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ABSTRACT
The classical model for heat conduction using Fourier’s

law for the relation between the heat flux and the gradi-
ent of the temperature qualitatively yields exponentially
stable systems for bounded reference configurations. This
kind of stability remains the same if one replaces Fourier’s
law by Cattaneo’s (Maxwell’s,. . . ) law. Considering ther-
mal and, simultaneously, elastic effects, this similarity
with respect to exponential stability remains the same
for classical second-order thermoelastic systems, one be-
ing a hyperbolic-parabolic coupling, the other being a fully
hyperbolic system. The similarities even extend to the
asymptotical behavior of solutions to corresponding non-
linear systems. But for thermoelastic plates, a system of
fourth order and being one of recently found examples, the
picture changes drastically, i.e., this thermoelastic system
changes its behavior from an exponentially stable to a non-
exponentially stable one, while changing Fourier’s law to
Cattaneo’s law. This raises the question of the “right” mod-
eling.

We present a large class of general systems with this
behavior demonstrating that it might be more likely that
Fourier and Cattaneo predict different qualitative behavior
in thermoelastic systems. For this purpose we consider a
coupled system depending on a family of parameters, a spe-
cial case of which describes the thermoelastic plates above,
where in only one singular case of the parameters the ex-
ponential stability property is kept while replacing Fourier
by Cattaneo - and lost in all other cases. Interestingly, the
singular case corresponds to the second-order thermoelastic
system mentioned above.

We use methods from functional analysis for proving
the loss of exponential stability in the Cattaneo case.

INTRODUCTION
The simplest classical equations of heat conduction for

the temperature difference θ = θ(t, x) = T (t, x) − T0,
where T denotes the absolute temperature and T0 is a
fixed constant reference temperature, and for the heat flux
q = q(t, x), and putting constants equal to one w.l.o.g, are
given by

θt(t, x) + div q(t, x) = 0, t ≥ 0, x ∈ Rn, (1)

q(t, x) +∇θ(t, x) = 0, (Fourier’s law). (2)

Combining (1) and (2) yields the parabolic heat equation

equation
θt(t, x)−∆θ(t, x) = 0. (3)

Observation: Model (3) predicts an infinite speed of prop-
agation of signals.

If one replaces Fourier’s law (2) by Cattaneo’s
(Maxwell’s, Vernotte’s,. . . ) law,

τ qt(t, x) + q(t, x) = −∇θ(t, x), (4)

with a small relaxation parameter τ > 0, and if we com-
bine now (1) with (4) we obtain the hyperbolic damped
wave equation

τθtt(t, x) + θt(t, x)−∆θ(t, x) = 0. (5)

Observation: Model (5) predicts a finite speed of propaga-
tion of signals.

As it is well known solutions to the classical heat equa-
tion equation (3) and to the classical damped wave equation
(5) qualitatively show the same behavior: In bounded ref-
erence configurations Ω, with, for example, zero boundary
conditions for θ modeling constant temperature T0 at the
boundary, we have exponential stability of the system as
time tends to infinity:∫

Ω

θ2(t, x) dx ≤ C e−dt

for some positive constants C, d. E.g. for solutions to (3),
we have ∫

Ω

θ2(t, x) dx ≤ C̃ e−dt
∫

Ω

θ2(0, x) dx

with a constant C̃ being independent of the data θ(0, ·) at

time zero (C̃ depends on the domain Ω, essentially on the
smallest eigenvalue of the negative Dirichlet-Laplace oper-
ator −∆D realized in L2).

We remark that if we replace the bounded reference con-
figuration Ω by all of Rn or by an exterior domain, we have
similar polynomial (only) decay instead of exponential de-
cay for the L2-norm or, for example, uniformly in x :

sup
x∈Rn

|θ(t, x)| ≤ C t−n/2.

Now taking into account both elastic and thermal ef-
fects, in a bounded reference configuration in one space
dimension like Ω = (0, 1), we consider the classical system
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of thermoelasticity, where u = u(t, x) = X(t, x) − x de-
notes the displacement (with position X(t, x) at time t for
the particle x in the fixed reference configuration Ω), and
where again most constants are set equal to one,

utt − uxx + θx = 0,

θt + qx + utx = 0, (6)

τqt + q + θx = 0.

Typical boundary conditions are u(t, 0) = u(t, 1) = 0 and
θ(t, 0) = θ(t, 1) = 0 on the boundary of Ω, modeling the
situation where the boundary is kept fixed and where the
temperature is again kept constantly equal to the reference
temperature T0.

The qualitative behavior is the same for τ = 0 (Fourier)
and for τ > 0 (Cattaneo): As time tends to infinity, the en-
ergy tends to zero exponentially. Here the energy at time t
means the expression∫ 1

0

(u2
t + u2

x + θ2 + q2)(t, x) dx

involving kinetic and potential energy in terms of u as well
as thermal energy expressed in terms of θ and q.

Even the quantitative behavior is similar: Replacing (6)
by the corresponding equations with real physically given
material constants for different real materials, the optimal
α > 0 in ∫ 1

0

(u2
t + u2

x + θ2 + q2)(t, x) dx ≤ C e−αt

is similar for materials like silicon, aluminum alloy, steel,
germanium, gallium arsenide, indium arsenide, copper and
diamond [1]. Similarities also extend to corresponding non-
linear systems.

These observations of similar behavior raises the impres-
sion that both heat conduction models, the Fourier model
or the Cattaneo model, lead to the same qualitative (or
even quantitative) behavior.

We will present examples with essentially different qual-
itative behavior, where the system is exponentially stable
for the Fourier model, and not exponentially stable for the
Cattaneo model. This raises the question of the “right”
modeling. We start with models for thermoelastic plates,
a system of fourth order in the space variable, and men-
tion a Timoshenko type system where the Cattaneo model
even “destroys” an exponential stability given in the model
without heat conduction, or with heat conduction mod-
eled by Fourier’s law. As main part and new contribution,
we present a large class of more general coupled systems
with this different behavior. For this purpose we consider
a coupled system depending on a family of parameters,
a special case of which describes the thermoelastic plates
above, where in only one singular case of the parameters the
exponential stability property is preserved while replacing
Fourier by Cattaneo - and lost in all other cases. This
demonstrates that it might be more often that Fourier and
Cattaneo predict different qualitative behavior in thermoe-
lastic systems.

The singular case where exponential stability is true for
both models corresponds to the second-order thermoelastic
system (6).

THERMOELASTIC PLATES
A Kirchhoff type thermoelastic plate can be modeled in

a bounded reference configuration Ω ⊂ Rn by the following
three equations

utt + a∆2u+ b∆θ = 0,

θt + cdiv q − d∆ut = 0, (7)

τqt + kq +∇θ = 0,

where u = u(t, x) denotes the displacement, θ = θ(t, x)
the temperature difference, and q = q(t, x) the heat flux
again, and a, b, c, d, k are positive constants. For suitable
boundary conditions, i.e. the hinged boundary conditions
u(t, ·) = ∆u(t, ·) = 0 on the boundary of Ω, the system is
exponentially stable for τ = 0 [3, 4, 5, 6], but not for τ > 0
[7, 8]. That is, the asymptotic behavior for the different
models is, surprisingly, essentially different.

We remark that on a formal level exponential stability of
a system means that, after rewriting the differential equa-
tions as a first-order system in time for some vector function
V = V (t, x),

Vt(t, ·) + AV (t, ·) = 0,

the semigroup {e−At}t≥0 generated by the differential op-
erator A acting in the x-variable and being defined in some
Hilbert space H is an exponentially stable semigroup. The
latter now means that there is a number α > 0 and a con-
stant C0 > 0 such that for all initial data V0 in H, and for
all t ≥ 0 one has

‖e−AtV0‖H ≤ C0 e−αt‖V0‖H .

TIMOSHENKO BEAMS
In models for beams of Timoshenko type, a given expo-

nentially stability triggered by a typical memory (history)
term, is preserved by adding heat conduction in form of the
Fourier model, but is lost – hence “destroyed” – by the Cat-
taneo model. The four differential equations in the model
are given by

ρ1ϕtt − k(ϕx + ψx)x = 0,

ρ2ψtt − bψxx +

∞∫
0

e−sψxx(t− s, ·)ds+

k(ϕx + ψ) + δθx = 0,

ρ3θt + qx + δψtx = 0,

τqt + dq + θx = 0.

Here, the functions φ and ψ model the transverse displace-
ment of a beam with reference configuration (0, 1) respec-
tively the rotation angle of a filament. θ and q denote again
the temperature difference and the heat flux, respectively.
The material constants ρ1, ρ2, k, b, δ, ρ3, d are positive, as
well as the already introduced relaxation parameter τ . The
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term
∞∫
0

e−sψxx(t− s, ·)ds models the additional considera-

tion of the history.

Assuming the (academic, in general physically not sat-
isfied) condition

ρ1

k
=
ρ2

b
,

which corresponds to the equality of the wave speeds for φ
and ψ, we have the following picture:

For δ = 0, it is a hyperbolic system with history term for
(φ, ψ), and exponential stability is given. For the coupled
system with δ 6= 0 and τ = 0 (Fourier), the exponential
stability is preserved. But for δ 6= 0, τ > 0 (Cattaneo), the
exponential stability is lost [2]. Again the question of an
appropriate modeling comes up.

α-β-SYSTEMS
We now present a new, larger class of coupled sys-

tems where the same effect shows up – exponential sta-
bility under the Fourier law, and no exponential stability
under the Cattaneo law. It will appear as an abstract α-β-
system (10), with parameters 0 ≤ α, β ≤ 1, for functions
u, θ : [0,∞)→ H into a Hilbert space H.

The case τ = 0 has been studied before:

utt(t) + aAu(t)− bAβθ(t) = 0,

θt(t) + cAαθ(t) + dAβut(t) = 0.
(8)

Here A denotes a self-adjoint operator with countable sys-
tem of eigenfunctions (φj)j with corresponding increasing
eigenvalues 0 < λj →∞ as j →∞. The constants a, b, c, d
are positive.

The example of the thermoelastic plate (7) is, for τ = 0,
a special case with

α = β =
1

2
, A = (−∆D)2,

where −∆D denotes the Dirichlet-Laplace operator with
zero (Dirichlet) boundary conditions realized in L2. The
case α = 1, β = 1

2 corresponds to the second-order ther-

moelastic system (6), and with the case α = 0, β = 1
2 one

can model a viscoelastic system [9].

This system was introduced in [9, 10]. The most detailed
recent discussion concerning exponential stability, smooth-
ing properties and more can be found in [11, 12]. Exponen-
tial stability is known for (8) in the striped region

Aes(τ = 0) := {(β, α) | 1− 2β ≤ α ≤ 2β, α ≥ 2β − 1}, (9)

see Figure 1.
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Figure 1: Aes(τ = 0)

The pair (β, α) = ( 1
2 , 1) is highlighted by a circle since this

will be the only pair for which the exponential stability will
remain true if we replace the Fourier law by the Cattaneo
law in (10). In the remaining part of the striped region of
exponential stability for τ = 0, the property of exponential
stability will be lost, see Theorem 1 below.

The abstract Cattaneo version corresponding to the
Fourier version (8) is given by

utt(t) + aAu(t)− bAβθ(t) = 0,

θt(t) +B1q(t) + dAβut(t) = 0, (10)

τqt(t) + q(t) +B2θ(t) = 0,

with abstract operators B1, B2 satisfying

−B1B2 = cAα. (11)

Here, u, θ : [0,∞) → H, and q : [0,∞) → (H)m for some
m ∈ N. The operator B2 maps its domain in H into (H)m,

B2 : D(B2) ⊂ H → (H)m,

and
B1 : D(B1) ⊂ (H)m → H.

The thermoelastic plate model (7) is contained choosing
realizations of the divergence operator“cdiv” for B1, and
of the gradient operator “∇” for B2, and m = n in Rn.

The exponential stability given for the Fourier model
(8) and described by Aes(τ = 0) in Figure 1, is lost for the
Cattaneo model in any point different from (β, α) = (1

2 , 1).

Theorem 1 The region of exponential stability given for
the Fourier model by Aes(τ = 0) in (9) resp. Figure 1,
is lost for the system (10) in any point different from the
singular point (β, α) = (1

2 , 1) which corresponds to (6).

Proof: The exponential stability of system (10) for
(β, α) = ( 1

2 , 1) (and τ > 0 from now on) has been proved
for the realization (6) for various boundary conditions [13].

We shall prove the non-exponential stability for the re-
maining values of (β, α) ∈ Aes(τ = 0). As ingredients of
the proof we have an eigenfunction expansion and the Hur-
witz criterion. For the proof we may assume for simplicity,
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but w.l.o.g., that the constants a, b, c, d appearing in (10),
(11) satisfy a = b = c = d = 1.

The idea is to use the following ansatz of separation of
variables via the eigenfunctions (φj)j of A,

uj(t) = aj(t)φj , θj(t) = bj(t)φj , qj(t) = cj(t)B2φj , (12)

for arbitrary j (assuming B2φj not being identically zero),
and to find solutions with decay contradicting exponential
stability.

Using (11) we observe

B1qj(t) = cj(t)B1B2φj = −cj(t)Aαφj = −λαcj(t)φj ,

thus solving (10) is equivalent to solving the following sys-
tem of ODEs for the coefficient functions (aj , bj , cj), where
a prime ′ denotes differentiation with respect to time t,

a′′j + λjaj − λβj bj = 0,

b′j − λαj cj + λβj a
′
j = 0, (13)

τc′j + cj + bj = 0.

The last equation arises from the last equation in (10) with
the ansatz (12) using again the natural condition that B2φj
is not identically zero.

System (13) is equivalent to a first-order system for the
column vector Vj := (aj , a

′
j , bj , qj),

V ′j =


0 1 0 0

−λj 0 λβj 0

0 −λβj 0 λαj
0 0 − 1

τ − 1
τ

Vj ≡ AjVj . (14)

We are looking for solutions to (14) of type

Vj(t) = eωjtV 0
j .

In other words, ωj has to be an eigenvalue of Aj with eigen-
vector V 0

j as initial data.
It is the aim to demonstrate that, for any given small

ε > 0, we have some j and some eigenvalue ωj such that the
real part <ωj of ωj is larger than −ε. This will contradict
the exponential stability (being a kind of uniform property
over all initial values), observing

|Vj(t)| = e<wj |V 0
j |.

Computing the characteristic polynomial of Aj we have

det(Aj − ω) =
1

τ

(
τω4 + ω3 +

[
λαj + τ(λj + λ2β

j )
]
ω2

+[λj + λ2β
j ]ω + λ1+α

j

)
≡ 1

τ
Pj(ω).

To reach our aim, i.e. to show that

∀ ε > 0 ∃ j ∃ωj , Pj(ωj) = 0 : <ωj ≥ −ε,

we introduce, for small ε > 0,

z := ω + ε, Pj,ε := Pj(z − ε).
That is, we have to show

∀ 0 < ε� 1 ∃ j ∃ zj , Pj,ε(zj) = 0 : <zj ≥ 0. (15)

To prove (15) we start with computing

Pj,ε = q4z
4 + q3z

3 + q2z
2 + q1z + q0

where
q4 = τ,

q3 = −4τε+ 1,

q2 = 6τε2 − 3ε+ λαj + τ(λj + λ2β
j ),

q1 = −4τε3 + 3ε2 − 2
(
λαj + τ(λj + λ2β

j )
)
ε

+λj + λ2β
j ,

q0 = τε4 − ε3 +
(
λαj + τ(λj + λ2β

j )
)
ε2

−(λj + λ2β
j )ε+ λ1+α

j .

Since λj ≥ λ1 > 0, there is 0 < ε0 <
1
4τ such that for all

0 < ε ≤ ε0 the coefficients q4, . . . , q0 are positive. So we
assume w.l.o.g. from now on that 0 < ε ≤ ε0 <

1
4τ .

We use the Hurwitz criterion [14]: Let

Hj :=

 q3 q4 0 0
q1 q2 q3 q4

0 q0 q1 q2

0 0 0 q0


denote the Hurwitz matrix associated to the polynomial
Pj,ε. Then (15) is fulfilled if we find, for given small ε > 0,
a (sufficiently large) index j such that one of the princi-
pal minors of Hj is not positive. The principal minors are
given by the determinants detDj

m of the matrices Dj
m, for

m = 1, 2, 3, 4, where Dj
m denotes the upper left square sub-

matrix of Hj consisting of the elements Hj11, . . . ,Hjmm.
Since

detDj
1 = q3 > 0 and detDj

4 = q0 detDj
3,

with positive q0, it remains to prove that

either detDj
2 ≤ 0 or detDj

3 ≤ 0,

for some (sufficiently large) j.
The set of parameters (β, α) for which we have to prove

this, will be divided into two subsets, the first one, where
α < 1, and the second one, where α = 1 and 1

2 < β ≤ 1:
Part I: α < 1.

We have

detDj
2 = q3q2 − q4q1

= [1− 4τε] ·
·[6τε2 − 3ε+ λαj + τ(λj + λ2β

j )]−

τ [−4τε3 + 3ε2 − 2(λαj + τ(λj + λ2β
j ))ε+

λj + λ2β
j ]

= −2τ2ελ2β
j − 2τ2ελj + (1− 2τε)λαj −

20τ2ε3 + 15τε2 − 3ε
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implying
detDj

2 ≤ −2τ2ελj +O(λαj ), (16)

where we use the Landau symbol O(λαj ) to denote a term
satisfying

|O(λαj ))| ≤ k1λ
α
j

with a positive constant k1 (being independent of j, ε, τ).
Thus we conclude from (16)

detDj
2 < 0 (17)

for sufficiently large j (depending on ε, τ) since α < 1 and
λj →∞ by assumption.
Part II: α = 1, 1

2 < β ≤ 1.
We compute

detDj
3 = q1 detDj

2 − q2
3q0

= [(1− 2τε)λ2β
j +O(λj)] ·

·[−2τ2ελ2β
j +O(λj)]− [(1− 4τε)2] ·

·[λ2
j + ε(τε− 1)λ2β

j +O(λj)]

= −2τ2ε(1− 2τε)λ4β
j +O(λ2β+1

j )

≤ −τ2ελ4β
j +O(λ2β+1

j ).

implying
detDj

3 < 0 (18)

for sufficiently large j (depending on ε, τ) since β > 1
2 im-

plies 2 < 2β + 1 < 4β, and since λj →∞.
With (17) and (18) we have proved (15) and hence Theo-
rem 1. �

CONCLUSION
In modeling heat conduction, different models using

Fourier’s law on one hand, or using Cattaneo’s law on the
other hand, can lead to very similar results concerning the
asymptotic behavior in time of solutions. This holds for
pure heat equations (4), (5), or for thermoelasticity of sec-
ond order (6).

Examples of thermoelastic plates (7) or for Timoshenko
beams exhibit a different behavior: exponential stability
under the Fourier law, but no exponential stability under
the Cattaneo law.

We have shown that the behavior in these two special
examples is typical for a large class of coupled thermoelas-
tic systems given as abstract model in (10). This system
(10) includes the models for thermoelastic plates (7), for
thermoelasticity of second order (6), and for more, like vis-
coelastic equations.

As a result, for all models, i.e. values of the parameters
(β, α), the property of exponential stability given under the
Fourier law is lost under the Cattaneo law for all param-
eter values which are different from the pair representing
thermoelasticity of second order.

As a consequence, the considerations above should trig-
ger a discussion of the “right” modeling in heat conduc-
tion among scientists working in modeling, in fundamental
analysis, and in implementations of these models in appli-
cations.
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ABSTRACT 

 
Under weightlessness fluids subjected to high frequency 

vibrations (frequencies greater than the inverse of thermal and 

hydrodynamic timescales) can become as unstable as on Earth. 

Fluids near their critical point amplify these instabilities. Even 

minute temperature inhomogeneity in these fluids can indeed 

lead to large density gradients, which make them unstable 

under the influence of a body-force like gravity according to 

Rayleigh and Schwarzschild criteria. Under zero gravity, none 

of these two criteria applies, however the fluid is still sensitive 

to vibrations. In a 2-phase fluid (liquid-vapour), vibrational 

forces can destabilize a liquid-vapour interface leading to 

Faraday or frozen wave instabilities depending on the relative 

direction of the interface with respect to vibration direction. 

Similarly, vibrations can destabilize a thermal boundary layer, 

resulting in parametric / Rayleigh vibrational instabilities. We 

report here experiments performed with hydrogen under 

magnetic levitation near its critical point, above (1-phase 

region) and below (2-phase region). These experiments in 

particular evidence and clarify the link between frozen wave 

instabilities and the development of periodic liquid-vapour 

bands. 

 

 
INTRODUCTION 

 
Hydrodynamics of near-critical fluids have gained 

considerable interest since the identification of the thermo-

acoustic effect which is responsible for the fast thermal 

equilibration of a cell heated on one boundary [1]. Transport 

coefficients exhibit strong deviations near the critical point [2]. 

Near-critical fluids are characterised by a large density like a 

liquid and low viscosity and high compressibility like a gas. 

Their thermal diffusivity goes to zero as 67.0  (here 

c

c

T

TT 
 ), whereas the isothermal compressibility, the heat 

capacity at constant pressure and the coefficient of thermal 

expansion diverge as 
24.1 [2]. These anomalies in 

thermophysical properties make near-critical fluids to be 

hydrodynamically and thermally very unstable. The vanishing 

thermal diffusivity slows down the heat transfer processes 

(“critical slowing down”). These singular properties imply that 

classical dimensionless parameters like Rayleigh or vibrational 

Rayleigh numbers diverge at the critical point, making the 

system more and more unstable and ultimately turbulent. 

 In space, in the absence of gravity effects, the behaviour 

of fluids is markedly different than on Earth. The management 

of fluids in such conditions (flow control, heat exchange, etc.) 

is often a challenge and “artificial” gravity can be looked for. It 

happens that fluids submitted to vibrations of “high” frequency, 

e.g. frequency larger than the inverse hydrodynamics times 

(typically thermal diffusion and viscous dissipation times) and 

“low” amplitude (e.g. amplitudes smaller than the sample size) 

exhibit convective flows that are similar to buoyancy flows 

under Earth gravity. 

The interest of studying fluids in such conditions is 

manifold. Firstly, supercritical oxygen, hydrogen, and helium 

are already used by the space industry. Secondly, their high 

compressibility and slow dynamics (critical slowing down) 

emphasize the behavior encountered in regular fluids. Thirdly, 

fluids in such conditions obey universal, scaled power laws, 

valid for all fluids. 

More specifically – and this is one of the purpose of the present 

paper – it was surprisingly observed in several weightless 

experiments that destabilization of thermal boundary layers 

occurred when the fluid was vibrated. We present here an 

overview of thermal (Rayleigh-Bénard [3-5]) and thermo-

vibrational (Faraday, frozen wave) instabilities in near-critical 

fluids [6-8].  

 

RAYLEIGH-BENARD INSTABILITIES  
 

The problem that is addressed here is the stability of a 

horizontal supercritical fluid layer, infinite in lateral extent, 

heated from below in the presence of gravity. According to 

Rayleigh, above a critical temperature difference, the quiescent 

system becomes unstable and a cellular flow develops. If the 

variation of density with pressure is negligible compared to the 
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variation induced by temperature, the onset of convection is 

determined by the Rayleigh criterion. For the incompressible 

case, it writes as: 

 

Ra =
𝜌′𝐶𝑝

′ 𝑔′

𝜆′𝜈′
(

𝜕𝜌′

𝜕𝑇′
)

𝑃′

𝐿′3(𝑇𝐿
′ − 𝑇𝑈

′ ) ≥ Rac 

 

where 𝑇𝐿
′ and 𝑇𝑈

′  are temperatures of the lower and upper walls, 

respectively, 𝐶𝑝
′  𝜆′, 𝜌′ and 𝜈′ are specific heat at constant 

pressure, thermal conductivity, density and kinematic viscosity, 

respectively; g’ is the Earth acceleration constant; Rac is the 

critical Rayleigh number for the onset of convection. It is equal 

to 657.5, 1707.8 and 1100.6, resp., depending on whether the 

upper and bottom boundaries are both stress-free, both solids, 

or whether one is solid and the other a free boundary [9]. 

Another limiting case which can be relevant occurs when 

viscosity and thermal conductivity are neglected and 

compressibility is taken into account; in this case, the stability 

criterion is the criterion due to Schwarzchild [10]: 

 
𝜕𝑇′

𝜕𝑦′
> −

𝜌′𝑔′

𝛽′
(𝜒𝑇

′ − 𝜒𝑆
′ ) = −

𝑔′𝑇′𝛽′

𝐶𝑝
′

 

Where y’ is the spatial ordinate;  𝜒𝑇
′  and 𝜒𝑆

′  are the isothermal 

and isentropic compressibility and 𝛽′ is the thermal expansion 

coefficient, respectively. The definition of the local Rayleigh 

number for accounting these two effects in compressible flows 

is [9, 11-12]: 

 

𝑅𝑎 =

𝑔′𝐿′4𝜌′𝛽′𝐶𝑝
′ [

(𝑇𝐿
′ − 𝑇𝑈

′ )
𝐿′ −

𝑔′𝑇′𝛽′

𝐶𝑝
′ ]

𝜆′𝜈′
 

 

It is worthy to note that the second term of this expression (that 

is, the Schwarzchild term) is constant when approaching the 

critical point as 𝛽′ and 𝐶𝑝
′  diverge with the same critical 

exponent. The critical temperature gradient at which convection 

arises is then: 

 

(𝛿𝑇′)𝑜𝑛𝑠𝑒𝑡 = 𝑅𝑎𝑐

𝜆′𝜈′

𝑔′𝐿′3𝜌′𝛽′𝐶𝑝
′

+
𝑔′𝑇′𝛽′𝐿′

𝐶𝑝
′

 

 

 

The second term on the right-hand side (corresponding to the 

adiabatic gradient) shows small variations regardless of the 

proximity to the critical point. The first term becomes 

asymptotically small close to the critical point, whereas it is 

dominant far from it. The critical Rayleigh number for 

compressible fluids is given in [12]. 

Figures 1 illustrates clearly that the variation of the critical 

(𝛿𝑇′)𝑜𝑛𝑠𝑒𝑡 with reduced temperature is significant. Also 

significant is the dependence on the thermal boundary layer 

thickness h’. One sees a gradual transition from adiabatic 

gradient condition (the Schwarzchild criterion) for inviscid, 

compressible fluids, near the critical point, to the Rayleigh 

condition corresponding to the onset of viscous convection 

flow far from the critical point. 

 

 
Figure 1. Critical 𝛿𝑇𝑜𝑛𝑠𝑒𝑡

′ (K) at the onset of convection as derived 

from Rayleigh and Schwarzchild criteria, versus reduced temperature. 

The characteristic length scale is the local height of the thermal 

boundary layer ℎ′, 0 < ℎ′ < 𝐿′ where 𝐿′ represents the total height of 

the cavity. The respective contributions of the Rayleigh and 

Schwarzchild criteria are identified and zoomed at the left top-hand 

side of the figure for ℎ′ = 6 mm 

 

VIBRATIONS NEAR THE CRITICAL POINT  
 

To carry out experimental investigation of vibration-

induced instabilities close to the critical point, zero-g conditions 

are needed to eliminate density stratification resulting from the 

hyper-compressibility of the near-critical fluid. 

Earlier zero-gravity experiments [13] involving vibration 

of a subcritical fluid enclosed in a cylindrical cavity, showed 

Faraday instability, square (or line close to Tc) pattern, which 

subsequently transformed, very near Tc, into alternate bands of 

liquid and vapour phases oriented perpendicularly to the 

vibration direction. In the supercritical region, experiments / 2D 

simulations [14] have evidenced Rayleigh-vibrational 

instability in the thermal boundary layers near the horizontal 

walls.  

 

Experimental set-up 

 

The experiments are carried out with hydrogen (H2) as the 

working fluid using the facility HYLDE (HYdrogen Levitation 

Device [13]). The HYLDE setup uses a magnetic field 

generated by a cylindrical superconducting coil. Hydrogen can 

be levitated near the upper end of the coil where is present a 

near constant field gradient (1000 T
2
.m

-1
). HYLDE is a 

cryogenic facility as shown schematically in Fig. 2a. The 

superconducting coil made of Nb-Ti is dipped inside liquid 

helium at a temperature of 2.16 K and a pressure of 0.1 MPa 

inside the cryostat. The experimental cell is mounted inside 

another cryostat called anticryostat maintained under a vacuum 

of less than 10
-7

 mbar. Endoscopes for light source and a video 

camera are mounted inside the anticryostat as can be seen in 

Fig. 2. The positions of the endoscopes are independently 

adjustable. A motor driven cam based system is used to vibrate 
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the cell. The direction of vibration is horizontal as shown in 

Fig. 2b. 

The experimental cells used are cuboidal cavities of size 

3mm×3mm×2 mm or 7mm7mm7mm, made of sapphire. The 

uniformity of the gravity inside the cell is better than 0.025g0 

(g0 is the earth acceleration constant). The experiments are 

performed within 24 hours after filling the cell with H2 at room 

temperature, thus the fluid is n-H2. The critical point of n-H2 is 

defined by: Tc = 33.19 K, pc = 1.315 MPa, 𝜌𝑐 = 30.11 kg/m
3
. 

Hydrogen is filled inside the cell at a density within 0.2% of its 

critical density using a capillary tube of inner diameter 1mm. 

The capillary tube is fitted with a thermal switch (a small block 

of copper continuously cooled using liquid Helium by 

conduction and heated whenever required using a resistive 

heater). In the absence of heating the hydrogen inside the 

capillary tube close to the switch is in solid state thus closing 

the cell. To fill or empty the cell, the switch can be heated thus 

melting solid H2 inside the capillary tube. The experimental cell 

is provided with thermal bridges (strands of copper wires 

connecting the bottom flange of the anticryostat, which is 

maintained at liquid Helium temperature, and the cell) to 

thermalize the fluid inside the cell. Resistive heaters in thermal 

contact with the cell can be used to heat the cell. Two 

thermometers are pasted on either side of the cell to monitor the 

temperature of the cell. The temperature control of the cell is 

achieved by using a standard PID control system. The cell is 

oscillated along a pivot. The centrifugal force is negligibly 

small in the frequency range (10-50 Hz) as 1 mm amplitude 

corresponds to only 1/30 radians. The cell can then be linearly 

vibrated in the horizontal plane at various frequencies (0 - 50 

Hz) and amplitudes (0.1 mm - 1 mm). 

  

 

 

Figure 2. (a) Schematic diagram of the experimental setup HYLDE, 

(b) Experimental cell of size 7mm  7mm  7mm 

 

Faraday waves and band pattern 

 

The experimental cell is filled with H2 at its critical density. 

Zero-gravity conditions are then established inside the cell by 

switching on the superconducting coil. Figure 3 shows the H2 

bubble in zero-g when the total compensation of gravity is 

achieved at the center of the cell relatively far below the critical 

point (~ 100 𝑚𝐾). In the picture we can see that the vapor 

bubble is spherical and that the liquid surrounds it, wetting the 

walls of the cell. The thick dark circular portion separating the 

liquid and the vapor phases is the meniscus of the liquid vapor 

interface, appearing thick due to the partial refraction of light 

across it. The perfect spherical shape of the bubble inside the 

cell shows that the bubble is in weightlessness. 

 

 
Figure 3. Hydrogen bubble in weightlessness. 

 

Different instability mechanisms can occur for a planar 

fluid interface subjected to vibrations, depending on their 

mutual orientation. Under vibrations normal to the interface, a 

parametric instability in the form of Faraday waves can 

develop. Under vibrations tangential to the interface, a Kelvin-

Helmholtz (K-H) type of instability can appear. When the 

bubble is subjected to vibration, some parts of its surface turn 

out to be nearly perpendicular to the vibration direction and the 

other parts are parallel to the vibration direction. In this 

situation both Faraday and K-H instabilities could arise at 

different parts of the bubble surface. However, the conditions 

for the excitation of these two types of instability are different; 

they would thus develop in different parameter ranges. As a 

matter of fact, vibration experiments close to the critical point 

are able to show both types of instabilities. 

Figure 4 shows the results of the experiments carried out 

on HYLDE setup using the cubical cell of size 7 mm for 

gravity levels between 0.2g and 0g, when the temperature of 

the cell goes from Tc – 103 mK to Tc – 5 mK for frequency f = 

40 Hz and amplitude a = 0.26 mm. As one approaches the 

critical point, the surface tension of the liquid-vapor interface 

and the liquid-vapor density difference decrease. This decrease 

renders the interface more flexible, resulting in the decrease in 

the wavelength of the instability. This can be observed very 

clearly in Fig. 4 where the number of Faraday fingers increases 

from 3 at 103 mK to 9 fingers at 12 mK. Nevertheless, the 

wavelength does not decrease indefinitely due to the viscous 

dissipation.   Close to the critical point a saturation to a finite 

value occurs while the square pattern transforms itself into a 

line pattern [8] (see Fig. 4). 

When the temperature of the cell reaches sufficiently close 

to the critical point, the horizontal fingers of Faraday wave 

instability fade away and the liquid and the vapor phases start 

organizing themselves as alternate vertical bands (see last 

picture of Fig. 4). The transition of the Faraday waves into 

vertical bands clearly indicates a competition between two 

different physical phenomena close to the critical point. While 

one mechanism is predominant far from the critical point, the 

other mechanism is predominant close to it. This is reflected by 

the fact that there exists a small transition region in which the 

Faraday waves start weakening out while the band pattern gain 

importance. Figure 4 clearly shows this transition from the 

Faraday waves to the band pattern. It can be seen that while 
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Faraday waves start to fade away as the temperature is 

increased, thin line-like structures start forming. Then, the 

Faraday waves completely disappear and the band pattern 

becomes predominant. 

 

 

          
 

 
Figure 4. Transformation of Faraday square pattern (Tc-103mK, Tc-

32mK) into line pattern (Tc-12mK) and eventually (Tc-8mK, Tc-5mK) 

into alternate bands of liquid-vapour phases as the critical temperature 

Tc is approached. (Cubic cell of 3mm filled with H2 under horizontal 

vibration f = 40 Hz and a = 0.26 mm). 

 

Figure 5 plots the critical point proximity Tc-T against the 

vibrational velocity (a) for the coexistence of the Faraday and 

band pattern. The solid line indicates the temperature proximity 

at which the band pattern first appears when the cell is heated 

from a temperature below Tc towards Tc. Similarly, the dashed 

line gives the temperature proximity at which the Faraday wave 

instability ceases to exist, again when the cell is heated from a 

temperature below Tc towards Tc. It can be seen that at higher 

vibrational velocities Faraday waves disappear or band pattern 

first appear at temperature closer to the critical point. There 

exists a crossover between the two lines for values of a 

smaller than around 0.04 m/s, the value above which there 

exists a narrow band of temperature range where the two 

patterns (Faraday and band patterns) coexist. 

 

 
 

Figure 5. Transition from Faraday wave instability to band pattern. 

The symbols are the experimental points while the solid and dotted 

lines are the linear fit of the data points. 

 

Frozen-wave instability 

 

Under finite, steady acceleration g, a frozen wave 

instability can develop [15]. It is characterized by a wave 

pattern immobile in the cell reference frame. Magnetic 

levitation gives a unique opportunity to vary the magnetic force 

and thus the gravity compensation. Figure 6 shows such frozen 

waves observed in the cubic cell of side 7mm for vibration a = 

0.83 mm and f = 25 Hz and for three different gravity levels g = 

0.18g0, 0.1 g0 and 0.05 g0 as the cell is slowly heated towards 

the critical point. It was observed that the wave pattern does not 

change phase with time, clearly showing that the pattern 

corresponds indeed to the frozen wave instability. It can be 

seen that the wavelength of the instability decreases as the 

critical point is approached. This is because the surface tension 

of the liquid-vapor interface and the liquid vapor density 

difference vanish, making the interface more and more flexible. 

It can generally be observed that the amplitude of the frozen 

wave pattern is more or less constant and is not dependent on 

the temperature proximity.  

For a given 𝑇𝑐 − 𝑇 and velocity a, it can be seen that the 

wavelength 𝜆 increases with a decrease in gravitational 

acceleration. This can be observed from the images 

corresponding to around 13 mK for 0.18g0, 0.1g0 and 0.05g0 in 

Fig. 6.  

  

 
 

Figure 6. Frozen wave instability for the vibration case a = 0.83 mm 

and f = 25 Hz (7mm cell) for gravity levels: (a) 0.18g0, (b) 0.1g0 and 

(c) 0.05g0.  
 

Under zero-g conditions, the vapor bubble is initially spherical, 

surrounded by its liquid. Under vibration, at a particular 

proximity to the critical point alternate layers (band pattern) of 

liquid and vapor phases aligned perpendicular to the direction 

of vibration occurs (see Fig. 4). The band pattern shares some 

similarities with frozen waves under non-zero gravity fields. 

Similar to the frozen wave pattern, band pattern cannot occur 

for higher liquid-vapor density differences. Both frozen waves 

and band pattern occur at temperatures very close to the critical 

point. In both types of phenomena the waves are frozen with 

time. Thus there is a probability that the band pattern we 

observe in zero-g experiments very close to the critical point 

are actually frozen waves in zero-g.  

Figure 7 shows the wave pattern of the frozen wave instability 

for gravity varying from 0.18g0 to zero. The results are shown 

for two vibration amplitude a = 0.53 mm and frequency 25 Hz. 

The wave patterns are not at the same temperature, which does 

not matter as the wave amplitude is only weakly T-Tc 

dependent. It can be seen that the amplitude of the frozen 

waves increases quite remarkably as gravity is reduced, to 

Tc - 103 mK    Tc - 32 mK    Tc - 12 mK    Tc - 8 mK    Tc - 5 mK    
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reach the sample size at some weak g-value. We thus presume 

that this latter configuration corresponds to the zero-g case 

where the observed band pattern would correspond to the 

frozen wave pattern at finite g. 

It is important to note that the frozen wave instability is 

associated with a threshold (with respect to the vibration 

parameters a and ) while the band pattern should have no 

threshold as has been observed in numerical calculations for 

semi-infinite layers of fluids [16]. 

 

 
Figure 7. Frozen wave amplitude for various gravity levels with a = 

0.53 mm, f = 25 Hz. (7 mm cell; temperature is not reported as the 

amplitude is only weakly T-Tc dependent) 

 

Indeed, as gravity level is reduced, the stability domain of the 

frozen wave instability decreases. It is thus likely that when the 

gravity is reduced to zero, the problem becomes completely 

unstable, with zero threshold. 

 

Two-dimensional numerical simulations 

 

In the supercritical region, 2D numerical simulations have been 

carried out for a 7 mm square cavity filled with supercritical H2 

subjected to vibration with simultaneous thermal quench (very 

fast temperature change T') at the boundaries [8]. The 

governing equations comprising of the compressible Navier-

Stokes equations coupled with the energy and the equation of 

state are discretized spatially using a staggered non-uniform 

mesh with higher resolution near the walls and are solved using 

the finite volume algorithm Simpler [17]. A first-order Euler 

discretization is used for time. The numerical code was 

successfully used for many earlier works [5, 14] and is efficient 

in handling hyper-compressible fluid dynamics problems.  

Results showed the coexistence of three types of instabilities 

(Rayleigh-vibrational, parametric and corner). Figure 8 shows 

the results of a typical simulation case showing the parametric 

instability in the thermal field of the fluid oscillating at a 

frequency equal to half the frequency of vibration. The 

wavelength versus acceleration and the stability curves for two 

typical critical point proximities and two typical quench 

amplitudes demonstrate the equivalence between parametric 

instability in the supercritical zone and the Faraday-type 

instability in immiscible fluids [18]. This suggests the existence 

of a vanishing surface tension associated to the three types of 

instabilities mentioned above.  The existence of such weak 

surface tension has been evidenced in miscible liquids [19]. 

 

 

 
 
Figure 8. Parametric instability at 4 consecutive time periods at 14.4 s 

(a), 14.76 s (b), 15.12 s (c) and 15.48 s (d) for f = 2.78 Hz, a = 20 mm, 

ΔT = 100 mK and δT = 10 mK. 

 

Figures 9a and 9b show the phase diagram of the three types of 

instabilities for T' = 0.1K and 0.01K. It can be seen from the 

plots that there are zones in the stability diagram where all the 

instabilities are simultaneously observable. For example, the 

region shown by point 1 in Fig.9a indicates the region in which 

corner, Rayleigh vibrational and parametric instabilities are 

simultaneously observable while the region shown by 2 

indicates simultaneous presence of corner instability as well as 

Rayleigh vibrational instability. The regions 3 and 4 indicate 

the presence of only Rayleigh vibrational instability or only 

corner instability respectively. A crossover between the 

Rayleigh-vibrational instabilities and the corner instabilities can 

be observed. The behavior of the three stability curves does not 

seem to change much with the change in the critical point 

proximity as can be observed in Fig. 9b. 

 

 
Figure 9. Stability domain for the three types of instabilities: corner 

(solid line with dots), parametric instability (solid line with boxes) and 

Rayleigh vibrational instability (solid line with circles) for (a) T' = -

0.1K and (b) T' = -0.01K.  
 

Comparing these three kinds of instabilities, it is seen that for a 

given frequency of vibration, the parametric instability needs 

substantially higher amplitudes to appear than the two other 

types of instabilities. Simulations with all four isothermal walls 

subjected to a thermal quench showed that the parametric 

instability has a stabilizing effect on the Rayleigh vibrational 

instability. For the corner instability the stability domain 

reduces as the critical point is approached. Similar kind of 

behavior is observed for the Rayleigh-vibrational and 

parametric instabilities. 

 

CONCLUSION 

 

This paper gives an overview of thermal (Rayleigh-Bénard) and 

thermo-vibrational (Faraday, band-type, frozen-wave, corner) 

instabilities near the critical point in the sub-critical and 

supercritical thermodynamic regions. Due to the singular 

behaviour of near-critical fluids properties, quite unusual 

phenomena are seen: (i) Schwarzchild criterion, which exists in 

atmospheric layer can be valid here in mm cells for the 

(a) (b) 

11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

365



    

Rayleigh-Bénard problem; (ii) band patterns (close to the 

critical point) are also seen in thermo-vibrational 

configurations. Experimental pictures of Faraday and frozen-

wave instabilities have been visualized and explained. 2D 

numerical simulations have also revealed these instabilities. An 

overall diagram has been established for two values of the 

proximity to the critical point. Further numerical studies are 

planned in the future in order to explore a direct comparison 

with experimental data and to cross the critical point 

continuously (from subcritical to supercritical states and vice-

versa).      
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ABSTRACT 

In most large scale industrial furnaces, transient heat 

treatments involving all modes of heat transfer occur over long 

periods of time. In such installations, radiation is tightly 

coupled with conduction and convection. Transient 

Computational Fluid Dynamics (CFD), extended to solve 

radiation and solid conduction, requires considerable 

computing resources and long CPU processing time to simulate 

such systems. This paper deals with the transient multi-physical 

and multi-mesh simulation of large scale industrial thermal 

systems. The Component Interaction Network (CIN), which 

belongs to the dynamic thermal simulation methods, is used to 

finely resolve the 3D coupled transient conduction and 

radiation problem. Steady-state CFD is used to solve the air 

flow characteristics including turbulence and buoyancy effects. 

The two modelling approaches are linked via a newly proposed 

coupling method that allows the incorporation of the fluid flow 

effects in the thermal model by field averaging. The proposed 

methodology takes advantage of the speed of CIN for 

conduction and radiation simulation while minimizing 

assumptions on the flow field using a certain number of CFD 

solutions. A large scale industrial aluminium brazing furnace 

during its 2 hours cool down cycle is simulated using the 

proposed coupling methodology and the results are 

experimentally validated. While classical CFD-type multi-

physical transient simulation of such large scale installations 

over long periods of time (two hours) is very expensive, the 

proposed methodology allows the determination of the 3D 

transient temperature field inside the furnace for the whole cool 

down cycle in just under 30 hours on a regular work-station. 

INTRODUCTION 

In high temperature industrial applications, radiation, 

conduction and turbulent fluid flow may simultaneously 

interact in various proportions, in a transient and coupled 

manner. Advances in computing power, numerical methods and 

algorithms render realistic modelling of complex three 

dimensional thermal problems feasible even on personal 

computers. Therefore industries are turning towards numerical 

simulation to address system level heat transfer related 

problems. Multi-physical thermal simulation is the tool of 

choice when conjugate thermal interactions on a system level 

are considered. Different solution strategies can be adopted to 

achieve such simulations. 

NOMENCLATURE 

Letters and special characters 

  [Kg/m3] Density 

   [J/Kg K] Specific heat capacity 

  [W/m K] Thermal conductivity 

  [W] Energy source term 

  [m/s] Velocity vector 

  [J/Kg] Sensible enthalpy 

  [K] Temperature 

t [s] Time  

  [Pa] Static pressure 

  [m/s²] Gravitational acceleration vector 

  [N] External force vector 

  [W] Heat flux at interface 

  [W] Heat exchange between nodes 

  [W/K] Thermal conductance between nodes 

  [J/K] Heat capacity 

    
       [m²] Total exchange area between surfaces 

          [m²] 
Direct exchange area or view-factor 
between surfaces 

σ [Kg/s-3/k-4] Stefan-Boltzmann constant 

   [Kg] Mass 

   [Kg/s] Mass flow rate 

   [m3] Volume 

  [s] Characteristic time scale 

   [-] Reynolds number 

   [-] Grashof number 

   [-] Richardson number 

  [-] Physical domain 

   [-] Boundary of the physical domain 

Subscripts 

   Heat 

s  Solid 

f Fluid 

     Counter indices 

0  Reference 

Acronyms 

CIN  Component Interaction Network 

CFD  Computational Fluid Dynamics 

TEAs  Total Exchange Areas for radiative exchange 

DEAs  Direct Exchange Areas 

N-S  Navier-Stokes system of equations 

RANS  Reynolds Averaged Navier-Stokes 

PID  Proportional-Integral-Derivative 
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The first strategy consists in solving conduction, radiation 

and fluid flow equations using a single monolithic solver. Here 

all variables are solved simultaneously and the intrinsic 

coupling through the governing equations is accomplished by 

simultaneously advancing the whole system in time [3]. 

Generally, a single mesh is used for all physical domains like in 

[4]. This unified mathematical description of the coupled 

thermal system ensures convergence and accuracy, provided 

that the nonlinearities arising from the coupling can be solved 

[12]. This approach is often used with the finite element 

discretization technique like in [4] and [11] to address industrial 

problems. The formulation of a single system for a coupled 

thermal problem may lead to ill-conditioned or stiff matrices as 

pointed in [12]. Additionally, if an explicit method is used for 

time marching, like in [4], the time step of conduction will be 

the one that satisfies the CFL condition for the fluid flow 

problem. Such very small time steps for the whole solution 

drastically increase calculation times for simulations over very 

long periods. 

The second strategy involves coupling multiple existing and 

well established solvers, each addressing a separate 

phenomenon. By splitting the problem, an additional common 

interface is created between the different computational 

domains. An additional algorithm, called the coupler, 

exchanges energy at this interface to achieve the coupling 

between the solvers. The coupled multi-solver strategy has 

many numerical and practical advantages over the monolithic 

approach. It makes a more efficient use of the available 

computational resources by splitting the problem into several 

smaller ones that can be solved efficiently. It takes advantage of 

available specialized solvers to address each phenomenon by its 

most adequate discretization technique and solution algorithms. 

This decreases mesh requirements by allowing non-conformal 

meshes at the interfaces of the computational domains. The 

coupled multi-solver strategy also allows the use of different 

time stepping schemes and time steps for every solver to 

minimize computational time. Finally the coupled solution can 

be achieved using solvers as black boxes, which is very useful 

when source codes are not available. The coupled multi-

physical approach was first used to study the transient response 

of a structure to pressure shock waves in the 1970s as stated in 

[3]. It has been widely used ever since to address different 

research and engineering problems related to energy and heat 

transfer, from building energy simulation [18], to automotive 

thermal management [14] and thermo-mechanical simulation of 

turbines [19]. 

The thermal solver used in this work is based on the 

Component Interaction Network (CIN) for modelling steady 

state and transient thermal systems. CIN is a hybrid thermal 

modelling approach that combines zero dimensional ordinary 

differential equation modelling, with multi-dimensional partial 

differential equation modelling techniques to solve the energy 

equation. When modelling systems with three dimensional 

radiation occurring alongside conduction, radiative exchange is 

included in the CIN via a zonal formulation. The radiation 

solver uses the flux plane approximation [8] to evaluate the 

DEAs or view-factors. The plating algorithm [5] is then used to 

compute the TEAs from the view-factors in order to transfer 

them to the CIN thermal solver to account for radiation. The 

CIN approach also allows modelling of convective exchange 

via correlations. The CIN was used and experimentally 

validated on various industrial applications involving coupled 

radiation and conduction. It was applied in [15] to simulate the 

transient heat up phase of a cryogenic heat exchanger brazing 

furnace, [10] modelled a steel reheating furnace that uses 

flameless oxidation regenerative burners and [1] controlled 

high temperature treatment of steel slabs in a continuous 

reheating furnace. In [8] 3D transient radiation and conduction 

heat transfer inside thin glass sheets undergoing high 

temperature processing was modelled using CIN.  

Our goal here is to efficiently simulate the transient 

coupled thermal behaviour of industrial installations over long 

periods of time where conduction radiation and fluid flow 

interact simultaneously. We choose to develop a coupled multi-

solver approach using CIN for conduction and radiation and a 

commercial CFD solver for fluid flow.  

Given that the transient response of the fluid flow is not of 

major importance in our analysis, the transient CIN thermal 

model is coupled to steady state CFD snap-shots using a weak 

pseudo-transient coupling algorithm. In conventional coupling 

between thermal and fluid solvers, only interfacial values are 

exchanged. Here we present a new methodology that allows the 

inclusion of three dimensional CFD results in the thermal 

simulation. These results are post-processed to generate a fluid 

network that is included in the thermal model. The resulting 

fluid network is made up of volumes that interact via mass flow 

rates and exchange heat with solid surfaces via convection. At 

each coupling step, the solvers update their respective coupling 

variables and the transient thermal simulation continues time 

stepping. 

This paper is organized as follows: first the general 

coupled multi-physical thermal problem is presented with an 

overview of each solver and its numerical methods. The 

different aspects of the proposed coupling approach are then 

detailed. The cooling cycle of a large scale industrial 

aluminium brazing furnace is modelled using the proposed 

strategy. The simulation results are then compared to 

measurements done on the actual installation to show that using 

this computationally efficient simulation strategy, thermal 

management of complicated industrial furnaces can be achieved 

on a regular workstation. 

GOVERNING EQUATIONS OF COUPLED 
THERMAL PROBLEMS 

We consider conduction, radiation and fluid flow 

simultaneously occurring in a thermal system. The fluid domain 

   is regarded as a non-participating medium with respect to 

thermal radiation. At the solid-fluid interface, conduction from 

the solid side interacts with convection from the fluid side and 

radiation that was transmitted from another boundary through 

the fluid. All solid domains    are considered opaque made out 

of grey surfaces with constant radiative properties. 

Fluid flow 

The unsteady Navier-Stokes (N-S) system of equations for 

momentum and energy transport governing a Newtonian, 
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incompressible (low Mach number), non reacting, single 

species and non-participating fluid flow, are written under: 

      (1) 

 
  

  
                             (2) 

   

  
                    (3) 

The solid-fluid interface provides the appropriate boundary 

conditions for the fluid problem modelled by the N-S system of 

equations.  

Combined heat conduction and thermal radiation  

The transient energy equation for an opaque solid subjected 

to combined conduction, radiation, heat generation, and in the 

absence of convection is: 

       

  
                    (4) 

A major difficulty  in coupled radiation-conduction heat 

transfer is solving for   . This can be overcome by using the a 

zonal formulation for the radiation term like in [7] and [17]. 

The radiative heat flux between two surfaces   and   can thus be 

expressed using: 

                    
           

    
   (5) 

Where     
      are TEAs that represent the total fraction of 

radiative energy emitted by element  , and absorbed by element 

 . The TEAs remain unchanged for fixed geometries, and need 

only be calculated once if radiative properties are independent 

from temperature  [17]. 

The coupled heat transfer problem 

In addition to the governing equations of conduction, 

radiation and fluid flow, the coupling between the three heat 

transfer modes  is mathematically modelled by the continuity of 

the temperature field and the normal component of the heat flux 

at the solid-fluid interface: 

      
     

              
  (6) 

This system need be verified at convergence for steady state 

coupled simulations or at every coupling step for transient 

cases. 

THE SOLVERS 

The tree subsequent sub-sections present a brief description 

of each solver used in this study, its features and numerical 

methods. 

The CIN thermal solver 

The thermal solver is based on the Component Interaction 

Network (CIN) approach detailed in [13]. The thermal system 

is first decomposed into several discrete components each of 

which is attributed an intrinsic model governing its internal heat 

transfer and containing implicit information about its physical 

properties (      ...) and its geometry (dimensions, volume, 

position etc...). A component can be considered as a lumped 

element with a single homogeneous temperature, or have a one, 

two or three dimensional internal model. In the latter cases, the 

component is meshed and the heat equation can be discretized 

using a finite volume or finite element method, both of which 

can coexist in the same thermal network [13]. The components 

of a CIN can interact between each other and with their 

surroundings via conduction, convection, radiation and/or 

advection. 

 
Figure 1 Illustration of the CIN for thermal systems  [13]. 

Heat exchange between the boundary nodes of two 

components   and   is modelled by a thermal conductance term 

multiplied by the temperature difference of the nodes: 

               (7) 

Each heat transfer mode has a distinct conductance term, all 

of which are detailed in [13]. The radiation exchange term is 

provided by another solver that will be presented in the next 

sub-section. The net heat balance on each node of the thermal 

network, including boundary conditions, yields a system of 

non-linear algebro-differential equations of conservation of 

energy interlinking the discretized components. This system 

can be written in a compact form under: 

      
  

  
 (8) 

Where   is the temperature vector of unknowns,   the 

driving forces vectors,   and   two square matrices noted the 

exchange matrix and the heat capacity matrix respectively. 

Vectors   and   are of dimension   while matrices   and   

are of    . Here   is the number of isothermal nodes 

resulting from the discretization of the thermal network. 

Radiation, convection, conduction, and advection between the 

components of the thermal network are all explicitly present in 

matrix   under the conductances:                      

                              . Equation (8) is then discretized using 

implicit, first or second order differentiation and solved [13]. 

The radiation solver 

The CIN approach is not explicitly based on the geometrical 

surface mesh of the studied system. Nonetheless, when thermal 

radiation is taken into account, each component participating in 

the radiative exchange is attributed its own surface mesh over 

which the TEAs are computed by the radiation solver. For a 

fixed problem geometry and assuming that the radiative 

properties of the surfaces making up the system are 

independent of temperature, TEAs are computed only once as a 

pre-processing step and included in the global exchange matrix 

in the                terms of the thermal solver. In that sense, 
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coupling between radiative and thermal solvers is one-way: 

TEAs are provided only once at the beginning of the thermal 

simulation.  

The analytical expression of the DEA or view factor 

between two surfaces through a non-participating medium, 

expressed in angular integrals, reads: 

                   
     

     

  

  

      (9) 

This double integral is solved by the flux plane 

approximation detailed in [8] and [10] yielding the DEAs or 

view-factors between the thermal nodes to which is attributed 

the corresponding surface mesh elements. For grey radiating 

surfaces, TEAs are computed from the resulting DEAs using 

the recursive plating algorithm introduced in [5]. The plating 

algorithm uses a set of recursive relations that allow the TEAs 

to be deduced from the view-factors. Plating a surface consists 

in changing its emissivity from 1 to its actual value and 

modifying all the other TEAs accordingly, thus taking into 

account the diffuse multiple reflexions due to the radiative 

properties of the surfaces. The TEAs are obtained when all 

nonblack faces of the surface mesh are plated. Details and 

enhancements to the plating algorithm can be found in [6]. 

The CFD solver 

The flow solver used in this study is ANSYS Fluent© 

which is a finite volume cell centred code that solves the N-S 

equations on unstructured meshes. Fluent© provides a large 

array of models, discretization and solution schemes for the 

user to choose from. They are all detailed in [2], we sum up the 

ones that were used in this study. Here we only present the 

solver setup for the solution of the steady state fluid problem. 

Second order central differentiation is the default scheme used 

for the treatment of all diffusion terms. The second order up-

wind scheme is used for convective terms in all transport 

equations. The effect of buoyancy, due to high temperature 

differences in the fluid, is accounted for by the incompressible 

ideal gas model:   is considered a variable in equation (2) only, 

and is computed from the ideal gas relation. The body force 

weighted scheme is used of the discretization of the pressure 

gradient term to enhance stability in the presence of 

considerable buoyancy forces. Gradients are evaluated using 

the Green-Gauss node based method and the pressure-velocity 

coupling is treated using the coupled pseudo transient 

formulation to enhance convergence. Turbulence is handled by 

the realizable k-epsilon turbulence model introduced in [16] 

with enhanced wall treatment and inclusion of thermal and full 

buoyancy effects. Details about the implementation of this 

turbulence model can be found in [2].  

THE COUPLING APPROACH 

In steady state fluid-solid interaction, the most basic method 

to couple the separate solvers is to proceed by sequentially 

solving each sub-problem separately, while keeping fixed the 

interface (or boundary) values provided by the other one. The 

newly obtained values at the interface are then transferred to 

the other solver in order to re-compute its own unknowns. The 

process is carried out until system (6) is satisfied at the 

interface. Interpolation is used to map the different interfacial 

fields from one solver to the other if the meshes are not 

conforming at the interface. For transient problems, the same 

process is done at each coupling step. 

In this work we introduce a new approach to couple CFD 

results to thermal simulation by creating an averaged fluid 

network in the thermal model. This approach allows to model 

transient problems more efficiently than traditional coupling 

methods, because it needs less CFD solutions to feed the 

transient thermal simulation. In the following sub-sections, the 

pseudo-transient temporal coupling is presented along with the 

field projection methods adopted between the different solvers.  

The pseudo transient coupling approach 

 In a coupled multi-solver thermal simulation, CFD 

solutions account for the major CPU time. One of the major 

points of a new coupling strategy is to minimize the number of 

CFD calls while being able to account for time changing fluid 

boundary conditions i.e. inlet speed and temperature.  

Assumptions: a significant discrepancy exists between the 

characteristic time scales of fluid and solid phenomena figuring 

in Table 1.  

Table 1 Physical characteristic time-scale 

Fluid motion Fluid thermal diffusion Solid diffusion 

                                                
       

The fluid dynamic and diffusive time scales, are of the same 

order of magnitude for air or nitrogen because their Prandtl 

numbers    are of the order of magnitude of unity. Taking 

aluminium as the solid, with properties at 600°C, we have 

             ,                ,              while 

taking the same length scales for the solid and fluid domains 

           and           we get that: 

                   (10) 

This means that in certain industrial applications, the solid 

responds far more slowly (five orders of magnitude) to changes 

in dynamic thermal conditions than the fluid. Thermal 

transients are thus very fast in the fluid when compared to those 

in the solid. 

Coupling strategy: since the transient response of the fluid 

is not of major interest, we consider that it reaches steady state 

instantaneously compared to the thermal evolution of the solid. 

This property of the two interacting physics is the cornerstone 

of the proposed coupling approach. Transient simulation of the 

conduction-radiation problem is carried out in the solid domain 

and steady state CFD is used to solve the fluid problem at a 

given moment in order to update the fluid side of the interface. 

This approach bridges the temporal scales of the two physics 

and minimizes the global CPU time of the coupling by using 

steady state snap shots of the fluid instead of solving the 

transient fluid problem. Application of a similar "pseudo-

transient" coupling scheme can be found in [9]. 

Coupling algorithm: the above mentioned strategy can be 

implemented using the two general types of temporal coupling 

algorithms: the weak, also known as one-way or explicit 

coupling and the strong, also known as the two-way or implicit 

coupling algorithm.  

In strong coupling algorithms, if the continuity conditions 

of system (6) at the interface are not satisfied at the end of a 
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coupling step, iterations are performed until they are enforced. 

This can be seen as iterations of a predictor-corrector scheme 

performed to obtain convergence of the interface conditions at 

each data exchange between solvers, and implies going back in 

time to re-evaluate the coupled solution between two coupling 

steps. Weak coupling algorithms on the other hand operate 

based on a one-way influence relation. Here, temperature 

variations of the solid are considered to have negligible effects 

on the fluid flow and iterations on the coupling steps become 

unnecessary to satisfy the conditions of system (6) at the 

interface. Even with high temperature differences between the 

fluid boundary and its bulk, in cases where forced convection is 

the main driving force of the fluid flow, very low values of the 

Richardson number can be achieved. This number expresses the 

ratio of the buoyancy term to the dynamic flow gradient, and 

when     , the effects of boundary temperature on the bulk 

flow may be neglected. 

   
  

   
 (11) 

This is true for jets and high velocity cooling or heating 

flows for which loose coupling algorithms can be used without 

jeopardising the accuracy of the coupled solution. Figure 2 

illustrates the temporal coupling between the dynamic thermal 

simulation and the steady state fluid solution by the weak 

pseudo-transient algorithm: 

 

Figure 2 The CIN-CFD pseudo-transient coupling algorithm. 

CIN to CFD boundary fields projection  

The radiative surface mesh used for the calculation of the 

TEAs' and the CFD boundary mesh, are part of the interface 

separating the computational domains of the different solvers. 

In that sense, each thermal component is associated to its 

surface mesh on which TEAs are computed and other 

interfacial fields, like temperature and convective flux, are 

projected. The first step of any mesh based surface scalar field 

projection is to identify the neighbour relations between the 

elements of the different surface meshes. Thermal simulation 

surface mesh sizes are usually quite larger than the ones used 

for CFD simulations as pictured in Figure 3 which also 

illustrates the result of the neighbour search. 

 

Figure 3 Polygons of a CFD surface mesh coloured by the IDs 

of their closest thermal surface mesh. 

Exchange and interpolation techniques between the two 

meshes used after neighbour identification will not be discussed 

here. We just point that non-conservative interpolation is used 

to map the surface temperature field from CIN to CFD, and a 

conservative one is used to evaluate the convective flux on the 

CIN mesh that was computed on the finer CFD one. 

CFD to CIN macro volume averaging 

The reduction of the fluid flow information to a boundary 

condition in the thermal model can be a limiting factor in the 

simulation of large scale industrial applications. For long 

thermal transient evolutions, a considerable number of CFD 

simulations of the steady state fluid domain will be required 

[9]. Moreover, the interfacial exchange of information limits 

the possibility of including dynamic control effects (i.e. PID 

controllers) in the thermal model and having an instantaneous 

energy balance for the global installation when energy saving 

studies are carried out. Consequently the CFD results are 

sought to be included in the thermal model of the installation 

via three dimensional field averaging. In that sense the coupled 

thermal model includes a fluid network made up of volumes 

that exchange via mass flow rates between each other and via 

convection with the surfaces of the solid thermal components. 

This fluid network is generated from CFD simulation results of 

the fluid domain at a given thermal state of the structure by 

field averaging. 

Macro volume generation: given a specified number of 

macro volumes (or fluid voxels) in each direction (        ), 

a structured three dimensional grid is generated on the fluid 

domain. A geometric calculation is then performed to identify 

all CFD volume mesh cells that belong to each of the generated 

macro fluid volumes. A CFD mesh cell is included in a fluid 

voxel if its centroid lies inside the zone or belongs to its 

boundary. Each fluid voxel is thus defined by its own CFD 

mesh cells and its effective volume and mass are: 

          

           
         

   

 (12) 

            

           
         

   

 (13) 

The mass averaged enthalpy of each fluid voxel is then 

computed using: 

       
       

           
         

   

      

 
(14) 

The result of equation (14) serves to determine the average 

temperature of the voxel       computed by CFD using the 

enthalpy table of the fluid at the operating pressure of the 

installation. The effective volume of the generated voxels is 

used in the thermal simulation to define the components of the 

fluid network. We note that equations (12) through (14) take 

into account the presence of the solid components and avoid 

their inclusion in the computation of the averaged properties of 

the voxels. 
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Inter voxel mass flow rates and convection: the mass flow 

rates that connect the voxels in the thermal model are also 

computed from CFD results. To preserve the directional aspect 

of advection at the boundaries of each macro fluid volume, two 

opposite macro mass flow rates are computed from the detailed 

CFD ones. If      and      are voxels sharing a common 

boundary these mass flow rates are: 

            
     

           
              

   

 
(15) 

            
     

           
              

   

 
(16) 

These values of the flow rates are updated at each coupling 

step to take into account the effect of the modified flow field in 

the thermal model. Having identified the fluid voxels and their 

boundaries, the wall heat flux is computed on the intersection 

between the CFD boundary faces of the voxels and the thermal 

surface mesh. This flux is then projected as a convective 

exchange on the intersecting part of the thermal mesh it and the 

voxel it is in contact with. Considering the surface   of a 

thermal component that is in contact with a fluid voxel  , the 

conductance of the convective exchange linking them in the 

thermal model reads: 

                   (17) 

Where both    and    are determined by the transient 

thermal simulation if        [W/K] and the inter-voxel mass 

flow rates are provided form the CFD results.  

Let       be the number of CFD boundary faces belonging 

to the intersection between the thermal mesh and the fluid 

voxel. Each of these boundary elements has a surface  , and a 

computed CFD thermal heat flux       in [W/m²]. The 

conductance of the convective exchange at the intersection of 

the two meshes reads: 

             
       

     
       

   

             
 (18) 

Where       is the temperature of the wall that was 

provided by the thermal solver at its last time step and imposed 

on the CFD boundary to carry out the fluid solution, and       is 

the average temperature of the voxel in question computed 

using equation (14) and the enthalpy table of the fluid at the 

operating pressure. This formulation allows each voxel to be in 

contact with an arbitrary number of thermal surfaces and each 

thermal surface to be in contact with an arbitrary number of 

voxels. 

APPLICATION TO AN INDUSTRIAL FURNACE 

The aluminium brazing furnace 

We consider the cooling cycle of a large scale industrial 

furnace used for brazing aluminium heat exchangers. The 

furnace is made up of a cylindrical hull containing an array of 

electric heaters as shown in Figure 5. The hull is 9.5 [m] long 

and has a diameter of 4.3 [m]. It is kept at a constant 

temperature during the heating and cooling cycles via a 

controlled water cooled jacket. The aluminium load that 

undergoes the heat treatment, is equipped with thermocouples 

at various locations in order to track its temperature. When 

introduced inside the furnace the load follows a specific heat-up 

profile via radiation under vacuum up to 600°C approximately. 

At the end of the heat-up cycle, gaseous nitrogen, at 200°C 

approximately, is injected through nozzles present inside the 

furnace to cool down the load at a prescribed cooling rate. The 

cooling rate is tracked by the readings of the different 

thermocouples and controlled by modulating the injection 

velocity of nitrogen. The heat-up cycle of the installation was 

modelled in [15], here we are interested in its cooling phase. 

The considered load is 7.5 [m] long, 1.5[m] wide and 1.8 [m] 

high. Cooling is controlled from peak heating temperature 

down to a certain level at which the metallurgical 

transformations inside the load stop. This results in a two-hour 

cooling phase.  

 
Figure 4 A cut away of the external hull of the furnace. 

 
Figure 5 The internals of the brazing furnace: (a) cross section 

of empty furnace; (b) the added load. 

The coupled CIN/CFD simulation of the installation 

Figure 4, Figure 5(a) and Figure 5(b) show the surface mesh 

that is used to carry out the radiation calculation before feeding 

its results to  the thermal solver. The total number of gray 

radiating faces is 2750 with emissivities ranging from 0.15 to 

0.95. The gray total exchange areas are computed in under two 

minutes on a regular workstation.  

The thermal model is made up of a constant temperature 

volume for the cylindrical hull (due to temperature control), 

homogeneous volumes for the thin electrical heaters and a 

specially conceived three dimensional conduction model for the 

core the load. The initial temperatures for the cooling cycle are 

obtained at the end of the heat-up phase. The nitrogen that 

cools down the load is modelled by 15x10x9 fluid volumes in 

the X,Y and Z directions respectively. The thermal model is 

thus made up of 1500 variables and 15600 exchanges 

approximately. The simulation is carried out on a two hour 

period with a constant time step of one minute. 
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The CFD model on the other hand is symmetrical. It is 

made up of nine million hexahedral volume cells with 45000 

boundary cells approximately. Figure 6 pictures the surface 

mesh of the CFD model of the installation. 

 
Figure 6 Surface mesh of the CFD model showing the electric 

heaters and the load. 

All thermal boundary conditions of the CFD model are 

controlled by the thermal solver. Inlet nitrogen nozzle velocities 

and temperatures are function of the thermal simulation time. 

The weak pseudo-transient coupling algorithm is used to couple 

the thermal and fluid solvers. The different coupling moments 

are chosen to correspond to major changes in the blowing inlet 

velocity due to cooling rate control. The different coupling 

steps with their respective inlet velocities and temperatures 

figure in Table 2. Nozzle velocities vary by a factor of 4 

throughout the cooling phase. Between two coupling moments, 

the updated inter-voxel mass flow rates and convective 

exchanges are kept constant up to the next coupling. At the end 

of the first run of the coupled simulation, the thermal solver re-

simulates the cool down using interpolated fluid values at each 

moment of the simulation without re-computing the fluid flow. 

Table 2 Coupling steps of the cooling cycle 

Coupling time in 
minutes 

Scaled inlet nitrogen 
velocity  

Scaled inlet nitrogen 
temperature 

             

             

              

              

               

 

SIMULATION RESULTS COMPARED TO 
MEASUREMENTS 

Here we compare the readings of the thermocouple at 

different locations on the load with their corresponding results 

of the coupled simulation. Due to symmetry, the readings of 

eight thermocouples located on a single side of the load are 

chosen for the comparison. The locations of the thermocouples 

at which simulation results are compared to experimental 

measurements are indicated by dotted circles on the figures 

showing the relative position of the load to the electrical heaters 

in the furnace. Results are presented in the following figures: 

 

 

 
Figure 7 Comparison of cooling cycle simulation results with 

experimental measurement at different locations on the load.  

DISCUSSION 

Given the operating conditions of the installation for a 

specific load configuration, the goal is to evaluate the capacity 

of the proposed simulation approach to reproduce its thermal 

behaviour while maintaining a small CPU time. Simulation 

results are in very good agreement with the experimental 

measurements for most of the thermocouples. A slight 

difference can be noticed at the beginning of the cooling cycle: 

the first 5 to10 minutes. This is due to the initial conditions of 

the thermal model that do not perfectly match the 

measurements. Moreover, at the beginning of the cooling 

phase, nitrogen slowly fills up the furnace that was under 

vacuum during heat-up, and flows inside the load. These 

physical phenomena are not accounted for by the model 

because we consider that the hull instantaneously fills up with 

nitrogen that cannot flow inside the load. 

The total running time of the coupled simulation with five 

coupling steps is 28 hours on a regular workstation. The fluid 

solution runs on 4 computing threads and accounts for 89% of 

the computational time. It is clear that solving for transient 

coupled radiation, conduction and fluid flow on large scale 

industrial applications over long periods of time using standard 

CFD techniques is practically impossible using modest 
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computational resources. This is where the coupled multi-

solver methods become advantageous. 

CONCLUSION 

The coupled transient heat transfer simulation problem of 

large scale industrial furnaces over long periods of time was 

considered. The coupled multi-solver, multi-mesh, fluid-

structure thermal modelling approach was presented along with 

the radiative, conductive and fluid flow solvers. The pseudo-

transient coupling algorithm between transient thermal 

simulation and steady state CFD was introduced and its validity 

justified by the characteristic time scale discrepancy that exists 

between the different physical phenomena. A new coupling 

method between CIN and CFD was proposed and presented in 

details. It relies on including a simplification of the fluid 

solution in the thermal model. The thermal boundary conditions 

of the CFD model as well as the fluid network characteristics 

(mass flow rates and convective coefficients) included in the 

coupled thermal model are updated at each coupling step. This 

proposed weak coupling method was applied on a real life large 

scale industrial brazing furnace. Over the two-hour cooling 

cycle of the industrial installation, only five coupling steps 

between CIN and CFD were sufficient to achieve very good 

agreement between the simulation results of the proposed 

methodology and the actual experimental measurements. 
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INTRODUCTION 

During the underwater explosion, petroleum-producing 

process or with the aim of safety level increasing on power 

plant station, pressure wave propagation occurs through the 

diphasic media. For the study of underexpended gas jet flowing 

into liquid it is needed to know how the droplet scratched for 

the liquid interacts with Mach disk. In order to avoid injecting 

droplet in the underexpended jet and cannot be able to control 

the size of the droplet which arrive to the Mach disk. The use of 

a moving shock wave droplet cloud with given sizes should 

help to determine the level of interaction between the droplets 

and the shock wave. 

 

The behavior of a shock wave passing through a diphasic 

medium has its features and significantly differs from the one’s 

passage through a single-phase medium. An appearance of 

rarefaction waves, regions with the possibility of the 

condensation jump, a significant changing of an intensity of the 

shock takes place in that case, [1,2].The passage of the shock 

through a gas filled by droplets of liquid can lead to their break-

up or deformation, that successively influences on the flow 

field structure, [3]. The size and the volume fraction of the 

droplets were found to be the key-parameter in that process. 

This phenomenon is of interest It is also important in the 

phenomena where a detailed investigation of the dynamics and 

interphase interaction is required. 

  

An experimental test has been carried out by the team of the 

IUSTI laboratory (Marseille University, France). The scheme 

of the experimental facility is shown in Figure 1. Initially, it is 

filled by air at room temperature. The tube consists of 3 main 

parts: high-pressure chamber, low pressure chamber and a ‘test 

chamber’, whereas a cloud of water droplets will be released. 

The size of the droplets and the height of the cloud have been 

set initially. The process has been visualized by the high-speed 

direct shadowgraph system technique. The results of that study 

showed a diminution of the intensity of the shock wave and the 

mitigation of the shock wave by the variation of the exchange 

surface area resulting from droplet atomization. 

 

 

Figure 1: Experimental scheme of the shock wave passage 

through a diphasic medium, s4 and s7 - pressure detectors 

location 

 

The aim of this study is to reproduce numerically the test 

mentioned above in order to apply proposed approach for a 

further study with another conditions. First, the numerical 

model proposed is validated by the comparison with the SOD 

test [5]. Afterwards the test with the conditions corresponding 

to IUSTI group’s experiment has been performed. The model 

proposed is described below, and results obtained can be found 

in chapter Results and Discussion. 

 

 

NOMENCLATURE 

 
P [Pa] Pressure 

 

ρ [kg/m3] Density 

v [m/s] Velocity 

M [-] Mach Number  

T [K] Temperature 

γ [-] Specific heat  capacity 

Sd [m2] Mean surface of the gas phase 

α [-] Droplets volume fraction 

 
Subscripts 

1, 2  High-pressure chamber and  low-pressure chamber 

respectively 

 

Numerical simulations of problem in multiphasic media 

have their difficulties because of the presence of large gradients 

in densities for the different phases. In order to obtain the 

solution some modification of the numerical methods, and its 

adaptation for the multiphasic tasks are required.  

In order to respect the conditions employed in the 

experimental test, [4], the method of successive patching has 

been applied. Namely, the main computational domain has 
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been initially patched with a high –pressure area. The shock 

wave has been generated after the pressure gradient. Once the 

front of the shock reached a border of the area, another 

patching is created - the patch with a given droplet volume 

fraction. That way has been created in order to avoid a temporal 

changings of the state of the media where the shock propagates, 

that are caused by the initial density gradient (with the presence 

of droplets). Thus, the shock wave generated propagates 

through the non-disturbed medium in domain until it reaches 

the droplet filled area. 

 

Pressure setup. The shock wave is generated according to 

the pressure gradient. That gradient depends on the Mach 

Number and can be expressed as follows, [6]: 

 

𝑃2

𝑃1

= (
2γ

γ + 1
𝑀2 − 

γ − 1

γ + 1
) [1 −

γ − 1

γ + 1
(𝑀 −

1

𝑀
)]

−
2γ

γ−1
 

 

Here, the gas in both areas is considered to be the same (air, 

heat capacity ratio γ=1.4) and with the same temperature. 

𝑃1, 𝑃2- pressure in a low-pressure and high-pressure chamber 

respectively, M – Mach Number. 

 

Droplets diameter . An influence of the size of the droplets 

can be estimated via the mean surface of the gas phase, 𝑆𝑑: 

𝑺𝒅 = √𝝅(𝟔𝑽𝒅)𝟐𝟑
 

Where 𝑉𝑑- volume of the water phase droplets. 

 

Numerical flow solver.  ANSYS Fluent code provides using 

of two numerical methods:  pressure-based  and  density -based 

solvers The second approach is considered to be mainly used 

for high-speed compressible flows, while a pressure-based 

solver, historically, was developed  for low-speed 

incompressible one-phase flow. However, recently both 

methods have been extended and reformulated to solve and 

operate for a wide range of flow conditions beyond their 

traditional or original intent,[7]. Thereby a pressure-based 

solver has been chosen as an operating one. 

 

The method PISO has been employed, as the one that has 

proven to be robust and suitable for the problems containing 

discrepancies among the pressure-velocity coupling algorithms 

for multiphase flows. PRESTO – spatial discretization method 

for the pressure equation, that is considered to be more suitable 

for the flows involving steep pressure gradients has been 

used,[7]. k-e realizable model of turbulence has been chosen. 

The problem has been treated with the first order scheme at the 

beginning of the calculation with further switching to a second 

order. 

  

RESULTS AND DISCUSSION 

As a first step a comparison with SOD test has been 

performed. The conditions corresponding to a SOD case has 

been applied. Their values are as follows: P1=0.1, ρ1 =
0.125, v1=0,  P2=1.0, ρ2 = 1.0, v2=0 (where ρ-density, v-

velocity, indexes ‘1,2’ refer to low-pressure chamber and high-

pressure chamber respectively), [5].The settings of the 

resolution methods mentioned above are applied. The graphics 

shown below represent a density and a pressure distribution 

obtained. Here, Curves in red correspond to numerical results, 

curves in blue are for the results represented in G.Sod article, 

[5].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graphics obtained demonstrate qualitative agreement 

with a behavior of the parameters. Shock wave structure is 

represented correctly. That fact enables to use model proposed 

in order to reproduce an experimental test performed by the 

team of IUSTI, [4]. However, one can note some time shift. 

Numerically obtained results enable the feature of the shock 

front to propagate faster than the one represented by Sod's data. 

The reason for that phenomenon are currently on study. 

 

Thus, the second step of that work consists in reproducing 

of the diphasic experimental test [4]. Necessary values for 

initial pressure were calculated using formula (1 –pressure set 

up).  

Initial conditions have been calculated using formulas (1)-

(2). An initial temperature is considered to be the same in all 
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Figure 2: Pressure and density distribution for 

the SOD case. Curves in red correspond to 

numerical results, curves in blue are for the 

results represented in G.Sod article, [5]. 
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parts of the domain. A subdomain containing droplets has been 

patched with the droplets volume fraction α as the front of the 

shock wave reached it border. The values of the parameters are 

given in a Table 1. 

 

M T, K  𝑃1, 105Pa 𝑃2, 105Pa 𝛼 

1.5 300 1 7.0 0.012 

Table 1: Initial conditions 

The pictures presented in Figure 3 represent pressure 

temporal evolution obtained and its comparison with [4] results. 

the data used for these graphics has been taken at the given 

points corresponding to the detectors location in the 

experiment. Figure 3 refers to a detectors s4 and s7 (in the 

droplets containing domain and in the part next to that 

respectively, its locations can be found at the figure 1). Curves 

in red refer to numerical results, curves in blue are for 

experimental data. Dotted lines represent the case of a shock 

propagation in diphasic medium, solid lines are for the on-

phase medium case. 

 

 
 

 
The  qualitative behavior of the pressure curves is in 

accordance with experimental data, though a time lag remain. 

The qualitative behavior of the pressure curves is in accordance 

with experimental data, though a time lag remain. An origin of 

the shifts is on study now, and can be caused by the specifics of 

the numerical set up, or by the features of experimental facility 

and detectors time-start. We can note that this time lag looks 

very similar to the time lag appeared in test-experiments for 

SOD-case, discussed above. Thus the problem seems to have 

the same root causes. 

 
As well it is important to note a pressure diminution of the 

shock wave passing through the diphasic medium, 

comparatively to the one-phase passage. That fact has been 

noticed as well in a paper [8,9]. The phenomenon can be 

explained by the interaction between the phases, that leads to an 

energy loss of the wave with its subsequent increasing, an 

appearance of the velocity and temperature relaxation zone. It 

is important to notice that numerically obtained parameters 

distribution repeat the experimental ones, that may indicate the 

ability of the approach proposed to be applied. 

 

CONCLUSION AND FUTURE STUDY 

In this work, a numerical study of the shock wave 

propagation through the gas medium filled with water droplets 

has been carried out. The test was performed for a given value 

of Mach number and droplets volume fraction to allow a 

comparison with the experimental data [4]. It was mentioned 

that the shock wave facing with a diphasic medium undergoes a 

loss of energy. And a jump in density has been noted. The 

results obtained shown an ability of the numerical method 

applied to reproduce the trend of a real experiment with a good 

convergence in qualitative and quantitative terms. This fact 

enables to apply the approach proposed for a future numerical 

study, namely, with different droplets volume fraction and 

different supersonic modes. 

 

Based on the existent study, the size of the droplets (and its 

volume fraction consequently) is supposed to be a key-factor in 

influence on the flow structure during the shock wave passage 

through the diphasic medium. Thus further stage of this study is 

suggested to carry out a series of tests with different droplets 

content. As well, the flow structure may differ for the cases 

with higher Mach number as the slipstream of the shock will be 

supersonic for that case that has its effect on the processes of 

droplets break-ups, cavitation, and condensation and 

evaporation behavior.  So the modes with vary flow velocity 

are of interest of the future works.  
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