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THESIS SUMMARY 
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Degree:    Philosophiae Doctor (Civil Engineering) 

 

The vertical dynamic behaviour of machine foundations subjected to vertical dynamic loading 

was investigated for surface and embedded foundations. The responses of these machine 

foundations were determined using analytical and numerical solutions ranging from simple to 

complex. An accurate prediction of impedance functions for the foundation system is a key step 

in the design procedures. The prediction accuracy depends on how close the modelling 

procedures are to reality. The subject of soil dynamics is complex. At times, the choice of the 

analysis model is based on the experience of the engineer with the model. The chosen model 

may or may not result in an optimal, efficient, and accurate design. 

 

The current advancement in manufacturing technology calls for machine foundation systems 

with high performance, availability and reliability. The analysis and design of such complex, 

large and sensitive machine foundations requires good understanding of their dynamic 

behaviour. 

 

The aim of this thesis is to investigate and evaluate the most accurate analytical and numerical 

models for determining the dynamic behaviour of surface and embedded machine foundations. 

 

Surface and embedded footings were cast at the experimental station at the University of 

Pretoria. The vertical dynamic behaviour of these foundations was determined by vertical 

harmonic loading. The measured impedance functions were compared with predicted responses 

obtained from analytical solution of the Winkler model, elastic half-space theory, simplified 

Lysmer (1965) model, Veletsos and Verbic (1973) models, the Dyna5 program and numerical 

solution of finite element method (Abaqus). The dynamic responses of the surface foundation 

predicted by the analytical solution proposed by Veletsos and Verbic (1973) soil with mass, 

compared reasonably well with the results obtained from field-measured data. 
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The measured impedance functions of the embedded foundation were compared with the 

predicted results ascertained using the analytical solution proposed by Novak and Beredugo 

(1972), Dyna5 program and numerical solution of the finite element method (Abaqus). It is 

shown that embedment increases stiffness, natural frequency, natural frequency ratio, and 

damping ratio. The embedment reduces resonant amplitude, resonant amplitude ratio and has an 

insignificant effect on resonant frequency and resonant frequency ratio. The measured dynamic 

responses compared favourably with the results predicted by the finite element method 

(Abaqus).  

 

The conclusion is that the analytical model proposed by Veletsos and Verbic (1973) soil with 

mass, and the finite element method (Abaqus) can be used to accurately predict the dynamic 

response of surface and embedded machine foundations respectively. 
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CHAPTER 1 

1 INTRODUCTION 
 

1.1 Background 
 

The primary goal in the design of machine foundations is to limit the response amplitude in 

all vibration modes to the specified tolerance. This is normally achieved by avoiding 

resonance by ensuring that the operating frequency is sufficiently remote from the natural 

frequencies of the foundations system. Excessive vibration can cause unsatisfactory 

performance of machine foundations, and in some cases, can reduce the in-service life of 

machines, foundations and neighbouring structures. The proper design of machine 

foundations ensures a satisfactory performance of machines and minimise disturbances for 

people working in the immediate vicinity. 

 
Different methods are available for analysis of surface and embedded machine foundations. 

A scientific and sound engineering design model, taking into consideration the soil 

dynamics, was established in 1936 by Reissner. This modelling approach proposed by 

Reissner is known as elastic half-space theory. Over time, elastic half-space theory was 

simplified to empirical and semi-empirical analysis methods. These design methods can 

give reliable results when input parameters are properly chosen (Sung, 1953), however they 

are inefficient for modelling foundations with complex geometry and complicated loading. 

A more rigorous design method such as finite element methods may be appropriate for 

more complex problems. 

 

The analysis and design of machine foundations are based on the prediction of dynamic 

behaviour of soil-structure interaction problems, which is governed by dynamic impedance 

functions (dynamic stiffness). These functions are used to describe an assumed linear 

relationship between forcing function and the resulting displacement responses (Gazetas, 

1983 and Gazetas, 1991a). The solution for dynamic displacement is found using 

differential equations of motion. 

 

Accurate impedance functions for foundation systems are important to the analysis and 

design of dynamically loaded machine foundations. The prediction accuracy will depend 

on the similarity of the modelling results to reality. The choice of the analysis model, 

depends to a large extent on the required accuracy, availability of computational power and 

required analytical efficiency. These factors are primarily governed by the importance of 
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the project. The subject of soil dynamics is complex and the choice of the analytical model 

may be based on the familiarity of the engineer with specific analytical models, which may, 

or may not, result in an efficient and accurate design. 

 

The current advancement in manufacturing technology calls for machine foundation 

systems with higher performance, availability and reliability. For instance, the trend for the 

cement production industry and mining industry is to increase the size of the process plant 

(Meimaris et al., 2001 and Deolalikar, 2007). In the mining industry, the approach by mine 

owners is to increase the size of ore grinding mills in order to reduce the total life cycle 

costs of mine projects. The largest ore-grinding mill is about 12.8 m in diameter, with 

approximately 300 MN static loads (Orser et al., 2011). These developments have 

necessitated the re-evaluation of traditional techniques to analyse machine foundations. 

 

These modern ore grinding mills are complex, and determination of dynamic behaviour is 

not an easy task, also new interdisciplinary phenomena increase the risk of using such mills 

(Reese, 2000, Meimaris and Cox, 2001 and Meimaris, 2002). The approach of having a 

single ore grinding mill has the disadvantage of causing a bottleneck when the unit goes 

out of service. Therefore, the reliability and availability of the ore grinding mill is of 

primary concern during the mine operation. Although, no major failure caused by poor 

design of the foundation systems has been reported, it is important that mine owners gain 

confidence in the dynamic behaviour of these larger and more complicated structures. A 

better understanding of the dynamic responses of these foundation systems is essential in 

order to avoid failure of these engineering structures. 

 
The popular design approach by design engineers is to obtain impedance functions of the 

foundation systems using available simplified models (Hadjian et al., 1974; Gazetas, 1983 

and Gazetas, 1991a). This method uses a lumped mass parameter whereby the foundation 

and all components of the superstructures are lumped together. This design approach is 

known as the two-stage design approach (decoupled) where a geotechnical engineer 

characterises the site to obtain soil parameters (shear modulus, Poisson’s ratio, shear wave 

velocity and density of soil). From these soil parameters, the dynamic stiffness and 

damping of the foundation system is estimated using empirical, semi-empirical or 

numerical analysis. The estimated dynamic stiffness and damping of the foundation system 

are typically supplied to a structural engineer who uses these parameters to determine the 

dynamic behaviour of the superstructure. 
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Although, this design approach has been used for analysis and design of structures for 

decades, it is not clear if it is sufficiently accurate for analysis and design of machine 

foundations for large and sensitive machine foundations such as large ore mills. It is 

important to investigate whether this design approach is precise enough to model and 

analyse these complicated machine foundation systems. 

Over the years, many methods have been developed to analyse the vibration of surface and 

embedded machine foundations. These methods can be classified as Mass-Spring Dashpot 

(MSD), Elastic half-space theory, Simplified half-space models and numerical methods. In 

this thesis, the dynamic response of surface foundations was determined using the 

analytical solution of mass-spring dashpot or Winkler model, elastic half-space theory, 

simplified half space of Lysmer (1965) model, Veletsos and Verbic (1973) models, Dyna5 

program and the numerical solution of finite element method. For embedded foundations, 

the evaluation was based on the finite element method (Abaqus), the analytical solution 

proposed by Novak and Beredugo (1972) and the Dyna5 analysis program. The results 

were compared with data obtained from field measurements. The cone model presented by 

Wolf (1994) and Wolf and Deeks (2004) is not included in this investigation because it's 

development is based on the strength of materials not the rigorous theory of half-space. 

Also, the portion of half-space outside the cone is neglected and cone model cannot 

represent the influence of Rayleigh surface waves. 

 

1.2 Hypothesis 
 

Appropriate analytical and numerical models are required to accurately predict the vertical 

dynamic response of machine foundations subjected to vertical dynamic loads. 

 

1.3 Objective 
 

Analysis models that analyse the behaviour of machine foundations with the footing on the 

ground surface can be ranked from the least complex to the most complex as follows: 

i. Mass-Spring Dashpot (MSD) or Winkler model; 

ii. Elastic half-space theory (Sung 1953); 

iii. Simplified model of Veletsos and Verbic (1973) massless soil;  

iv. Simplified model of Lysmer (1965); 

v. Simplified model of Veletsos and Verbic (1973) soil with mass; 

vi. Dyna5 program 

vii. Finite element method – isotropic soil, and 

viii. Finite element method – Gibson soil  
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Analysis models for embedded machine foundations can be ranked from the least complex 

to the most complex as: 

i. Novak and Beredugo (1972) 

ii. Dyna5 program 

iii. FEM – Isotropic soil  

iv. FEM – Gibson soil 

 

The objective of this study is to investigate how complex the analytical and numerical 

models have to be in order to accurately model the vertical dynamic response of machine 

foundation systems. 

 

1.4 Scope of the study 
 
Surface and embedded footings were constructed at the University of Pretoria’s 

experimental station and dynamically loaded in the vertical fashion to determine the 

vertical dynamic responses. The scope of the study is limited to machine foundations 

subjected to vertical loading only. Because the vertical response is easy to visualise. The 

research was based on field measurement, processing measured data and modelling 

foundation using the analytical and finite element methods. 

 
The scope of the study included: 

• The experimental tests to characterise the site in order to obtain elastic soil 

parameters. The shear wave velocity was determined from Continuous Surface 

Wave (CSW).tests  

• Data analysis, which included translating acceleration responses to displacement 

amplitude.  

• The back-calculation of the vertical dynamic responses obtained from field-

measured data using forced vibration test carried out on a surface foundation 

system. These measured responses were compared with the results obtained from 

Winkler model, elastic half-space theory (Sung 1953), simplified models of 

Lysmer (1965), Veletsos and Verbic (1973) and the Dyna5 program, as well as the 

results obtained from the numerical solution by the finite element method 

(Abaqus). 

• Back-calculation of the measured vertical dynamic responses of an embedded 

foundation. These measured results were compared with the analytical solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

1-5 

 

proposed by Novak and Beredugo (1973) and the Dyna5 program as well as the 

results obtained from the finite element method (Abaqus). 

•  Evaluation of the effect of foundation embedment on the results obtained from the 

finite element method (Abaqus), the analytical solution proposed by Novak and 

Beredugo (1973), and the Dyna5 program. 

 

1.5 Methodology 
 

The methodology of the research project may be summarised as follows: 

 

• Select suitable site for the experimental work. 

• Carrying out Continuous Surface Wave test to determine shear modulus and shear 

wave velocity. 

• Excavation of a trial pit to inspect soil profile. 

• Cast concrete for surface and embedded footings. 

• Calibration of accelerometers, LVDT and load cell.  

• Conduct field tests to measure vibration of surface and embedded footings. 

• Back-calculate the response of footings under forced vibration tests to obtain field-

measured impedance functions (dynamic stiffness constant and damping constant). 

• Prediction of dynamic response of surface foundation system using the Winkler 

model, elastic half-space theory (Sung 1953), simplified Lysmer (1965) model and 

simplified Veletsos and Verbic (1973) models, and finite element method. 

• Prediction of the dynamic response of the embedded foundation system using the 

analytical solution proposed by Novak and Beredugo (1972), the Dyna5 program 

and the numerical solution of finite element method (Abaqus). 

• Comparison of the predicted behaviour to the observed result for the analysis of all 

models to evaluate the accuracy of each method. 

 

1.6 Organisation of thesis 
 

Chapter 1 serves as the introduction to the thesis. 

 
A review of the existing knowledge on the analysis and design of machine foundations is 

presented in Chapter 2. This includes a brief introduction to the historical background of 

the analysis and design of machine foundations. The literature focuses on determining the 

dynamic responses of machine foundations based on massless foundation systems, 

foundation systems with mass and numerical solutions of finite element method (Abaqus) 

and Dyna5 program. 
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Chapter 3 describes the experimental work. 

 

Chapter 4 presents the results of the vertical dynamic responses of the surface and 

embedded footings obtained from the field measurements and includes measured and back-

calculated data. The measured soil parameters, where the footings were constructed, are 

also presented in Chapter 4. 

 

Chapter 5 discusses the vertical dynamic response of the footings described in Chapter 3 

obtained from the Winkler model, elastic half-space theory (Sung 1953), simplified Lysmer 

(1965) model and simplified Veletsos and Verbic (1973) which consider the half-space 

with mass and without mass. In addition, Chapter 5, present the results of the surface 

foundation system predicted by the Dyna5 program. 

 

For comparison purposes, the results from the analytical solutions are presented in parallel 

with the results obtained from field measurements. For the embedded foundation, the 

analytical solution is based on Novak and Beredugo (1972) and Dyna5 program. 

 
Chapter 6 presents the results for the surface and embedded footings described in Chapter 3 

obtained from the finite element method. The modelling for surface and embedded footings 

assumed that the footings are placed on a half-space (homogeneous linear elastic soil). The 

surface and embedded foundations were also modelled using a “Gibson soil”, where the 

stiffness increases with depth. The results were compared with those for a homogeneous 

soil. 

 

Chapter 7 discusses and compares the results for the surface and embedded foundations 

obtained from the field measurements to the responses predicted by each of the analytical 

methods. 

 

Chapter 8 presents conclusions of this study. 
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CHAPTER 2 

2 LITERATURE REVIEW 
 

The primary goal in the design of machine foundations is to limit the amplitudes in all 

vibration modes to within the specified tolerances (Gazetas, 1983 and Gazetas, 1991b). 

This implies that the engineer is responsible for ensuring that the machine foundation is 

properly designed. Design methods, ranging from simple to complex, have been suggested 

to solve the problem of vibrating foundations. Selecting which method to be used for 

analysis and design of the machine foundations requires a good understanding of their 

dynamic behaviour. 

 

This chapter discusses the existing knowledge concerning analysis and design of machine 

foundations. The literature review focuses on the use of the analytical and numerical 

methods. The analytical methods include the semi-empirical method of reduced natural 

frequency, mass-spring dashpot (MSD) or Winkler model, elastic half-space theory, and 

simplified half-space models. The elastic half-space theory includes Sung (1953) model. 

The simplified half-space models include simplified Lysmer (1965) model and simplified 

Veletsos and Verbic (1973) models which consider the half-space with mass and without 

mass. The numerical solution will focus on the analysis by finite element method (Abaqus) 

as well as Dyna5 program. These provide the basis for the understanding of the dynamic 

response of machine foundation systems. The literature review provides the basis for the 

knowledge of the field measurements as well as for data analysis. The existing information 

is reviewed, and the gap between existing knowledge is established. To clarify this, figures 

are listed at the end of the chapter. 

 

2.1 Semi - empirical methods 
 
The empirical methods were developed based on the observed behaviour of foundation 

subjected to vibration loads. The historical background of the design of machine 

foundations shows that the revolution of the design of foundation for machines began by 

using ‘rules of thumb’. The main goal was to reduce resonant amplitude by increasing the 

mass of the footing. One of the first experimental studies to approximate the dynamic 

behaviour of foundation vibrations was carried out during the period of 1928 to 1939 by 

DEGEBO, an organisation in Germany, (Crockett and Hammond, 1949 and Richart et al., 

1970). The aim of the DEGEBO study was to evaluate the dynamic soil properties in the 
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field by using a mechanical oscillator. From the field test results and analyses the method 

based on the “In-Phase Mass” was developed. The design approach considers that a mass 

of the soil beneath the footing moves with the footing.  

 

2.1.1 ''In-Phase'' mass 

 

The ''In-Phase'' mass design technique assumes that a finite mass of soil underneath a 

footing vibrates rigidly in phase with the footing. The natural frequency of the foundation 

system is determined using Equation 2.1. 

 

s

v

n
MM

k

2π

1
f

+
=        Equation 2.1 

 

Where: 

 

nf  is the natural frequency; 

vk  is the spring constant; 

M  is the mass of footing and machine; and 

sM  is the mass of the soil participating in vibration 

 

The method aims at determining the resonant frequency of the undamped foundation 

systems. A method to estimate the mass of soil participating in vibration was suggested by 

Crockett and Hammond (1949). The method is intuitive because it is difficult to obtain 

reliable mass of soil in phase with footing. This is because the in phase mass depend on the 

mass of the footing and machine (dead load), exciting force, forcing frequency, base area 

of the footing, mode of vibration and soil type beneath the footing (Richart et al., 1970 and 

Rao, 1998). The ''In-Phase'' mass design technique was first introduced by Tschebotarioff 

and Ward (1948) and was modified by Tschebotarioff (1953). Tschebotarioff (1953) 

introduced a design method known as reduced natural frequency. 

 

2.1.2 Reduced natural frequency 

 

Reissner (1936) used the DEGEBO experimental test setup and test results to establish the 

theory of evaluating the dynamic response of vibrating footings as influenced by soil 

properties (Richart et al., 1970). Unfortunately, although the study by Reissner formed the 

basis of almost all studies on vibrating foundations, the theory did not receive immediate 

attention for different reasons. The main reason was that these results did not compare 
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favourably with the field-measured test results. The possible cause was the unrealistic 

assumed uniform contact pressure distribution, elastic soil medium and the shape of the 

contact area (Sung, 1953; Richart et al., 1970 and Rao, 1998). Other reasons included the 

permanent settlement developed during field measurements and an algebraic error of sign 

introduced in the calculation of the displacement function 2f  (Sung, 1953). This sign error 

was recognised by Sung (1953). 

 

Because of these drawbacks during this time, the design of machine foundation had been 

based on the semi-empirical design approach. Tschebotarioff (1953) improved the ''In-

Phase'' mass design method by considering different type of soil supporting the machine 

foundations. The method is known as reduced natural frequency because the natural 

frequency of machine system is reduced by considering the mass of soil vibrating with 

footing. Equation 2.1 becomes: 

 

s

v
n

MM

Ak'

2π

1
f

+
=        Equation 2.2 

 

Where: 

 

nf  is the resonant frequency; 

v'k  is the dynamic modulus of subgrade reaction; 

A  is a cross section area of footing in contact with soil; 

M  is the mass of footing and machine, and  

sM is the mass of the soil participating in vibration. 

 

Tschebotarioff (1953) considered the static pressure caused by footing and rearranged 

Equation 2.2 to obtain Equation 2.3. 
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© University of Pretoria 



 

2-4 

 

 

A

F
qo =  is the average vertical pressure between the base of the footing and the soil; 

vk'  is the vertical distributed spring constant which taken as the modulus of subgrade 

reaction; 

M  is the mass of footing and machine; 

A  is cross section area of footing in contact with soil; 

sM is the mass of the soil participating in vibration;  

F is the force exerted by footing and machine, and  

g is the acceleration due to gravity. 

 
Tschebotarioff (1953) developed the design chart of which the relationship between the 

contact area of the footing and reduced natural frequency for the different type of soil is 

established (Richart et al., 1970 and Rao, 1998). The main design procedures involve 

assuming the natural frequency of the foundation using no resonant condition criteria. The 

next step is to determine the total weight of the footing to calculate the static bearing 

pressure between footing and soil. Equation 2.3 is used to obtain reduced natural frequency 

for a particular design bearing pressure. From the calculated reduced natural frequency, the 

Tschebotarioff design chart is used to estimate the required area for no resonant criteria 

(Richart et al., 1970 and Rao, 1998). The obtained required area is compared to the 

estimated area. The required area must be less than the estimated area. The design approach 

is concerned only with the resonant frequency without considering the vibration amplitudes 

and wave propagating in the ground and for these reasons its use was discredited and will 

not be discussed in this thesis. 

 

The history of development of methods for analysing machine foundations subjected to 

dynamic loads has followed two main schools of thought. The first is the mass spring 

dashpot model or classical Winkler model, which replaces the effect of the underlying soil 

medium with closely spaced independent linear springs or a bed of springs. The second 

takes into account soil behaviour by considering wave propagation as introduced by Lamb 

(1904). The next section will discuss the analysis of machine foundation using the Winkler 

model. 
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2.2 Winkler model 
 

The closed form solution to analyse compressible layer of stone as a static problem by 

linearising the behaviour of the soil was proposed by Winkler in eighteen century 

(Terzaghi, 1955). In 1888, Zimmermann used the Winkler model to compute the stresses in 

railroad ties which were resting on ballast over their full length (Terzaghi, 1955). Since 

then the model has become popular in geotechnical engineering for analysing static and 

dynamic problems. In static problems, the method is used to determine the response of 

relatively flexible foundations such as Mat or Raft foundations, foundations for waste 

treatment and water tanks, slabs on grade, rigid pavements and laterally loaded deep 

foundations. 

 

The Winkler soil model describes the simplest representation of the soil response due to 

surface loads. The model replaces the soil medium with independent vertical springs, 

which represent stiffness of the soil, as illustrated in Figure 2.1. The main feature of the 

Winkler soil model is that the contact pressure between the footing and soil is directly 

proportional to the corresponding vertical displacement of the contact surface. 

 

A major shortcoming of the Winkler model is that it cannot sustain shear stresses and 

hence cannot spread loads to the neighbouring parts, which are not directly loaded. 

Basically, the model suffers from a complete lack of continuity in the supporting medium 

as shown in Figure 2.1. This inherent deficiency of the Winkler model, in describing the 

continuum behaviour of the real soil mass for a static problem, has led to the development 

of many other simple soil response models. These include the Filonenko-Borodich model 

(1945), the Hetenyi model (1946), the Pasternak Model (1954) and the Kerr Foundation 

model (1964). 

 

In dynamic analysis, the Winkler model ignores the damping of the medium due to the 

geometry and does not consider the dynamic interaction between the soil and the footing. 

In order to account for damping, viscous dampers are added to the system, parallel to the 

elastic springs, to simulate energy dissipation as shown in Figure 2.2. The addition of the 

dampers results in two model parameters, the spring and viscous damper or Mass-spring 

dashpot model (MSD model). This model is known as Winkler Kelvin-Voigt (Hetenyi, 

(1946), Terzaghi, (1955) and Barkan, (1962). The name is given to commemorate Kelvin 

and Voigt who used the viscous damping method for the first time. 
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Barkan (1962) carried out several field tests to determine soil elastic properties using plate 

load tests. Barkan used test results to establish charts from which design soil parameters are 

obtained and used in the dynamic Winkler model to estimate dynamic behaviour of the 

foundation system. The method by Barkan (1962) is known as the dynamic subgrade or 

dynamic Winkler model method as shown in Figure 2.1. This method is popular and is still 

used in India for design of machine foundations (Prakash and Puri, 2006). 

 

For an undamped foundation system subjected to vertical harmonic load, the differential 

equation of motion is given by: 

 

t)sin(PUkUM ovvv ω=+&&        Equation 2.4 

 
Where: 

M  is the lumped mass of the footing and oscillating mechanism; 

t  is the time; 

ω  is the forcing frequency; 

vk  is a vertical distributed spring constant; 

vU  is the vertical displacement, and  

oP  is the force amplitude. 

 
The general solution for Equation 2.4 is: 
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++=    Equation 2.5 

Where: 

A and B  are constants; 

ω  is the forcing frequency; 

t  is time; 

vk is the vertical distributed spring constant; 

oω  is the natural frequency of the foundation system, and 

oP  is the force amplitude. 

 

For the steady state condition, the displacement amplitude is given by: 
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Where: 

oω is a natural frequency of the undamped foundation system. 

 
The natural frequency of the foundation system is obtained from: 

 

M

kv
o =ω          Equation 2.7 

 

 

2.3 Elastic half-space theory 
 

Reissner (1936) established the solution to a foundation vibrating on a half-space. In 

developing the theory, Reissner used the solution developed by Lamb (1904) for a 

vibrating single vertical concentrated point load on a half-space, which is known as the 

Boussinesq dynamic problem, as shown in Figure 2.3. Reissner integrated Lamb's solution 

for a point load acting on an elastic half-space (Gong et al., 2006 and Chowdhury and 

Dasgupta, 2009). This solution forms the basis for the design of foundations vibrating on a 

half-space. 

 

Reissner (1936) assumed that the soil medium on which the footing rests is a semi-infinite 

homogeneous, isotropic and elastic body subjected to vertical, uniformly distributed axis- 

symmetrical surface pressure. The soil properties required to describe the elastic body were 

shear modulus, Poisson’s ratio and mass density of the soil (Sung, 1953; Bycroft, 1956 and 

Richart et al., 1970). Reissner suggested Equation 2.8 to calculate the vertical displacement 

at the centre of the uniformly loaded circular footing as illustrated in Figure 2.4. 
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       Equation 2.8 

 

Where: 

vU  is the vertical displacement; 

G  is the shear modulus; 

oP  is force amplitude of the dynamic load; 

or  is the radius of the footing; 
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ω   is the frequency of excitation; 

1i −= , and 

1f  and 2f  are Reissner’s frequency dependent displacement functions, which depend on 

the radius of the loaded area and the length of the shear wave propagated by the footing, 

and Poisson’s ratio of the soil. 

 

The influence of Poisson’s ratio and shear wave velocity are contained in the Reissner’s 

displacement functions 1f  and 2f . To address these complicated displacement functions in 

relationship to Poisson’s ratio and the shear wave velocity, Reissner introduced the 

dimensionless frequency oa  which is given by: 

 

s

o
oo

V

ωr

G

ρ
ωra ==         Equation 2.9 

 
Where: 

sV  is the velocity of shear wave propagating in the elastic body;  

ω  is the frequency of excitation;  

or  is the radius of the footing, and  

ρ  is the mass density of soil. 

 

In addition, Reissner established a dimensionless term, known as the mass ratio, which is 

given by: 

 

3

o

o
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m
b =           Equation 2.10 

 

Where: 

m is the total mass of the vibrating footing and exciting mechanism, which rests on the 

surface of the elastic half-space. 

 

Equation 2.10 incorporates the influence of the soil mass underneath the vibrating footing. 

Using a mass-spring dashpot model with a single degree of freedom, Reissner’s equation to 

calculate amplitude is expressed as: 
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The dimensionless amplitude is given by: 

 

( ) ( )2

2

2

oo

2

1

2

oo

2

2

2

1

o

ov

fabfab1

ff
M.F

P

GrU

++

+
==      Equation 2.12 

 

Where: 

M.F is the magnification factor 

 

The phase angle (ϕ ) between the external force ti
oePP

ω= and ground displacement vU  is 

expressed as: 
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Essentially, these sets of equations use compliance functions, which assume the footing and 

half-space are massless as shown in Figure 2.2. 

The phase angle (φ ) between the external force ti
oePP

ω=  and footing displacement vU  is: 

 

1

2

f

f
tan =φ          Equation 2.14 

 
Sung (1953), Quinlan (1953) and Bycroft (1956) extended Reissner’s solution to account 

for the effect of pressure distribution at the contact area between footing and the surface of 

the half-space. Sung (1953), Quinlan (1953) and Bycroft (1956) solutions assume that the 

contact pressure distribution between the footing and half-space medium is that produced 

by a rigid footing, a uniform loading and parabolic loading. It is obvious that the solution is 

an approximation as the assumptions for the soil medium and pressure distribution 

underneath the footing are crude. In the Reissner (1936), Bycroft (1956) and Sung (1953) 

solutions, the value of 1f  and 2f , which are functions of Poisson's ratio of the half-space 

medium, can be obtained from charts to determine the footing displacement. 

 

Sung (1953) determined only the displacement at the centre of the loaded footing while 

Bycroft (1956) went further and calculated the displacement of the footing as a weighted 

average of the displacement over the loaded area. This implies that the Bycroft (1956) 

solution is based on more realistic assumptions than the Sung (1953) solution in solving 

Reissner (1936) equation. In this study, Sung (1953) displacement functions are used. This 

is because Sung (1953) generated displacement functions for 1f  and 2f  to solve Reissner 

(1936) equation in the form of power series functions for a rigid base, a uniform loading 
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and parabolic loading for Poisson’s ratios of 0, 0.25, 0.333 and 0.5, which can be easily 

applied. Hsieh (1962) presented the same approach, where he established displacement 

functions 1F  and 2F  to solve Reissner (1936) equation. 

 

The half-space theory provided the basis for analysis of the machine foundation subjected 

to dynamic loading. Because the half-space theory requires assumptions concerning the 

pressure distribution below the footing, Sung (1953) recommended the use of a ring-form 

load for more accurate estimation of axial symmetric load distribution underneath the 

footing. Since then, the half-space theory has been simplified ranging from simple to 

complex to determine the response of machine foundation system under dynamic loading. 

The simplified models which will be discussed in this thesis include those proposed by 

Lysmer (1965), Veletsos and Verbic (1973) with massless soil and footing as well as 

Veletsos and Verbic (1973) with mass of the soil and footing. 

 

2.4 Simplified Lysmer (1965) model 
 

Lysmer (1965) investigated a theoretical solution introduced by Reissner (1936) for a 

circular rigid footing resting on an elastic half-space which was subjected to steady state 

vertical oscillation. Lysmer (1965) used concentric rings of constant pressure and assumed 

the displacement of all rings to be the same, simulating constant pressure exerted beneath 

the footing. 

 

Reissner’s solution considers an estimation of displacement functions 1f  and 2f  which are 

obtained from charts to calculate the displacement response of machine foundations. To 

eliminate the influence of Poisson’s ratio, Lysmer (1965) multiplied the term ( )21 iff +  in 

Equation 2.8 by a factor ( )ν−14  and defined a new compliance function as described in 

Equation 2.15. 
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       Equation 2.15 

 
Where: 

 

The functions 1F  and 2F  can be obtained from Equation 2.16. 
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For a vertical vibrating rigid circular footing, the influence of the geometry of the footing is 

shown in the Reissner’s dimensionless mass ratio (bo) illustrated in Equation 2.10. Lysmer 

introduced a modified mass ratio given by Equation 2.17. 
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Where: 

v  is the Poisson’s ratio. 

 

This implies that in Lysmer (1965) model a chart is not required to extract different values 

of 1f  and 2f  because they are expressed in the single displacement function by specifying 

geometry of the footing, soil type and excitation frequency, (Richart et al., 1970 and Das, 

2011). Using Lysmer (1965) model, the amplitude of vertical vibrations is given by: 

 

( )
Z

Gr4

P1
U

o

o
v

ν−
=         Equation 2.18 

 

Where: 

Z  is the magnification factor. The equation of motion for Lysmer (1965) model is given 

by: 

 

( )ωtsin
o

PKUUCUM =++ &&&       Equation 2.19 

 

Where: 

M  is the mass of the foundation system;  

C  is the viscous damping coefficient of the foundation system;  

K  is the stiffness of the system; 

U  is the absolute displacement of the mass;  

ω  is the forcing frequency; 

t  is the time, and  

oP  
is the force amplitude. 

 

For vertical vibration, C  in Equation 2.19 is equal vC , therefore, the vertical viscous 

damping coefficient of the foundation sytem is given by: 
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=         Equation 2.20 
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Where: 

or  is an equivalent radius of the footing; 

ν   is a Poisson’s ratio of the soil; 

G  is the shear modulus of the soil, and 

ρ   is the mass density of the soil. 

For vertical vibration, K  in Equation 2.19 is equal to vK  which is the same constant used 

to calculate settlement for static loading: 

 

ν−
=

1

Gr4
K o

v
         Equation 2.21 

 

For vertical vibration, the damping ratio is given by: 

 

vc

v

B

0.425

C

C
D ==         Equation 2.22 

 
Where: 

vB  is Lysmer’s modified mass ratio obtained from Equation 2.17. 

cC = critical damping coefficient MK2 v=  

 

The vertical dynamic displacement of a machine foundation system is determined using 

Equation 2.23. 
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Where: 

oP  is the amplitude of the forcing function;  

oω  is the natural frequency of the system;  

ω  is the frequency of excitation; 

vK  is the stiffness of the system, and  

D is the damping ratio.  

 
Equation 2.23 can be used to evaluate the elastic dynamic response of rigid footings 

subjected to harmonic loads. The work by Lysmer resulted in ‘Simplified Lysmer (1965) 
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model (Lumped parameter model) in which a mass, spring, and dashpot are used to 

simplify the analysis. The mass of the system is lumped together in one mass (M). All 

effects contributing to the stiffness are lumped together in one stiffness parameter ( vK ) 

and represented by a spring. And all effects contributing to damping are lumped together in 

one parameter ( D ) and represented by a dashpot. vK  and D  are frequency dependent 

parameters. For surface foundations other simplified models include Veletsos, and Verbic 

(1973) massless of soil and footing, Veletsos and Verbic (1973) with mass of footing and 

soil and Dyna5 program. The dynamic response of the embedded foundation system can be 

predicted using the model proposed by Novak and Beredugo (1972) and the Dyna5 

program. These analytical methods use impedance functions to estimate machine 

foundation behaviour. 

 

2.5 Impedance functions 
 

Impedance functions represent the frequency dependent stiffness and damping 

characteristic of foundation-soil interaction. These can be obtained using available 

analytical solutions or can be measured in the field. The dynamic impedance functions 

obtained from the field measurements represent the actual dynamic behaviour of soil-

structure interaction. 

 

The prediction of dynamic behaviour of soil-structure interaction is governed by dynamic 

impedance functions. These functions are used to describe an assumed linear relationship 

between force and displacement at a particular frequency of a dynamically loaded machine 

foundation. The impedance function of the machine foundations is frequency dependent. 

The inverse of the impedance function is called compliance or frequency response 

function. The frequency response functions can be obtained from either measured data or 

analytical solutions and may be presented in terms of magnitude and phase. 

 

Accurate impedance functions of a foundation system are a key requirement in analysis and 

design of dynamically loaded machine foundations. These impedance functions allow 

resonant amplitude, resonant frequency, natural frequency and dynamic stiffness of 

foundation systems to be predicted.  

 

To date, few research studies have documented the responses of the vertical dynamic 

impedance functions of shallow foundations obtained from field measurements (Dunn et 

al., 2009; Dunn, 2010 and Tileylioglu, 2011). Veletsos and Verbic (1973) investigated the 

effect of material damping for a steady-state response of harmonically excited footings. 
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Gazetas (1991a) presented various formulas and charts of impedance functions for different 

modes of vibration for surface and embedded footings, which can readily be used by 

practicing engineers. In their study, they suggested the use of models with mass by taking 

the spring stiffness equal to the static stiffness of the system instead of the use of massless 

models. The use of massless models may result in the effective stiffness becoming negative 

over a large frequency range. Evaluation of impedance functions assumes that the footing 

is completely rigid and remains in contact with the soil at all times (Gazetas, 1991; 

Verruijt, 2003). Therefore, the displacement of the footing is assumed to be equal to the 

displacement of the soil surface beneath the footing. 

 

Impedance functions can be determined from the frequency response functions measured in 

the field (Crouse et al., 1984; Wong and Trifunac, 1988; Crouse et al., 1990; Srinivasan et 

al., 1991; DeBarros and Luco, 1995; Tileylioglu, 2008; Dunn et al., 2009; Dunn, 2010 and 

Ahn, 2011). The comparison between impedance functions obtained from field data with 

those predicted from theoretical models shows that the general responses of the foundations 

are frequency dependent. This observation shows that it is important to consider footing 

inertia force in the analysis and design of machine foundations.  

 

Nii (1987) carried out laboratory experimental tests to determine dynamic stiffness for 

surface and embedded footings on a half-space made from silicon rubber. The dynamic 

impedances were measured using mechanical impedance measurement techniques. The 

dynamic stiffness and damping coefficient obtained from the experimental test data 

indicated that dynamic stiffness and damping coefficients are frequency dependent. 

 
Crouse et al (1990) carried out experimental work to determine impedance functions for a 

forced vibration test on surface and embedded footings. The results indicated that the use 

of static-stiffness and low-frequency values of damping would be inappropriate in soil-

structure interaction models of high frequency machinery on small footings. The forced 

vibration tests performed by Crouse et al (1984) were designed to determine impedance 

functions of the accelerograph station. The results indicated that the theory underestimates 

the real part of the vertical impedance stiffness, but overestimates the imaginary part. 

 

Although theoretical models assume a massless foundation, the experimental results 

showed satisfactory agreement between theoretical and experimental results. Srinivasan et 

al., (1991) compared theoretical results obtained from the Lysmer (1965) model and 

experimental results. This revealed that Lysmer (1965) model overestimates the natural 

frequency and damping coefficient. 
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The assumed massless foundation developed by Lysmer (1965) model was critically 

analysed by Verbic (1972) who has pointed out that this assumption has no significant 

effect on the frequency response function. Verbic (1972) then suggested that the single-

degree of freedom (SDOF) model as proposed by Lysmer (1965,) shown in Equations 2.19 

to 2.23, can be used without loss of information when compared to the actual soil-structure 

interaction system. 

 

A summary outlining the development of soil-structure interaction methods for machine 

foundations can be found in Gazetas (1983) and Kausel (2010). In the review, Gazetas 

(1983) indicated that in the design and analysis of machine foundation it is important to 

evaluate impedance characteristics obtained at the frequencies of interest. 

 

The review of available solutions for impedance functions is provided by Shah, 1968; 

Veletsos and Verbic, 1973; Veletsos and Verbic, 1974; Gazetas, 1991b; Nii, 1987. and 

Veletsos and Tang, 1987. The soil profile is assumed to be viscoelastic or elastic half-

space, and simplified as a single degree of freedom system as shown in Figure 2.2. For 

each excitation frequency, the dynamic impedance is calculated using Equation 2.24, which 

is the ratio between the applied force (or moment) and resulting steady state displacement 

response (or rotation) at the centre of the base of a massless footing and soil. The obtained 

impedance functions are employed to describe a linear relationship between the forcing 

function and the displacement response (Gazetas, 1991b). This assumed relationship allows 

for the solution of dynamic displacement using the differential equation of motion. The 

response of the system is described in Equation 2.24 and is known as complex dynamic 

stiffness. 

 

( )
(t)U

(t)P
K

o

o
o

=ω          Equation 2.24 

 

Where: 

(t)Po  is the harmonic force, and 

(t)Uo  is the harmonic displacement. 

 

For the assumed applied vertical harmonic force, a particular solution of displacement in 

the time domain is given by 
ti

vp eU(t)u
ω= . Substituting this expression in Equation 2.19, 

the vertical displacement is obtained by: 
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iCωMωK

P
U

2

o

o
v

+−
=        Equation 2.25 

 
Where: 

ω   is a frequency of excitation; 

oK  is equivalent to static stiffness ( )
statico KK = ; 

M  is the lumped mass of footing and machine 

C   is the radiation damping coefficient of the soil-foundation system, and 

oP
  is the vertical force amplitude. 

 

The vertical displacement amplitude is given by: 

 

( ) ( )222

o

o
v

CωMωK

P
U

+−
=        Equation 2.26 

 
while the static displacement is obtained by: 

 

o

o
static

K

P
U =         Equation 2.27 

 

and 

 

( )iCωMωK
U

P 2

o

v

o +−=        Equation 2.28 

 

Equation 2.28 can also be expressed as: 

 

( )ωωω iCMK)(K
2

ov +−=       Equation 2.29 

 
Where: 

 

)(Kv ω  is the complex dynamic stiffness. 

 

For a very low frequencyω, oK  has a dimension of force per length. The typical values of 

oK  for foundation systems depend on the footing characteristics, such as width of footing 

and underlying soil properties. The complex dynamic stiffness shown in Equation 2.29 can 

be written in the general form as: 
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)(iK)(K)(K
IR

v ωωω +=        Equation 2.30 

 

where,  

 

( ) 2
o

R
MωKωK −=        Equation 2.31 

 

and 

 

( ) CωωK
I =         Equation 2.32 

 

Where: 

( )ωK R
 is the real part known as effective dynamic stiffness which reflects the stiffness 

and inertia of the supporting soil. The dependence of the real part on frequency is attributed 

solely to the influence of frequency on inertia, because at small strains, soil properties are 

essentially frequency independent (Gazetas, 1983 and Gazetas, 1991b). 

( )ωK I
 is the imaginary part which reflects the radiation and material damping of the 

foundation systems. Radiation damping is the result of energy dissipation by waves 

propagating away from foundation systems and is frequency dependent, while material 

damping is mainly due to hysteretic cyclic behaviour of soil, which is practically frequency 

independent (Gazetas, 1983 and Gazetas, 1991b). 

 

If Equation 2.31 is normalized by oK , which is staticK  for low frequency, then, the equation 

will reduce to: 
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      Equation 2.33 

 

Where: 

)(k ω  is a dynamic stiffness coefficient of the foundation (Veletsos and Verbic, 1973; 

Veletsos and Verbic, 1974 and Gazetas, 1991) and is simplified as: 
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The analysis of field data involves carrying out a fast Fourier transform (FFT) of 

displacement and FFT of the input force. oP  and oU  are complex functions. Equation 2.29 

describes the impedance functions and it is necessary to mention that, this equation is the 
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result of the division of complex values. As an example, assume that the foundation is 

excited by a vertical forcing function with frequency of 20 Hz, and the displacement 

response is recorded, then the complex dynamic stiffness is given by: 

 

i..
i..

i..
K

)Hz(v 5431534074904
4008107793

83183337451591618
20

+=
+−

+−
=  

 

The numerator is the FFT of the input data (forcing function) while the denominator is the 

FFT of the output (displacement response) obtained from the field-measured data. The 

results take the form of Equation 2.31 and Equation 2.32, where: 

 

( ) 40.74904MωKωK
2

o

R =−=  and ( ) 54.1533CωωK
I ==  Equation 2.35 

 

The complex dynamic stiffness is the magnitude of the real and the imaginary part as 

shown in Figure 2.5. Therefore, the presentation of responses of a foundation system using 

impedance functions is obtained by back-calculation. The directly measured dynamic 

responses may be presented in terms of displacement velocity and acceleration depending 

on which response has been measured in the field.  

 

2.5.1 Veletsos and Verbic 1973 massless soil 
 
The simplified analysis methods determine dynamic response of machine foundation 

system by force vibration tests assume that the footing and soil are massless as shown in 

Figure 2.2 (Sung, 1953; Lysmer, 1965; and Veletsos and Verbic, 1973). The behaviour of a 

foundation system may be modelled more realistically by assuming that the footing is 

placed on the surface of a column of soil, which possesses mass distributed along its 

length, as shown in Figure 2.6. If this column of soil mass is loaded by vertical harmonic 

load, the column will vibrate with the mass of soil, which is distributed along the width and 

length as shown in Figure 2.6. For an approximate analysis at the low frequency ( )5.1≤oa  

the column may be assumed to be massless and, the distributed mass can be lumped and 

placed on the top of a spring and dashpot as shown in Figures 2.7 and 2.8 (Verbic 1972 and 

Veletsos and Verbic 1973). 

 

The complex dynamic stiffness or impedance function of footing on massless system can 

be approximated by the following equation: 

 

( ) ( ) ( )( )ν),(aωciaν),(aωkKωK oooo +=      Equation 2.36 

 

Where: 
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oK  represents static stiffness; 

( )ωc  is the damping coefficient; 

( )ωk  is the dynamic stiffness coefficient; 

ν  is Poisson’s ratio of the half-space medium, and 

oa  is the dimensionless frequency ( )5.1ao ≤  given by Equation 2.9. 

 

For an equivalent mass spring-dashpot representation of the half-space supporting medium, 

( )ωk  is a measure of the dynamic stiffness coefficient of the spring and ωc  is a measure 

of damping coefficient of the dashpot (Shah, 1968 and Verbic, 1972). The analysis 

procedures take into account only geometric radiation damping (Veletsos and Verbic, 

1973). For high frequencies, an approximate semi-empirical expression for dynamic 

stiffness coefficients and damping coefficient of the dashpot of a vertically vibrating rigid 

footing is presented in Table 2.1 (Veletsos and Verbic, 1973 and Veletsos, 1974). 

 
Table 2-1: Coefficients for the vertical dynamic stiffness (Veletsos and Verbic, 1973) 

Poisson ratio - ν  0 0.33 0.5 

Coefficients    

b1 0.25 0.35 0 

b2 1 0.8 0 

b3 0 0 0.17 

b4 0.85 0.75 0.85 

 

Where: 

b1, b2, b3 and b4 are numerical coefficients, which depend on the Poisson’s ratio.  

 
Using the numerical coefficients given in Table 2.1, dynamic stiffness coefficient is: 
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while the damping coefficient is given by: 
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+=ω       Equation 2.38 

 

All the models described up to this point assume that the foundation soil is massless, 

however it is known that some of the soil below the footing also vibrates as a result of the 

vibration of the footing itself (Verbic 1972 and Veletsos and Verbic 1973). Veletsos and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

2-20 

 

Verbic (1973) developed an analytical model which includes mass of the soil below the 

footing. This model will be described in the next section. 

 

2.5.2 Veletsos and Verbic 1973 soil with mass 
 

Veletsos and Verbic (1973) suggested a model, which can take into account the mass of the 

supporting medium and footing. Equation 2.26 gives the displacement steady state motion 

of the foundation due to harmonic excitation. Equation 2.29 gives the complex dynamic 

stiffness. If Equation 2.29 is compared with Equation 2.36 at a specified frequency and 

equating the imaginary part, the dashpot coefficient ( )C  can be expressed by: 

 

( )
s

oo

V

rK
cC ω=         Equation 2.39 

 

From Equation 2.36, it can be observed that a desirable representation can be achieved by 

assuming that the real part from the massless solution is equal to the static 

stiffness ( ) ( )( )o
R

KkωK ω= . Therefore, if the real part of Equation 2.29 is equated to the real 

part of Equation 2.36 and equating sMM = , the term sM  is assumed to be the mass of the 

half-space medium as shown in Figure 2.8, then sM  takes the form: 

 

( )( )
2

o
s

K
k1M

ω
ω−=         Equation 2.40 

 

The frequency 2ω  can be eliminated by introducing a dimensionless frequency oa  and a 

dimensionless parameter vB . This can be achieved by substitution of Equations 2.9, 2.10, 

2.17 and Equation 2.34 into Equation 2.40, then Equation 2.40 becomes: 
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2

oo
vs

V

rK
BM =         Equation 2.41 

 

If oK  in Equation 2.40 is taken as a static stiffness obtained from Equation 2.21 and 

substituting sV  obtained from elastic theory ( )sos GV ρ=  in Equation 2.41, then: 
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−
=         Equation 2.42 

 

The effect of mass of the footing vibrating in the vertical direction can be described by 

adding the inertia of footing fM  to the inertia of an equivalent oscillator with mass sM  as 
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shown in Figure 2.9. The dynamic behaviour of the machine foundation can be 

conveniently specified by the natural frequency nω  and damping ratio D  (Veletsos and 

Verbic 1973). The natural frequency ( )nω  of a foundation system that includes half-space 

mass is determined by: 

 

o

fs

o
n ω
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K
ω ×


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










+
=        Equation 2.43 

 
Where: 

 

oω  is the natural frequency of the system assuming that the half-space is massless as 

shown in Equation 2.7 and ( )sM  is obtained from Equation 2.42. 

The damping ratio ( )D  of the foundation system is obtained from Equation 2.44. 

( )fso MMK2

C
D

+
=        Equation 2.44 

 

The displacement amplitude of the foundation system as suggested by Veletsos and Verbic 

(1973) is given by: 
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2.5.3 Impedance methods using Dyna 5 program 
 

The real part, damping coefficient and phase angle of shallow and deep foundations can be 

determined using the Dyna5 program. The obtained real and the imaginary part can be used 

to determine complex dynamic stiffness using Equation 2.36. In the Dyna5 program, the 

effective dynamic stiffness and the damping coefficient are considered to be frequency 

dependent. The calculation of effective dynamic stiffness and damping coefficient for 

shallow foundations is based on the theory described by Veletsos and Verbic (1973). For 

embedded foundations, the solution is based on the method proposed by Novak and 

Beredugo (1972). If the layer below footing is five times the equivalent footing radius, the 

program considers the soil profile as a half-space. The soil material properties of the layer 

are introduced in the program by specifying shear wave velocity, unit weight, and 
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Poisson’s ratio. In Dyna5 program, the harmonic force input can be of constant amplitude 

(non-quadratic) or the frequency dependent (quadratic) excitation. 

 
The numerical method of the Dyna5 program is useful for calculating dynamic impedance 

function. These values can be used in the finite element method to determine dynamic 

response behaviour of the structure in time domain. The proposed analytical models 

assume that the footing is a rigid body placed on the surface of an elastic half-space. 

However, in practice, machine foundations are partially embedded at a certain depth below 

ground level. In this next section, the effect of foundation embedment will be discussed. 

 

2.5.4 Embedded foundation 
 
Although most machine foundations are partially or fully embedded, there is little 

information about analysis and design of embedded machine foundations. The most used 

analytical solution method for approximating the dynamic response of embedded 

foundation system is the one proposed by Baranov (1967), and this was extended by Novak 

and Beredugo (1972). Other analytical solutions are those proposed by Gazetas et al., 1985; 

Gazetas, 1991a; and Gazetas, 1991b. These analytical approaches assume that the soil is 

divided at the horizontal plane at the foundation base. The base area is treated as an elastic 

half-space. The embedment soil medium is approximated as a series of independent 

infinitesimally thin elastic layers (Novak and Beredugo, 1972; Novak, 1972; Novak et al., 

1978). 

 

Numerous researchers studied the effects of embedment on the dynamic responses of 

embedded foundation. The studies suggest that embedment increases stiffness and reduces 

the resonant displacement amplitude (Lysmer and Kuhlemeyer, 1969; Novak, 1970; Chae, 

1971; Novak and Beredugo, 1972; Gupta, 1972; Novak, 1974; Novak et al., 1978; Lin and 

Jennings, 1984; Gazetas and Stokoe, 1991; Inukai and Imazawa, 1992). The studies further 

suggest that the increase in stiffness of the foundation systems causes an increase in the 

resonant frequencies of the foundation systems (Novak and Beredugo 1972; Gupta, 1972; 

El Naggar, 2001). However, some studies reported that increasing embedment caused little 

or no increase in resonant frequency (Chae, 1971; Gazetas and Stokoe 1991 and Inukai and 

Imazawa, 1992). Chae (1971) argues that the resonant frequency would not change because 

the effective stress at the foundation level will increase because of the surcharge, which 

balances the increase of stiffness due to embedment.  
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The contradiction between researchers about the increase of the resonant frequency, with 

an increase of depth of embedment could be due to the quality of the modelling of the side 

contact between the foundation and the soil. Novak (1970) noted that the response of 

embedded foundation could be substantially affected by the nature of the contact between 

the footing and the surrounding soil. Novak realised that the description of embedment 

effect is complicated. It depends on the time which can affect the quality of side contact. In 

the recognition of the effect of time on the dynamic response of embedded foundations, for 

this study, the embedded foundation was left for 12 months to allow improvement of 

contact between the soil and the side of the footing. From the literature review, it is clear 

that uncertainty still exist regarding the effect of embedment on the resonant frequency and 

natural frequency of machine foundations. 

 

Chae (1971) introduced dimensionless quantities, known as amplitude reduction coefficient 

( )fR  and embedment factor ( )fN , to express the response of embedded footing. Novak and 

Beredugo (1972) used resonant amplitude ratio to describe the response of embedded 

footings under dynamic loading. The geometry of the footing is described by embedment 

ratio ( )δ  as shown in Equation 2.46 (Novak and Beredugo, 1972 and Gazetas and Stokoe, 

1991): 

 

o

f

r

D
=δ          Equation 2.46 

 

Where: 

fD  is the embedment depth as shown in Figure 2.10, and  

or  is a radius or equivalent radius of the footing. 

 

The resonant amplitude ratio as suggested by Novak and Beredugo (1972) is given by: 

 

maxU

maxU
R

0

a =         Equation 2.47 

 

Where: 

maxU  is the maximum displacement amplitude at the given embedment, and  

maxU 0  is the maximum displacement amplitude for zero embedment (surface footing).  

 

For a square footing, or  is half the width of the footing, while for a circular footing or  is 

the radius of the footing as shown in Figure 2.10. The relationship between embedment 
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depth and resonant frequency is expressed in terms of resonant frequency ratio, which is 

defined by: 

 

o

d
f

f

f
R =          Equation 2.48 

 

Where: 

fR  is the resonant frequency ratio  

of  is the resonant frequency of foundation system with zero embedment. 

df  is the resonant frequency of the foundation system at a given embedment fD . 

 
Novak and Beredugo (1972) presented the solution for determining the dynamic response 

of embedded foundation systems. Their solution is based on the determination of stiffness 

and damping coefficients (impedance functions) of the embedded machine foundation 

systems. The solution uses the concepts proposed by Reissner (1936) for solving the 

problem of vibration on the half-space medium as shown in Figure 2.10. The basic 

differential equation for the problem shown in Figure 2.10 is given by: 

 

(t)N(t)R(t)P(t)UM vvv −−=&&        Equation 2.49 

 
Where: 

M  is the mass of foundation system; 

U&&  is the acceleration; 

)t(Pv  is a time dependent vertical excitation force;  

)t(Rv  is a vertical dynamic reaction at the base of footing, and 

)t(Nv  is the total vertical dynamic reaction force along the sides of the footing  

 

The total reaction force )t(Nv  depends on the quality of the contact between the footing 

and soil. The following assumptions were made to solve Equation 2.49. 

• the footing is a rigid, cylindrical body with radius or ; 

• the response is a linear elastic; 

• the vertical dynamic reaction )t(Rv  is independent of the embedment depth;  

• there is perfect bond between sides of the footing and the soil, and  

• the excitation force is harmonic and acts along the vertical axis of the footing. 
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Because it is assumed that the footing is placed on the surface of an elastic half-space soil 

medium and the reaction at the base is independent of soil reaction along the surface of 

footing sides, the relationship between displacement )t(U  and elastic half-space reaction 

)t(Rv  is given by Equation 2.50, as was suggested by Reissner (1936). 

 

)iC(CGr
(t)U

(t)R
21o

v

v +=        Equation 2.50 

 
where,  

 

2

2

2

1

1
1

ff

f
C

+

−
=  and 

2

2

2

1

2
2

ff

f
C

+
=       Equation 2.51 

 

In Equation 2.51, 1f  and 2f  are Reissner’s frequency dependent displacement functions, 

which depend on the radius of the loaded area, and the length of the shear wave propagated 

by the footing, as well as on Poisson’s ratio of the soil. The displacement functions 1f  and 

2f  can be separated into real and imaginary parts. This implies that 1C  is related to the 

stiffness and 2C  is related to damping of the embedded foundation system. Equation 2.50 

shows that the complex dynamic stiffness of the foundation system has real and imaginary 

parts )iC(C 21 + . 

 

The vertical dynamic reaction force )t(Nv  is a complex function acting along the sides of 

the surface of the footing. The complex function )t(Nv  depends on the embedment 

depth ( )fD , the shear modulus of the adjacent soil ( )SG , and the density ( )sρ  of the 

adjacent soil. The reactions along the sides of the footing are obtained by considering the 

dynamic reaction per unit depth of embedment (Novak and Beredugo, 1972; Novak, 1990). 

The vertical dynamic reaction force is given by: 

 

( )dzt,zs)t(N
fD

0
v ∫=         Equation 2.52  

 

in which ( )t,zss =  is the Baranov solution for a unit reaction (independent of z ) of which 

the mathematical expression is described by Novak (1970), Novak and Beredugo (1972), 

and Novak and Han (1990). Therefore, the vertical dynamic reaction force is given by: 

 

( ) ( ) ( )tUiSSGtS v21s +=         Equation 2.53 
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Where: 

(t)U v  is the vertical displacement response of the footing, 

1S  is a function related to stiffness parameters, 

2S  is a function related to damping of the foundation system (Novak and Beredugo 1972). 

 

The total vertical dynamic reaction force along the sides of footing takes the form: 

 

)iS(SG
(t)U

(t)N
21fs

v

v += D         Equation 2.54 

 
Equation 2.49, 2.50 and 2.54 indicate that embedment increases the vertical reaction 

(friction) along the sides of the footing, which results in an increase of stiffness of the 

foundation system. To account for this increase in stiffness of the foundation system, the 

displacement functions proposed by Reissner given in Equation 2.49 and 2.51 need to be 

modified. This can be done by substituting Equation 2.54 into Equation 2.49, which is the 

equation of motion. The equation of motion for an embedded footing then takes the form: 

 

( ) ( ) ( )tPtU )Si(S
r

D

G

G
CiCGrtUM 21

o

fs
21o =








++++&&    Equation 2.55 

 

With the complex forcing function ti
oePP(t)

ω=  and steady state response of ti
oeUu(t)

ω= , 

the solution for the vertical frequency dependent dynamic stiffness is given by: 

 

( ) 







+= 1

o

fs
1o S

r

D

G

G
CGrk ω       Equation 2.56 

 

while the frequency dependent damping coefficient is: 

 

( ) 







+= 2

o

fso S
r

D

G

G
2C

Gr
c

ω
ω        Equation 2.57 

 

In Equations 2.56 and 2.57, 1C  and 1S  are stiffness parameters, and 2C  and 2S  are 

damping parameters obtained from a polynomial functions shown in Table 2-2 (Novak and 

Beredugo 1972). In Equation 2.56 and 2.57, G  is the small strain shear modulus of the 

half-space shown in Figure 2.10. The value of SG  is obtained from the density ratio: 

 

GG

3

s
s 




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        Equation 2.58 
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Where: 

sρ  is the density of embedment soil layer. 

ρ  is the density of the half-space soil. 

 
The amplitude of vibration for the embedded footing is obtained by using the values of the 

stiffness and damping coefficient determined from Equation 2.56 and 2.57 respectively. 

Equation 2.59 gives the vertical amplitude of vibration: 
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




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






−

=       Equation 2.59 

 

Where: 

oP  is the force amplitude; 

k   is the dynamic stiffness shown in Equation 2.56; 

ω   is the forcing frequency; 

oω  is the natural frequency of the foundation system, and  

D  is the damping ratio. 

 
Table 2-2: Stiffness and damping parameters for half-space and side layers (Novak and Beredugo, 

1972) 

Poisson’s ratio (ν ) Values Validity range 

(a) Half-space 

0.25 

2
oo1 a41.1a364.037.5C −+=

 
 

5.1a0 o ≤≤
 o2 a06.5C =

 

(b) Side Layer 

any value 
0608.0a/a760.2a2153.0S ooo1 ++=

  

0.2a0 o ≤≤
 01616.0a/a7022.0a059.6S ooo2 ++=

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

2-28 

 

 

2.6 The finite element method 
 

The literature shows that the analysis and design of vibrating foundations can be carried out 

using Mass spring dashpot or Winkler model, half-space theory and simplified half-space 

models. It is understood that simplified models often cannot handle modelling complex 

geometry foundation systems (Hadjin et al., 1974; Hall and Kissenpfennig, 1976 and Dutta 

and Roy, 2002). The modelling of complex foundation systems requires the use of the 

finite element method; this has been popular in civil engineering since 1960 (Chowdhury 

and Dasgupta 2009). There are various finite element methods, which are used to analyse 

and design foundations subjected to dynamic loadings. Therefore, the designer must choose 

a suitable finite element program for analysis according to the subject in question. The 

following sections will discuss the finite element method. 

 

2.7 Wave propagation by finite element method 
 
Modelling wave propagation with finite element techniques for soil-structure interaction 

problems has received increased interest in recent years. This is because the vibrating 

machine, the footing and the soil can be analysed together. In addition, the propagation of 

the mechanical waves radiating away from the footing can also be analysed. 

 

Different soil-structure interaction (SSI) finite element methods have been introduced to 

analyse the dynamic behaviour of machine foundation systems (SHAKE2000, LUSH, 

SASSI and FLUSH). Numerious research studies have been carried out to compare the 

dynamic responses of machine foundations obtained using finite element methods and 

simplified models (Hadjian et al., 1974; Hall and Kissenpfennig, 1976). The results 

indicate that both procedures will yield the same results if they have been appropriately 

used to solve the same problem (Hall and Kissenpfennig, 1976). However, few studies 

have been carried out to compare the results obtained from field measurements and the 

finite element method. 

 
There are a considerable number of commercial general-purpose finite element software 

packages capable of analysing soil-structure interaction problems such as Plaxis, Abaqus, 

Adina, Ansys PAFEC, SAP2000, GTSTRUCTDL and STAAD PRO (Chowdhury and 

Dasgupta 2009; Bhatia 2009). The capabilities of these commercial finite element software 

packages differ from one to another, especially when the problem of modelling wave 

propagation at the boundaries is considered. Therefore, it is important for the user to select 

reliable general finite element programs, which can analyse wave propagation problems.  
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Numerous researchers have used Abaqus software to model Rayleigh waves propagating 

along the surface of a soil medium. The results indicate an acceptable agreement between 

the numerical simulation and the field measurements, with judicious choices of the 

appropriate domain scale, mesh size and boundary conditions (Hall and Bodare, 2000; 

Zerwer et al., 2002; Zerwer et al., 2003; Inci, 2008; Motamed et al., 2009; Mbawala et al., 

2011). Different research studies reported using Abaqus to solve wave propagation 

problems by force vibration methods to determine the frequency response functions of 

mechanical systems (Zhang and Yuchuan, 2007 and Zhao, 2009). Abaqus was used in this 

study to investigate the vertical dynamic response of surface and embedded machine 

foundation systems due to vertical harmonic excitation force. 

 

A critical aspect, when dealing with dynamic analysis of soil-structure interaction using the 

finite element technique, is the modelling of unbounded media. The technique becomes 

difficult when a forcing function with a large range of frequencies is used (Mbawala et al., 

2011). The finite element model must be terminated at some finite boundary. The simple 

solution to this problem is to define a large domain so that waves reflected from the 

boundary do not have time to return to the region of interest during the analysis. However, 

for wave propagation problems which involve soil with high wave velocity, this is not 

often a practical option. The practical option is to introduce boundaries which absorb these 

waves. 

 
Different solutions have been proposed on the subject of non-reflecting boundaries 

(Lysmer and Kuhlmeyer, 1969; Liu and Achenbach, 1994; Liu and Jerry, 2003; and 

Nielsen, 2006). Lysmer and Kuhlmeyer (1969) introduced local non-reflection boundaries 

by viscous dampers attached to the boundaries to absorb waves. Abaqus implements the 

same principles for non-reflecting boundaries (Abaqus Theory Manual, 2011). In 

developing non-reflecting boundaries, it is assumed that the dynamic response of the 

medium near the boundary is linear elastic. The distribution of damping to the wave energy 

in the longitudinal direction is given by 
xpxx Vd &−=σ  , of which pd−  is chosen as 

damping constants to avoid reflection of wave energy back to the model in the longitudinal 

direction. The distribution of damping for shear wave energy back to the medium at the 

boundary is given by ysxy Vd &−=σ  and zsxz Vd &−=σ . The damping constant sd−  is chosen 

to avoid the reflection of shear wave energy back to the model. Therefore, the viscous 

boundary proposed by Lysmer and Kuhlemeyer (1969) is defined by: 
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wVa p
&ρσ =         Equation 2.60 

 

uVb s
&ρτ =          Equation 2.61 

 

Where: 

σ  and τ  are normal stress  and shear stress respectively; 

a and b  are dimensionless quantities 

ρ  is the mass density of the soil medium; 

w&  and u& are normal and tangential velocities respectively, and  

pV and sV  are the velocities of P-wave and S-wave respectively. 

 
The solution by Lysmer and Kuhlmeyer (1969) suggests that the infinite elements are only 

efficient for body waves propagating normally to the boundary (P-waves and S-waves). 

However, the infinite elements can also absorb surface wave (Rayleigh and Love) if 

boundaries are arranged so that the dominant direction of wave propagation is orthogonal 

to the boundaries and are placed at a reasonable distance from the region of main interest. 

 

Mbawala et al, (2011) described modelling procedures to analyse wave propagation 

problems using the Abaqus. The results indicate that the proper choice of domain size, 

element sizes, and use of infinite element at the boundaries minimises the vertical 

displacement caused by spurious reflections. In the analysis, Abaqus/Explicit was used to 

simulate the wave propagation in the ground by simulating Continuous Surface Wave 

(CSW) tests. Abaqus/Explicit is a special-purpose analysis technique which uses an explicit 

dynamic finite formulation (Abaqus Theory Manual, 2011). 

 

2.7.1 Mesh size 

 

The dimension of the finite elements must be selected while taking into consideration the 

wavelength of the propagating perturbation. The finite element mesh size limits the highest 

frequency that can be analysed (Alheid, 1994) and acts as a low–pass filter. Therefore, 

large elements filter short wavelengths (Zerwer et al., 2003). On the other hand, employing 

very small elements can cause numerical instability. The element size must be chosen 

according to the frequency content of the applied load. Differences in the element sizes 

should be as small as possible to avoid false reflections. 

 

Equation 2.62 is used to estimate mesh element size ( )g  as proposed by Cook et al., 

(2002). In Equation 2.62, if maxf  is the maximum frequency of the applied load, and iV  is 
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the propagation velocity of a wave which can be a P-wave, S-wave, or Rayleigh wave in 

the material, then the mesh element size should satisfy the relationship in Equation 2.62: 

 

max

i
min

f

V
ςςλg =≤         Equation 2.62 

 
Where: 

g  is the mesh size, and minλ  is a minimum wavelength, which is estimated using the 

maximum frequency of the wave maxf . 

 

The constant ς  depends on whether the mass matrices are consistent or lumped. For 

consistent mass matrices, the constant is 25.0=ς  and for lumped mass is 2.0=ς  (Cook 

et al., 2002). In a lumped mass, the mass of an element is represented by the particle 

masses which are lumped at the node. For consistent mass matrix, the mass of an element is 

linearly formulated and uses the same shape function used to formulate the stiffness matrix 

(Cook, 2002 and Zerwer et al., 2002). 

 

2.8 Finite element method - steady state response analysis 
 

The finite element method solution focuses on a continuum medium where the continuum 

is divided into a finite set of elements. The basic principle of solution is based on 

developing the solution for a static problem and extending this to a dynamic solution. In the 

analysis of geotechnical engineering structures, regardless whether the loading is static or 

dynamic, engineers are usually interested in displacement due to an action acting on the 

structure. Therefore, for a static action force, the relationship between force, static 

displacement and stiffness matrix shown in Equation 2.27, can be presented in the form of: 

 

[ ]{ } { }ostatico PUK =         Equation 2.63 

 
Where: 

[ ]oK  is the global stiffness matrix;  

{ }oP  is an applied vector force, and 

{ }staticU  is unknown displacement vector which is determined using the inverse of the static 

stiffness matrix as shown in Equation 2.64: 

 

{ } [ ] { }o

1

ostatic PKU
−

=        Equation 2.64 
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In the dynamic analysis, Equation 2.63 contains two more matrices, the mass matrix [ ]M  

and proportional damping matrix [ ]C . The equation of motion is expressed as: 

 

[ ]{ } [ ]{ } [ ]{ } { }PUKUCUM =++ &&&        Equation 2.65 

 
The solution of the steady state problem may be solved using the complex method. For 

this, in the equation of motion, the force and displacement vectors are given by: 

 

{ } { } ti

o ePP
ω=         Equation 2.66 

 

{ } { } ti
eUu(t)

ω=         Equation 2.67 

 

Where: 

oP  is the force amplitude. 

 
Therefore, the displacement response is given by: 

 

{ } { } ti
o eUu

ω=          Equation 2.68 

 

{ } { } ti
o eUiu

ωω=&         Equation 2.69 

 

{ } { } ti
o

2
eUu

ωω−=&&         Equation 2.70 

 

Where: 

{ }oU  is a constant complex displacement vector. 

{ }u  is the displacement response 

{ }u&  is the velocity response 

{ }u&&  is the acceleration response 

Substituting Equations 2.68, 2.69 and 2.70 in Equation 2.65, the equation of motion 

becomes time independent and takes the form of Equation 2.25. 

 

The task is to solve the linear differential equation by the numerical finite element method. 

Abaqus uses the Newmark method to solve steady state response problems. This method 

calculates the response of the system directly in terms of the physical degrees of freedom 

of the model using mass, damping, and stiffness matrices of the machine foundation 

system, which are depending on frequency (Abaqus Theory Manual, 2011). Steady-state 

dynamic analysis provides the steady-state amplitude and phase of the response of the 
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system due to harmonic excitation at a given frequency. Usually such analysis is done as a 

frequency sweep by applying the loading at a series of different frequencies and recording 

the response. 

 

 

2.9 Damping 
 

In numerical calculations, two types of damping exist; numerical damping, due to finite 

element formulation and physical damping which includes materials damping (hysteresis) , 

viscous damping and friction damping (Chowdhury and Dasgupta, 1998; Cook et al., 2002; 

Zerwer et al., 2002; Di Mino et al., 2009; Chowdhury and Dasgupta, 2009). 

 

The frequency response of the system subjected to dynamic load depends on the amount of 

damping specified in the model. Due to the limitations of knowledge about damping, the 

viscous damping is represented in the system by using the equivalent Rayleigh damping or 

proportional damping and modal damping. Rayleigh damping is a simplified way of 

approximating physical damping. Rayleigh damping defines the global damping matrix 

[ ]C  as a linear combination of the global mass and stiffness matrices which is given by: 

 

[ ] [ ] [ ]KβMαC +=         Equation 2.71 

 

Where: 

[ ]M  is the mass matrix of the physical system; 

[ ]K   is the stiffness matrix of the system, and  

α  and β  are the pre-defined coefficients, which depend on the damping ratio and natural 

frequencies of the vibrating system. 

 

Equation 2.71 expresses frequency dependence of damping. In finite element analysis, the 

coefficient α  and β  are often determined by choosing the fraction of damping 1D and 2D  

at two different natural frequencies 1ω  and 2ω  of the system (Chowdhury and Dasgupta 

2009; Ju and Ni 2007; Di Mino et al 2009). The coefficient α  is given by: 

 

( )
( )2

1
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122121 DD2

ωω

ωωωω
α

−

−
=        Equation 2.72 

 

The coefficient β  is: 
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( )
( )2

1

2

2

1122 DD2

ωω

ωω
β

−

−
=        Equation 2.73 

 
Where: 

β  is a coefficient related to the effect of stiffness on the system damping. 

 

The relationship between the fraction of critical damping, frequency, and coefficients α  

and β  demonstrating the effect of stiffness and mass is illustrated in Figure 2-11 

(Chowdhury and Dasgupta 2009; Cook et al., 2002 and Zerwer et al., 2002) 

 

2.10 Three-dimensional finite element models 
 

As physical problems are in three dimensions, using two dimensional analysis can lead to 

dynamic response, which do not represent the three-dimensional problem (Hadjian et al,. 

1974; Luco and Hadjian, 1974). Luco and Hidjian (1975) showed that for better results, 

finite element modelling should consider three-dimension modelling to maintain the correct 

radiation damping characteristic. 

 

In many cases, for three dimensional analysis, two planes of symmetry exist, in which case 

only one quarter of the problem is considered in the analysis, as shown in Figure 2.12. The 

finite element model is shown in Figure 2.12. For vertical displacement, the symmetry 

boundary condition is applied to the xy (i.e., z = 0) and plane of zy (i.e. x=0). 

 

2.11 Gibson soil half space 
 
In the analysis of machine foundations, it is common to assume that the soil underneath the 

footing is a homogeneous or layered half-space. These assumptions may not be realistic in 

practice as the soil usually progressively become stiffer with depth even for uniform 

deposits. The effective stress in the soil increases with depth. This type of soil is known as 

Gibson soil. Gibson soil is defined as being an incompressible, isotropic, elastic half-space 

in which the shear modulus G  increases linearly with depth. Gibson (1967) suggested the 

model of an inhomogeneous soil profile with increasing shear stiffness with depth in the 

form of: 

 

( )mz1GG o +=          Equation 2.74 

 
Where: 

G  is the shear stiffness at the depth of z ; 

oG  is the shear stiffness at the surface;  
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m  is the rate of increase of shear stiffness per meter depth, and 

z   is the depth as shown in Figure 2.13. The relationship assumes that the soil density, 

Poisson’s ratio and damping are constant with depth. 

 

2.12 Compliance function 
 
For a single degree of freedom system, the frequency response function or compliance 

function is the inverse of the impedance function. The results of the steady-state direct 

analysis in the Abaqus software is presented using the compliance functions. It is important 

to establish the relationship between impedance and compliance functions. Recalling 

Equation 2.30 the compliance function is given by: 

 

)(iK)(K

1
)(

IR ωω
ωΧ

+
=       Equation 2.75 

 

Where: 

( )ωR
K  is the real part of the complex dynamic stiffness, and 

( )ωI
K

 
 is the imaginary part of the complex dynamic stiffness. 

 

The compliance function can be expressed in a more general form as: 

 

)(i)()(
IR ωΧωΧωΧ +=       Equation 2.76 

 

Where: 

( )ωΧ R
 is the real part of the compliance function, and 

( )ωΧ I
 is the imaginary part of the compliance function. 

 

Because compliance is the inverse of impedance, there exists a relationship which links the 

two impedance functions ( )ωR
K  and ( )ωI

K  to the compliance function ( )ωΧ R
 and 

( )ωΧ I
. For a single degree of freedom, the relationships are shown in Equations 2.77 and 

2.78. 
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+
=        Equation 2.77 
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−
=        Equation 2.78 
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2.13  Summary 
 

This chapter provided a review of the methods used to analyse machine foundations 

subjected to vertical dynamic loadings. The historical background shows that the evolution 

of the design of machine foundations started by using ‘rules of thumb’. The main goal was 

to reduce the resonant amplitude by increasing the mass of the footing. The “In-phase” 

mass and reduced natural frequency mass were regarded as empirical methods, these came 

after the ‘rule of thumb’ design approach. Another early method used to design machine 

foundations was mass spring dashpot or the Winkler model. 

 

The elastic half-space theory design method takes into consideration the effect of wave 

propagation caused by the vibrating footings. The method is regarded as a more scientific 

design method, which superseded the empirical design methods. The development of the 

elastic half-space theory used the concept introduced by Lamb (1904). 

 

The elastic half-space theory can be simplified to the damped-single degree of freedom 

systems, which is frequency independent or frequency dependent. These methods 

sometime are known as lumped parameter models or simplified elastic half-space models. 

 

For complex soil-structure interaction problems, it is appropriate to use the finite element 

method to determine the dynamic response of machine foundations. Therefore, machine 

foundations can be designed using the following methods: 

• Mass-spring dashpot or Winkler model; 

• Elastic half-space method; 

• Simplified elastic half-space method or lumped parameter method, and  

• Numerical methods such as the finite element method. 

 
Foundation embedment increases the stiffness of the foundation systems and reduces the 

amplitude at resonance. From the literature, it appears that embedment has little influence 

on the resonant frequency. However, some researchers pointed out that with a perfect bond 

between soil and surface of the embedded footing, the resonant frequency increases as the 

embedment increases. 

 

The literature remains silent on the effect of embedment on the natural frequency of the 

foundation systems. However, for undamped systems the condition of resonance is 

described as occurring when the forcing frequency coincides with the natural frequency of 

the foundation system. For a damped system, which undergoes forced vibration, the 
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resonant frequency occurs at a frequency which is less than the undamped natural 

frequency. Therefore, it is important to investigate the effect of the embedment on the 

natural frequency of the foundation systems. It is also noted that some workers use the 

terms resonant frequency and natural frequency interchangeably. 

 

The advancement in the technology of the mining and manufacturing industries has 

resulted in the construction of sensitive and complex vibrating structures, for example, 

large ore grinding mills. These structures are not only sensitive but also have complex 

interdisciplinary loading and complex geometry. The investment in these kinds of 

structures demands a high level of reliability. The current common design method of 

machine foundations is the two-stage approach where geotechnical engineers determine the 

dynamic stiffness and damping constant of the machine foundation systems. These 

parameters are given to the structural engineer to calculate dynamic behaviour of the super- 

structure. This approach uses the Winkler model or simplified analytical models, which 

may not be suitable when dealing with the design of sensitive and complex engineering 

structures.  

 

Numerical methods such as the finite element method may be a better tool for design of the 

engineering structures with complex interdisciplinary loading and complex geometry. The 

finite element method has some limitations, such as analysis time and cost, and requires a 

properly-trained analyst to deal with waves propagating in the ground, especially at the 

boundaries. The aim of this project is to investigate the complexity of the analytical and 

numerical solutions required to accurately predict the vertical dynamic behaviour of 

machine foundations. 
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Figure 2.1: Winkler subgrade foundation  Figure 2.2: Equivalent mass spring-

dashpot  

 
 

 
 

Figure 2.3: Point load on elastic body 

 

 
 

Figure 2.4: Footing resting on the surface of 

elastic half-space 

 

 

 
 

Figure 2.5: Relationship between Real part and Imaginary Part 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

2-39 

 

 

 
 

Figure 2.6: Soil column with mass distributed along 

its length 

 

 
 

Figure 2.7:  Lumped mass of soil with massless 

column 

 

 
 

Figure 2.8: Equivalent mass spring-dashpot with mass 

of soil. 

 

 
 

Figure 2.9: Equivalent mass spring-dashpot with 

mass of soil and footing. 
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Figure 2.10: Embedment footing 
 

 

 
 

Figure 2.11: Proportional damping scheme of vibrating system  
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Figure 2.12: Three-dimensional model in finite element method (Abaqus) 

 

 
 

 
 

 

 

 
 

 

 

Figure 2.13: Definition of equivalent homogeneous medium 
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CHAPTER 3 

3 EXPERIMENTAL WORK 

3.1 Introduction  
 

Correct evaluation of the soil parameters for machine foundation design is important. The 

basic soil parameters required for an analysis of machine foundation are shear modulus, 

Poisson’s ratio and mass density. The shear modulus of the soil is a difficult parameter to 

obtain both in the laboratory and in the field (Whitman and Richart, 1967; Nayfeh and 

Serhan, 1989; Matthews et al., 1996 and El Naggar, 2003). 

 

Laboratory tests require undisturbed soil samples. This may be difficult for materials such 

as sand and gravels and sometimes impossible for materials such as rock masses. Field 

seismic techniques are popular for determining ground stiffness by measuring the velocity 

of Rayleigh waves propagating along the ground surface. These techniques allow elastic 

soil properties to be determined on a representative volume of a ground at the in situ stress 

state (Matthews et al., 1995; Kramer, 1996; Matthews et al., 1996; Heymann, 2007 and 

Clayton et al., 2012). In this study the field seismic techniques of continuous surface waves 

(CSW) were used to determine the shear modulus of a soil profile. The fieldwork was 

carried out at the University of Pretoria experimental station where footings installed. The 

study was conducted on two footings; the first footing was placed on the surface, and the 

second was embedded. It was necessary to characterise the site before embarking on the 

actual measurements of dynamic behaviour of the surface and embedded foundations. The 

measured soil elastic properties were used to analyse the vertical dynamic response of the 

surface and embedded foundations. 

 

3.2 Site investigation 
 

The site is located at the University of Pretoria experiment station close to the University of 

Pretoria sports centre with approximately GPS coordinates of easting 626474 and northing 

7151305. The site investigation involved excavation of the trial pit and determination of the 

shear modulus using the seismic technique of Continuous Surface Wave testing (Heymann, 

2007). The trial pit of 2000 mm x 1500 mm in the plan was excavated to 1500 mm depth. 
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3.2.1 Soil profile  

 
The soil profile was established from the excavated trial pit to the depth of 1500 mm as 

shown in Figure 3.1. The log of the soil profile is shown in Figure 3.2. The general soil 

profile of the site is residual andesite which consisted of silty clay with gravels. 

 

3.2.2 Continuous surface wave test 

 
Continuous Surface Wave testing was carried out at the experimental station to determine 

ground stiffness. This was carried out by exciting the ground with a vertical harmonic load 

with frequency ranging from 6 Hz to about 85 Hz as illustrated in Figures 3.3 and 3.4. The 

shaker used to generate sinusoidal seismic force with a known frequency which generates 

seismic energy at the surface of the ground. Figure 3.3 shows the shaker weighing 20.0 kg, 

which generates higher frequencies and produces short Rayleigh waves to characterise soil 

at shallow depths. Figure 3.4 shows the shaker weighing 71.4 kg, which generates low 

frequencies, with long Rayleigh waves which penetrate to the greater depth. The use of 

both shakers allowed the profile of the soil to be established from shallow depth to the 

greater depths (Heymann, 2007). 

 
The vertical responses in the time domain were observed at distances of 500 mm, 1000 

mm, 1500 mm, 2000 mm and 2500 mm starting from the edge of the shaker as shown in 

Figure 3.3. The Rayleigh wave propagating along the ground surface was detected by an 

array of geophones placed in line as shown in Figures 3.3 and 3.4. Geophones measure the 

ground velocity responses. The test was carried out close to where the footings were to be 

installed. The obtained velocity data were analysed to determine phase velocity, which was 

then used to calculate the shear modulus of the soil profile. 

 

3.3 Calibration  

 
The main components used for the field measurements were hydraulic power packs, 

actuator (hydraulic shaker-zonic ES362-1 inertia excitation system) and servo controller. 

Other components were data acquisition system, amplifier and accelerometers. It was 

important to check the accuracy of the measuring instruments before carrying out field 

measurements. The load cell was calibrated against a dead weight standard Budenberg 

calibration system shown Figure 3.5. The calibrated value was 2.0 kN/mV. The vertical 

response of the foundation system was measured using 1 g accelerometers. The calibration 

certificates are shown in Appendix A and B. The calibration factors for accelerometer one 
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and two are presented in Table 3-1. The 1 g accelerometers used for measurements are 

shown in Figures 3.6 and 3.7. 

 
 

Table 3-1. Calibration values for 1 g accelerometers 

S/No Accelerometer serial number Calibration Factor 

1 SN.22590 1048 mV/g 

2 SN.24742 1104 mV/g 

 

 

3.4 Construction and instrumentation of surface footing 
 

The surface footing was constructed from unreinforced concrete with a dimension of 

2500 mm x 2000 mm in plan and 400 mm depth as shown in Figure 3.8 and 3.9. The 

hydraulic shaker with mass of 361.4 kg was used to subject the foundation to dynamics 

loading. The shaker and other instruments were transported from the University of Pretoria 

to the experiment station. During the casting of the concrete, the fixing bolts were inserted 

into the concrete at the centre of the footing. The shaker was bolted at the centre of the 

surface of footing to ensure that the shaker excite only vertical ‘rigid body’ mode as 

illustrated in Figures 3.10 and 3.11. The positioning of the shaker aimed at avoiding 

rocking modes of foundation and exciting the elastic modes of the concrete block. 

Figure 3.11 illustrates the schematic field instrumentation setup.  

 

The instrumentation setup is divided into two parts; the first part entails the system which 

was used to excite the foundation, and the second part is the system that recorded the 

foundation response due to dynamic loading. Figure 3.12 shows the hydraulic power packs 

used to pump hydraulic oil to actuate the internal mass of the shaker and Figure 3.13 shows 

the servo controller used to control the movement of the internal mass. The harmonic loads 

depended on the setup actuator stroke and frequency of excitation. The internal mass of the 

shaker is capable of moving the actuator stroke to 50.0 mm which mean that the mass can 

move  mm0.25± from its mid position. The movement of internal mass with specified 

frequency creates the load at the bottom of the shaker. The internal mass of the shaker is 

shown in Figure 3.14. 

 
The foundation response of the surface foundation was determined by applying a vertical 

harmonic load using the shaker. The vertical response of the foundation system was 

obtained from two 1 g accelerometers placed 200 mm from the edge of shaker to measure 

the response as illustrated in Figures 3.10 and 3.11. Two additional 4g accelerometers were 
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placed 300 mm from the edge of the shaker as a backup. The results obtained from the 4g 

accelerometers are not presented in this report. 

 
The measured data was stored using a Nicolet data acquisition system, which is shown in 

Figures 3.15 and 3.16. The data logger is capable of storing data from eight channels. The 

vertical acceleration of the footing was measured using 1 g accelerometers at the sampling 

frequency of 800Hz. The force exerted by the shaker was measured by the load cell placed 

at the bottom of the shaker as shown in Figure 3.14. A Linear Variable Differential 

Transducer (LVDT) measured the vertical displacement of the internal mass of the shaker. 

 

3.5 Field experimental measurements for surface foundation 
 
The measurements involved measuring the following: the vertical response of foundation 

systems, the displacement of the internal mass of the shaker and the loads exerted by the 

shaker on the foundation. The first step was to identify the actuator stroke, which allowed 

the internal mass of the shaker to excite the foundation up to 100 Hz without exceeding the 

set maximum load of 12 kN. Zero readings for the accelerometers, LVDT and load cell 

were also recorded without excitation. Three data sets were recorded and the average of the 

three readings was used as the zero reading.  

 

The foundation system was excited by the hydraulic shaker with the forcing frequencies 

presented in Table 3.2. The forces produced by the shaker for different forcing frequencies 

are shown in Figure 3.17. From Figure 3.17, it is evident that the forces produced by the 

shaker are not constant. The plot of force versus frequency shows that the maximum force 

produced by the shaker was 11.4 kN at a frequency of 65.0 Hz. By exciting the foundation 

system for a few seconds at each forcing frequency, it was ensured that steady state 

conditions were reached before recording the output. This was done for all frequencies 

shown in Table 3.2. If the forcing function is harmonic, the response should also be 

harmonic. To check if the set forcing frequency produces the harmonic output with the 

same frequency, a fast Fourier transform (FFT) was carried out for all-measured data. As 

an example, Figure 3.18 shows the displacement spectrum amplitude at 40.0 Hz excitation, 

which indicates that the output response was at 40.0 Hz. 
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Table 3-2: Forcing frequencies 
S/No Frequency 

(Hz) 

S/No Frequency 

(Hz) 

S/No Frequency 

(Hz) 

S/No Frequency 

(Hz) 

S/No Frequency 

Hz 

1 10 14 41 27 50.6 40 62 53 76 

2 15 15 42 28 51 41 63.1 54 77 

3 20 16 43 29 51.6 42 64 55 78 

4 25 17 44 30 52 43 65.1 56 79 

5 30 18 44.9 31 53 44 66 57 80 

6 32 19 46.1 32 54.1 45 67 58 83 

7 34 20 47 33 55.1 46 69 59 85 

8 35 21 47.5 34 56.1 47 69.9 60 87.1 

9 35.9 22 48 35 57 48 71.1 61 90 

10 36.9 23 48.4 36 58 49 72 62 92 

11 38.1 24 49 37 59 50 73 63 95.1 

12 39.1 25 49.4 38 60 51 74 64 100 

13 40 26 50 39 61 52    

 

 

3.6 Determination of coefficient of elastic uniform compression 
 
The coefficient of elastic uniform compression is required for the Winkler model and was 

determined using a block vibration test. As a part of the experimental test procedures 

described in Section 3.5, a discrete harmonic vertical force was applied to the surface 

footing using the hydraulic shaker as illustrated in Figure 3.10. The Indian standard 

procedures for determination of the coefficient of elastic uniform compression stipulate 

that the size of the block should be 1500 mm x 750 mm x 700 mm (Prakash, 1981). In this 

study, the available experimental set up was used to determine the coefficient of elastic 

uniform compression. Therefore, the maximum acceleration amplitudes obtained in 

Section 3.5 were used to determine the coefficient of elastic uniform compression of the 

soil (see section 4.5). 

 
3.7 Embedded footing 

 

The embedded footing was constructed by excavating the pit to the depth of 1240 mm. The 

concrete formwork was constructed as shown in Figure 3.19. The block with the dimension 

of 1200 mm x 1200 mm in the plan and 1240 mm was cast in place as shown in 

Figure 3.20. 

 

The footing was backfilled using the excavated soil in layers of 310 mm and compacted 

using a handheld compactor. The full-embedded footing is shown in Figure 3.21 and this 
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was left for 12 months to improve the quality of contact between soil and footing . After 12 

months, the vibration tests were carried out to determine the dynamic behaviour of the full 

embedded foundation as shown in Figure 3.22. The schematic diagram for full embedment 

is shown in Figure 3.23. The density of each soil layer was measured using the nuclear 

density method as shown in Figure 3.24. The same instrumentation setup and test 

procedures deployed for the surface foundation was used for the embedded foundation. 

Except for the embedded foundation, the full based PC Spider-8 data acquisition system 

control was used to record the output response as shown in Figure 3.25. 

 
After carrying out measurements on the full-embedded footing as shown in Figure 3.22, the 

compacted material was excavated to a depth of 310 mm. The foundation response was 

therefore measured on the foundation with an embedment of 930 mm as shown in Figure 

3.26. Another measurement was carried out with embedments of 620 mm as shown in 

Figure 3.27 and the schematic diagram for embedments of 620 mm is shown in Figure 

3.28. Other measurements were carried out with embedments of 310 mm and zero 

embedment as shown in Figures 3.29 and 3.30 respectively. The forces excited the 

foundation system for each embedment was measured using load cell.  Figure 3.31 shows 

the plot of measured force produced by shaker versus frequency of excitation from 

different embedments.  
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Figure 3.1: Excavated trial pit 
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Figure 3.2: Trial Pit log 
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Figure 3.3: Shaker for measuring shallow depths 
 

 

 
 

Figure 3.4: Shaker for measuring greater depths 
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Figure 3.5: Dead weight standard Budenberg calibration system 

 

 
 

Figure 3.6: Accelerometer 1 fixed on surface of footing using an aluminium block. 
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Figure 3.7: Accelerometer 2 fixed on surface of footing using an aluminium block 

 

 

 
 

Figure 3.8: Surface footing during construction 
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Figure 3.9: Surface footing mounted with hydraulic shaker 

 

 

 

 
 

Figure 3.10: Surface footing test set up. 
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Figure 3.11: Surface footing schematic test set up 
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Figure 3.12: Hydraulic Powerpacks 

 
 

 
 
Figure 3.13: Servo controller 
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Figure 3.14: Internal mass of shaker 

 

 

 
 

Figure 3.15: Nicolet data acquisition system 
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Figure 3.16: Output - Nicolet data acquisition system 

 

 
 

Figure 3.17: Force produced by Shaker for surface foundation 

Output display 
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Figure 3.18: Accelerometer 1acceleration spectrum amplitude 

 

 

 

 
 

Figure 3.19: Excavated pit with formwork 
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Figure 3.20: Cast footing ready to be embedded 

 

 

 

 
 

Figure 3.21: Full embedded footing 
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Figure 3.22: Test setup for full-embedded footing – 1240 mm 
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Figure 3.23: Schematic test setup for full-embedded footing 
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Figure 3.24: Density determination 

 

 

 
 

Figure 3.25: Spider-8 – Data Acquisition system 

 
 

 

Spider-8 data acquisition system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

3-21 

 

 
 

Figure 3.26: Embedded footing - 930 mm  
 

 

 
 

Figure 3.27: Embedded footing - 620 mm 
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Figure 3.28: Schematic setup for 620mm Embedment 

 

 

 
 

Figure 3.29: Embedded footing – 310 mm 
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Figure 3.30: Zero embedded footing – 0 mm 

 

 

Figure 3.31: Measured forces produced by shaker for different embedment 
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CHAPTER 4 

4  EXPERIMENTAL RESULTS 
 

4.1 Introduction  
 

The field work involved site characterisation using the seismic method of 

Continuous Surface Wave (CSW) test. The small shear stiffness of the soil profile 

was determined and presented. In addition, the dynamic behaviour of the 

foundation systems were determined using force vibration tests on the surface and 

embedded footings. The vertical dynamic responses of the footings were back-

calculated using the field-measured data. The responses are presented in terms of 

impedance, compliance (receptance) and accelerance functions. In addition, results 

presented in this chapter include foundation displacement amplitude, the complex 

dynamic stiffness, loss angles, and acceleration responses of the footings. 

 

From the field measurements, the natural frequency and the resonant frequency of 

the surface and embedded foundations were also determined. For the embedded 

foundation, the effect of the embedment is described using resonant amplitude 

ratio and resonant frequency ratio. In additional, a new dimensionless quantity 

known as the natural frequency ratio is introduced to express the effect of 

embedment on the natural frequency of the foundation system. 

 

4.2 Continuous surface wave test 
 

The small strain shear modulus was determined using the Continuous Surface 

Wave tests as described in Section 3.4. From the measured data, the dominating 

frequency and phase angle at each observation point was determined by 

calculating the Fourier transform of the geophone output by means of the fast 

Fourier transform (FFT) algorithm. Typical results of geophone frequency 

spectrum depicted at 73.4 Hz are shown in Figure 4.1. From this, the existence of 

the dominating frequency of 73.4 Hz is clearly indicated. The phase angle at the 

dominating frequency was determined from the real [Re (z)] and imaginary [Im 

(z)] part of the phase vector using Equation 4.1. From the response at each 

geophone, the phase different were determined. 
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







= −

)z(Re

)z(Im
tan 1φ       

 Equation 4.1 

 
The phase difference was used to estimate the phase velocity between points. The 

wavelength ( )λ  for each vibrating frequency was determined using Equation 4.2. 

 

π

φ∆
λ

2
n

d

+

=        

 Equation 4.2 

 

Where: 

d  is the distance between two geophones, 

φ∆  is the phase difference between two geophones, and 

n  is an integer, which depends on the number of wavelengths between the 

geophones.  

 

The Rayleigh wave velocity ( )RV  is given by: 

 

λfVR =         

 Equation 4.3 

 
Where: 

f  is the frequency of excitation. 

 

The velocity of a Rayleigh wave in an elastic half-space is slower than the shear 

wave velocity. For a Poisson’s ratio of 0.25, the Rayleigh wave travels at a 

velocity of approximately 0.9226 of the shear wave (Janghai et al., 2002). The 

relationship between Rayleigh wave velocity ( RV ) and shear wave velocity ( SV ) 

as a function of the Poisson’s ratio is expressed as: 

 

ν

ν

+

+
=

1

117.1874.0

V

V

S

R        

 Equation 4.4 

 
Where: 

ν is the Poisson’s ratio. 
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Figure 4.2 shows the field measured phase velocity plotted against excitation 

frequency. The shear wave velocity was determined by conducting an inversion 

analysis using the algorithm proposed by Wathelet et al., (2004). The profile of 

shear wave velocity is shown in Figure 4.3. The small strain shear modulus of the 

soil profile ( )oG  was determined using the theory of elasticity: 

 
2

sso VG ρ=         

 Equation 4.5 
 

Where: 

sρ is a mass density of soil, and  

sV  is the shear wave velocity. 

 

The soil profile of shear modulus is shown in Figure 4.4. The properties of the soil 

and concrete used for analysis for both, the surface and embedded foundations are 

shown in Table 4-1. 

 
Table 4-1: Material properties 

Soil properties of the ground Concrete properties 

Soil mass density 

(kg/m3) 

Young’s Modulus(E) 

MPa 

Poisson’s 

ratio 

Concrete mass 

density (kg/m3) 

Young’s Modulus 

(E ) MPa 

Poisson’s 

ratio 

2000 250 0.25 2400 35000 0.2 

 

 

4.3 Surface foundation 
 

As described in Section 3.5, the acceleration responses of the foundation systems 

in the field were measured using accelerometers. However, determination of 

displacement is important in the analysis and design of machine foundations, 

because it allows for the determination of impedance functions. Therefore, the 

field-measured acceleration data was translated into displacement amplitudes by 

double integration of the acceleration data. The double integration of acceleration 

response to displacement response carried out by dividing acceleration with 

forcing frequency ( )2ω  (Chopra 2007 and Crouse et al., 1984). 

 

For a constant forcing function with amplitude oP , the displacement is given by 

ti
oeUu

ω= , the velocity is given by 
ti

oeωUiu
ω−=&  while acceleration takes the 

form of ti
e

o
U

2ωu
ω−=&& . The displacement amplitude is given by: 
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2o
ω

u
U

−
=

&&
       

 Equation 4.6 
 

For a given acceleration and forcing frequency the displacement can be calculated 

as: 

 

2ω

)(fU
U(f)

−
=

&&

        

 Equation 4.7 

 

 

However, these equations are applicable only for the sine wave responses. At low 

frequencies, the response were not sinusoidal and hence physical integration was 

performed. 

 

The vertical foundation response in the field was determined by measuring 

acceleration. The measured maximum acceleration amplitudes for each forcing 

frequency are shown in Table 4-2 and the force amplitude produced by the shaker 

is shown in Figure 4.5. From Figure 4.5, it is evident that the force produced by 

the shaker was not constant. The force versus frequency plot shows that the 

maximum force produced by the shaker was 11.4 kN at a frequency of 65.0 Hz. 

 

4.3.1 Acceleration and displacement 
 

The maximum acceleration at each forcing frequency measured by accelerometers 

1 and 2 was calculated from the data. The plot of the acceleration amplitude at 

each forcing frequency measured by accelerometers 1 and 2 against frequency is 

shown in Figure 4.6. The plot of an average acceleration versus frequency is 

shown in Figure 4.7. The maximum measured acceleration amplitude is 2.5 

m/sec
2
. The displacements in the time domain due to forcing frequencies of 40 Hz, 

59 Hz and 80 Hz are illustrated in Figure 4.8 which shows the sinusoidal 

responses. The displacement due to a forcing frequency of 59 Hz is higher 

compared to the forcing frequencies of 40 Hz and 80 Hz. The measured 

displacements amplitudes are shown in Table 4-3. 

 

The plots of highest vertical displacement measured by accelerometers 1 and 2 

versus frequency are shown in Figure 4.9. The plot of average vertical 
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displacement is shown in Figure 4.10. The similarity of the plots of displacement 

amplitude versus frequency from the two accelerometers indicates that the 

foundation movement was vertical and that very little rocking accured. The 

response shows two peaks, the first peak occurred at about 33 Hz and the second 

peak occurred at about 57.0 Hz. The maximum displacement of 0.0188 mm 

occured at the frequency of 57.0 Hz. 
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Table 4-2: Measured highest acceleration amplitude for each forcing frequency 

S/No Frequency 

(Hz) 

Acceleration 

(m/sec2) 

S/No Frequency 

(Hz) 

Acceleration 

(m/sec2) 

S/No Frequency 

Hz 

Acceleration 

(m/sec2) 

1 10 0.11285022 24 49 1.48007231 47 69.9 2.31534404 

2 15 0.11462739 25 49.4 1.57724152 48 71.1 2.28690926 

3 20 0.14483935 26 50 1.60389913 49 72 2.2300397 

4 25 0.24315926 27 50.6 1.70728878 50 73 2.18027883 

5 30 0.39599622 28 51 1.66134404 51 74 2.11274622 

6 32 0.44282987 29 51.6 1.75495956 52 75 2.01442631 

7 34 0.52337804 30 52 1.78992769 53 76 1.96111109 

8 35 0.4315397 31 53 1.92023609 54 77 1.91490457 

9 35.9 0.48840926 32 54.1 2.02508935 55 78 1.87225239 

10 36.9 0.55949622 33 55.1 2.19805057 56 79 1.81005131 

11 38.1 0.57669261 34 56.1 2.32600709 57 80 1.7425187 

12 39.1 0.64777957 35 57 2.33254044 58 83 1.58670274 

13 40 0.7206437 36 58 2.42139913 59 85 1.40663283 

14 41 0.79706218 37 59 2.50492631 60 87.1 1.28813752 

15 42 0.914931 38 60 2.54224696 61 90 1.17084404 

16 43 1.01445274 39 61 2.54224696 62 92 1.11042013 

17 44 1.11042013 40 62 2.55322357 63 95.1 0.99966 

18 44.9 1.18213422 41 63.1 2.52923204 64 100 0.85748609 

19 46.1 1.26979109 42 64 2.51559 - - - 

20 47 1.32875074 43 65.1 2.48746813 - - - 

21 47.5 1.35211578 44 66 2.45370183 - - - 

22 48 1.40898535 45 67 2.43326465 - - - 

23 48.4 1.43449291 46 69 2.32187739 - - - 

 

 
Table 4-3: Measured displacement amplitude for each forcing frequency 

S/No Frequency 

(Hz) 

Displacement 

(mm) 

S/No Frequency 

(Hz) 

Displacement 

(mm) 

S/No Frequency 

Hz 

Displacement 

(mm) 

1 5 0.00041 24 51 0.017058 47 75 0.008914 

2 10 0.001151 25 52 0.017298 48 76 0.008367 

3 15 0.001611 26 53 0.01754 49 77 0.007986 

4 20 0.002552 27 54 0.017704 50 78 0.007552 

5 25 0.004045 28 55 0.017951 51 79 0.007198 

6 30 0.005918 29 56 0.018003 52 80 0.006762 

7 32 0.006962 30 57 0.018024 53 83 0.00567 

8 34 0.008099 31 58 0.01791 54 85 0.004994 

9 35 0.007789 32 59 0.017657 55 87 0.0042 
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10 36 0.008329 33 60 0.017237 56 90 0.003649 

11 37 0.008882 34 61 0.016776 57 92 0.003254 

12 38 0.009378 35 62 0.016492 58 95 0.002854 

13 39 0.009941 36 63 0.015811 59 100 0.002256 

14 40 0.010454 37 64 0.015195    

15 41 0.011064 38 65 0.014525    

16 42 0.012015 39 66 0.013507    

17 43 0.013117 40 67 0.01329    

18 44 0.014054 41 69 0.012185    

19 45 0.014811 42 70 0.011609    

20 47 0.015306 43 71 0.010998 -   

21 48 0.015773 44 72 0.010408 -   

22 49 0.016315 45 73 0.009923 -   

23 50 0.016689 46 74 0.009425 -   

 

 

 

4.3.2 Impedance functions 
 

The impedance functions of the foundation system were determined at the 

interface between the vibrating surface footing and the soil. In this study, it was 

assumed that the displacement amplitude of the footing was sufficiently small so 

that the characteristics of the soil-foundation system could be characterized in the 

frequency domain in terms of frequency response functions (FRF). Essentially, the 

procedure entails measuring the dynamic response of the foundation of known 

characteristics (e.g. mass and geometry) by subjecting it to measurable dynamic 

loading over a range of frequencies. The resulting foundation responses, loading 

and foundation characteristics, are then used to back-calculate impedance 

functions using an appropriate dynamic equation of motion. The impedance 

function is the complex dynamic stiffness as a function of frequency. 

 

For each excitation, complex dynamic stiffness was calculated using 

Equation 2.24, which is the ratio of the force amplitude and the displacement 

amplitude at a given frequency. Information that may be extracted from the 

impedance function includes foundation displacement amplitude, resonant 

amplitude, resonant frequency, the complex dynamic stiffness, the real part of the 
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complex dynamic stiffness, the imaginary part of the complex dynamic stiffness, 

phase angle and loss angles. 

 

4.3.3 Complex dynamic stiffness 
 

The complex dynamic stiffness obtained from the field measurements using 

Equation 2.24 is shown in Figure 4.11. The average complex dynamic impedance 

function obtained from accelerometers 1 and 2 is indicated in Figure 4.12. The 

complex dynamic stiffness is nearly constant at low frequencies up to about 

20.0 Hz, and as the frequency increases, the complex dynamic stiffness decreases 

up to approximately 45.0 Hz and after 45.0 Hz it increases up to approximately 

80 Hz as shown in Figure 4.12. 

 

4.3.4 Real part of complex dynamic stiffness (effective dynamic 
stiffness) 

 

The relationship between the real part of the complex dynamic stiffness and the 

frequency of excitation for accelerometers 1 and 2 is shown in Figure 4.13 and 

Figure 4.14 shows the average for the two accelerometers. The real part of the 

complex dynamic stiffness decreases as the frequency of excitation increases and 

is similar in form to the theoretical curve as described by numerous authors 

(Gazetas, 1983; Nii, 1987; He and Fu, 2001). It passes through zero at 49.0 Hz 

which according to Equation 2.31 is the natural frequency of the foundation 

system. 

 

4.3.5 Imaginary part of complex dynamic stiffness 

 

The plots of the imaginary part obtained from the field-measured data for 

accelerometer 1 and 2 versus frequency of excitation are shown in Figure 4.15 and 

the average for the two accelerometers in Figure 4.16. From Figure 4.16 it is clear 

that as the forcing frequency increases the imaginary part increases. The 

experimental damping coefficient `C` estimated from Equation 2.32 for 

accelerometers 1 and 2, which is the ratio of the imaginary part of the complex 

dynamic stiffness and frequency of excitation is illustrated in Figure 4.17 and the 

average plot is shown in Figure 4.18. The response described in Figure 4.18 

indicates that at lower frequency, on average the damping coefficient is constant 

until it reaches the forcing frequency of 45 Hz. For forcing frequencies higher than 

45 Hz, the damping coefficient increases as the frequencies increase.  
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4.3.6 Phase and loss angles 
 

The natural frequency of the foundation system can be determined from the plot of 

phase angles between the phase of footing and the phase of shaker versus 

excitation frequency. Figure 4.19 illustrates the relationship between phase angles 

obtained from field measurements with frequency of excitation for accelerometers 

1 and 2. The plot of average phase angle versus forcing frequency is shown in 

Figure 4.20. At low frequency, the foundation vibrates in phase with the forcing 

function. As the frequency increases, the foundation changes from vibrating in 

phase with forcing function to out of phase at 124o. At the point when the phase 

angle is 90
o
, the forcing frequency coincides with natural frequency of the system. 

The estimated natural frequency of the foundation is 49.0 Hz.  

 
The natural frequency of the system can also be determined from the ratio of 

imaginary part and real part of the dynamic stiffness. Tileylioglu (2008) and 

Tileylioglu et al., (2011) examined impedance functions for horizontal and rocking 

of a foundation due to a harmonic force exerted on the roof of a structure. They 

observed that the imaginary part (Equation 2.32) and real part (Equation 2.31) are 

related through the loss angle obtained from Equation 4.8. 

 

R

I

2

o K

K

MK

C
angle Loss =

−
=

ω

ω
     

 Equation 4.8 
 

Where: 

ω  is a frequency of the excitation; 

oK  is equivalent to static stiffness ( )statico KK = ; 

M  is a lumped mass of footing and machine; 

C  is the radiation damping coefficient of the soil-foundation system; 

( )ωK
R

 is the real part of complex dynamic stiffness, and  

( )ωK
I

 is the imaginary part of complex dynamic stiffness. 

 

Figure 4.21, illustrates the plot of the absolute values of the ratio of the imaginary 

part and the real part in radians obtained from the field-measured data for 

accelerometers 1 and 2. The plot of average loss angles versus forcing frequency is 

shown in Figure 4.22. In addition, Figure 4.22 shows the response of the system 
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when the forcing function is in phase (at frequencies below the peak) and out of 

phase (at frequencies above the peak) with displacement. The estimated natural 

frequency of the foundation system is 49.4 Hz. 

 

 

4.4 Foundation frequency response functions (FRF) 
 
The frequency response function expresses the foundation system response to the 

applied forces as a function of frequency. For a linear system with single degrees 

of freedom, the frequency response function can be modelled as shown in 

Figure 4.23. Where, ( )ωF  is the input force, which is a function of the angular 

frequency ( )ω , ( )ωH  is the transfer function (frequency response function), and 

( )ωU  is the displacement response function. Each of the functions is a complex 

function. The relationship shown in Figure 4.23 uses displacement as the response 

and can be represented using Equation 4.9 and is known as the receptance 

function. 

 

( )
( )ω

ω
ω

F

U
)(H =        

 Equation 4.9 

 

Similar transfer functions can be developed for velocity and acceleration system 

response. If the response is the velocity, the frequency response function is 

referred to as mobility while for acceleration response, the frequency response 

function is referred to as accelerance. In this study, receptance and accelerance 

will be discussed.  

 

4.4.1 Receptance 
 

Receptance frequency response function is a ratio between the displacement and 

applied force as a function of frequency. Sometimes these are referred to as 

compliance functions (dynamic flexibility). Compliance functions are the inverse 

of impedance functions. The receptance frequency responses function (FRF) from 

the field-measured data for accelerometers 1 and 2 is illustrated in Figure 4.24. 

The plot of the average frequency response function is shown in Figure 4.25. The 

resonant amplitude and resonant frequency can be obtained from the frequency 

response function. A resonant frequency is defined as the forcing frequency at 

which a maximum occurs in the response amplitude (Chopra, 2007; Doebelin, 
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1998). From the plot, in Figure 4.25 it is evident that the resonant amplitude and 

resonant frequency is 2.94 x 10-6 mm - N-1 and 44 Hz respectively. 

 
Real part - Receptance 

 

The real part of the receptance function obtained from the experimental data is 

shown in Figure 4.26. The average response of the real part obtained from 

accelerometers 1 and 2 is shown in Figure 4.27. The natural frequency can be 

estimated by observing the frequency when it crosses zero. The real part is zero at 

a frequency of 49.5 Hz indicating that the estimated natural frequency of the 

foundation system is 49.5 Hz.  

 
Imaginary part - Receptance 

 

The plot of the imaginary part against the forcing frequency for accelerometers 1 

and 2 is shown in Figure 4.28. This average obtained from accelerometers 1 and 2 

is plotted versus forcing frequency in Figure 4.29. The resonant frequency of the 

foundation system can also be estimated when the plot of the imaginary part of the 

frequency response is a minimum as shown in Figure 4.29; here the imaginary part 

of the frequency response is a minimum at a frequency of 45.0 Hz 

 
Phase and loss angles - Receptance 

 

The plot of phase angles versus frequency that was derived from the receptance 

function is shown in Figure 4.30. The natural frequency of the foundation system 

can be estimated when the response lags behind the input by 90
o
 phase. 

Figure 4.30 indicates the plots of phase angles against frequency obtained from 

accelerometers 1 and 2, while Figure 4.31 shows the plot of an average phase 

angles against frequency. The response lags behind the input by 90o at 49.5 Hz.  

 

Loss angles derived from receptance for accelerometers 1 and 2 are shown in 

Figure 4.32. The plot of average loss angles is shown in Figure 4.33, which 

estimates the natural frequency of the foundation as 49.5 Hz.  

 

4.4.2 Accelerance 
 

The field measurements taken to obtain the vertical acceleration of the foundation 

system due to harmonic loads were measured using accelerometers. The frequency 

response function is represented as accelerance, which is the ratio of the measured 

acceleration to the input force. The frequency response function of the foundation 
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obtained from accelerometers 1 and 2 is shown in Figure 4.34 while Figure 4.35 

illustrates an average value of accelerance frequency response function. The 

frequency at maximum acceleration amplitude from accelerance is 50.0 Hz. 

 

Real part - Accelerance 

 

Figure 4.36 illustrates the plot of the real part of frequency response (accelerance) 

for accelerometers 1 and 2, while Figure 4.37 show the average plot of the real 

part of accelerance. The average plot indicates that at low frequencies, the real part 

increases as the frequency increases. The increase reaches a maximum accelerance 

of 0.10 mm/sec2/N at the frequency of 37.0 Hz. The accelerance response starts 

decreasing as the forcing frequency increases until it reaches a minimum -0.10 

mm/sec2/N; it then remains constant as the frequency increases. The natural 

frequency of the foundation system can be estimated when the plot of the real part 

versus forcing frequency of the accelerance crosses zero (Ewins, 1991, and He and 

Fu, 2001). From the plot, the estimated natural frequency is 49.0 Hz.  

 

Imaginary part - Accelerance  

 

Figure 4.38 illustrated the imaginary part of frequency response (accelerance) 

plotted against frequencies for accelerometers 1 and 2. Figure 4.39 shows a plot of 

average values of the imaginary part of frequency response (accelerance). From 

Figure 4.39, it is shown that the imaginary part decreases as the frequency 

increases until it reaches a minimum at 50 Hz and then starts to increase as the 

frequency increases. 

 

Phase and loss angles - Accelerance 

 

The plot of phase angles versus frequency derived from the accelerance response 

function is shown in Figure 4.40. The natural frequency of the foundation system 

can be estimated when the response lag behind the input by 90o phase. Figure 4.41 

show the plot of an average phase angle versus forcing frequency and the natural 

frequency of 49.0 Hz. 

 

The plot of loss angle from accelerometer 1 and 2 is shown in Figure 4.42 while 

the average values are plotted in Figure 4.43. The natural frequency of the 

foundation systems estimated from the loss angle is 49.0 Hz.  
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The accelerance estimates the natural frequency of the surface foundation between 

49.0 Hz and 50.0 Hz. This compares well with the receptance results which 

estimated the natural frequency between 49.0 Hz and 49.5 Hz. This indicates that 

the translation of acceleration response to displacement response using 

Equation 4.6 did not cause significant inaccuracy. 

 

4.5 Vertical block vibration 
 

The coefficient of elastic uniform compression of soil is the ratio of pressure 

(vertical pressure causing compression) to the corresponding elastic vertical 

deformation. The coefficient of elastic uniform compression subjected to dynamic 

loads, such as machine foundation, can be obtained from vertical block vibration 

tests (block resonance tests), wave propagation tests (Continuous Surface Wave 

tests), and from the empirical method proposed by Barkan (1962). All three 

methods will be evaluated and compared. The footing block shown in Figure 3.10 

was subject to vertical harmonic load. Equation 4.10 is used to calculate the 

amplitude of vibration vA  at the given frequency (Barkan 1962; Rao, 2011 and 

Prakash, 1981). 

 

22

v
v

f4

a
A

π
=

        

 Equation 4.10
 

 

Where: 

vA  is the displacement amplitude; 

va  is acceleration amplitude (given in Table 4.2) and 

f  is the frequency of vibration. 

 

For the surface foundation, the displacement amplitude vA  at each frequency is 

plotted against frequency as shown in Figure 4.44. The frequency at peak response 

is taken as the resonant frequency of the vibrating block system, which is the same 

as natural frequency for undampled system. From Figure 4.44, the estimated 

frequency of the vibrating block system at the peak amplitude is 59.0 Hz.  

 

The coefficient of elastic uniform compression ( )uC  was calculated using the 

following relationship: 
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A

Mf4
Cu

2

n
2π

=
        

 Equation 4.11 

 

Where: 

nf  is the natural frequency of the block system in vertical vibration; 

M  is lumped mass of oscillating system (footing and shaker), and 

A    is the contact area of the block with soil. 

 

The contact area of the surface footing as shown in Figure 3.10 is 5.0 m
2
. Using 

Equation 4.11, the estimated coefficient of elastic uniform compression is 

141,860,430 N/m3. 

 

Observing Equation 4.11, the coefficient of elastic uniform compression ( )uC  is 

inversely proportional to the contact area with a constant of proportionality of 

Mf4
2

n
2π  which is a spring constant. This shows that if the natural frequency and 

mass of the vibrating block system is known, the spring constant ( )sk  can be 

obtained from: 

 

Mf4k
2

n
2

s π=
        

 Equation 4.12 

 

The coefficient of elastic uniform compression ( )uC  of soil was also estimated 

from the theory of elasticity using the relationship established by Barkan (1962) 

shown in Equation 4-13: 

 

( ) A1

E
CC

2ru
ν−

=        

 Equation 4.13 

 

Where: 

A is the footing contact area with soil; 

ν  is Poisson’s ratio; 

E  is the Young modulus of soil, and 

rC  is the footing shape factor.  

 

The value of Cr can be obtained from Figure 4.45, as was suggested by Barkan 

(1962). 
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The shear stiffness of the soil on site was determined using the Continuous Surface 

Wave test. From the Continuous Surface Wave test, the soil profile shows that on 

average the small strain shear stiffness of the soil ( oG ) from the ground surface to 

about 8 m is 100 MPa. For isotropic material, the Young modulus (E) is estimated 

using the following equation: 

 

)1(G2E o ν+=         
 Equation 4.14 

 
Where: 

v  is Poisson’s ratio, which is assumed to be 0.25. 

 

From Equation 4.14, the estimated Young modulus of the soil is 250 MPa. Using 

Equation 4.13 and Cr of 1.067 obtained from Figure 4.45, the coefficient of elastic 

uniform compression of the soil is 127, 247,175 N/m
3
. 

 

The coefficient of elastic uniform compression was estimated using a method 

proposed by Barkan (1962). According to Barkan, the site being studied is 

characterized as silty clay soil and the coefficient of elastic uniform compression is 

98.1 x 10
6
 N/m

3
 for a base area of 10 m

2
. Inspecting Equation 4.13 this indicates 

that the coefficient of elastic uniform compression ( uC ) is inversely proportional 

to the square root of the contact area. Barkan (1962) suggested that if the spring 

constant, or coefficient of elastic uniform compression of one plate (footing) is 

known, the spring constant or coefficient of elastic uniform compression of the 

second plate (footing) could be obtained using the following relationship: 

 

1

2

2su

1su

A

A

C

C
=

−

−

        

 Equation 4.15 

 

Where: 

1suC −  is a coefficient of elastic uniform compression of known soil; 

2suC − is the coefficient of elastic uniform compression of soil to be determined, 

and 

 A1 and A2 are the known areas. 
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Using Equation 4.15, the coefficient of elastic uniform compression of soil for the 

footing with a base area of 5.0 m2 is 138,734,500 kN/m3. The vertical spring 

constant of the footing is obtained using Equation 4.16. 

 

ACk uv =         
 Equation 4.16 

 
Where: 

A is the contact area between footing and soil. The spring constant for each 

method is tabulated in Table 4-4. 

 

Table 4-4: Estimated spring constants. 

Method uC  (N/m
3
) Spring constant sk (N/m) 

Wave propagation (CSW) 127,247,175 636,235,876 

Vertical block vibration 141,860,430 709,302,152 

Estimated using Barkan (1962) 138, 734,350 693,671,752 

Average Value 135,934,200 679,736,594 

 
 

All three methods gave a value of coefficient of elastic uniform compression 

within 6% of the average value. 

 

4.6 Embedded footing 
 

Footings for vibrating machines are usually constructed partially or fully 

embedded. The analysis of embedded machine foundations requires determination 

of the impedance functions. As for surface foundations, these impedance functions 

can be obtained using available analytical solutions or can be measured in the 

field. 

 
The vertical response of the foundation system was measured using accelerometers 

as described in Section 3.7. The field-measured acceleration data was translated to 

displacement amplitudes using Equation 4.6. The vertical dynamic frequency 

response function of the foundation with different embedments was obtained by 

conducting FFT calculations of the input and output data. 
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4.6.1 Displacement amplitude 

 

The field-measured displacement amplitudes were obtained using Equation 2.26 

for embedment of 0, 310, 620, 930, and 1240 mm. Figure 4.46 shows the plot of 

displacement amplitude versus frequency of excitation due to exerted forces. The 

maximum displacement amplitudes due to exerted forces for different embedment 

are presented in Table 4-5. The plot of maximum displacement amplitude versus 

embedment depth is shown in Figure 4.47 and from this it is evident that the 

displacement decreases as embedment increases. However, the displacement 

amplitude at embedment of 930 mm is inconsistency in comparison to the 

displacement amplitude at the embedment of 620 mm and 1240 mm which might 

have been caused by insufficient excitation force. 

 

4.6.2 Displacement amplitude at resonant 
 

The field-measured displacement amplitudes were obtained using Equation 2.26 

for embedment of 0, 310, 620, 930, and 1240 mm. The displacement amplitudes 

were divided by exerted force to obtain frequency response function. Figure 4.48 

show the plot of displacement amplitude due to unit load versus frequency of 

excitation. The maximum displacement amplitudes due to unit load for different 

embedment are presented in Table 4-6. The plots show that there are three peaks. 

The first peak is observed at the frequency of about 25Hz and the maximum peak 

at the frequency of 38.1 Hz. The third peak is observed between forcing frequency 

of 50 Hz and 65 Hz. The plot of maximum displacement amplitude versus 

embedment depth at resonant is shown in Figure 4.49 and from this it is evident 

that the resonant amplitude decreases as embedment increases. 

 

4.6.3 Resonant amplitude ratio 
 

The resonant amplitude ratio is the ratio of the peak amplitude for an embedded 

footing to the peak amplitude for zero embedment. The resonant amplitude ratio is 

determined using Equation 2.47 and these ratios from different embedments are 

shown in Table 4-6. The resonant amplitude ratios obtained from the field-

measured data are plotted against embedment ratios (Equation 2.46) as shown in 

Figure 4.50. Here it can be seen that the resonant amplitude ratio decreases as 

embedment increases. 
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Table 4-5: The maximum displacement amplitude and amplitude ratio 

Embedment 

(mm) 

Displacement 

amplitude 

(mm) 

Embedment 

ratio 
Amplitude ratio 

Frequency at 

maximum 

displacement 

0 0.0206 0.000 1 58.0 

310 0.0185 0.5167 0.64 57.0 

620 0.0145 1.033 0.45 57.0 

930 0.0132 1.550 0.35 65.1 

1240 0.0079 2.067 0.18 61.0 

 
 

Table 4-6: The resonant amplitude and resonant amplitude ratio 

Embedment 

(mm) 

Displacement 

(mm/N) 

Embedment 

ratio 

Resonant amplitude ratio 

0 5.9926 x 10
-6

 0.000 1 

310 3.4514 x 10-6 0.5167 0.5759 

620 2.2808 x 10-6 1.033 0.3806 

930 2.0849 x 10-6 1.550 0.3479 

1240 1.2874 x 10
-6

 2.067 0.2148 

 

 

4.6.4 Resonant frequency 
 

A resonant frequency is defined as the forcing frequency at which the largest 

response amplitude occurs (Chopra 2007; Doebelin 1998). For undamped systems, 

the resonant frequency is equal to the natural frequency of the systems. For a 

damped system, the damped natural frequency occurs at slightly less than the 

undamped natural frequency of the system. The damped natural frequency is 

calculated using Equation 4.17: 

 

2
od D1−= ωω        

 Equation 4.17 

 

Where: 

dω  is damped natural frequency  

oω  is the undamped natural frequency of the foundation system, and  

D  is the damping ratio of the system. 
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For a damping ratio ( )D  less than 0.7071 and a harmonic excitation force, the 

resonant frequency ( )rω  of the vibrating system is obtained from Equation 4.18 

(Das, 2011; Kameswara, 1998; Kameswara, 2011; and Richart et al., 1970): 

 

2

or 2D1ωω −=       

 Equation 4.18 

 
Experimental results in Figure 4.51 show that embedment does not have a 

significant effect on the resonant frequency. The resonant frequency varied 

between 35.9 Hz and 39.1 Hz for all embedment levels. 

 

Equation 4.18 establishes that the damping ratios for different embedments may be 

determined by using resonant frequency and natural frequency. The estimated 

damping ratios for foundation systems with different embedments are presented in 

Table 4-7. Figure 4.52 show the plots of damping ratio against embedment depth. 

From the plots, it is clear that damping ratio increases as the embedment increases. 

 
Table 4-7: The field-measured natural and resonant frequency of the foundation system 

Embedment depth 

(mm) 

Experimental results 

Natural 

frequency 

Resonant 

frequency 

Resonant frequency 

ratio 

Estimated Damping 

ratio 

0 41.0 38.1 1 0.2612 

310 46.1 39.1 1.0262 0.3725 

620 51.0 36.9 0.9685 0.4881 

930 47.0 35.9 0.9423 0.4564 

1240 55.0 36.9 0.9685 0.5243 

 

 

4.6.5 Resonant frequency ratio 
 

The observed resonant frequency ratios are determined by using Equation 2.48, 

and plotted against embedment ratio as shown in Figure 4.53. Similar from Figure 

4.51 and Figure 4.53 shows that embedment does not have a significant effect on 

resonant frequency ratio. 

 

4.6.6 Complex dynamic stiffness  
 

Figure 4.54 shows the plot of the complex dynamic stiffness versus the forcing 

frequency for the footing embedded at 0, 310, 620, 930, and 1240 mm. From here, 

it is observed that the complex dynamic stiffness is nearly constant at low 

frequencies up to about 20 Hz. Beyond 20 Hz the complex dynamic stiffness 
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decreased as the embedment increases up to about 38 Hz. Thereafter, the complex 

dynamic stiffness increases as the frequency increases. At low frequencies, the 

effect of embedment is insignificant; however, as the frequency of excitation 

increases, the effect of embedment on the complex dynamic stiffness is significant. 

 

4.6.7 Real part of complex dynamic stiffness 
 

The plot of the real part for different embedment is shown in Figure 4.55 and it is 

observed that at low frequencies the real part increases as the embedment 

increases. However, the effect of embedment is insignificant at low frequency of 

excitation. It is common to estimate the natural frequency of the foundation from 

the plot of the real part against the forcing frequency. The natural frequency of the 

foundation system obtained increased as the embedment increased. 

 

4.6.8 Imaginary part of complex dynamic stiffness 
 

The plot of the imaginary part versus forcing frequency for embedded foundation 

is shown in Figure 4.56. The plots indicate that the imaginary part increases as the 

embedment increases. 

 

4.6.9 Phase and loss angles 
 
The plot of phase angles versus forcing frequency for 0, 310, 620, 930, and 

1240 mm embedment is shown in Figure 4.57. This indicates that the natural 

frequency of foundation systems increases as the embedment increases. The 

natural frequency of the foundation system can be obtained from the plot of the 

loss angle versus frequency of excitation. The plots of loss angle versus forcing 

frequency for 0, 310, 620, 930, and 1240 mm embedment are shown in 

Figures 4.58. The plot shows clear peaks at the natural frequency which increases 

as the embedment increases. 

 

From the plot of the loss angle versus frequency, it is possible to establish the 

natural frequency for a heavily damped system because the plot clearly shows a 

peak at the natural frequency. The natural frequencies measured in the field are 

presented in Table 4.8. The effect of embedment of the foundation on the natural 

frequency of the foundation system is shown Figure 4.59 and here it can be 

observed that the natural frequency of the foundation system increases 

significantly as the embedment increases. 
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Table 4-8: The field-measured natural frequency of the foundation system. 

Embedment 

(m) 

Measured Natural 

frequency (Hz) 

Natural frequency ratio Embedment 

ratio 

0.00 41.0 1.000 0 

310 46.1 1.1244 0.5167 

620 51.0 1.2439 1.0333 

930 47.0 1.1463 1.55 

1240 55.0 1.3414 2.0667 

 

 

4.6.10 Natural frequency of foundation system 
 

The experimental results show that the natural frequency of the foundation system 

increases as the embedment increases. The natural frequency increased from 

41.0 Hz at zero embedment to 55.0 Hz at a full embedment. Figure 4.59 show the 

plot of the natural frequency versus embedment depth. 

 

A new dimensionless quantity knows as Natural Frequency ratio ( fN ) is 

introduced to express the effect of embedment on the natural frequency of 

foundation systems. The Natural Frequency ratio is the ratio of the natural 

frequency for an embedded footing to the natural frequency for zero embedment. 

The Natural Frequency ratio is determined using the following equation: 

 

Do

D

ω

ω
=fN        

 Equation 4.18 

 

Where: 

fN  is the natural frequency ratio; 

Dω  is the natural frequency of the foundation system with an embedment, and  

oDω  is the natural frequency of the foundation system with zero embedment. 

 

The natural frequency ratio calculated using Equation 4.18 is shown in Table 4.8. 

The plot of natural frequency ratio versus embedment ratios obtained from the 

field-measured data is shown in Figure 4.60. This shows that as the embedment 

increases, the natural frequency ratio increases significantly. The natural frequency 
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increased by 34% from zero embedment to full embedment where as the resonant 

frequency descreased slightly by 6% from zero to full embedment. 

 

4.7 Summary 

 

In this chapter, the shear modulus and shear wave velocity of the soil profile where 

the footings were constructed was determined. The small strains shear modulus 

will be used in Chapter 5 to determine the theoretical dynamic behaviour of the 

surface and embedded foundations. In addition, the same small strains shear 

modulus will be used in Chapter 6 to determine the dynamic behaviour of surface 

and embedded foundation using numerical analysis. In additional, the dynamic 

behaviour of the surface and embedded foundation were determined. 

 

4.7.1 Surface foundation 
 

The observed dynamic behaviour of the surface foundation was the displacement 

amplitude, resonant amplitude, resonant frequency, dynamic stiffness and natural 

frequency. The experimental results show that the resonant frequency obtained 

from the frequency response function is 45.5 Hz. It is also reveals that the resonant 

frequency can be estimated from the plot of complex dynamic stiffness against 

forcing frequency, as well as from the plot of the imaginary part versus forcing 

frequency of the frequency response function (receptance). The natural frequency 

of the surface foundation was determined from the plot of phase angle versus 

forcing frequency, as well as from loss angle versus forcing frequency. 

 

4.7.2 Embedded foundation 
 
The dynamic behaviour of the embedded foundation determined experimentally 

was the the displacement amplitude, resonant amplitude, resonant frequency, 

natural frequency and dynamic stiffness. The effect of embedment is described by 

dimensionless quantities known as resonant amplitude ratio, resonant frequency 

ratio and the newly introduced quantity known as natural frequency ratio. The 

observed dynamic responses of the surface and embedded foundation will be 

compared with analytical solutions and numerical solutions discussed in Chapter 5 

and 6 respectively. 
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Figure  4.1: Geophone spectrum amplitude for 73.4 Hz 

 

 

 
 

Figure 4.2: Field-measured phase velocity 
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Figure 4.3: Field-measured shear wave velocity  
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Figure 4.4: Field-measured stiffness 
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Figure 4.5: Measured force from shaker 

 

 

 

 
 

Figure 4.6: Measured acceleration from accelerometer 1 and 2 
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Figure 4.7: Average measured acceleration.  

 

 

 
 

Figure 4.8: Vertical displacement in time domain 
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Figure 4.9: Footing vertical displacement response from accelerometer 1 and 2.  

 

 

 
 

Figure 4.10: Average measured footing displacement response.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

4-29 

 

 
 

Figure 4.11: Complex dynamic stiffness from accelerometer 1 and 2. 

 

 

 
 

Figure 4.12: Measured foundation Complex dynamic stiffness – Average 
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Figure 4.13: The real part of complex dynamic stiffness from accelerometer 1 and 2 

 

 

 
 

Figure 4.14: Average real part of complex dynamic stiffness. 
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Figure 4.15: The imaginary part of complex dynamic stiffness - from 

accelerometer 1 and 2  

 

 

 
 

Figure 4.16: Average imaginary part of complex dynamic stiffness 
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Figure 4.17: Damping coefficients from accelerometers 1 and 2 

 
 

 

 
 

Figure 4.18: Average of damping coefficient 
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Figure 4.19: Phase angle between forcing function and harmonic vertical 
displacement for accelerometer 1 and 2 

 

 
 

Figure 4.20: Phase angle between forcing function and harmonic vertical 

displacement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

4-34 

 

 
 

Figure 4.21: Loss angle or damping factor of the foundation system 
 

 

 
 

 

Figure 4.22: Average loss angle or damping factor of the foundation system 
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Figure 4.23: Frequency response model 

 

 
 

Figure 4.24: Foundation FRF – Receptance for accelerometer 1 and 2 
 

 

 
 

Figure 4.25: Average foundation frequency response function – Receptance 
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Figure 4.26: Real part from frequency response function – Receptance from 

accelerometer 1 and 2 

 

 
 

Figure 4.27: Average real part of frequency response function – Receptance. 
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Figure 4.28: Imaginary part of frequency response function – Receptance from 

accelerometer 1 and 2 

 

 

 
 

Figure 4.29: Average imaginary part of frequency response function – Receptance 

Average 
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Figure 4.30: Phase angle between forcing function and displacement – Receptance from 

accelerometer 1 and 2 

 

 

 
 

 
Figure 4.31: Phase angle between forcing function and displacement – Receptance  
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Figure 4.32: Loss angle – Receptance from accelerometer 1 and 2. 

 

 

 
 

Figure 4.33: Loss angle or damping factor – Receptance 
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Figure 4.34: Foundation frequency response function – Accelerance 

 

 

 
 

Figure 4.35: Average foundation frequency response function – Accelerance  
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Figure 4.36: Real part from frequency response function – Accelerance from 

accelerometer 1 and 2 

 

 

 
 

 

Figure 4.37: Average real part from frequency response function – Accelerance 
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Figure 4.38: Imaginary part of frequency response function – Accelerance from 

accelerometer 1 and 2 

 

 

 
 

Figure 4.39: Imaginary part of frequency response function – Accelerance 
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Figure 4.40: Phase angle between forcing function and acceleration – Accelerance 

from accelerometer 1 and 2 

 

 
 

Figure 4.41: Average phase angle between forcing function and acceleration – 

Accelerance  
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Figure 4.42: Loss angle – Accelerance from accelerometer 1 and 2 

 

 

 
 

Figure 4.43: Average loss angle – Accelerance from accelerometer 1 and 2 
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Figure 4.44: Determination of natural frequency of block system (Undamped 

system) 

 

 

 
 

 
Figure 4.45: Estimation of shape factor (Barkan 1962) 
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Figure 4.46: Displacement due to exerted loads 

 

 
 

Figure 4.47: Displacement due to loads with increase in embedment depth 
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Figure 4.48: Displacement due to unit load  
 

 
 

Figure 4.49: Displacement with increase in embedment depth 
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Figure 4.50: Effect of embedment on resonant amplitude ratio 
 

 

 
 

 

Figure 4.51: Effect of embedment on resonant frequency 
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Figure 4.52: Effect of embedment depth on damping ratio 

 

 

 
 

 

Figure 4.53: Effect of embedment depth on resonant frequency ratio 
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Figure 4.54: Complex dynamic stiffness for different embedment depths 

 

 
 

Figure 4.55: Plot of the real part versus frequency 
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Figure 4.56: Imaginary part 

 

 

 
 

 

Figure 4.57: Phase angles for different embedment depths 
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Figure 4.58: Loss angles against frequency for different embedment depths 

 

 

 
 

 

Figure 4.59: Natural frequency for 0, 310, 620 and 1240 mm embedment depths 
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Figure 4.60: The effect of embedment on resonant frequency ratio 
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CHAPTER 5 

5 SIMPLIFIED MODELS 
 

5.1 Introduction 
 

The objective of this chapter is to evaluate the accuracy of the simplified models in 

determining dynamic responses of the surface and embedded foundation systems. The 

vertical dynamic responses of the surface and embedded foundation systems, due to the 

vertical harmonic load, are determined using simplified models (analytical solution). The 

vertical dynamic responses of the foundation systems obtained using these solutions are 

compared with the responses obtained from field measurements. From this comparison, 

the the following analytical models were selected, and in order of increasing complexity 

are: Mass Spring Dashpot (MSD) or Winkler model, elastic half-space theory using 

Sung’s (1953) displacement functions, Veletsos and Verbic (1973) massless soil, Lysmer 

(1965) model, Veletsos and Verbic (1973) soil with mass and Dyna5 program. The 

evaluation of embedded foundations is based on the analytical solutions suggested by 

Novak and Beredugo (1972) and the Dyna5 program. 

 

5.2 Winkler model 
 

The response of a footing resting on a semi-infinite medium (half-space) subjected to 

vertical dynamic loads can be modelled by using the Winkler model. The equilibrium of 

forces in the vertical direction including the inertia forces determine the dynamic 

response of the footing. The main parameter for the analysis using the Winkler model is 

the coefficient of elastic uniform compression of the soil ( )uC . The spring constant ( )vk  

is obtained by multiplying the known base area of the footing and the coefficient of 

elastic uniform compression of the soil ( )uC . The spring constant ( )vk  is not a soil 

property as it depends on the contact area between the footing surface and the soil. 

 

Although the Winkler model has inherent shortcomings, engineers widely use the model 

for analysis and design of machine foundations. The attractiveness of the model is due its 

simplicity and low computational effort. In principle, the Winkler model does not 

consider geometric and material damping of the vibrating system. In designing machine 

foundations, it is common to use the Winkler model with damping by introducing a 
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dashpot, which represents viscous damping of the system. The viscous damping used in 

the analysis is usually obtained from empirical formulae or charts. 

 

5.2.1 Winkler model 

 

The response of the surface foundation presented in Section 3.6 (Figure 3.12) was 

determined by using the Winkler model. The analysis using the Winkler model requires 

a spring constant. This was determined using three methods. The coefficient of elastic 

uniform compression obtained from field measurement using the Continuous Surface 

Wave test as well as vertical block vibration test. In addition, the coefficient of elastic 

uniform compression was taken from empirical values proposed by Barkan (1962). The 

theoretical dynamic response of the footing, with a dimension of 2500 mm x 2000 mm 

and 400 mm depth was determined using the spring constants tabulated in Table 4-4. 

The problem was reduced to an undamped single degree of freedom problem. In the 

analysis, it was assumed that the foundation system is subjected to loads with varying 

forcing frequency from 10.0 Hz to 100.0 Hz. The vertical harmonic forces of 

)tsin(P)t(P ov ω= excited the foundation system at the centre. The amplitude forces oP  

used for analysis are presented in Figure 4.5. 

 

The undamped natural frequency of the foundation system predicted by the linear elastic 

Winkler model is presented in Table 5-1 and Figure 5.1 shows the displacement 

amplitude. As expected for an undamped model, Figure 5.1 shows that the displacement 

at resonance becomes infinite. This indicates that the undamped Winkler model cannot 

predict the displacement of machine foundations at resonance. 

 

The natural frequency of the foundation system obtained using Equation 2.7, which 

assumed that the half-space medium is massless. In the analysis the soil is replaced by an 

equivalent spring vk . The undamped natural frequencies of the foundation system 

obtained from three different methods using Equation 2.7 are listed in Table 5-1. The 

plot of vertical displacement against forcing frequency is shown in Figure 5.1. For an 

undamped system, the resonant frequency is equal to the natural frequency of the 

foundation system. The natural frequency estimated using spring constants obtained 

from Continuous Surface Wave test, vertical block vibration, and empirical value 

proposed by Barkan (1962) ranges between 55.9 Hz and 59.0 Hz with an average of 

57.8 Hz. 
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Table 5-1: Spring constant and Predicted natural frequency 

Method Spring constant sk  (N/m) Predicted  Natural frequency (Hz) 

Wave propagation (CSW) 636,235,876.0 55.9 

Vertical block vibration 709,302,152.0 59.0 

Estimated using Barkan (1962) 693,671,752.3 58.5 

Average Value 679,736,593.5 57.8 

 
 

5.2.2 Damped Winkler model – Irish and Walker (1969) 
 
Damping was introduced in the Winkler model to determine the vertical displacement 

amplitude of the foundation system. The damping ratio D was estimated using a method 

suggested by Irish and Walker (1969), they developed a chart to estimate the damping 

ratio of cohesive soil shown in Figure 5.2. The damping ratio for granular materials is 50 

percent of the cohesive soil (  soilcohesiveoilgranular s 0.5D  D = ). For the surface foundation 

3.1R/mb 3 == ρ  from which the damping ratio (D) can be estimated as 0.343 for 

Poisson’s ratio of 0.25 as shown in Figure 5.2. This estimated damping ratio was used to 

analyse the dynamic response of the foundation systems using the damped Winkler 

model. The displacement amplitudes obtained from CSW test, vibration block test and 

empirical method suggested by Barkan (1962) are shown in Table 5-2. The plots of 

vertical displacement of the foundation system against frequency of excitation obtained 

from the damped Winkler model as well as the field measurements are shown in 

Figure 5.3. The plot shows that the Winkler model for the chosen damping ratio 

overestimates the vertical displacement. The error ranges between 23.3% and 27.8%. It 

may be seen that the predicted amplitude at any given frequency from the three damped 

Winkler models are similar. This is to be expected given that the same damping ratio and 

spring constants that differed only slightly were used as input parameters. 

 

 
Table 5-2: Predicted displacement for damped Winkler model 

Method 
Maximum 

displacement (mm) 

Frequency (Hz) at 

maximum displacement 

% Error   

Experimental results 0.0180 57.0  

Wave propagation (CSW) 0.0230 58.6 27.8 

Vertical block vibration 0.0222 59.8 23.3 

Estimated using Barkan (1962) 0.0223 59.8 23.9 
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The displacements were divided by force in order to establish the frequency response 

function for the Winkler model with damping. The resonant frequencies were 

determined as the peak of the frequency response function. These frequency response 

functions using spring constant obtained from Continuous Surface Wave test, vertical 

block vibration and empirical value proposed by Barkan (1962) are shown in Figure 5.4; 

the estimated resonant frequencies are 49.0 Hz, 51.5 Hz and 52.1 Hz respectively. The 

resonant frequency of the surface foundation system obtained from the field-measured 

data is 45 Hz. The percentage of error with reference to the resonant frequency obtained 

from field-measured data is presented in Table 5-3. It is shows that the spring constant 

obtained from the seismic test (CSW) resulted in the most accurate prediction of 

resonant frequency compared to the vertical block vibration and empirical value 

proposed by Barkan (1962). 

 
Table 5-3: Predicted resonant frequency for damped Winkler model  

Method Predicted resonant frequency (Hz) % Error  

Wave propagation (CSW) 49.0 +8.9 

Vertical block vibration 51.5 +14.4 

Estimated using Barkan (1962) 52.1 +15.8 

 

 

5.3 Models based on Elastic half–space theory 
 

Reissner (1936) established the theoretical basis for studying the response of dynamic 

loaded footing which is supported by an elastic half-space. Reissner assumed the soil is a 

semi-infinite, homogeneous, elastic and isotropic body. In the analysis, the soil is 

defined by small strain shear modulus ( )G , Poisson`s ratio ( )ν  and mass density ( )ρ . In 

the following sections the vertical dynamic responses of the surface foundation described 

in Figure 3.12 (Section 3.6), will be analysed using elastic half-space theory applying 

Sung’s (1953) displacement functions, Lysmer (1965) model and Veletsos and Verbic 

(1973) simplified models. 

 

5.3.1 Sung (1953) 
 

Sung (1953) extended Reissner’s solution and developed equations for three cases of 

contact pressure distribution on a circular loaded area and reported the solution in series 

form for various Poisson’s ratios from which 1f  and 2f  is calculated. Sung’s 
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displacement functions for a rigid footing were used to solve Equation 2.1 using the soil 

parameters shown in Table 4-1. 

 

Displacement amplitude 

 

The surface footing presented in Section 3.5 (Figure 3.10) was simulated using the 

analytical solution by exerting the vertical loads measured in the field. The response of 

the foundation systems was determined using Sung’s displacement functions. The 

vertical displacement of the foundation system is shown in Figure 5.5. 

 

In addition, the displacement for the analytical solution at the frequency of fmax×1.25  

and fmax×0.75  is compared with the one obtained experimentally as shown in 

Table 5.4, where fmax is the frequency at the maximum displacement amplitude. 

 
The displacement percentage error in comparison to the experimental results at 

maximum displacement is 45.6%. The percentage error for displacement at 0.75fmax 

and 1.25fmax is 38.5% and 55.5% respectively. 

 

Complex dynamic stiffness 
 

The complex dynamic stiffness, obtained using Sung’s solution, is shown in Figure 5.6. 

From these results, it is indicated that at low frequencies the complex dynamic stiffness 

decreases as the frequency increases. For the analytical solution, as the frequency 

increases the stiffness decreases down to approximately 59.0 Hz, and then increases. The 

complex dynamic stiffness measured in the field decreases to about 45.0 Hz, then 

increases as the frequency increases. The results reflect that at low frequencies the 

complex dynamic stiffness obtained from Sung’s solution are similar compared with the 

complex dynamic stiffness obtained experimentally. At frequencies between 10Hz and 

45Hz the complex dynamic stiffness determined using Sung (1953) displacement 

function differs from the experimental value by approximately between 27 % and 31.6% 

respectively. 

 
 

Table 5-4: Predicted displacement for Sung (1953) solution to field-measured data 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error 

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.013 0.018 0.011 56.1 
62.9 45.6 55.5 

Analytical–Sung (1953) 0.00483 0.0098 0.004894 55 
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Real part of complex dynamic stiffness 

 
A comparison between the real parts, which are referred as the effective dynamic 

stiffness, taken from the field-measured data with the effective dynamic stiffness 

obtained from Sung’s solution, is shown in Figure 5.7. The responses show that at the 

low frequency, the effective dynamic stiffness from the field-measured data is lower than 

the effective dynamic stiffness stated in Sung’s solution. At a frequency of 10.0 Hz, 

effective dynamic stiffness from Sung’s solution is higher than effective dynamic 

stiffness obtained from field-measured data by about 28.8 %; this difference is 

maintained to about 50.0 Hz. At frequency above 50.0 Hz, the difference increased. 

 

The natural frequency of the foundation system can be obtained from the plot of the real 

part versus the forcing frequency when the effective dynamic stiffness (real part) crosses 

zero. From Figure 5.7, the curve plotted from Sung’s solution crosses zero at 57.9 Hz 

while the curve plotted from field-measured data crosses zero at 49.0 Hz. Therefore, 

Sung’s solution overestimates natural frequency by about 20.4 %. 

 

Imaginary part of complex dynamic stiffness 
 

Figure 5.8 illustrates the relationship between the imaginary part and the frequency of 

excitation for Sung’s solution, and the one measured in the field. From Figure 5.8, it is 

shown that the imaginary part determined analytically increases as the frequency 

increases up to a forcing frequency of about 79.0 Hz and there after it decreases. The 

imaginary part measured in the field increases as the forcing frequency increases. 

 

Phase and loss angle 
 

The plot of phase angle versus frequency of excitation obtained experimentally and 

Sung’s solution is shown in Figure 5.9. Phase angles between forcing function and 

footing displacement are given in Equation 2.14. Figure 5.9 shows the plot of phase 

angle between forcing function and footing displacement. The vertical displacement of 

footing becomes out of phase with the forcing function at the frequency of 58 Hz which 

is taken to be the natural frequency of the foundation system, the one measured in the 

field is 49.0 Hz. Sung (1953) solutions over estimates the natural frequency by about 

17.3 % compared to the field-measured natural frequency. 

 

The loss angles estimated from results collected from the field-measured data and those 

obtained from the analytical solution by Sung’s solution are shown in Figure 5.10. The 
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natural frequency obtained from Sung’s solution is 59.4 Hz while field-measured data 

estimates natural frequency of 49.4 Hz. From the results, Sung’s solution overestimates 

natural frequency by about 20.2 %. 

 

5.3.2 Lysmer (1965) model 
 

The response of the surface foundation presented in Section 3.5 (Figure 3.10) was 

analysed by using Lysmer (1965) model discussed in section 2.4 and the results 

compared to the field measurements. This section will discuss the displacement 

amplitude, complex dynamic stiffness, the real part, the imaginary part, phase angle and 

loss angels of the surface foundation system. 

 

Displacement amplitude 

 

The measured vertical displacement response of the foundation system due to vertical 

excitation is shown in Figure 5.11 and compared to the analytical solution proposed by 

Lysmer (1965) model. 

 

The error in comparison to the experimental results at maximum displacement is 31.9 %. 

The percentage errors for 0.75fmax and 1.25fmax are shown in Table 5.5. 

 

Complex dynamic stiffness 
 

Figure 5.12 shows that the complex dynamic stiffness obtained from Lysmer (1965) 

model increases as the frequency of excitation increases. The trends from observed and 

predicted curves are similar. The complex dynamic stiffness determined using Lysmer 

(1965) model at low frequency is higher than the complex dynamic stiffness obtained 

from field-measured data. As the frequency increases, the different between the 

predicted and measured complex stiffness increases up to the measured resonant 

frequency. At the frequency of 100 Hz the predicted and measured complex stiffness is 

almost the same. 

 
Table 5-5: Predicted displacement for by Lysmer (1965) model 

Method 
Displacement (mm) 

Estimated 

frequency (Hz 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.013 0.018 0.011 56.1 
56.2 31.9 1.8 

Lysmer (1965) model 0.00569 0.01226 0.0112 63.0 
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Real part of complex dynamic stiffness 

 

A comparison between the measured and predicted real parts by Lysmer (1965) model is 

shown in Figure 5.13. The plot indicates that Lysmer (1965) model predicts high 

effective dynamic stiffness at the low frequencies compared to the field-measured 

effective dynamic stiffness. The response show that from the frequency of 10.0 Hz to 

about 70 Hz the effective dynamic stiffness obtained from Lysmer (1965) model solution 

is higher by about 29% compared to the effective dynamic stiffness obtained from field-

measured data. Lysmer (1965) model predicts the natural frequency of the foundation 

system as 57.5 Hz. From the plot of the real part against forcing frequency, it is shown 

that Lysmer (1965) model solution overestimates natural frequency by about 17.3 %. 

 

Imaginary part of complex dynamic stiffness 

 
Figure 5.14 present the measured imaginary part, and imaginary part obtained from 

analytical solution using Lysmer (1965) model. From Figure 5.14, it is shown that 

measured and predicted imaginary part of complex dynamic stiffness increases as the 

forcing frequency increases. The imaginary part determined using Lysmer (1965) model 

at low frequency is higher than the imaginary part obtained from field-measured data. As 

the frequency increases the different between the predicted and measured imaginary part 

increased up to about 45 Hz. Thereafter, the different is small and at the frequency of 

100 Hz the predicted and measured imaginary part is almost the same. 

 

Phase and loss angles 
 
The plot of phase angles versus frequency of excitation obtained from field-measured 

data and from Lysmer (1965) model is shown in Figure 5.15. From Figure 5.15, the 

natural frequency of the foundation system estimated using Lysmer (1965) model 

solution is 57.5 Hz. Lysmer (1965) model overestimated the natural frequencies by about 

17.3 %. 

 

Figure 5.16 shows the measured and predicted loss angles. Lysmer (1965) model 

solution estimates natural frequency of 57.4 Hz. This predicted model overestimates 

natural frequency by 17.1 %. 
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5.3.3 Veletsos and Verbic (1973) – massless soil 

 

The vertical dynamic responses of the surface foundation system described in Section 

3.5, (Figure 3.10) were determined using the analytical solution proposed by Veletsos 

and Verbic (1973) massless soil as discussed in section 2.5.1. This solution assumes that 

the mass of the footing and the supporting medium is zero as shown in Figure 2.2. In 

Figure 5.17, the response from analytical solution by Veletsos and Verbic (1973) is 

plotted together with the vertical displacement response of the foundation system 

obtained from the field-measured data. 

 

The error between predicted and measured maximum displacement is 38.4 %. The 

percentage errors for displacement at 0.75fmax and 1.25fmax are shown in Table 5.6. 

 

Complex dynamic stiffness 
 

The complex dynamic stiffness of the foundation system obtained using Veletsos and 

Verbic (1973) assuming that soil medium is massless is shown in Figure 5.18. The 

complex dynamic stiffness for analytical solution decreases as the frequency excitation 

increases as shown in Figure 5.18. The difference is almost constant at the low 

frequencies and at about 55.0 Hz the measured and predicted complex dynamic stiffness 

is the same, there after as the frequency increases the different between two becomes 

large. 

 
Table 5-6: Predicted displacement for Veletsos and Verbic (1973) massless soil 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error 

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental 

results 
0.013 0.018 0.011 56.1 

54.6 38.4 13.5 
Veletsos and 

Verbic (1973) 
0.0059 0.01108 0.00951 60.0 

 

 

Real part of complex dynamic stiffness 
 

A comparison between the plots for the real parts obtained experimentally and that from 

the analytical solution proposed by Veletsos and Verbic (1973) massless soil is shown in 

Figure 5.19. At low frequencies, the real part obtained from the field-measured data is 

lower than the effective dynamic stiffness obtained from Veletsos and Verbic (1973) 

solution. The difference between the two increases as the frequency increases. At 
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10.0 Hz, the difference is about 29.6 % with a maximum difference of 260% at 

100.0 Hz. 

 
The natural frequency of the foundation system can be obtained at the point where the 

plot of the real part versus frequency crosses a zero line. From Figure 5.19, it shows that 

the plot of the real part against frequency by Veletsos and Verbic (1973) massless soil 

does not cross zero due to the absence of inertia forces. 

 

Imaginary part of complex dynamic stiffness 

 
Figure 5.20 illustrates the relationship between the imaginary part versus the frequency 

of excitation for the field-measured data and the solution obtained using Veletsos and 

Verbic (1973) massless soil. The plot of the imaginary part obtained from the analytical 

solution is a straight line indicating that the imaginary part is proportional to excitation 

frequency. At the low frequency, the imaginary part obtained from Veletsos and Verbic 

(1973) solution is higher compared to measured imaginary part. As the frequency of 

excitation increases the difference increases and attained the maximum at about 60 Hz. 

 

Phase and loss angles 

 

The plot of phase angle between force and displacement versus frequency of excitation 

measured experimentally and the one obtained from the analytical solution by Veletsos 

and Verbic (1973) massless soil is shown in Figure 5.21. The estimated natural 

frequency of the foundation system using Veletsos and Verbic (1973) solution is 

57.5 Hz. Veletsos and Verbic (1973) solution overestimates the natural frequency by 

about 17.3 %. 

 

5.3.4 Veletsos and Verbic (1973) – Soil with mass 
 

The foundation displacement response obtained using the analytical solution assuming 

that the elastic half-space and footing has masses, as proposed by Veletsos and Verbic 

(1973), is compared with the vertical displacement response obtained from field-

measured data as is shown in Figure 5.22. 

 

The displacement error when comparing results at maximum displacement is 56.2 %. 

The percentage errors for displacement at 0.75fmax and 1.25fmax are shown in Table 

5.7. 
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Complex dynamic stiffness 

 

The complex dynamic stiffness obtained using the solution proposed by Veletsos and 

Verbic (1973) soil with mass is shown in Figure 5.23. The complex dynamic stiffness 

obtained from the analytical solution is constant from 10 up to about 20 Hz. The 

maximum and minimum difference occurs at the frequence of 45 Hz and 100 Hz 

respectively. As the frequency of excitation increases, the complex dynamic stiffness 

increases. The trend of the plotted curves of the complex dynamic stiffness obtained 

from field measurements and the analytical solution by Veletsos and Verbic (1973) are 

similar. 

 
Table 5-7: Predicted displacement for Veletsos and Verbic (1973) soil with mass 

Method 
Displacement (mm) 

Estimated frequency 

(Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental 

results 
0.013 0.018 0.011 56.1 

63.5 56.2 40.5 
Veletsos and 

Verbic (1973) 
0.00475 0.00789 0.00655 59.0 

 

 

Real part of complex dynamic stiffness 
 

A comparison between the real part obtained from the field measurements and the 

solution proposed by Veletsos and Verbic (1973) soil with mass is shown in Figure 5.24. 

The response shows that at the low frequencies, the effective dynamic stiffness obtained 

from the field-measured data is lower than the effective dynamic stiffness using the 

analytical solution proposed by Veletsos and Verbic (1973). The plots show that in the 

frequency range of about 30.0 Hz to 70.0 Hz, the predicted real part is very similar to the 

measured data. The plot of real part against frequency by Veletsos and Verbic (1973) 

crosses zero at 50.3 Hz. The solution by Veletsos and Verbic (1973) with mass closely 

predicts the measured natural frequency, overestimating it by about 2.7 %. 

 

Imaginary part of complex dynamic stiffness 

 
The plot of imaginary part against frequency obtained from field-measured data, and the 

one from the analytical solution proposed by Veletsos and Verbic (1973) are reflected in 

Figure 5.25. The plot of the imaginary part obtained from the analytical solution is a 

straight line indicating that the imaginary part is proportional to excitation frequency. 

The imaginary part from the field-measured data, show that as the frequency increases 
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the imaginary part increases. At 10.0 Hz the difference is about 116.7% with maximum 

difference of 204% at about 43.0 Hz above 43.0 Hz the difference decreased to about 

15.6 % at 100.0 Hz. 

 

Phase and loss angles 
 

The plot of phase angle between force and displacement versus frequency of excitation 

measured in the field and that obtained from analytical solution by Veletsos and Verbic 

(1973) soil with mass is shown in Figure 5.26. Here the natural frequency of the 

foundation system estimated by using Veletsos and Verbic (1973) solution is 50.0 Hz. 

The natural frequency of the foundation system obtained from field-measured data is 

49.0 Hz. Veletsos and Verbic (1973) solution overestimates the natural frequency by 

about 2.0%. 

 
The loss angles obtained from field-measured data and analytical solution by Veletsos 

and Verbic (1973) soil with mass is shown in Figure 5.27. From the plot of the loss angle 

against forcing frequency the estimated natural frequency is 50 Hz. The natural 

frequency estimated from loss angle overestimates the natural frequency by 2% 

compared to the natural frequency obtained from field-measurements. 

 

Estimation of damping ratio 
 

The undamped natural frequency of the foundation system can be obtained at the 

intersection between the curve of dynamic stiffness coefficient (real part) and the curve 

of Equation 5.1 as illustrated in Figure 5.28 (Ahn 2007 and Ahn et al., 2011). 

 

( )
o

2

K

mω
ωk =        

 Equation 5.1 

 

Using Veletsos and Verbic (1973) the undamped natural frequency of the foundation 

system is 50.0 Hz. This undamped natural frequency can be used to measure damping 

ratio using damping constants estimated from Figure 5.29. The damping ratio ( )D  is 

calculated using Equation 5.2. 

 

oM2

c
D

ω
=        

 Equation 5.2 
 

Where: 
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c  is the damping constant, and 

M  is the mass of the footing. 

 

5.3.5 Numerical method using Dyna 5 program 
 
The response of the surface foundation systems described in Section 3.5 (Figure 3.10) 

was determined using the Dyna5 analysis program. Dyna5 program is a popular 

computer program which is widely used in industry and therefore it was important to 

include it in this study. Dyna5 program is based on Veletsos and Verbic (1973) massless 

soil model. 

 
The forces exerted on the surface foundation in the field with their respective forcing 

frequencies as shown in Figure 4.5 were used as input in the Dyna5 program. The 

response of the foundation system for each frequency was calculated to obtain the 

displacement, dynamic stiffness coefficient, and damping coefficient, phase shift and 

magnification factor. 

 

For comparison purposes, the vertical response obtained from the Dyna5 program is 

plotted together with the vertical displacement response of the foundation system 

obtained from field-measurements as shown in Figure 5.30. The plots show that Dyna5 

program underestimates the maximum vertical displacement amplitude by about 56.2 %. 

The percentage errors for displacement at 0.75fmax and 1.25fmax are shown in Table 5-

8. 

 

Complex dynamic stiffness 
 

The complex dynamic stiffness obtained from the Dyna5 program is shown in 

Figure 5.31 and this stiffness from Dyna5 program increases as the frequencies increase, 

as shown in Figure 5.31. The plot shows that complex dynamic stiffness determined 

from Dyna5 program is higher than the complex dynamic stiffness obtained from field-

measured data. 

 
Table 5-8: Predicted displacement for Dyna5 program 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental 

results 
0.013 0.018 0.011 56.1 

65.5 56.2 37.6 

Dyna5 program 0.00449 0.00789 0.006867 59.0 
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Real part of complex dynamic stiffness 

 

The plots of the real part taken from the field-measured data and the one from Dyna5 

program are shown in Figure 5.32. The real part obtained from the field-measured data is 

lower than the effective dynamic stiffness obtained from Dyna5 program. As the 

frequency increases, the differences between predicted and measured real part increases. 

The differences increased from 29.6 % to 136.5% for the frequency of 10.0 Hz and 

100 Hz respectively. 

 

Imaginary part of complex dynamic stiffness 
 

The plot of imaginary part against forcing frequency obtained from field-measured data, 

and the one obtained from Dyna5 is shown in Figure 5.33. The plot of the imaginary part 

obtained from Dyna5 program is a straight line which indicates that the imaginary part is 

proportional to excitation frequency. 

 

Phase angles 
 

The plots of phase angle between force and displacement versus frequency of excitation 

for field-measured data and from the Dyna5 program are shown in Figure 5.34. From 

this, the natural frequency of the foundation system estimated from Dyna5 program is 

50.3 Hz, while the natural frequency of the foundation system obtained from field-

measured data is 49.0 Hz. Hence, Dyna5 program overestimates natural frequency by 2.6 

%. 

 

5.3.6 Embedded foundation by Novak and Beredugo (1972) 
 

The vertical dynamic behaviour of the embedded footing as described in Chapter 3 

(Section 3.7) was determined by using the analytical solution proposed by Novak and 

Beredugo (1972). The forces exciting the foundation system were measured in the field 

and used to model the vertical excitation. However, in this section, the responses due to a 

unit load are also reported. The mathematical models illustrating the embedment depth 

are shown in Figures 5.35(a) to 5.35(e). 

 

The responses of the foundation system for different embedment were determined using 

parameters shown in Table 5-9. An assumed Poisson’s ratio of 0.25 was used to analyse 

the responses of all embedment layers. Because it was assumed that the displacement of 

the foundation is within the linear elastic range, material damping was not considered in 

this analysis. The shear modulus of the elastic half-space was taken as 100 MPa base on 
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the CSW test results. The shear modulus of the side soil layers was calculated using 

Equation 2.58. The vertical dynamic responses that will be presented in this section are 

displacement amplitude, resonant amplitude, resonant frequency, complex dynamic 

stiffness, the real part of the complex dynamic stiffness, the imaginary part of complex 

dynamic stiffness and the phase angle between the force and the displacement. The 

dimensionless quantities used to describe the effects of the foundation embedment are 

the resonant amplitude ratio, resonant frequency ratio and natural frequency ratio. 

 

 
Table 5-9: Input parameters for Novak and Beredugo (1972) and Dyna5 program 

Embedment 

depth (m) 

Density of soil - 

side layer ρs 

(kg/m3) 

Unit weight  of soil - 

side layer sγ  (kN/m3) 

Shear modulus of soil 

- side layer -Gs (MPa) 

Shear wave velocity – 

side layer Vs (m/s) 

0 2028 19.895 100 222.1 

310 2040 20.042 102 224.0 

620 2078 20.385 108 228.0 

930 2095 20.552 110 229.0 

1240 2043 20.042 102 224.0 

 

 

Displacement amplitude 
 

The vertical displacement response of the embedded foundation systems was determined 

using the analytical solution proposed by Novak and Beredugo (1972) for embedment of 

0 mm, 310 mm, 620 mm, 930 mm and 1240 mm. The vertical displacement amplitude of 

the foundation system is shown in Figure 5.36. From the plots, it is shown that as the 

embedment increases, the displacement amplitudes decreases. 

 

In addition, the displacement of the analytical solution at the frequency of fmax×1.25  

and fmax×0.75  for embedment of 0 mm, 310 mm, 620 mm, 930 mm and 1240 mm is 

compared with the one obtained experimentally as shown in Table 5.10 to Table 5.14, 

where fmax is the frequency at the maximum displacement amplitude. 

 

The displacement percentage error in comparison to the experimental results at 

maximum displacement at 0 mm, 310 mm and 620 mm embedment is 2 %, 3.8 % and 

2 % respectively. At embedment of 930 mm and 1240 mm the error is 33.3% and 30.4 % 

respectively. The prediction models overestimated displacement amplitude at 0 mm, 

310 mm and 1240 mm embedment and underestimated displacement amplitude at 

embedment of 620 mm and 930 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

5-16 

 

 
 

Table 5-10: Predicted displacement for 0mm Embedment - Novak and Beredugo (1972) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0177 0.0206 0.0101 58.8 

+11.3 2.0 25.7 Novak and Beredugo 

(1972) 
0.0197 0.021 0.0127 57.6 

 

 
Table 5-11: Predicted displacement for 310mm Embedment - Novak and Beredugo (1972) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0146 0.0185 0.0106 57.6 

-15.1 +3.8 +16.0 Novak and Beredugo 

(1972) 
0.0124 0.0192 0.0123 57.6 

 

 
Table 5-12: Predicted displacement for 620mm Embedment - Novak and Beredugo (1972) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0103 0.0145 0.0093 56.0 

21.4 2.0 0 Novak and Beredugo 

(1972) 
0.0081 0.0139 0.0093 57.3 

 
Table 5-13: Predicted displacement for 930mm Embedment - Novak and Beredugo (1972) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0051 0.0132 0.0039 65.8 

-7.8 33.3 12.8 Novak and Beredugo 

(1972) 
0.0055 0.0088 0.0034 62.4 

 
Table 5-14: Predicted displacement for 1240mm Embedment - Novak and Beredugo (1972) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0040 0.0079 0.0050 58.8 

+2.5 30.4 0 Novak and Beredugo 

(1972) 
0.0039 0.0103 0.0050 57.6 
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Resonant amplitude 

 

The resonant amplitudes due to the vertical unit load using the analytical solution 

proposed by Novak and Beredugo (1972) are presented in Table 5-15. The plot of the 

displacement versus the frequency of excitation due to a unit load for different 

embedment depth is shown in Figure 5.37. This reflects that as the embedment increases, 

the resonant amplitudes decreases. The model predicts that at an embedment depth of 

more than approximately 600mm, the displacement versus frequency plot no longer 

exhibits a peak. 

 

Resonant amplitude ratio 
 

The resonant amplitude ratio is calculated using Equation 2.47. The predicted resonant 

amplitude ratios from different embedment are shown in Table 5 -15. From Table 5 -15, 

it can be seen that the resonant amplitude ratio decreases significantly as the embedment 

increases. At full embedment, the resonant amplitude is only 23.2% of the amplitude at 

zero embedment. 

 
Table 5-15: Predicted resonant amplitude and resonant amplitude ratios for Novak and 

Beredugo (1972) 

Embedment depth (m) Embedment ratio Resonant amplitude (mm/N) Resonant amplitude ratio - 

0 0 0.000005068 1 

310 0.52 0.000002770 0.547 

620 1.03 0.000001856 0.366 

930 1.55 0.000001384 0.273 

1240 2.07 0.000001178 0.232 

 
 

Resonant frequency 
 

The predicted resonant frequencies of the embedded foundation systems can be 

determined from Figure 5.37 and from the plot of the magnification factor versus the 

forcing frequency. Figure 5.38 illustrates the magnification factor for different 

embedments obtained using Novak and Beredugo (1972) analytical solution. For each 

plot the resonant frequency was taken as the one which corresponds to peak value. For 

embedment between 600mm and 1240mm no peak value is clear as the plot has no peak. 

Because there is an insignificant change between the resonant frequency between 

310mm and 620mm embedment, the resonant frequencies for 620mm, 930 and 1240mm 

were taken as the same value of resonant frequency for embedment of 620mm. The 

resonant frequencies obtained from Figures 5.37 and 5.38 are presented in Table 5-16. 
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Table 5-16: Predicted resonant frequency and resonant frequency ratio for Novak and Beredugo 

(1972) 
Embedment depth (m) Embedment ratio Resonant frequency (Hz) Resonant frequency ratio 

0 0 36.1 1 

310 0.52 33.5 0.928 

620 1.03 33.5 0.928 

930 1.55 33.5 0.928 

1240 2.07 33.5 0.928 

 

 

Resonant frequency ratio 
 

The effect of embedment on the resonant frequency of the foundation system can be 

explained using a dimensionless parameter known as the resonant frequency ratio. The 

resonant frequency ratios predicted, using the analytical solution as suggested by Novak 

and Beredugo (1972), are presented in Table 5-16. It shows that the resonant frequency 

ratio decreases as the embedment increases up to an embedment ratio of 0.5, and then, 

remains constant as the embedment ratio increases. 

 

Complex dynamic stiffness 
 

Figure 5.39 shows the vertical complex dynamic stiffness for different embedments 

obtained from Novak and Beredugo (1972). From the plot is shown that as the 

embedment increases the complex dynamic stiffness increases. 

 

Real part of complex dynamic stiffness 

 

The real part determined by using Novak and Beredugo (1972) analytical solution 

obtained from different embedments is shown in Figure 5.40. From the plot is shown 

that as the embedment increases the real part of complex dynamic stiffness increases. 

 

 

Imaginary part of complex dynamic stiffness 
 

The imaginary part obtained using Novak and Beredugo (1972) analytical solution for 

different embedment is shown in Figure 5.41 and this describes that as the embedment 

increases, the imaginary part of complex dynamic stiffness increases. 

 

Phase angles 

 

The plots of phase angle between force and displacement versus frequency obtained 

from the analytical solution by Novak and Beredugo (1972) for different embedments 
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are shown in Figure 5.42. The plots of phase angles versus frequencies are used to 

estimate the natural frequencies of embedded foundation systems. From these, it is 

predicted that as embedment increases the natural frequency will increase. The natural 

frequencies of the embedded foundation for different embedments obtained from 

analytical solutions are shown in Table 5-17. 

 

Natural frequency ratio 
 

The effect of foundation embedment can be described by the dimensionless quantity 

known as the natural frequency ratio ( )fN  calculated by equation 4.18. The natural 

frequency ratio predicted by Novak and Beredugo (1972) solution are presented in 

Table 5-17 which illustrates that the natural frequency ratio increases as the embedment 

increases. 

 

 
Table 5-17: Predicted natural frequency and Natural frequency ratio for Novak and Beredugo 

(1972) 
Embedment depth (m) Embedment ratio Natural frequency (Hz) Natural frequency ratio 

0 0 40.3 1 

310 0.52 45.7 1.134 

620 1.03 51.0 1.266 

930 1.55 56.0 1.390 

1240 2.07 59.0 1.464 

 

 

5.3.7 Embedded foundation numerical analysis - Dyna5 program 
 

The vertical dynamic behaviour of the embedded footing as described in Chapter 3 

(Section 3.7) was determined using the Dyna5 program. The forces measured in the field 

used to excite the foundation system in the vertical direction. Also, a unit force was used 

to excite the foundation system to obtain frequency response function. The models 

illustrating the embedment depth are shown in Figure 5.35(a) to 5.35(e). The responses 

of the foundation system for different embedment were determined by using the 

parameters shown in Table 5-9. The analysis assumed that the Poisson’s ratio for all 

layers is 0.25. The material damping was not considered in the analysis. A small strain 

shear modulus of the elastic half-space of 100 MPa was used in the analysis. The shear 

modulus of the side soil layers was calculated using Equation 2.58. 
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Displacement amplitude 

 

The vertical displacement response of the embedded foundation systems was determined 

using dyna5 program for embedment of 0 mm, 310 mm, 620 mm, 930 mm and 

1240 mm. The vertical displacement amplitude of the foundation system is shown in 

Figure 5.43. From the plots, it is indicated that as the embedment increases, the 

displacement amplitudes decreases. 

 

In addition, the displacement of the analytical solution at the frequency of fmax×1.25  

and fmax×0.75  for embedment of 0 mm, 310 mm, 620 mm, 930 mm and 1240 mm is 

compared with the one obtained experimentally as shown in Table 5.18 to Table 5.22, 

where fmax is the frequency at the maximum displacement amplitude. 

 
The displacement percentage error in comparison to the experimental results at 

maximum displacement for 0 mm, 310 mm and 620 mm embedment is 1 %, 4.9 % and 

11.7% respectively. At embedment of 930 mm and 1240 mm the error is 39.4% and 

15.1 % respectively. The prediction models overestimated displacement amplitude at 

0 mm and 1240 mm embedment and underestimated displacement at embedment of 

310 mm, 620 mm and 930 mm. 

 

Table 5-18: Predicted displacement for 0mm Embedment - Dyna5 program 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0177 0.0206 0.0101 58.8 
1.7 1.0 22.8 

Dyna5 program 0.0180 0.0208 0.0124 57.6 

 

 
Table 5-19: Predicted displacement for 310mm Embedment - Dyna5 program 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0146 0.0185 0.0106 57.6 
24.7 4.9 8.5 

Dyna5 program 0.0110 0.0176 0.0115 57.6 
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Table 5-20: Predicted displacement for 620mm Embedment - Dyna5 program 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0103 0.0145 0.0093 56.0 
26.2 11.7 7.5 

Dyna5 program 0.0076 0.0128 0.0086 57.0 

 
Table 5-21: Predicted displacement for 930mm Embedment - Dyna5 program 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0051 0.0132 0.0039 65.8 
2.0 39.4 33.3 

Dyna5 program 0.0050 0.0080 0.0052 62.4 

 
Table 5-22: Predicted displacement for 1240mm Embedment - Dyna5 program 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0040 0.0079 0.0050 60.0 
+17.5 15.2 10.0 

Dyna5 program 0.0033 0.0091 0.0045 60.0 

 

Resonant amplitude 
 

Figure 5.44 shows the resonant amplitudes of the embedded foundation systems due to a 

unit load for different embedment. From the plot, it is shown that as the embedment 

increases the vertical resonant amplitude decreases. The resonant amplitudes obtained 

from Dyna5 program presented in Table 5-23. Figure 5.45 illustrates the magnification 

factor for different embedment obtained from Dyna5 program. 

 

Resonant amplitude ratio 
 

The resonant amplitude ratio was determined using Equation 2.44. The predicted 

resonant amplitude ratios from different embedment are shown in Table 5-23 and here it 

can be seen that the resonant amplitude ratio decreases significantly as embedment 

increases. 

 
Table 5-23: Predicted resonant amplitude and resonant amplitude ratio for Dyna5 program 
Embedment depth (mm) Embedment ratio Resonant amplitude (mm/N) Resonant amplitude ratio 

0 0 4.4666 x 10-6 1 

310 0.52 2.5529 x 10-6 0.5716 

620 1.03 1.7718 x 10-6 0.3967 

930 1.55 1.3611 x 10-6 0.3047 

1240 2.07 1.1569 x 10-6 0.2590 
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Resonant frequency 

 

The resonant frequencies of the embedded foundation systems are determined from 

Figure 5.44. In addition, the resonant frequency can be obtained from the plot of 

magnification factor versus forcing frequency. Figure 5.45 illustrate the magnification 

factor for different embedment obtained using the Dyna5 program. The resonant 

frequencies obtained from Figures 5.44 and 5.45 are presented in Table 5-24. 

 

Resonant frequency ratio 
 

The resonant frequency ratios predicted by Dyna5 program are presented in Table 5-14. 

From Table 5-24, it is shown that the resonant frequency ratio decreases as the 

embedment increases up to an embedment ratio of 0.5, and then, remains constant as the 

embedment ratio increases. 

 
Table 5-24: Predicted resonant frequency and resonant frequency ratio for Dyna5 program 

Embedment depth (mm) Embedment ratio Resonant frequency (Hz) Resonant frequency ratio 

0 0 36.4 1 

310 0.52 31.0 0.852 

620 1.03 31.0 0.852 

930 1.55 31.0 0.852 

1240 2.07 31.0 0.852 

 
 

Complex dynamic stiffness 
 

Figure 5.46 shows the vertical complex dynamic stiffness obtained from Dyna5 

program. From the plot it is seen that as the embedment increases, the complex dynamic 

stiffness increases. The rate of increase is small at the low frequencies, as the frequency 

increases the rate of increase is higher. 

 

Real part of complex dynamic stiffness 

 

The real part obtained from Dyna5 program for different embedments is shown in 

Figure 5.47. This indicates that at the lower frequencies of up to about 40 Hz for higher 

embedment, the stiffness increases as the forcing frequency increases. Beyond 40 Hz, the 

real part decreases as the frequency increases. For lower embedments, the real part 

decreases as the forcing frequency increases. 
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Complex dynamic stiffness of the imaginary part 

 

The imaginary part obtained from Dyna5 program for different embedment is shown in 

Figure 5.48. From Figure 5.48, it is shown that the imaginary part increases as the 

embedment increases. The rate of increase is constant as the forcing frequency increases. 

 

Phase angles 

 

The plots of phase angle between force and displacement versus forcing frequency 

predicted by the Dyna5 program for different embedment are shown in Figure 5.49. The 

natural frequencies of the embedded foundation for different embedments obtained from 

Dyna5 program are shown in Table 5-25. The natural frequency of the foundation 

system increases as the embedment increases as shown in Table 5-25. 

 

Natural frequency ratio 

 

The natural frequency ratio obtained using Dyna5 program are presented in Table 5-25. 

The natural frequency ratio increases as the embedment increases. 

 
Table 5-25: Predicted natural frequency and natural frequency ratio for Dyna5 program 
Embedment depth (m) Embedment ratio Natural frequency (Hz) Natural frequency ratio 

0 0 42 1 

310 0.52 47.1 1.121 

620 1.03 52.3 1.245 

930 1.55 57.2 1.362 

1240 2.07 60.4 1.438 

 

 

5.3.8 Comparison between predicted and observed responses 
 

In this section the behaviour of the embeded foundation obtained analytically, as 

suggested by Novak and Beredugo (1972) and Dyna5 program are compared with the 

experimental results. The compared responses are the displacement amplitude, amplitude 

at resonant, resonant amplitude ratio, resonant frequency, resonant frequency ratio, 

natural frequency and the natural frequency ratio. To allow direct comparison, the field 

results are normalised with respsect to the applied load. 

 

Displacement amplitude 
 

Figure 5-50 shows the plot of measured displacement amplitude for 0 mm embedment 

compared to the analytical solution by Novak and Beredugo (1972) and Dyna5 program. 
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From the plot, it is illustrated that Novak and Beredugo (1972) and Dyna5 program 

predicted similar response as the one measured experimentally. The comparison of the 

responses for embedment of 310 mm and 620 mm are shown in Figure 5-51 and 5-52 

respectively. From the plot, it is shown that prediction models predicted response close 

to what measured experimentally. The responses for embedment of 930 mm and 

1240 mm are shown in Figure 5-53 and 5-54 respectively. From the plot, it is shown that 

prediction models overestimated displacement at maximum amplitude compared to what 

measured experimentally. 

 
The displacements at maximum for different embedment was determined and plotted 

versus embedment depth as shown in Figure 5-55. From the plot, it is shown that as 

embedment increases the displacement amplitude decreases. The prediction models 

predicted similar values as the one measured experimentally with embedment of 0 mm. 

 

Resonant amplitude 
 

Figure 5.56 shows the plot of the resonant amplitude for different embedments taken 

from the analytical solution as suggested by Novak and Beredugo (1972), Dyna5 

program and the one measured experimentally. The plot shows that the prediction 

underestimated the resonant amplitude compared to the measured displacement 

amplitude. From Figure 5.56, it is shown that resonant amplitude decreases as the 

embedment increases. At zero embedment, Novak and Beredugo (1972) and Dyna5 

program under estimated the resonant amplitude for about 15.4% and 25.3% respectively 

compared to the resonant amplitude measured experimentally. The plot shows that, the 

response predicted from the analytical solution by Novak and Beredugo (1972) from 

embedment of 930 mm is similar to the one predicted by the Dyna5 program. 

 

Resonant amplitude ratio 

 

The resonant amplitude ratio obtained from field-measured data is compared with the 

predicted resonant amplitude ratios for different embedment ratios as illustrated in 

Figure 5.57. From the plot, it is observed that in all cases the resonant amplitude ratio 

decreases as the embedment ratio increases. The results show that the analytical solution 

by Novak and Beredugo (1972) underestimates the resonant amplitude ratio compared to 

that from the field measurements. Dyna5 program predicted resonant amplitude ratio 

similar to the one measured in the field up to 1.0 embedment ratio. Beyond 1.0 

embedment ratio Dyna5 program underestimated resonant amplitude ratio. The trend of 

plotted curves is the same in all three cases showing that the resonant amplitude ratio 
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decreases as embedment increases. It also shows that the rate of reduction of the resonant 

amplitude ratio is higher at low values of embedment ratio. This suggests that even small 

levels of embedment can significantly reduce the maximum vibration amplitude. 

 

Resonant frequency 
 

In Figure 5.58, the resonant frequencies obtained from field measurements are compared 

to the predicted resonant frequencies. From the plot, it is shown that, both the analytical 

solution and Dyna5 program underestimate resonant frequency compared to measured 

resonant frequency. The resonant frequency obtained from analytical and Dyna5 

program decreases as the embedment depth increases up to the embedment depth of 310 

mm, then remains constant as the forcing frequency increases. 

 

Resonant frequency ratio 

 
The resonant frequency ratio obtained from the field-measured data was compared with 

resonant frequency ratio determined using Dyna5 program and the analytical solution by 

Novak and Beredugo (1972) as shown in Figure 5.59. The plot indicates that the 

predicted resonant frequency ratio decreased up to the embedment ratio of about 0.52 

and then remains almost constant as embedment ratio increases. The prediction model 

under estimated resonant frequency ratios compared to the observed resonant frequency 

ratios. The observed and predicted resonant frequency ratios remained in a narrow range 

for different embedments, indicating that embedment has an insignificant effect on 

resonant frequency ratio. 

 

Natural frequency 
 

The natural frequencies obtained experimentally are plotted together with the predicted 

natural frequency. From the plot, it is shown that the natural frequency increases as the 

embedment increases. Figure 5.60 show that Dyna5 program slightly overestimates the 

natural frequency for all embedment depths. The natural frequencies from the analytical 

solution suggested by Novak and Beredugo (1972) are very close to the measured natural 

frequency up to embedment depth of about 600 mm. At more than 600 mm embedment, 

the natural frequencies obtained from the analytical solution by Novak and Beredugo 

(1972) are higher than the measured natural frequencies. 
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Natural frequency ratio 

 

The natural frequency ratio obtained from the analytical solution by Novak and 

Beredugo (1973), Dyna5 program and measured data are shown in Figure 5.61. The 

plots show that as the embedment increases the natural frequency ratio increases. From 

Figure 5.61, it is illustrated that up to an embedment ratio of 1.0, there is a good 

agreement between the predicted natural frequency ratio and the field-measured data. 

Above an embedment ratio of 1.0, the natural frequency ratio is overpredicted by 

approximately 10%. 

 

5.4 Summary  
 

Different methods were used to predict the dynamic behaviour of machine foundations. 

This chapter presented the most popular analytical methods used in the industry for the 

design of machine foundations. These are the Mass–Spring Dashpot or Winkler model, 

elastic half-space theory and simplified models. In addition, the Dyna5 program was 

used to predict the dynamic behaviour of the surface and embedded foundations. The 

aim of this chapter was to evaluate the accuracy of the analytical methods to predict the 

dynamic behaviour of the surface and embedded foundations. 

 

5.4.1 Surface foundation 
 

Table 5-26 presents the summary of the measured vertical dynamic responses of 

surface foundation. Tables 5-27 to 5-34 summarises the vertical dynamic behaviours 

predicted by the Winkler model, elastic half-space theory, and simplified models. The 

simplified models include Lysmer (1965) model, Veletsos and Verbic (1973) massless 

soil and Veletsos and Verbic (1973) soil with mass analytical methods. For damped 

Winkler model, only the results for CSW test is compared and ranked. Tables 5-27 to 

5-34 demonstrate the ranking of each method, which was established by comparing the 

observed and predicted vertical dynamic behaviour of the foundation system. 

 
Table 5-26: Experiment results from surface foundation - Impedance functions 

S/No Analysis method Parameter 

1 Vertical dynamic displacement (mm) 0.0188 

2 Vertical complex dynamic stiffness (N/mm) 512,885.0 

3 Real part of complex dynamic stiffness(N/mm) 505,819.8 

4 Imaginary part of complex dynamic stiffness(N/mm) 84,832.9 

5 Natural frequency from phase angle (Hz) 49.0 
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6 Natural frequency from real part (Hz) 49.0 

7 Natural frequency loss angle (Hz) 49.4 

8 Resonant frequency (Hz) 44.0 

9 Resonant amplitude (mm/N) 2.9421 x 10
-6

 

 
Table 5-27: Comparison of resonant frequency for different analysis methods 

 
S/No Analysis method Resonant frequency (Hz) Error (%) Ranking 

1 Winkler model – no damping N/A   

2 Damped Winkler model (CSW test) 49 8.9 1 

3 Elastic half-space theory – Sung (1953) N/A N/A  

4 Lysmer (1965) model N/A N/A  

5 Veletsos and Verbic (1973) massless  N/A N/A  

6 Veletsos and Verbic (1973) soil with mass  15 65.9 2 

7 Numerical method – Dyna5 program 15 65.9 2 

 

 
Table 5-28: Comparison of vertical displacement at the peak for different analysis methods 

S/No Analysis method Displacement (mm) Error (%) Ranking 

1 Winkler model – no damping N/A N/A - 

2 Damped Winkler model (CSW test) 0.0230 27.8 1 

3 Elastic half-space theory – Sung (1953) 0.0098 45.6 4 

4 Lysmer (1965) model 0.01226 31.9 2 

5 Veletsos and Verbic (1973) massless  soil 0.01108 38.4 3 

6 Veletsos and Verbic (1973) soil with mass 0.00789 56.2 5 

7 Numerical method – Dyna5 program 0.00789 56.2 5 

 
Table 5-29: Comparison of complex dynamic stiffness at 10 Hz - different analysis methods 

S/No Analysis method 

Complex dynamic 

stiffness (N/mm) at 10 

Hz 

Error (%) Ranking 

1 Winkler model – no damping N/A N/A - 

2 Damped Winkler model (CSW test) - - - 

3 Elastic half-space theory – Sung (1953) 651,419.6 27.0 1 

4 Lysmer (1965) model 683,231.2 33.2 5 

6 Veletsos and Verbic (1973) massless soil 655,311.9 27.8 2 

7 Veletsos and Verbic (1973) soil with mass 661,013.3 28.9 3 

8 Numerical method – Dyna5 program 680,600.8 32.7 4 
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Table 5-30: Comparison of real part of complex dynamic stiffness at 10 Hz from different 

nalysis methods 

S/No Analysis method 
Real part (N/mm) at 10 

Hz 
Error (%) Ranking 

1 Winkler model – no damping N/A N/A - 

2 Damped Winkler model (CSW test) - - - 

3 Elastic half-space theory – Sung (1953) 651,412.8 28.8 2 

4 Lysmer (1965) model 652,458.9 29.0 3 

5 Veletsos and Verbic (1973) massless soil 655,305.7 29.6 4 

6 Veletsos and Verbic (1973) soil with mass 634,929.3 25.5 1 

7 Numerical method – Dyna5 program 655,300.0 29.6 4 

 
Table 5-31: Comparison of imaginary part of complex dynamic stiffness at 10 Hz for different 

analysis methods 

S/No Analysis method 
Imaginary part (N/mm) 

at 10 Hz 
Error (%) Ranking 

1 Winkler model N/A N/A N/A 

2 Damped Winkler model (CSW test) - - - 

3 Elastic half-space theory – Sung (1953) - - - 

4 Lysmer (1965) model 202736.8 139.0 4 

5 Veletsos and Verbic (1973) massless soil 183779.8 116.6 1 

6 Veletsos and Verbic (1973) soil with mass 183856.7 116.7 2 

7 Numerical method – Dyna5 program 183,846.0 116.8 3 

 
 

Table 5-32: Comparison of natural frequency for different analysis methods 

S/No Analysis method Natural frequency (Hz) Error (%) Ranking 

1 Winkler model – no damping 57.7 17.8 4 

2 Damped Winkler model (CSW test) 56 17.8 4 

3 Elastic half-space theory – Sung (1953) 58 18.4 5 

4 Lysmer (1965) model 57.5 17.3 3 

5 Veletsos and Verbic (1973) massless soil 57.5 17.3 3 

6 Veletsos and Verbic (1973) soil with mass 50.0 2.0 1 

7 Numerical method – Dyna5 program 50.3 2.6 2 

 

 
Table 5-33: Comparison of natural frequency from real part for different analysis methods 

S/No Analysis method Natural frequency (Hz) Error (%) Ranking 

1 Winkler model N/A N/A - 

2 Damped Winkler model (CSW test) N/A N/A - 
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3 Elastic half-space theory – Sung (1953) 57.9 20.4 3 

4 Lysmer (1965) model 57.5 17.3 2 

5 Veletsos and Verbic (1973) massless soil N/A N/A - 

6 Veletsos and Verbic (1973) soil with mass 50.3 2.7 1 

7 Numerical method – Dyna5 program N/A N/A - 

 

 
Table 5-34: Comparison of natural frequency obtained from loss angle for different analysis 

methods 

S/No Analysis method Natural frequency (Hz) Error (%) Ranking 

1 Winkler model N/A N/A - 

2 Damped Winkler model (CSW test) N/A N/A - 

3 Elastic half-space theory – Sung (1953) 59.4 20.2 3 

4 Lysmer (1965) model 57.4 17.1 2 

5 Veletsos and Verbic (1973) massless soil N/A N/A - 

6 Veletsos and Verbic (1973) soil with mass 50.0 2.0 1 

7 Numerical method – Dyna5 program N/A N/A - 

 

 

This concluded the most accurate simplified model on predicting dynamic behaviour of 

the foundation systems and the comparison deduced the following: 

 

• The Winkler model is useful only for predicting natural frequency of the 

foundation systems. Even though the model ranked number four it was able 

to predict the natural frequency within 18% of the observed natural 

frequency. The method cannot be used to predict displacement and resonant 

amplitudes of the machine foundations; 

• From the study, it is shown that, if the damping constant is properly chosen, 

the damped Winkler model can be used at the preliminary design stage to 

predict the resonant frequency of the machine foundations; 

• It is illustrated that the spring constant obtained from Continuous Surface 

Wave test is more accurately on estimating the resonant frequency compared 

to the vertical block vibration and empirical value proposed by Barkan 

(1962). Therefore, the small strain shear stiffness obtained from Continuous 

Surface Wave test, with properly chosen damping constant, can be used at the 

preliminary design stage to predict resonant frequency of the machine 

foundation systems; 
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• The analytical solutions at the low frequency of about 10 Hz predicted 

complex dynamic stiffness of the real part and imaginary part which were 

higher than the measured values; 

• The analytical models and the Dyna5 program underestimated displacement 

in the range of 31.9 % and 56.2 % compared to measured value; 

• The analytical models and the Dyna5 program also overestimated the 

complex dynamic stiffness. The error for real part of the complex dynamic 

stiffness ranges between 25.5 % and 29.6 %. The imaginary part of complex 

dynamic stiffness was overestimated in the range of 116 % and 139 %, and 

• The analytical solutions and Dyna5 program overestimated the natural 

frequency in the range of 2 % and 20.4 %. 

 

The analytical model proposed by Veletsos and Verbic (1973) soil with mass is rated 

as the most accurate analytical model among the evaluated analytical models. The 

model predicts the vertical dynamic responses of vibrating footing close to measured 

responses because the modelling consider the effect of the soil half space beneath the 

footing. 

 

5.4.2 Embedded foundation 
 
The vertical dynamic behaviour of the embedded foundation was studied using the 

analytical methods proposed by Novak and Beredugo (1972) and Dyna5 program. The 

dynamic behaviours determined from the embedded foundation were resonant 

amplitude, resonant frequency, natural frequency, and dynamic stiffness. The effect of 

the embedment was evaluated using the dimensionless quantities referred to as the 

resonant amplitude ratio, resonant frequency ratio, and natural frequency ratio. The 

predicted response of displacement amplitude, resonant frequency and natural 

frequency will be compared to the observed responses. 

 

Table 5-35 presents the summary of the measured vertical dynamic responses of 

embedded foundation. Tables 5-36 to 5-50 summarises the vertical dynamic behaviours 

predicted by Novak and Beredugo (1972) and Dyna5 program. Tables 5-36 to 5-50 

also show the ranking of each method, which was established by comparing the 

observed and predicted vertical dynamic behaviour of the foundation system. 
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Table 5-35: Experiment results from embedded foundation - Impedance functions 

Embedment 

(mm) 
Displacement 

amplitude (mm) 

Resonant 

amplitude (mm/N) 

Resonant 

frequency (Hz) 

Natural 

frequency (Hz) 
0 0.0206 5.9926 x 10

-6
 38.1 41.0 

310 0.0185 3.4514 x 10
-6

 39.1 46.1 

620 0.0145 2.2808 x 10
-6

 36.9 51.0 

930 0.0132 2.0849 x 10
-6

 35.9 47.0 

1240 0.0079 1.2874 x 10
-6

 36.9 55.0 

 

Table 5-36: Comparison of displacement amplitude - 0 mm embedment  

S/No Analysis method Displacement amplitude (mm) Error (%) Ranking 

1 Novak and Beredugo (1972) 0.021 2.0 2 

2 Dyna5 program 0.0208 1.0 1 

 
Table 5-37: Comparison of displacement amplitude - 310 mm embedment  

S/No Analysis method Displacement amplitude (mm) Error (%) Ranking 

1 Novak and Beredugo (1972) 0.0192 3.8 1 

2 Dyna5 program 0.0176 4.9 2 

 
Table 5-38: Comparison of displacement amplitude - 620 mm embedment  

S/No Analysis method Displacement amplitude (mm) Error (%) Ranking 

1 Novak and Beredugo (1972) 0.0139 2.0 1 

2 Dyna5 program 0.0128 11.7 2 

 

Table 5-39: Comparison of displacement amplitude - 930 mm embedment  

S/No Analysis method Displacement amplitude (mm) Error (%) Ranking 

1 Novak and Beredugo (1972) 0.0132 33.3 1 

2 Dyna5 program 0.0088 39.4 2 

 

Table 5-40: Comparison of displacement amplitude - 1240 mm embedment  

S/No Analysis method Displacement amplitude (mm) Error (%) Ranking 

1 Novak and Beredugo (1972) 0.0103 30.4 2 

2 Dyna5 program 0.0091 15.2 1 

 

Table 5-41: Comparison of resonant frequency - 0 mm embedment  

S/No Analysis method Resonant frequency (Hz) Error (%) Ranking 

1 Novak and Beredugo (1972) 36.1 5.3 2 

2 Dyna5 program 36.4 4.5 1 
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Table 5-42: Comparison of resonant frequency - 310 mm embedment  

S/No Analysis method Resonant frequency (Hz) Error (%) Ranking 

1 Novak and Beredugo (1972) 33.5 14.3 1 

2 Dyna5 program 31.0 20.7 2 

 
Table 5-43: Comparison of resonant frequency - 620 mm embedment  

S/No Analysis method Resonant frequency (Hz) Error (%) Ranking 

1 Novak and Beredugo (1972) 33.5 9.2 1 

2 Dyna5 program 31.0 16.0 2 

 

Table 5-44: Comparison of resonant frequency - 930 mm embedment  

S/No Analysis method Resonant frequency (Hz) Error (%) Ranking 

1 Novak and Beredugo (1972) 33.5 6.7 1 

2 Dyna5 program 31.0 13.6 2 

 

Table 5-45: Comparison of resonant frequency - 1240 mm embedment  

S/No Analysis method Resonant frequency (Hz) Error (%) Ranking 

1 Novak and Beredugo (1972) 33.5 9.2 1 

2 Dyna5 program 31.0 16.0 2 

 

Table 5-46: Comparison of natural  frequency - 0 mm embedment  

S/No Analysis method Natural frequency (Hz) Error (%) Ranking 

1 Novak and Beredugo (1972) 40.3 1.7 1 

2 Dyna5 program 42.0 2.4 2 

 
Table 5-47: Comparison of natural  frequency - 310 mm embedment  

S/No Analysis method Natural frequency (Hz)  Error (%) Ranking 

1 Novak and Beredugo (1972) 45.7 1.0 1 

2 Dyna5 program 47.1 2.2 2 

 
Table 5-48: Comparison natural  frequency - 620 mm embedment  

S/No Analysis method Natural frequency (Hz) Error (%) Ranking 

1 Novak and Beredugo (1972) 51.0 0 1 

2 Dyna5 program 52.3 2.6 2 

 

Table 5-49: Comparison of natural  frequency - 930 mm embedment  

S/No Analysis method Natural frequency (Hz) Error (%) Ranking 

1 Novak and Beredugo (1972) 56.0 19 1 

2 Dyna5 program 57.2 21.7 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

5-33 

 

 

Table 5-50: Comparison of natural  frequency - 1240 mm embedment  

S/No Analysis method Natural frequency (Hz) Error (%) Ranking 

1 Novak and Beredugo (1972) 59.0 7.0 1 

2 Dyna5 program 60.4 9.8 2 

 

 

The results by Novak and Beredugo (1972) and Dyna5 program are compared with the 

results obtained from field measurements. The responses predicted by Novak and 

Beredugo (1972) analytical solution shows reasonable conformity with the results 

obtained experimentally. 
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Figure 5.1: Displacement responses – Winkler model – No damping 

 

 
 

Figure 5.2 : Damping constant by Irish and Walker (1969) 
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Figure 5.3: Displacement – Winkler model with damping 

 

 

 
 

 

Figure 5.4: Frequency response function -Winkler model with damping 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

5-36 

 

 
 

Figure 5.5: Vertical displacement response of foundation from field-measured data and Sung 

(1953) 

 

 
 

Figure 5.6: Vertical complex dynamic stiffness obtained experimentally and from Sung (1953). 
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Figure 5.7: Effective dynamic stiffness (real part) from field-measured data and Sung (1953) 

 

 

 

 
 

 

Figure 5.8: Imaginary part from field-measured data and Sung (1953) 
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Figure 5.9: Phase angle between displacement and forcing function from field-measured data 

and Sung (1953) 

 

 

 
 
Figure 5.10: Field-measured loss angles and loss angles obtained from Sung (1953) 
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Figure 5.11: Vertical displacement response of foundation from field-measured data and Lysmer 

(1965) Model 

 

 

 
 

Figure 5.12: Vertical complex dynamic stiffness obtained from field-measured data and from 

Lysmer (1965) 
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Figure 5.13: Effective dynamic stiffness (real part) obtained experimentally and from Lysmer 

(1965) 

 

 

 
 

Figure 5.14: Imaginary part obtained from field-measured data and from Lysmer (1965) Model 
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Figure 5.15: Phase angle between displacement and forcing function from Lysmer (1965) model 

 
 

 

 
 

Figure 5.16: Loss angles obtained from field-measured data and from Lysmer (1965) 
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Figure 5.17: Foundation vertical harmonic response obtained from field-measured data and from 

Veletsos and Verbic (1973) – Massless soil 

 

 
 

Figure 5.18: Vertical dynamic stiffness impedance function obtained from field-measured data 

and from Veletsos and Verbic (1973)-massless soil 
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Figure 5.19: Effective dynamic stiffness (real part) obtained experimentally and from Veletsos 

and Verbic (1973) - massless soil 

 

 
 

Figure 5.20: Imaginary part obtained from field-measured data and from Veletsos and Verbic 

(1973)-massless soil 
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Figure 5.21: Phase angle between displacement and forcing function from field-measured data 

and from Veletsos and Verbic (1973)-massless soil 

 

 
 

Figure 5.22: Foundation vertical response obtained from field-measured data and from Veletsos 

and Verbic (1973) soil with mass 
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Figure 5.23: Vertical dynamic stiffness impedance function obtained from field-measured data 

and from Veletsos and Verbic (1973) soil with mass 

 

 

 

 
 

 

Figure 5.24: Effective dynamic stiffness obtained experimentally and from Veletsos and Verbic 

(1973) soil with mass 
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Figure 5.25: Imaginary part obtained from field-measured data and from Veletsos and Verbic 

(1973) soil with mass 

 
 

 

 
 

 
Figure 5.26: Phase angle obtained from field-measured data and from Veletsos and Verbic 

(1973) soil with mass 
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Figure 5.27: Phase angle obtained from field-measured data and from Veletsos and Verbic 

(1973) soil with mass. 

 

 
 
Figure 5.28: Determination of natural frequency using Veletsos and Verbic (1973) soil with 

mass 
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Figure 5.29: Determination of damping constant using Veletsos and Verbic (1973) soil with 

mass 

 

 

 
 

 

Figure 5.30: Foundation vertical response obtained from field-measured data and Dyna5 

program 
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Figure 5.31: Comparison between measured complex dynamic stiffness and Dyna5 program 

 
 

 
 

Figure 5.32: Foundation vertical response obtained from field-measured data and Dyna5 

program 
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Figure 5.33: Imaginary part obtained from field-measured data and Dyna5 program 

 

 
 

Figure 5.34: Phase angles obtained from field-measured data and Dyna5 program 
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1.24 m - Embedment  

 0.93m - Embedment 

 

 
0.62 m - Embedment 

 

 
0.31m - Embedment 

 
0.0m – Embedment 

 

 

Figure 5.35: Footing embedded at different embedment depths 

 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 5.36: Displacement due measured force in the field - Novak and Beredugo 

(1972) 

 

 
 
Figure 5.37: Displacement amplitude due to unit load –Novak and Beredugo (1972) 
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Figure 5.38: Magnification factor – 0, 310, 620, 930 mm, and 1240 mm embedment 
Novak and Beredugo (1972) 

 

 
 

Figure 5.39: Vertical complex dynamic stiffness - Novak and Beredugo (1972)  
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Figure 5.40: Vertical responses- Real part - Novak and Beredugo (1972)  

 

 
 

Figure 5.41: Vertical responses- Imaginary part - Novak and Beredugo (1972)  
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Figure 5.42: Phase angle for different embedment depths - Novak and Beredugo (1972) 
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Figure 5.43: Displacement due measured force in the field - Dyna5 program. 

 

 

 
 

 

Figure 5.44: Displacement amplitude due to unit load – Dyna5 program  

 

 
 

Figure 5.45: Magnification factor – 0, 310, 620, 930 mm, and 1240 mm embedment Dyna5 

program 
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Figure 5.46: Vertical complex dynamic stiffness – Dyna5 program 

 

 

 
 

 

Figure 5.47: Vertical responses- Real part – Dyna5 program 
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Figure 5.48: Vertical responses- Imaginary part – Dyna5 program 

 

 
 

Figure 5.49: Phase angle for different embedment – Dyna5 program 
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Figure 5.50: Comparison of displacement amplitude for 0mm embedment - Experimental, 

Dyna5 program and Novak and Beredugo (1972)  

 

 

 
 

 

Figure 5.51: Comparison of displacement amplitude for 310mm embedment - Experimental, 

Dyna5 program and Novak and Beredugo (1972). 
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Figure 5.52: Comparison of displacement amplitude for 620mm embedment - Experimental, 

Dyna5 program and Novak and Beredugo (1972)  

 

 

 

 

 

 
 

Figure 5.53: Comparison of displacement amplitude for 930mm embedment - Experimental, 

Dyna5 program and Novak and Beredugo (1972)  
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Figure 5.54: Comparison of displacement amplitude for 1240mm embedment - Experimental, 

Dyna5 program and Novak and Beredugo (1972)  

 

 

 

 
 

 
Figure 5.55: Comparison of displacement amplitude at maximum - Experimental, Dyna5 

program and Novak and Beredugo (1972)  
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Figure 5.56: Comparison of resonant amplitude - Experimental, Dyna5 program and Novak and 

Beredugo (1972)  

 

 

 
 

Figure 5.57: Comparison of resonant amplitude ratio - Experimental, Dyna5 program and Novak 

and Beredugo (1972) – 0, 310, 620, 930 mm, and 1240 mm embedment depths 
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Figure 5.58: Comparison of resonant frequency obtained from - Experimental, Dyna5 program 

and Novak and Beredugo (1972) – 0, 310, 620, 930 mm, and 1240 mm embedment depth 

 

 

 
 

 

Figure 5.59: Comparison of resonant frequency ratio - Experimental, Dyna5 program and Novak 

and Beredugo (1972) – 0, 310, 620, 930 mm, and 1240 mm embedment depth 
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Figure 5.60: Comparison of natural frequency – Experimental, Dyna5 program and Novak and 

Beredugo (1972) for 0, 310, 620, 930 and 1240 mm embedment 

 

 

 
 

 

Figure 5.61: Comparison of natural frequency incremental coefficient – Experimental, Dyna5 

program and Novak and Beredugo (1972) for 0, 310m, 620, 930 and 1240 mm embedment 
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CHAPTER 6 

6 FINITE ELEMENT METHOD 
 

6.1 Introduction 
 
Numerical analysis of finite element was used to predict the vertical dynamic behaviour of 

the surface and embedded foundation systems. The surface and embedded foundations 

described in Chapter 3, Sections 3.5 and 3.7 respectively, were simulated using a three-

dimensional finite element method. The Abaqus software was used to analyse the vertical 

dynamic behaviour of these foundation systems. A major challenge, when analysing wave 

propagation problems or machine foundation, is the treatment of the model boundaries and 

it was important to verify the capacity of Abaqus to analyse these. First, a two-dimensional 

finite element model with non-reflecting boundaries was created to analyse wave 

propagation in the ground. The model was created to simulate the Continuous Surface 

Wave test with the main objective being to verify the efficiency of infinite elements in 

Abaqus to absorb incident waves. 

 

Two models were created to predict vertical dynamic behaviour of the surface foundation 

system. The first model assumed that the footing is resting on the homogenous, isotropic, 

elastic half-space soil (here will be referred as Homogenous soil), while the second model 

presumed that the footing is placed on Gibson soil. In additional, the vertical dynamic 

behaviour of the embedded foundation systems was determined by considering that the 

footing is placed on Homogenous and Gibson soil. 

 

6.2 Simulation of the Continuous Surface Wave test using the finite 
element method 

 

A major challenge when modelling wave propagation problems using the finite element 

method is defining non-reflecting boundaries. Abaqus/Explicit was used to simulate the 

wave propagation problem in the ground. The calculations are based on the equations 

presented in section 2.7. The Continuous Surface Wave (CSW) test was simulated in 

Abaqus/Explicit by determining the dispersion of a homogenous, isotropic, elastic half-

space soil medium. Abaqus/Explicit is a special-purpose analysis module that is part of the 

Abaqus products and uses an explicit dynamic finite element formulation. 
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The modelling procedures assumed that the ground is a homogeneous isotropic, elastic 

half-space medium with soil properties shown in Table 4.1. The domain size of the finite 

element model used to simulate the wave propagation in the ground is shown in Figure 6.1. 

The main parts of the model were created in Abaqus/CAE as a visualization tool. Because 

the soil is loaded axially symmetrically about its central axis, an axisymmetric analysis 

performed. The finite sections comprise 4-node, linear, axisymmetric, solid continuum and 

reduced integration elements (CAX4R). The infinite section comprises 4-node linear, one-

way axisymmetric solid continuum infinite elements (CINAX4) as seen in Figure 6.1. The 

domain is comprised of 63,000 elements. The infinite elements were included in the model 

by editing the created input file manually. 

 
The performance of non-reflecting boundaries was checked by the introduction of fixed 

boundaries on the right and at the bottom of the model. Thus, the infinite elements were 

replaced with finite elements. In all cases, a vertical harmonic force excited the model 

along the axis of symmetry. The time history of vertical dynamic displacement was 

observed at point A which is located 4.0 m from the source of excitation, as illustrated in 

Figure 6.1. 

 

Figure 6.2 illustrates the ground displacement response of the finite element model with 

non-reflecting boundaries and fixed boundaries. The plots show that between 0.3 and 0.55 

sec, the displacement response of the model with the fixed boundary is higher than the 

wave displacement for the model with non-reflecting boundaries by about 85 %. This 

confirms the importance of introducing non-reflecting boundaries when dealing with wave 

propagation problems in finite element analysis. 

 

Wave propagation along the surface ground was analysed by simulating a force vibration 

tests, from which the dispersion of the soil profile illustrated in Figure 6.1 was assessed. 

Since homogenous soil was modelled, the results were expected to be non-dispersive.The 

vertical response in the time domain were observed at intervals of 1 m, starting at 1 m away 

from the applied load. The dominating frequency and phase angle at each observation point 

was determined by calculating the Fourier transform of the displacement by means of the 

fast Fourier transform (FFT) algorithm. The phase angles for frequencies between 10 Hz 

and 95 Hz were calculated using Equation 4.1. Consequently, the phase angles were used 

to estimate the Rayleigh wave velocity using Equation 4.3. 

 

Figure 6.3 reflects the plots of phase angles versus distance for the frequencies ranging 

from 10 Hz to 95 Hz. The straight lines indicate that the phase velocity remained constant 
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within the domain at a particular frequency. The Rayleigh wave velocity remained almost 

constant at all frequencies ranging between 193 m/s and 204 m/s. The non-dispersion 

reflects the behaviour of the assumed soil medium of homogeneous, isotropic, elastic half-

space. Mbawala et al., (2011) showed that, for an elastic half-space, the Rayleigh wave 

velocity obtained numerically compared favourably with the one measured experimentally.  

 

From the above, it may be concluded that the Abaqus program is suitable for solving 

problems of wave propagation using the finite element method. 

 

6.3 Three-dimensional finite element modelling of surface foundation 
 

The vertical dynamic behaviour of the surface foundation systems described in Chapter 3 

Section 3.5 was analysed using the finite element method. The calculations are based on 

the equations presented in section 2.8. This modelling involved the creation of finite 

elements and infinite elements as shown in Figure 6.4. The problem was modelled in three-

dimensions as shown in Figures 6.5 and 6.6. For a vertical displacement, the symmetry 

boundary condition was applied to the xy (i.e., z = 0) plane and zy (i.e. x=0) plane. The 

size of the model was 20.0 m x 20.0 m in plan and 10.0 m in depth. Taking advantage of 

symmetry, only one quarter of the model was used for analysis. 

 

The modelling involved creating two parts consisting of the footing and the soil half-space 

and these were created in Abaqus/CEA as a visualization tool. The footing comprised of 

finite elements while the soil half-space comprised of finite elements and infinite elements 

as shown in Figure 6.4. The finite element section comprised 8-node, linear brick, solid 

continuum reduced integration elements (C3D8R). The infinite sections comprised 8-node, 

linear, solid continuum infinite element (CIN3D8). The domain comprised 9,240 elements. 

The infinite elements were included in the model by editing the created input file manually. 

 

6.3.1 Material properties 
 

The elastic material properties of the soil and footing used for the analysis are presented in 

Table 4-1. For dynamic finite element analysis it is usual to introduce damping of the 

system using Rayleigh damping. In this analysis, the material damping was not considered 

as it was assumed that the foundation system response is linear with a very small strain 

level. 
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6.3.2 Three-dimensional linear elastic half-space finite element model 
 

A vertical harmonic pressure excited the footing at the centre as shown in Figure 6.5. To 

check the efficiency of the non-reflecting boundaries in 3D, the Abaqus/explicit step 

analysis was used to determine the vertical dynamic displacement response of the 

foundation in the time domain. Figure 6.7 shows the plot of vertical dynamic displacement 

response of the footing versus time for a three-dimensional model with infinite elements at 

the boundaries. The plot shows that displacement amplitude is constant indicating that the 

infinite elements placed at the boundaries are capable of absorbing incident waves. 

 

To determine the steady state response of the foundation system in the frequency domain, 

the analysis procedure was changed to Abaqus/Standard. The linear steady state dynamic 

response of a system due to harmonic excitation was calculated using a direct solution for 

steady-state dynamic analysis as described in section 2.8. In Abaqus/standard, the method 

calculates the response of the system directly in terms of the physical degrees of freedom 

of the model using the mass, damping, and stiffness matrices of the system, which depends 

on the frequency. Essentially, the output is a frequency response function in terms of 

recceptance.  

 

The steady state dynamic analysis provides the steady-state amplitude and phase response 

of the system due to harmonic excitation at the given frequency. The response is 

determined by the inverse of Equation 2.26. The analysis is carried out as a frequency 

sweep by applying the loading at a series of different frequencies and recording the 

responses. In this case, the frequency interval was specified as 1.0 Hz. The minimum 

frequency was set at 10.0 Hz and maximum frequency set to 100 Hz. The vertical response 

was measured at the top of the footing. 

 

6.3.3 Three- dimensional finite element of Gibson soil  
 

Gibson soil is characterised by its shear modulus increasing linearly with depth (Gibson 

1967). The Gibson soil was modelled in Abaqus/standard by dividing the soil profile into 

layers to simulate an increase in shear modulus as the depth increases (Motamed et al. 

2009) as shown in Figure 6–8 and 6-9. In this study, soil profile was divided into five 

layers, each layer being 1.0 m thick as shown in Figure 6.10. The Young's moduli for 

different layers are shown in Figure 6.10. In the next sections, the vertical dynamic 

responses of foundation systems obtained from the numerical solutions of the finite 
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element methods (Abaqus) are presented. The results obtained numerically are compared 

with the results obtained experimentally.  

 

6.4 Results for three-dimensional finite element models on isotropic and 
Gibson soil 

 

The vertical dynamic behaviour of the surface and embedded foundation systems 

determined using numerical analysis is compared with the results obtained from the field 

measurements. The vertical dynamic behaviour of the foundation systems discussed in this 

section are displacement amplitude, resonant amplitude, resonant frequency, complex 

dynamic stiffness, real and imaginary part of complex dynamic stiffness, phase angle 

between force and displacement and loss angles. The effect of footing embedment is 

described by the dimensionless quantities of resonant amplitude ratio, resonant frequency 

ratio and natural frequency ratio. For the embedded foundation systems, the analyses are 

carried out for embedments of 0, 300, 600, 900 and 1200 mm. 

 

6.4.1 The results for three-dimensional finite element model - Surface 
foundation 

 

Displacement amplitude 

 

The predicted displacement amplitude for the surface footing placed on homogenous half-

space and Gibson soil is shown in Figure 6.11. From the plot, it is shown that the footing 

placed on homogenous half-space underestimated displacement amplitude by about 52.4 % 

and the surface footing placed on Gibson soil underestimated displacement amplitude by 

about 51.3 %. The result indicates that the amplitude response of the footing placed on 

Gibson soil is almost the same in comparison to the footing placed on homogenous soil. 

 

Resonant amplitude 

 

The predicted resonant amplitude for the surface footing placed on homogenous half-space 

and Gibson soil is shown in Figure 6.12. From the plot, it is shown that the numerical 

solution predicted resonant frequency of 32 Hz while the resonant frequency measured in 

the field is about 44.5 Hz. Therefore, numerical analysis underestimated resonant 

frequency by about 28.1%. The result indicates that the resonant amplitude response of the 

footing placed on Gibson soil is almost the same in comparison to the footing placed on 

homogenous soil. From Figure 6.12, it is shown that the response of footing placed on 

homogenous soil has the second peak at about 50 Hz and the footing placed on Gibson soil 

has the second peak at about 52 Hz. The experimental measured displacement amplitude at 
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resonance is higher than the amplitude for the footing placed on Gibson soil and 

homogenous soil as shown in Figure 6.12. At the resonant frequency, the measured 

resonant amplitude is higher than the resonant amplitude obtained from numerical analysis 

by 50.9 %. 

 

Complex dynamic stiffness 
 

Figure 6.13 shows the plot of the complex dynamic stiffness versus forcing frequency for 

the surface footing placed on homogenous half-space soil and Gibson soil. The complex 

dynamic stiffness obtained from the numerical analysis is compared with the complex 

dynamic stiffness measured experimentally. The responses show that the complex dynamic 

stiffness obtained from the numerical analysis is higher than the one measured 

experimentally. At low frequency, the complex dynamic stiffness for the homogenous half-

space soil, and Gibson soil decreases as the forcing frequency increases up to about 32 Hz, 

and starts increasing thereafter. The trend of the plots of curves from experimental 

measured complex dynamic stiffness is similar to the one obtained from surface footing 

placed on homogenous half-space soil and Gibson soil. However, for complex dynamic 

stiffness obtained experimentally at low frequency decreases up to about 44.5 Hz and then 

starts to increase as the forcing frequency increases as shown in Figure 6.13. 

 

Real part of complex dynamic stiffness 

 

The plot of the predicted and measured real part versus frequency of excitation is shown in 

Figure 6.14. The finite element calculates the responses in terms of compliances functions. 

For comparison purposes, the real part obtained from compliance function was converted 

to impedance function using Equation 2.77. The shape of the curves shows good similarity 

between the measured and predicted responses. The real part of the complex dynamic 

stiffness for the footing placed on the homogenous half-space soil and Gibson soil 

decreases as the forcing frequency increases. The real part obtained numerically crosses 

zero at the forcing frequency of 52.3 Hz and 53.6 Hz for the footing placed on the 

homogenous soil and Gibson soil respectively. Therefore, finite element method 

overestimated the natural frequency compared to the one obtained from field-measured 

data. The measured real part crosses zero at the forcing frequency of 49 Hz. 

 

Imaginary part of complex dynamic stiffness 

 
Figure 6.15 is the plot of the imaginary part versus forcing frequency for the surface 

footing placed on half-space and Gibson soil as well as the experimental results. The 
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imaginary part obtained from the compliances function was converted to impedance 

function using Equation 2.78. The plots show that, at low frequencies, the measured 

imaginary part is lower than the imaginary part obtained from numerical analyses. 

 

Phase and loss angles 
 

The plot of phase angle between force and displacement versus frequency of excitation for 

the surface footing placed on homogenous half-space soil, Gibson soil and experimental 

results are shown in Figure 6.16. The plot of loss angle versus the frequency of excitation 

for the surface footing placed on half-space soil, and Gibson soil and the experimental 

results are shown in Figure 6.17. The footing on half-space soil predicted the natural 

frequency of 52.3 Hz, while on Gibson soil it predicted natural frequency of 53.6 Hz. The 

natural frequency obtained experimentally is 49 Hz. Therefore, the footing placed on 

homogenous half-space soil overestimated natural frequency by 6.7 % while Gibson soil 

overestimated natural frequency by 9.4 %. 

 

6.5 Three-dimensional – Finite element method - Embedded footing 
 

The embedded footing of size of 1200 mm x 1200 mm in the plan and 1240 mm depth 

described in Chapter 3 Section 3.8 was simulated using finite element method. The footing 

was assumed to be placed on homogeneous, isotropic and elastic half-space soil. The same 

modelling strategy used to model surface foundation was used to model the embedded 

foundation. The elastic properties of soil and footing are shown in Table 4-1. Taking 

advantage of symmetry, only one quarter of the model was used for analysis. In this 

section, the vertical dynamic responses of the embedded footing placed on homogenous 

half-space soil and Gibson soil will be discussed. 

 

6.5.1 Results of three-dimensional finite element analysis of embedded footing 

placed on linear elastic half-space soil 

 

The domain sizes of the models for different embedments placed on homogenous half-

space soil are shown in Table 6-1. Figures 6.18 to 6.27 show the unmeshed and meshed 

models of foundation system embedded at depths of 0, 300, 600, 900 and 1200 mm. These 

embedment depths were chosen to accommodate the mesh size of the finite element model. 

The embedment was simulated by adding an embedment layer of 300 mm on top of each 

other as illustrated in Figures 6.18 to 6.27. The embedment of 0 mm assumed that the 

footing is placed on homogenous, isotropic elastic half-space soil. The vertical harmonic 

load that excited the model is shown in Figure 6.18. 
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The field-measured mass density of the soil for each layer was used as input in Abaqus to 

simulate the field condition. The elastic soil properties for each layer are shown in 

Table 6.2. The shear modulus of the compacted layers ( )SG  was calculated from 

Equation 2.58 using the shear modulus of the half-space ( )G  and mass density of the 

compacted layers measured in the field. The calculated shear modulus and shear wave 

velocities of the compacted side layers adjacent to the footing used as input in Abaqus 

software are described in Table 6-2. The analysis was carried out to assess the vertical 

dynamic responses of foundation systems with an embedment of 300 mm. The same 

analysis procedures were employed for 600, 900 and 1200 mm embedment. 

 
Table 6-1: Domain size and number of elements for different embedment depths 

Embedment depth 

(mm) 

Model Domain size 
Number of elements Number of nodes 

Plan (m) Depth (m) 

0 19.2  x 19.2 8.40 27,264 30,099 

300 19.2  x 19.2 8.71 29,408 23,375 

600 19.2  x 19.2 9.00 31,552 34,651 

900 19.2  x 19.2 9.30 31,696 36,927 

1200 19.2  x 19.2 9.60 35,840 39,203 

 

 
Table 6-2: Input parameters for numerical solution 
Embedment 

depth (mm) 

Density of soil 

(ρs= kg/m3) 

Unit weight of soil 

( sγ = N/m3) 

Shear modulus  

(Gs = MPa) 

Shear wave velocity 

(Vs = m/s) 

0 2028 19895 100 222 

300 2040 20042 102 224 

600 2078 20385 108 228 

900 2095 20552 110 229 

1200 2043 20042 102 224 

 
 

The modelling of the embedded footing assumed that there is perfect connection between 

the sides of the footing and the soil. The tangential interaction between the surface of the 

footing and soil was assumed to be frictionless while the normal interaction between 

footing and soil was assumed to be a hard contact. In other word the soil could slide 

relative to side of the embedded footing but could not separate from side of the embedded 

footing. 
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Displacement amplitude 

 

The vertical displacement response of the embedded footing placed on homogenous half-

space soil with embedment of 0 mm, 310 mm, 620 mm, 930 mm and 1240 mm was 

determined using numerical solution (FEM - Abaqus Homogeneous). The vertical 

harmonic unit pressure excited the footing at the centre of the footing and the response was 

recorded at the top of the footing. The field measurement was simulated by multiplying the 

field-measured forces and the dynamic response obtained from a unit force excitation. The 

vertical displacement amplitude of the foundation system is shown in Figure 6.28. From 

the plots, it is shown that as the embedment increases, the displacement amplitudes 

decreases. 

 

In addition, the displacement of the numerical solution at the frequency of fmax×1.25  and 

fmax×0.75  for embedment of 0 mm, 310 mm, 620 mm, 930 mm and 1240 mm is 

compared with the one obtained experimentally as shown in Table 6.3 to Table 6.7, 

where fmax is the frequency at the maximum displacement amplitude. 

 
The displacement percentage error in comparison to the experimental results at maximum 

displacement at 0 mm, 310 mm and 620 mm embedment is 58.3 %, 62.3 % and 64.6 % 

respectively. At embedment of 930 mm and 1240 mm the error is 76.7 % and 56.7 % 

respectively. The prediction model underestimated displacement for all embedments. 

 
Table 6-3: Predicted displacement for 0mm Embedment - FEM ( Abaqus - Homogeneous) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0177 0.0206 0.0101 58.8 

69.5 58.3 41.6 FEM (Abaqus) - 

Homogeneous 
0.0054 0.00859 0.0059 57.0 

 
Table 6-4: Predicted displacement for 310mm Embedment - FEM ( Abaqus) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental 

results 
0.0146 0.0185 0.0106 57.6 

76.6 62.3 54.0 
FEM (Abaqus) - 

Homogeneous 
0.00342 0.006974 0.00488 56.1 
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Table 6-5: Predicted displacement - 620mm Embedment - FEM ( Abaqus) 

 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental 

results 
0.0103 0.0145 0.0093 56.0 

75.4 64.6 63.1 
FEM (Abaqus) - 

Homogeneous 
0.00253 0.00513 0.00343 58.0 

 

 
Table 6-6: Predicted displacement - 930mm Embedment - FEM ( Abaqus) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental 

results 
0.0051 0.0132 0.0039 65.8 

69.7 76.7 55.8 
FEM (Abaqus) - 

Homogeneous 
0.001544 0.00307 0.001722 62.0 

 

 
Table 6-7: Predicted displacement - 1240mm Embedment - FEM ( Abaqus) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental 

results 
0.0040 0.0079 0.0050 58.8 

70.0 56.7 71.1 
FEM (Abaqus) - 

Homogeneous 
0.0012 0.003423 0.001447 61.0 

 

Displacement amplitude at resonance 
 

The vertical dynamic resonant amplitudes due to unit loads taken from the finite element 

analysis are presented in Table 6-8. The vertical resonant amplitude due to unit load 

measured experimentally is shown in Table 6-9. 

 
Table 6-8: Resonant amplitude due to unit load – Finite element method 
Embedment depth 

(mm) 
Embedment ratio Resonant amplitude (mm/N) Resonant amplitude ratio 

0 0.0 1.5418 x 10-6 1 

300 0.5 9.8416 x 10-7 0.638 

600 1.0 7.3681 x 10-7 0.478 

900 1.5 5.7925 x 10-7 0.376 

1200 2.0 4.8957 x 10-7 0.318 
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Table 6-9: Resonant amplitude due to unit load - Experimental 
Embedment depth (mm) Embedment ratio Resonant amplitude (mm/N) Resonant amplitude ratio 

0.0 0.0 5.9926 x 10
-6

 1 

310 0.52 3.4514 x 10
-6

 0.5759 

620 1.03 2.2808 x 10
-6

 0.3806 

930 1.55 2.0849 x 10
-6

 0.3479 

1240 2.07 1.2874 x 10
-6

 0.2148 

 

 

The plots of resonant amplitudes predicted numerically for different embedments against 

forcing frequency are shown in Figure 6.29. From this, it is shown that the resonant 

amplitude decreases as the embedment increases. In addition, Figure 6.29 shows that there 

is a second peak between 50 Hz and 60 Hz. These results show that on average, full 

embedment reduced the resonant displacement by about 68.3 %. The resonant 

displacement response for zero embedment for the field measurement and from the 

numerical solution can be seen in Figure 6.30. The numerical solution under predicted the 

resonant amplitude by about 74.2% compared to the resonant amplitude measured 

experimentally. The resonant amplitudes obtained from the numerical solution for different 

embedments are plotted together with the experimental measured resonant amplitudes as 

shown in Figure 6.31. These conclude that resonant amplitudes obtained from field-

measured data are higher compared to those predicted by the numerical method.  

 

Resonant amplitude ratio 

 
The resonant amplitude ratio was determined using Equation 2.47. The resonant amplitude 

ratios from different embedments are shown in Table 6-8. The relationship between the 

resonant amplitude ratio and embedment ratio obtained numerically is plotted together with 

those obtained experimentally as shown in Figure 6.32. From Figure 6.32, it can be seen 

that the resonant amplitude ratio decreases as embedment ratio increases. The plot shows 

that the resonant amplitude ratio predicted by the numerical solution is in good agreement 

with experimental results up to about embedment ratio of 0.5. Beyond this point, the 

resonant amplitude ratio obtained experimentally is lower compared to that obtained from 

the numerical solution. 

 

Resonant frequency 
 
A resonant frequency is defined as the forcing frequency at which the largest amplitude 

occurs in the frequency response curve. The resonant frequencies predicted by the 

numerical solution are presented in Table 6-10. The plot of the resonant frequency versus 
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embedment depths obtained from the finite element method is shown in Figure 6.33. From 

the plot, it can be seen that the predicted resonant frequency slightly decreases as the 

embedment increases. Comparing the results from predicted and measured resonant 

frequency it is shown that, in both cases, the embedment has insignificant effect on 

resonant frequency. 

 

Resonant frequency ratio 
 

The effect of embedment on the resonant frequency of the foundation system can be 

described using a dimensionless parameter referred as the resonant frequency ratio. This 

may be calculated using Equation 2.48. The resonant frequency ratios predicted by the 

numerical solution are presented in Table 6-10. The plots of the resonant frequency ratio 

versus embedment ratio obtained from the field-measured data and finite element method 

are shown in Figure 6.34. The results show that the embedment has insignificant effect on 

the resonant frequency ratio. 

 
Table 6-10: Resonant frequency and resonant frequency ratio - FEM (Abaqus) 

Embedment depth (m) Embedment ratio Resonant frequency (Hz) Resonant frequency ratio 

0 0 35 1 

300 0.5 33.9 0.969 

600 1.0 33.3 0.951 

900 1.5 33.3 0.951 

1200 2.0 33.3 0.951 

 

 

Complex dynamic stiffness 
 

Figure 6.35 shows the plot of the complex dynamic stiffness versus forcing frequency for 

the footing embedded at 0, 300, 600, 900, and 1200 mm. This shows that for different 

embedments, at low frequencies, the complex dynamic stiffness decreases as the forcing 

frequency increases. At about 35 Hz, the complex dynamic stiffness starts to increase as the 

forcing frequency increases. Also, the complex dynamic stiffness increases as the 

embedment increases. 

 

Real part of complex dynamic stiffness 
 

The relationship between the real part and forcing frequency is shown in Figure 6.36. For 

comparison purposes, the real part was converted to impedance function using 

Equation 2.77. This plot shows that the real part increases as the embedment increases. The 

natural frequency can be estimated from the plot of the real part versus frequency of 
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excitation. Here the natural frequency increases as embedment increases. The predicted 

natural frequency ranges between 47.6 Hz and 60.9.0 Hz. 

 

Imaginary part of complex dynamic stiffness 

 

Figure 6.37 is the plot of the imaginary part versus forcing frequency. For comparison 

purposes, the imaginary part of compliances was converted to impedance function using 

Equation 2.78. From Figure 6.37, it can be seen that as the embedment increases, the 

imaginary part increases. 

 

Phase and loss angles 
 

The natural frequency of the foundation system can be obtained from the plot of phase 

angle between force and displacement versus frequency of excitation. Figure 6.38 

considers the plot of phase angle versus frequency of excitation for different embedment 

depths. The natural frequencies predicted by numerical solutions are presented in Table 6-

11. The natural frequency of the foundation system can also be taken from the plot of loss 

angle versus frequency of excitation as shown in Figure 6.39. From Figures 6.38 and 6.39 

it is clear that the natural frequency of the foundation system increases as the embedment 

increases. 

 

Natural frequency  

 

Figure 6.40 show the plot of natural frequency versus embedment depth for the foundation 

system for different embedment obtained numerically and experimentally. This shows that 

the numerical solution overestimates the natural frequency compared to the natural 

frequency measured in the field. The natural frequencies for different embedments are 

presented in Table 6-11. From Figure 6.40, it is shown that the natural frequency increases 

as the embedment increases. 

 

Natural frequency ratio 
 

The effect of foundation embedment can be shown by the dimensionless quantity known as 

the natural frequency ratio which is calculated using Equation 4.18. The natural frequency 

ratios obtained numerically are presented in Table 6-11. The plots of the natural frequency 

ratio versus embedment ratio obtained from field measurements and that obtained from the 

finite element solution are shown in Figure 6.41. This illustrates that as the embedment 

increases, the natural frequency ratio increases. The general trend of the plots shows that 

the rate of increase of natural frequency ratio is higher at small embedment. From 
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Figure 6.41, it is shown that at low frequencies up to embedment ratio of 0.5 there is a 

good agreement between measured and predicted natural frequency ratio. The plots show 

that above the embedment ratio of 0.5, the natural frequency ratio obtained from measured 

field data is slightly higher, in comparison to the natural frequency ratio obtained from the 

finite element method.  

 
Table 6-11: Natural frequency and natural frequency ratio FEM (Abaqus) for different embedment 

depths - Half-space soil medium 
Embedment depth (mm) Embedment ratio Natural frequency (Hz) Natural frequency ratio 

0.0 0 47.6 1 

300 0.5 53.6 1.126 

600 1.0 56.6 1.189 

900 1.5 59.1 1.242 

1200 2.0 60.9 1.279 

 

 

6.5.2 Results for three- dimensional finite element analysis for embedded 

footing placed on Gibson soil 

 
The same modelling strategy used to model embedded foundation placed on the 

homogenous, isotropic elastic half-space soil was used to model footings placed on Gibson 

soil. The change was made by introducing Gibson soil below the footing. The increase of 

shear stiffness was modelled by dividing an elastic half-space soil into five layers of 1m 

thick each to simulate an increase in the shear modulus as the depth increases. The fully-

embedded foundation model with different layers is shown in Figure 6.42. The increase of 

shear modulus as the depth increases was simulated in Abaqus/Standard by specifying 

Young's modulus for each layer as shown in Figure 6.43. The fully embedded foundation is 

shown in Figure 6.44. 

 

 

Displacement amplitude 
 

The vertical displacement response of the embedded footing placed on Gibson soil with 

embedment of 0 mm, 300 mm, 600 mm, 900 mm and 1200 mm was determined using 

numerical solution (FEM - Abaqus Gibson soil). The vertical displacement amplitude of 

the foundation system is shown in Figure 6.45. From the plots, it is shown that as the 

embedment increases, the displacement amplitudes decreases. 

 

In addition, the displacement of the numerical solution at the frequency of fmax×1.25  and 

fmax×0.75  for embedment of 0 mm, 300 mm, 600 mm, 900 mm and 1200 mm is 
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compared with the one obtained experimentally as shown in Table 6.12 to Table 6.16, 

where fmax is the frequency at the maximum displacement amplitude. 

 

The displacement percentage error in comparison to the experimental results at maximum 

displacement at 0 mm, 300 mm and 600 mm embedment is 58.6 %, 61.0 % and 64.4 % 

respectively. At embedment of 900 mm and 1200 mm the error is 76.6 % and 56.7 % 

respectively. The prediction model underestimated displacement for all embedments. 

 
 

Table 6-12: Predicted displacement for 0mm Embedment - FEM ( Abaqus - Gibson soil) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0177 0.0206 0.0101 58.8 

67.8 56.8 41.1 FEM (Abaqus) - 

Gibson soil 
0.0057 0.0089 0.00595 57.0 

 

 
Table 6-13: Predicted displacement for 310mm Embedment - FEM ( Abaqus - Gibson soil) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0146 0.0185 0.0106 57.6 

74.7 61.0 58.5 FEM (Abaqus) - 

Gibson soil 
0.0037 0.00721 0.0044 58.0 

 

 
Table 6-14: Predicted displacement for 620mm Embedment - FEM ( Abaqus - Gibson soil) 

 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0103 0.0145 0.0093 56.0 

74.8 64.4 64.5 FEM (Abaqus) - 

Gibson soil 
0.00259 0.00516 0.0033 58.0 

 

 
Table 6-15: Predicted displacement for 930mm Embedment - FEM ( Abaqus - Gibson soil) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0051 0.0132 0.0039 65.8 

69.6 76.6 66.2 FEM (Abaqus) - 

Gibson soil 
0.00155 0.00309 0.00132 62.0 
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Table 6-16: Predicted displacement for 1240mm Embedment - FEM ( Abaqus - Gibson soil) 

Method 
Displacement (mm) 

Estimated 

frequency (Hz) 
% Error  

0.75fmax fmax +1.25fmax fmax 0.75fmax fmax +1.25fmax 

Experimental results 0.0040 0.0079 0.0050 58.8 

70.0 56.7 71.1 FEM (Abaqus) - 

Gibson soil 
0.00153 0.00299 0.00184 62.0 

 

 

Displacement amplitude at resonance 
 

The vertical resonant amplitude for Gibson soil obtained numerically is shown in 

Figure 6.46 and the resonant amplitude decreases as the embedment increases. The 

resonant amplitude values are presented in Table 6-17. The results for embedded footing 

resting on Gibson soil reflect that, on average, full embedment reduces the resonant 

displacement by about 56.7 %. 

 

Phase and loss angles 
 

The plot of phase angle between force and displacement versus frequency of excitation for 

the embedded foundation resting on Gibson soil is shown in Figure 6.47. From the plot, it 

is shown that the natural frequency of foundation system increases as the embedment 

increases and that this can also be obtained from the plot of loss angle versus frequency of 

excitation as shown in Figure 6.48. Natural frequencies for different embedment are 

presented in Table 6.18. 

 

Table 6-17: Resonant amplitude and resonant amplitude ratio FEM (Abaqus-Gibson soil) for 

different embedment depths 
Embedment depth (m) Embedment ratio Resonant amplitude (mm/N) Resonant amplitude ratio 

0 0 1.5748 x 10-6 1 

300 0.5 9.9350x10-7 0.631 

600 1.0 7.4340x10-7 0.472 

900 1.5 5.8870x10-7 0.374 

1200 2.0 4.9382 x10-7 0.314 

 
Table 6-18:Natural frequency ratio FEM (Abaqus-Gibson soil) for different embedment depths 
Embedment depth (m) Embedment ratio Natural frequency (Hz) Natural frequency ratio  

0.0 0 47.8 1 

0.30 0.5 54.3 1.1360 

0.60 1.0 57.2 1.1967 

0.90 1.5 59.6 1.2469 

1.20 2.0 61.4 1.2845 
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Resonant amplitude ratio 
 
The resonant amplitude ratios are determined using Equation 2.47 and the results from the 

different embedments are shown in Table 6-17. From Table 6-17, it is shown that as the 

embedment increase the resonant amplitude ratio decreases. 

 

6.6 Comparison between experimental and numerical responses for three-
dimensional – Finite element method - Embedded footing 
 

In this section, the vertical dynamic responses of embedded footings placed on a 

homogeneous isotropic soil profile and Gibson soil obtained numerically and the 

experimental results are compared. The dynamic responses to be discussed, are the 

displacement amplitude, resonant frequency and natural frequency. In addition, the 

dimensionless quantities of resonant amplitude ratio, resonant frequency ratio and natural 

frequency ratio are considered. 

 

Displacement amplitude 
 

For comparison purposes, the plots of displacement amplitude versus frequency for the 

footing placed on homogenous soil and Gibson soil obtained numerically are plotted 

together with the experimental results. Figure 6.49 show the plot of measured and predicted 

displacement amplitude for zero embedment. This figure indicates that the numerical 

solution underestimated displacement amplitude in the range of 58.3% and 64.4%. The 

comparison between predicted and measured displacement amplitude for 310 mm and 

1240 mm embedment is shown in Figure 6-50 and Figure 6-51 respectively. The plot of 

predicted maximum displacement amplitude for all embedment is plotted together with 

measured maximum displacement amplitude and are shown in Figure 6-52. From the plot, 

it is shown that numerical solution underestimated maximum displacement amplitude for 

all embedments.  

 

Resonant amplitude ratio 

 

The resonant amplitude ratio was determined using Equation 2.47. The relationship 

between the resonant amplitude ratio and embedment ratio obtained numerically is plotted 

together with the resonant amplitude ratio experimentally as shown in Figure 6.53. From 

Figure 6.53, it can be seen that the resonant amplitude ratio decreases as embedment ratio 

increases. The plot shows that the resonant amplitude ratio predicted by the numerical 
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solution is in good agreement with experimental results up to about embedment ratio of 

0.5. Beyond this point, the resonant amplitude ratio obtained experimentally is lower 

compared to that obtained from the numerical solution. 

 

Resonant frequency 
 

The comparison between measured resonant frequencies and predicted resonant frequency 

by the finite element is shown in Figure 6.54. This illustrates that the resonant frequency 

obtained from homogenous soil and Gibson soil decreases as the embedment increases, 

while the measured resonant frequencies increases as the embedment increases to the depth 

of 310 mm, then starts decreasing as the embedment increases. 

 
Table 6-19: Resonant frequency and resonant frequency ratio FEM (Abaqus-Gibson soil) for 

different embedment depths 
Embedment depth (m) Embedment ratio Resonant frequency (Hz) Resonant frequency ratio 

0.0 0 36.2 1 

0.30 0.5 35.0 1.0343 

0.60 1.0 34.8 1.0402 

0.90 1.5 34.2 1.0585 

1.20 2.0 35.5 1.0197 

 

 

Resonant frequency ratio 
 

The effect of embedment of the foundation system can be explained using a dimensionless 

parameter which is referred to as the resonant frequency ratio. The plots of the resonant 

frequency ratio versus embedment ratio obtained from the field-measured data and finite 

element methods are shown in Figure 6.55. Here it is evident that the resonant frequency 

ratio for Gibson soil increases as the embedment increases up to an embedment ratio of 1.5, 

then, decreases as the embedment ratio increases. From the plot, it shows that the resonant 

frequency ratio for homogeneous soil decreases as embedment ratio increases. It is shown 

that the resonant frequency ratio has an insignificant effect on the foundation embedment. 

 

Natural frequency 
 
Figure 6.56 shows the plot of measured and predicted natural frequencies plotted against 

embedment depth. From this, it is explained that the natural frequency increases as the 

embedment increases. The plots show that the natural frequencies of the embedded 

foundation obtained from finite element (Abaqus) for footing placed on homogenous and 

Gibson soil are higher when compared to the natural frequencies obtained from the field-

measured data. 
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Natural frequency ratio 
 

Figure 6.57 show the plots of measured and predicted natural frequency ratio versus 

embedment ratio, which reveal that as the embedment increases, natural frequency ratio 

increases. From Figure 6.57, it is shown that there is a good agreement between the natural 

frequency ratios predicted by finite element method and the one from the field-measured 

data at low frequencies up to embedment ratio of 0.7. 

 

 

6.7 Summary 
 

Finite element analysis was used to study the vertical dynamic behaviour of surface and 

embedded foundations. The results obtained from numerical analysis of finite element 

method (Abaqus) were compared with the results measured in the field. From this study, it 

is shown that the Abaqus software is capable of analysing machine foundation and wave 

propagation problems. 

 

6.7.1 Surface foundation 

 

The dynamic responses summarised here are the resonant amplitude, resonant frequency, 

dynamic stiffness, and the natural frequency. From the numerical analysis, the following is 

established: 

• The finite element method underestimates the displacement amplitude compared to 

the resonant amplitude obtained from the field-measured data; 

• The finite element method underestimates the resonant amplitude compared to the 

resonant amplitude obtained from the field-measured data; 

• The results show that the finite element method underestimates the resonant 

frequency compared to the resonant frequency which is obtained from the 

experimental results; 

• At low frequency of about 10 Hz, the finite element method overestimates the 

complex dynamic stiffness, the real part and imaginary part compared to the 

stiffness measured in the field, and  

• The finite element method overestimates the natural frequency compared to the 

natural frequency obtained experimentally. 
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6.7.2 Embedded foundation 
 

The results from numerical analysis were compared with the results obtained from field-

measured data. The investigation was carried out on the square footing (1200 mm x 

1200 mm) embedded at the depth of 0, 300, 600, 900 and 1200 mm. The design of the 

machine foundations is aimed at identifying the dynamic behaviour of the machine 

foundations. These dynamic behaviours are displacement amplitude, resonant amplitude, 

resonant frequency, dynamic stiffness and natural frequency. The dimensionless quantities 

used to describe the effect of the embedment include resonant amplitude ratio, resonant 

frequency ratio, damping ratio and the natural frequency ratio. From the study, the 

following were observed. 

• The numerical analysis underpredicted displacement amplitudes and displacement 

amplitudes decrease as the embedment increases. The same behaviour was 

observed from experimental results 

• The numerical analysis predicted resonant amplitudes which decrease as the 

embedment increases. The rate of decreases of resonant amplitude is more 

pronounced at the low values of embedment depth than at higher embedment. As 

the embedment increases, the rate of increase of resonant amplitude is 

insignificant. The same behaviour was observed from experimental results. 

• The dimensionless resonant amplitude ratio was used to describe the effect of the 

foundation embedment. The results from the numerical solution showed that as the 

embedment increases the resonant amplitude ratio decreases. The observed and 

predicted resonant amplitude ratios are in agreement especially at the small 

embedment. 

• Gibson soil and homogenous soil give vitually identical results. 

• The resonant frequency predicted by finite element decreases as the embedment 

increases up to the embedment depth of 600 mm. The resonant frequency predicted 

by finite element is constant for embedment depth higher than 600 mm. This is 

contrary to what was observed in the field measurement. The measured resonant 

frequency increased as the embedment increased to an embedment of about 

310 mm, then decreased as the embedment continued to increase. The error 

between predicted and observed are in an acceptable range showing that resonant 

frequencies of the embedded foundation systems can be predicted by finite element 

method (Abaqus). 
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• The response shows that numerical analysis underestimated the resonant frequency 

compared to the resonant frequency measured experimentally. 

• Resonant frequency ratio obtained numerically decreases as the embedment ratio 

increases up to the embedment ratio of 1.0. Beyond the embedment ratio of 1.0 the 

resonant frequency ratio remains constant. The measured resonant frequency ratio 

increases as embedment increases up to an embedment ratio of about 0.5, then 

decreased as embedment increases. Finite element method (Abaqus – 

homogenenous) underestimates resonant frequency ratio while Gibson soil 

overestimated resonant frequency ratio compared to the measured resonant 

frequency ratio. 

• The measured and predicted complex dynamic stiffness are almost constant at the 

low frequencies; the complex dynamic stiffness tends to decrease when is close to 

the resonant frequency of the foundation system. The complex dynamic stiffness 

then increases as the forcing frequency increases. The same response is observed 

for the imaginary part of complex dynamic stiffness. This observation indicates 

that the resonant frequency can be obtained from the plot of complex dynamic 

stiffness against forcing frequency. It is also observed that at the low frequencies 

the numerical analysis overestimates the stiffness of embedded foundation systems. 

• The numerical solution for embedded foundations shows that embedment increases 

the natural frequency of the foundation system. The numerical analysis 

overestimated the natural frequency compared to the natural frequency obtained 

from field-measured data. Embedment has a much bigger effect on natural 

frequency than on resonant frequency.  

 
The new dimensionless quantities, referred as the natural frequency ratio, were introduced to 

describe the effect of embedment on the natural frequency of the machine foundations.  

• The dynamic response of the embedded foundation determined numerically 

showed that the natural frequency ratio increases as the embedment ratio increases. 

• The comparison between the natural frequency ratio obtained from numerical 

analysis, and the one obtained experimentally was found to be remarkable similar. 

• The natural frequency ratio obtained numerically is similar to the one obtained 

from field-measured data up to the embedment ratio of 0.7. Beyond 0.7, the natural 

frequency ratio obtained from numerical analysis is lower than the natural 

frequency ratio measured in the field with a maximum error of 4.7 %. 
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Figure 6.1: Domain for wave propagation model 

 

 

 
 

Figure 6.2. Results from fixed boundaries and non – reflecting boundaries -Vertical 

Harmonic Load 
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Figure 6.3: Illustration of homogenous soil profile (half-space-Non-dispersive) 

 

 

 

Figure 6.4: Three- dimension model for linear elastic finite and infinite elements for 
surface foundation  
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Finite elements-Soil medium  

Infinite elements-Soil medium  
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Figure 6.5: Partitioned three - 
dimensional model  

 
 

Figure 6.6: Three- dimensional model 
with finite and infinite 

elements 

 

 

 
 

Figure 6.7: Vertical displacement for three-dimension model with infinite elements 
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Figure 6.8:Three- dimensional model - 

Gibson soil 

 

 
 

Figure 6.9: Three-dimensional- Gibson soil 

with finite and infinite 

elements. 
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Figure 6.10: Simulated Young's modulus (E) in Abaqus 
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Figure 6.11: Comparison of displacement amplitude for homogeneous, Gibson soil (FEM-
Abaqus) and experimental results for surface foundation 

 

 

 
 

 

Figure 6.12: Comparison of resonant amplitude for homogeneous, Gibson soil (FEM-

Abaqus) and experimental results for surface foundation 
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Figure 6.13: Comparison between complex dynamic stiffness for homogeneous, Gibson 

soil (FEM-Abaqus) and experimental results for surface foundation 
 

 

 
 

 

Figure 6.14: Comparison between real part for homogenous and Gibson soil (FEM-

Abaqus) and Experimental results for surface foundation 
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Figure 6.15: Comparison between imaginary part and homogeneous, Gibson soil (FEM-

Abaqus) and Experimental results for surface foundation 
 

 

 
 

 

Figure 6.16: Phase angle between force and displacement for homogeneous and Gibson 

soil - (FEM-Abaqus) and experimental results for surface foundation 
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Figure 6.17: Comparison between loss angle and homogeneous, Gibson soil (FEM-

Abaqus) and experimental results surface foundation 

 

 
 

Figure 6.18: Three - dimensional model for 0 mm 

embedment 

 
 

Figure 6.19: Three- dimensional model for 0 

mm embedment with finite and 

infinite elements 
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Figure 6.20 :Three – dimensional  model for 300 

mm embedment 

 
 

Figure 6.21: Three – dimensional model for 

300 mm Embedment with finite 

and infinite elements 

 

 

 

 

 

Figure 6.22 :Three - dimensional model for 

600 mm embedment 

 

 

Figure 6.23: Three- dimensional model for 

600 mm embedment with finite 

and infinite elements 
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Figure 6.24: Three - dimensional model for 

900 mm embedment 

 
Figure 6.25: Three- dimensional model for 

900 mm embedment with finite 

and infinite elements 

 

 
Figure 6.26: Three - dimensional model for 

1200 mm embedment 

 

 
Figure 6.27: Three - dimensional model for 

1200 mm embedment with 

finite and infinite elements 
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Figure 6.28: Displacement amplitude due to measured force – FEM-Homogeneous 

 

 
 

Figure 6.29: Resonant amplitude – FEM (Abaqus) 
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Figure 6.30: Comparison between resonant amplitude (FEM - Abaqus) and experimental 

results at 0 mm embedment 

 

 

 
 

 

Figure 6.31: Comparison between predicted resonant amplitude (FEM) and experimental 

results 
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Figure 6.32: Comparison between resonant amplitude ratio from FEM and experiment 
 

 
 

Figure 6.33: Comparison between resonant frequency predicted by FEM (Abaqus - 

Homogeneous soil) and experiment results 
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Figure 6.34: Resonant frequency ratio from FEM (Abaqus - Homogeneous soil) and 
experiment 

 

 
 

Figure 6.35: Complex dynamic stiffness – FEM (Abaqus - Homogeneous soil) 
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Figure 6.36: Real part - FEM (Abaqus - Homogeneous soil) 

 

 
 
Figure 6.37: Imaginary part – FEM (Abaqus - Homogeneous soil) 
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Figure 6.38: Phase angles for different embedment depths 

 
 

 
 

Figure 6.39: Loss angle – FEM (Abaqus) 
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Figure 6.40: Comparison between natural frequency predicted by FEM and experiment 

 

 
 

Figure 6.41: Comparison between natural frequency ratio from FEM and experiment 
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Figure 6.42: Fully embedded three-dimensional finite element model for Gibson soil 
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Figure 6.43: Simulated Young's modulus (E) in Abaqus for Gibson soil 
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Figure 6.44: Three-dimensional model - Gibson soil - 1200 mm embedment  

 

 
 

Figure 6.45: Displacement amplitude due to force– FEM (Abaqus-Gibson soil) 
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Figure 6.46: FRF -Displacement amplitude – FEM (Abaqus-Gibson soil) 

 

 

 
 

Figure 6.47: Plot of phase angle - FEM (Abaqus - Gibson soil) 
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Figure 6.48: Loss angle – FEM (Abaqus - Gibson soil) 

 

 

 
 

Figure 6.49:Comparison betwen measured displacement amplitude – FEM (Abaqus-
Homogeneous and Gibson soil) and experimental results. 
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Figure 6.50:Comparison betwen measured displacement amplitude – FEM (Abaqus-

Homogeneous and Gibson soil) and experimental results. 

 

 

 
 
Figure 6.51: Comparison between measured displacement amplitude - FEM (Gibson soil 

and homogeneous) and experimental results. 
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Figure 6.52: Comparison between maximum displacement amplitude - FEM (Gibson soil 
and homogeneous) and experimental results. 

 

 

 

 
 

 

Figure 6.53: Comparison between resonant amplitude ratio FEM (Gibson soil and 

homogeneous) and experimental results 
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Figure 6.54: Comparison between resonant frequency FEM (Gibson soil and 

homogeneous) and experimental results  

 

 

 
 

 

Figure 6.55: Comparison between obtained - Resonant frequency ratios 
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Figure 6.56: Comparison between natural frequency obtained numerically (FEM - 

Homogeneous and Gibson soil) and experimentally 

 

 

 
 

 

Figure 6.57: Comparison between natural frequency ratio obtained numerically (FEM - 

Homogeneous and Gibson soil) and experimentally 
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CHAPTER 7 

7 DISCUSSION 
 

7.1 Introduction 
 

This chapter discusses the results of the vertical dynamic behaviour of surface and 

embedded foundations subjected to vertical harmonic loading. In the field, a hydraulic 

shaker was used to excite the footings by applying a harmonic vertical force at frequencies 

ranging from 10 to 100 Hz. The shaker was fixed at the centre of the footings and the 

measured displacements were analysed to calculate measured impedance functions. The 

field-measured vertical dynamic behaviour was predicted using analytical solution, 

numerical solution of the finite element method and the Dyna5 program. The discussion is 

based on the comparison of the measured and predicted responses obtained from the 

analytical solution and numerical analysis. The field measurements were carried out on the 

surface and embedded foundations. The field measured vertical dynamic responses are 

plotted together with the predicted responses for easy discussion and evaluation. 

 

For the surface foundation, the results from the following numerical and analytical models 

were compared with the results obtained from field measurements. 

 

• Elastic half-space theory (Sung 1953); 

• Simplified model of Veletsos and Verbic (1973) massless soil;  

• Simplified model of Lysmer (1965); 

• Simplified model of Veletsos and Verbic (1973) soil with mass; 

• Dyna5 program 

• Finite element method – homogeneous soil, and 

• Finite element method – Gibson soil  

 

The comparison is based on the following vertical dynamic responses plotted against 

forcing frequency.  

• The displacement amplitude;  

• The resonant frequency; 

• The complex dynamic stiffness;  

• The real part of the complex dynamic stiffness; 
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• The imaginary part of the complex dynamic stiffness, and  

• The phase and loss angles. 

 

For the embedment foundation, the measured vertical dynamic responses were compared 

with the predicted responses obtained from the following analytical and numerical solution.  

• The analytical model suggested by Novak and Beredugo (1972); 

• Dyna5 program;  

• The numerical solution of finite element method (Abaqus) with the assumption that 

the footing is placed underneath the homogeneous soil, and  

• The numerical solution of the finite element method with the assumption that the 

footing is placed on Gibson soil. 

The comparison was based on the following measured dynamic responses: 

• Displacement amplitude;  

• Amplitude at resonance;  

• Resonant frequency, and  

• Natural frequency. 

The effects of embedment were evaluated using the following dimensionless quantities:  

• Resonant amplitude ratio; 

• The resonant frequency ratio;  

• Natural frequency ratio, and 

• Damping ratio. 

 

7.2 Surface foundation 
 

7.2.1 Vertical dynamic displacement 
 

Figure 7.1 shows the measured vertical dynamic displacement amplitudes plotted together 

with predicted vertical dynamic displacements amplitudes. The forces measured in the field 

were used to simulate the actual forces exerted on the footing for analytical and numerical 

analysis. From Figure 7.1, it is shown that at maximum displacement both numerical and 

analytical solutions underestimated the vertical dynamic responses. It is shown that Dyna5 

and Veletsos and Verbic (1973) soil with mass predicted the lowest displacement compared 

to Lysmer (1965) model and Sung’s (1953) solution. Dyna5 and Veletsos and Verbic 

(1973) with mass underestimated the displacement by 56.2 %. Lysmer (1965) model 

predicted the highest vertical displacement but still underestimated displacement by about 

31.9 %. Therefore, the analytical and numerical models under predicted the displacement 

in the range of 31.9 % and 56.2 %. This indicates that the design engineer should expect an 
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error in this range when predicting displacement of the machine foundation by using the 

listed analytical and numerical models under the described conditions. The performance of 

the models was fairly similar. All models predicting peak displacement amplitudes between 

0.008mm and 0.012mm. In contrast, the computational effort to use the models is very 

different. Some are quite easy and others are very difficult to use. 

 

The numerical and analytical models predicted the first peak at about 32 Hz, which was 

also observed from the measured responses. It is interesting to note from the plots in 

Figure 7.1 that there is good agreement between the results obtained from the finite 

element method and the analytical solution by Verbic (1973) with mass of footing. 

 

7.2.2 Resonant resonant amplitude and frequency 
 

Figure 7.2 shows the measured frequency response function plotted together with predicted 

frequency response function. From the plot, it is shown that analytical models could not 

predict the resonant frequency close to what was measured experimentally. The finite 

element method (Abaqus) underpredicted the resonant frequency for about 28.9 %. 

 

7.2.3 Complex dynamic stiffness 
 

The predicted and measured complex dynamic stiffness are plotted together and shown in 

Figure 7.3. The response shows that, at low frequencies, the prediction models 

overestimated the complex dynamic stiffness. It is observed that, at low frequency, the 

analytical solutions converged to a single point, which is lower than the complex dynamic 

stiffness obtained from finite element method. The prediction models overestimated the 

complex dynamic stiffness except Sung’s (1953) and Veletsos and Verbic (1973) massless 

model could not predict the trend of the measured complex dynamic stiffness at the higher 

frequencies. The general responses of the predicted complex dynamic stiffness at low 

frequency is reasonably similar to the one obtained from field-measured data. 

 

The complex dynamic stiffness tends to be constant at the low frequencies then increases as 

the forcing frequency increases. It is also shown that there is a good agreement between the 

evaluated numerical and analytical models. For instance, Figure 7.3 shows that from about 

25 Hz to 100 Hz, the finite element solution and analytical solution of Veletsos and Verbic 

(1973) with mass, Lysmer (1965) model and Dyna5 program plots are very similar. The 

similarity of these measured responses and the predicted responses by finite element 

method shows that Abaqus software is suitable for predicting complex dynamic stiffness of 

machine foundations. Moreover, the observation from Figure 7.3 shows that the shapes of 
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the response curves predicted by finite element are similar to those measured, although the 

finite element overestimated the complex dynamic stiffness. 

 

7.2.4 Real part of complex dynamic stiffness 
 

The field-measured and predicted real parts of complex dynamic stiffness are plotted 

together in Figure 7.4. The real part is sometimes referred to as effective dynamic stiffness. 

Essentially, the real part is the solution of Equation 2.31. The solution depends on the 

assumptions made in relation to the inertia force. It is common to assume that the footing 

and soil is massless or has mass. If the model assumes that footing and the soil underneath 

the footing is massless, in Equation 2.31, the mass of vibrating footing mechanism 

becomes zero. This reflects that the dynamic response is frequency independent. From 

Figure 7.4, it is shown that the measured real part is frequency dependent except for the 

solution by Veletsos and Verbic (1973) massless soil and Dyna5 program. The plot shows 

that, as the forcing frequency increases the real part decreases. From the plot, it is shown 

that at a low frequency, the analytical and numerical solution overestimated the real part of 

the complex dynamic stiffness. The frequency dependence of the response is only 

influenced by the presence of the inertia forces because the soil properties are essentially 

frequency independent. 

 
An advantage in plotting the frequency dependency of the real part is that the natural 

frequency of the foundation systems can be estimated when the real part crosses zero. The 

real part for field-measured data crosses zero at the frequency of 49.5 Hz. The responses 

predicted by Veletsos and Verbic (1973) massless soil and Dyna5 program did not cross 

zero at the real part as it assumes the footing and soil is massless. The other numerical and 

analytical solution estimated the natural frequency ranging between 50 and 59.4 Hz. It was 

observed that the analytical solution by Veletsos and Verbic (1973) which assumes that the 

footing and soil have mass predicted more accurately the natural frequency with an error of 

2 %. The general responses of the numerical and analytical solution show a remarkable 

similarity except for Dyna5 program and Veletsos and Verbic (1973) with massless soil. 

The results show the importance of considering the mass of the footing and the soil 

medium where the machine foundations are placed in relation to wave propagation. 

 

7.2.5 Imaginary part of complex dynamic stiffness 
 

Figure 7.5 show the imaginary part of complex dynamic stiffness and the responses reflect 

the solution of the Equation 2.32. The plots show that analytical and numerical solution 

overestimated the imaginary part, except for elastic half-space theory where at around 
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78 Hz the imaginary part becomes small. The same trend is observed from the finite 

element method. The general responses show that the imaginary part increases as the 

forcing frequency increases. This shows that the radiation damping is frequency dependent. 

The result from field measurements describe that at the low frequency of up to about 

45 Hz, the dependence of the frequency is very low indicating that material damping 

moderated the responses. 

 

7.2.6 Phase and loss angles 
 

Figure 7.6 shows the plot of phase angle between force and displacement against forcing 

frequency. The natural frequency of the foundation can be estimated from the plot of phase 

angles versus forcing frequency. From the plot, it is shown that analytical and numerical 

solution compared favourably with the measured responses and that the analytical and 

numerical solutions overestimated natural frequency. The predicted natural frequencies 

range between 50 Hz and 59.4 Hz. The analytical solution by Veletsos and Verbic (1973) 

with mass predicted natural frequency close to the one measured in the field. The 

prediction percentage error of the natural frequency is within the range of 2 % and 18.4 %. 

 
Figure 7.7 shows the plots of the measured and predicted loss angles. The loss angle in 

radians is almost constant at the low frequency when the forcing function is in phase with 

displacement. The sudden rise in loss angles indicates that the forcing function goes out of 

phase with displacement. The natural frequency is the frequency at the peak point as shown 

in Figure 7.7. It is also seen from the plot of loss angles versus forcing frequency that 

analytical and numerical solution overestimated natural frequency. The prediction models, 

which assumed that the footing is massless, cannot predict natural frequency from the loss 

angle versus forcing frequency. 

 

7.3 Embedded foundation 
 

7.3.1 Displacement amplitudes 

 
The measurements of the embedded foundation were carried out for the embedment depths 

of 0, 310, 620, 930 and 1240 mm. Figure 7.8 shows the measured and predicted 

displacement amplitudes for zero embedment plotted against forcing frequency. From the 

plot it is shown that at low frequencies up to about 33 Hz the analytical solutions 

overestimated the amplitude displacements. The analytical solution by Novak and 

Beredugo (1972) overestimated amplitude displacement at maximum peak by 2%. Dyna5 

program also overestimated amplitude displacement for about 1%. The finite element 
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method with homogeneous and Gibson soil soil medium underestimated the amplitude 

displacement at maximum peak by 58.2 %. 

 
Figure 7.9 shows the measured and predicted displacement amplitude for 310 mm 

embedment plotted against forcing frequency. From the plot, it is shown that the analytical 

solution by Novak and Beredugo (1972) overestimated amplitude displacement at 

maximum peak by 3.8%. Dyna5 program also underestimated amplitude displacement for 

about 4.9%. The finite element method with homogeneous and Gibson soil medium 

underestimated the amplitude displacement at maximum peak by 61.6 %. Figures 7.10, 

7.11 and 7.12 show the displacement amplitude for embedment 620, 930 and 1240 mm 

respectively. 

 

Figure 7.13 show the plots of measured and predicted maximum displacement amplitude 

against embedment depth. From this, it is shown that the measured and predicted resonant 

amplitude decreases as the embedment increases. The rate of decrease is very pronounced 

at the small embedment. As the embedment increases, the benefit of this embedment is 

insignificant. From the plot, it is shown that Dyna5 program and Numerical solutions under 

estimated displacement amplitude. The analytical solution by Novak and Beredugo (1972) 

overestimated displacement for embedment of 0 and 310 mm and underestimsted 

displacement amplitude for embedment of 620, 930 and 1240 mm. 

 

The responses conclude that analytical solutions predict the displacement amplitude of 

machine foundations close to what measured in the field. The error between measured and 

prediction by analytical solution is between 1 % and 39 % for all embedments. The finite 

element method with homogeneous and Gibson soil medium underestimated the amplitude 

displacement in the range of 58.3% and 61.6 % for all embedments. 

 

7.3.2 Resonant amplitudes and resonant frequency 

 
The frequency response function of the embedded foundation were determined for the 

embedment depths of 0, 310, 620, 930 and 1240 mm. Figure 7.14 shows the measured and 

predicted displacement amplitudes for zero embedments plotted against forcing frequency. 

From the plot it is shown that the analytical solution by Novak and Beredugo (1972) and 

Dyna 5 program underestimated the resonant amplitude by about 18.2 %. Dyna5 program 

also underestimated resonant amplitude for about 34.2%. The finite element method with 

homogeneous soil medium underestimated the resonant amplitude for about 288.7 %. The 

finite element with Gibson soil underestimated resonant amplitude for about 280.5 %. 
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Figures 7.15 and 7.16 show the frequency response function for embedment of 310 and 620 

mm respectively. From the plot, it is seen that in both cases the analytical solution under 

predicted the resonant amplitude at resonant frequency. The analytical solution by Novak 

and Beredugo (1972) underestimated the resonant frequency within the range of 5.3% and 

14.3% for all embedments. Dyna5 program under predicted resonant frequency in the range 

of 4.5% and 20.7% for all embedments. 

 

Figure 7.17 show the plot of resonant amplitude against embedment depth. From this, it is 

shown that the measured and predicted resonant amplitude decreases as the embedment 

increases. The rate of decrease is very pronounced at the small embedment. As the 

embedment increases, the benefit of this embedment is insignificant. 

 

7.3.3 Resonant amplitude ratio 
 

The resonant amplitude ratio is the ratio of the peak amplitude for an embedment footing to 

the peak amplitude for zero embedment. Figure 7.18 shows the plot of resonant amplitude 

ratio versus embedment ratio and this presents that the resonant amplitude ratio decreases 

as the embedment ratio increases. The rate of decrease is noticeable at the lower values of 

embedment ratio. This suggests that even small embedment can significantly reduce the 

resonant amplitude. In all cases, the plots show that, at higher embedment ratios, the effect 

of embedment is insignificant. The response indicates that the Dyna 5 program predicted 

resonant amplitude ratio close to what was measured in the field. The results from resonant 

amplitude ratio indicate that for a given dimension of square footing, the reduction in 

displacement can be predicted. 

 

7.3.4 Resonant frequency  
 
The predicted and measured resonant frequencies are plotted against embedment depth as 

shown in Figure 7.19. The prediction models underestimated resonant frequencies. The 

predicted resonant frequencies decrease as the embedment increases up to 310 mm 

embedment, after this it remains mostly constant. The error between predicted and 

measured resonant frequency at zero embedment ranges between 5.0 % and 8.1 %.  

 

7.3.5 Resonant frequency ratio 
 

Figure 7.20 show the predicted and measured resonant frequencies ratio plotted against 

embedment ratio. The resonant frequency ratios predicted by analytical solution and finite 

element method with the assumed homogenous soil decrease as the embedment increases 
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up to embedment ratio of about 0.52. Beyond embedment ratio of 0.52, resonant frequency 

ratios remain constant. The finite element method with assumed Gibson soil predicted 

resonant frequency ratio almost similar to that measured in the field up to embedment ratio 

of 0.5. The error between measured and predicted resonant frequency ratio for embedment 

ratio of 0.5 and 2.07 is between 0.8 % and 17 %. The general responses show that there is a 

good conformity between measured and predicted resonant frequency ratio. 

 

7.3.6 Natural frequency 
 

The predicted and measured natural frequencies of embedded foundations are shown in 

Figure 7.21. This reflects that the predicted and measured natural frequency increases as 

the embedment depth increases. The variation in the natural frequency obtained from the 

field-measured data and finite element method is between 10.4 % and 14.2 %. The finite 

element method overestimated natural frequencies for all embedment depths as per Figure 

7.21. At the embedment, between 0 and 600 mm the analytical solution by Novak and 

Beredugo (1972) predicted natural frequency very close to the measured natural 

frequencies. For analytical solutions, the error between predicted and measured natural 

frequency for all embedment ranges is between 0.0 % and 6.8 %. The variation in the 

natural frequency obtained from the field-measured data and Dyna5 are between 2.4 % and 

8.9 %. 

 

7.3.7 Natural frequency ratio 
 
The predicted and measured natural frequency ratios are shown in Figure 7.22. This 

describes that the predicted and measured natural frequency ratio increase as the 

embedment ratio increases. There is a favourable agreement between predicted and 

measured natural frequency ratio up to embedment ratio of 0.7. At full embedment, the 

predicted error ranges between 4.7 % and 9.1 %. The finite element method underestimated 

natural frequency ratio between embedment ratio of 0.7 and at full embedment. The 

analytical solution by Novak and Beredugo (1972) and Dyna5 program overestimated 

natural frequency ratio between embedment ratio of 0.7 and at full embedment. 

 

7.3.8 Damping ratio 
 
The measured and predicted damping ratios plotted against embedment ratio are shown in 

Figure 7.23. From the plots in both cases the damping ratio increases as the embedment 

increases. From Figure 7.23, all prediction models overestimated damping ratio. In all 

cases, the rate of increases of damping ratio is pronounced at low values of embedment 
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ratio. As the embedment increases, the rate of increases of damping ratio is insignificant. 

The shapes of the curves indicate that dynamic responses of machine foundations are very 

sensitive to damping ratio. The error between observed and predicted damping ratio at zero 

and fully embedment is 84.4% and 15.8% respectively. In all cases, the minimum error 

occurs at full embedment and ranges between 11.0 % and 15.8%. 
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Figure 7.1: Comparison between measured and predicted displacement amplitudes 

 

 

 
 

 
Figure 7.2: Comparison between measured and predicted frequency response function  
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Figure 7.3: Comparison between measured and predicted complex dynamic stiffness 

 

 

 
 

 

Figure 7.4: Comparison between measured and predicted real part of complex dynamic stiffness 
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Figure 7.5: Comparison between measured and predicted imaginary complex dynamic stiffness 

 

 

 
 

 

Figure 7.6: Comparison between measured and predicted phase angles 
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Figure 7.7: Comparison between measured and predicted loss angles 

 

 

 
 

Figure 7.8: Comparison between measured and predicted displacement - 0mm 
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Figure 7.9: Comparison between measured and predicted displacement - 310mm  

 

 
 
Figure 7.10: Comparison between measured and predicted displacement - 620mm 
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Figure 7.11: Comparison between measured and predicted displacement - 930mm 

 

 
 

Figure 7.12: Comparison between measured and predicted displacement - 1240mm  
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Figure 7.13: Comparison between measured and predicted displacement at the peak 

 

 

 
 

 

Figure 7.14: Comparison between measured and predicted displacement amplitudes (FRF) - 0 mm 

embedment 
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Figure 7.15: Comparison between measured and predicted  displacement amplitudes (FRF) - 310 

mm embedment 

 

 

 
 

 

Figure 7.16: Comparison between measured and predicted displacement amplitudes (FRF) - 620 

mm embedment 
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Figure 7.17: Measured and predicted resonant amplitudes  

 

 

 
 

 

Figure 7.18: Comparison between measured and predicted resonant amplitude ratio 
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Figure 7.19: Comparison between measured and predicted resonant frequency 

 

 

 
 

 

Figure 7.20: Comparison between measured and predicted resonant frequency ratio 
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Figure 7.21: Comparison between measured and predicted natural frequency 

 

 

 
 

 

Figure 7.22: Comparison between measured and predicted natural frequency ratio 
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Figure 7.23: Comparison between measured and predicted damping ratio 
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CHAPTER 8 

8 SUMMARY AND CONCLUSIONS 
 

In this study, the vertical dynamic behaviour of machine foundations subjected to vertical 

loading was investigated for the surface and embedded foundations. The hypothesis states 

that the appropriate analytical and numerical models are required to accurately 

predict the vertical response of machine foundations subjected to dynamic loads. Two 

typical concrete foundations were tested to investigate the accuracy of existing chosen 

analytical and numerical models of the finite element methods in comparison to field-

measured experimental results. The first was the rectangular footing of 2000 mm x 

2500 mm in the plan with a depth of 400 mm placed on the surface of the ground. The 

second was the square footing of 1200 mm x 1200 mm embedded at the depth of 0, 310, 

620, 930, and 1240 mm. The site is located at the University of Pretoria experimental 

station. The site was characterised to determine the shear wave velocity. 

 

A hydraulic shaker was used to excite the footings by applying a harmonic vertical force at 

frequencies ranging from 10 to 100 Hz. The shaker was fixed at the centre of the footings. 

The measured displacements were analysed to calculate measured impedance functions by 

back-calculation. 

 

8.1 Experimental results for surface foundation 
 

The concern of this study was to evaluate the chosen existing analytical models and select 

the most accurate analytical model for the prediction of dynamic behaviour of surface 

machine foundations. The responses measured on the surface foundation included the 

foundation displacement amplitude, resonant amplitude, resonant frequency, natural 

frequency, and dynamic stiffness. The field experimental investigation was carried out to 

obtain the measured impedance functions and these results were compared with impedance 

functions obtained from analytical and numerical solution. From the experimental results, 

the following conclusions were made: 

 

• It is common to determine the resonant frequency of the foundation system from 

the frequency response functions. The experimental results show that the resonant 

frequency may be estimated from the plot of complex dynamic stiffness against 

forcing frequency. It is shown from the plot of the complex dynamic stiffness 
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versus forcing frequency that the resonant frequency is the frequency at the point 

when the response is minimum; 

 

• The measured dynamic responses of the foundation systems showed a strong 

frequency dependency; 

 

• The damping ratio could be estimated from the measured resonant frequency and 

natural frequency of the machine foundations; 

 

• The natural frequency of the machine foundations system can be obtained from the 

plot of the phase angle between displacement and force against forcing frequency. 

Also, the natural frequency can be obtained from the plot of the real part of 

complex dynamic stiffness and from the plot of loss angle versus forcing 

frequency, and; 

 

• Negative foundation dynamic stiffness (real part) was found to occur when forcing 

function is out of phase with displacement by 90 to 180 degrees. 

 

8.2 The results for surface foundation prediction models  
 
The field-measured dynamic responses were compared with predicted responses obtained 

from Mass-Spring Dashpot (MSD or Winkler model, elastic half-space theory - Sung 

(1953), simplified models of Lysmer (1965) model and Veletsos and Verbic (1973). Two 

analytical models proposed by Veletsos and Verbic (1973) were evaluated. One assumes 

that the footing and soil medium are massless, and the other assumes the footing and soil 

medium have mass. Furthermore, the numerical solution by Dyna5 program was evaluated 

and compared with the measured responses. The general responses between measured and 

predicted responses show remarkable similarities. The evaluation of the analytical methods 

shows that: 

 

• If the damping constant is properly chosen, the damped Winkler model can be used 

at the preliminary design stage to predict natural and resonant frequency of the 

machine foundations. 

 

• The small strain shear stiffness obtained from Continuous Surface Wave tests with 

properly selected damping ratios, can be used to predict resonant frequency of the 

machine foundation systems using the Winkler model. 
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• Both analytical and numerical analysis was not able to predict the displacement 

amplitude, resonant amplitude and resonant frequency accurately.  

• Analytical and FEM (Abaqus) models predicted natural frequency in the range of 

2 % to 20 % error. 

 

• The analytical model proposed by Veletsos and Verbic (1973) with the mass of 

footing and the soil medium rated as the most accurate analytical model among the 

evaluated analytical models. 

 

8.3 Experimental results for embedded foundation 
 

For the embedded foundation, the measured vertical dynamic responses included the 

foundation displacement amplitude, resonant amplitude, resonant frequency, natural 

frequency, damping ratio and dynamic stiffness. The effect of embedment of the 

foundation was explained by the dimensionless quantities known as resonant amplitude 

ratio, resonant frequency ratio and newly introduced quantity referred as the natural 

frequency ratio. From the experimental results, the following were observed: 

 

• The displacement amplitude decreases as embedment increases. The rate of 

reduction of the resonant amplitude ratio was higher at the lower values of 

embedment ratio. This suggests that even small levels of embedment can 

significantly reduce the maximum vibration amplitude. The results also indicate 

that the added benefit of embedment diminishes at high embedment depths; 

• The resonant amplitude decreases as embedment increases. The rate of reduction of 

the resonant amplitude ratio was higher at the lower values of embedment ratio; 

 

• The resonant frequency changes very slightly as the embedment increases. At the 

low embedment, the resonant frequency increases as the embedment increases; 

 

• The resonant frequency ratio obtained experimentally increases up to the 

embedment ratio of 0.5 then decreases as embedment increases; 

 

• The natural frequency increases as the embedment increases. The rate of increase 

of the natural frequency becomes smaller as the embedment increases; 

 

• From measured resonant frequency and natural frequency of machine foundations, 

the damping ratio could be determined. The measured damping ratio increases as 

the embedment increases, and 
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• The natural frequency ratio increases as the embedment increases. 

 

8.4 The results for embedded foundation prediction models 
 
The field-measured dynamic responses were compared with the predicted responses 

obtained from numerical analysis of finite element method (Abaqus) and the Dyna5 

program. Furthermore, the measured responses were compared with the analytical method 

suggested by Novak and Beredugo (1972). This comparison between measured and 

predicted responses shows that: 

 

• Novak and Beredugo (1972) and Dyna5 program predicted displacement amplitude 

for all embedment within the range of 1 % and 39.2 % of the observed 

displacement; 

 
• FEM – Abaqus predicted the similar shape of observed displacement amplitude curve 

plotted against forcing frequency but underestimated displacement amplitude. 

 

• Novak and Beredugo (1972), Dyna5 program and FEM – (Abaqus) predicted 

observed resonant frequency reasonably; 

 

• The measured and predicted displacement amplitude decreases as embedment 

increases. In all cases, the rate of reduction of the displacement amplitude is higher 

at the low values of embedment ratio. At full embedment, the observed reduction 

in displacement amplitude was 61.8 %, and the predicted reduction in displacement 

amplitude ranged between 8.6 and 66.4 %. It was found that the currently available 

analytical techniques predicted the vibration amplitude of embedded foundations 

favourably. 

 

• The measured and predicted resonant amplitude decreases as embedment increases. 

In all cases, the rate of reduction of the resonant amplitude is higher at the low 

values of embedment ratio. At full embedment, the observed reduction in resonant 

amplitude was 82.2%, and the predicted reduction in resonant amplitude for all 

embedments ranged between 36.2 % and 81.4 %. It was found that the best 

analytical and numerical techniques currently available do not accurately predict 

the resonant amplitude for embedded foundations, even for the simplest case of 

vertical vibration. 
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• The measured and predicted resonant amplitude ratio decreases as the embedment 

increases. In all cases, the rate of decreasing of resonant amplitude ratio is more 

pronounced up to the embedment ratio of about 0.5. 

 

• The numerical solution by Dyna5 program is more accurate than analytical 

solution by Novak & Beredugo (1972) and finite element method when predicting 

the resonant amplitude ratio for embedded foundations. However, the accuracy of 

the analytical impedance method suggested by Novak & Beredugo (1972) and 

finite element method is reasonable and are within 48% of the observed resonant 

amplitude ratio at all embedment ratios. This is encouraging for industrial 

applications since the computational effort required for Dyna5 program is 

reasonable compared to the finite element method. 

 

• The effect of embedment on the measured and predicted resonant frequency 

changes very slightly as the embedment increases. At a low embedment, the 

resonant frequency measured experimentally increases as the forcing frequencies 

increase. The resonant frequency for the numerical and analytical solution at low 

embedment decreases as the embedment increases then remain constant as the 

embedment increases. The resonant frequencies obtained from numerical and 

analytical solutions are low compared to the one measured experimentally in the 

range of 4.7 and 20.7 %. 

 

• The resonant frequency ratio obtained experimentally increases up to the 

embedment ratio of 0.5 then decreases as the embedment increases. The resonant 

frequencies ratio obtained from numerical and analytical solution decreases as the 

embedment ratio increases up to the embedment ratio of 0.52 then remain constant 

as embedment increases. 

 

• The predicted and measured natural frequency increases as the embedment 

increases. The rate of increase of the natural frequency becomes smaller as the 

embedment increases. Both the finite element and analytical methods were able to 

model an increase in natural frequency with increased embedment. At the small 

embedment, the predicted natural frequencies are very close to the observed natural 

frequencies. 
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• The predicted and observed damping ratio increases as the embedment increases. 

From the study, it is shown that numerical and analytical solutions overestimated 

damping ratio in comparison with experimental results. 

 

• The measured and predicted natural frequency ratio increases as the embedment 

increases. A comparison between observed and predicted natural frequency ratio 

show that there is a good agreement at shallow embedment and that as embedment 

increases, the different can be noticed. 

 

In conclusion, it is indicated that for the surface foundation, the analytical solution 

proposed by Veletsos and Verbic (1973) soil with mass predicted the natural frequency 

accurately among the evaluated analytical models. 

The finite element method (Abaqus) predicted the similar shape of measured response 

curve for both surface and embedded foundation. The analytical solution by Novak & 

Beredugo (1972) and Dyna 5 program predicted favourable dynamic responses of 

embedded foundation when comparing to what measured in the field. 

 

Based on the conclusions presented in Chapter 8, it is indicated that the hypothesis: 

Appropriate analytical and numerical models are required to accurately predict the 

vertical response of machine foundations subjected to dynamic loads is accepted. 
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10 APPENDICES 

 

Appendix A: Calibration information for accelerometer 1 
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