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ABSTRACT 
Unsteady Hartmann two phase flows inside a parallel plate 
channel is considered due to sudden change in the applied 
pressure gradient. One of the fluids is assumed to be electrically 
conducting while the other fluid and the channel surfaces are 
assumed to be electrically non-conducting.  The flow formation 
of conducting and non-conducting fluids is coupled by equating 
the velocity and shear stress at the interface. Both phases are 
incompressible and the flow is assumed to be fully-developed 
one- dimensional time dependent due to sudden change in 
applied pressure gradient. The relevant partial differential 
equations capturing the present physical situation are 
transformed in to ordinary differential equations using the 
Laplace transform technique. The ordinary differential 
equations are then solved exactly in the Laplace domain under 
relevant initial, boundary and interface conditions. The 
Riemann-sum approximation method is used to invert the 
Laplace domain into time domain. The solution obtained is 
validated by assenting comparisons with the closed form 
solutions obtained for steady states which has been derived 
separately and also by the implicit finite difference method. 
Variation of time-dependent velocity, mass flow rate and skin-
friction (on channel surfaces) for various physical parameters 
involved in the problem are reported and discussed with the 
help of line graphs. There is an excellent agreement between 
time dependent solution and steady state solution at large value 
of time. Also velocity and mass flow rate decreases with 
increase of Hartmann number while it increases with increase 
in time. 

 
INTRODUCTION 

Studies in two-phase flows which are generally driven by 
gravitational and viscous forces results in the development of 
several multiphase theories arising in many engineering and 
scientific discipline that include petroleum industries, MHD  
devices, MHD power generator and magneto-fluid dynamics. 
There has been some theoretical and experimental work on 
stratified laminar flow of two immiscible fluids in a horizontal 
pipe. The interest in these types of problems stems from the 
possibility of reducing the power required to pump oil in pipe 
lines by suitable addition of water [1].  Shail [1] studied the 
steady Hartmann flow of a conducting fluid in a channel 
between two horizontal insulating parallel plates of infinite 

extent with a layer of non-conducting fluid between the upper 
wall and the conducting fluid. He observed that, an increase of  

NOMENCLATURE 
 
M [-] Hartmann number 
P [m2K/W] Pressure gradient 
h [m] Channel height  
x [m] Cartesian axis direction  
y [m] Cartesian axis direction  
z [m] Cartesian axis direction  
 
Special characters 
α [-] Ratio of densities of the two fluids 

  [-] Ratio of kinematic viscosities of the two fluids 
 [LM3] Density 
 [-] Kinematic viscosity 
 [-] electrical conductivity 

 
Subscripts 
1  lower phase 
2  upper phase 
I  interface   
 
order 30 % could be achieved in the flow rate for suitable ratios 
of heights and viscosities of the two fluids. Hartmann flow past 
a permeable bed in the presence of a transverse magnetic field 
with an interface at the surface of the permeable bed was 
presented by Rudraiah et al. [2]. Steady MHD channel flow has 
been enunciated in the pioneering work of Hartmann [3, 4]. 
Realizing the physical importance of these effects, Malashetty 
and Leela [5] and Lohrasbi and Sahai [6] studied the two-phase 
MHD flow and heat transfer in a parallel plate channel, where 
both phases are incompressible and the flow was assumed to be 
steady, one-dimensional and fully developed. These studies 
were an attempt to provide a clear understanding of the effect 
of slag layers on the heat transfer characteristics of a coal-fired 
MHD generator. 

All the above studies dealt with the steady flow situations. 
However, there are many problems of practical interest that 
deals with two-fluid flow which are unsteady. In view of this, 
Umavathi et al. [7, 8] presented analytical solutions of 
unsteady/oscillatory Hartmann two-fluid and heat transfer in a 
horizontal channel. Unsteady MHD flow of two-fluid flow with 
time-dependent oscillatory wall transpiration velocity through a 
horizontal channel was investigated by Umavathi et al [9]. Raju 
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and Nagavalli [10] investigated the unsteady 
magnetohydrodynamic (MHD) two-layered fluids flow and 
heat transfer in a horizontal channel between two parallel plates 
in the presence of an applied magnetic and electric field, when 
the whole system is rotated about an axis perpendicular to the 
flow. Therefore, the aim of the present work is to present a 
semi-analytical solution of unsteady Hartmann two-phase flow 
between two parallel plates. Both phases are incompressible 
and the flow is assumed to be fully-developed and one-
dimensional time dependent. One of the fluids is assumed to be 
electrically non-conducting.  

 

MATHEMATICAL FORMULATION 
The physical model shown in Figure 1 consists of two 

infinite parallel plates extending in the  - and  -
direction. The region   is occupied by a fluid of 
viscosity  and electrical conductivity and the region 

 is occupied by a layer of non-conducting fluid of 
viscosity . A constant magnetic field of strength is applied 
in the -direction. The time dependent flow formation in both 
regions is due to sudden application of common pressure 
gradient . The flow is assumed to be time-dependent, 
fully developed and the fluid properties are constants. Under 
the above stated assumptions, the dimensional equations of 
motion, and the corresponding initial boundary and interface 
conditions for the two phases are; 

 
    (1) 

      (2) 
  for  

  

and  

 at    (3) 

It is convenient to non-dimensionalise the above equations 
by using the following dimensionless quantities;  

,  , ,  , 

,  , ,     (4) 
 
where the subscripts 1 and 2 refer to the lower and upper 

phases, respectively.  is the dimensionless interface distance 
from the lower plate. ,  are the ratios of densities and 
kinematics viscosities of the two fluids,  is the dimensionless 
time and  is the Hartman number, which is a measure of the 
strength of the applied magnetic field. Therefore, equations (1) 
- (3) respectively become, 

  for     (5) 

       for     (6) 

 for  

  

Subject to the following dimensionless initial, boundary and 
interface conditions:  

 at      (7) 

 
Where  is the dimensionless interface velocity. Taking the 

Laplace transform of Equations (5) and (6) together with (7), 
we obtain the following ordinary differential equations, initial 
boundary and interface conditions; 

      (8) 

      (9) 
 for  

  

and  

    (10) 

Where ,  
and  is the Laplace parameter. The solution of 
Equations (8) and (9) considering (10) are obtained 
respectively for  and   as follows; 

 
   (11) 

         (12) 

and the interface velocity is obtained as 
 

     (13) 

where , ,  

Equations (11) - (13) are to be inverted in terms of Riemann 
- sum approximation [11] as; 

 

         (14) 
where  refers to the 'real part of',  is imaginary 

number,  is the number of terms used in the Riemann-sum 
approximation and  is the real part of the Bromwich contour 
that is used in inverting Laplace transforms. The Riemann-sum 
approximation for the Laplace inversion involves a single 
summation for the numerical process. Its accuracy depends on 
the value of  and the truncation error dictated by . According 
to Tzou [12], the value of  must be selected so that the 
Bromwich contour encloses all the branch point. For faster 
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convergence the quantity  gives the most satisfactory 
results since other tested values of  seem to need longer 
computational time. 

 

Figure 1 Physical configuration  

 
Figure 2 Profile of the velocity showing the effect of  

time    for ,      
and  

Skin-friction and Mass Flux 
The skin friction  at the lower channel wall  and  at 
the upper channel wall  in terms of Laplace parameter  
is computed by differentiating equations (11) and (12) 
respectively. Similarly, the mass flux in terms of the Laplace 
parameter ,  is obtained by adding the integrals of 
Eqs.(11) and (12). The expressions are given by: 

        (15) 

        (16) 

 

These given expressions are then converted to time domain by 
applying the Riemann-sum approximation stated in Eq.(14). 
Where  

 ,  

 ,   

 

 
Validation of Method 

In order to validate the accuracy of the Riemann-sum 
approximation method, we set out to find the solution of the 
steady state, which should coincide with the transient solution 
at large time. The equations for the steady state velocities 

 for the two phases are obtained by setting    in 
Equations (5) and (6) to zero.  Then the following equations 
results 

       (18) 

       (19) 
The boundary and interface conditions are 

  

      (20) 

The solution of equations (18) and (19) considering (20) 
which is the steady state velocities for the two phases  and 

 are given as; 
 (21) 

          (22) 
The steady state skin-friction  is obtained by differentiating 
equations (21) and (22) with respect to  then, the steady state 
skin-friction on the lower  and upper  plates are then 
computed by setting   and  as; 

 ,  
And the steady state mass flux is given as; 

+

        (23) 
 
Where 

  

 

 
Finite Difference Method 
In this section, implicit finite difference method is used to 
ascertain the correctness of the Riemann-sum approximation 
method. The procedure we have adopted involves dividing the 
solutions into grid points and approximating the differential 
equations by the finite difference equations and then solving the 
difference equations subject to the prescribed initial, boundary 
and interface conditions. Thus eqns.(5) and (6)  become 
 

       
         (24)  

   (25) 
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The index  refers to  and  refers to . The time derivative is 
replaced by the backward difference formula, while the spatial 
derivatives are replaced by central difference formula. The 
above equations are solved by Thomas algorithm by 
manipulating into a system of linear algebraic equations in the 
tridiagonal form. At each time step, the process of numerical 
integration for every dependent variable starts from the first 
neighbouring grid point of the lower plate at  and 
proceeds towards the upper plate at . The process of 
computation is advanced until a steady state is approached by 
satisfying the following convergence criterion: 

       (26) 
 
 with respect to the fluids velocity. Here  stand for the 
velocity field.  is the number of interior grid points and 

 is the maximum absolute value of   .  In the 
numerical computation special attention is needed to specify  

  to get steady state solution as rapid as possible, yet small 
enough to avoid instabilities. It is set, which is suitable for the 
present computation, as 

      (27) 
The parameter  is determined by numerical 
experimentation in order to achieve convergence and stability 
of the solution procedure. Numerical experiments show that the 
value 2 is suitable for the present numerical computation. 

 
Figure 3 Profile of the velocity showing the effect of  

time  for , ,  
       and  

 RESULTS AND DISCUSSION 
In order to get a physical insight into the problem, the velocity, 
the interface velocity, the skin-friction and the mass flux are 
presented graphically for different values dimensionless time 

, the Hartmann number , ratios of densities of the two 
fluids , ratios of kinematic viscosities of the two fluids  
and pressure gradient . Both fluids are considered to have 
different densities, viscosities, one is electrically conducting 
while the other is electrically non-conducting, and occupy equal 
heights (d=0.5). To authenticate the semi-analytical solution 
obtained by the Riemann-sum approximation method, separate 
closed form solutions were obtained for steady state and also by 
implicit finite difference method taking into account suitable 
interface matching conditions. A good agreement was found 
between the obtained results as time progress as seen in table 1.  
Figures 2 and 3 demonstrate the effect of time  on the 
velocity profiles for fixed values of   and 

. It is observed that an increase in  increases the velocity in 
both phases and finally attains steady state. Furthermore, when 

the ratio of density is less than unity  maximum 
velocity occurs in conducting fluid  while the 
result is just reverse when the density ratio is greater than 
unity . This is due to the fact that when the ratio of 
density is less than unity, conducting fluid density is lower than 
the density of non-conducting fluid. Hence, common 
application of pressure gradient is more effective in fluid layer 
having low density. Fig. 4 depicts the influence of Hartmann 
number  on the velocity. It is clear that as  increases the 
velocity decreases in conducting as well as non-conducting 
fluid. The decrease in the non-conducting fluid is due to the 
interface condition. Also the role of Hartmann number is 
dominant in conducting fluid. Fig.5 reveals the role of pressure 
gradient on velocity. By definition positive pressure gradient 
(i.e pressure decreases along the flow direction). The negative 
rate of pressure  represent adverse pressure gradient (i.e 
pressure increases along flow direction). From this Figure, it is 
observed that an increase in positive value of  accelerate the 
velocity while negative value of  accelerate the reverse flow. 
Fig.6 depicts the variation of ratio of viscosity  on velocity. 
It is clear that as   increases velocity increases in both fluids. 
The effect of density ratio on velocity field is shown in Fig.7. it 
is found that an increase in  increases the velocity. It is also 
interesting to note that the impact of  is dominant in non-
conducting layer. The variation of interface velocity  is 
depicted in Fig.8 with respect to time and Hartmann number. It 
is observed that interface velocity decreases with Hartmann 
number while it increases with time. The role of interface 
distance  and time on interface velocity is displayed in Fig. 
9. It is evident that as  increases interface velocity decreases 
while it increases with time. The effect of ratio of viscosity and 
time on the interface velocity is shown in Fig.10. it is observed 
that interface velocity increases with time and finally attains 
steady state value while it decreases with . The influence of 
density ratio  and time on interface velocity is shown in 
Fig.11. This Figure reveals that interface velocity increase with 

 and time.  In Fig.12, the skin-friction  at  is shown 
with respect to time and Hartmann number. This Figure shows 
that as Hartmann number increases, skin-friction decreases with 
time. Skin-friction variation at the lower plate with time and 
pressure gradient is displayed in Fig.13. it reveals that skin-
friction is higher for negative value of . Also it increases with 
time for negative value of  while it decreases for positive 
value of  with increment of time.  Fig.14 shows the effect of 
Hartmann number and time on skin-friction at . An 
increase in Hartmann number decreases the skin-friction while 
it increases with time. Fig.15 shows the role of pressure 
gradient and time on skin-friction at . It is observed that 
the result is just reverse as observed at  (see Fig. 13). The 
dimensionless mass flux variation with Hartmann number and 
time is displayed in Fig.16. From this Figure it is clear that 
mass flux decreases with Hartmann number while it increases 
with time. The effect of time as well as pressure gradient on 
mass flux is shown in Fig.17. it is evident that mass flux 
increases with positive value of  and time while the result is 
just reverse for negative value of   
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Figure 4 Profile of the velocity showing the effect of 

  for  ,   and  

 
Figure 5 Profile of the velocity showing the effect of  

for      and . 
      

 
Figure 6 Profile of the velocity showing the effect of  

ratio of fluids viscosity  for  
     and  . 

 
Figure 7   Profile of the velocity showing the effect of  
                ratio of fluids density  for ,    
                and . 
Conclusion  
In this paper, we have studied the problem of time-dependent 
Hartmann two-phase flow between two parallel plates of 

infinite extent, consisting of two regions one electrically 
conducting and the other electrically non-conducting. Semi-
analytical solutions are obtained using the combination of 
Laplace transform technique and the Riemann-sum 
approximation method and the following conclusions are 
drawn; 

1. Flow formation is strongly dependent on nature of the 
fluids trapped inside the channels 

2. Increase in  decreases the velocity  and mass 
flux   

3. Interface velocity decreases as ,  and  increases 
4. Skin-frictions and mass flux increases with time and 

favourable pressure gradient. 
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Figure 8 Interface velocity  against  showing the  

effect of time   for    
and . 

 
Figure 9 Interface velocity  against  showing the  

effect of time   for    
and . 

 
Figure 10 Interface velocity  against  showing the  

effect of time   for    
and . 

 
Figure 11 Interface velocity  against  showing the 

effect of time   for    
and . 

 
Figure 12 Variation of the Skin-friction  on the plate  

at  showing the effect of  and  for  
 and . 

 
Figure 13 Variation of the Skin-friction  on the plate  

at  showing the effect of  and  for  
 and . 
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Figure 14 Variation of the Skin-friction  on the plate  

at  showing the effect of  and  for  
  and . 

 
Figure 15 Variation of the Skin-friction  on the plate  

at  showing the effect of  and  for  
 and . 

 
Figure 16 Dimensionless Mass Flux  showing the 

 influence of  and  for  
 and . 

 
Figure 17 Dimensionless Mass Flux  showing the  

influence of  and  for  
 and . 

 
Table:1 Comparison of the numerical values obtained using 
Riemann-sum approximation method (RSM) and that obtained 
using finite difference method (FDM) and the steady state when 

 and   
T Y                 Velocity 

 
  Transient Steady State 
  RSM FDM  
0.2 0.2 0.2902 0.2829 0.3177 
 0.4 0.4375 0.4284 0.4841 
 0.6 0.4653 0.4503 0.5160 
 0.8 0.3252 0.3168 0.3580 
     
0.4 0.2 0.4798 0.4766 0.3177 
 0.4 0.4828 0.4815 0.4841 
 0.6 0.5112 0.5078 0.5160 
 0.8 0.3549 0.3529 0.3580 
     
0.6 0.2 0.3175 0.3171 0.3177 
 0.4 0.4838 0.4832 0.4841 
 0.6 0.5156 0.5150 0.5160 
 0.8 0.3577 0.3574 0.3580 
     
0.7 0.2 0.3176 0.3175 0.3177 
 0.4 0.4841 0.4838 0.4841 
 0.6 0.5159 0.5156 0.5160 
 0.8 0.3579 0.3578 0.3580 
     
0.8 0.2 0.3177 0.3176 0.3177 
 0.4 0.4841 0.4840 0.4841 
 0.6 0.5160 0.5155 0.5160 
 0.8 0.3580 0.3579 0.3580 
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