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ABSTRACT 

A hybrid solver dynamically coupling kinetic solutions 

computed in local rarefied areas and Navier–Stokes solutions in 

the rest of the flow is used for the analysis of heat transfer in a 

rough microchannel. Roughness geometry is modeled as a 

series of triangular obstructions and a relative roughness up to 

5% of the channel height is considered. Wide range of the 

Knudsen numbers (from 0.01 up to 0.1) is considered, at low 

Mach number (nearly incompressible flow). The competition 

between roughness, rarefaction and heat transfer effects is 

discussed in terms of averaged Nusselt and Poiseuille numbers 

and mass flow rate. Discrepancy between the full Navier–

Stokes and hybrid solutions is investigated, assessing the range 

of applicability of the first order slip boundary condition for 

rough geometries with and without heat transfer. 

 

INTRODUCTION 

A considerable amount of research activity in the last 

decade has been devoted to the understanding of small scale 

fluid and heat transfer phenomena. In particular, gas flows, 

such as those in micro heat exchangers and micro fluid 

machines, pose several specific problems, from the onset of 

rarefaction related phenomena to the presence of multi-scale 

relevant features.  

Navier-Stokes equations, in fact, work perfectly for macro-

scale flows, but at micro-scale may become inaccurate in local 

rarefied areas. Such inconsistency can be partially overcome by 

applying appropriate slip boundary conditions. However, as 

indicated in literature, the first order slip condition is valid only 

for local Knudsen number (Kn, ratio between mean free path 

and relevant geometrical scale) less than 0.1, and any attempt to 

increase its range, resorting to higher order slip boundary 

conditions, is not trivial and highly geometrical dependent. On 

the other hand, micro-scales are accurately described by more 

general, but much more time and memory consuming kinetic 

equations, which require a discretization in both physical and 

velocity spaces. However, within the range of Knudsen number 

typical for MEMS devices, the flow can usually be subdivided 

into a local rarefied regime area along the walls and an internal 

core, where the flow behaves as a continuum. Therefore, a 

multi-scale hybrid continuum/kinetic solver, capable of an 

accurate, yet efficient simulation of multi-scales flows, offers a 

promising engineering approach and an up to date topic in 

scientific community [1-3].  

Such a hybrid scheme, using a dynamically updated 

decomposition of the physical space into kinetic and continuum 

sub-domains identified via a gradient-based Knudsen number, 

was described and successfully applied to the simulation of gas 

flow through a slit in [4]. The solver reliability for near wall 

modelling was later demonstrated in [5] via simulation of the 

gas flow through a channel of finite length for a wide range of 

Kn number and pressure ratios.  

The flow over a rough surface is an example of engineering 

problem where the combination of kinetic and continuum scale 

features plays a significant role. In microchannel analysis, in 

fact, the Knudsen number is defined using the hydraulic 

diameter as relevant geometrical scale. However, it is well 

known that in MEMS fabrication, due to the small scale, it is 

unlikely to create a perfectly smooth surface. Thus, if 

roughness effect is the object of the analysis, the relevant 

geometrical scale is related to the roughness details rather than 

to the hydraulic diameter, and rarefaction is important even if 

the diameter based Kn is relatively high. Pure Navier-Stokes 

equations in principle should thus be limited to flows where the 

roughness size, rather than the diameter, is much smaller than 

the mean free path of the gas. As was shown in [6] this 

condition may not be fulfilled in application of practical 

interest; thus, Navier-Stokes approach does not allow to obtain 

correct results for microchannel pressure losses even if most of 

the channel core flow is safely in the continuum regime.  

On the other hand the application of the hybrid solver, 

implementing a kinetic approach near the roughness surface, 

provides results in a better agreement with fully kinetic ones at 

a much lower computational cost [6].  

Compressibility and rarefaction effects on the heat transfer 

in rough microchannel has been analysed in [7] via Navier-

Stokes solver. Highly rarefied flows (Knudsen numbers from 

0.02 to 0.12) were computed in [9] via direct Monte Carlo 

simulations in very rough geometries, from 5% up to 12%, 

while the low Mach number level prevented any 

compressibility effect. A pure kinetic solver based on the 

solution of the S-model equation was used in [10] for wide 
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ranges of Mach (up to choked flow) and Knudsen numbers 

(from slip to transition regime), demonstrating a significant 

influence of surface roughness, rarefaction and compressibility 

on the friction factor.  

Nowadays, little is still found in the literature for the 

investigation of roughness effect in the presence of heat transfer 

for a relatively higher value of Kn, lying close to the border of 

continuum hypothesis validity (i.e., in the slip-flow regime). 

For example, in [7, 8, 11] using Navier-Stokes equations a 

noticeable effect of roughness on Nusselt number has been 

demonstrated, with a reduction in Nu with increasing Knudsen 

number, while the value of Kn number was kept relatively low. 

Even among the most recent papers [12,13] the continuum-slip 

approach is usually followed, and focus is shifted on the 

possible roughness shapes. 

Here, the hybrid solver [6] is applied to the analysis of the 

effect of the surface roughness on the heat transfer in gaseous 

flow: thus, the actual reliability of the first order slip boundary 

condition for the simulation of flow along rough fine-textured 

surfaces, with and without a heat transfer, is estimated.  

NOMENCLATURE 

 
c = ξ – V [m/s] Relative speed of a single particle against a 

background gas 

DH [m] Hydraulic diameter 

etot [J/m3] Macroscopic total energy 

eint [J/kg] Macroscopic internal energy 

f(t, x, ξ) [s3/m6] Particle velocity distribution function 

f [-] Friction coefficient, dimensionless 

F(U) [-] Flux 

h [W/(m2 K)] Local heat transfer coefficient 

H [m] Height of the channel 

k [1.38.10-

23J/K] 

Boltzmann constant  

Kn [-] Knudsen number, dimensionless 

M [s3/m6] Maxwellian distribution function 

m [kg] mass of the molecule 

n [1/m3] local number density 

Nu [-] Nusselt number 

p [Pa] pressure 

Po [-] Poiseuille number, dimensionless 

q [W/m2] Heat flux vector 

R = k/m [8.3145 

J/mol K] 

ideal gas constant 

s [m] Distance between peaks 

t [s] Time 

T [K] Temperature 

U  Vector of conservative macroscopic variables 

V=(u, v,w) [m/s] Gas bulk velocity vector 

x=(x, y,z) [m] Position vector 

W [ ] Mass flow rate  

 

Special characters 

γ [-] Specific heat ratio, dimensionless 

Γc [m] coupling boundary 

δij [-] Kronecker delta 

ε [-] Relative roughness, dimensionless 

η(x) [m] Outward normal vector 

κ [W/m K] Thermal conductivity 

λ [m] Mean free path 

µ [kg/m s] Gas viscosity 

ξ [m/s] Particle velocity vector 

ξx, ξy, ξz [m/s] Components of particle velocity vector 

ρ [kg/m3] Density 

ΩK [m2] Kinetic domain 

ΩNS [m2] Navier-Stokes domain 

 

Subscripts 

av  Averaged between inlet and outlet values 

b  Bulk value 

CE  Chapman-Enskog 

c  Coupling 

e  Exit 

i  Incoming 

int  Internal 

is  Isentropic 

K  Kinetic 

l  Local value 

o  Outcoming 

tot  Total 

w  Wall 

0  Total value, equilibrium state 

STATEMENT OF THE PROBLEM 

We consider a planar microchannel of width H and length 

l = 10H, connecting two reservoirs of size Lx × Ly, as 

represented in Figure 1. Flow is symmetric about y = 0, 

allowing simulation of only a half of the domain. The 

monatomic gas in the reservoirs far from the channel is in 

equilibrium at constant pressures p0 in the inlet reservoir and pe 

in the outlet (p0 > pe), and temperature T0. The walls are 

assumed at a fixed temperature Tw. The wall roughness, shown 

in Fig. 2, is modelled as a series of triangular obstructions with 

a sharp angle of 45°. The height of a single peak is h = εH and 

the distance between peaks is s = 5h. Several relative roughness 

heights ε have been considered: 1.25%, 2.5% and 5%. For sake 

of computational efficiency only a small channel part of length 

Lr = 3.15 H placed near the channel exit is modelled as a rough 

one [6], while the rest of the channel and reservoirs walls are 

smooth, as in Fig. 1. Hence, the rough region includes 12 

roughness ridges for ε = 5%, 24 ridges for ε = 2.5% and 48 

ridges for ε = 1.25%. At low pressure ratio (low Ma), the inlet 

smooth region allows for fully developed flow approaching the 

rough region. It should be noticed that the interface Ic between 

kinetic and NS sub-domains is dynamically updated during the 

computation. 

The inlet/outlet boundary conditions are standard and 

specify the inlet total temperature T0, total pressure p0 and flow 

direction, and the static pressure pe at the outlet (p0 > pe): 

γ / (γ 1)

20 γ 1
1

2
is

e

p
Ma

p

−
− 

= + 
 

     (1) 

20 γ 1
1

2
is

e

T
Ma

T

− 
= + 
 

      (2) 

0 0 0ρ /p RT=       (3) 

where Mais is the isentropic exit Mach number, i.e. Ma that 

would arise from an isentropic flow with the same pressure 

ratio as the real one. 

The monatomic gas flows due to a pressure difference 

between upstream and downstream reservoirs. The static inlet 

pressure pi is the result of computation, although, due to the low 

inlet velocities, it almost coincides with inlet total pressure p0. 

Rarefaction of gas flow is determined by Knudsen number Kn:  

λ
=Kn

H
       (4) 
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where the local mean free path λ for the hard-sphere molecular 

model, using in the present study, is defined as:  

16µ
λ

5ρ 2π

m

kT
=       (5) 

L
y

x

H/2

I
c

y

NSΩ

L
r

l

Ω K

L
x

 

Figure 1 Sketch of computational domain  

h

s= 5h

45  

Figure 2 Rough elements details 

GLOBAL AND LOCAL FLOW PERFORMANCES  

The channel global and local performance are presented in 

terms of the Poiseuille number, Nusselt number and mass flow 

rate. The mass flow rate through the channel is non 

dimensionalized using the analytical mass flow rate in the limit 

of free molecular regime 
fmm& :  

=
&

&
fm

m
W

m
                  0

0π
=&

fm

Hp
m

v

,   (6) 

where &m is computed as :  
0

/2
2 ρ( , ) ( , )

H
m x y u x y dy

−
= ∫& .    (7) 

The friction factor fr is defined as an averaged value either 

over a portion of a rough channel section or over a single 

geometrically periodic roughness element of length s. In both 

cases, fr is computed as following: 

2 2

ρ
2 2

ρ

∆ ∆
= =

∆ ∆ &

H avH

r

av av av

DDp p
f

L Lu m
,    (8) 

where the hydraulic diameter DH = 2H, overbar means averaged 

values over cross section, ∆ and av are the difference and the 

averaged between inlet and outlet values. The Poiseuille 

number Poε is then written in terms of the local Re as: 

22

ε

ρ
2 2

µ µ

∆ ∆
= ⋅ = =

∆ ∆ &

av HH

r

av av av av

DDp p
Po f Re

L u L m
,   (9) 

ρ

µ µ
= =

&
av av h av H

av av

u D m D
Re .    (10) 

Due to the mass conservation, Re changes only slightly 

along the channel, because of the µ variation with temperature. 

Global Po number is computed between the inlet and outlet 

section of a rough sector Lr of length L
*
 = 2.25 H, (i.e., skipping 

small regions both at the inlet and exit of a rough sector, to 

avoid entrance and exit effects), including 9, 18 and 42 rough 

modules, for relative roughness height ε = 5%,  2.5% and 

1.25%, respectively. Global values are computed over the same 

size section L
*
 also for the smooth channel case, ε = 0.   

A common performance parameter for the heat transfer in 

micro/macro channels is the Nusselt number: if h is the local 

heat transfer coefficient, we may define a local Nusselt as 

( )

κ κ( ( ))

H H

l

w b

h D q x D
Nu

T T x
= =

−
    (11) 

where q is the heat flux, κ is the thermal conductivity, Tb is the 

bulk flow temperature. Global Nusselt number Nuε is computed 

by averaging over a rough/smooth channel section L
*
 as: 

ε *

*

1
( )

L

Nu Nu x dx
L

= ∫      (12) 

HYBRID METHOD 

The main challenge in the development of hybrid solver is 

the identification of kinetic and continuum domains, as well as 

the choice of a proper coupling between these domains. One of 

the advantages of the present hybrid algorithm is that it allows 

to couple existing in-house codes for the numerical solution of 

the Boltzmann kinetic (and its model) [14] and Navier-Stokes 

equations [7].  

The choice of breakdown criterion and its threshold value, 

defining the size and position of kinetic domains, is important: 

an underestimated kinetic domain leads to incorrect numerical 

results [4, 5], an overestimated one reduces the advantage in 

computational efficiency. The most robust and popular criterion 

is a local, gradient-length Knudsen number KnGL(x) [3-5]: 

ρ
( ) max( , , )

GL GL GL V GL T
Kn Kn Kn Kn=x ,  (13) 

| |
( )Φ

∇Φ
=

Φ
GL

Kn Knx ,      (14) 

where Kn is the local Knudsen number (eq. 4), Φ = (ρ, |V|, T) 

the vector of local flow parameters. The kinetic solver is 

activated when KnGL is larger than the threshold value Ξ. As 

shown in [4, 5], a threshold value Ξ = 0.1 already guaranteed a 

difference between hybrid and kinetic solutions within 1%.  

The condition KnGL(x) ≥ Ξ identifies the kinetic domain ΩK, 

where the S-model kinetic equation [15] is solved :  

( )( , )
µ

S

f f p
J f f S f

t

∂ ∂
+ = = −

∂ ∂
ξ

x
    (15) 

( )

2 2

2

2 5
(ρ, , ) (ρ, , ) 1

2 215ρ

m m
S T M T

kTkT

  
 = + −    

qc c
c c  (16) 

2

3/2

ρ
(ρ, , ) exp

2(2π )
M T

RTRT

 
= − 

 

c
c    (17) 

where f = f(t, x, ξ) is the velocity distribution function, i.e. the 

probability of finding a molecule with velocity 

ξ = (ξx, ξy, ξz) ∈ R
3
 in the position x = (x, y, z) at the time t. 
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S(ρ, c, T) and M(ρ, c, T) are the standard local Shakhov and 

Maxwell distribution functions, respectively.  

The solution on the continuum domain, where KnGL(x) < Ξ, 

is computed from viscous, compressible two-dimensional NS 

equations written in terms of conservative variables as: 

0
t

∂ ∂
+ =

∂ ∂

U F(U)

x
,     (18) 

( )ρ,ρ ,ρ
tot

e=U V ,  2= / 2
tot

e e + V   (19) 

where etot is the total energy per unit mass, U is the vector of 

macroscopic values, F(U) is the flux vector, including the 

convective (inviscid) and diffusive (viscous) components.  

In the kinetic description of the gas flow the macroscopic 

density, momentum and internal energy per unit mass and the 

heat fluxes are defined by integration over whole velocity space 

R
3∈[-∞;∞] as following:  

ρ = ∫ fdξ  ρ( , ) (ξ ,ξ )= ∫
T T

x y
u v fdξ  21

ρ
2

= ∫e fdc ξ  (20) 

2
( , ) ( , )= ∫

T T

x y x y
q q m c c fdc ξ     (21) 

Since the flow is two-dimensional it is possible to eliminate 

the third velocity component in a model equation [4, 15]. The 

S- model equation is discretized in both velocity and physical 

spaces and solved using the explicit-implicit numerical scheme 

[4, 15]. The transport term in equation (15) is treated explicitly 

and approximated by a standard finite volume scheme. In 

particular, the numerical fluxes are determined by the standard 

finite volume TVD scheme with minmod limiter [12]. 

Navier-Stokes solver is based on a hybrid finite difference-

finite volume method with second order accuracy in space and 

time [4, 17]. The solution is advanced in time via Crank 

Nicolson integration scheme.  

The coupling between NS and kinetic solutions is achieved 

by matching half fluxes of mass, momentum and energy at the 

sub-domains interface Ic, thus taking care of the conservation of 

mass, momentum and energy through the interface [4].On the 

interface, the NS model acts on the kinetic one imposing a 

standard Chapman–Enskog (CE) velocity distribution function 

for the particles coming into the kinetic sub-domain ΩK [4, 18], 

while fluxes of mass, momentum and energy predicted by the 

kinetic solver are imposed into NS sub-domain ΩNS. 

The interface Ic position is recomputed at each time step; if 

a node considered as continuum (NS) at previous time step 

becomes a kinetic ones at current time step, the kinetic 

distribution function is initialized as the CE distribution 

function.  

Boundary conditions in the continuum domain are specified 

according to eqs. (1-3). In the kinetic domain, at inlet/exit 

boundaries Maxwell velocity distribution function is assumed 

for incoming particles with density, temperature and velocity 

specified in the inlet/outlet reservoirs. At solid wall in ΩK 

domain the Maxwell diffuse reflecting boundary condition with 

the full accommodation is applied [4], while in ΩNS subdomain 

the first order slip and Smoluchowski temperature jump 

boundary conditions are used. The hybrid code is parallelized 

in order to improve its efficiency using MPI message passing 

protocol.  

The problem is recast in terms of non-dimensional variables 

using inlet reservoir equilibrium values as reference ones: 

density ρ0, temperature T0, reference dynamic viscosity µ0, most 

probable velocity v0 = (2RT0)
0.5

 and the channel height H.  

FLOW CONDITIONS 

Computations have been carried out at a fixed pressure ratio 

pe/p0 = 0.9 and Knudsen number from 0.01 up to 0.1 (slip 

regime). The dimensionless temperature of the walls is set 

lower than the inlet temperature T0 and equal to Tw = 0.9 T0.  

It should be noticed that a fully kinetic solution of the 

problem would require larger reservoirs [12], while the use of a 

hybrid solver allows to decrease the reservoirs size down to 

Lx × Ly = 5 × 3, significantly decreasing the computational time 

due to quicker convergence of NS solver in these regions.  

In order to accurately model the rough geometry 712 nodes 

in the streamwise direction (dimensionless minimum grid 

spacing is 0.004) and 40, 45 and 50 nodes in the transverse 

direction for relative roughness height ε =5%, 2.5% and 1.25%, 

respectively, have been used. Minimum transverse grid spacing 

close to the wall is around 0.003. Decreasing this grid spacing  

down to 0.001 introduces maximum differences for the 

Poiseuille number and the mass flow rate less than 0.8% and 

0.2%, respectively, for both NS and hybrid solvers. 

The two-dimensional velocity grid should be selected large 

enough to capture all of the features of the problem: thus, the 

velocity space boundary should satisfy the following condition: 

vmax ≥ max(|u|, |v|) + 4Tmax
0.5

. The number of grid points for 

each velocity component is 24 and velocity space is bounded 

by vmax = 5. The optimal number of grid points in the velocity 

space was chosen checking that doubling velocity points 

produces a change in mass flow rate lower than 1-1.5%.  

Since the time step is unique for both solvers, it should 

satisfy the stability (or accuracy) constraint ∆t = min(∆tK, ∆tNS). 

The explicit kinetic time step should be limited by the CFL 

condition with CFL = 0.4, while ∆tNS is arbitrary. The solution 

is considered converged when the criterion ||U
n+1

-U
n
||L2 < ∆ is 

fulfilled with L2 norm and ∆ = 10
-7

. 

RESULTS AND DISCUSSION 

Heat transfer effect  

Computations  at high pressure ratio pe/p0 = 0.9 allows for a 

nearly incompressible flow condition while varying the 

rarefaction level and the relative roughness height.  

Figure 3 shows the global Nusselt number Nuε (eq. (12)) as 

a function of local exit Knudsen number Kne (based on mean 

free path at the exit of rough section λe and channel height H) 

for relative roughness height ε equal to 5%, 2.5%, 1.25% and 0 

(smooth), computed using the hybrid solver. It can be seen that 

the global heat transfer rate, i.e. Nuε, decreases with an increase 

of rarefaction for both smooth and rough wall channels, as 

reported in open literature [7,12,13]. When the rarefaction 

increases the local mean free path of gas particles increases 

resulting in a decrease of interaction between particles; hence, 

the reduction of global effect of the wall for both rough and 

smooth channel flows. 

Moreover, Figure 3 shows a comparison between the Nu 

number computed by the hybrid solver and pure kinetic S-

model results for ε = 0 and 5%: hybrid and kinetic computed 
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Nuε numbers are in a good agreement for both rough (ε = 5%) 

and smooth (ε = 0) channels for the whole range of Kne. Thus, 

the hybrid code can be considered a reliable solver for flow and 

heat transfer computations over rough fine-textured surfaces. 

3

4

5

 6

7

0.01 0.02  0.04 0.06   0.08

Kne

Nuε ε=5%

ε=2.5%

ε=1.25%

smooth

S-model

 
Figure 3 Global Nusselt number Nuε vs. Kne. 
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N
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Figure 4 Local Nusselt number Nul along streamwise direction 

at Kne = 0.009: empty symbols, hybrid; solid symbols NS 

 

The wall roughness results in additional decrease of Nuε in 

comparison with the smooth channel. For example, at 

Kne = 0.0091 this reduction is around 13%. This can be 

explained if we consider the distribution of local Nu number 

along rough and smooth channels (Fig. 4). Apparently, the 

relatively high value of heat transfer at the top of obstacles  

cannot compensate the heat reduction within the valley.  

Figure 4 shows that within the valleys the discrepancies 

between NS and hybrid solutions do not exceed 5%, while 

around rough peaks there is even a qualitative difference 

between results. For smooth surface NS and hybrid Nu provide 

the same results, closer to the analytic value for continuum, 

incompressible flow of 7.54. 

It is interesting to check how the presence of the heat 

transfer affects other flow parameters, such as global Poiseuille 

number. For this purpose Po numbers vs. Kne for different 

relative roughness are shown in Fig. 5: the (cooling) heat 

transfer decreases Po number in comparison with flow without 

it: the maximum difference around 5% is reached for weakly 

rarefied flow (low Kn number), while for rarefied flow (higher 

Kn) the difference becomes smaller around 2.7%.  

Moreover, the increase of the height of wall roughness 

elements ε results in an increase of Poiseuille number due to an 

increase of the wall friction effect. As for the Nusselt number, 

the increase of rarefaction (Knudsen number) significantly 

affects the Poiseuille number. Although the Po number for a 

fixed Kn increases as the relative roughness ε increases, the 

value of Poiseuille number is larger at lower Kne number and 

decreases as Kne increases. In particular, for ε = 5% the highest 

Poε = 108 (solid symbols) is for lowest Kne = 0.009 and the 

lowest Poε = 73 (solid symbols) for highest Kne = 0.09. 

 60

 70

 80

 90

 100

 110

0.02  0.04 0.06  0.08 0.1

Kne

Poε ε=5%

ε=2.5%

ε=1.25%

smooth

 
Figure 5 Poε vs. Kne: empty symbols, without heat transfer; 

solid symbols, in the presence of heat transfer 

 

As was mentioned before, an increase in rarefaction results 

in a reduction of friction effect of the wall and hence in a 

reduction of global Po number for both rough and smooth 

channel flows. The same decrease of Poε with Knudsen number 

increase has been observed in [6, 8, 10] as well.  

First order boundary conditions accuracy 

To quantitatively estimate the applicability of NS solver 

coupled with the first order slip boundary condition for rough 

surface modelling (with and without heat transfer) the relative 

difference between NS and hybrid solutions in terms of global 

mass flow rate, Poiseuille and Nusselt numbers is computed as:  

1 ;       = , ,NS

h NS

h

W Po Nu−

Φ
∆Φ = − Φ

Φ
.  (22) 

The relative differences ∆Wh-NS, ∆Poh-NS and ∆Poh-NS in 

percent are shown in Figs. 6-8 for relative roughness height ε of 

zero (smooth channel), 1.25%, 2.5% and 5%.  

In the smooth channel NS solver results are in a good 

agreement with the hybrid ones in the whole range of the 

Knudsen numbers. With the rough surface we have an 

appreciable difference between results. Furthermore, the 

difference in terms of global parameters between hybrid and 

NS solvers strongly depends on rarefaction level, i.e. Kne. The 

difference in mass flow rate becomes larger than 5% for Kne 

around 0.04-0.05 (Fig. 6), in Poiseuille number for Kne around 

0.02. Nusselt number dependence on the wall treatment is even 

stronger, and the difference ∆Nuh-NS exceeds 5% already for 

relatively small Kn number, around 0.01 (Fig. 8). The larger 

difference between solutions in terms of Po number than in 

mass flow rate is, probably, due to the additional dependence of 

Po on not only density and velocity, but also viscosity (eq. (9)). 

Moreover, from Fig. 6 and 7 the differences continuum and 

hybrid results, for a given rarefaction level or  Kn value,  are 

not affected by the presence of heat transfer. The most relevant 

parameter is therefore the rarefaction level.  
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Figure 6 ∆Wh-NS vs. Kne: empty symbols, without heat transfer; 

solid symbols, in the presence of heat transfer. 
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Figure 7 ∆Poh-NS vs. Kne: empty symbols, without heat transfer; 

solid symbols, in the presence of heat transfer. 
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Figure 8 ∆Nuh-NS via Kne in the presence of heat transfer. 

CONCLUSION  

A hybrid solver, dynamically coupling the direct numerical 

solution of the S-model kinetic equation with Navier-Stokes 

equations solution, was applied to investigate the competition 

between rarefaction, roughness and heat transfer effects in a 

cooled microchannel. It was found that the roughness has a 

great effect on the flow characteristic in terms of Poiseuille and 

Nusselt numbers and mass flow rate. In particularly, the 

roughness increases Po number, while decreases mass flow rate 

and Nu number. On the other hand, an increase in rarefaction 

results in decrease of Po and Nu numbers and mass flow rate 

for both rough and smooth surfaces due to reduction of wall 

friction effect. Moreover, if surface roughness is taken into 

consideration the accuracy of the NS solution provided with 

first order slip boundary conditions is questionable even for 

relatively low values of the Knudsen number (Kn = 0.01-0.02) 

based on the channel height, probably due to the smaller scale 

effects related to the roughness peaks, while for a smooth 

surface the NS solution is reliable for Kn up to 0.1 (deviation 

from kinetic solution does not exceed 5%).  
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