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The energy management of today’s power system is of utmost importance because of the in-

creasing complexity of today’s power system operations. One of the core energy management

functions is determining the optimal dispatch of conventional generators whilst minimizing

or maximizing some pre-determined objective function which can either be minimizing costs,

minimizing emissions or maximizing profit. These problems have been explicitly defined as

the Dynamic Economic Emissions Dispatch (DEED) which is concerned with determining

the optimal dispatch of generators whilst minimizing costs and minimizing emissions and the

Profit Based Dynamic Economic Emissions Dispatch (PBDEED) which determines the op-

timal dispatch of generators whilst minimizing costs, emissions and maximizing profit.

In this thesis, both the DEED and PBDEED are integrated with Demand Response (DR)

programs. Integrating DR programs into the DEED and PBDEED problem instead of con-

sidering both problems independently is meant to introduce optimality into both the supply

side and demand side of the power system. The DR programs used in this work are a Game
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Theory DR (GTDR) program which is an Incentive Based DR (IB-DR) program and a Time

of Use DR (TOU-DR)program which is a Price Based DR (PB-DR) program.

A Model Predictive Control (MPC) strategy is further deployed to solve the GTDR-DEED

and GTDR-PBDEED models and obtained results show that for GTDR-DEED, MPC yields

higher customer energy curtailment when compared to the open loop controller whilst ob-

tained results also show that MPC shows better robustness against uncertainties and dis-

turbances.

Finally, the GTDR program is integrated with a microgrid which is powered by conventional

generators and Renewable Energy Sources (RES). The microgrid is in the grid connected

mode and power can be traded between the main grid and the microgrid. Again, the results

obtained from the optimal energy management of the microgrid collaborate results obtained

in the main grid and show that integrating demand response programs into the energy man-

agement problem are mutually beneficial to utility and consumers alike and can bring about

desired demand reduction in the power system.
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OPSOMMING

OPTIMALE ENERGIEBESTUUR VAN KRAGSTELSELS EN
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Nnamdi Ikechi Nwulu

Promotor(s): Professor Xiaohua Xia

Departement: Elektriese, Elektroniese en Rekenaar-Ingenieurswese
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Sleutelwoorde: dinamiese ekonomiese emissieversending, aanvraagterugvoer, spel-

teorie, prysgebaseerde dinamiese ekonomiese emissieversending,

model van voorspellende beheer, mikronetwerk, multidoelwit-
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Die energiebestuur van hedendaagse kragstelsels is van die uiterste belang as gevolg van

die toenemende kompleksiteit van eietydse kragstelselbedrywighede. Een van die wesenlike

energiebestuurfunksies is die bepaling van die optimale versending van konvensionele kragop-

wekkers, terwyl een of ander voorafbepaalde funksie maksimeer of minimeer word; naamlik

die vermindering van koste of emissies of die verhoging van wins. Hierdie probleme is uitdruk-

lik gedefinieer as dinamiese ekonomiese emissieversending (DEED), wat betrokke is by die

bepaling van die optimale versending van kragopwekkers terwyl koste en emissies minimeer

word, en winsgebaseerde dinamiese ekonomiese emissieversending (PBDEED), wat die op-

timale versending van kragopwekkers bepaal terwyl dit koste en emissies minimeer en wins

maksimeer.

In hierdie tesis is sowel die DEED as die PBDEED geïntegreer met die aanvraagterugvoer-

programme (DR-programme). Die integrasie van DR-programme in die DEED-en PBDEED-
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probleem in plaas daarvan om beide probleme onafhanklik te oorweeg, is bedoel om op-

timaliteit te bewerkstellig in sowel die aanbod-as aanvraagkant van die kragstelsel. Die

DR-programme wat hier gebruik word, is ’n aansporinggebaseerde (IB-DR) spelteorie- DR-

program (GTDR) en ’n prysgebaseerde, tyd-van-gebruik- DR-program (TOU-DR).

’n Strategie vir ’n model van voorspellendebeheer (MPC) is verder ontplooi om die GTDR-

DEED en GTDR-PBDEED modelle op te los en die resultate wat verkry is, toon dat vir

GTDRDEED, MPC hoër kliënt-energiebeperking lewer in vergelyking met die oopbaankon-

troleerder, terwyl MPC beter robuustheid teen onsekerhede en versteurings toon.

Ten slotte is die GTDR-program geïntegreer met ’n mikronetwerk wat aangedryf word deur

konvensionele kragopwekkers en hernubare energiebronne (RES). Die mikronetwerk is aan die

netwerk verbind en krag kan verhandel word tussen die hoofnetwerk en die mikronetwerk.

Die resultate wat verkry is uit die optimale energiebestuur van die mikronetwerk bevestig

weer eens die resultate wat in die hoofnetwerk verkry is en toon dat die integrasie van die

aanvraagreaksieprogramme in die energiebestuurprobleem wedersyds voordelig is vir sowel

die stelsel as verbruikers en dus die gewenste aanvraagvermindering in die kragstelsel kan

teweegbring.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

The increasing complexity of today’s power system and the vast geographical area most

power systems span have placed an enormous burden on today’s power system planners and

operators. Also power systems operators and planners at all times must always satisfy cus-

tomers load demand and ensure access to uninterrupted power supply. This has birthed the

energy management problem of power systems. This problem is basically concerned with the

optimal operation and control of the power system. Typically power system operators are

either minimizing or maximizing some predetermined objective function (minimizing cost,

minimizing emissions, maximizing power system reliability, etc) and determining the optimal

commitment and dispatch of thermal generators in the power system considering the load

demand constraints and other practical constraints inherent in the power system. One of

the most common energy management problems and the most oft researched is the Dynamic

Economic Emissions Dispatch (DEED) problem. It’s initial variant is termed Static Eco-

nomic Dispatch (SED) [4]. SED is concerned with minimizing fuel costs and determining the

optimal output of thermal generators to satisfy a particular load demand at a specific time

instant. The SED later metamorphosed into the Dynamic Economic Dispatch (DED). DED

is concerned with determining the optimal output of the committed thermal generators to

satisfy demand at a pre-determined scheduling interval with minimal operating costs amongst

other constraints. Typically, DED is handled with a division of the total time horizon into

smaller time intervals (usually 1 h), solving the SED problem at the smaller time intervals

and enforcing ramp rate constraints between consecutive intervals. As general environmental

awareness increased, researchers became interested in ways of reducing emission and environ-
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Chapter 1 Introduction

mental effects in power systems. Thus, increasing environmental awareness led researchers to

consider how to handle emissions [4] and this led to the further evolvement of the DED prob-

lem into the DEED problem. The DEED problem seeks to minimize fuel costs and emissions

of thermal generators subject to the following constraints: load, ramp rate, maximum and

minimum capacity constraints amongst others. This is essentially a mathematical problem

with the objectives of minimizing both fuel costs and emissions. This optimization challenge

is efficiently handled using the goal attainment method via the transformation of the dual

objectives into one objective function [8] or by multi-objective optimization techniques.

Recently the DEED problem has evolved due to the advent of deregulation and liberalization

of the power industry. This has expanded the objective of the generator operators from

fuel cost and emissions minimization to include profit maximization. This new set up is

known as Price Based Dynamic Economic Dispatch (PBDEED). There have been three major

research thrusts in the literature concerning DEED/PBDEED. These research thrusts have

been pushed by recent advances in the scientific community. The first major research thrust

deals with how to solve the resulting DEED/PBDEED problems. This stems from the recent

advances in computational solution methods and faster computational processing times. Thus

the literature abounds with a host of novel mathematical approaches and meta-heuristic

techniques that have been proposed in the literature to handle this problem. The second

is the integration of Renewable Energy (RE) sources into the DEED formulations like in

[19] and [18]. This research direction stems from the drive by most nations of the world

to gradually wean themselves of fossil fired generators and embrace renewable energy based

sources. Most of these research works look for ways of handling the intermittent nature of

RES whilst simultaneously incorporating it into the DEED problem. Both of these research

directions are essentially concerned with introducing optimality at the supply end of the

power system and basically seek to ensure that the generators at the supply side always

satisfy the load demand at the customer side. They do not seek to curtail the customers load

demand. Thus, the third research direction concerns integrating Demand Response (DR)

programs into the DEED problem. In this thesis, consideration is given to each of the three

research thrusts.

In [44, 30] the definition of demand response is provided thus: "a change in electric usage

by end-use customers from their normal consumption patterns in response to changes in the

price of electricity over time, or to incentive payments designed to induce lower electricity use
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Chapter 1 Introduction

at times of high wholesale market prices or when system reliability is jeopardized". Generally,

demand response programs are broadly classified into two: Price Based Demand Response

(PB-DR) [32] and Incentive Based Demand Response (IB-DR) [33]. In PB-DR, the electricity

tariffs vary with time, i.e., different electricity tariffs for various peak times. The aim is

to encourage consumers to curtail their energy use to take advantage of favourable prices.

Examples of PB-DR include Time of Use Rates (TOU), Real Time Pricing (RTP), Critical

Peak Pricing (CPP), Extreme Day Pricing (EDP), and Extreme Day-Critical Peak Pricing

(ED-CPP). In IB-DR, incentives are simply offered to consumers to reduce or curtail their

electricity use when the power system is stressed. The incentives can be in form of rebates

or lower electricity tariffs [34]. It should be noted that unlike PB-DR, consumers can be

penalized if their load is not curtailed when the system is stressed. Examples of IB-DR

include Direct Load Control (DLC), Interruptible Services (IS), Emergency Demand Response

Programs (EDRP), Capacity Market Programs (CMP), Demand Bidding/Buyback Programs

(DB) and Ancillary Market Services (AMS). Demand response can be implemented in either

regulated and deregulated set-ups. In both set-ups, demand response programs can lead to

reduction in harmful emissions and operational costs which brings about environmental and

power system benefits [31]. Demand response programs also reduce wholesale market prices

[39]. In IB-DR, the incentive is either monetary or is packaged as cheaper electricity tariffs

[36] and in order to guarantee effective customer participation, the offered incentive should

be attractive in order to spur participation [37]. Unlike the other two research thrusts of

DEED that are solely concerned with the supply end of the power system, integrating DR

into the DEED problem introduces optimality at the supply and demand side of the power

system. To this end, it is this research thrust that is primarily investigated in this thesis. This

thesis is concerned with designing optimal practical frameworks that integrate DR programs

into the DEED and PBDEED problem. Other research thrusts, are however considered.

Whilst integrating DEED and DR, consideration is also given to designing a framework for

the integration of RES into a grid connected microgrid and the MPC approach to solving

integrated DEED and DR problems is considered.

1.2 RESEARCH OBJECTIVES

The thesis primary intent is to jointly consider DR and DEED and thus introduce optimality

at the demand and supply side of today’s power system. This is motivated by the belief
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that true and optimal power systems operations are obtained by a joint and simultaneous

consideration of both DR and DEED as opposed to individual considerations. Thus DEED is

integrated with both the Price Based DR (PBDR) and Incentive Based DR (IBDR) which are

the two types of DR programs. A new variant of DEED which is the PBDEED spurned by

the advances in the deregulation of the power industry is also integrated with the IBDR. The

resulting model also incorporates practical constraints both from the utility and consumer

side. Secondly, in order to to cope with disturbances or modelling uncertainties inherent

in mathematical modelling , MPC is applied to solve the developed IBDR integrated with

DEED and PBDEED. Finally the last objective is to incorporate an IBDR program into

the energy management problem for a grid connected hybrid microgrid. This is necessary

because of the intermittent nature of RES.

1.3 RESEARCH CONTRIBUTION

This thesis has a number of contributions to the literature and they are itemized as fol-

lows:

• The development of an extended Game Theory Demand Response (GTDR) mathem-

atical model known as IBDR for several customers in more than one scheduling time

slot. Furthermore budgetary constraints and maximum customer curtailable power

constraints are also built into the GTDR model.

• The combination of the GTDR mathematical model and the DEED mathematical prob-

lem leading to the GTDR-DEED model.

• The combination of the GTDR mathematical model and the PBDEED mathematical

problem leading to the GTDR-PBDEED model.

• The utilization of MPC on the developed GTDR-DEED and GTDR-PBDEED models.

• The incorporation of IBDR into a grid connected microgrid consisting of solar, wind

and conventional energy sources.

• The development of a Time Of Use Demand Response (TOUDR) model which is a

PBDR program with three different Price Elasticity Matrices (PEM) for different classes
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of customer loads. These PEM are integrated into the DEED problem via the power

balance constraint and an addition of a DR cost term into the DEED objective function.

Furthermore, a customer scheduling model is introduced which determines the optimal

schedule for the three classes of customer loads in light of the utility price and energy

levels. Finally, an interactive control strategy is proposed for effective coordination

between the utility and the customer side and obtaining mutually acceptable prices

and energy levels.

1.4 DETAILED OUTLINE OF STUDY

This thesis is organized as follows:

1.4.1 Chapter One

In this chapter, the thesis is introduced. The chapter details the background and motivation

for the thesis topic. Furthermore, the contributions of the thesis and the complete thesis

layout is presented.

1.4.2 Chapter Two

This chapter provides an exhaustive literature review on DEED and PBDEED. The chapter

also discusses both types of DR programs. A review of the MPC solution methodology and its

practical applications in energy systems is also provided. Finally this chapter also considers

hybrid microgrids and recent advances in this realm.

1.4.3 Chapter Three

In this Chapter, the GTDR-DEED model is developed and presented. It is also integrated

into the DEED problem and solved with practical scenarios.

1.4.4 Chapter Four

In this Chapter, the GTDR-PBDEED model is developed and presented. MPC is utilized to

solve both the developed GTDR-DEED and GTDR-PBDEED models.
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1.4.5 Chapter Five

The GTDR program is integrated into the energy management problem for a grid connected

hybrid microgrid in this chapter.

1.4.6 Chapter Six

In this chapter, the TOUDR program modelled using PEM is presented. It is integrated into

the DEED problem and a customer scheduling model is also presented in this chapter. An in-

teractive control framework is proposed for effective coordination between both mathematical

models.

1.4.7 Chapter Seven

This chapter provides a conclusion of work done in prior chapters. Furthermore, future

research directions are provided.
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CHAPTER 2

LITERATURE STUDY

2.1 CHAPTER OVERVIEW

This chapter provides an exhaustive literature review on DEED and PBDEED. The chapter

also discusses both types of DR programs. A review of the MPC solution methodology and its

practical applications in energy systems is also provided. Finally this chapter also considers

hybrid microgrids and recent advances in this realm.

2.2 DYNAMIC ECONOMIC EMISSIONS DISPATCH

The DEED problem is a variant of an earlier optimization problem known as dynamic eco-

nomic dispatch (DED). The motivation behind DED is to determine the optimal power to

be produced from generators over a specific time interval with minimal operational expenses.

The thermal generators ought to supply the electric load and not violate some other oper-

ational constraints. [45, 46, 28, 47]. A review of dynamic economic dispatch is provided

in [4]. The emissions of unsafe and hazardous pollutants like SO2, NOx, CO and CO2 by

generators have led to rife outcries for power generating corporations to seek out ways of

eliminating or reducing these pollutants [27] as their continued emission is detrimental to

humans. A number of approaches have evolved to deal with these pollutions. Prominent

approaches include the adoption of pollutant cleaning, fuel switching i.e. using low-emission

fuels, substitution of old fuel burners with newer burners and finally the practise of emis-

sion dispatching [28]. Emission dispatching has become the approach of choice due to it’s

minimal capital outlay and execution simplicity [9, 48]. Emission dispatching can be merged

into the DED problem using three approaches. The first approach has the minimization of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 2 Literature study

emissions in lieu of fuel costs as it’s objective. It is known as pure dynamic emission dispatch

(PDED) [1]. An alternative method and by far the most popular has as it’s objective: the

concurrent minimization of fuel cost and emissions amidst some operational constraints and

is known as dynamic economic emission dispatch (DEED) [2, 3]. The final approach min-

imizes only fuel cost whilst the emissions serve as a constraint and a value which denotes

the maximum permissible emissions is defined. This optimization problem has been termed

emission constrained dynamic economic dispatch (ECDED)[49].

DEED works by concurrently minimizing fuel costs and gaseous emissions and obtains the

optimal generation schedule for a set of committed generating units over a scheduling horizon.

Simply put, the aim of DEED is to determine the optimal output of thermal generators under

several practical constraints [1]. Some of the often considered constraints include: power

balance constraints [2], ramp rate constraints, generator output limit constraints [3], line flow

limit constraints, spinning reserve constraints, etc [4]. The problem has received considerable

interest by engineers and scientists alike due to increasing environmental consciousness and

the need to curtail harmful emissions from thermal generators. In recent years, as many

nations of the world have shifted from a regulated power system and embraced deregulation,

this has given rise to the development of a new variant of the DEED problem. In this new

variant, maximizing profit has replaced the former objective of minimizing cost. This has

given birth to the Profit Based Dynamic Economic Emission Dispatch (PBDEED). PBDEED

has dual objectives: the minimization of harmful emissions and profit maximization of thermal

generators under the same or similar constraints as the DEED problem [5]. The DEED or

PBDEED problem is solved depending on if it is in a regulated or deregulated climate.

DEED and DED can be solved using various algorithms [9]. These algorithms can be classed

as either conventional i.e. employing mathematical optimization algorithms or can be classed

as meta-heuristic i.e. employing artificial intelligence algorithms.

2.2.1 Solving DEED using conventional mathematical optimization al-

gorithms

Prominent instances of the use of mathematical optimization algorithms to solve DEED in-

clude [76] where quadratic constrained programming and mixed integer quadratic program-

ming were used, [77] where benders decomposition was used. Other examples include [26]
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where Mixed Integer Non Linear Programming (MINLP) was used to obtain the optimal

dispatch schedule for a CHP plant and in [25] where mixed integer, linear and non-linear

programming methods were utilized. Conventional mathematical optimization algorithms

have a number of advantages over meta-heuristic algorithms. Firstly, they are often able

to guarantee optimal solutions. Secondly, they have short computational processing times.

Finally they do not require the explicit definition of domain parameters [4]. They have the

disadvantage of being only able to solve convex cost functions and sometimes yield solutions

with local optima [8].

2.2.2 Solving DEED using meta-heuristic algorithms

Prominent instances of the use of meta-heuristic algorithms are [78] where artificial physical

optimization algorithm was utilized, [79] where artificial bee colony optimization was used,

[80] where gravitational search algorithm was utilized, [81] where harmony search algorithm

was utilized, [82] where biogeography based optimization was used and [83] where spiral op-

timization algorithm was utilized. Other examples include Cuckoo Search Algorithm (CSA)

[24], Teaching Learning Based Optimization (TLBO)[23], Backtracking Search Algorithm

(BSA) [22], Chaotic Self Adaptive Differential Harmony Search (CSADHS) [16], Nondomin-

ated Sorting Genetic Algorithm-II (NSGA-II) [17], Hybrid Fire Fly Algorithm (FFA) [18],

Harmony Search (HS) [20] amongst others. Their major advantage lies in their capacity to

solve concave cost functions. Their disadvantage is the need for explicit definition of domain

parameters and extended computational processing times.

2.3 DEMAND RESPONSE

The main purpose behind Demand Side Management is to reduce customer electricity use or

alter customer load magnitude and pattern, thereby improving power system stability [42].

This is done either by: "peak clipping, valley filling, load shifting, strategic conservation,

and strategic load growth" [43]. These programs have been very successful and have been in

widespread use by electric utilities all over the world. In recent years, as the power system

has increased in complexity, utilities have embraced Demand Response (DR) programs.

Demand response which is a major DSM strategy is defined as a modification or adjust-

ment in electricity consumption by consumers from their regular consumption levels. This
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modification can either be due to electricity price changes or to incentives designed to curb

consumption at times of power system stress or unreliable power system operation [44, 38]. In

monopolistic markets, demand response leads to increased reliability and efficiency of power

system operations. It also leads to a decline in emissions of harmful gases and operational

expenses. In deregulated markets, all the advantages in monopolistic markets are obtainable.

An added advantage of DR schemes in deregulated markets is a fall in the wholesale electri-

city market price [44, 39]. A cardinal rule adopted in the design of DR schemes by power

system operators or ISO’s is that benefit to the consumer in the form of reduced tariffs or

cash payments should be greater than the consumer’s power interruption cost [37]. Ideally

the customer also determines the amount of power they are able to willingly curb or curtail

[34].

In incentive based DR programs, incentives are simply offered to consumers to reduce or

curtail their electricity use when the power system is stressed. The incentives can be in

form of rebates or lower electricity tariffs [31, 39]. In price based DR programs there is a

time variation of electricity tariffs. As stated before, this thesis is motivated by the desire

to introduce optimality in the supply and demand side of the power system. Thus PBDR

and IBDR are integrated into DEED and PBDEED. Furthermore Model Predictive Con-

trol (MPC) is applied on the developed models (GTDR-DEED and GTDR-PBDEED) as a

solution methodology. A review of MPC is provided in the next section.

2.4 MODEL PREDICTIVE CONTROL

Solving the GTDR-DEED and GTDR-PBDEED problem only determines open loop con-

trol solutions when viewed from a control systems perspective. The disadvantage of this is

that the model cannot compensate for inaccuracies and disturbances arising from modelling

uncertainties. This is due to the fact that there is no way for the inaccurate system solu-

tions to be fed back to the system and updated to obtain accurate solutions. Closed-loop

systems on the other hand are inherently able to give feedback to the optimization model

[5] and update solutions [9]. Due to the superiority of closed-loop systems over open loop

systems, MPC which is a prominent closed-loop approach is proposed in this thesis and thus

a literature review on MPC is provided. MPC has found wide applications in a number of

engineering applications and has recently been used in power system applications like in [10]
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where MPC was applied to generator maintenance scheduling, [5] and [9] where MPC was

applied to economic dispatch problems, [11] where MPC was applied to hybrid PV, wind,

diesel and battery systems. [12] presents a detailed overview of the MPC methodology. In

view of the successful application of the MPC strategy in power system applications and its

ability to handle disturbances and uncertainties, MPC is proposed in this thesis to solve the

GTDR-DEED and GTDR-PBDEED mathematical problems. MPC is utilized because in

practical applications of GTDR-DEED and GTDR-PBDEED, there might be variations in

system parameters like load demand or the price of energy. This can introduce a whole lot of

uncertainty or disturbance in the system. MPC overcomes the aforementioned problems. It

is envisaged that the proposed MPC approach is able to handle uncertainties and disturbance

well and exhibit convergence and robustness which further makes it extremely suitable for

real time and practical applications. Open loop systems despite their merits are unable to

compensate for inaccuracies and disturbances arising from modelling uncertainties. This is

due to the fact that open loop systems have no feed back mechanisms for inaccurate system

solutions (in the presence or disturbances and inaccuracies) to be fed back to the system

and updated in order to obtain accurate solutions [12]. Closed-loop systems are able to give

feedback and update inaccurate solutions [5]. In GTDR-DEED and GTDR-PBDEED, there

might be variations in system parameters like load demand or the price of energy, thus MPC

is used to solve the GTDR-DEED and GTDR-PBDEED models. The proposed MPC ap-

proach is shown to handle uncertainties and disturbance well and exhibit convergence and

robustness which further makes it extremely suitable for solving the developed models.

2.5 MICROGRIDS

Microgrids as distinct from a major power grid consists of distributed generation units, stor-

age devices and controllable loads sited close to the customer and spanning a limited physical

area [61]. The generation units in micro grids can either be conventional power generators

or renewable energy sources. Examples of renewable energy sources are wind power or solar

power. Conventional power generators can either be thermal generators or diesel generators.

Storage devices in microgrids include batteries, flywheels and pumped storage [61, 63]. Typ-

ically modern microgrid systems can either be operated in the "grid connected" or "islanded"

mode. In the "grid connected" mode, the microgrid interfaces with the main grid, whilst in

the islanded mode, the microgrid is isolated from the main grid when there is a system emer-
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gency and is still able to supply local load. Thus microgrids are also able to ensure localized

power system operation in the event of a blackout or brownout. Advantages of microgrids

include improvement of reliability of electricity supply, sustainability, power quality and lower

electricity costs, transmission and distribution line losses. As stated earlier, the generation

units in micro grids can either be conventional power generators or renewable energy sources.

However, in recent times Renewable Energy Sources (RES) have become preferred for use in

microgrids because of their long term environmental and cost benefits over conventional gen-

eration sources [67]. They are used either singly or in conjunction with other RES. Recently,

the focus of researchers has been on the optimal operation and control of microgrids. This

field of research endeavour is commonly referred as the energy management of microgrids and

involves minimizing or maximizing some predetermined objective function (minimizing cost,

maximizing microgrid reliability, etc) and determining the optimal dispatch (economic dis-

patch (ED)) and commitment (unit commitment (UC)) of the conventional generators, RES

and storage devices. In [64], a model was proposed for a microgrid consisting of a fuel cell,

micro-turbine, battery bank, PV and wind energy sources. The model has as it’s objective

the minimization of the system’s fuel cost and determines the optimal power output from con-

ventional and renewable energy sources. In [66], an optimal control strategy for a microgrid

containing RES is presented. The microgrid operational state is the "islanded mode" and the

objective is to minimize the electricity generation cost and determine the optimal operational

schedule of the microgrid considering the stochastic nature of RES. In yet another work [68],

the objectives are to maximize financial gain and PV energy consumption in interconnected

microgrids which are also grid connected with variable electricity prices. In [75], a microgrid

consisting of wind, PV energy sources with battery storage is considered. The objective is to

maximize the overall economic benefit of the system and determine optimal output of power

sources whilst satisfying load balance constraints. In [70], a microgrid consisting of wind, PV

energy sources with batteries is considered. The microgrid is grid connected and investiga-

tions are carried out under different grid market policies and Particle Swarm Optimization

(PSO) is utilized in solving the obtained mathematical model. In [72], the optimal control

strategy for a hybrid microgrid consisting of PV and diesel power source and a battery storage

system was proposed. There is a stated objective which is to minimize the diesel generat-

ors cost and determine the optimal power output for the power sources under winter and

summer conditions. This work was further expanded and improved in [73] with the inclusion

of wind power sources and the application of Model Predictive Control (MPC) strategy to
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Chapter 2 Literature study

handle variations in demand. Another work is [74] where a switched model predictive control

strategy for a hybrid PV, diesel and battery power system was proposed. The advantage of

the switched MPC over conventional MPC is that it is able to efficiently handle cases when the

battery is not permitted to charge and discharge simultaneously. Other works that deal with

the energy management of microgrids are [61, 62, 69]. However, the aforementioned works

do not incorporate Demand Response (DR) into the optimal energy management problem

of microgrids. Failing to include DR into the energy management problem of micirogrids

can lead to suboptimal operation of the microgrid. This is because the energy management

problem is concerned with the optimal commitment and dispatch of conventional generators,

RES and storage devices at the power system’s supply side whilst DR programs attempt to

provide relief at the power system’s demand side [6]. Inclusion of DR programs would make

for a better and more reliable microgrid as this would ensure optimal operating conditions

at the demand and supply portions of the microgrid [6]. It has been observed that DR pro-

grams lead to reduced microgrid operational cost and improved operations. Furthermore the

addition of DR programs into the microgrid mix provides some degree of grid flexibility and

helps to mitigate the effect of having intermittent RES [7].

A few works have incorporated DR into the energy management problem of microgrids like

[6, 7]. While in [7] DR is incorporated into the microgrid and provides reserve capacity, in

[6], DR is modelled with detailed residential household appliances consumption information

incorporated into a microgrid. The model setup is investigated under a single consumer

and under multiple consumers. Both works have as their objective the minimization of the

microgrid fuel costs. However, there is still the need to investigate and provide a compre-

hensive practical framework for incorporating DR into the energy management problem of a

microgrid in a way that is beneficial to participating DR customers and does not just seek

to minimize microgrid fuel costs. It is imperative that DR programs accurately captures the

customers outage cost and factor these costs in the design of the DR programs to be incor-

porated into the energy management problem of microgrids. This is the primary motivation

for incorporating DR programs into the microgrid energy management problem.

In this thesis we incorporate this incentive based DR program into the microgrid energy

management problem under the grid connected operational mode. It is important we provide

in our model instances for a "grid connected" operational mode where it is imperative for

power transfer involving the main grid and the microgrid. The developed model is able to
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Chapter 2 Literature study

provide grid flexibility and helps to mitigate the effect of having intermittent RES whilst

simultaneously using DR to provide relief to the system. The DR model actively incentivises

customers to participate in the DR program and ensures that their incentive is greater than

the cost of curtailment.

2.6 CHAPTER SUMMARY

In this chapter, a review of the topics considered in this thesis is provided. Thus we introduce

and review the topics of DEED, DR, MPC and microgrids. Furthermore, we briefly detail

research trends concerning these topics and the research gaps that motivate the models

presented in this thesis.
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CHAPTER 3

THE DEED PROBLEM WITH GTDR

PROGRAMS

3.1 CHAPTER OVERVIEW

In this chapter, a GTDR program is combined with the DEED problem. The combined

GTDR-DEED detailed in this chapter has as it’s objectives the minimization of fuel costs

and emissions. The third objective is the maximization of the benefit to the utility. The

combined model presented in this chapter determines the optimal incentive and the optimal

customer curtailable power. The developed GTDR model has an intrinsic requirement that

the customer incentive should be greater than their cost of curtailment and also has to be

financially rewarding for the power utility. To validate the developed mathematical model,

two test systems consisting of industrial customers are utilized and exhaustive comparative

analyses of the obtained results highlight the usefulness of the model. Results from this

chapter have been presented in [8].

3.2 THE DYNAMIC ECONOMIC EMISSION DISPATCH MODEL

As stated earlier, the chief aim of DEED is to minimize fuel costs and harmful emissions

and determine the optimal output of available generators over a scheduling horizon. The

equations depicting DEED are detailed as follows [5]:

min
T∑

t=1

I∑
i=1

Ci(Pi,t), (3.1)
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Chapter 3 The DEED problem with GTDR programs

min
T∑

t=1

I∑
i=1

Ei(Pi,t), (3.2)

with

Ci(Pi,t) = ai + biPi,t + ciP
2
i,t, (3.3)

Ei(Pi,t) = di + eiPi,t + fiP
2
i,t, (3.4)

subject to the following network constraints:

I∑
i=1

(Pi,t) = Dt + losst, (3.5)

Pi,min ≤ Pi,t ≤ Pi,max, (3.6)

−DRi ≤ Pi,t+1 − Pi,t ≤ URi, (3.7)

losst =
I∑

i=1

K∑
k=1

Pi,tBi,kPk,t, (3.8)

where

Pi,t is the power generated from generator i at time t;

Ci is the fuel cost of generator i;

Ei is the emissions cost for generator i;

Dt is the total system demand at time t;

losst is the total system losses at time t;

Pi,min and Pi,max are the minimum and maximum capacity of generator i respectively;

DRi and URi are the maximum ramp down and up rates of generator irespectively;

ai, bi and ci are the fuel cost coefficients of generator i respectively;

ei, fi and gi are the emission cost coefficients of generator i respectively;

Bi,k is the ikth element of the loss coefficient square matrix of size I;

I and T are the number of generators and the dispatch interval respectively.

Equation (3.3) gives the fuel cost function of the thermal generators. This cost function

is typically obtained from "heat run tests" [17]. In these tests, the thermal generator unit

is varied through it’s normal operating limits and measurements of output power and fuel
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Chapter 3 The DEED problem with GTDR programs

consumption costs are obtained. The fuel cost function thus give the fuel costs in $/h of the

thermal generator unit as a function of its output power. This tests also enables the fuel cost

coefficients of individual generator units to be calculated from the measured data. There

are number of different fuel cost functions like the linear cost function [28], piecewise linear

cost function [29], quadratic cost function [8], valve point effect cost function [17]. However,

the quadratic cost is the most prevalent cost function in the literature [4] and is used in this

chapter.

Similarly, equation (3.4) gives the emission function for the thermal generator units. The

emission functions simply provide a mathematical representation of the relationship between

harmful emissions and power produced for a generator. These functions are also obtained

through measured tests like the heat run tests [17]. These tests enable the emission coefficients

to be calculated. The emission functions gives the total emissions in lb/h of a thermal

generator unit as a function of its output power [4]. In this chapter, the quadratic emissions

function is used to represent this relationship [8].

The constraints of the mathematical model are detailed as follows:

• The first constraint (3.5) is termed the power balance constraint. This constraint

compels the total power generated at time t to equal the sum of the power demand

and transmission losses. The transmission losses occur because the power stations are

typically sited away from where the power is needed and there are losses in the course

of the power being transmitted. The most common and widely accepted method for

calculating these losses is by the B-coefficient method which is a method where the

power system loss is represented via a quadratic function of the generators output [1]

and is given in equation (3.8). As stated before, Bi,k is the ikth element of the loss

coefficient square matrix B of size I. Pi,t and Pj,t are the output power of generator i

and j respectively. This method has been used in [5] and [9] amongst others.

• Constraint (3.6) is the constraint for generator limits and restricts the amount of gen-

erated power to the allowable range for each generator; and

• Constraint (3.7) is the generator ramp rate constraints and restricts the ramp rates for

the generators to their allowable ranges.
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Chapter 3 The DEED problem with GTDR programs

In order to solve the resulting mathematical model with two objective function, it is imper-

ative that both objective functions be converted to one objective function via a weighted

factor approach. The resulting objective function (3.9) is still constrained by constraints

(3.5)-(3.7):

min

[
w

T∑
t=1

I∑
i=1

Ci(Pi,t) + (1− w)
T∑

t=1

I∑
i=1

Ei(Pi,t)
]
. (3.9)

where w and 1−w are two non-negative weighting factors. When converting multi-objective

optimization problems into single objective functions, it is required that weighting factors

satisfy the following condition [9]:

w1 + w2 = 1. (3.10)

Typically, the choice of weighting factors determines which objective is given preference. If

the aim is to solely minimize fuel costs then w = 1, whilst if it is desired that only emissions

be minimized, then w = 0. In this chapter, since the aim is to simultaneously minimize fuel

costs and emissions, equal values are given to the weighting factors [20], [16].

3.3 GAME THEORY BASED DEMAND RESPONSE DESIGN

In [37, 34, 36] the theory of "demand management contracts" which is the underlying found-

ation of GTDR was given. It is espoused as: "an agreement between utility and customer

wherein the customer agrees to willingly shed load and in return receive monetary compens-

ation" [37, 34]. There are 3 cardinal attributes that these contracts must possess and they

are given as [38]:

• Efficient customer categorization as customers have varying power needs and thus will

be willing to curtail varying amounts of power. This inherently means that customers

have different load curtailment costs.

• The expertise to be able to determine the various load curtailment costs for the varying

mix of customers [36].

• The incorporation of "customer locational attributes" into contract formulations.
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Chapter 3 The DEED problem with GTDR programs

3.3.1 Mathematical Formulations

In order to espouse the basic premise of GTDR [37], only one customer is initially as-

sumed.

c(θ, x) is given as the customer cost of a customer of type θ who curtails power by x MW.

The customer receives payment for curtailing this power and the mathematical function that

describes the customer benefit is:

V1(θ, x, y) = y − c(θ, x). (3.11)

where the financial payment due to the customer is defined as y. Ideally, for the customer

to be adequately motivated to participate, V1 ≥ 0. The mathematical representation of the

benefit to the utility is given by:

V2(θ, λ) = λx− y (3.12)

where λ is defined as the cost of not delivering electrical power to a specific customer location.

To understand this concept, it is necessary to first comprehend that under some operational

conditions especially when the power system is stressed, it might be very expensive or im-

possible to supply some customer locations with electrical power. Using OPF techniques, it

is possible for the power system operator to calculate how much it will cost not to supply

power to these customers (load buses). In [37] this value is termed (λ) or the the value of

power interruptibility.

The power system operator is interested in maximizing it’s benefit:

max
x,y

[λx− y] (3.13)

• θ: "customer type", normalized in [0, 1].

• x: amount or magnitude of electrical power to be curbed by the customer.

• c(θ, x): the financial implication of curbing x kW by the "customer type" θ.

• λ: "value of power interruptibility".
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Chapter 3 The DEED problem with GTDR programs

3.3.1.1 Customer Cost Function

As hitherto posited, c(θ, x) is the cost of customer type θ due to his curtailment of x MW.

A quadratic cost function given in [37] is used to represent this cost and is denoted as:

c(θ, x) = K1x
2 +K2x−K2xθ. (3.14)

where K1 and K2 are the customer cost function coefficients. θ is the customer type [36] and

is used to classify the various customers based on the amount of load they are curtailing. θ

is normalized in the interval 0 ≤ θ ≤ 1, therefore θ = 1 is the "most willing" customer and

θ = 0 is the "least willing".

A synopsis of the pre-requisite mathematical conditions for the customer cost function is

detailed below:

• quadratic form c(θ, x) = K1x
2 +K2x−K2xθ.

• K2xθ categorizes different customers based on their type θ

• An increase in θ leads to a corresponding decrease in marginal cost, thus the customer

with the smallest marginal cost is the most willing customer (θ = 1) and is the customer

with the highest customer marginal benefit. Similarly, the customer with the greatest

marginal cost is the least willing customer (θ = 0) and is the customer with the lowest

customer marginal benefit.

• ∂c/∂x = 2K1x+K2 −K2θ

• The customer marginal cost must always be positive.

• The customer cost function must be convex i.e. increasing marginal cost.

• When no power is curbed, there should be no cost incurred. (c(θ, 0) = 0).

It is now possible to extend the formulations hitherto developed to multiple customers

[37]:

Let yj represent the incentive given to customer j. The benefit accruing to the customer is
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Chapter 3 The DEED problem with GTDR programs

therefore given by:

uj = yj − (K1x
2 +K2x−K2xθ), forj = 1, . . . , J, (3.15)

The benefit to the utility is given as:

uo =
J∑

j=1
λjxj − yj (3.16)

The utility seeks to maximize it’s benefit given as:

maxx,y

J∑
j=1

[λjxj − yj ] (3.17)

s.t.

yj − (K1x
2
j +K2xj −K2xjθj) ≥ 0, forj = 1, . . . , J, (3.18)

yj − (K1x
2
j +K2xj −K2xjθj) ≥ yj−1 − (K1x

2
j−1 +K2xj−1 −K2xj−1θj−1),

forj = 2, . . . , J,
. (3.19)

There are two variables in the mathematical model hitherto detailed. They are the power

curtailed (x MW) and the incentive paid ($ y). The constraints for the mathematical model

are explained thus: Constraint (3.18) is known as the "Individual rationality constraint".

It’s role is to constrain the customer benefit to surpass zero. Constraint (3.19) is termed the

"Incentive compatibility constraint". It’s role is to make sure that the amount of compensation

received by customers is commensurate with the amount of load they curtailed.

The demand response model hitherto described (equations (3.17)-(3.19)) is expanded over

multiple time periods (24 hours) and is combined with DEED. Furthermore the two demand

response model constraints (individual rationality and incentive compatibility constraints)

are implemented over a 24 hour scheduling interval. Additional constraints relating to the

utility’s daily budget and the customers maximum curtailable power are also included into

the developed model. The final GTDR model is detailed below:

maxx,y

T∑
t=1

J∑
j=1

[λj,txj,t − yj,t] (3.20)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 3 The DEED problem with GTDR programs

s.t.
T∑

t=1
[yj,t − (K1,jx

2
j,t +K2,jxj,t −K2,txj,tθj)] ≥ 0, forj = 1, . . . , J, (3.21)

∑T
t=1[yj,t − (K1,jx

2
j,t +K2,jxj,t −K2,txj,tθj)] ≥∑T

t=1[yj−1,t − (K1,j−1x
2
j−1,t +K2,j−1xj−1,t −K2,j−1xj−1,tθj−1)]

forj = 2, . . . , J,

. (3.22)

T∑
t=1

J∑
j=1

yj,t ≤ UB (3.23)

T∑
t=1

xj,t ≤ CMj (3.24)

where UB is the utility’s total budget and CMj is customer j daily limit of curtailable power.

The explanation for the constraints are given below:

The role of constraint (3.21) is to make sure that the customer’s total incentive is greater

than the total curtailment cost.

The role of constraint (3.22) is to make sure that there is a corresponding increase in customer

monetary benefit as the amount of curtailed power increases.

The role of constraint (3.23) is to make sure that the utility daily total program expenditure

is lower than or equal to it’s daily budgeted amount.

The role of constraint (3.24) is to make sure that the amount of load shed by each customer

is less than the customers maximum allowable curtailable power.

3.4 COMBINED DEED AND GAME THEORY BASED MATHEMATICAL

MODEL

The final GTDR-DEED model including all the formulated constraints is given below:

min

w1[
T∑

t=1

I∑
i=1

Ci(Pi,t)] + w2[
T∑

t=1

I∑
i=1

Ei(Pi,t)]− w3[
T∑

t=1

J∑
j=1

[λj,txj,t − yj,t]]

 . (3.25)

subject to the following network constraints:

I∑
i=1

Pi,t = Dt −
J∑

j=1
xj,t, (3.26)
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Chapter 3 The DEED problem with GTDR programs

Pi,min ≤ Pi,t ≤ Pi,max, (3.27)

−DRi ≤ Pi,t+1 − Pi,t ≤ URi, (3.28)

yj − (K1x
2
j +K2xj −K2xjθj) ≥ 0, forj = 1, . . . , J, (3.29)

yj − (K1x
2
j +K2xj −K2xjθj) ≥ yj−1 − (K1x

2
j−1 +K2xj−1 −K2xj−1θj−1),

forj = 2, . . . , J,
. (3.30)

T∑
t=1

J∑
j=1

yj,t ≤ UB (3.31)

T∑
t=1

xj,t ≤ CMj (3.32)

where w1,w2 and w3 are the weights and the prerequisite mathematical stipulation for the

weights is:

w1 + w2 + w3 = 1 (3.33)

The mathematical model detailed above seeks to optimally obtain the following variables:

xj,t,yj,t and Pi,t.

3.5 NUMERICAL SIMULATIONS, OBTAINED RESULTS AND DISCUS-

SIONS

The parameters used to verify the developed mathematical model given by equations (3.25)-

(3.33) are given in this section. This is followed by a presentation of the results and a

discussion of the same results.
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Chapter 3 The DEED problem with GTDR programs

3.5.1 Customer Side Data

To solve the optimization problem, it is necessary to state the assumptions utilized. We begin

by assuming that the utility knows the maximum amount of power every customer is willing

to curtail (CMj). This customer maximum curtailable power is closely linked with and the

determining factor of customer willingness θ. The range of θ is the interval 0 ≤ θ ≤ 1 ,

therefore the customer willing to curb the least amount of power (lowest CMj= Customer

1) will have θ = 0 and the customer willing to curb the greatest amount of power (highest

CMj=Customer 5) will have θ = 1. Other customers will adopt values of CMj based on the

amount of power they want to curb within the interval 0 and 1. Simply put, this enables

the ranking of the customers in terms of their voluntary ability to curb electrical power.

Another customer information that is known to the utility is their outage cost function

coefficients ((K1,j) and (K2,j)). The values of λ or "locational attribute" or "value of power

interruptibility" are given as the Locational Marginal Prices (LMP) [39]. In effect, these

values give the monetary cost of NOT delivering power to a specific location or customer

[36]. To obtain λ hourly values, LMP from the Pennsylvania-New Jersey-Maryland (PJM)

Market [40] is used. The optimization model determines the optimal customer power curbed

(xj,t), optimal customer incentive (yj,t) and optimal generated power (Pi,t).

To validate the developed mathematical models (equations (3.25)-(3.33)), two test power

system scenarios are used. Scenario one is made up of 6 thermal generators at the supply

side and 5 willing aggregated customers at the demand side. Scenario two is made up of 10

thermal generators at the supply side and 7 willing aggregated customers at the demand side.

Scenario two is essentially a bigger test system as the load demand, utility budget, number

of generators and number of customers exceeds that of scenario one. For all simulations

performed with both scenarios, all three objectives are given equal consideration. Thus all

three objectives have equal weights (w1 = w2 = w3 = 1
3) and are converted into a single

objective function.

3.5.2 Six Generator Units and Five Customers

The fuel cost coefficients and the emission cost coefficients are obtained from [5] and shown

in Table 3.1. Figure 3.1 presents the total initial hourly demand, with one mid-day peak
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Chapter 3 The DEED problem with GTDR programs

Table 3.1: Data of the six unit system.

i ai bi ci ei fi gi Pi,min Pi,max DRi URi

1 240 7 0.007 13.8593 0.32767 0.00419 100 500 120 80

2 200 10 0.0095 13.8593 0.32767 0.00419 50 200 90 50

3 220 8.5 0.009 40.2669 -0.54551 0.00683 80 300 100 65

4 200 11 0.009 40.2669 -0.54551 0.00683 50 150 90 50

5 220 10.5 0.008 42.8955 -0.51116 0.00461 50 200 90 50

6 190 12 0.0075 42.8955 -0.51116 0.00461 50 150 90 50

Table 3.2: Customer cost function coefficients, customer type and daily customer energy

limit (scenario 1).

j K1,j K2,j θj CMj(MWh)

1 1.847 11.64 0 200

2 1.378 11.63 0.1734 280

3 1.079 11.32 0.4828 410

4 0.9124 11.5 0.7208 500

5 0.8794 11.21 1 700

which is consistent with industrial customers, Figure 3.2 gives the hourly values of power

interruptibility (λj,t) obtained from the PJM Market on the 30th of April 2014 and Table

3.2 gives the cost function coefficients, customer type and daily customer power limit. It is

further assumed that the utility has a daily budget of $ 50 000. The transmission loss formula

coefficients for the six unit test system are given by equation (3.34).

B = 10−4 ×



0.420 0.051 0.045 0.057 0.078 0.066

0.051 0.180 0.039 0.048 0.045 0.060

0.045 0.039 0.195 0.051 0.072 0.057

0.057 0.048 0.051 0.213 0.090 0.075

0.078 0.045 0.072 0.090 0.207 0.096

0.066 0.060 0.057 0.075 0.096 0.255


perMW (3.34)
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Figure 3.1: Total Initial Hourly Demand (Scenario 1).
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Figure 3.2: Hourly Values of Power Interruptibility for different customers (Scenario 1).

3.5.3 Ten Generator Units and Seven Customers

The fuel cost coefficients and the emission cost coefficients are obtained from [9] and shown in Table

3.3. Figure 3.3 presents the total initial hourly demand. Figure 3.4 gives the hourly values of power

interruptibility obtained from the PJM Market on the 1st of May 2014 and Table 3.4 gives the cost
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Chapter 3 The DEED problem with GTDR programs

Table 3.3: Data of the ten unit system.

i ai bi ci ei fi gi Pi,min Pi,max DRi URi

1 958.2 21.6 0.00043 360.0012 -3.9864 0.04702 150 470 80 80

2 1313.6 21.05 0.00063 350.0056 -3.9524 0.04652 135 460 80 80

3 604.97 20.81 0.00039 330.0056 -3.9023 0.04652 73 340 80 80

4 471.6 23.9 0.0007 330.0056 -3.9023 0.04652 60 300 50 50

5 480.29 21.62 0.00079 13.8593 0.3277 0.0042 73 243 50 50

6 601.75 17.87 0.00056 13.8593 0.3277 0.0042 57 160 50 50

7 502.7 16.51 0.00211 40.2669 -0.5455 0.0068 20 130 30 30

8 639.4 23.23 0.0048 40.2669 -0.5455 0.0068 47 120 30 30

9 455.6 19.58 0.10908 42.8955 -0.5112 0.0046 20 80 30 30

10 692.4 22.54 0.00951 42.8955 -0.5112 0.0046 55 55 30 30
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Figure 3.3: Total Initial Hourly Demand (Scenario 2).

function coefficients, customer type and daily customer power limit. It is further assumed that the

utility has a daily budget of $ 100 000. The transmission loss formula coefficients for the ten unit test

system are given by equation (1) and it is shown in the appendix.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

27

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 3 The DEED problem with GTDR programs

 

0 5 10 15 20 25
20

30

40

50

60

70

80

90

100

110

120

Time (h)

Ho
ur

ly
 V

al
ue

s 
of

 P
ow

er
 In

te
rru

pt
ib

ilit
y 

($
/M

W
)

 

 

CUSTOMER 1
CUSTOMER 2
CUSTOMER 3
CUSTOMER 4
CUSTOMER 5
CUSTOMER 6
CUSTOMER 7

Figure 3.4: Hourly Values of Power Interruptibility for different customers (Scenario 2).

Table 3.4: Customer cost function coefficients, customer type and daily customer energy

limit (scenario 2).

j K1,j K2,j θj CMj(MWh)

1 1.847 11.64 0 180

2 1.378 11.63 0.14 230

3 1.079 11.32 0.26 310

4 0.9124 11.5 0.37 390

5 0.8794 11.21 0.55 440

6 1.378 11.63 0.84 530

7 1.5231 11.5 1 600

3.5.4 Solution Methodology and Results

To solve the developed mathematical model, the CONOPT solver is deployed on the Advanced Inter-

active Multidimensional Modelling System (AIMMS) [41]. For Scenario 1, Figure 3.5 shows the total

load demand profile before and after demand response, Figure 3.6 shows the optimal power curtailed

and optimal determined incentive for all the five customers. Figure 3.7 - Figure 3.12 shows the optimal

power generated for all generators under normal DEED and after the DR program schedule has been

implemented. Table 3.5 presents the final parameters from the combined DR-DEED program for the

case of scenario 1. For Scenario 2, Figure 3.13 shows the total load demand profile before and after
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Figure 3.5: Total Load Profile Before and After Demand Response (Scenario 1).
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Figure 3.6: Optimal Power Curtailed and Optimal Incentive for All Customers (Scenario

1).

demand response, Figure 3.14 shows the optimal power curtailed and optimal determined incentive

for all the seven customers. Table 3.6 presents the final parameters from the combined DR-DEED

program for scenario 2.
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Figure 3.7: Generation output of unit 1 for scenario 1.
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Figure 3.8: Generation output of unit 2 for scenario 1.

3.5.5 Discussion of Results

Considering scenario 1, from Figure 3.5 it is observed that the combined DR-DEED model brings

about a reduction in the load profile. As shown in Figure 3.6, each customer contributes to the

eventual power reduction shown in Figure 3.5. Another observation as shown in Figure 3.6 is that the
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Figure 3.9: Generation output of unit 3 for scenario 1.
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Figure 3.10: Generation output of unit 4 for scenario 1.

incentive received by customers increases as the customer willingness increases. Thus the most willing

customer (with CMj of 700 MW and θj of 1) has a higher incentive than the least willing customer

(with CMj of 200 MW and θj of 0). Figure 3.7 - Figure 3.12 simply show that the generators actually

reduce power output in light of the demand reduction by willing customers. This shows that demand

response programs especially in the form of incentive payments are useful in altering customer load
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Figure 3.11: Generation output of unit 5 for scenario 1.
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Figure 3.12: Generation output of unit 6 for scenario 1.

patterns and total system demand. This reduction of the customers load patterns in turn reduces the

probability of events like blackouts and brown outs thus improving the reliability or security of the

power system. Table 3.5 details the total power saved and total incentive received by each customer

over a 24 hour period. As can be seen from Table 3.5, the higher the customer willingness, the greater

the power curtailed and incentive received. Obtained results from scenario 2 which consists of more
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Figure 3.13: Total Load Profile Before and After Demand Response (Scenario 2).
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Figure 3.14: Optimal Power Curtailed and Optimal Incentive For All Customers (Scenario

2).

generators and customers than scenario 1, corroborate the conclusions drawn from scenario 1. The

combined DR-DEED formulation reduces total demand over a 24 hour period by 2670.57 MW (see

Figure 3.13 and Figure 3.14) and an inspection of the incentive received by each customer (see Figure

3.14 and Table 3.6) shows that the customers are compensated commensurate with the level of load
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Chapter 3 The DEED problem with GTDR programs

they are actually willing to curb (i.e. customer willingness). Furthermore, there is also a reduction in

power generated by the generators due to the curtailed customer demand. The optimal customer power

curtailed (xj,t), optimal incentive paid to customers (yj,t) and power generated from all generators

(Pi,t) (the three variables obtained by the mathematical model) for both scenario 1 and scenario 2

are given in the appendix. (Table 1 - Table 6). In the simulations done, it is assumed that the utility

gives equal preference to the three objectives and gives equal weights to the three objectives, thus

w1 = w2 = w3 = 1
3 . It has however become vital in optimization with more than a single objective

function, to validate the effect of augmented ranking of objectives over another on obtained solutions.

We therefore present an analysis of optimization results using the base case when the utility gives equal

preference to each objective (w1 = w2 = w3 = 1
3 ), when the utility chooses to minimize cost alone

(w1 = 1, w2 = w3 = 0 ), when the utility chooses to minimize emissions alone (w2 = 1, w1 = w3 = 0)

and when the utility chooses to maximize its DR benefit alone (w3 = 0, w1 = w2 = 0). The four

parameters evaluated are the total generator costs ($), total emissions (lb), total generator power

(MW) and total power losses (MW). Table 3.7 gives the various weight cases and Table 3.8 and Table

3.9 give the various results for Scenario 1 and 2 respectively. They show that the best results are

obtained when DR and DEED are considered jointly. Considering DR alone i.e. maximizing only

the utility benefit (C4), produces suboptimal results. C2 always gives the lowest cost, but gives the

highest emissions and the highest losses. C3 gives the lowest emissions but doesn’t give the lowest

cost. Depending on the most pressing objective of the utility, the model can be adjusted accordingly.

However analyses of the results show that the results are best with cases BC and C3. To provide

a comparison of the DR-DEED with normal DEED we vary the weights for DEED with both the

six bus and ten bus systems (Scenario 1 and 2 respectively). Tables 3.10 and 3.11 give the total

generator costs ($), total emissions (lb), total generator power (MW) and total power losses (MW)

for DEED in both example scenarios. It is observed that as w increases, the costs decreases and the

emission and losses increases. This means that as the weighting factor is increased (the importance of

minimizing emissions is decreased, while the importance of minimizing costs increases), emissions and

losses actually increase and costs decrease. This is expected and consistent with results obtained from

the literature [9], [5]. To see the benefits of DR-DEED over conventional DEED we compare the Table

3.8 (DR-DEED) and Table 3.10 (normal DEED) for Scenario 1 and Table 3.9 (DR-DEED) and Table

3.11 (normal DEED) for Scenario 2. When the objective is to solely minimize cost (C2 in Table 3.8

and w=1 in Table 3.10), DR-DEED gives lower cost, emissions, losses and generated power. When the

objective is to solely minimize emissions (C3 in Table 3.9 and w=0 in Table 3.11), again DR-DEED

give lower costs, emissions, losses and generated power. It can be rightly concluded, that integrating

both DR and DEED formulations together with their interdependent constraints gave better results

than considering either DR or DEED independently.
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Chapter 3 The DEED problem with GTDR programs

Table 3.5: Final Results from the combined DR-DEED program (scenario 1).

Total Power Saved (MW) Total Incentive Received ($)

Customer 1 195.18 5775.42

Customer 2 276.01 7791.49

Customer 3 405.23 10774.40

Customer 4 495.07 11995.48

Customer 5 581.53 13663.22

Utility 1953.02 50000.00

Table 3.6: Final results from the combined DR-DEED program (scenario 2).

Total Power Saved (MW) Total Incentive Received ($)

Customer 1 180.00 5849.30

Customer 2 230.00 6901.25

Customer 3 310.00 8992.28

Customer 4 390.00 10762.01

Customer 5 440.00 11338.26

Customer 6 530.00 18720.82

Customer 7 590.57 23448.62

Utility 2670.57 86012.54

Table 3.7: Various weighting factor values.

w1 w1 w3

Base Case (BC) 1
3

1
3

1
3

Case 2 (C2) 1 0 0

Case 3 (C3) 0 1 0

Case 4 (C4) 0 0 1

3.6 CHAPTER SUMMARY

This chapter presents a modification of the DEED formulation with a game theory based DR pro-

gram. The three objectives in the optimization problem are to minimize the fuel and emissions costs

and maximize the utility DR benefit subject to the conventional DEED constraints and some extra

constraints. The model determines the optimal generator output from the available generators and
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Chapter 3 The DEED problem with GTDR programs

Table 3.8: Optimal DR- DEED results with various weighting factor values (Test System

1).

COST EMISSIONS POWER GENERATED LOSS

(DR-DEED)($) (DR-DEED) (lb) (DR-DEED)(MW) (DR-DEED) (MW)

BC 291898.16 24474.04 24266.59 265.61

C2 288430.67 31426.55 24205.79 308.20

C3 299397.36 21106.33 24176.39 231.01

C4 300815.08 21473.48 24291.10 234.85

Table 3.9: Optimal DR- DEED results with various weighting factor values (Test System

2).

COST EMISSIONS POWER GENERATED LOSS

(DR-DEED)($) (DR-DEED) (lb) (DR-DEED)(MW) (DR-DEED) (MW)

BC 989439.22 192743.96 38574.55 1137.11

C2 968899.75 356332.96 38682.66 1254.66

C3 994464.46 183068.82 38548.88 1120.88

C4 1006653.84 210026.09 39125.16 1190.38

Table 3.10: Optimal DEED results with various weighting factor values (Test System 1).

COST EMISSIONS POWER GENERATED LOSS

(DEED)($) (DEED) (lb) (DEED)(MW) (DEED) (MW)

w = 0 322786.57 25639.31 26233.14 279.14

w = 0.5 317046.37 28029.95 26262.74 308.74

w = 1 315021.43 35096.95 26308.30 354.30

Table 3.11: Optimal DEED results with various weighting factor values (Test System 2).

COST EMISSIONS POWER GENERATED LOSS

(DEED)($) (DEED) (lb) (DEED)(MW) (DEED) (MW)

w = 0 1057670.13 248103.17 41438.53 1330.53

w = 0.5 1052722.84 249936.27 41440.51 1332.51

w = 1 1035411.67 380595.81 41540.71 1432.71

the game theory demand response program helps the utility determine the optimal customer load

to curtail and the optimal incentive to be paid to customers who agree to curtail their load. The
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Chapter 3 The DEED problem with GTDR programs

game theory model used in developing the DR model also included extra practical constraints like

maximum power targets and total budget. Furthermore the individual rationality constraint and the

incentive compatibility constraint were modified and optimized over a day instead of just an hour.

From obtained results, it can be observed that the DR-DEED program helps to reduce total demand

over a 24 hour period by 1953.02 MW in the first scenario and reduces the total demand by 2670.57

MW in the second scenario. Results obtained from the model also show that willing customers can

provide a cost efficient way to reduce demand in the power system.
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CHAPTER 4

GTDR-DEED AND GTDR-PBDEED USING AN

MPC APPROACH

4.1 CHAPTER OVERVIEW

In this chapter, a Game Theory Demand Response (GTDR) program is combined with the Dynamic

Economic Emission Dispatch (DEED) and the Price Based Dynamic Economic Emission Dispatch

(PBDEED) mathematical models. Both mathematical problems are multi-objective optimization

problems with the dual objectives of minimizing costs and emissions in the case of the DEED and

minimizing emissions and maximizing profits as in the case of PBDEED. The GTDR program is an

incentive based demand response program and provides incentives for willing customers who agree to

curtail their demand. The programs are structured to ensure that the incentive paid to customers

exceeds or equals their cost of curtailment. This gives rise to a GTDR-DEED problem which minimizes

fuel and emissions costs and determines the optimal incentive and load curtailment for customers

and a GTDR-PBDEED problem which minimizes emissions, maximizes profits and determines the

optimal incentive and load curtailment for customers. A Model Predictive Control (MPC) approach

is deployed to solve both proposed mathematical models and the obtained results show that the

closed-loop controller is superior to the open loop controller as it shows better robustness against

uncertainties and disturbances. Results from this chapter have been presented in [13].

4.2 DEED AND PBDEED MODEL FORMULATIONS

4.2.1 The Dynamic Economic Emission Dispatch Model

The DEED problem is concerned with minimizing the fuel costs and emission of thermal generators and

determining their optimal power output. The mathematical formulation is presented below [5]:
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

min

T∑
t=1

I∑
i=1

Ci(Pi,t), (4.1)

min

T∑
t=1

I∑
i=1

Ei(Pi,t), (4.2)

with

Ci(Pi,t) = ai + biPi,t + ciP
2
i,t, (4.3)

Ei(Pi,t) = di + eiPi,t + fiP
2
i,t, (4.4)

subject to the following network constraints:

I∑
i=1

(Pi,t) = Dt + losst, (4.5)

Pi,min ≤ Pi,t ≤ Pi,max, (4.6)

−DRi ≤ Pi,t+1 − Pi,t ≤ URi, (4.7)

where

losst =
I∑
i=1

K∑
k=1

Pi,tBi,kPk,t, (4.8)

Pi,t is the power generated from generator i at time t;

Ci is the fuel cost of generator i;

Ei is the emissions for generator i;

Dt is the total system demand at time t;

losst is the total system losses at time t;

Pi,min and Pi,max are the minimum and maximum capacity of generator i respectively;

DRi and URi are the maximum ramp down and up rates of generator i respectively;

ai, bi and ci are the fuel cost coefficients of generator i respectively;

ei, fi and gi are the emission coefficients of generator i respectively;

Bi,k is the ikth element of the loss coefficient square matrix of size I;

I and T are the number of generators and the dispatch interval respectively.

The following is a brief description of the constraints:
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

• The first constraint (4.5) is termed the power balance constraint. This constraint compels the

total power generated at time t to equal the sum of the power demand and transmission losses.

• Constraint (4.6) is the constraint for generator limits and restricts the amount of generated

power to the allowable range for each generator; and

• Constraint (4.7) is the generator ramp rate constraints and restricts the ramp rates for the

generators to their allowable ranges.

For the sake of simplicity, the fuel cost and emission cost ((4.3) and (4.4)) are both assumed to be

quadratic functions of the generators active power output [8]. Furthermore other transmission and

distribution line constraints are ignored. In order to solve the resulting mathematical model with

two objective function, it is imperative that both objective functions be converted to one objective

function via a weighted factor approach and the objective function is still constrained by the same

constraints (4.5)-(4.7).

min

[
w

T∑
t=1

I∑
i=1

Ci(Pi,t) + (1− w)
T∑
t=1

I∑
i=1

Ei(Pi,t)
]
. (4.9)

4.2.2 Profit Based Dynamic Economic Emission Dispatch Model

In a deregulated market environment, the objective is to maximize profit and minimize emissions.

Let us assume that the forecast energy price at time t is given by EPt, the revenue is given by∑T
t=1
∑I
i=1 EPt ∗ Pi,t [5] and the cost by

∑T
t=1
∑I
i=1 Ci(Pi,t). Thus, the profit is given by:

T∑
t=1

I∑
i=1

EPt ∗ Pi,t −
T∑
t=1

I∑
i=1

Ci(Pi,t), (4.10)

The final optimization problem is given by:

max

T∑
t=1

I∑
i=1

EPt ∗ Pi,t −
T∑
t=1

I∑
i=1

Ci(Pi,t), (4.11)

min

T∑
t=1

I∑
i=1

Ei(Pi,t), (4.12)

with

Ci(Pi,t) = ai + biPi,t + ciP
2
i,t, (4.13)

Ei(Pi,t) = di + eiPi,t + fiP
2
i,t, (4.14)
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

subject to the following network constraints:
I∑
i=1

(Pi,t) ≤ Dt + losst, (4.15)

Pi,min ≤ Pi,t ≤ Pi,max, (4.16)

−DRi ≤ Pi,t+1 − Pi,t ≤ URi. (4.17)

It is observed that the constraints for both DEED and PBDEED are quite similar, the only difference

being the power balance constraint. For the DEED model, it is imperative that generated power should

match the load demand, while in PBDEED, generated power can be less than the total demand as

the aim is to maximize total profit. Again, it is instructive to mention that just like in the DEED

formulations, the fuel cost and emissions are both assumed to be quadratic functions of the generators

active power output and other transmission and distribution line constraints are ignored. The multi-

objective optimization can be transformed into a single objective function using a weighting factor w

subject to the same constraints (4.15)-(4.17):

min

[
w

[
T∑
t=1

I∑
i=1

Ci(Pi,t)− EPt ∗ Pi,t

]
+ (1− w)

T∑
t=1

I∑
i=1

Ei(Pi,t)
]
. (4.18)

4.3 GAME THEORY BASED DEMAND RESPONSE FORMULATIONS

The objective of the Game Theory Demand Response (GTDR) formulations is to maximize the utility

benefit [8]:

maxx,y

T∑
t=1

J∑
j=1

[λj,txj,t − yj,t] (4.19)

s.t.
T∑
t=1

[
yj,t − (K1,jx

2
j,t +K2,jxj,t −K2,txj,tθj)

]
≥ 0, for j = 1, . . . , J, (4.20)

∑T
t=1
[
yj,t − (K1,jx

2
j,t +K2,jxj,t −K2,txj,tθj)

]
≥∑T

t=1
[
yj−1,t − (K1,j−1x

2
j−1,t +K2,j−1xj−1,t −K2,j−1xj−1,tθj−1)

]
for j = 2, . . . , J,

, (4.21)

T∑
t=1

J∑
j=1

yj,t ≤ UB, (4.22)
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

T∑
t=1

xj,t ≤ CMj , (4.23)

The customer outage cost function is assumed to be quadratic and is given by:

(K1,jx
2
j,t +K2,jxj,t −K2,txj,tθj). (4.24)

where K1,j and K2,j are the cost function coefficients of customer j;

xj,t is the amount of power curtailed by a customer j at time t;

yj,t is the incentive of a participating customer j at time t;

UB is the utility’s total budget;

CMj is the daily limit of interruptible energy for customer j;

J and T are the total number of customers and the total time interval respectively;

λj,t is the "value of power interruptibility" of participating customer j at time t. This parameter gives

the cost of the electric utility not delivering electric power to a particular location on the grid. λj,t
can be calculated from optimal power flow routines (OPF);

θj is the "customer type" [36]. θ is normalized in the interval 0 ≤ θ ≤ 1 and categorizes the different

kinds of customers based on their willingness or readiness to shed power, with θ = 0 being the least

willing and θ = 1 the most willing customer.

The following is a concise description of the constraints:

Constraint (4.20) is known as the "Individual rationality constraint". It’s role is to constrain the

customer benefit to surpass zero.

Constraint (4.21) is termed the "Incentive compatibility constraint". It’s role is to make sure that

the amount of compensation received by customers is commensurate with the amount of load they

curtailed.

The role of constraint (4.22) is to make sure that the utility daily total program expenditure is lower

than or equal to it’s daily budgeted amount.

The role of constraint (4.23) is to make sure that the amount of load shed by each customer is less

than the customers maximum allowable curtailable power.

In the next section, the combined DEED/PBDEED and game theory based demand response models

are detailed.
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

4.4 MATHEMATICAL MODEL OF DEED/PBDEED COMBINED WITH GAME

THEORY BASED DEMAND RESPONSE FORMULATIONS

4.4.1 The GTDR-DEED Model

The weighted single objective GTDR-DEED mathematical formulation is:

min w1

[∑T
t=1
∑I
i=1 Ci(Pi,t)

]
+ w2

[∑T
t=1
∑I
i=1 Ei(Pi,t)

]
+w3

[∑T
t=1
∑J
j=1 [yj,t − λj,txj,t]

] (4.25)

subject to the following network constraints:
I∑
i=1

Pi,t = Dt + losst −
J∑
j=1

xj,t, (4.26)

Pi,min ≤ Pi,t ≤ Pi,max, (4.27)

−DRi ≤ Pi,t+1 − Pi,t ≤ URi, (4.28)

T∑
t=1

[yj,t − (K1,jx
2
j,t +K2,jxj,t −K2,txj,tθj)] ≥ 0, for j = 1, . . . , J, (4.29)

∑T
t=1[yj,t − (K1,jx

2
j,t +K2,jxj,t −K2,txj,tθj)] ≥∑T

t=1[yj−1,t − (K1,j−1x
2
j−1,t +K2,j−1xj−1,t −K2,j−1xj−1,tθj−1)]

for j = 2, . . . , J,

, (4.30)

T∑
t=1

J∑
j=1

yj,t ≤ UB, (4.31)

T∑
t=1

xj,t ≤ CMj , (4.32)

losst =
I∑
i=1

K∑
k=1

Pi,tBi,kPk,t, (4.33)

where w1,w2 and w3 are the weights and the following condition is required to be satisfied when

choosing weights:

w1 + w2 + w3 = 1. (4.34)

The variables to be determined by the optimization model are xj,t,yj,t and Pi,t.
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

4.4.2 The GTDR-PBDEED Model

For the GTDR-PBDEED, we assume that the utility or the Independent System Operator (ISO)

wants to maximize its profit and benefit and minimize emissions as it is operating in a deregulated

environment. This can be given as:

min w1

[∑T
t=1
∑I
i=1 [Ci(Pi,t)− EPt ∗ Pi,t] +

∑T
t=1
∑J
j=1 [yj,t − λj,txj,t]

]
+w2

∑T
t=1
∑I
i=1 Ei(Pi,t)

(4.35)

subject to the following network constraints:

I∑
i=1

Pi,t ≤ Dt + losst −
J∑
j=1

xj,t, (4.36)

Pi,min ≤ Pi,t ≤ Pi,max, (4.37)

−DRi ≤ Pi,t+1 − Pi,t ≤ URi, (4.38)

T∑
t=1

[yj,t − (K1,jx
2
j,t +K2,jxj,t −K2,txj,tθj)] ≥ 0, for j = 1, . . . , J, (4.39)

∑T
t=1 yj,t − (K1,jx

2
j,t +K2,jxj,t −K2,txj,tθj) ≥∑T

t=1
[
yj−1,t − (K1,j−1x

2
j−1,t +K2,j−1xj−1,t −K2,j−1xj−1,tθj−1)

]
for j = 2, . . . , J,

, (4.40)

T∑
t=1

J∑
j=1

yj,t ≤ UB, (4.41)

T∑
t=1

xj,t ≤ CMj , (4.42)

losst =
I∑
i=1

K∑
k=1

Pi,tBi,kPk,t, (4.43)

where w1 and w2 are the weights and the following condition is required to be satisfied when choosing

weights:

w1 + w2 = 1. (4.44)

The variables to be determined by the optimization model are xj,t,yj,t and Pi,t.
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

4.4.3 Model Predictive Control Strategy

The open loop GTDR-DEED model and GTDR-PBDEED model are defined over the time interval

T with optimization variables x1,t, y1,t, P1,t,...., x1,T , y1,T , P1,T (i = 1, 2, ...., I and j = 1, 2, ...., J).

Optimizing the identical mathematical model over a different horizon (v + 1,v + T ), the optimization

variables is given as x1,v+1, y1,v+1, P1,v+1, ...., x1,v+T , y1,v+T , P1,v+T .

Therefore the closed-loop (MPC) GTDR-DEED problem is given below:

min w1

[∑T
t=v+1

∑I
i=1 Ci(Pi,t)

]
+ w2

[∑T
t=v+1

∑I
i=1 Ei(Pi,t)

]
+w3

[∑T
t=v+1

∑J
j=1[yj,t − λj,txj,t]

]
,

(4.45)

where v is termed the "MPC switching interval". Both the open loop and close loop models have

equivalent constraints and at each closed loop iteration, the constraints are simply updated. Obtained

results from the model are utilized in the initial sample interval (v + 1, v + 2) and this result serves

as the input in the second sample interval (v + 2, v + 3). This provides a closed feed back scheme. A

full description of the MPC algorithm is provided in [12]. Similarly, the closed-loop (MPC) GTDR-

PBDEED problem is given as:

min w1

[∑T
t=v+1

∑I
i=1[Ci(Pi,t)− EPt ∗ Pi,t] +

∑T
t=v+1

∑J
j=1[yj,t − λj,txj,t]

]
+w2

[∑T
t=v+1

∑I
i=1 Ei(Pi,t)

]
.

(4.46)

4.5 NUMERICAL SIMULATIONS, OBTAINED RESULTS AND DISCUS-

SIONS

To verify the proposed GTDR-DEED and GTDR-PBDEED mathematical formulations, a case study

of six generator units and five industrial customers is used [8]. The data for the generator units has

also been used in [5] and was originally obtained from [27]. Table 4.1 shows the fuel cost coefficients

and the emission coefficients [5]. The system consists of six thermal units, twenty six buses, and forty

six transmission lines [27]. The maximum load demand is 1263 MW. Table 4.2 gives the initial hourly

demand [27], which has one mid-day peak synonymous with industrial customers. Table 4.3 gives the

hourly values of power interruptibility (λj,t) obtained from the Pennsylvania-New Jersey-Maryland

(PJM) Market [40] LMP prices on the 30th of April 2014. For PBDEED, the energy price (EPt) is

assumed to be the highest LMP price. Table 4.4 details the cost function coefficients, customer type

and daily customer energy limit [8]. The assumption is that the utility knows the customers daily

limit of interruptible energy (CMj) which it then uses to rank the customers in order of increasing

willingness to curb electric power. Furthermore, the utility knows the outage cost function coefficients
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

Table 4.1: Data of the six unit system.

i ai bi ci ei fi gi Pi,min Pi,max DRi URi

1 240 7 0.007 13.8593 0.32767 0.00419 100 500 120 80

2 200 10 0.0095 13.8593 0.32767 0.00419 50 200 90 50

3 220 8.5 0.009 40.2669 -0.54551 0.00683 80 300 100 65

4 200 11 0.009 40.2669 -0.54551 0.00683 50 150 90 50

5 220 10.5 0.008 42.8955 -0.51116 0.00461 50 200 90 50

6 190 12 0.0075 42.8955 -0.51116 0.00461 50 150 90 50

of participating customers (K1,j and K2,j). The customer cost function coefficients, customer type

and daily energy limit were originally obtained and modified from [36] which contains practical data

from a US case study. The transmission loss formula coefficients for the six unit test system [27]

are given by equation (4.47) and the utility daily budget (UB) is $ 50 000. The decision variables

for both GTDR-DEED and GTDR-PBDEED are the optimal customer power to be curtailed (xj,t),

optimal incentive to be paid to customers (yj,t) and power generated from all generators (Pi,t). The

entire dispatch period is 24 h (T = 24) and the sampling period is 1 h as has always been used in the

literature [27] and also in [4] and [8]. The Advanced Interactive Multidimensional Modelling System

(AIMMS) [41] is utilized to build and solve both GTDR-DEED and GTDR-PBDEED models using

the CONOPT solver.

B = 10−4 ×



0.420 0.051 0.045 0.057 0.078 0.066

0.051 0.180 0.039 0.048 0.045 0.060

0.045 0.039 0.195 0.051 0.072 0.057

0.057 0.048 0.051 0.213 0.090 0.075

0.078 0.045 0.072 0.090 0.207 0.096

0.066 0.060 0.057 0.075 0.096 0.255


perMW (4.47)

4.5.1 Simulation Results Without Disturbance

The MPC strategy is implemented on both the GTDR-DEED and the GTDR-PBDEED problem. As

stated before, for multi-objective problems in order to solve the problem with minimal computational

complexity, it is often necessary to use the goal attainment method or weighted sum approach and

convert the objectives into a single objective [5]. Thus, for GTDR-DEED, w1 = w2 = w3 = 1
3 while

for GTDR-PBDEED, w1 = w2 = 0.5. The values for the weights are chosen so that equal preference is

given to all the objectives and in both cases, the sum of the weights equals 1. Figure 4.1 and Figure 4.2

show the results obtained from the MPC implementations on GTDR-DEED and the GTDR-PBDEED
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

Table 4.2: Total Initial Hourly Demand

Time(h) Total Demand (MW)

1 955

2 942

3 935

4 930

5 935

6 963

7 989

8 1023

9 1126

10 1150

11 1201

12 1235

13 1190

14 1251

15 1263

16 1250

17 1221

18 1202

19 1159

20 1092

21 1023

22 984

23 975

24 960

respectively. Each figure shows the optimal power generated from all generators, the total demand

profile, optimal power curtailed by the customers and the optimal customer incentive. For comparison

purposes, we also show obtained results of the GTDR-DEED and GTDR-PBDEED with open loop

control in Figure 4.3 and Figure 4.4 respectively. A careful comparison of the figures shows that

both open loop and closed-loop control yield similar results. Table 4.5 provides a numerical results

comparison between both approaches. From the results it shows that the closed-loop returns better

results than the open loop approach. This is because comparing GTDR-DEED under both the open

loop and closed-loop approaches, it becomes easily discernible from the results that the closed-loop

approach returns lower fuel costs ($ 290554.50 to the open loop’s $ 291898.16). The closed-loop

approach again returns lower emissions (24332.84 lb to open loop’s 24474.04 lb). Even though both
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

Table 4.3: Hourly Values of Power Interruptibility.

λj,t ($)

j = 1 j = 2 j = 3 j = 4 j = 5

t = 1 27.61 28.30 28.79 26.93 27.60

t = 2 29.41 30.07 30.53 28.79 29.44

t = 3 28.24 28.87 29.28 27.66 28.32

t = 4 26.69 28.76 29.14 27.74 28.24

t = 5 29.01 32.24 32.64 31.20 31.66

t = 6 33.96 36.67 37.15 35.38 35.99

t = 7 83.97 89.46 90.65 85.71 87.70

t = 8 81.10 82.88 83.79 79.06 81.06

t = 9 110.60 112.93 114.11 107.72 110.44

t = 10 74.12 75.43 76.09 72.40 73.95

t = 11 78.95 80.19 80.65 77.29 78.93

t = 12 66.85 67.55 67.76 65.75 66.67

t = 13 47.98 48.58 48.63 47.10 47.93

t = 14 66.82 67.74 68.07 65.55 66.74

t = 15 48.50 49.35 49.69 47.41 48.47

t = 16 49.21 50.28 50.87 47.94 49.19

t = 17 66.65 69.36 70.29 66.05 67.71

t = 18 61.49 66.57 67.19 59.69 66.24

t = 19 56.19 57.67 58.25 54.48 56.53

t = 20 57.92 59.38 59.98 55.58 57.98

t = 21 49.16 49.86 50.36 48.31 48.96

t = 22 54.00 54.38 54.84 53.46 53.63

t = 23 34.37 34.67 34.96 33.98 34.21

t = 24 30.30 30.71 31.00 29.89 30.20

approaches yield the same amount of customer incentive ($50000), the closed-loop approach to GTDR-

DEED yields better energy curtailment (1957.38 MWh to open loop’s 1953.02 MWh) and also lower

energy loss (264 MWh to open loop’s 266 MWh). Going further to compare GTDR-PBDEED under

the closed-loop approach and the open loop approach, from Table 4.5 we see that the closed-loop

approach again yields lower total fuel costs, emissions, energy generated and energy losses. The

closed-loop approach also yields a higher total customer incentive ($ 32228.39 to the open loop’s $

31954.89) and higher total profits ($ 1119751.99 to the open loop’s $ 1095533.01). Furthermore results

from the closed-loop approach converge to that of the open loop solution both under GTDR-DEED

and GTDR-PBDEED as evidenced by Figure 4.5 and Figure 4.6 respectively, thereby demonstrating
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

Table 4.4: Customer Cost Function Coefficients, Customer Type and Daily Customer En-

ergy Limit.

j K1,j K2,j θj CMj(MWh)

1 1.847 11.64 0 200

2 1.378 11.63 0.1734 280

3 1.079 11.32 0.4828 410

4 0.9124 11.5 0.7208 500

5 0.8794 11.21 1 700

 

Figure 4.1: GTDR-DEED closed-loop results with no disturbance.

the convergence ability of the MPC algorithm.

4.5.2 Simulation Results With Disturbance

To test the robustness of the MPC algorithm against uncertainties and disturbance, we assume that

for GTDR-DEED and GTDR-PBDEED the demand randomly increases between 3.5% to 10% of

the initial demand. Also the energy price is similarly randomly varied between -5% to 5% of the

initial energy price. Similarly for GTDR-DEED, w1 = w2 = w3 = 1
3 while for GTDR-PBDEED,

w1 = w2 = 0.5. Figure 4.7 and Figure 4.8 shows the results obtained for GTDR-DEED and GTDR-

PBDEED respectively. For comparison purposes we also show results for GTDR-DEED and GTDR-

PBDEED under open loop control (See Figure 4.9 and Figure 4.10 respectively. Table 4.6 shows a
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

 

Figure 4.2: GTDR-PBDEED closed-loop results with no disturbance.

 

Figure 4.3: GTDR-DEED open loop results with no disturbance.

numerical comparison between both open loop and closed-loop control. It shows that the closed-loop

approach yields better results and handles disturbances and uncertainties in a manner superior to the

conventional open loop approach. This is because comparing GTDR-PBDEED under both approaches,

it is seen from Table 4.6 that the closed-loop approach returns lower fuel costs ($ 316258.72 to the

open loop’s $ 318937.26). The closed-loop approach again returns lower emissions (27865.93 lb to
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

 

Figure 4.4: GTDR-PBDEED open loop results with no disturbance.

Table 4.5: Solutions from both open loop and closed-loop without disturbance.

Open Loop Closed-Loop

GTDR GTDR GTDR GTDR

DEED PBDEED DEED PBDEED

Total Fuel Cost ($) 291898.16 294006.12 290554.50 293964.84

Total Emissions (lb) 24474.04 24739.27 24332.84 24734.78

Total Customer Incentive ($) 50000 31954.89 50000 32228.39

Total Customer Energy Curtailed (MWh) 1953.02 1518.68 1957.38 1530.03

Total Energy Generated (MWh) 24266.59 24435.32 24156.62 24431.98

Total Energy Loss (MWh) 266 269 264 268.94

Total Profit ($) 1095533.01 1119751.99

open loop’s 28204.86 lb). Again, the closed-loop approach to GTDR-DEED yields better energy

curtailment (1508.77 MWh to open loop’s 1504.47 MWh) and also lower energy loss (307.11 MWh

to open loop’s 311.41 MWh). Finally, the closed-loop approach also yields a higher total customer

incentive ($ 35889.02 to the open loop’s $ 31533.21) and higher total profits ($ 1214384.57 to the

open loop’s $ 1208383.41) Comparing GTDR-DEED under the closed-loop approach and the open

loop approach, from Table 4.6 we see that the closed-loop approach again yields lower total fuel costs,

emissions, energy generated and energy losses. Both approaches yield the same amount of customer

incentive ($50000). Figure 4.11 and Figure 4.12 shows the performance of the open loop controller

and the closed-loop controller with disturbance.
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

 

Figure 4.5: The convergence of the closed-loop solutions to that of the open loop solutions

for GTDR-DEED.

 

Figure 4.6: The convergence of the closed-loop solutions to that of the open loop solutions

for GTDR-PBDEED.

4.5.3 Discussion of Results

The results obtained can be discussed along two lines. Results from GTDR-DEED and GTDR-

PBDEED will be discussed and analysed. Also discussions can be done comparing results obtained
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

 

Figure 4.7: GTDR-DEED closed-loop results with disturbance.

 

Figure 4.8: GTDR-PBDEED closed-loop results with disturbance.

under open loop and closed-loop control strategies. The discussion would focus on the following

economic and power system parameters: Total Fuel Cost ($), Total Emissions (lb), Total Customer

Incentive ($), Total Customer Energy Curtailed (MWh), Total Energy Generated (MWh), Total

Energy Loss (MWh) and Total Profit ($). In simulations done, we gives equal preference to all the

objectives and thus give them equal weights (see equations 4.34 and 4.44). We ignore investigating the
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

 

Figure 4.9: GTDR-DEED open loop results with disturbance.

 

Figure 4.10: GTDR-PBDEED open loop results with disturbance.

effect of varying the weights (and hence the objectives) as this and the effect of using a larger power

system has been done in [8]. As stated earlier, GTDR-PBDEED is for a deregulated environment,

whilst GTDR-DEED is for a regulated environment. From the obtained results in Table 4.5 and Table

4.6, the GTDR-PBDEED saves less power than GTDR-DEED, therefore more power is generated by

GTDR-PBDEED under both open and closed-loop strategies. This means that the emission, cost
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

Table 4.6: Solutions from both open loop and closed-loop with disturbance.

Open Loop Closed-Loop

GTDR GTDR GTDR GTDR

DEED PBDEED DEED PBDEED

Total Fuel Cost ($) 317149.16 318937.26 314454.33 316258.72

Total Emissions (lb) 27943.02 28204.86 27546.48 27865.93

Total Customer Incentive ($) 50000 31533.21 50000 35889.02

Total Customer Energy Curtailed (MWh) 1954.18 1504.47 1954.05 1508.77

Total Energy Generated (MWh) 26273.87 26415.30 26060.27 26200.99

Total Energy Loss (MWh) 308.28 311.41 303.56 307.11

Total Profit ($) 1208383.41 1214384.57

 

Figure 4.11: Total generator output of GTDR-DEED using both open loop and closed-loop

control with disturbance.

and losses of GTDR-PBDEED are greater than those of GTDR-DEED. It can also be seen from

both tables, that because the utility/ISO in GTDR-PBDEED wants to maximize profit, the total

incentive paid to customers never equals the maximum utility budget, unlike in GTDR-DEED where

the maximum utility budget is always reached as maximizing profit is not an objective in this case.

In a nutshell, the results show that DR has benefits to the power system either under a regulated or

deregulated environment. The results also show the superiority of MPC over conventional open loop

approach. MPC returns better results than open loop with and without disturbance. Furthermore the

convergence ability of the MPC algorithm to the open loop solution is also shown. Looking at Figures
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

 

Figure 4.12: Total generator output of GTDR-PBDEED using both open loop and closed-

loop control with disturbance.

4.5 and 4.6 it shows convergence between both closed and open loop solutions. This happens in the

fifth hour for the GTDR-DEED and in the fourth hour for the GTDR-PBDEED case. Both cases

demonstrate the convergence capability of the MPC algorithm. This means that the MPC approach

can be used and restarted at any time instant and would still converge which guarantees optimality

at all times which is very important in practical purposes. Again considering Figures 4.11 and 4.12,

they show that the total generator output of the closed-loop strategy is in the neighbourhood of

the open loop solutions for GTDR-DEED and GTDR-PBDEED respectively. Table 4.6 shows that

the closed-loop approach handles disturbance better and gives better economic and power system

parameters. Comparing Table 4.6 with Table 4.5, it shows that disturbances actually make for a

more inefficient and expensive system. This is because with disturbances under both open loop and

closed-loop control schemes and for both GTDR-DEED and GTDR-PBDEED, the disturbed system

actually returns higher fuel costs, emissions, losses and energy generated (see Table 4.5). However

the closed-loop controller still presents better results than the open loop controller. It is necessary

to provide a comparative analysis of obtained results with similar prior works in the literature [8].

The work in [8] is essentially a GTDR-DEED "open loop controller without disturbance" problem and

the results are in the second column in Table 4.5. Comparing results with the closed-loop controller

(fourth column in Table 4.5), as has been shown before it is seen that the closed-loop approach returns

lower fuel costs ($ 290554.50 to the open loop’s $ 291898.16), lower emissions (24332.84 lb to open

loop’s 24474.04 lb) and lower energy loss (264 MWh to open loop’s 266 MWh) whilst the closed-loop

approach to GTDR-DEED yields better energy curtailment (1957.38 MWh to open loop’s 1953.02
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Chapter 4 GTDR-DEED and GTDR-PBDEED using an MPC approach

MWh).

4.6 CHAPTER SUMMARY

In this chapter, a game theory based demand response program (GTDR) is integrated into both the

DEED and PBDEED problems. The resultant GTDR-DEED model has the minimization of fuel

costs, emissions and maximization of utility benefit as its objectives and the GTDR-PBDEED has the

maximization of profit and utility benefit and the minimization of emissions as its objectives. Both

models determine the optimal generator output, customer power curtailed and customer incentives.

MPC technique (a closed-loop technique) has been applied in solving both the GTDR-DEED and

GTDR-PBDEED models. Furthermore a comparison was provided between the performances of the

open loop model with that of the closed-loop model. Obtained results indicate that the closed-loop

model of GTDR-DEED and GTDR-PBDEED generally yields better results using the defined solution

parameters than its open loop counterpart. Also the closed-loop model showed convergence and better

handling of uncertainty and disturbances in system parameters.
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CHAPTER 5

INCORPORATING GTDR INTO A GRID

CONNECTED HYBRID MICROGRID

5.1 CHAPTER OVERVIEW

In this chapter, the economic dispatch of a microgrid with renewable energy sources and having

demand response is presented. The microgrid is principally powered by conventional distributed gen-

eration generators and supplemented with stochastic renewable energy sources coupled with demand

response. The grid connected operational modes is considered in this chapter and the optimal dispatch

strategy is obtained by minimizing the generators cost and demand response cost whilst simultaneously

satisfying the load demand constraints amongst other constraints. The developed mathematical model

is tested on a case study under both operational modes and obtained results show the effectiveness of

the developed model. Results from this chapter have been published in [15]

5.2 MATHEMATICAL MODEL OF MICROGRID

The microgrid used in this thesis, consists of conventional generators and RES at the supply side and

demand response formulations at the customer side. The RES consists of a PV system and a wind

energy system. The energy produced from a PV generator St in an hour is given as [73]

St = npvAcIpvt, (5.1)

where npv is the efficiency of the solar PV generator/array, Ipvt (kW h/m2) is the solar irradiation

incident on the solar PV array per hour, Ac is the PV array’s area and St is energy produced from

from the solar generator on a hourly basis. The hourly output of a wind generator is highly dependent
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

on the wind speed and the wind speed is given as [73]:

vhubt = vreft

(
hhub

href

)β
, (5.2)

where vhubt is the wind speed per hour at the required elevation hhub, vreft is the wind speed per

hour at the reference elevation href and β is defined as the power law exponent ranging from 1
7 to 1

4 .

For the purpose of this thesis, 1
7 is used. To mathematically correlate the hourly wind speed to power

generated, the following mathematical notation is used [73]:

Wt = 0.5nwρairCpAV 3, (5.3)

where V is the wind velocity at hub height, ρair is the air density, Cp is the power coefficient of the

wind turbine, depending the chosen design, A is the area of the wind turbine rotor swept area, nw
the efficiency of the wind generator and Wt is the wind generator energy output per hour.

The mathematical models for the microgrid at the supply side and the demand response model at the

demand side are presented in the following subsections.

5.2.1 Grid-Connected Microgrid

One of the major advantages of a grid connected microgrid is that it is possible for power to be traded

with the main grid. In this thesis, we assume that a trading scheme exists whereby power can either be

sold to the main grid. This trading scheme exists to cater for the intermittent nature of RES. Thus if

Wt is the forecast (maximum) wind power obtainable from the wind generator while St is the forecast

(maximum) solar power obtainable from the solar generator, we define Pwt as the power generated

by the wind generator and Pst as the power generated by the solar generator in the microgrid at time

t. If the microgrid’s supply cannot meet its demand, then power has to be purchased from the main

grid, and if the microgrid’s supply exceeds its demand, then the excess power can be sold to the main

grid. We thus denote Prt as the transferable power between the microgrid and the main grid at time

t.

If an assumption is made that Locational Marginal Prices (LMP’s) [40, 39] are used to purchase power

between the main and micro grid from a specific interface bus (given as γt), then the total transaction

cost for trading transferable power is Cr(Prt) and is given as :

Cr(Prt) =


γt × Prt Prt > 0

0 Prt = 0

−γt × Prt Prt < 0

 . (5.4)
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

The objective function in the grid connected mode is thus to minimize the fuel cost of the conventional

generators and the transaction costs of the transferable power and is given as:

min

T∑
t=1

I∑
i=1

Ci(Pi,t) +
T∑
t=1

Cr(Prt). (5.5)

s.t.

I∑
i=1

Pi,t + Pwt + Pst + Prt = Dt, (5.6)

Pi,min ≤ Pi,t ≤ Pi,max, (5.7)

0 ≤ Pwt ≤Wt, (5.8)

0 ≤ Pst ≤ St, (5.9)

−Prmax ≤ Prt ≤ Prmax, (5.10)

−DRi ≤ Pi,t+1 − Pi,t ≤ URi, (5.11)

where Prt is the transferable power between the main grid and the microgrid at time t;

Cr(Prt) is the transaction cost for trading transferable power at time t;

Wt is the forecast (maximum) wind power obtainable from the wind generator while St is the forecast

(maximum) solar power obtainable from the solar generator.

Pi,t is the power generated from conventional generator i at time t;

Pwt is the power generated from the wind generator at time t;

Pst is the power generated from the solar generator at time t;

Ci is the fuel cost of conventional generator i;

Dt is the total system demand at time t;

Pi,min and Pi,max are the minimum and maximum capacity of generator i respectively;

Prmax is the maximum power that can be transferred between the main grid and microgrid;

DRi and URi are the maximum ramp down and up rates of conventional generator i respectively;

ai and bi are the fuel cost coefficients of conventional generator i respectively;

I and T are the number of conventional generators and the dispatch interval respectively.
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

The following is a brief description of the constraints:

• The first constraint (5.6) is the power balance constraint and ensures that at any time t, the total

power generated from the conventional, wind and solar generators and the power transferred

from the main grid equals the total demand.

• The second constraint is the generation limits constraint for the conventional generators (5.7)

and ensures that the generator limits are not exceeded; and

• The third and fourth constraints are the generation limits constraint for the renewable generators

((5.8) and (5.9)). They ensure that the optimal values for the wind and solar generators are

less than or equal to the forecast or maximum values; and

• The fifth constraint (5.10) is the limit for the transferable power between the main grid and

microgrid. This is dictated by the physical characteristics of the transmission facilities between

the main grid and microgrid; and

• The final constraint (5.11) is the conventional generator ramp rate limits constraints and ensures

that the generator ramp rate limits are not violated.

For the sake of simplicity, the conventional generator fuel cost (5.12) is assumed to be a quadratic

functions of the generators active power output and is given as [72]:

Ci(Pi,t) = aiP
2
i,t + biPi,t, (5.12)

5.2.2 Demand Response Model

The Demand Response (DR) model used in this thesis is an incentive based DR program utilizing

concepts from Game Theory. Thus it is termed a Game Theory Demand Response Program (GTDR).

For a full description of the modified GTDR model, the reader is referred to Chapter 3. As stated

earlier, it has been structured in such a way that is beneficial to participating DR customers. Towards

this end, is is extremely essential that the customers curtailment cost be accurately captured and

factored into the design of the DR program. The customer outage cost function is assumed to be

quadratic and is given by:

(K1,jx
2
j,t +K2,jxj,t −K2,txj,tθj). (5.13)
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

where K1,j and K2,j are the cost function coefficients of customer j;

xj,t is the amount of power curtailed by a customer j at time t;

yj,t is the incentive of a participating customer j at time t;

θj is the "customer type" [8, 36]. θ is normalized in the interval 0 ≤ θ ≤ 1 and categorizes the

different kinds of customers based on their willingness or readiness to shed power, with θ = 0 being

the least willing and θ = 1 the most willing customer.

The objective of the Game Theory Demand Response (GTDR) formulations is to maximize the mi-

crogrid operator’s DR benefit:

maxx,y

T∑
t=1

J∑
j=1

[λj,txj,t − yj,t] (5.14)

s.t.
T∑
t=1

[
yj,t − (K1,jx

2
j,t +K2,jxj,t −K2,txj,tθj)

]
≥ 0, for j = 1, . . . , J, (5.15)

∑T
t=1
[
yj,t − (K1,jx

2
j,t +K2,jxj,t −K2,txj,tθj)

]
≥∑T

t=1
[
yj−1,t − (K1,j−1x

2
j−1,t +K2,j−1xj−1,t −K2,j−1xj−1,tθj−1)

]
for j = 2, . . . , J,

, (5.16)

T∑
t=1

J∑
j=1

yj,t ≤ UB, (5.17)

T∑
t=1

xj,t ≤ CMj , (5.18)

where λj,t is the "value of power interruptibility" of participating customer j at time t. This parameter

gives the cost of not delivering electric power to a particular location on the microgrid. λj,t can be

calculated from optimal power flow routines (OPF);

UB is the microgrid operator’s total budget;

CMj is the daily limit of interruptible energy for customer j;

J and T are the total number of customers and the total time interval respectively;

The following is a concise description of the constraints:

Constraint (5.15) is known as the "Individual rationality constraint". It’s role is to constrain the

customer benefit to surpass zero.

Constraint (5.16) is termed the "Incentive compatibility constraint". It’s role is to make sure that

the amount of compensation received by customers is commensurate with the amount of load they
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

Figure 5.1: System set-up of a grid connected microgrid with a demand response model.

curtailed.

The role of constraint (5.17) is to make sure that the utility daily total program expenditure is lower

than or equal to it’s daily budgeted amount.

The role of constraint (5.18) is to make sure that the amount of load shed by each customer is less

than the customers maximum allowable curtailable power.

5.2.3 Combined Microgrid and Demand Response Model

5.2.3.1 Grid-connected Microgrid with Demand Response Model

For the grid connected microgrid with a demand response model, there are two objective functions.

One objective function seeks to minimize the fuel cost of conventional generators and the transac-

tion cost for trading transferable power. The second objective function seeks to maximize the grid

operator’s DR benefit.

The mathematical formulation is presented below:

min w

[
T∑
t=1

I∑
i=1

Ci(Pi,t) +
T∑
t=1

Cr(Prt)
]

+ (1− w)

 T∑
t=1

J∑
j=1

[yj,t − λj,txj,t]

 . (5.19)

subject to the following network constraints:

I∑
i=1

Pi,t + Pwt + Pst + Prt = Dt −
J∑
j=1

xj,t, (5.20)

Pi,min ≤ Pi,t ≤ Pi,max, (5.21)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

0 ≤ Pwt ≤Wt, (5.22)

0 ≤ Pst ≤ St, (5.23)

−Prmax ≤ Prt ≤ Prmax, (5.24)

−DRi ≤ Pi,t+1 − Pi,t ≤ URi, (5.25)

T∑
t=1

[yj,t − (K1,jx
2
j,t +K2,jxj,t −K2,txj,tθj)] ≥ 0, for j = 1, . . . , J, (5.26)

∑T
t=1[yj,t − (K1,jx

2
j,t +K2,jxj,t −K2,txj,tθj)] ≥∑T

t=1[yj−1,t − (K1,j−1x
2
j−1,t +K2,j−1xj−1,t −K2,j−1xj−1,tθj−1)]

for j = 2, . . . , J,

, (5.27)

T∑
t=1

J∑
j=1

yj,t ≤ UB, (5.28)

T∑
t=1

xj,t ≤ CMj , (5.29)

where w and 1 − w are the objective function weights and the following condition is required to be

satisfied when choosing weights:

w + (1− w) = 1. (5.30)

The variables to be determined by the optimization model are xj,t,yj,t, Pwt, Pst, Prt and Pi,t.

5.3 SIMULATION RESULTS AND DISCUSSIONS

To verify the proposed microgrid energy management with demand response mathematical formula-

tions, a case study consisting of three conventional (diesel) generator units, one wind generator, one

solar generator and three customers is used. A scheduling interval of 24 hours is considered, however

for the solar generator a scheduling interval of 8 hours (8 AM - 6 PM) is considered. The decision

variables are xj,t, yj,t, Pwt, Pst, Prt and Pi,t. Table 5.1 shows the conventional generator parameters.
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

Table 5.1: Data of the three-unit system.

i ai bi Pi,min Pi,max DRi URi

1 0.06 0.5 0 4 3 3

2 0.03 0.25 0 6 5 5

3 0.04 0.3 0 9 8 8

Table 5.2 gives the initial hourly microgrid demand and the hourly values of power interruptibility

(λj,t). The wind and solar generators have power ratings of between 0 - 11 kW and 0 - 15 kW re-

spectively and the maximum power that can be transferred between the main grid and microgrid is

given as 4 kW. For this microgrid it is initially assumed that all three customers have equal values of

power interruptibility. Table 5.4 details the cost function coefficients, customer type and daily cus-

tomer power limit. The assumption is that the microgrid operator knows the customers daily limit of

interruptible energy (CMj) which it then uses to rank the customers in order of increasing willingness

to curb electric power. In other words, CMj aids the microgrid operator in determining θj . Also, the

microgrid operator knows the outage cost function coefficients of participating customers (K1,j and

K2,j) and the microgrid operator’s daily budget (UB) is $ 500. Values for Wt and St are adapted

from [73] and shown in Table 5.3.

The Advanced Interactive Multidimensional Modelling System (AIMMS) [41] is utilized to build and

solve the resulting mathematical models using the CONOPT solver.

5.3.1 Grid-Connected Mode

In the simulations for the grid connected microgrid (equations (5.19)-(5.30)), w = 0.5. Figure 5.2

shows the optimal output power from the three conventional generators, Figure 5.3 shows the optimal

transferred power between the main grid and micro grid. Figure 5.4 shows the optimal customer power

curtailed and incentive received for curtailment by each microgrid consumer. The complete model

results detailing the optimal power generated by conventional generators, optimal power generated by

wind and solar generators, optimal power transferred between the main grid and microgrid, optimal

power curtailed by the customers and optimal incentive by the customers is shown in Tables 7, 8, 9

and 10 in the Appendix. Table 5.5 gives the total daily energy curtailed and incentive received by

each of the customers.
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

Table 5.2: Total initial hourly demand and λ values

Time(h) Dt (kW) λj,t ($)

1 31.83 1.57

2 31.40 1.40

3 31.17 2.20

4 31.00 3.76

5 31.17 4.50

6 32.10 4.70

7 32.97 5.04

8 34.10 5.35

9 37.53 6.70

10 38.33 6.16

11 40.03 6.38

12 41.17 6.82

13 39.67 7.30

14 41.70 7.80

15 42.10 8.50

16 41.67 7.10

17 40.70 6.80

18 40.07 6.30

19 38.63 5.80

20 36.40 4.20

21 34.10 3.80

22 32.80 3.01

23 32.50 2.53

24 32.00 1.42

5.3.2 Discussion of Results

A close look at results obtained from the simulations provides interesting underlying perspectives

on the operational mode of the microgrid. It is observed that the conventional generators in the

microgrid cannot satisfy demand alone. This now makes it imperative that the microgrid deploys the

DR program and transacts with the main grid. From Figure 5.3 we see that when Prt is negative,

power is being sold to the main grid whilst if it is positive, power is being bought from the main grid.

Thus from the figure, it is observed that power is bought in the early hours of the morning and late at

night when the renewable energy sources are not producing at their maximum. When the renewable

energy sources are fully on stream, there is power available to sell to the main grid especially when the
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

Table 5.3: Forecast power from the wind and solar generators

Time(h) Wt (kW) St (kW)

1 7.56 0

2 7.50 0

3 8.25 0

4 8.48 0

5 8.48 0

6 9.42 0

7 9.82 0

8 10.35 7.99

9 10.88 10.56

10 11.01 13.61

11 10.94 14.97

12 10.68 15

13 10.42 14.78

14 10.15 14.59

15 9.67 13.56

16 8.98 11.83

17 8.37 10.17

18 7.61 7.66

19 6.70 0

20 5.72 0

21 7.21 0

22 7.75 0

23 7.88 0

24 7.69 0

Table 5.4: Customer cost function coefficients, customer type and daily customer curtailable

energy limit

j K1,j K2,j θj CMj

1 1.079 1.32 0 30

2 1.378 1.63 0.45 35

3 1.847 1.64 0.9 40

solar generator comes on stream. Due to the fact that power from the conventional generators costs

less than power transferred from the main grid, the conventional generators have to produce close to

their maximum output (see Figure5.2).
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

 

Figure 5.2: Optimal power from conventional generators

 

Figure 5.3: Optimal power transferred between main grid and microgrid

Figure 5.4 shows the power curtailed and incentive received by each customer. Table 5.5 shed more

light on these results as they show that the customers receive incentive payments in line with the

amount of load they curtail (i.e. customer willingness). Thus, Customer 3 has a greater incentive

than Customers 1 and 2, as Customer 3 curtails the greatest amount of energy and is thus the most

willing customer. Customer 1 curtails the least amount of energy and thus receives the least amount
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

 

Figure 5.4: Customer power curtailed and incentive paid

Table 5.5: Total energy curtailed and customer incentive received

j Total energy curtailed (kWh) Total incentive ($)

1 30 103.27

2 35 122.66

3 40 145.32

of incentive. This show that the "incentive compatibility constraint" is not violated.

In simulations performed, it is assumed that the grid operator places equal preference to the two

objective functions (w = 0.5). This is known as the Base Case. However it is crucial in multi-

objective optimization problems to analyse and view the impact of giving varied preference weights

to objectives and how they influence the microgrid solutions. Thus (w is varied from 0 to 1). When

(w = 1), it means that the objective is to minimize fuel cost /transaction cost with no attention

paid to the grid operator DR benefit. When (w = 0), it means the objective is to maximize the

grid operator DR benefit and ignore the minimization of the fuel cost/ transaction cost. Results of

this experiment is presented in Table 5.6. The analysis is done by collecting six parameters from the

model. The parameters collected are the total conventional power cost (i.e. the total cost of power

from the conventional generators), total transferred power transaction cost (i.e. the total cost of power

transferred between the main grid and microgrid), total customer incentive (i.e. daily total monetary

amount received by the customers as incentive for shedding power), total customer energy curtailed

(i.e. total energy all customers curtailed over a 24 hour period), total conventional energy generated
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

(i.e. total energy generated by the conventional generators) and total transferred energy (i.e. total

energy transferred between the main grid and the microgrid). The results of the simulations are shown

in Table 5.6 and show the trade off’s between the two objectives. The results show that lower costs

are achieved in the microgrid when the grid operator’s DR benefit is maximized at the expense of

minimizing fuel/transaction costs.

To further investigate the robustness of our model, we perform sensitivity analysis of the model to the

values of power interruptibility (λj,t). It is initially assumed that in the microgrid, all three customers

have equal λj,t, however we investigate the effect of varying λj,t on obtained results. We assume that

Customer 1 has a λj,t that is 90% of it’s initial λj,t, while Customer 3 has a λj,t that is 110% of their

initial λj,t. Figure 5.5 shows the different values of power interruptibility for each customer. From

Table 5.7 we see this effect on the results on of the microgrid and especially on the customers. We

observe that a clear link between λ and the customer is shown as the customer who had a λ decrease,

also had a reduction in incentive for the same amount of power curtailed, the customer with the same

λ had essentially the same incentive whilst the customer with λ increase had an increase in incentive.

It is worth noting that the incentive compatibility constraint from game theory still holds and is not

violated.

Finally we investigate the effect of CMj on the grid connected microgrid model. In the default case

C3 in Table 5.8, the total daily energy curtailed by all three customers is 105 kWh. We vary the total

value from between 95 kWh to 115 kWh and check the sensitivity of the microgrid via our obtained

solutions to CMj . From Table 5.9 we see very clearly the effect. As the load customers agree to

curtail increases, the conventional energy generated by conventional generators reduces and thus the

cost reduces. Again as more energy is curtailed by the customers, the incentive increases. This is

perfectly rational and expected. Furthermore as the energy curtailed by customers increases, there

is an increase in the energy to be transferred between the main grid and the microgird (see Figure

5.6). This also leads to a corresponding increase in the total transferred power transaction cost. A

breakdown of this transferred power in Table 5.10 shows that as CMj increases the power bought from

the main grid reduces while there is an increase in the power sold by the microgrid to the main grid.

Thus it follows that if we want to be able to sell more power to the microgrid (reduce the instances of

Prt having positive values in Figure 5.3 and Figure 5.6) we have to curtail more power. This insight

is very important especially in instances where the price for selling power to the main grid differs from

the buying price.

5.4 CHAPTER SUMMARY

In this chapter, the energy management problem for a microgrid incorporating a demand response

program was investigated. The demand response program is a game theory based demand response
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

 

Figure 5.5: Varying values of power interruptibility.

 

Figure 5.6: Effect of varying CMj on Prt

program (GTDR) and the grid connected operational mode for a microgrid is investigated. The

objective is to minimize the fuel cost of conventional generators and the transaction cost for trading

transferable power and at the same time maximize the grid operator DR’s benefit. The optimization

model has a scheduling interval of 24 hours and determines the optimal customer power curtailed,

optimal customer incentive, optimal power generation schedule for the conventional generators and
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

Table 5.6: Investigating the effect of w on the grid connected microgrid.

w = 0 w = 0.1 w = 0.2 w = 0.3 w = 0.4

Total Conventional Power Cost ($) 237 240 241 244 246

Total Transferred Power Transaction Cost ($) 417 383 381 393 407

Total Customer Incentive ($) 340 349 360 361 363

Total Customer Energy Curtailed (kWh) 101 103 105 105 105

Total Conventional Energy Generated (kWh) 411 416 417 420 423

Total Transferred Energy (kWh) 83.5 76.9 76.2 78.2 80.8

w=0.5

Total Conventional Power Cost ($) 250

Total Transferred Power Transaction Cost ($) 427

Total Customer Incentive ($) 371

Total Customer Energy Curtailed (kWh) 105

Total Conventional Energy Generated (kWh) 428

Total Transferred Energy (kWh) 84.5

w = 0.6 w = 0.7 w = 0.8 w = 0.9 w = 1.0

Total Conventional Power Cost ($) 256 264 270 270 270

Total Transferred Power Transaction Cost ($) 443 436 454 450 450

Total Customer Incentive ($) 391 433 500 500 500

Total Customer Energy Curtailed (kWh) 105 105 105 105 105

Total Conventional Energy Generated (kWh) 434 443 450 450 450

Total Transferred Energy (kWh) 87.9 86.9 89.9 88.9 88.9

Table 5.7: Total customer energy curtailed and incentive paid for grid connected microgrid

with varying lambda.

j Total Energy Curtailed (kWh) Total Incentive ($)

1 30 102.42

2 35 122.49

3 40 146.92

optimal power to be transferred between the main grid and microgrid. The Advanced Interactive

Multidimensional Modelling System (AIMMS) is used to solve the developed model, and obtained

results indicate that incorporating DR programs into the energy management of microgrid problem

is helpful and introduces optimality at both the supply and demand side of the microgrid. Sensitivity

analysis of obtained results to the weighting factor, value of power interruptibility and total value of

customer power curtailed was performed to validate the robustness of obtained solutions.
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Chapter 5 Incorporating GTDR into a grid connected hybrid microgrid

Table 5.8: Varying CMj .

j C1 (kWh) C2 (kWh) C3 (kWh) C4 (kWh) C5 (kWh)

1 27.5 28.75 30 31.25 32.5

2 32.5 33.75 35 36.25 37.5

3 35 37.5 40 42.5 45

Total 95 100 105 110 115

Table 5.9: Effect of Varying CMj on the Grid Connected Microgrid.

C1 C2 C3 C4 C5

Total Conventional Power Cost ($) 255 252 250 248 246

Total Transferred Power Transaction Cost ($) 414 420 427 433 438

Total Customer Incentive ($) 320 345 371 399 428

Total Customer Energy Curtailed (kWh) 95 100 105 110 115

Total Conventional Energy Generated (kWh) 434 431 428 425 423

Total Transferred Energy (kWh) 82.4 83.4 84.4 85.1 85.5

Table 5.10: Breakdown of the effect of varying CMj on the power transferred between main

grid and microgrid

C1 C2 C3 C4 C5

Total Energy Bought from Main Grid (kWh) 36.25 35.72 35.19 34.55 33.66

Total Energy Sold to the Main Grid (kWh) -46.13 -47.67 -49.18 -50.57 -51.83
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CHAPTER 6

THE DEED PROBLEM WITH A TIME OF USE

DR PROGRAM

6.1 CHAPTER OVERVIEW

In this chapter, a Time of Use Demand Response (TOUDR) program is incorporated into the multi-

objective dynamic economic emission dispatch (DEED) optimization problem. The resulting optimiz-

ation problem is termed TOUDR-DEED. The DR program has been developed using the customers’

Price Elasticity Matrices (PEM), which models the customer behaviour under different conditions.

An interactive control strategy between utility and consumers is proposed for the combined TOUDR-

DEED model which determines the optimal power to be generated by minimizing fuel, emissions and

DR costs and also the optimal price. The customer in light of the utility’s optimal price minimizes

its electricity cost and optimally schedules power consumption. Obtained results indicate that volun-

tary DR programs are mutually beneficial to utility and consumers alike and can bring about desired

demand reduction in the power system. Results from this chapter have been published in [14].

6.2 DYNAMIC ECONOMIC EMISSIONS DISPATCH

The mathematical representation is presented below [5]:

min

T∑
i=1

Ng∑
k=1

Ck(Pk,i), (6.1)

min

T∑
i=1

Ng∑
k=1

Ek(Pk,i), (6.2)
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Chapter 6 The DEED problem with a Time of Use DR program

with

Ck(Pk,i) = ak + bkPk,i + ckP
2
k,i, (6.3)

Ek(Pk,i) = dk + ekPk,i + fkP
2
k,i, (6.4)

subject to the following network constraints:

Ng∑
k=1

(Pk,i) = Di + lossi, (6.5)

Pk,min ≤ Pk,i ≤ Pk,max, (6.6)

−DRk ≤ Pk,i+1 − Pk,i ≤ URk, (6.7)

lossi =
Ng∑
k=1

Ng∑
j=1

Pk,iBj,kPj,i, (6.8)

where

Pk,i is the power generated from generator k at time i;

Ck is the fuel cost of generator k;

Ek is the emissions cost for generator k;

Di is the total system demand at time i;

lossi is the total system losses at time i;

Pk,min and Pk,max are the minimum and maximum capacity of generator k respectively;

DRk and URk are the maximum ramp down and up rates of generator krespectively;

ak, bk and ck are the fuel cost coefficients of generator k respectively;

ek, fk and gk are the emission cost coefficients of generator k respectively;

Bj,k is the jk th element of the loss coefficient square matrix of size Ng;

Ng and T are the number of generators and the dispatch interval respectively.

The following is a brief description of the constraints:

• The first constraint (6.5) is termed the power balance constraint. This constraint compels the

total power generated at time t to equal the sum of the power demand and transmission losses.

• Constraint (6.6) is the constraint for generator limits and restricts the amount of generated

power to the allowable range for each generator; and

• Constraint (6.7) is the generator ramp rate constraints and restricts the ramp rates for the

generators to their allowable ranges.
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Chapter 6 The DEED problem with a Time of Use DR program

The multi-objective optimization can be transformed into a single objective function using a weighting

factor w subject to the same constraints (6.5)-(6.7).

min

w T∑
i=1

Ng∑
k=1

Ck(Pk,i) + (1− w)
T∑
i=1

Ng∑
k=1

Ek(Pk,i)

 . (6.9)

6.3 PRICE BASED DR PROGRAMS

As stated before, in price based DR programs there is a time variation of electricity tariffs. The price

based DR program used in this chapter is the TOUDR program. For this kind of program, the price

of elasticity is calculated for peak, off-peak and standard times based on the energy cost in each time

period. The aim is to encourage consumers to curtail their energy use to take advantage of favourable

prices [50]-[51].

6.3.1 Price Elasticity Matrices

Elasticity is a yard stick used to measure the sensitivity of consumer reactions to price. Ideally, if the

price of specific goods or services increases, then the demand for that service decreases. Therefore, an

elasticity coefficient is simply a measure to indicate the change in demand of a commodity stemming

from a change in price of that commodity. Mathematically, elasticity can be represented as:

E = 4d/d0

4p/p0
, (6.10)

E = 4dp0

4pd0
, (6.11)

where 4d is the change in demand, 4p change in price, d0 is the initial demand and p0 initial price

[55]. It is necessary to mention that the above elasticities are known as self elasticities. Another

variant of elasticity is the cross elasticity. Cross elasticities measure the change in demand of a

specific commodity, stemming from a change in the price of another different commodity. From a

power systems perspective, if a price increase in off-peak hours causes demand in these off-peak hours

to decrease, then we measure with self elasticity. When a price increase in off-peak hours leads to

an increase in demand in peak hours, then we utilize cross elasticity. As a rule, self elasticities are

negative and cross elasticities are positive. The mathematical representation of cross elasticities is

given below:

E(i, j) = 4di/d0i

4pj/p0j
, (6.12)

E(i, j) = 4di × p0j

4pj × d0i
, (6.13)

where i and j indicate two different time periods such as peak and off-peak, d0i denotes the initial

demand at time instant i, p0j is the initial price at time instant j. 4pj is the change in price at time
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Chapter 6 The DEED problem with a Time of Use DR program

j and 4di is the change in demand at time i. For a power system, if all the elasticities are to be

measured over a specific interval (i.e. a 24 hour period), then there is the need for an elasticity matrix,

in which the diagonal represent the self elasticities and the off-diagonal elements represent the cross

elasticities. 

E(1, 1) E(1, 2) ... ... E(1, 24)

E(2, 1) E(2, 2) ... ... E(2, 24)

... ... E(i, j) ... ...

... ... ... ... ...

E(24, 1) E(24, 2) ... ... E(24, 24)


. (6.14)

The load economic profile for Price Based DR programs is given below [56]:

Let B(di) be the total customer benefit in time i from the use of di kWh of electrical energy and let

pi be the electricity price during hour i, therefore

Customers profit

Si = B(di)− pidi, (6.15)

To maximize customers’ profit, ∂Si

∂di
should be equal to zero, therefore

∂Bd(i)
∂di

= pi, (6.16)

The most common benefit function is the quadratic benefit function defined as [56]:

B(di) = B(d0i) + p0i(di − d0i)
[
1 + di − d0i

2E(i, i)d0i

]
, (6.17)

where

d0i is the initial demand at time i, i = 1, 2, . . . , 24;

p0i is the initial demand at time i, i = 1, 2, . . . , 24;

E(i, i) is the self elasticity;

B(d0i) is the benefit at d0i;

∂Bd(i)
∂di

= p0i

[
1 + di − d0i

E(i, i)d0i

]
, (6.18)

Equating (6.16) and (6.18) we obtain that:

di = d0i

[
1 + E(i, i)[pi − p0i]

p0i

]
, (6.19)

Similarly for the multi period elastic loads, it is assumed that demand rescheduling occurs. Thus, the

demand at time i is a function of prices at times i=1, 2, . . . , T . In this thesis we assume T = 24 and

the cross elasticity in (6.12) is reproduced below:

E(i, j) = 4di/d0i

4pj/p0j
, (6.20)
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Chapter 6 The DEED problem with a Time of Use DR program

Working with the linearity assumption that 4di

4pj
is constant for i, j = 1, 2, 3, . . . , 24, the following

relationship is obtained between price and demand:

di = d0i

[
1 +

∑24
j=1 E(i, j)[pj − p0j ]

p0j

]
, (6.21)

Combining the single period (6.19) and multi period (6.21) we obtain:

di = d0i

[
1 + E(i, i)[pi − p0i]

p0i
+
∑24
j=1 E(i, j)[pj − p0j ]

p0j

]
. (6.22)

6.4 COMBINED INTERACTIVE DEMAND RESPONSE - DYNAMIC ECONOMIC

EMISSIONS ECONOMIC DISPATCH (DR-DEED)

The DR target loads fall into three different classes [53],[55]. The load classes are: inflexible loads,

flexible loads and night-time loads. For instance the inflexible loads are the customer loads that must

be switched on. Customers would not curtail these loads to participate in demand response programs

as they impact heavily on the benefit of customers. For residential customers, examples of these kinds

of loads are cookers, stoves, refrigerators and heating systems. Depending on the industry, some loads

are also inflexible for industrial customers like industrial motors for some critical processes. The other

loads are loads that customers are willing to curtail. However, customers have varying load responses

to price increases hence different degrees of flexibility. Flexible loads are loads that customers are

completely flexible about. They can readily adjust these loads to price variations. Examples of such

kinds of loads for residential customers are vacuum cleaners, dishwashers and water purifiers/boilers.

Industrial examples of this kind of load are industrial pumps. Finally night-time loads are loads that

the customer can schedule to hours with the lowest electricity prices, e.g. late in the night and very

early hours of the morning. Examples of such kinds of loads for residential customers are washing

machines, electric hot water heaters and tumble dryers. For industrial customers, these can include

furnaces. It is assumed that there is a mix of these classes of loads in the power system with the total

power system load, a summation of the three different classes. It is further assumed that the utility

has an estimate of each class of load and each load class has a different price elasticity matrix (PEM).

The PEM’s are obtained through a historical analysis of customers’ demand response to increases or

decreases (deviations) in the price of electricity. Each load class has a different PEM, i.e. a 24 × 24

square matrix. The difference between the PEM of each load class is the position of the non-zero

elements in the matrix. Equations (6.23), (6.24) and (6.25) show sample PEM structure for inflexible,

flexible and night-time loads respectively.
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Chapter 6 The DEED problem with a Time of Use DR program

Einflexible =



E(1, 1) E(1, 2) 0 0 0 0 0

E(2, 1) E(2, 2) 0 0 0 0 0

0 0 E(3, 3) E(3, j) 0 0 0

0 0 E(i, 3) E(i, j) E(i, 22) 0 0

0 0 0 E(22, j) E(22, 22) 0 0

0 0 0 0 E(23, 22) E(23, 23) E(23, 24)

0 0 0 0 0 E(24, 23) E(24, 24)


, (6.23)

Eflexible =



E(1, 1) 0 0 0 0 0 0

E(2, 1) E(2, 2) 0 0 0 0 0

E(3, 1) E(3, 2) E(3, 3) 0 0 0 0

E(4, 1) E(4, 2) E(4, 3) E(4, j) 0 0 0

E(5, 1) E(5, 2) E(5, 3) E(5, j) 0 0 0

0 E(6, 2) E(6, 3) E(6, j) 0 0 0

0 0 E(7, 3) E(7, j) 0 0 0

0 0 0 E(8, j) 0 0 0

0 0 0 0 E(19, 22) E(19, 23) 0

0 0 0 0 E(20, 22) E(20, 23) E(20, 24)

0 0 0 0 E(21, 22) E(21, 23) E(21, 24)

0 0 0 0 E(22, 22) E(22, 23) E(22, 24)

0 0 0 0 0 E(23, 23) E(23, 24)

0 0 0 0 0 0 E(24, 24)



, (6.24)

Enight−time =



E(1, 1) E(1, 2) ... E(1, j) ... E(1, 23) E(1, 24)

E(2, 1) E(2, 2) ... E(2, j) ... E(2, 23) E(2, 24)

0 0 E(3, 3) 0 0 0 0

0 0 0 E(i, j) 0 0 0

0 0 0 0 E(22, 22) 0 0

E(1, 23) E(2, 23) ... E(i, 23) ... E(23, 23) E(23, 24)

E(1, 24) E(2, 24) ... E(i, 24) ... E(23, 24) E(24, 24))


.

(6.25)

Since there are three types of load classes m;m = 1, 2, 3, the total system load is a summation of the

three load classes. We define dm0i as the initial estimated participating load of class m at time i. The

total initial system load d0i=
∑3
m=1 d

m
0i and dmi is defined as the responding or participating load of

class m at time i. The total final system load di=
∑3
m=1 d

m
i . The cost of the voluntary DR program

to the utility at time i can therefore be defined as:
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Chapter 6 The DEED problem with a Time of Use DR program

COSTDRi = p0id0i − pidi (6.26)

Thus, the weighted single objective DR-DEED mathematical formulation from the utility perspective

can be gives as shown in equation (6.27):

min

w
 T∑
i=1

Ng∑
k=1

Ck(Pk,i) +
T∑
i=1

COSTDRi

+ (1− w)
T∑
i=1

Ng∑
k=1

Ek(Pk,i)

 . (6.27)

subject to the following network constraints:

Ng∑
k=1

(Pk,i) = Di + lossi, (6.28)

Pk,min ≤ Pk,i ≤ Pk,max, (6.29)

−DRk ≤ Pk,i+1 − Pk,i ≤ URk, (6.30)

where

dmi = dm0i

[
1 + Em(i, i)[pi − p0i]

p0i
+
∑24
j=1 Em(i, j)[pj − p0j ]

p0j

]
. (6.31)

An interactive control strategy is used in this research. The reason behind an interactive

control strategy is to obtain a final optimal price and energy levels satisfactory to both the

utility and customers. Thus, the utility initially determines the optimal price (pi) and sug-

gested energy level (di) using (equations (6.27)-(6.31)). The customers respond by scheduling

their appliances and loads in light of the provided utility price. The responding customers’

energy levels are sent back to the utility and the utility revises the PEM’s using equation

(6.13). The utility again determines the price in light of the responding customers’ energy

levels and revised PEM’s. This process is repeated until convergence is achieved. Figure 6.1

shows the complete flow chart for the proposed interactive control strategy. The intention of

this interactive design of the DR program is to seek an optimal price signals and a desired

level of market participation of the DR program.
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Chapter 6 The DEED problem with a Time of Use DR program

Figure 6.1: Flowchart of the Interactive TOUDR-DEED Program.

6.4.1 Customer Side Objective Function and Constraints

The participating customer first needs to classify his loads into the three available loads

classes: flexible, inflexible and night-time loads. The customer’s optimization model has an

objective function that minimizes the electricity bill/costs of all three kinds of loads. In

the model formulation given below, i represents time slot and a represents the loads of the

industrial customer. The decision variable is binary Via which is either 1 or 0 and represents

if the load a is switched on or off in time slot i. The consumers are assumed to be acting

rationally and seek to minimize electricity costs of all loads, devices, machines or appliances.

We assume a scheduling interval of one hour, thus in one day there will be 24 time slots. The

objective function and constraints are represented mathematically below:

min
24∑

i=1

A∑
a=1

BaViapi, (6.32)

subject to :
Ea∑
Sa

Via = Za, (6.33)

A∑
a=1

BaVia ≤ ELi, (6.34)

where

Ba is the energy consumption of load a in each time slot (MWh) respectively;

Via is the decision variables either 1 or 0 and states if the load a is switched on or off in time
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Chapter 6 The DEED problem with a Time of Use DR program

slot i;

pi is utility defined price/tariff for each time slot in South African Rands ZAR/kWh;

Za is the total number of time slots required for loads a to complete its task;

ELi is the total energy level of the participating customer at the last round;

Sa is the start time slot for load a;

Ea is the end time slot for loads a;

A is the maximum number of load a, the industrial customer wants to schedule.

The following is a brief explanation of the constraints:

• Constraint (6.33) ensures that there are sufficient time slots for a load, device or

machine to complete its tasks. This is also the constraint that handles the flexibility

of the appliance/load. For instance, let us assume two time slots are required for

an appliance to complete a task, i.e., Za= 2. If the customer is flexible about the

appliance, i.e., the appliance must not run at specific time slots, the difference between

the start time slot and end time slot would be greater than Za. If the customer is

however inflexible about the appliance, the difference between start time slot Sa and

end time slot Ea would be exactly Za. For night-time loads, both start time slot Sa

and end time slot Ea would be either in the early hours of the morning or late at night.

• The final constraint (6.34) ensures that the customer’s new energy level does not exceed

the energy levels of the last round. For the initial optimization it is the maximal

estimated energy level for that customer. This ensures that there is actually relief in

the power system.

6.5 NUMERICAL SIMULATIONS, OBTAINED RESULTS AND DISCUS-

SIONS

In this section, we present the parameters and results of the combined interactive DR-DEED

optimization model both at the utility side and at the customer side. The proposed math-

ematical optimization models are tested on two example test systems. The first example test

system is a six unit test system and the second is a ten unit test system. In both numerical

simulations, the default weighting factor w = 0.5.
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Chapter 6 The DEED problem with a Time of Use DR program

Table 6.1: Data of the Six-Unit System.

i ai bi ci ei fi gi Pi,min Pi,max DRi URi

1 240 7 0.007 13.8593 0.32767 0.00419 100 500 120 80

2 200 10 0.0095 13.8593 0.32767 0.00419 50 200 90 50

3 220 8.5 0.009 40.2669 -0.54551 0.00683 80 300 100 65

4 200 11 0.009 40.2669 -0.54551 0.00683 50 150 90 50

5 220 10.5 0.008 42.8955 -0.51116 0.00461 50 200 90 50

6 190 12 0.0075 42.8955 -0.51116 0.00461 50 150 90 50

6.5.1 Test System 1

Test system 1 consists of six unit generators at the supply side and two aggregated industrial

customers at the customer side. At the utility side, the goal is to obtain the optimal price pi

and forecast demand di while at the customer side, the major aim is to obtain the optimal

customer schedule in view of the utility determined optimal price and forecast demand.

6.5.1.1 Utility Side Optimization

The fuel cost coefficients and the emission cost coefficients modified are obtained from [5]

and shown in Table 6.1. The initial electricity tariff values are obtained from Eskom’s (the

South African utility) Tariff book [54] and shown in Table 6.2. The total initial demand is

also shown in Table 6.2. The TOU periods are assumed to be off-peak (23:00-04:00) hours,

standard (05:00-06:00, 11:00-17:00 and 21:00-22:00) hours and peak (07:00-10:00 and 18:00-

20:00) hours [54]. The assumed TOU elasticity values obtained from [53] are given in Table

6.3. The transmission loss formula coefficients for the six unit test system are given by

equation (6.35).

B = 10−4 ×



0.420 0.051 0.045 0.057 0.078 0.066

0.051 0.180 0.039 0.048 0.045 0.060

0.045 0.039 0.195 0.051 0.072 0.057

0.057 0.048 0.051 0.213 0.090 0.075

0.078 0.045 0.072 0.090 0.207 0.096

0.066 0.060 0.057 0.075 0.096 0.255


perMW (6.35)
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Chapter 6 The DEED problem with a Time of Use DR program

Table 6.2: Initial TOU Prices and Total Demand.

Time(h) TOU Prices (R/kWh) Total Demand (MW)

1 0.2595 963

2 0.2595 948

3 0.2595 942

4 0.2595 935

5 0.4669 955

6 0.4669 963

7 0.7021 1263

8 0.7021 1380

9 0.7021 1360

10 0.7021 1210

11 0.4669 1165

12 0.4669 1143

13 0.4669 1110

14 0.4669 1117

15 0.4669 1170

16 0.4669 1150

17 0.4669 1221

18 0.7021 1420

19 0.7021 1490

20 0.7021 1450

21 0.4669 1238

22 0.4669 1159

23 0.2595 975

24 0.2595 960

Table 6.3: TOU Self and Cross Elasticity.

One Peak Off-peak Standard

Peak -0.1 0.016 0.012

Off-Peak 0.016 -0.1 0.01

Standard 0.012 0.01 -0.1

6.5.1.2 Customer Side Optimization

Most logical customers are always on the lookout for ways or measures to use energy efficiently

and do so at minimal cost [57],[58]. In this research, the goal of the customer is to minimizes
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Chapter 6 The DEED problem with a Time of Use DR program

Table 6.4: Load Data for First Customer.

Ba Sa Ea Za

Flexible

LOAD 1 5 1 24 12

LOAD 2 4 1 24 12

Inflexible

LOAD 3 15 1 24 24

LOAD 4 10 1 24 24

Night-time

LOAD 5 5 1 and 21 6 and 24 5

LOAD 6 1.5 1 and 21 6 and 24 4

Table 6.5: Load Data for Second Customer.

Ba Sa Ea Za

Flexible

LOAD 1 15.7 1 24 12

LOAD 2 5.3 1 24 12

LOAD 3 14 1 20 11

Inflexible

LOAD 4 15 1 24 24

Night-time

LOAD 5 5 1 and 21 6 and 24 5

LOAD 6 5 1 and 21 6 and 24 4

their electricity bill/costs and optimally schedule their appliance and hence their energy

plan in light of the provided utility price. To verify the mathematical formulations for the

customer side (equations (6.32-6.34)), two aggregated industrial customers are assumed. Both

aggregated industrial customers consist of 20 and 15 identical sub-customers respectively and

there is a regulator which can schedule these loads. The underlying principles can easily

be extended to residential or other kinds of customers. The customer just has to identify

the loads that can be grouped under flexible, night-time and inflexible. For the sake of

simplicity, it is further assumed that the customer classification does not change and each

customer has six loads. Table 6.4 and Table 6.5 show the load data for the two industrial

sub-customers.
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Figure 6.2: Load profiles at different stages of interactive control for test system 1.

6.5.1.3 Solution Methodology and Results

Both optimization models are built and solved using the Advanced Interactive Multidimen-

sional Modelling System (AIMMS) [41]. After the first utility optimization (6.27-6.31)) and

the corresponding customer side optimization, (equations (6.32)-(6.34)) the customers return

their energy consumption to the utility. The utility revises the PEM’s and again performs

optimization. This interactive control process continues until convergence is reached. In this

research, after the third round of interactive control, convergence was achieved. Figure 6.2

shows the load profiles at different stages of the interactive control process, Figure 6.3 shows

the utility determined price at different stages of the interactive control process, Figure 6.4

shows the initial system load and the final optimal converged load and finally Figure 6.5

shows the initial price and the final utility price.

Figure 6.6 - Figure 6.11 shows the optimal power generated for all generators under initial

system load (normal DEED) and final optimal converged load (TOUDR-DEED).

The final optimal scheduling solution is shown in Table 6.6 and Table 6.7 for customers in

the first and second groups respectively.
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Figure 6.3: Utility determined price at different stages of interactive control for test system

1.
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Figure 6.4: Initial Load and Final Converged Load for test system 1.

6.5.2 Test System 2

Test system 2 consists of ten unit generators at the supply side and two aggregated industrial

customers at the customer side. Similar to the first example test system, we verify the
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Figure 6.5: Initial Price and Final Price for test system 1.
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Figure 6.6: Generation output of unit 1 for test system 1.

mathematical formulations at both the utility and the customer side.
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Figure 6.7: Generation output of unit 2 for test system 1.
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Figure 6.8: Generation output of unit 3 for test system 1.

6.5.2.1 Utility Side Optimization

The fuel cost coefficients and the emission cost coefficients modified are obtained from [9] and

shown in Table 6.8. The initial electricity tariff values are similarly obtained from Eskom’s

(the South African utility) Tariff book [54] and shown in Table 6.9. The total initial demand
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Figure 6.9: Generation output of unit 4 for test system 1.
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Figure 6.10: Generation output of unit 5 for test system 1.

is also shown in Table 6.9. The TOU periods and elasticity values are as assumed in the first

example test system given in Table 6.3. The transmission loss formula coefficients for the ten

unit test system are given by equation (1) and it is shown in the appendix.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



Chapter 6 The DEED problem with a Time of Use DR program

 

0 5 10 15 20 25
90

95

100

105

110

115

120

Time (h)

Po
we

r (
M

W
)

 

 

P6 NORMAL DEED
P6 DR-DEED

Figure 6.11: Generation output of unit 6 for test system 1.

Table 6.6: Optimal Load Scheduling Model Solution for Customer 1 (Test System 1).

LOADS TIME SLOTS

LOAD 1 7-11,13-14,16,18-21

LOAD 2 7-11,14,16-20,22

LOAD 3 1-24

LOAD 4 1-24

LOAD 5 5-6,21-23

LOAD 6 1-3,22

Table 6.7: Optimal Load Scheduling Model Solution for Customer 2 (Test System 1).

LOADS TIME SLOTS

LOAD 1 1-4,11-15,17,23-24

LOAD 2 6-10,13,16,18-22

LOAD 3 7-10,12,15-20

LOAD 4 1-24

LOAD 5 5-6,21-22,24

LOAD 6 5-6,21-22

6.5.2.2 Customer Side Optimization

To verify the mathematical formulations for the customer side, (equations (6.32)-(6.34)) two

aggregated industrial consumers are assumed. The load data for both aggregated customerDepartment of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 6 The DEED problem with a Time of Use DR program

Table 6.8: Data of the Ten-Unit System.

i ai bi ci ei fi gi Pi,min Pi,max DRi URi

1 958.2 21.6 0.00043 360.0012 -3.9864 0.04702 150 470 80 80

2 1313.6 21.05 0.00063 350.0056 -3.9524 0.04652 135 460 80 80

3 604.97 20.81 0.00039 330.0056 -3.9023 0.04652 73 340 80 80

4 471.6 23.9 0.0007 330.0056 -3.9023 0.04652 60 300 50 50

5 480.29 21.62 0.00079 13.8593 0.3277 0.0042 73 243 50 50

6 601.75 17.87 0.00056 13.8593 0.3277 0.0042 57 160 50 50

7 502.7 16.51 0.00211 40.2669 -0.5455 0.0068 20 130 30 30

8 639.4 23.23 0.0048 40.2669 -0.5455 0.0068 47 120 30 30

9 455.6 19.58 0.10908 42.8955 -0.5112 0.0046 20 80 30 30

10 692.4 22.54 0.00951 42.8955 -0.5112 0.0046 55 55 30 30

groups in similar to the one given in Table 6.4 and Table 6.5, the only difference is in the

number of customers within each aggregated group. It is assumed that both aggregated

industrial customer groups consist of 30 and 20 identical customers respectively and there is

a regulator that can schedule these loads.

6.5.2.3 Solution Methodology and Results

The solution methodology employed is similar to the first example test system. AIMMS is

again used to solve both optimization problems. In this research, after the third round of

interactive control, convergence was achieved. Figure 6.12 shows the initial system load and

the final optimal converged load, Figure 6.13 shows the initial price and the final utility price,

Figure 6.14 and Figure 6.15 shows the optimal power generated for generators 1 and 2 under

initial system load (normal DEED) and optimal converged load (DR-DEED) respectively.

The final customer optimal scheduling solution is shown in Table 6.10 and Table 6.11 for

customers in the first and second groups respectively.

(6.27-6.31))

6.5.3 Discussion of Results

In summary, a concise and sequential description of the steps followed in this research is

described below:
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Chapter 6 The DEED problem with a Time of Use DR program

Table 6.9: Initial TOU Prices and Total Demand.

Time(h) TOU Prices (R/kWh) Total Demand (MW)

1 0.2595 1036

2 0.2595 1110

3 0.2595 1258

4 0.2595 1406

5 0.4669 1480

6 0.4669 1628

7 0.7021 2072

8 0.7021 2146

9 0.7021 2220

10 0.7021 2072

11 0.4669 1924

12 0.4669 1776

13 0.4669 1702

14 0.4669 1628

15 0.4669 1480

16 0.4669 1554

17 0.4669 1776

18 0.7021 1924

19 0.7021 2072

20 0.7021 1924

21 0.4669 1628

22 0.4669 1628

23 0.2595 1332

24 0.2595 1184

Table 6.10: Optimal Load Scheduling Model Solution for Customer 1 (Test System 2).

LOADS TIME SLOTS

LOAD 1 7-10,12-16,18-20

LOAD 2 7-8,10-18,20

LOAD 3 1-24

LOAD 4 1-24

LOAD 5 1,3,5,21,24

LOAD 6 1-2,4,21
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Figure 6.12: Initial Load and Final Converged Load for test system 2.

 

0 5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (h)

Pr
ic

e 
(Z

AR
/k

W
h)

 

 
INITIAL PRICE
FINAL PRICE

Figure 6.13: Initial Price and Final Price for test system 2.

• Step 1: Obtain initial load profile and initial pricing scheme (initial load in Figure 6.2

and initial price in Figure 6.3 respectively).

• Step 2: The utility performs DR-DEED optimization using (equations (6.27-6.31)) and

obtains the utility forecast load and price (first utility forecast load in Figure 6.2 and
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Figure 6.14: Generation output of unit 1 for test system 2.
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Figure 6.15: Generation output of unit 2 for test system 2.

utility first price in Figure 6.3 respectively).

• Step 3: In light of the utility’s given price the customers schedules their loads using

(equations (6.32-6.34)) and returns the information back to the utility (first customer

load in Figure 6.2).
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Table 6.11: Optimal load scheduling model solution for customer 2 (Test System 2).

LOADS TIME SLOTS

LOAD 1 4,6,9,11-13,16-17,19,21-23

LOAD 2 3,7-8,10-15,18,20,22

LOAD 3 7-11,14-15,17-20

LOAD 4 1-24

LOAD 5 2,5-6,21-22

LOAD 6 2,5-6, 22

• Step 4: The utility revises the PEM using equation (6.13) and again performs DR-

DEED optimization using (equations (6.27-6.31)) and obtains the utility price (utility

second price in Figure 6.3).

• Step 5: The customers again schedule their loads using (equations (6.32-6.34)) in light

of the new price and returns the information back to the utility (second customer load

in Figure 6.2).

This interactive scheme continues until convergence is reached. In test system 1, this happens

when the second customer load equals the first customer load (see second customer load and

first customer load in Figure 6.2. In this context, we define convergence as when the utility’s

given price does not cause a change in the customers prior load schedule, thus obtaining

an electricity price and demand mutually acceptable to the utility and customers whilst

simultaneously reducing energy levels.

The TOUDR program helps to reduce power system congestion especially around peak times.

It also shifts the load to the off peak and standard periods. Most of the generators produce

more in off peak/standard periods in order to reduce power production in peak periods. From

the numerical simulations at the customer side, the model returns the optimal time slots to use

the devices/ appliances. The flexibility of the appliances are dictated by the peculiar needs of

the customer and these determine the constraints of the mathematical model. The advantage

of the interactive control strategy is the information flow is uni-directional and energy levels

are obtained that provide power system relief and are acceptable to the utility and consumers.

The model can easily be extended to accommodate a wider variety of consumers. Tables 6.12

and 6.13 give the optimal cost, emissions and loss for DEED and TOUDR-DEED for both
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Chapter 6 The DEED problem with a Time of Use DR program

Table 6.12: Optimal results with various weighting factor values (Test System 1).

COST EMISSIONS LOSS COST EMISSIONS LOSS

(DEED) (DEED) (DEED) (DR-DEED) (DR-DEED) (DR-DEED)

($) (lb) (MW) ()($) (lb) (MW)

w = 0 342946 30995 339 341581.09 29281.75 317.62

w = 0.1 342348 31034 342 340878.08 29331.20 321.74

w = 0.2 341503 31200 345 340245.37 29463.34 326.01

w = 0.3 340673 31501 349 339449.65 29766.07 331.12

w = 0.4 339927 31950 354 338657.95 30249.68 337.59

w = 0.5 339105 32696 360 337873.11 30992.79 345.02

w = 0.6 338450 33612 366 337123.86 32055.84 353.44

w = 0.7 337935 34751 373 336525.81 33411.16 362.62

w = 0.8 337613 36033 381 336136.54 34970.12 372.33

w = 0.9 337502 37236 389 335980.10 36580.42 382.12

w = 1.0 337541 38475 397 336021.41 38078.87 391.45

example test systems. From both tables, the impact of DR on cost, emission and losses

can be clearly seen. DR brings a reduction in total demand and hence this brings about a

corresponding decrease in costs, emissions and losses. Both tables also show the variation of

cost, emission and losses when weighting factor w ranges from 0 to 1. This analysis has become

vital in optimization with more than a single objective function in order to validate the effect

of augmented ranking of objectives over another on obtained solutions. In this case, it is

observed that as w increases, the cost decreases and the emission and losses increases. This

means that as the weighting factor is increased (the importance of minimizing emissions is

decreased, while the importance of minimizing costs increases), emissions and losses actually

increase and costs decrease.

6.6 CHAPTER SUMMARY

In this chapter, a modification of the DEED formulation with price based DR programs

is presented. The objective in the optimization problem is to minimize the fuel, emissions

and DR costs subject to the conventional DEED constraints and some extra constraints.

Investigations with different price elasticity matrices were assumed and the TOU tariffs were

used as the initial prices, giving rise to a TOU based DR-DEED problem formulation. As an

interactive control strategy is used, two customer mathematical models are presented where
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Table 6.13: Optimal results with various weighting factor values (Test System 2).

COST EMISSIONS LOSS COST EMISSIONS LOSS

(DEED) (DEED) (DEED) (DR-DEED) (DR-DEED) (DR-DEED)

($) (lb) (MW) ()($) (lb) (MW)

w = 0 1054224 248251 1322 1032488 201833.38 1208.98

w = 0.1 1053155 248335 1322 1032317.21 201849.93 1209.34

w = 0.2 1051556 248616 1322 1031558.71 201990.82 1209.81

w = 0.3 1051049 248799 1322 1031149.41 202145.70 1210.29

w = 0.4 1050295 249232 1323 1030376.40 202601.31 1210.98

w = 0.5 1049419 249992 1324 1028962.79 203827.13 1212.25

w = 0.6 1047376 252671 1326 1025657.35 208270.98 1215.23

w = 0.7 1043923 259564 1330 1020300.86 218584.69 1221.68

w = 0.8 1039460 274423 1343 1015861.03 233260.72 1233.86

w = 0.9 1034599 308177 1374 1010121.27 273874.56 1271.85

w = 1.0 1032513 378260 1424 1006570.04 385080.80 1353.53

the customer classifies their loads into flexible, inflexible and night-time loads and optimizes

their demand in light of the utility suggested demand and final price. The customer schedules

their load in order to minimize their electricity consumption and hence their electricity costs.

Obtained simulation results indicate that DR programs reduce the total load curve and peak

demand.
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CHAPTER 7

CONCLUSION

7.1 CHAPTER OVERVIEW

This chapter concludes the thesis and provides probable future directions for more re-

search.

7.2 CONCLUSIONS

In this thesis, various DR programs are integrated into the DEED and it’s variant PBDEED.

This thesis was motivated primarily by the fact that joint and simultaneous consideration of

both programs will yield better solutions than individual considerations of either DEED and

DR. Most complex systems or networks have been shown to operate better when considered

as a whole instead of in parts. Thus, this thesis begun by introducing the research and it’s

motivation and proceeded with a literature review of the topics under consideration. It was

stated in the literature review that there are three major research trends concerning DEED.

The first research focus is the integration of DR programs into DEED/PBDEED problems.

The second trend is concerned with solution methodologies. The literature is replete with

instances of novel solution methods for solving DEED problems. The third research thrust

deals with the dispatch of RES in a power grid. These RES are known to be intermittent

in nature. These three research trends are considered to some degree in this thesis. Thus

in this thesis various models of DEED/PBDEED integrated with DR is presented. The

GTDR-DEED, GTDR-PBDEED and TOUDR-DEED models are developed and empirically

tested with practical system set-ups. Also the MPC solution approach is considered and

applied on a GTDR-DEED and GTDR-PBDEED problem. Again two RES (solar and wind)
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Chapter 7 Conclusion

are considered when they are powering a grid connected microgrid that also has a GTDR

program. Results from all the mathematical validations are very encouraging and show the

suitability and practicability of the developed mathematical frameworks.

In Chapter 3, the DEED formulation was with a game theory based DR program (GTDR-

DEED). The model developed from game theory also included extra practical constraints like

maximum power targets and total budget. In addition, two constraints: individual rationality

constraint and the incentive compatibility constraint were modified and optimized over a day

instead of just an hour. Results showed that the DR-DEED program reduce total demand

over a 24 hour period by 1953.02 MW in the first scenario and reduces the total demand by

2670.57 MW in the second scenario.

In Chapter 4, (GTDR) was integrated into both the DEED and PBDEED problems. The

GTDR-DEED model is for a regulated environment, whilst the GTDR-PBDEED is for a de-

regulated environment which is price dependent. For both models MPC was utilized. MPC

was chosen for it’s ability to handle uncertainty and disturbance in the model paramet-

ers. Obtained results indicate that indeed MPC is superior to the open loop approach and

moreover the closed loop solutions converge to the open loop solutions.

In Chapter 5, a grid connected micorgrid powered by RES and conventional generators with

a GTDR program was considered. The proposed model is able to buy power from the grid in

the event of power shortage and sell to the grid when there is excess power. Also the GTDR

program reduces demand on the microgrid. A sensitivity analysis of obtained results to some

model parameters was also performed.

Finally in Chapter 6, the DEED formulation is integrated with a TOUDR program. Various

price elasticity matrices were used representing the different types of customer load classi-

fication and an interactive control strategy was utilized in other to get mutually acceptable

electricity load demand and price.

All the aforementioned models presented in this thesis, shows the advantages of having DR

programs in a power system, either in the main grid or in a microgrid. DR programs when

integrated with DEED/PBDEED curtail demand thereby bringing relief to the power system.

They also provide for reduced costs and emissions at the supply side of the power spectrum.

Taken together, joint consideration of DEED and DR should be adopted by utilities and her
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Chapter 7 Conclusion

customers in the management of today’s power system.

7.3 RECOMMENDATIONS AND FUTURE WORK

There are a number of possible future research extensions of this thesis. They are briefly

listed below:

• The incorporation of penalties via a penalty function for customers who refuse to curtail

their load and those who curtail their load but not the hitherto agreed amount.

• The design of a DR scheme for power systems powered by Combined Heat and Power

(CHP) generators. This DR scheme should be incentive based and will give incentives

to customers curtailing their heat consumption.

• The incorporation of the unit commitment problem into the GTDR-DEED, GTDR-

PBDEED and TOUDR-DEED problems.

• A stochastic model able to handle more uncertainty like when the customers cost func-

tion coefficients are unknown.
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Appendix References

B = 10−5 ×



4.9 1.4 1.5 1.5 1.6 1.7 1.7 1.8 1.9 2.0

1.4 4.5 1.6 1.6 1.7 1.5 1.5 1.6 1.8 1.8

1.5 1.6 3.9 1.0 1.2 1.2 1.4 1.4 1.6 1.6

1.5 1.6 1.0 4.0 1.4 1.0 1.1 1.2 1.4 1.5

1.6 1.7 1.2 1.4 3.5 1.1 1.3 1.3 1.5 1.6

1.7 1.5 1.2 1.0 1.1 3.6 1.3 1.2 1.4 1.5

1.7 1.5 1.4 1.1 1.3 1.2 3.8 1.6 1.6 1.8

1.8 1.6 1.4 1.2 1.3 1.2 1.6 4.0 1.5 1.6

1.9 1.8 1.6 1.4 1.5 1.4 1.6 1.5 4.2 1.9

2.0 1.8 1.6 1.5 1.6 1.5 1.8 1.6 1.9 4.4



perMW (1)
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Table 1: Optimal customer power curtailed (xj,t) (scenario 1).

xj,t j = 1 j = 2 j = 3 j = 4 j = 5

t = 1 3.64 5.61 9.1 11.76 14.67

t = 2 3.93 5.99 9.58 12.36 15.25

t = 3 3.74 5.73 9.24 11.97 14.8

t = 4 3.72 5.38 9.2 11.99 14.75

t = 5 4.29 5.9 10.18 13.14 15.96

t = 6 5.02 7.01 11.46 14.57 17.55

t = 7 13.49 18 26.27 31.27 35.98

t = 8 12.43 17.41 24.47 29.12 33.67

t = 9 17.31 23.97 33.02 38.76 44.25

t = 10 11.36 16 22.55 27.1 31.22

t = 11 12.22 17.11 23.95 28.8 32.87

t = 12 10.25 14.51 20.46 25.05 28.51

t = 13 7.14 10.32 15.09 18.8 21.86

t = 14 10.27 14.52 20.54 25.01 28.65

t = 15 7.3 10.52 15.42 19.04 22.37

t = 16 7.4 10.66 15.66 19.19 22.75

t = 17 10.4 14.44 20.95 25.12 29.36

t = 18 10.15 13.29 20.14 22.98 28.26

t = 19 8.52 12.08 17.59 21.18 25.11

t = 20 8.71 12.39 17.98 21.45 25.6

t = 21 7.18 10.4 15.23 18.94 22.18

t = 22 7.92 11.43 16.44 20.59 23.66

t = 23 4.73 7.11 10.91 14.12 16.82

t = 24 4.07 6.21 9.78 12.75 15.44
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Table 2: Optimal customer incentive (yj,t) (scenario 1).

yj,t j = 1 j = 2 j = 3 j = 4 j = 5

t = 1 66.77 97.38 142.73 163.93 189.25

t = 2 74.23 107.15 155.22 178.97 204.42

t = 3 69.36 100.37 146.19 169.21 192.72

t = 4 68.97 91.72 145.25 169.64 191.29

t = 5 83.85 104.57 171.44 199.84 224.04

t = 6 104.85 135.13 208.72 240.43 270.9

t = 7 493.22 619.34 898.62 992.56 1138.2

t = 8 430.06 584.81 789.42 867.07 996.98

t = 9 755 1022.53 1369.56 1495.06 1721.79

t = 10 370.73 506.67 680.55 757.22 857.15

t = 11 417.86 568.09 758.94 849.43 950.14

t = 12 313.12 429.42 571.7 653.06 714.9

t = 13 177.38 246 334.09 383.01 420.35

t = 14 314.36 430.13 575.72 651.2 721.88

t = 15 183.3 253.79 346.86 391.88 439.96

t = 16 187.43 259.17 356.34 397.59 455.04

t = 17 320.93 426.3 596.22 656.51 757.93

t = 18 308.29 371.06 555.8 555.61 702.35

t = 19 233.26 317.23 436.7 477.43 554.32

t = 20 241.4 330.81 454.14 488.53 576.21

t = 21 178.82 249.18 339.32 388.05 432.79

t = 22 207.89 289.72 387.94 452.73 492.38

t = 23 96.45 138.15 192.33 227.32 248.68

t = 24 77.88 112.79 160.6 189.18 209.53
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Table 3: Optimal power generated by generators (Pi,t) (scenario 1).

Pi,t i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

t = 1 282.56 121.4 179.94 100.98 145.23 89.29

t = 2 279.47 118.87 177.75 98.79 142.48 86.43

t = 3 278.38 117.98 176.99 98.02 141.52 85.43

t = 4 277.46 117.22 176.34 97.37 140.7 84.58

t = 5 277.58 117.32 176.42 97.45 140.8 84.68

t = 6 282 120.93 179.54 100.58 144.72 88.76

t = 7 273.23 113.77 173.35 94.38 136.95 80.67

t = 8 281.69 120.68 179.33 100.36 144.45 88.49

t = 9 294.38 131.06 188.3 109.33 155.72 100.21

t = 10 309.17 143.14 198.75 119.79 168.84 113.88

t = 11 318.67 150.91 205.47 126.5 177.27 120

t = 12 331.14 161.1 214.28 135.31 188.33 120

t = 13 326.31 157.15 210.86 131.9 184.04 120

t = 14 335.06 164.3 217.05 138.09 191.81 120

t = 15 344.1 171.7 223.44 144.48 199.84 120

t = 16 340.62 168.85 220.98 142.01 196.74 120

t = 17 327.29 157.95 211.56 132.59 184.91 120

t = 18 323.92 155.2 209.18 130.21 181.93 120

t = 19 315.81 148.57 203.44 124.48 174.73 120

t = 20 301.91 137.2 193.61 114.65 162.39 107.16

t = 21 290.42 127.81 185.49 106.53 152.19 96.55

t = 22 281.3 120.36 179.05 100.09 144.11 88.13

t = 23 284.8 123.23 181.53 102.56 147.21 91.36

t = 24 282.88 121.65 180.16 101.2 145.5 89.58
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Table 4: Optimal customer power curtailed (xj,t) (scenario 2).

xj,t j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

t = 1 1.5 1.5 2.17 3.78 5.57 13.73 17.27

t = 2 1.5 1.5 1.5 2.75 4.52 13.06 16.71

t = 3 1.5 1.56 2.47 4.18 5.96 13.98 17.62

t = 4 2.28 2.87 4.39 6.4 8.31 15.48 18.95

t = 5 2.88 3.83 5.45 7.68 9.62 16.31 19.73

t = 6 5.24 7.04 9.49 12.47 14.54 19.46 22.49

t = 7 6.71 8.49 11.6 14.88 17.09 21.08 23.8

t = 8 7.17 9.18 12.51 15.94 18.21 21.79 24.37

t = 9 8.47 10.92 14.8 18.62 20.99 23.57 25.91

t = 10 10.93 14.31 18.69 23.31 25.69 26.57 28.57

t = 11 12.08 15.76 20.84 25.8 28.28 28.22 29.93

t = 12 11.07 14.44 19.22 23.88 26.39 27.01 28.99

t = 13 9.97 12.85 17.21 21.49 23.89 25.42 27.57

t = 14 9.29 12.17 15.91 20.07 22.27 24.38 26.78

t = 15 7.61 9.64 13.2 16.75 18.99 22.29 24.73

t = 16 7.07 8.96 12.37 15.76 17.99 21.65 24.09

t = 17 6.71 8.65 11.99 15.3 17.51 21.35 23.78

t = 18 8.42 10.51 14.43 18.2 20.51 23.26 25.5

t = 19 8.09 10.34 14.18 17.9 20.22 23.08 25.4

t = 20 11.74 15.19 20.55 25.38 28.05 28.07 29.76

t = 21 27.22 34.54 45.11 50 50 47.12 46.04

t = 22 7.95 10.04 13.62 17.22 19.52 22.63 25.04

t = 23 3.12 4.03 5.75 7.98 9.92 16.51 19.8

t = 24 1.5 1.69 2.56 4.24 5.95 13.97 17.75
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Table 5: Optimal customer incentive (yj,t) (scenario 2).

yj,t j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

t = 1 21.62 18.1 23.3 40.42 55.41 285.29 454.27

t = 2 21.62 18.1 14.99 26.86 40.81 259.35 425.32

t = 3 21.62 19 27.21 46.21 61.27 295.16 472.92

t = 4 36.09 40.13 57.57 83.66 102.73 359 547.06

t = 5 48.88 58.43 77.66 109.56 129.86 396.98 592.75

t = 6 111.57 138.68 176.58 232.12 259.41 557.81 770.4

t = 7 161.1 184.38 242.2 309.93 342.92 651.42 862.98

t = 8 178.27 207.84 273.79 347.38 383.38 695.02 904.22

t = 9 231.19 273.69 360.14 451.39 493.33 809.33 1022.21

t = 10 348.09 425.15 533.69 664.71 710.2 1022.34 1242.93

t = 11 409.99 500.05 643.01 794.31 846.14 1150.16 1364.1

t = 12 354.95 431.9 559.84 693.52 745.32 1055.71 1280.48

t = 13 299.89 355.93 463.54 577.08 622.43 937.72 1157.52

t = 14 267.63 325.7 406.25 512.89 548.39 864.74 1092.48

t = 15 195.45 224.39 298.55 377.24 413 726.37 931.21

t = 16 174.58 200.23 268.74 340.85 375.22 686.3 883.64

t = 17 161.08 189.48 255.49 324.57 358.01 667.79 861.27

t = 18 228.89 257.5 345.74 433.97 473.3 788.89 990.38

t = 19 215.09 250.88 335.72 422.07 461.44 776.72 982.72

t = 20 391.43 469.64 627.97 771.5 833.36 1138.29 1348.83

t = 21 1685.36 1989.37 2573.84 2643.25 2450.73 3147.16 3229.11

t = 22 209.08 239.3 314.07 395.41 433.74 748.06 955.03

t = 23 54.23 62.58 83.91 115.92 136.68 406.2 596.89

t = 24 21.62 20.78 28.48 47.19 61.18 295.01 479.98
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Table 6: Optimal power generated by generators (Pi,t) (scenario 2).

Pi,t i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

t = 1 150 135 73 60 165.66 160 130 60 20 55

t = 2 150 135 76.17 60 211.46 160 130 90 21.92 55

t = 3 150 135 119.16 85.66 243 160 130 120 39.66 55

t = 4 155.62 162.08 164.93 131.13 243 160 130 120 58.55 55

t = 5 171.55 178.11 181.05 147.14 243 160 130 120 65.2 55

t = 6 200.8 207.55 210.64 176.54 243 160 130 120 77.41 55

t = 7 216.29 223.14 226.3 192.1 243 160 130 120 80 55

t = 8 234.44 241.4 244.66 210.33 243 160 130 120 80 55

t = 9 270.1 277.29 280.73 246.17 243 160 130 120 80 55

t = 10 303.12 310.52 314.13 279.35 243 160 130 120 80 55

t = 11 319.59 327.1 330.79 295.9 243 160 130 120 80 55

t = 12 358.7 366.46 340 300 243 160 130 120 80 55

t = 13 305.72 313.14 316.77 281.97 243 160 130 120 80 55

t = 14 268.07 275.25 278.68 244.13 243 160 130 120 80 55

t = 15 234.12 241.08 244.34 207.01 243 160 130 120 80 55

t = 16 178.39 184.99 187.96 157.01 243 160 130 120 68.05 55

t = 17 162.11 168.61 171.5 137.65 243 160 130 120 61.26 55

t = 18 193.61 200.32 203.36 169.31 243 160 130 120 74.41 55

t = 19 230.27 237.21 240.45 212.13 243 160 130 120 80 55

t = 20 305.3 312.46 315.88 262.13 243 160 130 120 80 55

t = 21 225.3 232.46 235.88 212.13 243 160 130 120 59.34 55

t = 22 197.21 203.94 207 162.13 243 160 130 120 75.91 55

t = 23 150 136.54 139.26 112.13 243 160 130 120 47.96 55

t = 24 150 135 88.67 62.13 243 160 130 109.28 27.08 55
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Table 7: Optimal power produced by conventional generators and transfer power between

the microgrid and main grid

Pj,t (kW) Prt (kW)

i = 1 i = 2 i = 3

t = 1 4 6 9 4

t = 2 4 6 9 4

t = 3 4 6 9 3.19

t = 4 4 6 9 -0.08

t = 5 4 6 9 -1.54

t = 6 4 6 9 -1.99

t = 7 4 6 9 -2.27

t = 8 3.60 6 7.90 -4

t = 9 3.16 6 7.25 -4

t = 10 2.49 6 6.23 -4

t = 11 2.55 6 6.33 -4

t = 12 2.89 6 6.83 -4

t = 13 2.30 6 5.95 -4

t = 14 3.04 6 7.06 -4

t = 15 3.47 6 7.71 -4

t = 16 4 6 9 -4

t = 17 4 6 9 -4

t = 18 4 6 9 -3.38

t = 19 4 6 9 4

t = 20 4 6 9 4

t = 21 4 6 9 4

t = 22 4 6 9 4

t = 23 4 6 9 4

t = 24 3 5 8 4
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Table 8: Optimal power from the wind and solar generators

Time(h) Pwt (kW) Pst (kW)

1 7.56 0

2 7.50 0

3 8.25 0

4 8.48 0

5 8.48 0

6 9.42 0

7 9.82 0

8 10.35 7.99

9 10.88 10.56

10 11.01 13.61

11 10.94 14.97

12 10.68 15

13 10.42 14.78

14 10.15 14.59

15 9.67 13.56

16 8.98 11.83

17 8.37 10.17

18 7.61 7.66

19 6.70 0

20 5.72 0

21 7.21 0

22 7.75 0

23 7.88 0

24 7.69 0
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Table 9: Optimal power curtailed by the customers

xj,t (kW)

t = 1 0.00 0.40 0.87

t = 2 0.00 0.18 0.71

t = 3 0.00 0.08 0.64

t = 4 0.89 1.22 1.49

t = 5 1.58 1.75 1.89

t = 6 1.77 1.90 2.00

t = 7 2.08 2.15 2.18

t = 8 0.32 0.77 1.15

t = 9 0.92 1.24 1.50

t = 10 0.63 1.01 1.33

t = 11 0.74 1.10 1.40

t = 12 0.96 1.27 1.53

t = 13 1.15 1.42 1.64

t = 14 1.42 1.63 1.80

t = 15 1.77 1.91 2.00

t = 16 1.84 1.96 2.04

t = 17 2.40 2.39 2.36

t = 18 3.25 3.06 2.86

t = 19 3.14 2.98 2.80

t = 20 2.61 2.56 2.49

t = 21 1.01 1.31 1.56

t = 22 0.24 0.70 1.10

t = 23 0.06 0.56 1.00

t = 24 1.19 1.45 1.66
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Table 10: Optimal incentive received by customers

yj,t ($)

j = 1 j = 2 j = 3

t = 1 0.00 0.57 1.56

t = 2 0.00 0.21 1.06

t = 3 0.00 0.09 0.87

t = 4 2.04 3.13 4.33

t = 5 4.78 5.81 6.89

t = 6 5.69 6.67 7.68

t = 7 7.42 8.27 9.13

t = 8 0.53 1.50 2.64

t = 9 2.13 3.22 4.42

t = 10 1.27 2.32 3.51

t = 11 1.57 2.64 3.83

t = 12 2.27 3.36 4.55

t = 13 2.95 4.04 5.22

t = 14 4.07 5.13 6.26

t = 15 5.73 6.71 7.72

t = 16 6.10 7.05 8.03

t = 17 9.36 10.04 10.71

t = 18 15.67 15.65 15.60

t = 19 14.82 14.90 14.95

t = 20 10.83 11.36 11.87

t = 21 2.45 3.54 4.73

t = 22 0.37 1.31 2.43

t = 23 0.08 0.93 2.00

t = 24 3.12 4.21 5.37
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