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ABSTRACT 
Nanofluids are new heat transfer fluid aimed at mitigating the 

poor heat removal efficiency of the conventional heat transfer 

fluids. Previous reports showed that nanofluids prepared from 

conventional heat transfer fluids have higher thermal 

conductivity compared to the constituent base fluids such as 

water or ethylene glycol. However not much have been done in 

other areas especially on the viscosity, electrical conductivity 

and pH. In this paper, experimental investigations were carried 

out on SiO2 nanoparticles dispersed in ethylene glycol at two 

different energy densities using ultrasound assist mechanism. 

The SiO2 nanoparticles used have an average particle size 

(APS) 13.4±5.6 nm. The combined effect of temperature, 

volume fraction and energy density on the viscosity, electrical 

conductivity and pH of the nanofluids were investigated. The 

temperature range investigated was between 20-70oC, volume 

fraction between 0-5%, and energy density of 1.5105 kJ/m3 

and 3.2105 kJ/m3. The results showed temperature and 

volume fraction have significant influence on the viscosity, 

electrical conductivity and pH of the nanofluids. However, the 

energy density shows no significance on the viscosity of the 

nanofluids which was dependent on the level of dispersion of 

the suspension. 

 

INTRODUCTION 
Waste heat recovery and cooling are processes that have 

been integrated into many industrial systems, such as in the oil 

and gas, pulp and paper, food, power generation and textile 

industries. These processes require that heat recovery and/or 

cooling is mostly performed by means of a flowing fluid. In the 

past decades ethylene glycol (EG), glycerol, water and oil are 

some of the conventional heat transfer fluids that have been 

used for this purpose. However, these conventional heat 

transfer fluids are characteristically poor with regards to their 

thermal properties. In order to improve the obviously poor 

thermal properties (especially specific heat and thermal 

conductivity) of the conventional heat transfer fluids, particle 

dispersion in heat transfer fluids (fluid bases) was proposed by 

Maxwell in the 19th century [1]. Due to the lack of technology 

to produce particles smaller than the micrometric size at the 

time, numerous engineering problems such as equipment 

clogging, abrasion, particle settlement and severe pressure drop 

NOMENCLATURE 

were encountered. Modern knowledge and technological 

advancements made it possible for the production of nanosized 

materials and recently, Choi and Eastman [2] suspended 

nanoparticles of Cu in water to produced Cu-H2O nanofluid. 

Nanofluid has the potential to enhance the heat transfer rate in 

industrial equipment thus making industrial heat exchangers 

more compact. Consequently, this will reduce the energy 

consumption and emission levels (reduced greenhouse gases 

and global warming potential). 

Unlike previous suspensions with millimetric or 

micrometric sized particles, the use of nanofluids will mitigate 

the problem of flow path abrasion, rapid particle sedimentation, 

and equipment clogging. However, there are still penalties like 

pressure drop and increase in pumping power requirement. The 

addition of nanoparticles to heat transfer fluids increases the 

viscosity of the fluids which is why the penalty of pressure drop 

and increased pump power is still of major concern.  Peng et al. 

[3] established that frictional pressure drop of nanorefrigerant 

(refrigerant-based nanofluid) flowing in horizontal smooth tube 

is higher when compared to the base fluid refrigerant, and it 

increases with the increase of volume fraction of the 

nanoparticles dispersed. In a more recent work by Alawi et al. 

p [-] Coefficient of primary electroviscous effect 

a [m] Particle radius 
kB [W/m2K4] Stephan Boltzmann constant 

T [oK] Absolute temperature 

AN  [mole-1] Avogadro’s number 

e [C] Elementary charge 
I [moles/m3 ] Ionic strength 

 

Special characters 

 [-] Volume fraction ratio 

 [-] Coefficient of secondary electroviscous effect 

 [-] Intrinsic viscosity 

µ Pa.s Viscosity 

 [m] Inverse of Debye length  

0 
[C2N-1m-2] Permittivity of the vacuum   

r 
[-] Dielectric constant for the medium 

 

Subscripts 
o  Fluid base 

r [-] Relative  
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[4], they showed that viscosity and pressure drop of 

nanorefrigerant in pipe flow increase with increase in 

nanoparticles volume fractions and predicted the viscosity of 

the nanorefrigerant using Brinkman model [5]. However, 

researchers like Mahbubul et al. [6, 7] and Murshed et al. [8] 

maintained that the classical models based on Einstein’s [9] 

equation of suspension viscosity such as Mooney [10] and 

Brinkman [5] models  used in predicting the viscosity of 

nanofluids are inapt. Therefore, the rheological behavior of 

nanofluids including viscosity needs to be evaluated 

experimentally before implementation in industrial heat 

recovery and cooling systems. 

Some of the other thermophysical properties of nanofluids 

that are directly or indirectly related to its efficient 

implementation in heat transfer systems are the electrical 

conductivity and pH.  Electrical conductivity and pH of 

nanofluids are two interrelated properties that affect the 

viscosity and the stability of nanofluids [11, 12]. Nevertheless, 

there are still very limited experimental investigations of these 

two properties of nanofluids with respect to the effect of 

volume fraction, temperature change, particle size and 

dispersion energy. 

According to Wong and Kurma [13] evaluating the electrical 

conductivity of nanofluids would give better understanding 

about the transport properties of the heat transfer fluids. Particle 

surface electroneutrality is a situation where the effect of both 

positive and negative ion concentration cancel out thereby, 

leaving the particle with zero charge, a condition known as 

isoelectric point (IEP). The pH at this happen is called pHIEP. 

When the pH of the suspension is changed the differences pH 

= pH – pHIEP andpOH = pOH – pOHIEP alongside with the 

concentration of the background electrolyte determine the 

electrical double layer (EDL) [12]. The higher the difference 

between the pH and pHIEP (i.e. pH) the higher the viscosity 

due to higher electroviscous effect resulting from increased 

EDL size. For a properly homogenous suspension where the 

effect of aggregation can be assumed minimal, the viscosity of 

the suspension is higher than the viscosity of the fluid base as a 

result of two main contributions. Firstly, the dispersion of 

particles increase the rate of energy dissipation due to the 

distortion of the flow and ionic fields surrounding the particles. 

Secondly, the change in the EDL surrounding the particles 

gives an additional increase in energy dissipation especially due 

to the overlapping of EDLs. 

The objective of this work is to experimentally investigate 

the influence of temperature, volume fraction and dispersion 

energy on the viscosity, electrical conductivity and pH of SiO2-

ethylene glycol nanofluids. There is currently a single work 

done on this nanofluid regarding it effective viscosity [14] and 

the said work does not consider the influence of temperature 

and energy of dispersion. There is no known publication on the 

electrical conductivity of SiO2-ethylene glycol nanofluid and 

many reported work done on the pH of nanofluids (SiO2-

ethylene glycol not inclusive) were carried out at room 

temperature (they assumed that temperature does not influence 

the pH of nanofluids). Since nanofluids are meant for high 

temperature processes (e.g. in heat exchangers) it is expedient 

to understand how temperature increase may affect the pH 

nanofluids. 

EXPERIMENTAL 
Materials 

The silicon oxide was supplied as white powder from Nano 

Amorphous Inc. The material came with 99.5% purity and was 

used with further purification. As stated by Gustafsson et al. 

[15], attempts on further purification of nanopowder may lead 

to contamination. Transmission electron microscopy (JEOL 

JEM–2100F) showed that the nanoparticles are roughly 

spherical with an average particle diameter of 13.4±5.6 nm 

(Figure 1) from size analysis. The true density of the 

nanoparticle is between 2.17-2.66 g/cm3. The ethylene glycol 

used was obtained from Merck with 99.5% purity, viscosity of 

16.9 at 25oC and pH between 6-7.5. It is noteworthy to say that 

all materials and chemicals are of analytical grade. 

 

 
 

Figure 1 Transmission electron microscope image of SiO2 

nanoparticles 

 

Equipment and methods 

The weight of the nanoparticles and base fluid was 

measured using RADWAG precision balance (AS 220.R2) to 

prepare a predetermined volume fraction. The prepared samples 

were sonicated using Q700 ultrasonicator (Qsonica, USA) 

equipped to measure the total energy impacted into the 

dispersion process. The size and morphology characterization 

were carried out using transmission electron microscope 

(TEM). The nanoparticles were dispersed in acetone so that 

rapid drying method could be employed (Wamkam et al 2011) 

for the TEM captures. X-Ray Diffraction (XRD) patterns of the 

nanoparticle samples were obtained using XPERT-PRO X-Ray 

Diffractometer manufactured by PANalytical BV, Netherlands. 

The shear viscosity of the nanofluid samples was measured 

using SV-10 vibro-viscosimeter. The working temperature was 

between 20–70oC and this was accomplished with the use of 

constant temperature thermal bath (Lauda Eco Silver 

RE1225). The pH and electrical conductivity were measured 

using Jenway 3510 pH meter with -2-19.999 pH measurement 
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range and EUTECH CON700 electrical conductivity meter 

respectively. More details on the experimental procedure can be 

found elsewhere [11]. 

 

 
Figure 2 Size analysis of SiO2 nanoparticles (13.4±5.6 nm) 

THEORY 

The dynamic viscosity of a dilute colloidal suspension µ is 

higher than that of the suspending medium µo. This was 

theoretically expressed as in equation (1) by Einstein.  

    1o
      (1) 

where is the volume fraction of the particles in suspension, 

[] in the equation is the intrinsic viscosity taken as 2.5 for 

uncharged, hard, spherical particle. However, the value may be 

higher for other geometries [17]. Several models have been 

proposed to either consider the pa4rticle-particle interaction or 

to extend the Einstein model beyond the dilute regime [5, 10, 

18]. According to researcher like Smoluchowski [17] and 

Booth [19], increase in suspension viscosity is as a results of 

not only the energy dissipation resulting from flow and EDL 

disruption around the suspended particles but a major 

contribution from secondary electroviscous effect due to the 

overlapping interaction of EDL. This effects has been grouped 

into a single model equation [20]; 

     211   po
    (2) 

Here p stands for the coefficient of primary electroviscous 

effect as a results of shear distortion of the EDL surrounding a 

charged particle and  is the coefficient of secondary 

electroviscous effect (and it is synonymous to Huggin’s 

coefficient elsewhere [18]) due to the interaction of EDL 

involving at least two particles. For a very small particle having 

EDL thickness of the same magnitude as the radius of the 

particle, the primary electroviscous effects become very 

dominant [21]. In this case equation (2) becomes; 

    po  11
     (3) 

The primary electroviscous effect p was later expressed by 

Adachi et al. [22] as; 
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     (4) 

In the above equation a is the radius of the particle, -1 is 

the thickness of the EDL and it is also known as Debye length. 

The secondary electroviscous effect  may not be much of 

significance when the particle concentration is lower than 10% 

as particle-particle interactions primarily occur at higher 

volume fractions [23]. In other to evaluate p, the EDL thickness 

must be evaluated for the Debye length give as;  
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        (5) 

were kB is the Boltzmann constant, T is the absolute temperature 

taken as 300oK, 0 is the permittivity of the vacuum give as 

8.85410-12 C2N-1m-2), r is the dielectric constant for the 

suspending medium (ethylene glycol = 37.7), NA
 is the 

Avogadro’s number, e is the charge and I is the ionic strength 

(moles/m3). To evaluate the ionic strength of the suspension a 

procedure was suggested by Rubio-Hernández et al. [12] and 

had been successfully used by Anoop et al. [23]. The above 

equations have been derived for cases where the ionic strength 

of the system have been modified using NaOH, HCl or any 

other modifier possible. 

Ruiz-Reina and Carrique [24] did a theoretical calculation 

and simulated the electroviscous effect on concentrated colloids 

in salt-free medium. A case very much like the nanofluid in this 

experiment where in no NaOH, HCl or the likes are added. The 

effective viscosity of colloid of this nature was derived to be: 
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when the nanoparticle concentration is very dilute the function 

S() tends to 1 and equation (6) becomes equation (1). 

RESULTS 
The dynamic viscosity of pure ethylene glycol and ethylene 

glycol-based nanofluids of SiO2 were measured from 20oC to 

70oC by increment of 5oC per step. The base fluid data 

compared very well with published data of Xie et al. [25] and 

Pastoriza-Gallego et al. [26] with less than ±5% deviation (not 

presented here). Figure 3 shows the influence of temperature on 

the viscosity of ethylene glycol-SiO2 nanofluids. The behaviour 

of the nanofluids is such that the viscosity diminishes 

exponentially with increase in the fluid temperature. This is 

typical of nanofluids as widely published in the literature [27]. 

The trends describing the change in viscosity with 

temperature is similar for all volume fractions and irrespective 

of the dispersion energy applied. This results indicate reliability 

of the trend of the experimental results. Varying the dispersion 

energy is necessary in the preparation of nanofluids in other to 

determine the optimum energy required for the preparation at 

which point the viscosity will be minimum indicating a 

homogenous dispersion. It is a well-known procedure to use 

rheology to characterize the state of dispersion of nanomaterials 

in base fluid [28]. This is an ongoing research work, therefore 

only two dispersion energies have been investigated and the
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Figure 3 Influence of temperature on the viscosity of ethylene 

glycol-SiO2 nanofluid (a) prepared with 1.5 105 kJ/m3 

dispersion energy (b) prepared with 3.2 105 kJ/m3 dispersion 

energy 

  

result is presented in Figure 4. From what it apparent in Figure 

4, the nanofluid samples up to 2% volume fraction were 

consistent in dispersion at the application of 1.5 105 kJ/m3 

energy density. Further increment in the energy density showed 

that the a slight reduction in the value of the viscosity recorded. 

This reduction at the application of 3.2 105 kJ/m3 energy 

density is less than 2% at 20oC. 

The model of Einstein in equation (1), Rubio-Hernández et 

al. [20] in equation (2), and Ruiz-Reina and Carrique [24], in 

equation (6) were all used to predict the viscosity behaviour of 

the nanofluids in the present experimental study as shown in 

Figure 5. Both the Einstein, and Ruiz-Reina and Carrique under 

predicted the present experimental data. Using nonlinear 

regression code and running maximum of 200 iterations, 

equation (6) fitted the present experimental data with very good 

agreement. The p and  in the equation (2) are -0.9601 and 

0.0063 for 1.5 105 kJ/m3 energy density. While for 3.2 105 

kJ/m3 energy density p and  are -0.9673 and 0.0056 

respectively. 

 

 

Figure 4 Combined influence of volume fraction and energy 

density on the viscosity of ethylene glycol-SiO2 nanofluids 

 

 
 

Figure 5 Prediction of experimental relative viscosity at 

25oC with Equations (1), (2) and (6). 

 

The pH and electrical conductivity of the base fluid showed 

a virtually unchanging value with respect to the temperature 

increment. Pure ethylene glycol is poor at ionization due to its 

mild polarity [29] which is the primary cause of the behaviour 

observed. The addition of SiO2 nanoparticles showed 

significant jumps in both the electrical conductivity and the pH 

of the suspension. The influence of temperature increment on 

the electrical conductivity is corresponding increment across all 

the volume fraction investigated as presented in Figure 5(a). It 

is seen that the electrical conductivity of the silica nanofluids 

increase linearly with increase in the temperature. However, 

Figure 5(b) shows that the pH of the suspension reduced with 

increase in temperature of the nanofluid. This trend is typical of 

pH of nanofluids based on other published works [11, 30]. 
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Figure 5 Effect of temperature increment on the electrical 

conductivity and pH of ethylene glycol-SiO2 nanofluids (a) 

electrical conductivity (b) pH 

 

The influence of increasing volume fraction on the both the 

electrical conductivity and pH is presented in Figure 6. It was 

observed that the electrical conductivity of the SiO2 nanofluids 

increased with increase in volume fraction. However, the 

increment is nonlinear which depicted the occurrence of 

counterion condensation. A situation where there is saturation 

of opposite ion on the nanoparticles and further increment does 

not show a corresponding increment in electrical conductivity. 

At this point the electrical conductivity will sometimes reduce 

until a plateau is formed [31]. 

Interestingly, the pH of the nanofluids also showed 

increment in values with regards to increment of the volume 

fraction. It further showed a plateau in pH value irrespective of 

the volume fraction and the plateau corresponds with point 

where counterion condensation sets in the electrical 

conductivity measurements. On the effect of the energy of 

suspension, about 6% reduction in the electrical conductivity 

was observed and approximately 3.5% reduction in pH value at 

5% volume fraction was observed. 

 

 
 

 
Figure 6 Influence of viscosity on electrical conductivity and 

pH of ethylene glycol-SiO2 nanofluid (a) electrical 

conductivity, the dotted lines depict when counterion 

condensation effect is neglected (b) pH 

 

CONCLUSION  
In the present work experimental investigations was carried 

out on the thermophysical properties of SiO2-ethylene glycol 

nanofluids, namely; viscosity, pH and electrical conductivity. 

The factors investigated were particle volume fraction, 

temperature and energy of dispersion. Based on the results, it 

was clear that all the thermophysical properties investigated are 

influenced by change in volume fraction and temperature. 

Within the confines of the energy densities investigated a 2% 

deviation in relative viscosity value was recorded, 6% relative 

electrical conductivity deviation and 3.5% relative pH 

deviation. 
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ABSTRACT 

In molecular dynamics simulation of convective heat 

transfer, external driving force and periodic boundary condition 

are applied to form steady flow. This may induce the 

temperature fluctuations of fluid at the inlet and unrealistic 

axial heat conduction at the outlet. In this paper, we propose a 

new method by inserting/deleting atoms at a given frequency in 

the region of particle source/sink. Temperature of inlet fluid 

and walls are then controlled at different values. Compared 

with previous methods with external driving force and periodic 

boundary, temperature of inlet fluid can be better up to the 

desired value while the unrealistic outlet axial conduction has 

been eliminated. We further simulate convective heat transfer 

of subcritical and supercritical fluids in nano-channels with this 

method. Characteristics of fluid flux, temperature, number 

density are described in detail. The results show that local heat 

transfer coefficient and Nusselt number increases when there is 

a transition of fluid state from the subcritical to the supercritical, 

which is not owing to temperature oscillation at near or super-

critical state but an increase of thermal conductivity in the fluid. 

 

INTRODUCTION 

Many chemical and biological processes have been 

designed to take place in nano-fluidic systems over the past 

decade [1-2]. As these systems have length scales compared to 

diffusion lengths of nano-particles and molecular size, the 

thermal control and heat dissipation are technically imperative 

to ensure their performance and life span.
 
Extensive research 

has been conducted to understand the process of convective 

heat transfer in micro- and nano- channels during the last 

decade. Experimentally, single-phase microscale heat sinks 

made from different materials have been tested and proved 

efficiently to cool electronics [3-5]. Computationally, 

numerical simulations have been designed to find the truths 

which affect the momentum and heat transfer in fluid flow [6-

8]. In micro- and nano-channels, interface properties such as 

surface roughness, fluid-wall interactions dominate in the 

convective heat transfer for liquid flows [9] while rarefaction 

effect stands out for gaseous flows [10]. Characteristics of fluid 

flow and heat transfer in such channels behave significantly 

different. Since the direct measurement by experiments is 

difficult to accomplish in the channel of hydraulic diameter 

lower than 100 nm [11], investigations on the convective heat 

transfer are often performed by the direct simulation Monte 

Carlo
 
(DSMC) [12] and molecular dynamics simulation (MDS) 

[13, 14]. 

In molecular dynamics simulation of convective heat 

transfer, one popular method is that an external driving force is 

imposed only to inlet atoms and these atoms press the rest of 

the fluid. Periodic boundary condition is applied to form steady 

flow [13]. The problems exist at the channel inlet and outlet 

[15]. The temperature of inlet fluid deviates from the desired 

value because the external force is applied after the region of 

temperature reset and it adds kinetic energy of inlet fluid. One 

solution is that positions of two regions are exchanged, but the 

inlet temperature still depends on the magnitude of force and 

width of both regions [14]. Another problem is that unrealistic 

axial heat conduction emerges at the outlet, which is caused by 

temperature difference between outlet atoms and images of 

inlet atoms under the periodic boundary [16]. A probable 

solution to this problem is to develop an effective outflow 

model, in which the outlet temperature field is obtained through 
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iteration of upstream temperature of fluid. Since problems are 

induced by external driving force and periodic boundary, it 

would be better to resort to a method without these conditions. 

In this study, we present a new method to simulate 

convective heat transfer in molecular dynamics. Two regions of 

particle source/sink are located at both ends of the nano-

channel. Steps are conducted to insert particles at the region of 

source and delete the same amount of particles at the region of 

sink, which is used to form steady flow instead of periodic 

boundary. The frequency of inserting or deleting atoms 

determines the velocity of flow instead of external driving force. 

With this method, we simulate the convective heat transfer to 

near-critical fluids. Since the thermo-physical properties of 

fluid near the critical state change rapidly, the convective heat 

transfer turns out new features. Many researchers found that the 

free convection heat transfer coefficients of fluid at the near-

critical state were quite high [17]. Another experimental 

phenomenon at the macro-scale is that pressure and 

temperature oscillations may exist with the time of observation 

[18]. It is still unknown for us whether these conclusions are 

invalid in micro- and nano-channels or not. Therefore, we study 

the characteristics of fluid flux, density and temperature 

distributions near the critical state in nano-channels. Variations 

of local heat transfer coefficients and Nusselt numbers are also 

discussed in detail. 

 

SIMULATION METHOD 

Simulations have been performed on a unary system in 

LAMMPS [19] containing three different regions, as shown in 

Figure 1. Two controlled regions, particle source/sink, are 

located at each end of the system and each region is surrounded 

by the reflective walls in x and y directions. In the region of 

particle source, atoms will be inserted by searching voids 

among existing atoms according to a setting frequency (time 

interval). The radius of voids should be at least larger than the 

size of one atom, which guarantees the success of inserting. In 

the region of particle sink, the same amount of atoms will be 

deleted at the same frequency of inserting. After many steps, 

the fluid flow in middle region can reach a steady state. By 

control the temperatures of inlet fluid and solid walls, we can 

simulate the process of convective heat transfer. 

 

 

 

Figure 1 Schematic of MD simulation of particle 

source/sink method 

 

The system consists of 112,710 Argon atoms and 36,180 

wall atoms, corresponding to a size of 450×120×120 Å
3
 in x, y, 

z direction. Wall atoms employ the Argon and are connected to 

FCC (001) lattice sites using harmonic springs with the lattice 

constant a = 4 Å and a spring constant k = 70 N/m [8]. The 

interactions among all atoms are modeled using the 12-6 

Lennard-Jones potential: 
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where u(r) is the potential energy, r is the distance between two 

interplay atoms,  and  represent the low-speed collision 

diameter and the depth of potential well. For the fluid-fluid 

interaction, Ar-Ar = 3.405 Å and Ar-Ar = 1.6710
−21 

J [20]; For 

the fluid-wall interaction, Ar-wall = 3.405 Å and Ar-wall is varied 

to adjust the interface wettability. The cutoff radius is set as Rcut 

= 10 Å and atoms out of Rcut have no interactions with one at 

the inner range. Periodic boundary is only applied to z direction. 

The time interval to insert or delete an atom is 10 fs, which 

results in the average velocity of fluid about 43 m/s when the 

interface wettability is εfw / εff = 1.0. In order to simulate the 

convective heat transfer, each inserting atom will be assigned a 

thermal velocity at random under the desired inlet temperature 

while the walls are controlled at a different temperature by the 

Nosé-Hoover thermostat with temperature damping parameter 

100 fs as recommended in Ref. 19. The time step is 1 fs and 

each case of simulations lasts 8 ns. The system is relaxed for up 

to 2 ns to reach steady flow before the calculation starts. 
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RESULTS AND DISCUSSION 

Validation of the New Method 

In the validation procedure, temperature of inlet fluid is set 

at Tin = 200 K and the wall temperature is controlled at Tw = 

300 K, corresponding to the supercritical fluid. In Figure 2 and 

Figure 3, the results of the particle source/sink method are 

compared with previous methods with external driving force 

and periodic boundary. Figure 2 shows that temperature of inlet 

fluid deviates from 200 K in the original method with external 

driving force [13]
 
while this deviation is not obvious in this 

method. This is due to the external driving force that adds 

kinetic energy of inlet fluid. The temperature of inlet fluid is 

better up to the desired value with the particle source/sink 

method. 

 

 

Figure 2 Temperature of inlet supercritical fluid 

 

 

 

Figure 3 Temperature distribution in the channel: (a) original 

method with periodic boundary in Ref. 13 and 14; (b) particle 

source/sink method 

 

When periodic boundary is applied, downstream images of 

inlet atoms will affect outlet atoms that leads to unrealistic axial 

heat conduction when there is a temperature difference. This 

phenomenon exits in both Ref. 13 and 14 as demonstrated in 

Figure 3(a). From Figure 3(b), it can be seen that this 

unrealistic axial conduction has been eliminated in the particle 

source/sink method without periodic boundary. The 

supercritical fluid is heated gradually by the hot walls without 

the interruption of images of cold inlet atoms. 

 

Convective Heat Transfer to Near-Critical Fluids 

The simulations are then carried out with Argon at the near-

critical state. Temperature of inlet fluid is set at Tin = 120 K 

and the wall temperatures are controlled at the range of 140 K 

to 180 K, which corresponds to a transition of fluid state from 

the subcritical to the supercritical. Figure 4 shows the process 

of transition in the phase diagram of Argon. The vapor-liquid 

coexistence curve is obtained from the study of Lennard-Jones 

fluid system [21]. Three different interface wettabilites are 

adopted: εfw / εff = 0.5, 1.0 and 1.5, where the contact angle 

changes from 90° to 0°. It is worth noting that the bulk fluid 

density will be influenced by the interface wettability. A 

decrease in the bulk density happens at the more wettable 

surface while an increase happens at the less wettable surface at 

the same temperature of fluid [22, 23]. The density shown in 

Figure 4 is the average value in the whole channel. 

 

 

Figure 4 Temperature distribution in the channel: (a) original 

method with periodic boundary in Ref. 13 and 14; (b) particle 

source/sink method 
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Figure 5 shows the variations of mole flux, local average 

temperature of fluid and number density along the flow 

direction. In the region of particle source, the flux increases 

linearly, corresponding to a uniform particle distribution. It is 

seen that the flow rate approaches a constant in the middle 

region, which means that the systems reaches a steady state. 

The local average temperature of fluid increases with 

increasing wall temperature while the number density decreases 

gradually. At the near-critical state, the number density 

undergoes an obvious drop, which represents a transition from 

sub-critical liquid to supercritical fluid. The flux also undergoes 

a small fluctuation. These changes are consistent with the 

observed phenomenon of near-critical water [17]. Besides, 

there is no obvious temperature oscillation at the near-critical 

state during our simulation. 

 

 

Figure 5 Local average flux, temperature, density of fluid 

 

Although there are some defects to simulate convective heat 

transfer under periodic boundary in previous literatures, studies 

have shown confidently more heat can be transferred in the 

case of an attractive fluid-wall interaction than in the case of a 

repulsive interaction with increasing pressure drop [13]. 

Experiments also referred that the heat transfer coefficient of 

water in the hydrophilic micro-channels was higher than that in 

the hydrophobic channels [24]. As shown in Figure 6(a), our 

results with the method of particle source/sink demonstrate that 

outlet temperature of fluid at the case of εfw / εff = 1.5 is higher 

than that of other two channels at the same frequency of 

inserting/deleting atoms, owing to lower thermal resistance at 

the more wettable surface [25]. Since the fluid is heated with a 

transition of sub-critical liquid to supercritical fluid (120 K to 

180 K), there is an obvious density drop in the Figure 6(b) and 

6(c), which corresponds to a large density gradient near the 

critical state. However, it cannot be seen at the less wettable 

channel (Figure 6(a)) because the fluid does not reach the 

critical state. As the surface turns to be more wettable, it can be 

induced that more heat is transferred to accelerate the process 

of transition with the same fluid velocity. 

 

 

Figure 6 Temperature and density distribution of fluid in the 

channel: (a) εfw / εff = 0.5; (b) εfw / εff = 1.0; (c) εfw / εff = 1.5 

 

For the process of convective heat transfer, the most 

concern is the magnitude of heat transfer coefficient, which can 

be also expressed by the dimensionless temperature gradient, 

Nusselt number (Nu). Local heat transfer coefficient can be 

calculated from the energy balance and Nusselt number is 

determined by:  

 

0( )w b y

T
h T T

y
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hL
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     (3) 

 

where λ is the thermal conductivity of the fluid; L is twice the 

channel height, 2H, which is set as the characteristic length. 

Combining equation (2) and (3), local Nusselt number will be 

calculated from temperature difference and local temperature 

gradient near the wall. 
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Figure 7 Local heat transfer coefficient and Nusselt number 

along the flow direction 

 

 

Figure 8 Thermal conductivity of fluid at different temperature 

of fluid 

 

The calculated results along the flow direction are 

depicted in Figure 7. In Figure 7(a) and 7(b), the fluid is at 

near-critical state, Tin = 120 K and Tw = 180 K while three 

different fluid-wall interactions are presented. It is 

observed that local heat transfer coefficient and Nusselt 

number at the more wettable surface are higher than their 

values at the less wettable surface, which is consistent 

with previous studies at the periodic boundary [14]. 

Furthermore, the temperature of inlet fluid and wall are 

adjusted to make fluid experience three different states at 

the same channel: subcritical state, Tin = 100 K and Tw = 

140 K; near-critical state, Tin = 140 K and Tw = 180 K; 

supercritical state, Tin = 200 K and Tw = 240 K. Figure 7(c) 

and 7(d) shows that the local heat transfer coefficient and 

Nusselt number increases gradually when the thermal state 

of fluid changes from subcritical state to supercritical state. 

The temperature difference between Tin and Tw is 40 K, 

which leads a constant value of (Tw-Tb), about 23 K in all 

three cases. One possible reason can be due to an increase 

of thermal conductivity as the temperature of fluid 

increases in nano-channels as shown in Figure 8. Other 

variations of properties like viscosity, diffusivity and 

specific heat etc. may also affect the nanoscale convective 

heat transfer to near-critical fluids. This will be explored 

in future work. 

CONCLUSION  

In summary, we have shown a new method to simulate 

convective heat transfer in nano-channels without external 

driving force and periodic boundary. This new method is 

implied through inserting/deleting atoms at a given frequency 

in the region of particle source/sink. Temperature of inlet fluid 

and walls are then controlled at different values. Compared 

with previous methods with external driving force and periodic 

boundary, temperature of inlet fluid can be better up to the 

desired value while the unrealistic outlet axial conduction has 

been eliminated.  

With this method, we further study the characteristics of 

fluid flux, density and temperature distributions near the critical 

state in the process of nano-scale convective heat transfer. The 

results reveal that the local heat transfer coefficient and Nusselt 

number are not only affected by the interface wettability but 

also depend on thermal property of fluid at the near-critical 

state. They increase gradually when the thermal state of fluid 

changes from subcritical state to supercritical state, which is not 

owing to temperature oscillation at near or super critical state 

but an increase of thermal conductivity in the fluid. 
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ABSTRACT 

Two-step preparation of nanofluids by using sonication is 

one of the common ways to prepare nanofluids. Therefore, the 

nanoparticles supply in the form of ultra-fine powder which 

inherently aggregated and they need to be broken down by 

using agitation method. Nevertheless, there is no standard way 

to indicate what optimum amount of energy density should be 

used to break down aggregation of exact nanoparticles in 

specific based fluid. In this on-going research, Zinc Oxide 

(ZnO) nanoparticles with average size of 20 nm has been 

supplied and dispersed in deionized water (DI) with using 

ultrasonic agitation probe. The average particle size has been 

measured with Malvern Zetasizer to investigate how much 

sonication energy density is adequate to have minimum mean 

aggregation size. It has been found energy density α=3 KJ/ml 

given average size of 128 nm for suspension of ZnO with 

primary size of 20nm in DI water and further sonication 

couldn’t break down aggregation of nanoparticles furthermore, 

even has got reverse effect on breaking down aggregation size. 

 
INTRODUCTION 

Novel advanced heat transfer fluid is called nanofluid by 

Choi in 1995 [1] which is suspension of nano-size (less than 

100nm) metal, non-metal or metal oxide nanoparticles in 

conventional heat transfer fluids as based fluids. This is to 

overcome the inherently low thermal conductivity of the based 

fluids and makes the heat transfer more efficiently. Masuda et 

al [2] studdied concentration of 1.3-4.30 (vol%) Al2O3 with 

particle size 13 nm. They conclude that  thermal conductivity of 

water with could has an increase in the range10-32%. Eastman 

et al [3] by adding 0.3 vol% copper nanoparticle with average 

size of less than 10 nm in Ethylene glycol, the thermal 

conductivity increases more than40%. G. Colangelo et al [4] 

reported thermal conductivity of diathermic oil has an increase 

of about 3.58% and 8.45% with concentration of 1% and 2% of 

ZnO (60 nm, primary size), respectively. There are two major 

methods for preparation of nanofluids, namely single-step 

method and two-step method.  

In single-step method, the nanofluids will be produced 

physically or in chemical processes that nanoparticles directly 

have been made and suspended simultaneously into the host 

fluids (base fluids). Therefore, methods such as vapour 

condensation[3], chemical vapour deposition[5] and chemical  

 

reduction as well as chemical precipitation [6] could be applied. 

However, bulk production of single-step method is not cost 

effective yet and this method also limited to produce nanofluids 

for low-vapour-pressure of the flowing host fluids. On the other 

hand, there is not enough reported research on the effect of the 

time on their stability or their expiry dates.  

In order to use nanofluids for an industrial application, large 

volume of nanofluids as a coolant medium is needed. 

Therefore, two-step method have implemented by many 

researchers to produce desired nanofluids by applying  different 

techniques such as magnetic stirrer, high shear homogenizer 

and ultra-sonication (sonication). Moreover, preparing stable 

nanofluids is very critical from the   Industrial application point 

of view. Therefore, preparing long time chemically stable 

nanofluids could be achieved by changing surface 

characteristics of nanoparticles by using additives. This is   with 

increasing wettability of the surface of particles with 

surrounded interface fluids as well as large micro molecules 

prevent particles surface from coming close contact to 

neighbours particles. In this way it needs to illustrate adequate 

surfactant which adsorbs on the surface of particles as well as 

compatibility with based fluids. This must be on the presence of 

processing fluids (liquid bridge); or enhance electrostatic 

interaction with adjusting pH value to increase repulsive force 

within particles [7]. 

In this research 20 nm ZnO nanoparticles is chosen for 

preparing the nanofluids by applying two-step method. 

Actually, the application of ZnO is increasing in different 

industries due to its unique characteristics. In electronic 

industry ZnO is used to made semiconductor for making 

inexpensive transistor and thin film batteries due to abundant, 

inexpensive and chemically stable [8].  

According to the Stoke’s law, reducing the size of constituent 

in a solution cause reducing the rate of sedimentation velocity.

g
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where ρs and ρBF are the density of solid nanoparticles and the 

based fluid, respectively. μBF is the dynamic viscosity of the 

based fluid and R is the average radius size of the solid 

particles in the fluid. Consequently, by reducing average size of 
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the particles, the rate of sedimentation will be decreased or in 

other words, stability of the nanofluids will be increased [9]. 

The average size of suspended nanoparticles as a nanofluid is 

usually greater than the primary size of the particles which 

provided by manufacturers.  

Chung et al. [10] prepared ZnO-water nanofluids 

,nanopowders have been purchased from different supplier with 

various  primary size 20nm and 40-100nm. Different sonication 

methods were used for preparation nanofluids. Bright field 

TEM and photocorrelation Spectroscopy are used to characteriz 

nanofluids. It was reported that the mean particle size has 

distribution range 50- 300 nm . From their results applying 60 

minutes ultrasonic agitation with horn type ultra-sonicator the 

average size of 20nm and 40-100 nm are 92 nm and 94 nm 

respectively. According to them different primary particle size 

is given similar mean particle size in their base fluids. 

Suganthi et al. [11] investigated the effect of temperature on 

the zeta potentail, size distribution and viscosity profile for 

ZnO (20% of weight) in deionized water by adding sodium 

hexa metaphosphate as surfactant. They used 35-40 nm 

nanoparticles, but reported the minimum mean size of 136 nm 

at 25° C after three hours sonication time (750 W ,20 KHz. 45 

seconds pulse on 15 seconds pulse off). They also found as the 

temperature increases, the hydrodynamic size also increases. 

This is due to intensifying Brownian motion, therefore, the 

particle to particle interaction would scale up aggregation. 

Suganthi et al. [12] reported 24 hours sonication is needed 

to break aggregation of ZnO nanoparticles in Ethylene glycol 

from 200nm to minimum average hydrodynamic size of 100 

nm. 

Kole et al [13] studied the effect of prolonged sonication of 

ZnO with primary size of 30-40 nm in Ethylene glycol without 

any surfactant. They indicated that 60 hours sonication using 

200 W sonicator could break down aggregation of 

nanoparticles approximately about 91 nm (measured with zeta 

sizer Malvern ZS) while after 4 hours the average size of the 

nanoparticles in the nanofluid was about 459 nm. Their results 

show more than 60 hours sonication could increase the average 

size. For example, 100 hours sonication caused the average size 

of 220 nm. It has not been specified what was based fluid 

volume, which has been prepared, to determine sonication 

energy density.  

Wei Yu et al [14] found average size of ZnO (primary 

size10-20 nm) in Ethylene glycol vary from 500 nm (after 5 

min sonication) to 227nm and 209 nm, after 2h and 4h 

sonication, respectively.  

 

Table1. summary of preparation nanofluids with sonication 

      Berg et al. [15] investigated on the relationship between pH  

and zeta potential of 30 nm ZnO nanoparticles in ultrapure  

water. They reported isoelectric point (IEP) of ZnO (<50 nm in 

primary size) in the water is equal to 7.13 and average particle 

size when pH=7.13, pH=9, pH=9.5 and pH=11.05 equals 

1173nm, 240nm, 226nm and 195 nm, respectively. However, 

Chang et al [16] reported IEP=9.27 for ZnO and minimum 

average size at pH=3 is equal to 150 nm.  Table 1 is the 

summary of work related to preparation nanofluids with using 

sonication. 

        To measure stability of nanofluids scientists Derjaguin, 

Verwey, Landau and Overbeek developed a theory which is 

known as DLVO theory. They presented stability of a colloidal 

system depends on the total energy potential function (vT). 

Total energy balance is mostly depends on components VA 

(attractive contribution, Van der Waals attractive force) and VR 

(repulsive contribution, electrical double layer repulsive 

forces). 

 
)12( 2D
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               (2) 

 where A is the Hamaker constant (range 10
-19 

-10
-20

 J) 

A=1.910
-20

 J (ZnO-water)[17] and D is the particle separation 

VR = 2 π ε a ζ
2
 exp(-κD)                        (3) 

Where a is the particle radius, π is the solvent permeability, κ is 

a function of the ionic composition and ζ is the zeta potential. 

     Higher absolute value of zeta potential improves repulsive 

potential energy in a colloidal system. Figure 1 is the schematic 

of particle separation according to the DLVO theory[18]. 

 

 

 

 

 

 

 

Figure 1 Variation of total potential energy for particle 

separation according to DLVO theory[18]  

Author Particle Based Fluid additives Primary size nm 
Sonication 

time min 

Min average 

size nm 

Chung et al[10] ZnO DI Water Ammonium polymethacrylate 20 60 92 

Chung et al[10] ZnO DI Water Ammonium polymethacrylate 40-100 60 94 

K.S. Suganthi et al [11] ZnO Water Sodiumhexa-metaphosphate (SHMP) 35-40 180 136 

K.S. Suganthi[12] ZnO Ethylene glycol No- surfactant 25-40 24 ₓ 60 100 

Madhusree Kole et al[13] ZnO Ethylene glycol No- surfactant 30-40 60 ₓ 60 91 

Wei Yu et al[14] ZnO Ethylene glycol No- surfactant 10-20 240 209 

J. Michael Berg et al[15] ZnO Water - <50 30 (bath) 195 

Ho Chang et al[16] ZnO DI Water - 20 - 150 
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Nomenclature 

R   [nm] Nanoparticles radius 

Vs 

A 

  [m/s] 

  [J] 

Sedimentation speed 

Hamaker constant 

 
Special characters 

 
α 

ρs 

ρBF 

μBF 

ξ 
T 
D 
η0 

 [KJ/ml] 
 [kg/m3] 

 [kg/m3] 

  [Pa.s] 
  [mV] 

  [K] 
  [m2/s] 

  [Pa.s] 

Sonication energy density 
Density of solid nanoparticles 

Density of based fluids 

Viscosity of based fluids 
Zeta Potential 

Absolute temperature 
Diffusive constant 

DynamicViscosity of the medium 

 

EXPERIMENTAL PROCEDURE 
Zinc Oxide nanoparticles were acquired from Nano 

structured and amorphous Material Inc, USA. ZnO 

nanoparticles with diameter of 20 nm, 99.5% of purity, 50m
2
/g 

Specific Surface Area (SSA), and true density of 5.606 g/cm
3 

were used. The size and morphology of ZnO nano-powder were 

examined with (A) Scanning Electron Microscopy (SEM) (B) 

Transmission Electron Microscopy (TEM) as shown in Figure 2 

To perform measurement with SEM and TEM, the nanofluids 

samples first should be dried and then put them in the vacuum 

chamber. Therefore, some parts of the agglomeration of the 

nanoparticles will be as a result of laying different layers of the 

nanofluid over each other while drying. DI water has been 

supplied from Merck Company. Tetramethyl ammonium 

hydroxide pentahydrate (TAHP) (Aldrich company) with purity 

of more than 95% is used as a surfactant with ration of 

surfactant weight to nanoparticles weight, 5:100. Volume 

concentration of 0.05vol% ZnO nanofluids is prepared with 

using two-step method; with applying ultrasonic agitation 

probe. High accuracy scale (0.1 mg) is used to measure desired 

nanoparticles weight. First surfactant (THAP) (5% weight of 

ZnO nanoparticles) is dispersed in 40 ml DI water and stirring 

with magnetic stirrer for 10 min. Desired ZnO nanoparticles are 

dispersed in the based fluid. It is followed by putting the 

suspension which is in 80ml beaker in the constant bath at 13°C 

to remove excess heat from the suspension in order to prevent 

overheating of the sonicator probe. A sonicator (Qsonica Q-700 

20KHz and 700 W with 3s pulse on 1s pulse off with amplitude 

(intensity) of 57%) is used to break down aggregation of 

particles. ZnO (concentration 0.05vol% ) is dispersed with 

different sonication energy density(
ml

kJ

meSamplevolu

tenergyinpuSonication
 ) 

range from α= 0 [kJ/ml] to α=10.8  [KJ/ml] has been applied. 

Particle size distribution, average aggregation size and Zeta 

Potential of the colloidal solution were investigated by using 

Dynamic light scattering method with Zetasizer ZS (Malvern 

instrument limited, UK) versus sonication energy density. The 

equipment is using 4mW He-Ne 633 nm LASER as a source 

and it is capable to measure particle size range 0.3nm to 

10000nm. The accuracy of the unit is better than +/-2% NIST 

traceable latex standards and repeatability +/- 1% of measured 

data for size and +/- 0.4% of measured data for the zeta 

potential measurement. Measurement carries on at 25°C with 

assigning viscosity of water at 25°C to 0.8872 cP.  

To measure mean hydrodynamic size stokes and Enstine 

[19] formula is used: 

03 



D

T
d B                      (4) 

where d is hydraulic diameter, κB Boltazman constant 
(1.3806488 × 10

-23
 m

2
 kg s

-2
 K

-1
 ), T absolute temperature, D 

diffusive coefficient and η0 Dynamic viscosity of the medium. 

 
 

 

 

 

 

 

 

 

(A)                                    (B)                                                                                    

Figure 2 (A) SEM picture of dry nanoparticles of ZnO; (B) 

TEM picture of ZnO-water with surfactant  

RESULTS AND DISCUSSION  

     In this research main focus is to find minimum possible 

average size in two step method preparation nanofluids with 

applying ultrasonication energy density. According to Stokes’ 

law, reduction in average particle size reduce sedimentation 

rate and as a result in more stable nanofluids. Nano particles 

during production and storage process making aggregation with 

average size bigger than whatever   manufactured specified. 

Figure 3 shows the average size of ZnO (by performing 

zetasizer measurement) in water suspension (nanofluid) with 

and without ultrasonications. It indicates that the average size 

of 718 nm when no ultrasonication made. Increasing energy 

density to 0.5 kJ/ml average size plunges from 718nm to 162 

nm. Average size reduction become more linear after 

α=1[kJ/ml] as results show sizes change from 147nm to 124 nm 

for α=1 and α=4, respectively. Further increase in sonication 

density couldn’t break down average aggregation size 

furthermore. Figure 4. illustrates mean size distribution of ZnO 

for α=3 [kJ/ml] with range from 44nm to 396nm.  Mean 

average size of 128nm, standard deviation (SD) of 69 nm and 

poly dispersity index (PDI) of 0.169 is reported.  According to 

the Figure 5 further sonication result in big aggregation 

particles appear in the sample. However, many researchers with 

referencing to TEM or SEM microscopy photos using size of 

particles, which is close to a manufacturer claim, and applying 

that to predict thermophysical properties of nanofluids [20],[21] 

and[22] ,which could not be right.  

100nm 

100 nm 
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Figure 3 Effect of sonication energy density on mean        

ZnO- water nanoparticle size 

 

 

α(kL/mL) 0 0.5 1 2 3 4 7 9 10.8 

Ave-size     
(nm) 

718 162 147 134 128 124 121 121 122 

ZP [mv] -33 -40 -40 -43 -44 -46 -48 -47 -46 

Table 2. Sonication energy density and effect on mean size     

and zeta potential of 0.05 vol% ZnO- deionized water 

nanofluids (ZP, zeta potential) 

 

 

 

 

 
 
Figure 4 Mean particles size of ZnO- water distribution for  

α=3 

 

 
Figure 5 Effect of high sonication energy density to aggregate 

big nanoparticles in ZnO-water nanofluids 
 
     In order to approach the stability of the samples, zeta 

potential of them needs to be measured. Zeta potential (ξ) is 

electrical potential between bulk fluids (medium) and charged 

acquired by liquid layer surrounding the particles surface which 

includes two parts, stern layer and diffuse layer (electrical 

double layer) which they showed in Figure 6 Zeta potential 

could give indication of stability of the colloidal dispersions. 

Higher absolute value of zeta potential indicates better stability 

of the suspensions. It is believed that suspensions with ξ=± 30 

mV  will be almost stable, ξ=± 40 to ±60 mV gives good 

stability and ξ>±60 indicates excellent stable of colloidal 

suspensions [23]. As a matter of fact, other factors, such as 

density difference of colloidal particle and based fluid also play 

an important role in stability of colloidal suspensions. Any 

efforts to improve absolute value of zeta potential could help to 

enhance stability of the colloidal systems, such as changing 

surface characteristics with adding surfactant and/or adjusting 

pH value far from the isoelectric point of a colloidal system. 

     Scaling up sonication energy density made an increase to 

absolute value of mean zeta potential from 33mV to 48 mV for 

α=0 [kJ/ml] to α=7 [kJ/ml], respectively. However, further 

sonication has got opposite effect on stability of the sample. 

Figure 7 shows zeta potential distribution for different 

sonication energy density. It is depicted from the Figure 8 that 

increasing sonication energy density increase distribution range 

of the zeta potential of the sample. Standard deviation for α=2 

[kJ/ml] and α=7 [kJ/ml] changes from 6.5mV to 11 mV.  

 

 

 

 

 

 

 

Figure 6 Schematic of zeta potential of a particle  

     Particle with opposite charge 

      Stern layer 

     Diffuse layer 

    Bulk fluid charge zeta potential 
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Figure 7 Effect of ultrasonication energy density on mean        

zeta potential of 0.05 vol% ZnO-water nanofluids 
 

 

 
 

Figure 8 Influence of ultrasonication energy density on 

distribution of apparent zetapotential of ZnO-water nanofluids 

 
     Ultrasonication energy density could change mean size of 

the colloidal dispersion of ZnO-water nanofluids. It has found 

sonication energy density α= 3 [kJ/mL] is adequate enough to 

give minimum mean size. However, with further sonication 

mean size just decrease 4nm, but big aggregated particles are 

detected in the sample, small tail as it seen in the particle 

distribution in Figure 5 These wide ranges of distribution ruin 

the stability of the sample and sedimentation is observed. Data 

reported from zeta potential also confirm that with increasing 

sonication, first zeta potential increase then with further 

increase in the sonication energy density zetapotential values 

decrease. Moreover, deviation of ulterasonication energy 

density from the optimum value (α=3 kJ/kl) makes the 

distribution of zetapotential starch over the range that particles 

has got aggregation, thus it cause to accelerate sedimentation in 

the samples. 

      Size distribution of ZnO nanoparticles as well as high value 

for standard deviation of the samples pronounced that with 

using ultrasonication energy breaking down aggregation of the 

particles to primary size has not been achieved. Distribution 

range of particles size makes also very difficult to produce 

stable ZnO monodispersed nanofluid. 

 

Conclusion 

     Experimental mean aggregation size measurement of 

0.05% volume fraction of Zinc Oxide-water nanofluids with 

zetasizer confirm effect of ultrasonication energy to reduce 

aggregation particle size, as well as, existence of optimum 

ultrasonication energy density to break down aggregation of 

specific nanoparticles in the based fluid to minimum possible 

aggregation size. It also has found further sonication causes 

very big aggregation of nanoparticles that could destroy 

stability of the prepared nanofluids. 

       Zeta potential measurements also confirmed the effect of 

sonication energy density on stability of colloidal suspension of 

ZnO-water nanofluids. Furthermore, resultant value for size 

distribution of ZnO-water (caused by aggregation) is much 

higher than primary size of nanoparticles which is claimed by 

manufacturers. Therefore, average size of nanofluids should be 

used in mathematical models to predict nanofluids 

thermophysical properties.  The suggestion is to investigate 

more systematically by further experiments to conclude effect 

of sonication for different nanoparticles in different based 

fluids. 

Acknowledgment: 
The Authors duly acknowledge and appreciate the funding 

obtained from the following organizations: National Research 

Foundation of South Africa (NRF), CSIR and EIRT-seed. 

 

 

 

 

References
 

[1] S.U.S. Choi, Enhancing thermal Conductivity of Fluids with 

Nanoparticles, Proceedings of the 1995 ASME International 

Mechanical Engineering Congress and Exposition,USA, 

November 1995, Vol. 231, pp. 99-105 

[2] W. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Review 

and Comparison of Nanofluid Thermal Conductivity and Heat 

Transfer Enhancements, Heat Transfer Engneering. Vol. 29 

No.5, 2008, pp. 432–460.  

[3] J. a. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, 

Anomalously increased effective thermal conductivities of 

ethylene glycol-based nanofluids containing copper 

nanoparticles, Applied Physics Letters. Vol. 78, No. 6, 2001, 

pp. 718-720. 

[4] G. Colangelo, E. Favale, A. de Risi, D. Laforgia, Results of 

experimental investigations on the heat conductivity of 

nanofluids based on diathermic oil for high temperature 

applications, Applied  Energy. Vol. 97, 2012, pp. 828–833. 

[5] H. Akoh, Y. Tsukasaki, S. Yatsuya, A. Tasaki, Magnetic 

properties of ferromagnetic ultrafine particles prepared by 

vacuum evaporation on running oil substrate, Journal of 

Crystal Growth. Vol. 45, 1978, pp. 495–500.  

 Measured data 

 Interpolated data 

11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

215



    

[6] H. Bönnemann, S.S. Botha, B. Bladergroen, V.M. Linkov, 

Monodisperse copper- And silver-nanocolloids suitable for 

heat-conductive fluids, Applied Organometallic Chemistry. 

Vol. 19, No. 6, 2005, pp. 768–773.  

[7] J. Boyle, I. Manas-Zloczower, D.L. Feke, Influence of 

particle morphology and flow conditions on the dispersion 

behavior of fumed silica in silicone polymers, Particle and 

Particle Systems Characterization. Vol. 21, No.3, 2004, pp. 

205–212.  

[8] R. Wahab, Y.-S. Kim, H.-S. Shin, Synthesis, 

Characterization and Effect of pH Variation on Zinc Oxide 

Nanostructures, Materials Transactions. Vol. 50, No. 8, 2009, 

pp. 2092–2097.  

[9] G. Colangelo, E. Favale, A. de Risi, D. Laforgia, A new 

solution for reduced sedimentation flat panel solar thermal 

collector using nanofluids, Applied Energy. Vol. 111, 2013, 

pp. 80–93.  

[10] S.J. Chung, J.P. Leonard, I. Nettleship, J.K. Lee, Y. Soong, 

D. V. Martello, et al., Characterization of ZnO nanoparticle 

suspension in water: Effectiveness of ultrasonic dispersion, 

Powder Technology. Vol.194, No. 1-2, 2009, pp. 75–80.  

[11] K.S. Suganthi, K.S. Rajan, Temperature induced changes 

in ZnO–water nanofluid: Zeta potential, size distribution and 

viscosity profiles, International Journal of Heat and Mass 

Transfer. vol. 55, 2012, pp. 7969–7980.  

[12] K.S. Suganthi, V.L. Vinodhan, K.S. Rajan, Heat transfer 

performance and transport properties of ZnO – ethylene 

glycol and ZnO – ethylene glycol – water nanofluid coolants, 

Applied Energy. Vol. 135, 2014, pp. 548–559.  

[13] M. Kole, T.K. Dey, Effect of prolonged ultrasonication on 

the thermal conductivity of ZnO-ethylene glycol nanofluids, 

Thermochimica Acta. Vol. 535, 2012, pp. 58–65.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[14] W. Yu, H. Xie, L. Chen, Y. Li, Investigation of thermal 

conductivity and viscosity of ethylene glycol based ZnO 

nanofluid, Thermochimica  Acta. Vol. 491, 2009, pp. 92–96.  

[15] J.M. Berg, A. Romoser, N. Banerjee, R. Zebda, C.M. 

Sayes, The relationship between pH and zeta potential of ~ 30 

nm metal oxide nanoparticle suspensions relevant to in vitro 

toxicological evaluations, Nanotoxicology. Vol. 3, No. 4, 

2009, pp.  276–283.  

[16] H. Chang, M.H. Tsai, Synthesis and characterization of 

ZnO nanoparticles having prism shape by a novel gas 

condensation process, Reviews on Advanced Materials 

Science. Vol. 18, 2008, pp. 736–745. 

[17] Y. Zhang, Y. Chen, P. Westerhoff, K. Hristovski, J.C. 

Crittenden, Stability of commercial metal oxide nanoparticles 

in water, Water Research. Vol. 42, No. 8-9, 2008, pp. 2204–

2212.  

[18] M. Instruments, Zeta potential: An Introduction in 30 

minutes, Zetasizer Nano Serles Technical Note. MRK654-01. 

Vol. 1, 2011, pp. 8.  

[19] J.T. Edward, Molecular volumes and the Stokes-Einstein 

equation, Journal of Chemical Education. vol. 47, No.4, 1970, 

pp. 261-270. 

[20] J. Koo, C. Kleinstreuer, A new thermal conductivity model 

for nanofluids, Journal of Nanoparticle Research. Vol. 6, No. 

6, 2004, pp. 577–588.  

[21] N. Masoumi, N. Sohrabi, a Behzadmehr, A new model for 

calculating the effective viscosity of nanofluids, Journal of 

Physics D: Applied Physics. vol. 42, No. 5, 2009, pp. 1-6.  

[22] C.H. Chon, K.D. Kihm, S.P. Lee, S.U.S. Choi, Empirical 

correlation finding the role of temperature and particle size 

for nanofluid (Al 2O 3) thermal conductivity enhancement, 

Applied Physics Letters. Vol. 87, No.15, 2005,  pp. 1–3. 

[23] W. Yu, H. Xie, A review on nanofluids: Preparation, 

stability mechanisms, and applications, Journal of 

Nanomaterials. Vol. 2012, 2012, pp. 1-17 

 

11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

216



    

 

NANOFLUIDS; OPPORTUNITIES AND CHALLENGES  
 

Sharifpur*,1 M, Meyer J.P 1 and Hikmet Ş. Aybar 2 

1Department of Mechanical and Aeronautical Engineering, 

University of Pretoria, Pretoria, 0002, South Africa 

2Department of Mechanical Engineering, Eastern Mediterranean University,  

G. Magosa, KKTC, Mersin 10, Turkey 

*Author for correspondence 

E-mail: mohsen.sharifpur@up.ac.za 

 

 
ABSTRACT 

 

Nanofluids which are new heat transfer fluids have shown 

two important behaviors. First, their effective thermal 

conductivity can be much more than those of the conductivity 

of conventional heat transfer fluids. Secondly, magneto-

rheological nanofluids (MRNF) can control the viscosity when 

they are in a proper magnetic field. On the other hand, in 

general, nanofluids have shown more effective viscosity in 

comparison to the base fluids. The idea is to find the optimum 

range for each nanofluid to provide the maximum heat transfer 

performance. Consequently, they can significantly reduce the 

size and materials in the heat transfer applications. Therefore, 

investigation into the nanoparticles and nanofluid is important 

regarding material and energy management as well as 

environment issues. This study concerns on different issues and 

lack of research and information in nanofluids area to be 

involved in different industrial applications. 

 
INTRODUCTION 

 

Due to rapid technological developments, a lot of industrial 

equipment operate at a high temperature and/or speed for more 

power output. Therefore, cooling for sustaining desirable 

performance and durability of such devices and/or the 

rheological behavior of the lubricant or coolant fluid could be 

two of the technological issues encountered by high-tech 

industries. Conventional heat transfer fluids, generally have 

shown poor thermal conductivities in comparison with solids. 

Therefore, scattering solid particles into liquids could be a 

solution which is not a new idea, since it can be traced back to 

Maxwell’s theoretical work in 1873 [1]. Consequently, fluids 

that contain mm- or µm- sized particles were used to increase 

the efficiency of thermal conductivity, but the particles were too 

large to pass through the channel smoothly. The other main 

problems were the rapid settling of the mm- or µm- sized 

particles in the base fluid and also the erosion by the particles 

was problematic. These days, modern technology makes it 

possible to produce smaller particle sizes than previous as 

nanoparticles which can be dispersed easily without rapid 

settling in the base fluid. Therefore, a novel generation of 

coolants called nanofluids was invented to meet the required 

cooling rate from heat transfer equipment [2].  

      This new and advanced heat transfer fluid can be described 

as the suspension of nanometer-sized (1-100nm) metallic, non-

metallic, polymeric particles, oxides and nanotubes in a 

conventional heat transfer fluid such as water, mineral oil, 

ethylene glycol, etc. It has the capability to be used in many 

industrial processes such as; power generation, chemical 

processes, heating and cooling processes, grinding process, fuel 

cells and micro-electronics. For example, their application in 

the automotive industry can minimize the size of radiators 

which in turn reduce the overall weight of the vehicle [3]. 

      Nanofluids show better stability and rheological properties, 

higher thermal conductivity, and no penalty in pressure drop 

when compared with suspended particles of millimeter-or-

micrometer dimensions. However, it looks the importance and 

opportunities of this new composite fluid as well as huge lack 

of research and information has not been noticed by 

researchers. They include: 

1- Preparation of nanofluids and the stability issues 

2- Prediction of thermal conductivity of nanofluids 

accurate for industrial condition 

3- Prediction of viscosity of nanofluids for industrial 

condition 

4- Nanofluids as heat transfer fluid 

5- CFD simulation by using nanofluids 

6- Health and safety issues  

The purpose of this paper is to address the research potential, 

opportunities and the lack of research in the nanofluids area. 

      

 PREPARATION OF NANOFLUIDS AND THE 
STABILITY ISSUES 

  

A nanofluid consists of nanoparticles blended into a base 

fluid. The particles have to be dispersed to form of a 

homogenous colloid.  

 

Figure 1 SEM image for Al2O3 nanoparticles with 80 nm size 
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There are two different method to prepare nanofluids which 

consist of one step method and two-step method. In the one 

step method, usually the nanoparticles produce chemically in 

the base fluid. However, in the two-step method, the 

nanoparticles produce separately and then by using ultrasonic 

mixer [4] as well as another facilities like homogenizer, the 

nanoparticles will be suspended in the base fluids.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 TEM image of MgO nanoparticles with 20 nm size 
 

The one step method gives more stable nanofluids, but two-

step method is more usual while there are not enough 

investigation into preparation of different nanofluids (different 

nanoparticles in different base fluids) for one step method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3 TEM image of MgO nanoparticles with 100 nm size 
 

On the other hand, there is the lack of information for 

preparing a nanofluid by applying two-step method as well. 

Sentences like” it has been shown that the optimum preparation 

time when using ultrasound is 9 hours” [5] is not working for 

nanofluids, while the number of hours is connected to the 

volume of the nanofluid up to an exact amount (concerning the 

energy per surface of the ultrasonicator) and then the sample 

must be divided in two of more. Furthermore, there is not an 

accurate equation to quantify the ultrasound energy 

(amplitude), frequency and the required time for different 

nanofluids. No reported information can be found for accurate 

expiry date of the stable nanofluids or nanoparticles in the 

market.    

The other important issue is to find a way to show the 

degree of the stability of nanofluids. Most of the articles show 

the TEM or SEM or Zita-sizer analyses or X-ray diffraction 

peaks or tracking one of the measured parameters like thermal 

conductivity or viscosity by the time to show stability or no 

aggregation. However, none of them can show the stability of a 

nanofluid separately, but TEM or SEM and the others together. 

For example, Figure 1 shows an image of Al2O3 nanoparticles 

with 80 nm size [6] produced by a Scanning Electron 

Microscope (SEM) after several carbon coating as well as Figs. 

2 and 3 show the TEM image for MgO nanoparticles 20 nm and 

100 nm, respectively (SEM and all TEM images in this paper 

are taken at the University of Pretoria [7] ). From the Figs. 1 to 

3, it is possible to recognize the particle sizes, but they are not 

proper devices to find the aggregation while they need to dry 

the droplet of the nanofluids, this means in the Figs. 1 to 3 a lot 

of the particles can attach each other from different fluid layers 

in the process of drying. Therefore, it is not possible to 

recognize if the clustering happened in the nanofluid or it is as 

a result of drying process, or both.  

 

 
 

Figure 4 TEM image for MgO nanoparticles with 40 nm size 

(manufacturer claim) 

 

In addition, all the researches working on nanofluids area 

need to use TEM or SEM to check if the particle size claimed 

by manufacturer is correct or not. For example Fig.4 shows 

TEM image for MgO nanoparticles with 40 nm size 

(manufacturer claim, Nanostructured Amorphous Inc., USA), 

which is clear that some of the particles are more than 100 nm.  
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THERMAL CONDUCTIVITY OF NANOFLUIDS 

 Up to the present, the fundamental mechanism of enhanced 

thermal conductivity of nanofluids remains a key challenge in 

nanofluids research [8]. The conventional theoretical models 

cannot acceptably explain the enhancement of the thermal 

conductivity of nanofluids. It means, the increase in the thermal 

conductivity of nanofluids is not only because of the 

conduction, but also other mechanisms making a significant 

enhancement in thermal conductivity. For example; the specific 

surface area of the nanoparticles could be 1000 times larger 

than that of micro-particles, and because the heat transfer 

occurs on the surface of the particles, the high specific surface 

area of the nanoparticles increase the heat transfer conduction 

capability of nanofluids [9]. Therefore, it is important to 

understand the fundamental mechanism behind the heat transfer 

in nanofluids and also the important parameters which 

influence the heat transfer.  

Nanofluids thermal conductivity enhancement consists of 

three major mechanisms: molecular-level layering of the liquid 

at the liquid/particle interface (nanolayer), Brownian motion of 

the nanoparticle and nanoparticle clustering. The following 

important parameters also affect the effective thermal 

conductivity of nanofluids: volume fraction of the 

nanoparticles, temperature, pH, dispersion, shape factor, 

nanolayer thickness, nanolayer thermal conductivity, the effect 

of settling down by time and the particle size effect on surface 

contact of liquid/particle interface. Up to present, more than 30 

models have been developed in order to explain the thermal 

conductivity behaviour of nanofluids [8, 10]. However, most of 

them are based on experimental data (therefore, they are not 

valid for prediction out of the condition of the experiments) and 

there is not a model within them which can support the 

enhancement of effective thermal conductivity of nanofluids 

including all mechanisms and parameters. 

VISCOSITY OF NANOFLUIDS 

Viscosity is an important consideration in the application of 

nanofluids as a lubricant or heat transfer fluids. Empirical 

investigations into the viscosity of nanofluids have shown that 

the existing theories, models and correlations have limitations. 

The parameters which have been applied so far in modeling 

nanofluid viscosity include volume fraction or concentration, 

temperature, packing fraction, thickness of the nanolayer, 

particle shape/aspect ratio, aggregate radius, inter-particle 

spacing and the capping layer [11, 12].  

 On the other hand the behavior of disperse magnetic 

nanofluids is of interest in the design of engineering systems 

requiring induced magnetic field effects for optimum 

performance. Therefore, the effective viscosity behavior of 

magneto-rheological nanofluids (MRNF) is principally 

governed by the presence of a magnetic field. 

Although there are more than 30 empirical models available 

that predicts the effective viscosity of nanofluids, there is not a 

hybrid model that includes all influenced parameters. 

 HEAT TRANSFER APPLICATION OF THE 

NANOFLUIDS  

 In the heat transfer application of nanofluids, the most 

important parameter is the interaction of the effective thermal 

conductivity (which increases by increasing the nanoparticles 

volume fraction) and the effective viscosity (which also 

increases by increasing the nanoparticles volume fraction). 

While they both increase, there must be an option volume 

fraction on different regime and cases (natural convection, 

laminar force convection and turbulence force convection) to 

enhance the heat transfer.  On the other hand, nanofluids will 

find proper place in industries or designing different heat 

transfer systems if they can predict heat transfer accurately. In 

this way it requires a pair of thermal conductivity and viscosity 

for heat transfer calculations in each case. Now with more than 

30 choices for each of them, it provides more than 1000 pair for 

the combination of thermal conductivities and viscosities which 

makes problem to find which the best is. Consequently, the idea 

is to find an accurate thermal conductivity and an accurate 

viscosity for each nanofluid while offering a model which can 

work for all nanofluids is not possible yet. Furthermore, the 

accurate correlations have also limitations concerning the 

condition of the experimental works.  

CFD SIMULATION BY USING NANOFLUIDS 

 Accurate CFD simulation is very important while it can 

easily bring nanofluids into industrial systems and designing 

different applicants. For CFD simulation there is still one main 

question, which asks if a nanofluid is a homogenous one phase 

mixture or a nanoparticle and a base fluid produce a two-

component flow (or discrete phase flow) including slip 

velocity. If assuming a nanofluid as a homogenous one phase 

flow, therefore, it needs to introduce the properties of the 

nanofluid to the CFD software which again needs accurate 

correlation for thermal conductivity and viscosity. 

Consequently, considering the Discrete Phase Flow (DPF) 

looks better, but the mathematical modeling needs to be 

modified for nano-scale heat transfer while it does not work for 

all cases as the present modeling is [13]. 

RESEARCH OPPORTUNITIES IN NANOFLUIDS  

There are a lot of research opportunities and lack of 

information in this field. They include: 

- Producing nanoparticles economically. 

- Producing nanoparticles with a more accurate size. 

- Investigation on environmentally friendly as well as health 

safe nanoparticles. 

- Determining the thermal conductivity of nanofluids 

accurately. 

- Estimation of the effective viscosity of nanofluids 

accurately. 

- Research on energy density requirements for sonication.  

- Image analyses of nanoparticles in the nanofluids  

- Investigation on nanolayer thickness and properties  
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- Research on stabilizer (or surfactant) and how to make a 

nanofluid more stable as well as their expiry date 

- Research on mathematical modelling of nanoscale heat 

transfer to use in the software packages, therefore, no needs to 

define different properties for nanofluids as discrete phase flow 

(not homogenous one phase mixture).  

CONCLUSION  

 Nanofluids which are new heat transfer fluids show proper 

performance and opportunities for different applications. 

Unfortunately, there are lack of reported researches on 

comprehensive hybrid models for determining the properties of 

nanofluids, how to make stable nanofluids, finding health safe 

and environmental friendly nanoparticles, mathematical 

modelling which support the nano-scale heat transfer. 

Consequently, this important field requires the attention of 

researchers concerning the opportunities, challenges and the 

lack of information. 
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ABSTRACT 

This paper analyzes numerical simulations of the 
trajectories of magnetic beads in a microchannel, with a nearby 
permanent cubical magnet, under different flow and magnetic 
conditions. The computed fractions of deposited particles on 
the walls are compared successfully with a new theoretically 
derived criterion that imposes a relation between the sizes of 
the magnet and the microchannel and the particle Stokes and 
Alfvén numbers to obtain the complete deposition of the 
flowing particles on the wall. In the cases in which all the 
particles, initially distributed uniformly across the section of the 
microchannel, are deposited on the walls, the simulations 
predict the accumulation of the major part of particles on the 
closest wall to the magnet and near the first half of the 
streamwise length of the magnet. 

 
INTRODUCTION 

The application of magnetism in fluidic microsystems has 
been used since the boom of microfluidics in the early 1900 
with the concept of micro total analysis systems. Magnetic 
forces can be used to manipulate magnetic objects as magnetic 
particles or magnetically labelled cells. The movement of 
magnetic beads in microfluidic applications is usually 
controlled by permanent magnets or by magnetic fields 
generated by electric currents. Magnetohydrodynamic pumps, 
based on the generation of a magnetic field perpendicular to an 
electric field, can be used, as an alternative to pressure driven 
or electroosmotic flows, to produce flow in a conducting fluid. 
The same principle can be used for mixing. Plugs of ferrofluid 
can be moved with magnets to induce or to block the flow of an 
immiscible liquid. More information about these few examples 
and other applications involving magnetic forces in microflows 
can be found, for example, in the reviews of Gijs [1], Pamme 
[2] and Berthier and Silberzan [3] and the references therein. 

Magnetic beads are constituted by nanoparticles of iron 
oxides embedded in a microsized biologically-compatible 
polymer (latex or polystyrene) sphere. The external surface of 
the sphere can be coated with biological molecules such as 
enzymes or DNA fragments which can be easily transported, by 
applying a magnetic field, towards specific locations or 
biological targets. Magnetic beads are used mostly for in vitro 
applications (biodiagnostics and biorecognition) and recently 
for in vivo applications, such as cancer treatment. In this case 
functionalized magnetic particles can by transported by the 
blood flow and retained by a magnet implemented in the 
treatment zone. For the most common applications the sizes of 
the magnetic particles range from 5 nm to 6 m. The smallest 

particles are used for applications in which the beads have to be 
dispersed by Brownian motion after the magnetic field is shut 
down while larger particles can be used to create large 
aggregates of particles. Magnetic beads used for biotechnology 
are usually paramagnetic because it is desired that the magnetic 
force vanish when the externally imposed magnetic field is 
switched off. 

This study is focused in the prediction of the trajectories of 
magnetic beads in microchannels and the identification of the 
required magnetic and relevant physical properties needed for 
the deposition of the magnetic beads on the walls of the 
channel. 

NOMENCLATURE 
 
Al [-] Alfvén number, ݈ܣ ൌ ߩߤ/ଶܤ തܸଶ 
Alp [-] Particle Alfvén number (see eq. 16) 
B [T] Magnetic flux density 
CD [-] Drag coefficient 
d [m] Diameter 
F [N] Force 
Fr [-] Densimetric Froude number ݎܨ ൌ തܸ/ ቀ݄݃ ൫1 െ ൯ቁߩ/ߩ

ଵ/ଶ
 

g [m s-2] Gravity acceleration 
h [m] Height of the microchannel 
L [m] Length 
m [kg] Mass  
M [-] Non-dimensional magnetic force 
Ms [A m-1] Magnetization of the magnet  
r [m] Position vector  
Re [-] Reynolds number, ܴ݁ ൌ തܸ݄/ߥ 
Rep [-] Particle Reynolds number, ܴ݁ ൌ หሬܸԦ െ ሬܸԦห݀/ߥ 
St [-] Stokes number, ܵݐ ൌ ݀ଶߩ തܸ/ሺ18	݄ߤሻ 
t [s] Time 
u,v,w [m s-1] Velocity vector components 
V [m s-1] Velocity 
W [m] Width of the channel 
x,y,z [m] Cartesian coordinates 
   
 
Special characters 
 [Pa s] Dynamic viscosity 
 [N A-2] Permeability of vacuum (= 4·10-7 N A-2) 
 [m2 s-1] Kinematic viscosity 
 [kg m-3] Density 
 [-] Magnetic susceptibility 
 
Subscripts 
p  Particle 
f  Fluid 
m  Magnet, magnetic  
 
Superscripts 
*  Dimensionless quantity 
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the coordinates of two diagonally opposed vertices of the 
magnet which has the magnetization aligned with the z’ 
direction. For example, for a cubical magnet of size ܮ, 
ଵᇱݔ ൌ ଵᇱݕ ൌ ଵᇱݖ ൌ െܮ/2 and ݔଶᇱ ൌ ଶᇱݕ ൌ ଶᇱݖ ൌ  ./2ܮ

Equations (2) and (3) were numerically integrated using the 
second order Crank-Nicolson scheme. The Lagrangian tracking 
code used here has been previously applied for the simulation 
of the turbulent dispersion of particles in forced [8] and natural 
convection [9] flows. 

The fluid velocity at the position of the particle was 
computed using equation (1). In equation (3), the term ൫ܤሬԦ∗ 
 .ሬԦ∗, at the particle position, has been computed analyticallyܤሬሬԦ∗൯
The exact expressions for the three components were derived 
using Mathematica [10] and the output obtained with the 
FortranForm command was directly copied and pasted in the 
simulation code to avoid errors. A typical time step for the 
simulations was ∆ݐ∗ ൌ 10ିଷ. 

The computational domain for the lateral position of the 
magnet had dimensions 	ܮ௫∗ ൌ 5, ∗௬ܮ ൌ 100, ∗௭ܮ ൌ 1,	while half 
of the microchannel was considered for the centered position 
because of symmetry with respect to the plane ݔ∗ ൌ 2.5	(see 
Fig. 1.b). In this case the dimensions were ܮ௫∗ ൌ 2.5, ∗௬ܮ ൌ
100, ∗௭ܮ ൌ 1	. The computational domain was divided into 
49x499x19 equal volumes for the lateral case and into 
99x499x19 equal volumes for the centered case. A particle was 
placed at the center of each volume located at the inlet of the 
channel (ݕ∗ ൌ 0) (i.e. 49x19=931 particles for the lateral case 
and 99x19=1881 particles for the centered case). The time 
marching scheme was initialized setting the velocity of the 
particle equal to that of the fluid at the specific location of the 
particle. The positions of the particles were stored and the 
instantaneous concentration of particles was determined by 
computing the number of particles in each volume. 

This information was used to calculate the joint conditional 
probability for a particle to be at location ݖ ,ݕ ,ݔ at time ݐ, 
given that the particle was released at the position ݔ, ݕ ൌ 0, 
ݐ  at timeݖ ൌ 0. This probability can be used to extract 
information about the behavior of a continuous sources of 
particles located at the inlet of the channel. A similar approach 
is used in the simulation of scalar dispersion in turbulent flows 
at high Schmidt numbers [11]. This procedure based, on the 
Lagrangian tracking, overcomes the use of very fine grids, 
needed by the Eulerian approach, to capture the thin mixing 
interface of scalars (or clouds of particles) with very low 
molecular (or Brownian) diffusivity. For example, for 1 micron 
particles the Brownian diffusivity [3] at ambient temperature is 
4·10-13 m2/s and the corresponding Schmidt number is 2·106. 
Even for the 5 nm particles the Schmidt number is about 104, 
which makes the numerical solution of the transport equation 
for the concentration of particles computationally very 
expensive using the conventional Eulerian approach. 

 
 
 
 
 
 

(a) 

(b) 

 

Figure 2 Contours of the three components of the magnetic 
gradient term, ൫ሬሬԦ∗  સሬሬԦ൯ሬሬԦ∗ [mm-1], (a) Lateral position (see Fig 
1a). (b) Central position. The relative position of the magnet 
(Lm=5 mm) with respect to the microchannel (h=0.1 mm 
W=0.5 mm) is indicated by the black lines. 

RESULTS AND DISCUSSION 
 
As suggested by equation (3), the trajectories of the 

particles are dominated by the drag force, that is proportional to 

൫݀∗൯
ିଶ

 and by the magnetic force, proportional to the group 
ܯ ൌ ௦ܯߤ߯

ଶ/ൣሺ4ߨሻଶ	ߩ തܸଶ൧ and to the non-dimensional term 

൫ܤሬԦ∗   ሬԦ∗. The first contribution to the magnetic forceܤሬሬԦ∗൯
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ABSTRACT

An intense development of nano- and biotechnologies
in the past two decades has resulted in the appearance
of a number of new problems of electrohydrodynam-
ics and in revising the importance of certain problems
having a long history. The study of the space charge
in the electric double layer near charge-selective sur-
faces (permselective membranes, electrodes, or systems
of micro- and nanochannels) is a fundamental problem
of modern physics first addressed by Helmholtz. In the
case of a small size system (fraction of mm), the electro-
osmotic effects and the concentration-polarization phe-
nomena result in a special kind of instability, the elec-
trokinetic instability, which causes electro-osmotic flow
and micro-vortex formation. The electrokinetic instabil-
ity was discovered theoretically by the Rubinstein and
Zaltzman in 2000 and was confirmed experimentally in
2007–2008. In the present work the influence of the Joule
heating on the electrokinetic instability is investigated
theoretically. The problem is described by the strongly
nonlinear coupled Nernst–Planck–Poisson–Stokes system
along with the energy transfer equation. A simple analyt-
ical solution for the marginal stability curves based on the
Rubinstein–Zaltzman approach is found. The physical
mechanism of the thermal instability is found to be very
different from the well-known Rayleigh–Bénard convec-
tion: the Joule heating can either destabilize or stabilize
the steady state depending on the space charge region lo-
cation with respect to the gravity vector. For the destabi-
lizing case the short wave Rubinstein–Zaltzman instabil-
ity is replaced by the long wave thermal instability. The
study is complemented by numerical investigations both
of linear and nonlinear instabilities near a charged selec-
tive surface. Galerkin pseudo-spectral method is applied.
There is a good qualitative agreement with the analyt-
ics. Possible explanation of discrepancy between exper-
imental data and our previous theoretical Volt-Current
characteristics is highlighted.

INTRODUCTION

Problems of electrokinetics have recently attracted a
great deal of attention due to rapid developments in

micro-, nano-, and bio-technology. Among the numerous
modern applications of electrokinetics are micro-pumps,
desalination devices, biological cells, electro-polishing of
mono- and poly-crystalline aluminium, and the growth
of aluminium oxide layers for creating micro- and nano-
scale regular structures such as quantum dots and wires.

There is also a fundamental interest in the problem.
The study of the space charge in an electric double-ion
layer in an electrolyte solution between semi-selective
ion-exchange membranes under a potential drop is a fun-
damental problem of modern physics, first addressed by
Helmholtz. Rubinstein and Shtilman [1] completely de-
scribed the regime of limiting currents (see also [2–4]).
Hydrodynamics was not involved in either of the under-
limiting or limiting regimes, and both regimes were one-
dimensional.

It was first theoretically predicted by Rubinstein and
Zaltzman [5], [6] that the transition from limiting to
overlimiting currents is connected with a novel type of
electro-hydrodynamic instability, which is known as elec-
trokinetic instability. This instability triggers a hydro-
dynamic flow and, in turn, intensifies the ion flux which
is responsible for the overlimiting currents. The first di-
rect experimental proof of the electroconvective instabil-
ity that arises with an increasing potential drop between
ion-selective membranes was reported by Rubinstein et
al. [7], who managed to show the existence of small vor-
tices near the membrane surface. A unified theoretical
description of the linear electrokinetic instability, valid
for all three regimes, was presented by Zaltzman and Ru-
binstein [8], based on a systematic asymptotic analysis of
the problem.

The DNS for two-dimensional (2D) Nernst–Planck–
Poisson–Stokes (NPPS) equations were considered in [9–
14]. A full scale direct numerical simulation (DNS) for
the three-dimensional (3D) formulation is presented in
Demekhin et al. [15].

In all the aforementioned theoretical and numerical
analyses, thermal effects are neglected. On the other
hand, one of the major technological concerns in elec-
trokinetically actuated microflows is the Joule heating
[16–21]. Moreover, Zabolotsky and Nikonenko [22] found
experimentally that a typical temperature difference be-
tween the electrolyte inside the membrane system and
the environment can be as much as several degrees. Such
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a temperature difference can not only have an influence
on the electrokinetic instability near a charge-selective
surface, but can also be a driving force for a new kind
of instability based on the spatial nonuniformity of the
electrical conductivity. It can also be shown that Joule
heating has a significant effect on the voltage–current
(VC) characteristic. These phenomena are investigated
in the present paper.

STATEMENT

A symmetric, binary electrolyte with a diffusivity of
cations and anions D̃, dynamic viscosity µ̃, and elec-
tric permittivity ε̃, and bounded by ideal, semiselective
ion-exchange membrane surfaces at ỹ = 0 and ỹ = h̃
with a potential difference ∆Ṽ between these surfaces,
is treated, see Fig. 1. The Joule heating generated by
the passage of a current through the electrolyte is taken
into account. Notations with tilde are used for the di-
mensional variables, as opposed to their dimensionless
counterparts without a tilde. {x̃, ỹ} are the coordinates,
where x̃ is directed along the membrane surface and ỹ is
normal to it.

The electroconvection is described by the following
equations,

• ion transport for the concentration of cations and
anions c̃±,

∂c̃±

∂t̃
+ũ·∇c̃± = D̃

(
±∇ ·

(
F̃

R̃T̃
c̃±∇Φ̃

)
+∇2c̃±

)
, (1)

• Poisson equation for the electric potential Φ̃,

∇2Φ̃ =
F̃ (c̃− − c̃+)

ε̃
, (2)

• Stokes equations for a creeping flow,

∇Π̃ = µ̃∇2ũ + F̃∇Φ̃
(
c̃− − c̃+

)
+ g̃r̃0β̃(T̃ − T̃0)ey, (3)

∇ · ũ = 0,

• Energy equation,

∂T̃

∂t̃
+ ũ · ∇T̃ = ã∇2T̃ − Ĩ · ∇Φ̃

c̃pr̃0
, (4)

where F̃ is Faradays constant, R̃ is the universal gas con-
stant, T̃0 is the temperature of the environment, ε̃ is the
electric permittivity, g̃ is the acceleration due to gravity,
r̃0 is the density, β̃ is the thermal expansion coefficient,

c̃p is the specific heat capacity, and ã is the thermal diffu-
sivity. In the above equations, the two-dimensional case

is treated; ũ =
(
Ũ , Ṽ

)
is the fluid velocity vector; Π̃ is

the pressure. Equation (3) contains the term of buoy-
ancy force in the Boussinesq approximation, where the
unit vector ey is directed along the y-axis. The energy
equation contains the source term associated with the
Joule heating of the electrolyte.

Ĩ = − F̃
2D̃

R̃T̃
(c̃+ + c̃−)∇Φ̃− F̃ D̃∇(c̃+ − c̃−), (5)

has to be taken for the source term in (4). This system of
dimensional equations is complemented by the following
boundary conditions (BC),

ỹ = 0 : c̃+ = p̃, − F̃ c̃
−

R̃T̃

∂Φ̃

∂ỹ
+
∂c̃−

∂ỹ
= 0,

Φ̃ = 0, ũ = 0, −∂T̃
∂ỹ

+
α̃

λ̃T
(T̃ − T̃0) = 0, (6)

ỹ = h̃ : c̃+ = p̃,
F̃ c̃−

R̃T̃

∂Φ̃

∂ỹ
− ∂c̃−

∂ỹ
= 0,

Φ̃ = ∆Ṽ , ũ = 0,
∂T̃

∂ỹ
+

α̃

λ̃T
(T̃ − T̃0) = 0, (7)

where α̃ is the heat transfer coefficient and λ̃T is the
thermal conductivity of the fluid. The first boundary
condition, prescribing an interface concentration equal to
that of the fixed charges inside the membrane, is asymp-
totically valid for large p̃ and was first introduced by
Rubinstein (see, for example, Ref. [8]). This condition
prevents the calculation of the complete solution within
the membrane. The second boundary condition means
no total flux for negative ions, the third condition is a
fixed potential drop, the fourth condition is that the ve-
locity vanishes at the rigid surface, and the last condition
corresponds to the mixed thermal boundary conditions.
The spatial domain is assumed to be infinitely large in
the x̃-direction, and the boundedness of the solution as
x̃ → ±∞ is imposed as a boundary condition. Such a
statement, but without thermal effects, is presented in
[8].

In order to make the system dimensionless, the char-
acteristic quantities are as follows: h̃ — the charac-
teristic length, the distance between the membranes;
h̃2/D̃ — the characteristic time; µ̃ — the dynamic vis-
cosity; c̃∞ — the typical electrolyte concentration (e.g.,
the average concentration in the system); the thermic

potential Φ̃0 = R̃T̃0/F̃ is taken as the characteristic

potential with T̃0 = 300K. The characteristic temper-
ature can be obtained from the balance between the
Joule heating and the energy loss to the environment,

T̃ch =
Φ̃0 D̃ F̃ c̃∞
ã c̃p r̃0

λ̃T

α̃h̃
.
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FIG. 1. Schematics of the system. Space charge region near
y = 0, 0 < y < ym, includes thin electric double layer (EDL),
which exists also near y = 1. The acceleration vector g can
be either co-directed (Ra < 0) or counter-directed (Ra > 0)
to the y-axis.

Small deviations of the electrolyte temperature from
the environmental temperature are considered. The di-
mensionless characteristic electric current j at the mem-
brane surface is

j = c+
∂Φ

∂y
+
∂c+

∂y
, for y = 0. (8)

In our case, the channel surface is permeable only by the
cations, and, hence, j is determined only by the flux of
the positive ions.

The problem is described by eight dimensionless pa-
rameters: ν is the dimensionless Debye length or Debye
number, κ is a coupling coefficient between the hydrody-
namics and the electrostatics (it is essential that the cou-
pling coefficient depends only upon the physical proper-
ties of the electrolyte), ∆V is the potential drop between
the membranes, Ra is the Rayleigh number, Bi is the
Biot number (characterizing the system’s thermal insu-
lation with respect to the environment), Le is the Lewis
number, p is the membrane interface concentration in the
boundary conditions (6) and (7):

ν =
λ̃D

h̃
, κ =

ε̃Φ̃2
0

µ̃D̃
, ∆V =

∆Ṽ

Φ̃0

,

Ra =
F̃

ã

g̃ β̃

c̃p

Φ̃0 c̃∞ h̃2

µ̃

λ̃T
α̃
, (9)

Bi =
α̃h̃

λ̃T
, Le =

D̃

ã
, p =

p̃

c̃∞
,

where λ̃D =

√
ε̃ Φ̃0

F̃ c̃∞
is the Debye length. In order

to give an idea of the values of the above dimension-
less numbers, typical dimensional values for an aquatic
solution of NaCl for normal conditions are taken to
be Φ̃0 = 0.025V , D̃ = 2 × 10−9m2/s , ε̃ = 7 ×
10−10 (C2s2)/(kgm3), r̃0 = 103 kg/m3, β̃ = 2.07 ×
10−4K−1, c̃p = 4182 J/(kg K), ã = 1.53 × 10−7m2/s,

λ̃T = 0.602W/(mK). Channel width varies in the

range of micro- to macro-sizes, h̃ = 0.1µm − 1mm,
the bulk concentration of the electrolyte is about c̃∞ =
1−103mol/m3. The heat transfer coefficient between the
electrolyte and the environment α̃ depends on many fac-
tors, and for each particular case it should be determined
experimentally. We assume it changes within a window
as α̃ = 1 − 1000W/(m2K). The characteristic temper-

ature, based on Joule heating, is T̃ch = 0.1 − 1K. This
temperature is in correspondence with that found experi-
mentaly in [22]: a typical temperature difference between
the electrolyte and the environment is about several de-
grees.

From the analysis of the above mentioned dimensional
values, it follows that the dimensionless parameters vary
within the range: ν = 10−6−10−2, κ = 0.05−0.5, Ra =
10−6 − 100. It is assumed that the other dimensionless
parameters can be fixed as p = 5 (see [6, 8, 11]) and
Le = 0.013 (for water). We assume that Bi = 10−2 is
taken.

The problem has three parameters: ν, Ra, and κ. This
fact greatly complicates the numerical investigation of
the problem. The first small parameter, the Debye num-
ber, makes the problem singular and forms a thin EDL
near the boundaries of the investigated domain, y = 0
and y = 1. An asymptotic expansion with respect to
the Debye number ν is investigated in [5, 6, 8], and the
application of the results of [5] to our problem will be
developed in the next section.

ANALYTICS

A. Quiescent solution

For the one-dimensional steady-state solution, ∂/∂t =
∂/∂x = 0, the system (1)–(4) can be integrated once
with respect to y. Taking into account the BCs (6)–(7)
and the definition of the electric current j (8), we get the
following system.

ρE +
dK

dy
= j, KE +

dρ

dy
= j, (10)

ν2
dE

dy
= −ρ, d2T

dy2
+BiEj = 0, (11)

y = 0 : c+ = p, Φ = 0, −dT
dy

+BiT = 0, (12)

y = 1 : c+ = p, Φ = ∆V,
dT

dy
+BiT = 0, (13)

where E ≡ dΦ/dy and j in the 1D statement coincides
with−I·ey. This system describes the 1D solution, which
is decoupled from the hydrodynamics, U = V = 0, and
does not depend on the parameter Ra.
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Note that the electrostatic part of the system is also
decoupled from the thermal part and can be solved in-
dependently from T . Equations (10)–(11) turn into one
nonlinear ordinary differential equation (ODE) (see [2]
and [23]):

ν2
d2E

dy2
+
[
j(ym − y)− ν2

2
E2
]
E + j = 0. (14)

Here, ym is an unknown constant of integration which will
be determined later. This nonlinear second order ODE
has to be solved along with the three remaining bound-
ary conditions: y = 0 : c+ = p; y = 1 : c+ = p;
Φ(1) − Φ(0) = ∆V . For extreme nonequilibrium condi-
tions (see [8] for details), as ν → 0 and E > O(log ν) =
O(1/ν), d/dy = O(1), the ODE (14) asymptotically turns
into a cubic algebraic equation in E,[ν2

2
E2 − j(ym − y)

]
E = 0, (15)

and we can skip the first two BCs and keep the third one,

Φ(1)− Φ(0) = ∆V. (16)

This is valid if O(| log ν|) < ∆V < O(1/ν) [23]. Equa-
tion (15) has three solutions, but only two of them make
physical sense (E > 0 and E = 0). The first one is valid
in the space charge region (SCR),

E =
1

ν

√
2j(ym − y) for 0 < y < ym, (17)

νΦ =
2
√

2

3j
(jym)3/2 − (2jym − 2jy)3/2

3j
,

with the charge density

ρ = −ν2 dE
dy

=
ν
√
j√

2(ym − y)
, (18)

which has an integrable singularity that vanishes in the
next approximation. Near the charge selective surface,
y = 0, an electric double layer (EDL) forms and for the
extreme non-equilibrium case, the influence of the EDL
is asymptotically small [5].

Thus, from (17) and (16) we can not only get a physical
meaning for the integration constant ym, which is the
length of the SCR, but also get its value:

ym =
91/3ν2/3∆V 2/3

2j1/3
, ym = O(ν2/3(log ν)2/3)� 1.

(19)
The temperature distribution in the SCR is readily

found from (11) and (12):

T = j∆V Bi

[
1 + 2

5ym

2 +Bi

(
1− y +

1

Bi

)
− 2(ym − y)5/2

5y
3/2
m

]
,

(20)

The two-term expansion in the SCR for Bi→ 0 gives

T1 =
j∆V

2

(
1 +

2

5
ym

)
, (21)

T2 = j∆V

[
1

4

(
1 +

2

5
ym

)
(2y − 1) +

2(ym − y)5/2

5y
3/2
m

]
.

The second solution is valid in the electroneutral re-
gion,

E = 0, ρ = 0, Φ =
(2jym)3/2

3jν
for ym < y < 1. (22)

From (10), (22), and the boundary condition K(y =
ym) = 0, we obtain K = j(y − ym). Using the conserva-

tion law

∫ 1

ym

K dy = 2, we obtain the following expression

for j,

j = 4 +O(ym). (23)

The temperature distribution in the electroneutral re-
gion ym < y < 1 is found by integrating (11) and using
the BCs (13) and satisfying the continuity of the temper-
ature and its derivative at y = ym. It has the form

T = Bi
j∆V

2 +Bi

(
1 +

2

5
ym

)(
1− y +

1

Bi

)
. (24)

The two-term expansion in the electroneutral region for
Bi→ 0 gives

T1 =
j∆V

2

(
1 +

2

5
ym

)
≈ j∆V

2
, (25)

T2 =
j∆V

4

(
1 +

2

5
ym

)
(2y − 1) ≈ j∆V

4
(2y − 1) .

B. Slip velocity

Let us impose long-wave perturbations, and so the in-
dependent variables of the system in the SCR are not
constant with respect to x but instead are slowly varying
functions: ∂/∂x� ∂/∂y. Then we get non-zero velocity
components V � U . Equation (3) turns into the follow-
ing (see [8, 23]),

∂Π

∂y
=

κ
2

∂E2

∂y
+RaT,

∂2U

∂y2
=
∂Π

∂x
− κ

∂Φ

∂x

∂E

∂y
, (26)

with the boundary conditions

y = 0 : U = 0, y = ym :
∂U

∂y
= 0, Π = 0. (27)

Upon excluding pressure from this system, integrating
twice, and using the boundary conditions (27), we obtain
the electro-osmotic slip velocity, Um ≡ U(y = ym),

Um = −κ
8

∆V 2 1

j

∂j

∂x
+

3

16
ν2∆V 2Ra

∂

∂x

(
Tm
j

)
, (28)
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with Tm ≡ T (y = ym). At Ra = 0 this relation coin-
cides with the famous Rubinstein–Zaltzman formula for
the slip velocity [5]. The contribution of the term respon-
sible for the thermal effects is significant for very large
Rayleigh numbers Ra = O(1/ν2), and the influence of
the thermo-effects in the SCR is negligible. This hypoth-
esis will be confirmed by the numerics.

In order to solve the heat transfer equation in the elec-
troneutral region, an additional BC for the temperature
is required. Such a BC can be easily obtained from the
1D solution (20) and with the assumption ym � 1:

−∂Tm
∂y

+BiTm = j Bi∆V. (29)

This BC has “a source term” in the right-hand side,
which is the origin of the thermal instability.

C. The electroneutral region and instability of the
1D steady state.

In the electroneutral diffusion region, ym < y < 1, Eqs.
(1)–(4) along with the boundary conditions taken from
the solution in the SCR turn into

∂4Ψ

∂x4
+ 2

∂4Ψ

∂x2∂y2
+
∂4Ψ

∂y4
= Ra

∂T

∂x
, (30)

y = ym : Ψ = 0,
∂Ψ

∂y
= Um,

y = 1 : Ψ = 0,
∂Ψ

∂y
= 0. (31)

∂K

∂t
+ U

∂K

∂x
+ V

∂K

∂y
=
∂2K

∂x2
+
∂2K

∂y2
, (32)

y = ym : K = 0,

y = 1 :

∫ 1

ym

Kdy = 2, (33)

∂2T

∂x2
+
∂2T

∂y2
= 0, (34)

y = ym : −∂T
∂y

+BiT = j Bi∆V,

y = 1 :
∂T

∂y
+BiT = 0. (35)

In order to study the linear stability of the solution, we
superimpose on it small sinusoidal perturbations of the

form f = f0(y) + f̂(y) exp (ikx+ λt), f̂ → 0, where k is
the wavenumber and λ is the growth rate.

Linearizing with respect to the perturbations turns the
nonlinear system (30)–(35) into a system of linear ODEs,
which can be solved analytically. Leaving only the lead-
ing order term in the expansion with respect to small Bi,
we get the condition for marginal stability, λ = 0:

1 =
κ
8

∆V 2 k3 cosh k − sinh3 k

4 sinh k(k2 − sinh2 k)
−Ra ∆V

8
Bi

k2(sinh k − k cosh k)2 − (k2 − sinh2 k)2

k4 sinh2 k(k2 − sinh2 k)
. (36)

Upon neglecting the thermal effects (Ra = 0), this for-
mula turns into the Rubinstein–Zaltzman relation, (94)
in [5]. The second term of the right-hand side of (36),
which is proportional to Ra, is responsible for the ther-
mal effects. This relation, along with the Rubinstein–
Zaltzman formula, is not applicable for long perturba-
tions k → 0, because, for the sake of simplicity, the influ-
ence of the Debye layer in the upper membrane has not
been taken into account.

The main conclusion from the formula described by Eq.
(36) (Fig. 2) is that the system is stabilized by the ther-
mal effects at Ra > 0 and is destabilized when Ra < 0.
Changing of the sign of Ra is nothing more than the rota-
tion of the system at 180o relative to the direction of grav-
ity. The relation (36) will be analyzed in the next section,
along with our numerical results. In the problem, there
are two competing mechanisms of instability, which can

be clearly elucidated by the analytical solution Eq. (36).
The first one is the Zaltzman–Rubinstein electrokinetic
instability, characterized by the first term in the right-
hand side of Eq. (36). The second is connected with the
Joule heating, and is characterized by the second term in
the right-hand side of Eq. (36). For the case when the
heating is absent (Ra = 0) the instability is caused by
the Coulomb force in the SCR, 0 < y < ym, and the cor-
responding formation of a slip velocity (28) at y = ym.
The nonuniformity of the slip velocity leads to the elec-
trokinetic instability [8]. The competing mechanism is
associated with the Joule heating, mainly in the elec-
troneutral region, ym < y < 1. The second mechanism
is connected with heating and the thermic expanding of
the liquid, but it is totally different from the Rayleigh–
Bénard convection and the instability is caused by an
induced nonuniformity of the conductivity in the elec-
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FIG. 2. Marginal stability curves described by Eq. (36), the
wave number k vs. the voltage ∆V , for κ = 0.2: 1: Ra =
−1000, 2: -500, 3: 500, 4: 1000; dot-dashed line: Ra = 0

trolyte.
It is worthwhile considering here the physical aspects

of the electrokinetic and thermal instabilities, and com-
paring them. For the sake of simplicity, we assume that
in the electroneutral region, ym < y < 1, the length of
the SCR is negligibly small, ym = 0, and the final elec-
troneutral domain would be 0 < y < 1.

In the case of a pure electrokinetic instability, Ra =
0,κ 6= 0, the perturbation of the conductivity K̂ is
at the same time the perturbation of the ion flux ĵ =
∂K̂/∂y|y=0, and in a small vicinity of y = 0 we have as
follows,

K = jy + K̂(y) exp(ikx) + CC, K̂ = ĵy +O(y2).

The perturbation of the ion flux near y = 0 produces
an electro-osmotic slip velocity components. It is readily
found from Eq. (28) and the mass conservation equation,

Û = − i

32
κ k∆V 2 ĵ+O(y), V̂ = − κ

32
k2∆V 2 ĵ y+O(y2),

(37)

and V̂ is in anti-phase with the ion flux ĵ.
The electric conductivity K̂ is changing in time accord-

ing to Eq. (32). The terms in the right-hand side of this
equation correspond to the dissipation and cannot be the
origin of instability; for our qualitative speculations these
terms are omitted and the truncated Eq. (32) has form,

∂K̂

∂t
≈ −4V̂ , or taking into account K̂ = ĵy +O(y2),

(38)

∂ĵ

∂t
≈ κ

8
k2∆V 2 ĵ +O(y).

To be more clear we have changed λK̂ to ∂K̂/∂t. Hence,

the initial perturbation of ĵ has a positive feedback and
develops instability, see Fig. 4(a). Velocity components

Û and V̂ are the origin of the liquid circulation.
For the pure thermal case, κ = 0, Ra 6= 0, see Fig. 4

(b) and (c), the slip velocity is absent, Ûm = 0, but at
y = 0 there is a “source” of energy proportional to the
ion flux ĵ: the liquid is either heated and or cooled at

y = 0 in phase with ĵ, see Eq. (30). In other words,
the temperature increases in the regions with a larger
ion flux (or larger electric conductivity) and decreasing
in the places with a smaller one.

The liquid is squeezed out of the places with high tem-
perature and is drawn to places with lower temperature;
the vertical component of velocity V̂ is proportional to
∆V Ra ĵ, see Eq. (35). For Ra > 0 V̂ is in phase with ĵ

and for Ra < 0 V̂ is in anti-phase with ĵ, see Appendix.
Taking for the electric conductivity K̂ the truncated

Eq. (32) with omitted dissipation terms,

∂K̂

∂t
≈ −4Ra∆V Bi VT (y) ĵ, (39)

it is easy to see that for Ra > 0 ∂K̂/∂t is in anti-phase
with the right-hand-side of (39) and, hence, the pertur-

bations decay. For Ra < 0 ∂K̂/∂t is in phase with the
right-hand-side of (39). Hence, the initial perturbations

of ĵ have a positive feedback and develop instability. One
can see that the physical mechanism of the thermal in-
stability is very different from the Rayleigh–Bénard con-
vection.

I. NUMERICAL SOLUTION

This investigation is complemented by numerical cal-
culations of the linear stability of the 1D quiescent
solution with respect to sinusoidal perturbations with

wave number k, f = f0 + f̂ exp(λ t + i k x) for f =
{c±, Φ, V, T}. The Galerkin pseudo-spectral τ -method
with Chebyshev polynomials taken as the basic functions
[24] is employed to discretize the eigenvalue problem.
The generalized matrix eigenvalue problem is solved by
the QR algorithm [24]. The number of Chebyshev func-
tions in the expansion is up to 512.

The two competing mechanisms of instability are de-
termined by the parameters κ and Ra. The relation be-
tween these parameters determines which of the insta-
bility mechanisms will be decisive for the destabilization
of the system. Fig. 4 presents the numerically obtained
marginal stability curves for different values of κ and
Ra. For the case without thermo-effects, Ra = 0, the
numerics are compared with the analytics of Zaltzman
and Rubinstein [8]: our numerical approach is in good
correspondence with the asymptotical results. The case
Ra = 0 separates the destabilizing and stabilizing effects
of the Joule heating. The boundary value |Ra| = 50
is taken in the figures: for larger |Ra|, the results coin-
cide with graphical accuracy with those obtained at the
boundary value |Ra| = 50. It can be seen that the an-
alytics (Fig. 2) can not claim very much accuracy, but
it can qualitatively explain the physical aspects of the
problem.

For Ra < 0, with decreasing κ or increasing |Ra|, the
heat effects prevail over the electrokinetic effects and a
drastic change of instability modes occurs: the critical
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FIG. 3. Interpretation of the physical mechanism of the electrokinetic, (a), and thermal, (b) and (c), instabilities. Only a small
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voltage ∆V∗ decreases dramatically. Moreover, the short-
wave instability changes to a long-wave instability. Uni-
versal character of the behavior of the long-wave marginal
stability curves near ∆V∗ can be seen from Figs. 4(a)–
4(b).
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FIG. 4. Marginal stability curves of the numerical solution,
the wave number k vs. the voltage ∆V for ν = 0.01, (a)
κ = 0.2, Ra: 1: -50, 2: -10, 3: 0, 4: 10, 5: 50 and (b)
Ra = −10, κ: 1: 0.5, 2: 0.2, 3: 0.1, 4: 0.05.

CONCLUSION

A new kind of instability caused by Joule heating near
charge selective surfaces and its influence on the elec-
trokinetic instability are investigated theoretically. A
simple asymptotic relation for the marginal stability is
derived; it shows that the Joule heating can drastically
destabilize the one-dimensional equilibrium. The study

is complemented by a numerical investigation of the in-
stability, which is in qualitative agreement with the an-
alytical solution. The physical mechanism of the ther-
mal instability is found to be very different from that
of Rayleigh–Bénard convection, and the instability is
caused by an induced nonuniformity of the electrical con-
ductivity in the electrolyte. In addition, the previous dis-
crepancies between the experiments [7] and the theory
[12] have shown, in the present study, a trend of better
agreement by taking into account the Joule heating for
the appropriate Rayleigh numbers.
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