisation are drawn from field data and calculations

such as those for the sampling CV value and the estimated sample means Ȳi.

Table 4.2: Initial values for the case study.

Parameter Group I Group II

Meter unit purchase price a1 = R 500 a2 = R 1500

Installation cost per meter b1 = R 195 b2 = R 320

sample CV values cv1 = 0.20 cv2= 0.5

Estimated Ȳi Ȳ1 = 1.91 kWh Ȳ2 = 1.415 kWh

Population N1 = 1320 N2= 880

4.7 BENCHMARK FOR COMPARISON

Before solving the case study, solutions without optimisation are calculated as a benchmark

for comparison. As mentioned in the chapter 2, there is no existing study that has a cost

analysis in dealing with M&V modelling uncertainties. Therefore, the mathematic modelling

of the relationship between M&V baseline modelling cost, and the model accuracy is one of

the major contribution in providing quantitative cost analysis for the M&V baseline modelling

process.

Though there is no benchmark in handling M&V modelling uncertainty with detailed cost

analysis, optimal solutions have been provided in [15] to dealing with the M&V sampling
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Chapter 4 Case Study: Traffic intersection signal lamp retrofit

uncertainties cost-effectively. In the absence of a direct benchmark to the study, it is proposed

that the optimal solutions be compared with the partially optimised solutions, in order to

highlight the effectiveness of the proposed M&V cost minimisation model. The partial optimal

solutions (POS) are obtained by

POS1: Optimal modelling but non-optimal sampling approach. In this approach, the

optimal modelling accuracy is assigned but the sample sizes are not optimised and

calculated by the sample size determiantion formula as given in [49],

n0 = z2cv2

p2 .

POS2: Optimal sampling but non-optimal modelling approach. In this approach, the

optimal sample sizes are assigned but the model accuracy is not optimised. As the

ASHRAE M&V guidelines [58] recommends that the IPMVP: Option C baseline models

should have a poorest CV(RMSE) of 25%, the CV(RMSE) of 25% is chosen in this

approach to establish the benchmark.

The initial values in Table 4.2 are used to calculate both the optimal and partial optimal

solutions. The results for POS1 and POS2 are presented in Tables 5.2-5.3.

4.8 CHAPTER SUMMARY

A traffic light retrofit project implemented across multiple municipalities in South Africa is

used as a case study to illustrate the applicability of the optimisation approach developed in

this thesis. Each traffic intersection is considered as a whole facility, and all the intersections

are stratified into two groups based on the type of model applied to them for baseline ad-

justment. Because there is no historically existing M&V modelling cost model, two partially

optimal solutions are proposed as a basis for comparison with the optimal solutions that will

be calculated in the next chapter.
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CHAPTER 5

RESULTS

5.1 CHAPTER OVERVIEW

In this chapter the optimal results to the M&V cost minimisation problem presented in

the case study are given. Partial optimal solutions, which are used as a benchmark for

comparison to the optimal solutions are also given. A discussion on the optimal results is

given, and a comparison is carried out with the partially optimal results. Furthermore, to

demonstrate the applicability of the optimal approach developed in this thesis, simulations

on the sampling CV have been carried out, and those results are also presented, and discussed

in this chapter.

5.2 OPTIMAL SOLUTIONS FOR THE CASE STUDY

The optimal solutions to the case study are given in Table 5.1. These solutions show that

optimal model accuracies of 3.46% and 10.53% can be expected for Group I and Group II

respectively. Furthermore, they show that the optimal sample sizes are 28 and 22 for Group

I and Group II respectively. These are the optimal solutions necessary to meet a minimum

overall M&V project cost for the traffic light retrofit project while meeting the 90/10 criteria

for confidence and precision.

In Tables 5.1-5.3, the overall modelling CV(RMSE) is calculated by dividing the total mod-

elling uncertainty Um as given in Eq. (4.6) over the weighted average daily energy consumption

Ȳ (Eq. (4.8))
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Chapter 5 Results

CV (RMSE) = Um

Ȳ

Table 5.1: Optimal solutions to the case study.

Parameters Group I Group II Overall

Optimal CV(RMSE) 3.458% 10.532% 4.181%

Optimal Sample Size 28 22 50

Sampling cost R19 460 R40 040 R59 500

Modelling cost R217 880 R161 880 R379 760

Project Cost R237 340 R201 920 R439 260

5.3 PARTIALLY OPTIMAL SOLUTIONS TO THE CASE STUDY

The optimal model accuracies in Table 5.1 are used to generate partially optimal solutions

with optimal modelling accuracy but non-optimal sample sizes. These results are in Table 5.2.

These solutions reveal a greater overall M&V cost than the optimal solutions since non-

optimal sample sizes are being used.

Table 5.2: Partially optimal solutions to the case study: optimal modelling

Parameters Group I Group II Overall

Optimal CV(RMSE) 3.458% 10.532% 4.181%

non-optimal Sample Size 11 68 79

Sampling cost R7 645 R123 760 R131 405

Modelling cost R217 880 R161 880 R379 760

Project Cost R225 525 R285 637 R511 161

Table 5.3 presents the partially optimal solutions calculated by taking the optimal sample

sizes, and using the non-optimal CV(RMSE) fo 25% for both groups. These solutions reveal

a decreased overall M&V cost compared to the optimal solutions in Table 5.1 but with a

much poorer overall model accuracy of 18.67%. The low cost is due to the poor CV(RMSE),

which entails a much lower M&V modelling cost.
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Chapter 5 Results

Table 5.3: Partially optimal solutions to the case study: optimal sampling

Parameters Group I Group II Overall

non-optimal CV(RMSE) 25% 25% 18.67%

Optimal Sample Size 28 22 50

Sampling cost R19 460 R40 040 R59 500

Modelling cost R88 162 R88 162 R176 325

Project Cost R107 622 R128 202 R235 825

5.4 COMPARISON OF THE OPTIMAL SOLUTIONS TO THE PARTIALLY

OPTIMAL SOLUTIONS

When comparing the results given in Tables 5.2 and 5.1, the optimal solutions reduce the

sampling cost by 55% and the total M&V cost by 14% against the solutions obtained by

the POS1. The results given in Table 5.3 offer a lower M&V cost than the optimal solu-

tion. However, as the model accuracy in Table 5.3 is much lower than the optimal model

accuracy, the solutions in Table 5.3 cannot satisfy the required 90/10 criterion for the M&V

reporting.

These results show that the optimisation approached developed in this thesis is able pro-

vide M&V practitioners a tool to handle M&V modelling, and sampling uncertainties cost-

effectively. They show that it is possible to have high modelling accuracies with low sample

sizes while meeting the required confidence and precision criteria for M&V baseline mod-

els.

5.5 SIMULATION RESULTS

The optimal solutions to the case study in Section 5.2 illustrate the advantageous perfor-

mance of the proposed M&V cost optimisation model in designing an optimal M&V plan for

a specific traffic light retrofit M&V project. In order to test the applicability, and flexibility

of the proposed model for the cost-effective design of similar traffic light projects, simula-

tions have been carried out to evaluate the model performance when applying the model to

M&V projects with different characteristics. Through the simulations, it is expected that the

capability of the proposed M&V cost minimisation model to offer flexible solutions will be

identified, which will provide multiple optimal solutions to M&V practitioners to mitigate
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Chapter 5 Results

practical constraints. For instance, some possible solutions may require very high modelling

accuracy with a very small sample size, which is not easily implementable. In this case, it is

expected that more easily implementable optimal solutions that shift the modelling accuracy

to the sample accuracy will be found; such that a lower modelling accuracy with greater

sample sizes will be required to satisfy the M&V accuracy.

In the case study, the estimated sampling uncertainty is CVRef={0.2, 0.5}, which represents

cv1=0.2 and cv2=0.5 in the two traffic light strata. In order to investigate the flexibility, and

the model performance against different sampling uncertainties, two simulations are carried

out as follows: the optimal modelling accuracy in terms of the CV(RMSE), and sample

sizes are obtained by the optimisation approach with CVRef={0.2, 0.5} as a reference. In

the two simulations, CVRef is changed by ±10%, ±20%, and ±50%. The settings for the

optimisation are kept the same as given in the case study. The search starting point for

the simulations is λ0=(30,25,50,50). The results of these simulations are presented in the

following subsections.

5.5.1 Simulations on the CV(RMSE)

In the first simulation, the sample sizes; namely, n1=28 and n2=22, are assigned to the two

traffic light strata. When the sampling uncertainties change, the optimal accuracy levels of

the baseline models are obtained and presented in Figure 5.1. It shows that when sampling

uncertainty increases, more accurate models are required if the sampling efforts are limited.

The consequence of this is an increasing M&V project cost shown in Fig. 5.2.

5.5.2 Simulations on the sample sizes

In the second simulation, the model accuracy; namely, CVm1=3.46% and CVm2=10.53%

are assigned to the two traffic light strata. When the sampling uncertainties change, the

optimal sample sizes are obtained and presented in Figure 5.3. It shows that when sampling

uncertainty increases, more sample sizes are required if the modelling efforts are limited. The

result of this is also reflected in Fig. 5.4, which shows an increasing M&V cost as the required

sample sizes increase, and the model accuracies also increase to compensate for the increased

sampling uncertainty.
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Figure 5.1: CV(RMSE) when sampling uncertainties change
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Figure 5.2: M&V cost when sampling uncertainties change

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

44

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 5 Results

0

10

20

30

40

50

60

70

0.5 CV_Ref 0.8 CV_Ref 0.9 CV_Ref CV_Ref 1.1 CV_Ref 1.2 CV_Ref 1.5 CV_Ref

S
a

m
p

le
 s

iz
e

 

Group I Group II

Figure 5.3: Sample size when CV(RMSE) changes.
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Figure 5.4: M&V cost when CV(RMSE) changes.
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Chapter 5 Results

5.6 DISCUSSION OF THE SIMULATION RESULTS

Varying the sample CV for the same sample sizes causes the sampling uncertainty to also

vary. To mitigate an increase in uncertainty caused by increasing the sampling CV, the

modelling uncertainty has to drop. This means lower CV(RSME) values are proposed by

the algorithm for prospective baseline models. When the sampling CV decreases, the sam-

pling uncertainty also decreases, which means that the same accuracy criteria can be met

by employing less accurate models. To satisfy this scenario the algorithm proposes higher

CV(RMSE) values for the respective groups of retrofits. Because mitigating modelling uncer-

tainty contributes significantly to M&V cost, employing less accurate models while meeting

the accuracy constraints lowers the overall M&V cost.

When the required modelling accuracy is constrained, only the sampling accuracy can be

changed. In this instance the simulations show that as the sampling uncertainty increases,

more samples are needed to meet the overall M&V accuracy criteria. The reverse is true

as the sampling uncertainty decreases; less samples are needed to meet the overall M&V

uncertainty requirements for the same modelling accuracy.

From the simulation results, it is clear that a trade-off is possible between the modelling

accuracy, and the sampling accuracy. The proposed optimisation model is able to provide

the M&V practitioner the choice of having a more accurate baseline model with fewer sample

sizes or a less accurate baseline model with greater sample sizes to achieve the same M&V

accuracy requirements.

5.7 CHAPTER SUMMARY

The results of the optimisation of the M&V cost minimisation problem using the traffic

light retrofit project as a case study show that CV(RMSE) values of 3.46% and 10.58% are

needed for Group I and Group II respectively. They also show that sample sizes of 28 and

22 are required for the two groups in order to meet the 90/10 criteria. By comparing those

results with the partially optimal results obtained by using optimal modelling with non-

optimal sample sizes shows that optimal solutions reduce the sampling cost by 55% and the

overall M&V cost by 14%. Simulations have been performed by varying the sampling CV

of both groups of retrofits for fixed sample sizes, and fixed CV(RMSE) values respectively.
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Chapter 5 Results

They show that for limited sampling efforts, more accurate modelling is required to meet the

accuracy criteria (90/10 in this case), and that with limited modelling efforts, more samples

are required to meet the same criteria. These results show that it is possible to have a trade-

off between modelling and sampling uncertainties for particular M&V projects. This offers

the M&V practitioner flexibility in designing cost-effective M&V plans that either have more

modelling efforts or more sampling efforts.
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CHAPTER 6

CONCLUSION

A cost-effective approach to handling both sampling, and modelling uncertainties in M&V

has been developed. By developing a cost minimisation problem that takes into account the

M&V modelling cost, and the cost of sampling, it has been shown that it is possible to have

a trade-off between modelling accuracy, and sampling accuracy when either the modelling or

sampling efforts are limited.

To illustrate the effectiveness of the developed model, an optimal M&V modelling, and sam-

pling strategy has been designed for a traffic intersection lamp retrofit project. In addition,

partially optimal M&V plans designed with optimal sampling but non-optimal modelling so-

lutions, or with optimal modelling but non-optimal sampling solutions are employed as the

benchmark. Comparisons between the optimal and non-optimal solutions show advantageous

cost savings performance in the execution of sampling, and modelling activities for the case

study. More precisely, the optimal solutions reduce the sampling cost by 55%, and the to-

tal M&V cost by 14% against the solutions obtained by optimal modelling but non-optimal

sampling solutions.

A simulation analysis that evaluates the effect of sample CV, and modelling accuracy was

carried out to show the applicability, and flexibility of the proposed model for the cost-effective

design of similar traffic light projects. The simulation results show that the proposed model

is able to offer flexible trade-offs between between the modelling and sampling uncertainties,

namely; using more accurate baseline models, and fewer sample sizes or less accurate baseline

models but greater sample sizes to accommodate different practical needs in executing M&V

projects with different characteristics.
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Chapter 6 Conclusion

The simulations are done for the 90/10 criteria but it is possible to apply this approach

to other popular M&V uncertainty criteria such as the 80% confidence and 20% precision

criteria. And it is shown that a higher sampling CV, that leads to poor sampling accuracy

will require more stringent modelling in a EE retrofit project, which leads to better modelling

accuracy, and achieves the required M&V accuracy criteria.

Due to all the above, it has been shown that it is possible to apply this approach to other

M&V projects. Specifically projects where the EE measures can be grouped into sub-groups of

homogenous energy consumption. The cost handling approach can be used in the planning

phase of M&V projects to allow flexibility in decision making about M&V cost. Possible

decisions that can be made are whether to focus on more rigorous modelling or applying

greater sampling.

6.1 RECOMMENDATIONS

The work done in this thesis focuses on modelling and sampling uncertainties in M&V. This

is done because it is assumed measurement uncertainty can be ignored due to the low cost of

measurement equipment compared to the cost of modelling, and the high precision of existing

measurement equipment. However, to gain more control on the M&V process, it is possible

to include measurement uncertainty in future work.

Another recommendation is that the algorithm and models developed in this masters thesis

should be further developed into a user-friendly software tool to assist M&V practitioners

and professionals in giving a more accurate indication of M&V cost to project developers

and other clients. In South Africa, this is particularly relevant to the Integrated Demand

Management (IDM) department at Eskom for its EEDSM programs. This potential tool

would also be useful for the 12I and 12L tax incentive program by helping M&V teams bring

down M&V cost thus further improving the financial feasibility of EE projects.
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APPENDIX A

MATLAB CODE FOR THE OPTIMISATION

A.1 OBJECTIVE FUNCTION

1 %24/04/2013

2 %M&V Cost Object ive func t i on

3 f unc t i on y = obj (x , a1 , a2 , b1 , b2 )

4

5 %y =251937.∗ exp (−0.042 .∗( x (1 ) . /100 ) ) + 251937.∗ exp

(−0.042 .∗( x (2 ) . /100 ) ) + ( a1+b1 ) ∗x (3 )+(a2+b2 ) .∗ x (4 ) ;

6 %y =150000.∗ exp ( −0 .042 .∗ (10 .∗ x (1 ) . /100 ) ) + 150000.∗ exp

( −0 .042 .∗ (10 .∗ x (2 ) . /100 ) ) + ( a1+b1 ) ∗x (3 )+(a2+b2 ) .∗ x (4 )

;

7 y =(251937.∗ exp (−0.042 .∗( x (1 ) ) ) + 251937.∗ exp (−0.042 .∗( x

(2 ) ) ) + ( a1+b1 ) ∗x (3 )+(a2+b2 ) .∗ x (4 ) ) / 0 . 9 5 ;

8 %y =251937.∗ exp (−0.042 .∗( x (1 ) ) ) + 251937.∗ exp (−0.042 .∗( x

(2 ) ) ) + ( a1+b1 ) ∗x (3 )+(a2+b2 ) .∗ x (4 ) ;

9 %y =503875.∗ exp (−0.042 .∗( x (1 ) . /100 ) ) + 503875.∗ exp

(−0.042 .∗( x (2 ) . /100 ) ) + ( a1+b1 ) ∗x (3 )+(a2+b2 ) .∗ x (4 ) ;

10 %

11 end
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Appendix A MATLAB CODE FOR THE OPTIMISATION

A.2 CONSTRAINT

1 %29/04/2014

2 %con s t r a i n t s f o r " p ro j e c tCos t " The c on s t r a i n t s take in to account

the

3 %ov e r a l l c on f id ence and p r e c i s i o n

4 f unc t i on [ c , ceq ] = cons (x ,N1 ,N2 , E1 , E2 , cv1 , cv2 )

5

6 S1=cv1 .∗E1 ;

7 S2=cv2 .∗E2 ;

8 M1=(x (1 ) /100) .∗E1 ;

9 M2=(x (2 ) /100) .∗E2 ;

10

11 E=(N1.∗E1+N2.∗E2) . / (N1+N2) ;

12

13

14 se=sq r t ( S1 . ^ 2 . / x (3 ) .∗N1.^2+S2 . ^ 2 . / x (4 ) .∗N2.^2+M1.^2 .∗N1.^2+M2.^2 .∗

N2.^2 ) /(N1+N2) ;

15

16 ceq=[

17

18 %x (1) −3.4579;

19 %x (2) −10.5321;

20 %x (3) −28;

21 %x (4) −22;

22 ] ;

23

24 c=[

25 1 . 6 45 .∗ se −0.1 .∗E;

26 ] ;

27

28 end
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Appendix A MATLAB CODE FOR THE OPTIMISATION

A.3 SOLUTION

1 %24/04/2014

2 %opt imiza t i on o f mode l l ing and sampling

3 %%I n i t i a l va lue s

4 c l c ;

5 c l e a r ;

6 c l o s e a l l ;

7

8

9 N1=1320;

10 N2=880;

11

12 % % N1=2500;

13 % % N2=500;

14

15 cv1= 0 . 2 ;

16 cv2= 0 . 5 ;

17

18 %cv1= 0 . 2 0 ∗ 1 . 5 ;

19 %cv2= 0 . 5 0 ∗ 1 . 5 ;

20

21 E1=1.91; %kW

22 E2=1.415; %kW

23

24 % E1=2.91; %kW

25 % E2=1.415; %kW

26

27 % E1=0.45; %kW

28 % E2=1.415; %kW

29

30

31 a1 =500; %value per meter
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Appendix A MATLAB CODE FOR THE OPTIMISATION

32 a2 = 1500 ;

33

34 b1 = 195 ; %i n s t a l l a t i o n co s t

35 b2 = 320 ;

36

37 lb = [ 0 ; 0 ; 0 ; 0 ; ] ;

38 ub=[100;100;+ i n f ;+ i n f ; ] ;

39

40 %x0 : cvr1 , cvr2 , n1 , n2

41 %x0 = [ 0 . 3 1 5 6 ; 0 . 0 0 1 ; 1 . 8 3 8 7 ; 0 . 3 7 3 4 ; ] ;

42

43 x0 = [ 3 5 ; 1 0 0 ; 5 0 ; 6 0 ; ] ;

44 % %{

45 %fmincon

46 opt ions = opt imset ( ’ Algorithm ’ , ’ i n t e r i o r−po int ’ , ’ Tolcon ’ ,1 e−45, ’

t o l f un ’ ,1 e−45, ’ Tolx ’ ,1 e−45, ’ Hess ian ’ , { ’ l b f g s ’ ,20} , ’MaxFunEvals ’

,5000 , ’ MaxIter ’ ,5000) ;

47

48 x= fmincon (@(x ) obj (x , a1 , a2 , b1 , b2 ) , x0 , [ ] , [ ] , [ ] , [ ] , lb , ub ,@(x ) cons (x ,

N1 ,N2 , E1 , E2 , cv1 , cv2 ) , opt i ons )

49 %}

50

51 %{

52 %ga

53 opt ions = gaoptimset ( ’ Tolcon ’ ,1 e−45, ’ t o l f un ’ ,1 e−45, ’ Popu lat ionS ize ’

,500) ;

54 x = ga (@(x ) obj (x , cv1 , a1 , a2 , b1 , b2 ,N1 , cv2 ,N2) , 6 , [ ] , [ ] , [ ] , [ ] , lb , ub ,@(x

) cons (x ,N1 , E1 , cv1 ,N2 , E2 , cv2 ) , opt i ons )

55 %}

56

57 CVR1 = x (1)

58 CVR2 = x (2)

59 s1=c e i l ( x (3 ) )
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Appendix A MATLAB CODE FOR THE OPTIMISATION

60 s2=c e i l ( x (4 ) )

61

62 TotalSamples = s1 + s2 ;

63 %%ca l c u l a t i n g the s i z e o f the samples

64

65 %%ca l c u l a t i n g the o v e r a l l c o s t

66

67

68

69 s c o s t 1 = ( a1+b1 ) .∗ s1 ;

70 s c o s t 2 = ( a2+b2 ) .∗ s2 ;

71 Sample_cost = sco s t 1 + sco s t 2 ;

72

73 mcost1 = 251937.∗ exp (−0.042 .∗( x (1 ) ) ) ;

74 mcost2 = 251937.∗ exp (−0.042 .∗( x (2 ) ) ) ;

75 mod_cost_tot = mcost1 + mcost2 ;

76

77 tot_cost_group1 = sco s t 1 + mcost1 %t o t a l co s t group 1

78 tot_cost_group2 = sco s t 2 + mcost2 %t o t a l co s t group 2

79 tot_cost = tot_cost_group1 + tot_cost_group2 ;

80

81 %ca l c u l a t i n g o v e r a l l CVRMSE

82 E=(N1.∗E1+N2.∗E2) . / (N1+N2) ;

83

84 Mod1 = x (1) /100 .∗E1 ; %model l ing unce r ta in ty group 1

85 Mod2 = x (2) /100 .∗E2 ; %model l ing unce r ta in ty group 2

86 modUn = sq r t (N1.^2∗Mod1.^2 + N2.^2∗Mod2.^2 ) . / (N1+N2) ;

87

88 Sa1=cv1 .∗E1 ./ sq r t ( x (3 ) ) ; %sampling unce r ta in ty group 1

89 Sa2=cv2 .∗E2 ./ sq r t ( x (4 ) ) ; %sampling unce r ta in ty group 2

90 samUn = sqr t (N1.^2∗ Sa1 .^2 + N2.^2∗ Sa2 .^2 ) . / (N1+N2) ;

91

92 Usg1 =sq r t (Mod1^2 + Sa1^2) ; %combined unce r ta in ty f o r group 1
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Appendix A MATLAB CODE FOR THE OPTIMISATION

93 Usg2 =sq r t (Mod2^2 + Sa2^2) ; %combined unce r ta in ty f o r group 2

94

95 U = sqr t (N1.^2∗Usg1 .^2 + N2.^2∗Usg2 .^2 ) . / (N1+N2) ;

96

97 Usm = sqr t (modUn^2 + samUn^2) ;

98

99 CVRMSE = (modUn./E) ∗100 ;

100

101 Combined_CVRMSE = sqr t (N1.^2∗CVR1^2 + N2.^2∗CVR2^2) . / (N1+N2) ;

102 %%added to c a l c u l a t e o v e r a l l standard e r r o r
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Appendix A MATLAB CODE FOR THE OPTIMISATION

A.4 SAMPLE SIZE SIMULATIONS CONSTRAINT

1 %29/04/2014

2 %con s t r a i n t s f o r " p ro j e c tCos t " The c on s t r a i n t s take in to account

the

3 %ov e r a l l c on f id ence and p r e c i s i o n

4 f unc t i on [ c , ceq ] = cons (x ,N1 ,N2 , E1 , E2 , cv1 , cv2 )

5

6 S1=cv1 .∗E1 ;

7 S2=cv2 .∗E2 ;

8 M1=(x (1 ) /100) .∗E1 ;

9 M2=(x (2 ) /100) .∗E2 ;

10

11 E=(N1.∗E1+N2.∗E2) . / (N1+N2) ;

12

13

14 se=sq r t ( S1 . ^ 2 . / x (3 ) .∗N1.^2+S2 . ^ 2 . / x (4 ) .∗N2.^2+M1.^2 .∗N1.^2+M2.^2 .∗

N2.^2 ) /(N1+N2) ;

15

16 ceq=[

17

18 %x (1) −3.4579;

19 %x (2) −10.5321;

20 x (3 ) −28;

21 x (4 ) −22;

22 ] ;

23

24 c=[

25 1 . 6 45 .∗ se −0.1 .∗E;

26 ] ;

27

28 end
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Appendix A MATLAB CODE FOR THE OPTIMISATION

A.5 CV(RMSE) SIMULATION CONSTRAINT

1 %29/04/2014

2 %con s t r a i n t s f o r " p ro j e c tCos t " The c on s t r a i n t s take in to account

the

3 %ov e r a l l c on f id ence and p r e c i s i o n

4 f unc t i on [ c , ceq ] = cons (x ,N1 ,N2 , E1 , E2 , cv1 , cv2 )

5

6 S1=cv1 .∗E1 ;

7 S2=cv2 .∗E2 ;

8 M1=(x (1 ) /100) .∗E1 ;

9 M2=(x (2 ) /100) .∗E2 ;

10

11 E=(N1.∗E1+N2.∗E2) . / (N1+N2) ;

12

13

14 se=sq r t ( S1 . ^ 2 . / x (3 ) .∗N1.^2+S2 . ^ 2 . / x (4 ) .∗N2.^2+M1.^2 .∗N1.^2+M2.^2 .∗

N2.^2 ) /(N1+N2) ;

15

16 ceq=[

17

18 x (1 ) −3.4579;

19 x (2 ) −10.5321;

20 %x (3) −28;

21 %x (4) −22;

22 ] ;

23

24 c=[

25 1 . 6 45 .∗ se −0.1 .∗E;

26 ] ;

27

28 end
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