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ABSTRACT

In this work, new correlations are proposed for the mean

Nusselt number in the entrance region of concentric annular

ducts with uniform heat flux boundary conditions specified at

the inner wall. These correlations are obtained on the basis

of the numerical results of a previous parametric investigation

on the effects of temperature dependent viscosity and thermal

conductivity in simultaneously developing laminar flows of liq-

uids in straight ducts of constant cross-sections. A superposi-

tion method is applied for the estimation of the Nusselt number

by considering separately the effects of temperature dependent

viscosity and thermal conductivity.

INTRODUCTION

Quite often in laminar flows, the total length of the duct is

comparable with that of the entrance region. In such cases, the

entrance effects on fluid flow and forced convection heat trans-

fer must be taken into account. Moreover, temperature depen-

dence of fluid properties can also play an important role in the

development of the velocity and temperature fields. If the fluid

is a liquid, the relative variations of viscosity with temperature

are the most relevant, while those of thermal conductivity are,

in general, much smaller, and those of density and specific heat

capacity are almost negligible [1,2]. As far as velocity distribu-

tion and pressure drop are concerned, the main effects of tem-

perature dependent fluid properties can be retained even if only

viscosity is allowed to vary with temperature, while the other

properties are assumed constant [1,3]. Instead, heat transfer

characteristics, namely the Nusselt number, are also influenced

by the variations of thermal conductivity [2], which can both

increase or decrease with increasing temperature, depending on

the nature of the fluid considered.

In the past we carried out systematic numerical analyses

of the effects of temperature dependent viscosity and thermal

conductivity on forced convection in simultaneously develop-

ing laminar flows of liquids in straight ducts with uniform wall

heat flux boundary conditions [4,5]. Then we used the numer-

ical data to obtain correlations, suitable for engineering appli-

cations, for the mean Nusselt number in the entrance region of

circular tubes and square ducts with uniform heat flux boundary

conditions specified at the walls [6]. A superposition method

has been proved to be applicable in order to estimate the Nus-

selt number by considering separately the effects of temperature

dependent viscosity and thermal conductivity.

In this work, we extend our previous research and we pro-

pose correlations for the longitudinally averaged Nusselt num-

ber on the inner wall of concentric annular ducts with an adi-

abatic outer wall and a ratio of the inner to the outer radius

equal to 0.75. In our model, we assume that viscosity decreases

with increasing temperature according to an exponential rela-

tion while thermal conductivity varies linearly with tempera-

ture. Suitable dimensionless parameters, namely, viscosity and

thermal conductivity Pearson numbers, are used to quantita-

tively express temperature dependence of corresponding prop-

erties [5,6].

STATEMENT OF THE PROBLEM

This study concerns the laminar forced convection in the

entrance region of straight annular ducts of constant cross-

sections. The fluid is a liquid and heating is assumed to begin

at the duct inlet. Uniform values of the axial velocity compo-

nent u and of the temperature t (i.e., t = te, u = ue = u
and v = 0) are specified as the appropriate inlet conditions, be-

ing u the average axial velocity and v the radial velocity com-

ponent. A uniform heat flux (Neumann) boundary condition

q′′ = k∂t/∂n = q′′w > 0 (fluid heating) is applied at the inner

wall, while the outer wall is adiabatic. In the previous expres-

sion, k is the thermal conductivity and n is the outward normal

to the boundary.

As the fluids considered here are liquids, the dynamic vis-

cosity µ is assumed to decrease with increasing temperature

according to the widely used exponential formula [3]

µ = µe exp[−β (t− te)] (1)

where µe is the value of µ at te and β = −(dµ/dt)/µ = const
is positive. The thermal conductivity k can be assumed to both

increase or decrease with increasing temperature, depending on
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the fluid considered, according to the linear relation

k = ke [1 + α (t− te)] (2)

where ke is the value of k at te and α = (dk/dt)/ke = const
can be both positive or negative. By means of simple manip-

ulations, equations (1) and (2) can be cast in the following di-

mensionless forms [5,6]

µ

µe

= exp(−PnµT ) (3)

k

ke
= 1 + Pnk T (4)

where T = (t − te)ke/(q
′′

wDh) is the dimensionless temper-

ature, Dh is the hydraulic diameter, Pnµ = β q′′wDh/ke is the

viscosity Pearson number (representing the ratio of the charac-

teristic process temperature difference q′′wDh/ke to the charac-

teristic temperature difference 1/β that can produce apprecia-

ble viscosity variations) and Pnk = αq′′wDh/ke is the ther-

mal conductivity Pearson number (representing the ratio of the

characteristic process temperature difference q′′wDh/ke to the

characteristic temperature difference 1/α that can produce ap-

preciable thermal conductivity variations).

Since the density ρ and the specific heat c are constant, the

local Reynolds number Re = ρuDh/µ, the local Prandtl num-

ber Pr = µc/k and the local Péclet number Pe = RePr =
ρcuDh/k all vary with temperature because of the variations

of µ, of the ratio µ/k and of k, respectively. Therefore we have

µ/µe = Ree/Re and k/ke = Pee/Pe, where Ree and Pee are

the Reynolds and Péclet numbers evaluated at te. Moreover,

since the viscosity of liquids decreases with increasing temper-

ature (β > 0), in the case of fluid heating we have Pnµ > 0 and

Ree/Re < 1, while Pnµ = 0 and Ree/Re = 1 refer to constant

viscosity fluids (β = 0). Instead, since the thermal conductivity

can either increase (α > 0) or decrease (α < 0) with increasing

temperature, we have Pnk > 0 and Pee/Pe > 1 in the first

case and Pnk < 0 and Pee/Pe < 1 in the second one, while

Pnk = 0 and Pee/Pe = 1 refer to constant thermal conductiv-

ity fluids (α = 0).

As the fluid temperature rises along the duct, the viscos-

ity decreases while Re increases. Therefore, to ensure lam-

inar flow conditions, the local Reynolds number Reb evalu-

ated at the bulk temperature is only allowed to reach the maxi-

mum value (Reb)max = 2, 000, corresponding to the maximum

value xmax of the axial coordinate x, whereupon computations

are stopped. Therefore, taking into account equation (3) and

the appropriate heat balance for the duct, the following expres-

sion for the maximum value X∗

max of the dimensionless axial

coordinate X∗ = x/(DhPee) can be obtained [4,5,7]

X∗

max =
C

4PnµCq

ln

[

(Reb)max

Ree

]

(5)

where C and Cq are the perimeter of the cross section and the

heated perimeter, respectively.

Computed results of interest for the present study are rep-

resented by the axial distributions of the local Nusselt number

Nu = hDh/ke, where h is the peripherally averaged local con-

vective heat transfer coefficient defined as

h =
q′′w

tw − tb
=

ke
Dh (Tw − Tb)

(6)

In equation (6), tw and tb are the wall temperature and the mean

bulk temperature, respectively, and Tw and Tb are their dimen-

sionless forms. According to equation (6), the local Nusselt

number can be expressed as

Nu =
1

Tw − Tb

(7)

Axial distributions of the longitudinally averaged Nusselt num-

ber, defined as [1]

Nu =
1

x

∫ x

0

Nu dx =
1

X∗

∫ X∗

0

Nu dX∗ (8)

can be obtained by means of an appropriate numerical integra-

tion rule.

NUMERICAL PROCEDURE

In laminar duct flows, the effects of axial diffusion can be

neglected when Ree > 50 and Pee > 50 [1]. If there is also

no recirculation in the longitudinal direction, steady-state flow

and heat transfer in straight ducts of constant cross-sections are

governed by the continuity and the parabolized Navier-Stokes

and energy equations [8,9]. These equations are not reported

here for lack of space, but they are reported elsewhere together

with the boundary conditions specified on the boundaries of the

computational domain [5,7].

The model equations are solved using a finite element pro-

cedure for the analysis of the forced convection of fluids with

temperature dependent properties in the entrance region of

straight ducts [7,10,11]. The adopted procedure is based on

a segregated approach which implies the sequential solution of

the momentum and energy equations on a two-dimensional do-

main in the case of three-dimensional geometries and on a one-

dimensional domain in axisymmetric problems, corresponding

to the cross-section of the duct. A marching method is then

used to move forward in the axial direction. The pressure-

velocity coupling is dealt with using an improved projection al-

gorithm already employed by one of the authors (C.N.) for the

solution of the Navier-Stokes equations in their elliptic forms

[12]. The procedure has already been validated, with reference

to both constant and temperature dependent property fluids, by

comparing heat transfer and pressure drop results with existing

literature data for simultaneously developing laminar flows in

straight ducts [10,11,13,14].
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SIMULATION PARAMETERS

The cross-sectional geometry considered in this study is that

of a concentric annular duct with a ratio of the inner to the outer

radius ri/ro = 0.75. Since the Navier-Stokes equations are

solved in their parabolized form, the computational domain cor-

responding to the annular cross-section, defined taking into ac-

count the axial symmetry, is one-dimensional and is discretized

using 80 three-node Lagrangian elements and 161 nodes [7].

The axial step is gradually increased from the starting value

∆x = 0.0001Dh to the maximum value ∆x = 0.05Dh.

In all the computations, the same value is assumed for the

entrance Reynolds number (Ree = 100). Instead, the values

Pre = 5, 20 and 100 of the Prandtl number at te are selected to

take into account the behaviours of different liquids. The corre-

sponding values of the Péclet number at te are Pee = 500, 2000
and 10 000. The values of the dynamic viscosity Pearson num-

ber Pnµ = 0, 1, 2 and 4 are considered to account for reason-

able viscosity temperature dependences. Thus, for the assumed

Ree, the maximum values of the dimensionless axial coordinate

given by equation (5) are X∗

max = 1.7474, 0.8738 and 0.4369
for Pnµ = 1, 2 and 4, respectively. For each nonzero value of

Pnµ eight values of Pnk are selected (four positive and four

negative), giving the corresponding value ratios Pnµ/Pnk =
β/α = ±10,±20,±40 and ±80. Thus, on the whole, the val-

ues Pnk = 0,±0.0125,±0.025,±0.05,±0.1,±0.2 and ±0.4
are considered.

SUPERPOSITION METHOD

As demonstrated in [4,5], the effects of temperature de-

pendent properties (viscosity and thermal conductivity) on heat

transfer can be illustrated by comparing the local Nusselt num-

ber Nuµk, obtained for given nonzero values of Pnµ and Pnk,

with the corresponding local Nusselt number Nuc, computed

for simultaneously developing constant property flows (Pnµ =
Pnk = 0). Therefore, we can assume the value of the ra-

tio (Nuµk − Nuc)/Nuc = (Nuµk/Nuc) − 1 as a measure of

the combined effects of both temperature dependent viscos-

ity and thermal conductivity. Axial distributions of the ratio

Nuµk/Nuc for concentric annular ducts and the same values of

dimensionless input parameters considered in this paper have

been obtained by the authors in the past using the numerical

procedure described above and they are reported in [5]. The

conclusion reached there is that both temperature dependent

viscosity and thermal conductivity can have comparable effects

on the Nusselt number, according to the values of Pnµ and Pnk.

Moreover, it has been demonstrated that if the effects of tem-

perature dependent viscosity and thermal conductivity are con-

sidered separately to compute Nuµ (under the assumptions of

temperature dependent viscosity and constant thermal conduc-

tivity, i.e., Pnµ > 0 and Pnk = 0) and Nuk (under the as-

sumptions of temperature dependent thermal conductivity and

constant viscosity, i.e., Pnk 6= 0 and Pnµ = 0), a superposition

method is applicable in order to obtain approximate values of

the Nusselt number Nuµk, according to the relation

Nuµk −Nuc ∼= (Nuµ −Nuc) + (Nuk −Nuc) (9)

with an accuracy which can be considered satisfactory in most

situations. With reference to the ratios Nuµk/Nuc, Nuµ/Nuc
and Nuk/Nuc, equation (9) can be recast in the form [4,5]

Nuµk
Nuc

∼=

(

Nuµk
Nuc

)

′

=
Nuµ
Nuc

+
Nuk
Nuc

− 1 (10)

where (Nuµk/Nuc)
′ is the approximate value of Nuµk/Nuc

given by the superposition method. Therefore, the values of

the differences (Nuµ/Nuc) − 1 and (Nuk/Nuc) − 1 approxi-

mately measure the separate effects of temperature dependent

viscosity and thermal conductivity, respectively.

In this work, previous numerical results concerning axial

distributions of the ratios Nuµk/Nuc, Nuµ/Nuc and Nuk/Nuc
[5] have been used to obtain, by means of a suitable numeri-

cal integration rule according to equation (8), the corresponding

distributions of the ratios Nuµk/Nuc, Nuµ/Nuc and Nuk/Nuc.

Then, it has been verified that the following relation, obtained

by combining equations (8) and (9), still holds true with an ac-

curacy which can be considered satisfactory in most situations

Nuµk

Nuc
∼=

(

Nuµk

Nuc

)′

=
Nuµ

Nuc
+

Nuk

Nuc
− 1 (11)

In equation (11), (Nuµk/Nuc)
′ represents the approximate

value of Nuµk/Nuc given by the superposition method. As

an example, axial distributions of the ratio (Nuµk/Nuc)
′ for

Pre = 20, the three values of Pnµ considered and different val-

ues of Pnk are reported in Figure 1 and compared with the cor-

responding distributions of Nuµk/Nuc. As can be seen, even

for the highest values of Pnµ and the highest/lowest values of

Pnk the dashed curves, representing axial distributions of the

ratio (Nuµk/Nuc)
′, are very close to the solid ones giving the

numerical solutions for Nuµk/Nuc, thus confirming the valid-

ity of equation (11). Similar comparisons could be carried out

for Pre = 5 and 100, but are not reported here for the sake

of brevity. Anyway, the maximum positive and negative rel-

ative errors in the approximation of Nuµk/Nuc by means of

(Nuµk/Nuc)
′ are ε+max = 0.13% and ε−max = −0.31% in the

range 10−4 ≤ X∗ ≤ X∗

max with Pre = 5, 20 and 100 and

different values of Pnµ and Pnk.

CORRELATIONS FOR THE MEAN NUSSELT NUMBER

Taking advantage of equation (11), a correlation for Nuµk
has been obtained by assembling the different correlations for

Nuc, Nuµ/Nuc and Nuk/Nuc obtained from computed results

for flows of liquids with constant property (Pnk = Pnµ = 0),

temperature dependent viscosity (Pnk = 0 and Pnµ > 0)

and temperature dependent thermal conductivity (Pnµ = 0
and Pnk 6= 0), respectively. All the correlations reported in

this paper have been developed using the nonlinear least-square

Levenberg-Marquardt algorithm implemented in the Gnuplot

4.0 software package and are only valid for ri/ro = 0.75.
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Figure 1 Comparison of axial distributions of the ratios

Nuµ,k/Nuc and
(

Nuµ,k/Nuc
)′

for simultaneously developing

laminar flows in annular ducts with Pre = 20, different values

of Pnk and: (a) Pnµ = 1, (b) Pnµ = 2 and (c) Pnµ = 4.
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Figure 2 Comparison of computed and predicted axial distri-

butions of the mean Nusselt number Nuc on the heated inner

wall of annular ducts with the considered values of Pre (zoom:

10-time magnification).

Liquids with constant properties

The results obtained under the assumption of constant prop-

erty flow (Pnk = Pnµ = 0) have been used to obtain a cor-

relation, valid for X∗ ≥ 10−4, for the mean Nusselt number

Nuc on the heated inner wall of concentric annular ducts with

ri/ro = 0.75

Nuc = 5.6443 +
0.070(X∗)−1.35

1 + 0.119Pr−0.08
e (X∗)−n

(12)

where 5.6443 is the asymptotic value of Nuc for fully devel-

oped conditions and the exponent n depends on the Prandtl

number Pre according to the relation

n = 0.801Pr0.0304e − 0.000155Pre (13)

Comparison are shown in Figure 2 between the computed ax-

ial distribution of the mean Nusselt number Nuc on the heated

inner wall of annular ducts and the corresponding predictions

of the correlation (12). As can be seen, the agreement is

quite good for all the values of Pre considered. The max-

imum positive and negative relative errors in the approxima-

tion of Nuc by means of equation (12) are ε+max = 1.14% and

ε−max = −1.52%, while the maximum residual standard devia-

tion is smax = 0.53%.

Liquids with temperature dependent viscosity

The results obtained for annular ducts for Pnk = 0 and

Pnµ > 0 have first been used to obtain a correlation for asymp-

totic value of the ratio Nuµ/Nuc
(

Nuµ
Nuc

)

fd

= 1 + 0.0204Pnµ + 0.000051Pn2µ (14)
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Figure 3 Comparison of computed and predicted axial distri-

butions of the ratios Nuµ/Nuc for simultaneously developing

laminar flows in annular ducts with Pre = 20 and Pnk = 0.

and then one for the ratio Nuµ/Nuc as a function of X∗

Nuµ

Nuc
= 1+

(

0.0204Pnµ − 0.000051Pn2µ
)

· {1− exp [− (1.43− 0.44Pnµ) (X
∗)m

−4.0(X∗)0.4
]}

(15)

In equation (15), the exponent m depends on the Prandtl num-

ber Pre and can be expressed as

m = 0.55Pr−0.15
e (16)

The range of validity of the above correlation is 5 ≤ Pre ≤ 100,

1 ≤ Pnµ ≤ 4 and 10−4 ≤ X∗ ≤ X∗

max. As an exam-

ple, computed axial distributions of the ratios Nuµ/Nuc for si-

multaneously developing laminar flows in annular ducts with

Pre = 20 and Pnk = 0 are successfully compared in Fig-

ure 3 with those calculated using equation (15). For Pre = 5,

20 and 100, the maximum positive and negative relative errors

in the approximation of Nuµ/Nuc by means of equation (15)

are ε+max = 0.16% and ε−max = −0.17%, while the maxi-

mum residual standard deviation is smax = 0.068%. There-

fore, we can conclude that the agreement between computed

and approximate results is very good.

Liquids with temperature dependent thermal conductivity

The results obtained for Pnµ = 0 and Pnk 6= 0 have been

used to obtain two correlations for the ratio Nuk/Nuc as a func-

tion of X∗, one for Pnk > 0

Nuk

Nuc
= 1 + 0.0425Pnk {1− exp [−11(X∗)n]}

+
(

0.871Pnk − 0.042Pn2k
)

X∗

(17)
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Figure 4 Comparison of computed and predicted axial distri-

butions of the ratios Nuk/Nuc for simultaneously developing

laminar flows in annular ducts with Pre = 20, Pnµ = 0.

and one for Pnk < 0

Nuk

Nuc
= 1 + 0.0455Pnk {1− exp [−11(X∗)n]}

+
(

0.850Pnk − 0.150Pn2k
)

X∗

(18)

In both cases the exponent n depends on the Prandtl number

Pre and can be expressed as

n = 0.50Pr−0.022
e (19)

The above correlations are valid for 5 ≤ Pre ≤ 100, 0.0125 ≤
|Pnk| ≤ 0.4 and 10−4 ≤ X∗ ≤ X∗

max.

Computed axial distributions of the ratios Nuk/Nuc for si-

multaneously developing laminar flows in annular ducts with

Pre = 20 and Pnµ = 0 are reported in Figure 4 together with

those yielded by equations (17) and (18). Also in this case the

agreement is quite good, with maximum positive and negative

relative errors in the approximation of Nuk/Nuc by means of

equations (17) and (18) that, for Pre = 5, 20 and 100, are

ε+max = 0.26% and ε−max = −0.12%, while the maximum

residual standard deviation is smax = 0.067%.

Liquids with temperature dependent viscosity and thermal

conductivity

The correlations proposed in the previous sections can be

used to predict the value of Nuµk. In fact, according to equa-

tion (11), we can write

Nuµk = Nuc
Nuµk

Nuc
∼= Nuc

(

Nuµk

Nuc

)′

= Nuc

(

Nuµ

Nuc
+

Nuk

Nuc
− 1

)

(20)
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Table 1 Maximum absolute values |ε|max (%) of the relative

error in the approximation of Nuµk by means of equation (20).

Pnµ/Pnk

Pnµ

1 2 4

−10 1.43 1.38 1.80

−20 1.43 1.36 1.78

−40 1.43 1.34 1.75

−80 1.43 1.34 1.75

80 1.43 1.34 1.74

40 1.42 1.34 1.73

20 1.42 1.32 1.71

10 1.41 1.34 1.67

where Nuc, Nuµ/Nuc and Nuk/Nuc are given by equa-

tions (12), (15), (17), and (18), respectively. The maximum

absolute values |ε|max of the relative error in the approximation

of Nuµk by means of equation (20) for Pre = 5, 20 and 100 and

different values of Pnµ and Pnµ/Pnk are reported in Table 1

for the considered annular cross-sectional geometry. The good

agreement between computed and approximate results confirms

the validity of the proposed approach even for ducts with not

simply connected cross-sections.

CONCLUSIONS

In this work, new correlations, suitable for engineering ap-

plications, for the mean Nusselt number in the entrance re-

gion of concentric annular ducts with uniform heat flux bound-

ary conditions specified at the inner wall have been proposed.

These correlations have been obtained on the basis of the re-

sults of a previous parametric investigation on the effects of

temperature dependent viscosity and thermal conductivity in

simultaneously developing laminar flows of liquids in straight

ducts of constant cross-sections. In these studies, a finite ele-

ment procedure has been employed for the numerical solution

of the parabolized momentum and energy equations. Viscosity

and thermal conductivity have been assumed to vary with tem-

perature according to an exponential and to a linear relation,

respectively, while the other fluid properties are held constant.

The temperature dependences of viscosity and thermal conduc-

tivity have been quantitatively expressed by the corresponding

Pearson numbers. Axial distributions of the mean Nusselt num-

ber, obtained by numerical integration from those of the local

Nusselt number, have been used as input data in the derivation

of the proposed correlations.

A superposition method has been proved to be applicable in

order to estimate the Nusselt number by considering separately

the effects of temperature dependent viscosity and thermal con-

ductivity. Therefore, two distinct correlations have been pro-

posed, one for flows of liquids with temperature dependent vis-

cosity and one for flows of liquids with temperature dependent

thermal conductivity, in addition to that obtained for flows of

constant property fluids.
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