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ABSTRACT 
This study investigates the transient MHD natural 
convection flow of viscous incompressible electrically 
conducting fluid in a vertical channel formed by two infinite 
vertical parallel plates in the presence of thermal-diffusion 
and thermal radiation. Analytical solutions for energy and 
momentum equation are derived using perturbation method 
for steady state operating condition for small value of 
radiation parameter. The time dependent energy and 
momentum equations under relevant initial and boundary 
conditions are solved using implicit finite difference 
method. The effects of the various involved parameters on 
the skin friction and Nusselt number at the channel surfaces 
are discussed. A series of numerical experiments shows 
that the time required to reach steady state velocity, 
temperature is directly proportional to the Prandtl 
number of the working fluid for fixed values of other 
controlling parameters.  
 
Keywords: Thermal-diffusion, thermal-radiation, MHD, 
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INTRODUCTION 
In nature, many flows are caused not only by the 
temperature differences but also the concentration 
differences. The rate of heat transfer is affected by these 
mass transfer differences especially in industries. The 
transport process exists in which heat and mass transfer 
simultaneously take place that results the combine 
buoyancy effect the thermal diffusion, the phenomenon 
of heat and mass transfer frequently occurs in 
chemically processed industries, distribution of 
temperature and moisture over agricultural fields, 
dispersion of fog and environment pollution and polymer 
production Raju et al. [1]. However, the impact of 
magnetic field and thermal radiation in heat and mass 
transfer could be very practicable both naturally and in 
many branches of science and engineering applications. 
They play a vital role in many industrial tasks for instance in 
polymer technology, metallurgy, chemical industry, power 
and cooling industry for drying, cooling of nuclear reactors 
and magnetohydrodynamic (MHD) power generators. With 
span in technology in many directions, the subject of MHD 
has developed in the use of magnetic fields and the range of 
fluid and thermal processes [2]. During the production and 
working life of microelectronic heat transfer devices; an 
electrically conducting fluid is subject to a magnetic field 
[3]. In such cases the fluid experiences a Lorentz force 
which changes the flow velocities. This in turn affects the 
rate of heat and mass transfer. By knowing these compound 
and complicated effects, new or improved designs in the 

manufacturing process can be developed [4]. It is interesting 
to mention that, the interaction of buoyancy with thermal 
radiation has increased due to its importance in many 
practical applications. Radiation effect is important under 
many isothermal and non-isothermal situations. If the entire 
system involving the polymer extrusion process is placed in 
a thermally controlled environment, then radiation could 
become important. The knowledge of radiation heat transfer 
in the system can, perhaps, lead to a desired product with a 
sought characteristic. Also, radiation effects on the 
convective flow are important in context of space 
technology and processes involving high temperature and 
very little is known about the effects of radiation on the 
boundary layer flow of radiating fluid past body [5].  
` 
Hence several models with Soret and Dufour effect in 
different heat and mass transfer problems has been studied. 
An excellent work on the Soret effect (thermal diffusion 
effect) on the onset of convective instability has also been 
investigated [6]. The use of pseudo-spectral Chebyshev 
collocation method, to analyze the influence of vibration on 
Soret-driven convection in porous media was carried out [2]. 
Bourich et al. [7] presented an analytical and numerical 
study on combined magnetic field and an external shear 
stress subjected to Soret convective fluid. Lin et al. [8] 
accounted for the Soret effect on the rapid heat and mass 
transfer problem in a slab, employing the Laplace transform 
method. Recently, Jha et al. [9] consider Dufour effect on 
the free-convection and mass transfer flow in a vertical 
channel when the boundaries are subjected to symmetric 
concentration and thermal input. Kumar [10] presented a 
theoretical treatment of unsteady hydromagnetic flow and 
heat and mass transfer of an incompressible electrically-
conducting and radiating fluid in a vertical channel filled 
with porous medium taking into account the Soret effects. 
Kesavaraya et al. [11] considered the effect of thermo-
diffusion on MHD mixed convective heat and mass transfer 
flow of a viscous fluid through a porous medium with 
radiation, heat generation and chemical reaction. Sundhakar 
et al. [12] explained the behaviours of chemically reacted 
unsteady MHD free convection flow in the presence of 
thermal diffusion and diffusion thermo effects. Sharma et al. 
[13] analyzed Soret and Dufour effects on unsteady MHD 
mixed convection flow past a radiative vertical porous plate 
embedded in a porous medium with chemical reaction. 
Sarada and Shaner [14] discussed the effect of Soret and 
Dufour number on an unsteady magnetohydrodynamic free 
convective fluid flow past a vertical porous plate in the 
presence of suction or injection. More recently, Ahmed et 
al. [15] carried out a parametric study on radiation, Soret 
and Dufour effects in MHD channel flow bounded by a long 
wavy wall and a uniformly moving parallel flat wall.     
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The objective of the present work is to examine the 
combined effects of thermal-diffusion and thermal radiation 
on transient MHD natural convection and mass transfer flow 
in a vertical channel. 

MATHEMATICAL ANALYSIS 
Consider transient combined free convective and mass 
transfer flow of a viscous, incompressible and electrically 
conduction fluid between two infinite vertical parallel 
plates. A uniform transverse magnetic field of magnitude 
B0 is applied in the presence of an incident radiation flux of 

intensity qr , which absorbed by the plate and transferred to 
the fluid. At time ′t ≤ 0 both the fluid and plates are assumed 
to be at rest at constant temperature T0 and constant 

concentration C0 respectively. At time ′t > 0 the temperature 

and concentration of the plate situated at ′y = 0 rise to Tw and
Cw  while the other plate at a distance H  from it, is fixed 
and maintained at temperature T0 and concentration C0 . The 
stream wise coordinate is denoted by ′x taken vertically 
upward direction and that normal to it is denoted by ′y . The 
flow is assumed laminar and fully developed means that the 
axial ( ′x - direction) velocity depends only on transverse 
coordinate, ′y . Since the plates are of infinite length, the 
velocity, temperature and concentration are function of ′y  
and ′t  alone. Using the Boussinesq’s approximation, the 
governing equations for the present physical situation in 
presence of thermal diffusion and thermal radiation in the 
dimensional form are: 

 
 
 

 
 
 

 
 
 

 
 
 
               Figure 1: Schematic diagram of the problem 
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where ′T  , is the dimensional temperature of the fluid, ′C is 
the dimensional concentration of the fluid, α is the thermal 
diffusivity, K  is the thermal conductivity,  ρ is the density 

of the fluid, β is the coefficient of the thermal expansion,σ1
is the fluid electrical conductivity, Dm and Dt are the mass 
diffusivity and dimensional co-efficient of thermal-diffusion 
effect respectively,  is the gravitational acceleration and 

B0  is the strength of applied magnetic field.  
 
The quantity qr  appearing on the right hand side of equation 
(2) represents the radiative heat flux in the ′y -direction. 
Where the radiative heat flux in the ′x -direction is 
considered insignificant in comparison with that in the ′y -
direction. The radiative heat flux term in the problem is 
simplified by using the Rosseland diffusion approximation 
for an optically thick fluid according to [16]. 
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4
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where σ is Stefan-Boltzmann constant and κ ∗ is the mean 
absorption coefficient. This approximation is valid for 
intensive absorption, that is, for an optically thick boundary 
layer. Despite these shortcomings, the Rosseland 
approximation has been used with success in a variety of 
problems ranging from the transport of radiation through 
gases at low density to the study of the effects of radiation 
on blast waves by nuclear explosion [15] 

To obtain the non-dimensional form of the above equations, 
the following dimensionless variables are introduced. 
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Substituting Equations (5) and (6) in Equations (1)–(3), we 
obtain the following dimensionless equations for velocity, 
temperature and concentration respectively. 
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where N  is the sustention parameter, M is the magnetic 
interaction parameter, Pr  is the Prandtl number, R  is the 
radiation parameter, CT  is the temperature difference 

parameter, Sc  is the Schmidt number and St  is the Soret or 
thermal-diffusion parameter. Initial and boundary conditions 
in the dimensionless form are   
 
t ≤ 0 : u = 0,θ = 0,φ = 0, 0 ≤ y ≤ 1

t > 0 :
u = 0,θ = 1,φ = 1, at y = 0

u = 0,θ = 0,φ = 0, at y = 1

⎧
⎨
⎩

                                        (10) 

 
ANALYTICAL SOLUTION 
The governing equations presented in the previous section 
are highly nonlinear and exhibited no exact solutions. In 
general such solution can be very useful in validating 
computer routines of complicated time dependent two or 
three-dimensional free convective and radiating conducting 
fluid and comparison with experimental data. It is therefore 
of interest to reduce the governing equations of the present 
problem to the form that can be solved analytically. A 
special case of the present problem that exhibit analytical 
solution is the problem of steady state MHD Natural 
convection and mass transfer flow in a vertical channel with 
combined thermal-diffusion and thermal radiation effects. 
The resulting steady state equations and boundary 
conditions for this special case can be written as 
d
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the boundary conditions are 

u = 0,θ = 1,φ = 1 at y = 0

u = 0,θ = 0,φ = 0 at y = 0
                                                  (14) 

 
In order to construct an approximate solution of 
equations (11) to (13) subject to equation (14), we employ 
a regular perturbation method by taking a power series 
expansion in the radiation parameter R such as 
 

u y( ) = u0 y( ) + Ru1 y( ) + O R
2( )                            

θ y( ) = θ0 y( ) + Rθ1 y( ) + O R
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 where R is the radiation parameter  R ≪ 1( ) . The second 

and high order terms of R  give correction to u0 ,θ0  and 

φ0  that account for thermal radiation effect. Substituting 
equations (15) into equations (12) - (14) and equating the 
like powers of , the required boundary value problems 
are: 
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The relevant boundary conditions to be satisfied are:  
 

u0 = u1 = θ1 = φ1 = 0,θ0 = φ0 = 1 at y = 0

u0 = u1 = θ0 =θ1 = φ0 = φ1 = 0 at y = 1

⎧
⎨
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      (22) 

 
The solutions of equations (16) to (21) subject to boundary 
conditions (17) are 
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Using (23), we write the steady state rate of heat transfer 
(Nusselt number) on the boundary: 

R
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Also, using (18), we write the skin friction coefficient as 
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where B = 1 + CT   while the constant χi 's   are not given in 
order to reduce the size of the work. 
 
NUMERICAL PROCEDURE 
The nonlinear partial differential equations (7) - (9) are 
solved numerically using semi-implicit finite difference 
scheme. We used forward difference formulas for all time 
derivatives and approximate both the second and first spatial 
derivatives with second order central differences. The semi-
implicit finite difference equation corresponding to equation 
(7) - (9) is as follows 
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with the following initial and boundary conditions: 
 

ui,0 = 0, θi,0 = 0,φi,0 = 0, for all i = 0

u0, j =1, θ0, j = 1,φ0, j = 1

uM , j = 0,θM , j = 0φ0, j = 1

⎫

⎬
⎪

⎭
⎪

                                

(31) 

 
Using the known values of θ and φ at grid point t = 0 and 
reducing the solution to tri-diagonal matrix we obtained 

temperature and concentration fields at time ti+1 = ti + δ t

using the known values of the previous time t = ti  for all 
i = 1, 2,…M − 1 . Then the velocity field is evaluated using the 
already known value of temperature and concentration fields 
obtained at ti+1 = ti + δ t . These processes are repeated till 
the required solution of θ , φ  and u  are gained at 
convergence criteria. 
 

abs u,θ ,φ( )exact − u,θ ,φ( )num < 10
−3        (32) 

 
The iterative system does not restrict time step and the 
technique is always convergent and unconditionally stable 
 
 
RESULT AND DISCUSSION 
In the present work, numerical calculation on transient 
MHD natural convection and mass transfer flow of viscous 
incompressible electrically conducting fluid in a vertical 
channel formed by two infinite vertical parallel plates in the 
presence of thermal-diffusion and thermal radiation was 
carried out. The radiation parameter R( ) in the present work, 
is in the range of 0 ≤ R ≤ 1.2 because large value of R , lead 
to finite time temperature blow up since the terms associated 
with R  are strong heat sources [17], the temperature 
difference CT( ) , thermal-diffusion parameter St( ) , 

Schmidt number Sc( )  , the sustention parameter N( )  
appearing in eqns. 7 and 12 measures the relative 
importance of mass and thermal–diffusion in the buoyancy–
driven flow is taken positive for thermally assisting flows to 
enhance the fluid velocity and Prandtl number Pr( )   chosen 
as 0.71 and 7.0 that physically represent two fluids air and 
water, respectively. Moreover, time is chosen between 
0.2 ≤ t ≤ 8.5  so as to capture the transient behavior of both 
velocity and temperature. Besides, all other parameters are 
taken arbitrary. To clearly give an account of the flow 
governing parameters on velocity, temperature, skin friction, 
and Nusselt number, line graphs are depicted in Figures 2 
through 18. The numerical scheme was validated using the 
steady state (perturbation) solution obtained from equation 
(16) and (17); and our results are found in good agreement 
between numerical and perturbation solution in a steady 
state situation as depicted in table (1). 

Figure 2(a & b) depicts the influence of perturbation 
parameter R . During the course of the work it is 
observed that for R ≤ 0.1 the perturbation solution 
coincides with the numerical solution see Figure 2(a). 
For R ≥ 0.1 , the perturbation solution breaks down. And 
its increasing effect becomes more magnified as R ≥ 0.5  
as shown in Figure 2(b).    

The effect of thermal–diffusion parameter St is highlighted 
in Figure 3. From these two Figures (a & b) it is observed 
that the value of the steady–state velocity is qualitatively 
same irrespective of values of St and  of the two fluids 
air Pr = 0.71( )  or water Pr = 7.0( )  yet the result shows 
buoyant influence of dimensional time and thermal-
diffusion parameter during transient state as depicted  

= φi−1
K+1( ) − 2φi

K+1( ) +φi+1
K+1( )

δ y( )2

+St
θi−i

K( ) − 2θi
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K( )

δ y( )2

Pr
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Figure 2. Effect of perturbation parameter on velocity for fixed values of CT = 0.01, N = 1, M = 1, Sc = 2, St = 0.2 . 

Figure 3. Effect of thermal-diffusion parameter on velocity for fixed values of CT = 0.01, N = 1, M = 1, Sc = 2,  

 

Figure 4. Effect of radiation parameter on velocity for fixed values of CT = 0.01, N = 1, M = 1, Sc = 2, St = 0.2 . 

Figure 3a in comparison with 3b.  

Figure 4(a & b) shows the influence of the thermal radiation 
parameter R  on transient and steady–state velocity. It is 
observed from these figures that the velocity increases with 
increase in nondimensional time. There is significant 
influence of R  and nondimensional time on the transient 
state velocity. In addition, the steady–state values of the two 
fluids are independent on Pr . 
 
It is observe from Figure 5(a &b) that the velocity decreases 
with increase in the value of Sc. The Figures also delineate 
that the velocity increases with nondimensional time and 
ultimately reaches its steady–state value.  

According to Figure 6(a & b), the velocity increases with 
increase in sustention (buoyancy ratio) parameter N  and 
nondimensional time t during transient and steady–state. It is 
also noted that the transient state values are higher in Figure 
6a Pr = 0.71( ) in comparison with Figure 6b Pr = 7.0( )  while 

the inverse is the case during steady–state due to the 
influence of Prandtl number Pr .  

Figure 7 depict the temperature profiles for different values 
of thermal radiation R and time t for fixed value of 
CT = 0.01 . From this Figure we observed that temperature 
increases with increase in thermal radiation R and 
nondimensional time t until steady–state value reach. It is 
recorded in Figure 7b that temperature increases more 
significantly as R  and t increases reference to value of 
Prandtl number Pr = 7.0( ) in comparison with 7a Pr = 0.71( ) . 
However, during transient state the temperature is high 
incased of air in comparison with water see Figure 7(a & b). 
This is due to the physical fact that, as the Prandtl number 
increases; the thermal diffusivity of the fluid reduces which 
results in a corresponding decrease in the fluid temperature. 
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Figure 5. Effect of Schmidt number on velocity for fixed values of CT = 0.01, N = 1, M = 1, St = 0.2 . 

Figure 6. Effect of sustention parameter on velocity for fixed values of CT = 0.01, N = 1, M = 1, Sc = 2, St = 0.2 . 

Figure 7. Effect of radiation parameter on temperature for fixed value of CT = 0.01 . 

Figure 8. Effect of Schmidt number on concentration for fixed values of CT = 0.01, R = 1.0, St = 5.0 . 
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Figure 9. Effect of radiation parameter on concentration for fixed values of CT = 0.01, Sc = 2.0, St = 5.0 . 

Figure 10. Effect of thermal-diffusion parameter on concentration for fixed values of CT = 0.01, R = 0.8, Sc = 2.0  
 

Figures 8 – 10 explain the effects of increasing the 
Schmidt number Sc , thermal radiation R  and thermal–
diffusion St . With all other parameters constant, 
increasing Sc and R  decreases the concentration see 
Figures 8 and 9 respectively. On the other hand 
increasing St  enhances the concentration as illustrated 
in Figure 10. These Figures (8, 9 & 10) further shows 
that as time increases concentration decreases and 
finally attains its steady state values. Also in Figure 8 the 
numerical values of steady state concentration increases 
with increase of Sc in case of air while the steady state 
concentration value is independent of Sc when Pr = 7.0
see Figures 8a and b respectively. It is observed from 
Figures 9 and 10 that the steady state concentration 
decreases and strictly depend on the values of R  and St . 
It is therefore important to mention that for large 
Radiation parameter R( )  or thermal diffusion St( )  or 
both result to negative values of concentration at large 
time. This is due to the fact that at large time the value of 
∂
2
θ ∂y

2  appearing at the right hand side of equation (9) 
is negative and is multiplied with St . 

 
Figure 11. Skin friction against Sc  at y = 0 for fixed values 
of CT = 0.01, M = 1, N = 1, Pr = 0.71, R = 0.1, St = 0.2 . 
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Figure 12. Skin friction against M  at y = 0 for fixed values 
of CT = 0.01, N = 1, Pr = 0.71, R = 0.1, Sc = 2.0, St = 0.2 . 

 
Figure 13. Skin friction against R  at y = 0 for fixed values 
of CT = 0.01, M = 1, N = 1, Pr = 0.71, Sc = 2.0, St = 0.2 . 
 

 
Figure 14. Skin friction against St  at y = 0 for fixed values 

of CT = 0.01, M = 1, N = 1, Pr = 0.71, R = 0.1, Sc = 2.0 . 
 
In Figures 11 through 16, the variation of skin friction for 
air Pr = 0.71( )   and water Pr = 7.0( )   at	   the	   plate	   y = 0 are 
narrated. Figure 11 and 12 depict the variation of skin 
friction with respect to Sc, M  and time. From the set out of 
these Figures it reflect that the skin friction increases with 
time and ultimately reaches its steady state value. It is 
observed from these two figures that as Sc  and M  increases 
the skin friction decreases.  

Figures 13, 14, 15 and 16 illustrate in particular the increase 
in the values of skin friction with increasing R, St , CT , N  
and time t, when all other parameter values are fixed. See 
Figures 13 through 16 respectively. 

Figures 17 and 18 reveal that as dimensional time increases 
Nusselt number decreases and finally achieved its steady–
state value. Furthermore Nusselt number increases with 
increase of CT  (temperature difference) while the 
reverse is true for R . 

 
Figure 15. Skin friction against CT  at y = 0 for fixed values 
of M = 1, N = 1, Pr = 0.71, R = 0.1, Sc = 2.0, St . 
 

Figure 16. Skin friction against N  at y = 0 for fixed values 
of CT = 0.01, M = 1, Pr = 0.71, R = 0.1, Sc = 2.0, St = 0.2 . 
 

Figure 17 Nusselt number against CT at y = 0 for fixed 
value of R = 0.1 . 
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Figure 18. Nusselt number against R at y = 0 for fixed value 
of CT = 0.01 . 
 
RESULT VALIDATION 
In order to verify the accuracy of our results, we have 
considered the analytical solutions (steady–state) obtained 
from equation (25) and that of semi-implicit finite difference 
equation (29). These computed results are tabulated in Table 
1. It is interesting to observe from this Table 1 that the 
transient and steady state solutions results (under some 
limiting conditions) are in very good agreement at large 
value of time , which clearly shows the correctness of 
our numerical (computed) scheme. 

Table 1. Comparison of the numerical values of the 
transient velocity obtained using finite difference method 
and the steady state velocity obtained by perturbation 
method. 

 

Transient state  Steady state  error  

0  0                     0 
0.012124 0.012125       0.049347  
0.023470 0.023471       0.140197  
0.043905 0.043906       0.181774  
 

CONCLUSION 
The thermal radiation effects on the time dependent 
fully developed MHD free convective flow in a vertical 
channel in the presence of thermal diffusion effect has 
been examined in this treatise. The radiative heat flux 
term in the energy equation is simplified by using 
Rosseland approximation. The time dependent 
mathematical model relevant to the present physical 
situation under appropriate initial and boundary 
conditions are solved numerically by employing a well 
known implicit finite difference method. The steady state 
version of the physical situation has been solved using 
perturbation method. The influence of the various 
involved parameters on the velocity, temperature and 
concentration fields are shown and discussed. The skin 
friction and Nusselt number are obtained and illustrated 
graphically. The main findings are summarised as 
follows: 

i. An increase in Sc  and M  decreases the velocity 

field while an increase in N ,R and St increases 
the velocity field.  

ii. An increase in R qualitatively enhances the 
temperature field.  

iii. Velocity and temperature fields increases with 
dimensionless time parameter t . 

iv. Concentration found to decrease with increase in 
Sc,R and dimensionless time t while St
increases the concentration during unsteady 
state and decreasing characteristic at steady 
state. 
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