30

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

LOG-DOMAIN ITERATIVE SPHERE DECODER WITH SYMBOL
SORTING

P.R. Botha* and B.T. Maharaj’

* Dept. of Electrical, Electronic & Computer Engineering, Corner of University Road and Lynnwood
Road, University of Pretoria, Pretoria 0002, South Africa E-mail: prbotha@ieee.org

¥ Faculty of Engineering, Built environment and IT, Corner of University Road and Lynnwood
Road, University of Pretoria, Pretoria 0002, South Africa E-mail: ssinha@saiee.org.za E-mail:
sunil.maharaj@up.ac.za

Abstract: In this paper the authors propose modified branch and pruning metrics for the sphere decoder
to facilitate the use of apriori information in the sphere decoder. The proposed sphere decoder operates
completely in the log-domain. Additionally the effect of order in which the symbols are decoded on the
computational requirements of the decoder are investigated with the authors proposing a modification
of the sorted QR decomposition (SQRD) algorithm to incorporate apriori information. The modified
SQRD algorithm is shown to reduce the average number of computations by up to 95%. The apriori
sphere decoder is tested in an iterative multiple input multiple output (MIMO) decoder and shown
to reduce the bit error rate (BER) by an order of magnitude or provide approximately a one decibel
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improvement.
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1. INTRODUCTION

The ever increasing demand for affordable, high speed
and reliable wireless communication has led to the
development of various technologies such as multiple
input multiple output (MIMO) systems. The usage of
multiple transmit and receive antennas of a MIMO system
can potentially result in a significant increase in the
capacity of the communication channel. Using MIMO
in tandem with other communication techniques, such
as orthogonal frequency division multiplexing (OFDM),
enables the transmission of information over time, space
and frequency.

The performance of a wireless communication system
can also be greatly increased by exploiting some or all
of the diversity, independently faded signal paths, in the
wireless channel. Various coding schemes that aide in the
utilisation of all of the available diversity and/or capacity
in a MIMO channel have been proposed [1-4]. These
codes generally require joint decoding using methods such
as the Zero-Forcing (ZF), Minimum Mean Squared Error
(MMSE) and Sphere decoder (SD) [5, 6]. Forward Error
Correction FEC is also typically used to improve the
performance of the system. Accurate soft outputs from
the decoder can typically provide a 2dB gain [7] and is
therefore desired. In this paper Max-log-map Hard-to-Soft
decoding is used [8].

Drawing on the concept of turbo-codes [9], iteratively
decoding can also provide an increase in performance.
This entails a MIMO decoder that can use soft-inputs
generally as apriori information. In [10] the authors
provide a means to incorporate apriori information in the
ZF and MMSE decoder. An alternative method that can
be used to implement a soft-input sphere decoder [8] is

also described and shown to be limited to BPSK and
QPSK signal constellations. A similar approach is used
by the authors of [11] without addressing nor identifying
the limitations of their approach.

In this paper the authors will describe a modification to
the branch and pruning metrics of the sphere decoder of
[6] that incorporates apriori information. Studer et al in
[12] propose what seems to be a similar approach to the
approach used in this paper. They, however, focus on
optimizing the MAP values whereas in this paper the focus
is on the complexity introduced by the delayed pruning due
to apriori information. It will be shown empirically that
for iterative decoding the modification typically results,
contrary to what is expected, in a reduction in the
computations required by the sphere decoder is achieved.

Additionally, the effects of various symbol sorting
strategies on the computational complexity of the apriori
sphere decoder will be shown. It will be shown that a
modified instance of the sorted QR decomposition (SQRD)
[13] yields the greatest reduction in computations.

Notation: In this paper we use the following notation.
Vectors are denoted by boldface lowercase letters.
Matrices are denoted by boldface uppercase letters.
Superscripts 7 and H denote the transpose and Hermitian
transpose operations, respectively; diag(d; ...dy) denotes
a N x N diagonal matrix with diagonal entries d; ...dy. FN
is the N x N discrete Fourier transform (DFT) matrix and
(+) denotes the dot product of two vectors.

2. MAP MIMO DECODING

The received signal in a MIMO system may be described
as:
y=Hx+n, (1)
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where H is the equivalent channel matrix, x is the
transmitted data vector and n is the noise vector. In general
H, x, y and n are complex valued. The optimal decoding
of the receive signal involves the MAP calculation of the
value of a bit. This probability is generally expressed in
terms of log likelihood ratios (LLR) defined as:

where A is the LLR and P(b; = x) is the probability
that b; = x. BPSK signalling has been assumed for the
individual bit values instead of 0 and 1.

Using equation 2 and Bayes’ rule, the MAP solution can
be given as:

% = arg minln {P(y|x, H)P(x)}, 3)
xeX

where the conditional probability P(y|x,H) is given by:

1
~ Vkdet(X)

e [~(y-H)* T y-HY)|, @

P(y[x,H)

where Nf is the number of receive antennas and ¥ denotes
the covariance matrix of (y — Hx) given by:

S=E [(y—Hx) (y—Hx)ﬂ. 5)

Since the noise n is assumed to be AWGN the following
simplification may be made:

= 6, Ing, (6)

det(X) = 62Nk, (7
1

=<, (8)
o2

where G2 is the noise power and I; is the k x k identity
matrix. Using equations 2 to 8 the MAP solution can be
expressed as:

—Hx|]> 1
A~ min {m'“|—2ux}—

XEXE_W G%
min M _ lb )2 )
XEXEHA G% 2 ’

where 7»5’ is the LLR of the MAP of the " bit, b;, with
X3 denoting the set of all transmit vectors having b; = x.
b denotes the vector of bits associated with x and A” is
the vector of apriori LLRs. Additional use of the max-log
approximation:

In <Zex"> =~ maxx;, (10)

1
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was made in the derivation of equation 9.

Thus the decoding problem involves the calculation of
the most likely metric for both possible values of the bit
in question. Non-iterative decoders typically assume that
there is no apriori information.

3. CLASSICAL SPHERE

The sphere decoder in [6] is essentially a tree search
algorithm. It is a variation of the A* tree search algorithm
[14,15]. In the classical sphere decoder the A* algorithm
is used to solve the following system of linear equations:

< [ lly—Hx|]*)
= —_— 11
X arginem{ 2 ; (11)

in order to obtain the MAP transmitted channel symbols
and, thus, transmitted data. This is essentially the same
as equation 9 without the apriori information. For use
with the sphere decoder, equation 11 is transformed into a
triangular system. In [6], as with most other formulations,
the Cholesky decomposition:

RR =A, (12)

where R is upper triangular, is used. Equation 11 is then
transformed into the triangular equation:

i:argt;gg{(x—ﬁ)j{RﬂR(x—i)}, (13)

where % is the zero-forcing solution, and R”R = H*'H
and 62 has been omitted as it is a constant and does not
affect the result. The zero-forcing solution, X can be
obtained using, for example, the Moore-Penrose Pseudo
inverse:

AT = (A"A) 1A%, (14)
as.: )
£ =H'y. (15)

Alternatively the QR decomposition, SV decomposition,
LU decomposition or even the Cholesky decomposition
can be used to compute the zero-forcing solution. Equation
11 can also be transformed into a triangular system using
the QR decomposition:

i:argmin{HQﬂyfoHz}, (16)
xeX
where QR = H. This formulation will be used henceforth.

The tree structure arrises from the observation that x € X,
i.e. the channel symbol x is part of a finite set X and that
when performing the back substitution, the value of the
current symbol is dependent on the previous symbols.

In equations 13 & 16 it is important to note that when
the equations are being evaluated, the evaluations can be
calculated by traversing the tree on a symbol-by-symbol
basis and are monotonously increasing:

Tn—l > Tm (17)
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vhere it should be noted that the tree is traversed from node
V upwards in an upper triangular system. Thus, as soon as
he metric for a branch, 7, in the tree exceeds the current
owest metric, T, it will always exceed that metric and
herefore the branch can be pruned from the solution space.
n such cases, the A* algorithm is the optimal tree-traversal
Ugorithm [14]. In the next section it will be shown that
thould apriori information be incorporated into the MAP
jolution, then the branch metric is no longer monotonously
ncreasing. Thus, a branch can no longer be pruned from
he tree once its metric exceeds the current minimum.

4. APRIORI SPHERE DECODER

Che MAP solution including apriori information is given

)y:
_ 2 .
g:argmin{”yHX”_“}7 (18)

xeX Grzz 2

vhere A is the Log-Likelihood Ratio of the apriori
nformation and b is the bitwise data vector, in BPSK,
epresentation of X.

iquation 18 can be partly transformed into a triangular
system as in section 3.:

< [ 1Q7y —Rx|> A-b
X=argming ———5—— — —— ¢, (19)
xeX On 2
vhere it should be noted that 62 can no longer be
ymitted from the calculations. Whilst eq. 19 can still
e represented as a tree structure, it is evident that the
:)quation is no longer monotonously increasing. In the
wvent that the current branch metric, 7, exceeds the
ninimum metric, Ty, it is still possible that the remaining
wpriori information can result in the branch metric being
ower than the current minimum.

Cherefore it is no longer possible to prune the branch the
noment the branch metric exceeds the current minimum
netric as was the case with the classical sphere decoder.
t should be mentioned that for BPSK and QPSK channel
symbols it is possible to incorporate the apriori information
rector, A, into the received vector, y [8]. This approach
loes not work for other modulation constellations [10].

t is therefore necessary to modify the pruning metric to
ncorporate the apriori information in A. The pruning
netric now only prunes a branch, if the current branch
netric exceeds the current minimum and the remaining
wpriori information is insufficient to change this. Thus the
rranch is pruned when:

1 N
Tn - 5 Z }"i > Tmin» (20)
i=n

vhere A; is the apriori information associated with the
:hannel symbol x;. Whilst the new pruning metric allows
he sphere decoder to incorporate the apriori information,
t potentially delays the pruning of branches potentially
ncreasing the average number of computations. However,

it is possible to re-arrange the tree such that the branches
are pruned earlier as is discussed in the next section.

Pre-process

\\Y_. pe=pr+1
e < ng— 17 Xk = Q(sk,p,)

I=k+1 T = Aipy

SYMLIST ()

Figure 1: Flow diagram of the tree search algorithm.

5. RE-ORDERING OF SYMBOLS

In order to prune branches on the tree, it is known
that having the diagonal of R be ordered ascendantly,
i.e. |Futinti1| > |ran| can speed up the sphere decoder
[16]. Similarly the apriori sphere decoder can be sped
up by ordering the symbols. Two approaches have been
investigated: one based solely on the apriori information
A, the other based on apriori information and the channel
H.

5.1 Re-ordering by A

The reasoning behind ordering the tree based on the apriori
information is the idea of reducing the impact of the
remaining apriori information on the classical pruning
metric. Thus, ideally the tree should be traversed in the
descending order of A,,, where A, is:

Np—1

A=Y M, 1)
i=0

i.e. the sum of the absolute values of the LLRs of the bits
of symbol n. In this manner the sum of absolute values
of the LLRs diminishes rapidly as the tree is traversed by
the decoder. Since the system being decoded has been
transformed into an upper triangular system, this means
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that the channel symbols and their respective columns in
H must be sorted based on the ascending values of A,,. A,
is the total apriori information for symbol x,, given by the
summation of the absolute values of the LLRs of each bit
in symbol x,.

5.2 Re-ordering by h and H

It is known that performing the triangular transformation
in such a way that the diagonal elements, of the upper
triangular system, are increasing results in a speedup of
the sphere decoder [16]. A sub-optimal approximation is
to sort the column of H according to their Frobenius norms.

In an attempt to combine the ordering of the symbols with
the norms of the columns of H with their ordering with
respect to their apriori information, the following metric,
inspired by eq. 19, is proposed:

1 Nrx -t , 1
i=0

C=—

o,
The symbols are then ordered ascendantly according C,,.
Equation 22 scales the contribution of the channel by the

noise power. The first term is essentially an indicator of
the SNR of symbol 7.

5.3 Sorted QR Decompostion

The sorted QR decompostion proposed in [13] attempts to
order the diagonal elements of R in increasing orders of
magnitude. The algorithm is:
R=0,Q=H&P=Iy,
forn=0to Ny —1do
k, = arg min \qi|2
j=n, Nr
exchange columns n and k,, in Q, R and P
Ryn = |l
Gn = qn/Rn,n
for j=n+1,toNr—1do
Rn,j = qryl{q‘]
qj = q; — Rn jqn
end for
end for

where qq is the 7" column of matrix Q. P is the
permutation matrix by which the columns of H and the
rows of x have been permuted.

5.4  Modified Sorted QR Decomposition

The standard SQRD does not make use of infor-
mation other than the channel matrix H. The
authors therefore propose the following modified SQRD
(mSQRD)algorithm:

R=0,Q=H&P=Iy,

forn=0to Ny —1do

Np
A= X2 o M, x|
end for
forn=0to Ny —1do
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R 15}
b= g min { L0+ 33
exchange columns 7 and k, in Q, R, P and A*
Rn,n = |qn|
qn = qn/Rn,n
for j=n+1,to Nr —1do
Rn,j = qrjn{qJ
qj = qj — Rn jqn
end for
end for

where 62 is the noise variance and N}, is the number of bits
per symbol.

6. ALGORITHM DETAILS

The apriori sphere decoder is based on the implementation
by [6]. It has been modified to use the QR decomposition
instead of the Cholesky decomposition. The flow diagram
for the apriori sphere decoder is shown in figure 1.

6.1 Pre-processing

The Pre-process block is responsible for calculating the
best symbol order to obtain the permutation matrix P, the
QR decomposition of H as well as the calculation of the
cumulative LLRs A

fori=0,toN—1do

A=A+ I iyl

end for

P < Optimal symbol order for decoding

Q.R « qr(HP™)

v Q”y

where A.; = 0.

6.2  Symlist

The SYMLIST () function calculates the possible symbols
for the level and calculates their metrics. The
symbols are then sorted ascendantly according to
the metric.  The variable n; is then assigned the
number of symbols that are smaller than the pruning
metric:
fori=0,to Ns—1do
Ny—1 N
Bi = Z ANy

j=0

v ko =Rk QO|IP 1

Akt
A; G% ZB’+AP1¢+1
end for
sort (Ak,sk)
1..
ng = arg max {Af{ < Trin + 27»;}
Ty = Ag

where B’] denotes the j™ bit represented by symbol i. The
sort () function sort the symbols ascendantly according
to their A¥ metrics and stores the symbol order in s¥. The
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number of symbols that are less than the pruning metric is
stored in ny.

Performance metric: The SYMLIST () function is the
function where the vast majority of the calculations are
performed. It is also visited for each node in the tree. Thus,
the number of times the SYMLIST () function is called is
used as a performance metric in evaluating the relative
performance of the sphere decoder with regard to various
symbol ordering strategies. This allows the metric to be
independent of the specific implementation architecture
and programming.

6.3 Update

The UPDATE () function uses the newly found minimum
metric T,,;, to prune the tree. Itilterates through the levels
and updates the n* value for each level by only keeping
the symbols whose metrics are less than the new pruning
metric:

fork=0,toN—1do

1

nk = arg max {A]J‘ < Tinin + in}
J

end for

7. SYSTEM DESCRIPTION

The iterative decoding of linear pre-coded (LP) MIMO
will be used to test the performance of the apriori sphere
decoder. A short LDPC code is used to provide the
apriori information to the MIMO decoder from the second
iteration onwards.

7.1 Linear Pre-coding

Linear pre-coding of a MIMO system using threaded
algebraic space time (TAST) codes enables the exploitation
of all of the diversity in a MIMO channel without
sacrificing transmission rate [2]. This is achieved by
linearly mapping the channel symbol vector to a new
encoded channel symbol vector. The linearity of the
mapping enables the mapping to be expressed as a matrix
multiply. Let X = [Xq,---Xm|” be a data vector of length
N complex channel symbols taken from a modulation
alphabet X such as QPSK or M-QAM. Let ® be a unitary
matrix of dimensions N x N defined as [2]:

® = F{{diag(1,0,...," 1), (23)

where @ = exp(i2n/4N) and Fy is the N x N discrete
Fourier transform matrix. The mapping operation can thus
be expressed as:

s = Ox, 24)

where s is the newly encoded channel symbol vector. In a
noiseless environment the correct decoding of the entire x
channel symbol vector only requires the correct reception
of a single encoded symbol of s achieving diversity equal
to the rank of ®, Rg. Two or more streams of LP encoded
vectors can be layered together in order to exploit the full

rate of the channel. Diophantine numbers aide the decoder
in separating the various streams from each other [2]. The
Diophantine number for each layer is obtained by : ¢, =
9", n=0,...,N.— 1, where N is the number of layers.

The disadvantage of TAST codes is their decoding
complexity as Np X N symbols need to be jointly decoded.

7.2 MIMO System

In this paper the MIMO channel is modelled as an
Nr x Ny matrix, H. The elements of H are each i.i.d.
complex Gaussian with zero mean and unit variance. This
corresponds to an ideal Rayleigh fading channel with no
correlation. Time and frequency diversity can be expressed
as a matrix with MIMO channel blocks on the diagonal.
In this paper it is also assumed that time and frequency
are independently faded. The full system equation then
becomes:

y=HOPx +n, (25)

with P a permutation matrix that determines the manner in
which the two streams are threaded together.

With layering, the matrices H',®’ and x’ are given as:

Hy 0 0 o
0 H 0 0
H = , (26)
0 0 0
0 0 0 Hx,
@ 0 0 0
0 @' 0 0
0= ) (27)
0 0 0
0 0 0 ogu!
T
X=|x{ x{ - ngfl} ) (28)

where Ny is the number of individual MIMO transmissions
that are made, either in frequency or time, and is given by
Ni. X Rg/Nr. The simulations in this paper are made with
Re =4, Ny = Np = Ny, = 2 and with a resultant Hy = 4.

7.3 Turbo Structure

Data to

channel Linear Pre- Receiver
" Channel N

symbol coding Noise —‘

—Data»

mapping

MIMO
Decoder

LDPC Decoded
Decoder Data

Figure 2: Block diagram of the iterative decoder system.
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Figure 2 shows the block diagram of the iterative turbo
MIMO decoder. The binary data is mapped to uncoded
channel symbols which are then mapped to and layered
to LP encoded channel symbols. These encoded channel
symbols are transmitted over the Rayleigh faded MIMO
channel. At the receiver the channel symbols are received
and AWGN is added. The MIMO decoder uses the
information about the LP code, &, the channel information
H’ and the signal constellation to soft decode the data into
MAP LLR values.

In the initial iteration there is no extrinsic information
provided by the FEC code. Thus the initial input
to the FEC decoder is the aposteriori output of the
MIMO decoder. On subsequent iterations the intrinsic
information is subtracted from the aposteriori information
from the FEC decoder to yield the extrinsic information
from the FEC decoder which is used by the MIMO
decoder as apriori information. Similarly the input to
the FEC decoder, on subsequent iterations, is obtained by
subtracting the intrinsic information from the aposteriori
information of the MIMO decoder.

Hard Limiting of the LLRs: It was found that it was
necessary to limit the magnitude of the LLRs provided
to the LDPC decoder especially specifically at high SNR
values, for performance and stability reasons. In the event
that the LLRs were too large, the specific LDPC used
decoder would breakdown. Hard limiting of the magnitude
of the LLRs was done on the input to the LDPC decoder.
The effect of the value of the hard limit threshold on the
BER of the system is shown in figures 3 & 4. It is shown
that at the specific E,/Ny values in the figure that a low
threshold of around five (5) is optimal. The two figures also
show the diminishing returns that each additional iteration
provides.

T T H
s () [teration |7
—EO— 1 lteration |-
== 3 Iterations |

5 Iterations
107 1 1 7 lterations |
9 lterations |

BER
5
T

0 5 10 15 20 25 30 35 40 45 5
LLR Hard limit value

Figure 3: Effect of LLR hard limiting threshold on the BER for
QPSK at 11dB E},/Ny.

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

10 T T g
: : i | ==t lterations |]
—6— 1 lteration |]
—o— 3 Iterations |4
—&— 5 lterations |
—— 7 Iterations ||

+ 9 Iterations

BER

0 5 10 15 20 25 30 35 40 45 50
LLR Hard limit

Figure 4: Effect of LLR hard limiting threshold on the BER for
16QAM at 15dB E}, /Ny.

8. RESULTS

Figure 5 shows the effects iterative decoding has on the
BER performance of the MIMO system for case of a QPSK
signal constellation and a 16QAM signal constellation. It
is evident that the BER is reduced by an order of magnitude
for both constellations. Due to the steep slope of the BER
curve, this only corresponds to a 1 dB improvement as
measured at 107,

—©— QPSK, 0 lters

—— QPSK, 10 lters

=57 16QAM, 0 Iters

10°L —H=— 16QAM, 10 Iters

Figure 5: Plot of the BER for QPSK and 16QAM showing the
effects of ten decoding iterations on the BER.

The decrease in the number of SYMLIST () calls made by
the decoder for QPSK and 16QAM signal constellations
are shown in figures 6 & 7 respectively. The decrease in
the number of function calls is with respect to the unsorted
decoder. It is seen in figure 6 that the mSQRD and SQRD
perform similarly in the low Ej,/Ny regions, followed by
the sub-optimal H+ A ordering method. At higher Ej /Ny
values the mSQRD and H + A start outperforming the
SQRD algorithm. With the mSQRD algorithm a maximum
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speed up of 42.5% is achieved for QPSK.

45 T

A Sort
w0k A+ H Sort

—E— sarD
=—f— mSQRD

35

@
S
T

N
&
T

N
S

%Decrease in SYMLIST() calls

v
i
2

Figure 6: Plot in of the decrease in SYMLIST () calls for each of
the sorting methods as compared to the unsorted case. QPSK.

Figure 7 shows that a significant performance increase
is obtained from the SQRD based algorithms of
approximately 35% at 0dB E,/N, increasing to a
maximum of approximately 70%. All of the methods
incorporating channel information appear to perform
similarly at higher Ej /Ny values.

80 T
==

70+ A+H 4
—+— SQRD

60} | —©— mSQRD ]

50

%Decrease in SYMLIST() calls

0 2 4 6 8 10 12 14 16 18
E,/N, (dB)

Figure 7: Plot in of the decrease in SYMLIST () calls for each of
the sorting methods as compared to the unsorted case. 16QAM.

From figure 8 it can be noted that there is a distinct
region where the addition of the apriori information adds
to the decoding complexity; however, sorting based on A
does not appear to increase the complexity of subsequent
iterations. The added complexity at low E,/Ny values
is negligeable. At high E,/Ny the addition of apriori
information substantially reduces the decoding complexity
by up to 95%.

In figure 9 the average number of SYMLIST () calls per bit
needed to perform hard output decoding is plotted for the

80

60

40

20

-20

-40
s 2nd iteration, no sorting

=== 2nd iteration, A sorting
60} === 2nd iteration, A + H sorting
==©— 2nd iteation, SQRD
== 2nd iteration, MSQRD

%Increase in SYMLIST() calls compared to intial iteration

80+

-100 I I I I I I I I

Figure 8: Plot of the increase in SYMLIST () calls due to the
apriori pruning metric used in subsequent iterations vs. the
normal sphere metric of the first iteration for the various sorting
strategies. 16QAM.

unsorted sphere using the classical pruning metric. The
figure show a decrease in the number of calls required as
Ej, /Ny increases.

10 T T T T

—O— QPsK
—+— 16QAM

Number of SYMLIST() calls per bit

10' i i i i i i i i
0 2 4 6 8 10 12 14 16 18

E,/N, [dB]

Figure 9: Plot of the number of SYMLIST () calls for the unsorted
sphere decoder using the classic pruning metric for QPSK and
16QAM. Hard output decoding.

9. DISCUSSION

Whilst figures 6 & 7 show a definitive improvement at
high E,/Ny values, it should also be kept in mind that
the overall number of SYMLIST () calls at high E,/Ny is
much less than at lower E,/Np values. As such, it is
ultimately expected that at very high E,/Np values, the
speed difference between the algorithms would converge to
almost nothing. The sorting metrics incorporating channel
information H yield an improvement of between 10% to
15% in the low E}, /Ny regions for QPSK and between 15%

Vol.107 (1) March 2016



Vol.107 (1) March 2016

to 35% for 16QAM.

Considering that incorporating apriori information adds
approximately, worst case, 60% additional calls, as
compared to not using apriori information, but with the
mSQRD also resulting in a 60% overall reduction in the
number of calls the overall effect is that the apriori sphere
decoder is not significantly more complex when used for
iterative decoding. Deciding the decoding order based on A
does not appear to increase the decoding complexity at all.
This is most likely due to the fact that the MAP outputs of
both the MIMO decoder and the FEC decoder are supposed
to, ideally, be highly correlated. Should that not be the case
then the apriori decoder would likely have a significantly
increased complexity.

Figure 9 shows that whilst the sorted algorithms yield
a significant decrease in computations, with respect to
the unsorted decoder, at high Ej, /Ny values, the decoding
complexity is already an order of magnitude less for QPSK
and two orders of magnitude for 16QAM.

10. CONCLUSION

In this paper an algorithm sphere decoder that accepts
apriori information in LLR form was proposed. A simple
iterative MIMO decoder was used to evaluate the algorithm
practically. It was shown that sorting the order in which
the symbols are decoded can have a great impact on the
computational requirements of the algorithm. Based on
the good performance of the SQRD algorithm in reducing
the complexity of the decoder, a modification of the
algorithm to incorporate apriori information was proposed.
The mSQRD algorithm was shown to yield the greatest
reduction in computational requirements of the decoder.
It was also shown that in the case of iterative decoding
the addition of apriori information does not significantly
increase the computational requirements. The addition
of apriori information actually reduced the computational
requirements. This is contrary to what was expected since
the pruning of the tree is delayed with the addition of
apriori information.
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