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Wool Studies. 

II. The Frequency Distribution of Merino Wool 
Fibre Thickness Measurements. 

By A. P. MALAN, Section of Statistics, Onderstepoort. 

1. INTRODUCTION . 

Practically the whole of the statistical theory and practice of 
modern agricultural and biological experimentation is based on what 
is known as the normal theo1·y. This means that the usual tests of 
significance of statistical coefficients are based on the assumption that 
the coefficients are estimated from " random samples from a normal 
population ''. 

Although the existing tables for significance tests are mostly 
based on the assumption of a normal parent population, it is known 
that the applicability of these tests is not always confined to strictly 
normal populations. It was demonstrated with a practical example 
by Eden and Yates (1933) that the lack of normality did not violate 
the application of Fisher's z-tests in the analyses of variance. H ow­
ever, it is equally true that the normal theory may not be applied 
indiscriminatelv to all data. It is therefore necessary to studv the 
nature of the 'observed distribution functions in different fields of 
experimental work. 

In cases wlrnre the observed variate is definitely not normally 
distributed it is sometimes possible to substitute a function of the 
observed variate as the new variable quantity, which becomes 
normally distributed. So, for instance in cases where the observed 
standard deviations for different samples vary in proportion to the 
respective mean values, it is reasonable to use· the logarithms of the 
observed valnes as the variate for the statistical analysis of the data . 

2. '\VooL FIBRE TmcrrnEss ~IEAsURK\IENTS . 

Fibre thickness is measured at the Onderstepoort Wool 
Laboratory by the micro-camera method. The sampling consists of 
zoning the original sample and from each of these a small portion is 
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taken and combined into a single sample. ·,rhis sample is cu~ along 
its whole length into a large number of _small fr~gm~nts w~1ch are 
then mixed in a beaker of ether. A portion of this m1xhue is taken 
at random dried and mounterl in Euparal on a slide from which tne 
required n'umber of thicknesses is determined by means of a Zeiss­
Hegener micro-camera. 

The above method allows for the variation in thickness between 
fibres and the variation in thickness along the length of the same 
fibre, but in an uncontrolled way, in the sense that some fibre~ may 
contribute more to the observed variation than others accordrng to 
the respective numbers of fragments included in the observed values. 
Various other objections may be made against the above procedure, 
and the involved problem of wool sampling is receiving a thorough 
investigation . It is hoped to give a more detailed discussion of wool 
sampling technique in a future study. 

Fibre thickness measurements are known to have a skew 
frequency distribution which is not normal. The actual nature of 
this distribution has, to the author's kn,owledge, never been discussed 
and it is the intention of this paper to apply the logarithmic 
transformation to observed thickness measurements. ThiR transfor­
mation was suggested by the constancy of the coefficients of varia­
bility for the same fibre population. 

In Study I, Malan, van Wyk and Botha (1935) cons1de1ed 
amongst others, the variation in fibre thickness measurements over a 
period of three years. Consecutive measurements were made of 
shoulder samples from a marked area on the skin to ensure that they 
represented the same fibre population. A striking feature of the 
l'esults was the constancy of the coefficients of variability obtained 
for different years, notwithstandjng a considerable change in the 
mean values. In a paper on some characteristics which enter into 
the assessment of vrool quality, and their estimation in the fleece, 
\Vildman (1935) used the logarithms of fibre thickness " on account 
oi the proportionate relation between the standard deviation and 
mean ' · . This transformation into logarithms would be justified if 
the logarithms become normally distributed. 

3. THE LoGARITH~nc DrsTRIBUTION. 

. A .vari~te ~ is s~id to be no~mally dis~ributed when the frequency 
m an mfimtes1mal m~erval d',x is proportional to df, where : 

1 (x-a)2 

df = s V 2n e ~ dx ········· .................................... (1) 

Hence if the variate (x) in (1) is considered as the natural loO'arithm 
of fibre thickness (t), .'/: = loge (t), the distribution function °of t is 
given by: 

1 
df = e 

ay'2n 
dt 

.. ......... .. .................... (2) 
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In (2) the parameters are 1n and a, where m is the geometrical mean 
of the fibre thickness measurements and a is the root mean square 
deviation of loge t from the natural logarithm of the geometrical 
mean. Evidently, therefore, a is a measure of mean squared deviation 
as a proportion of the mean and 100 a is a measure of compound 
percentage deviation from the mean. The coefficient, a, '"ill be 
referred to as the coefficient of " relative " v ariability. 

The pr-0perties of the above £unction (2) have been considered 
by various authors but the required results for its application in 
this paper are again dedured and graphically illustrated. 

This function, (2), has its maximum where: 

t = m e-a2 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• (3) 

and its points of inflexion at: 

:'l 2 ± . I a2 
- -> a av 1 + ---

t =me - + 

The moments (M') about the origin, where t is zero, are given by: 

00 

1 J ti/ e - 2~2 loge 2 (--;. ) dt 
M'" = . 1-

av 2n 
0 

, which by putting 

1 
loge ( +. ) = x, is easily shown to give : 

ay2n 

n2 a2 

M'n = mn e -2- ............................................................. (4) 

From (4) the first two moments are obtained by putting n = 1 and 2 
respectively: 

a2 

M '
1 

= m e 2 = a, the arithmetical mean ........................... (5) 

M '2 = m 2 e 2112 ••••••••.•..••.•.•.••.•••.•••••.•.•..•••••.•.•..••••••.••••••••.•• ( 6) 

Hence the parameters m and a, expressed in terms of the first two 
mo men ts are : 

m= 
M '2 

1 .......................................•........................... (7) 
yM'2 

M' ea2 = 2 
M '2 

1 

or a 2 = Wg, ( :;:,) ........................ (8) 

From the above moments about zero (M') given by (4), the 
moments about the arithmetical mean (M), are found to he: 

1 n a2 n j l (n -i) (n -i -1) a2 \ 
M

11 
= m" e 2 ~ (-l)i (}') e 2

) l ...... (9) 
i=l 

Likewise havinO' o·ot the moments, the cumulants or semi-invariants 
may be ~btained by means of the known relationships between them. 
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From (9) the first hrn moments about the arithmetical mean, 
a=M' 1 are: 

M1 = 0 
M

2 
= m 2 ea2 (eo·2 -1) = s 2 ................................................. (10) 

where s2 is the ordinary variance. 

Substituting from (5), " ·hi ch gives the arithmetical mean, a, 
the above equation (10) becomes: -

s2 = a2 (e'.i2 - 1) ............ ..... ........................................ .. .... (11) 

S2 2 
=ea - l 

a2 

a4 o6 
= a2 + - + - + - - - -

2! 3! 

~ a 2 to a first approximation, and ~ a 2 (1 + ~2 ) 2 to a second 
-I-

approximation. 

From (11) the value of a may be expressed in terms of sla as follows: 

a'= Wg, ( 1 + :: ) .... .. . . .......................... .. (12) 

s2 - t; + l ~ 
a2 a 3 a6 

s2 
- to a first arJproximation, and 
a2 

f, ( 1 - i f, ) 2 

to a second approximation. 

nm following table illu strates the accuracy of the second 
apvroximation for a in terms of sla where lOOa was called the coeffi­
cient of 1·elative variability and 100 sla the ordinary coefficient of 
variability. 

rrABLE _I. 

s/a. O· l 0·2 0·3 0·4 0·5 

a = Vloge ( 1 + ~ ) 0·099,751 0· 198,040 0·293,560 0. 385,253 0·472,380 

!_(1-1~) 0·099,750 0· 198,000 O· 293,250 0·384,000 0 ·468,750 
a 4 a2 

Differnnce ............... I 0·000,00110·000,040 I 0·000,310 I 0·001,253 10·003,630 
I I I ' 

From the differences in the last row it is clear that for a coeffi­
cient of variability below 30 per cent. the second approximation for 
a is sufficiently accurate for most purposes. 
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4. Tim FITTING OF THE LoGARrr1nnc CuRvE. 

':l1he statistical coefficients m and a for any observed distribut10n 
may be est~mated from the first two moments about zero by means 
of the relations (4) and (5) respectively. Once the estimates of rm and 
a are known the fitting of the theoretical cmve (2) to the observed 
frequencies, ]s a matter of routine procedure. The expected frequency 
of values between zeto ancl t is proportional to: 

t 1 

At = a ~2n J e - 2a2 loge 2 ( ~) ~t . ····· .... .......... ......... (13) 

0 

By putting lon ( I ) = J.'. a ;; e --;;;: the above integral takes the familiar form, 

x 
- tx2 

e dx ..... ... .......................... ...... ... (14) 

-00 

Therefore the area of the '' tail '' of the logarithmic curve from 
o to t iR equal to the area of the " tail " of the normal error 

function from - Cf) to m en. 
1 j 

Hence by putting x = (i loge ( ~) the 

required value:) of x for the giYen function to enter, e.g. Table II of 
Pearsons' Tables fot Statisticians and Bioni.etricians, Pt. I, are 
o btaine<l. 

Thus, when the total obserYed frequency is equal to .V, 
the " expected " frequency between t 1 and t2 is given by: 

t2 1 l 2 ( _.!___ ' t1 1 l 2( _.!___ ) 

N--[f e-2(}2 og,. ml dt - f e-2a2 oge m dt ] 
At~-At1 = 

a ·•/2n t t 
0 0 

:.C2 X 1 

N [I x2 f x2 

dx J e- 2 dx - e - 2 y2;i; 
-oo - 00 

Where Xi= ! loge ( ~ ) and x2 = _l_ lo c~ ) a ge m 

By calculatino· the " expected " frequencies for each group interval, 
b d"f . the agreement bebveen " observed " and " expecte requencies 

may be tested by means of the %2 test for " goodness of fit ". 

'ro draw the theoretical curve, estimated from the observed data, 

it is only necessary to note that the ordinate at any point t ( m e(jx ) 

f . 1 ( 1 _1 x2) is obtaine<l by multiplying- the error unction va ue yZn e 2 
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5. rl'HE SHAPE OF THE LoGARITH~IIC CURVE. 

The normal function (1) has a familiar bell shaped form and is 
symmetrical about the mean (a), where the function has its maximum 
value. The variate x varies from-oo to +oo and the shape of the 
curve is flattened out with increasing values of the standard 
deviation s. 

By the logarithmic transformation the function (2) becomes ske"· 
and the variate (t) remains positive between the limits o ~ t :S oo, 
with its maximum at the point t = me - a2 as given by (3). For the 
same value of the geometrical mean, the maximum point moves 
further away from the mean towards ze1·0 as a, the coefficient of 
1·elative deviation, increases. The alteration in the shape of the 
logarithmic curve (2) for different values of a is illustrated by Chart A, 
where the logarithmic curves are drawn with a constant geometrical 
mean m = 20 and coefficients of 'relative deviation, a= O· 05, O· l, O· 2, 
0 · 5 and l · 0 respectively. For these curves the maximum values are 
at t=l9·95, 19·80, 19·22, 15·58 and 7·36 respectively. The lack of 
normality is clearly increased by increased values of a, 

1 

CHART A.-The Logarithmic Function f (t) = ~ 
1

_ e - 2a
2 log ~--!; 1 

av 2n t 
0 ·5 

0 ·4 

0 ·3 

f(t) 

t 
0 ·2 

0 · 1 

10 

o- O·OS 

m = 20. 

:?64 

m=20. 
o = O·OS. 0·1, 0· 2. O·S and 1 ·0 respectively as shown 

near the maximum of the respective curves. 
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G. THE PAH.AMETERS OF THE N 01u1AL AND LoGAlUTHMrc FuKcTrnNs. 

rl'he normal function (1) is uniquely determined by the para­
meters a and s while the corresponding logaiithmic function is 
determined by m and a. The relationships between these parameters 
haYe been deduced and given in paragraph 3. It is of interest to 
consider the difference between these parameters when the two 
fm1ctiorn; are applied to the same population. For this purpose popu­
la ti om; ha Ye been selected with a constant arithmetical mean, (a), 
equal to 20 and standard deviations varying from 1 to 40, i.e. coeffi­
cients of yariability from 5 per cent . to 200 per cent. These extreme 
values for the coefficients of variability are included because the 
shapes of the <:orresponc1ing logarithmic curves depends only, accord­
ing to (12), on the ratio of the standard deviation to the mean. rrhe 
mean of 20 has been taken to represent more or less an average value 
for fibre thicknes8 measurements. Obviously, when any other mean 
(a) is chosen 'ivith the same coefficient of Yariability the logarithmic 
deYiation coefficients remain unaltered and specific values for the 
rnriates are obtained from the results giYen below by simply 
multi plying the given rnlues by the ratio in/20. 

The p0~-i~~0n is clearly illustrated by r:rable I where the 
logarithmic values of the mean, maximum point and deviation 
coefficients are girnn for each ccefficient of variability. 'l1his table 
also includes columns to shm,· the differences between the means and 
between deviation coefficients . The increased skewness of the log­
aritlnnic curve for greater values of the deviation coefficients is 
further illustrated bv the difference column between the geometrieal 
mean (ni) and the m:tximum point (T '171a.x). 

TABLE II. 
--

8 

1 

s/a m Tmax I a-m m - lOOx a 
a = 20. 

I T max (s / a-a) 
_____ I ________ _ 

------------

1 .... ... ........... 0·05 19·975 19·925 0·04997 
2 .................. 0· 10 19·901 19·704 0·09975 
3 .................. 0· 15 19·779 19·343 0·14917 
4 .................. 0·20 19·612 18·857 0· 19804 
5 .................. 0·25 19·403 18·262 0·24622 
6 .................. 0·30 19 ·157 17·575 0·29354 
8 .................. 0·40 18·570 16·008 0·38525 

10 .................. 0·50 17·880 14·311 0·47234 
12 .................. 0·60 17·150 12·610 0·55451 
15 .................. 0·75 16·000 · 10·240 0·66805 
20 .................. l ·O 14· 144 7·072 0·83255 
24 ........... ... .... 1·2 12·804 5·247 0·94446 
30 .................. 1·5 ll ·094 3·414 1·0850 
36 ............ .. .... 1·8 9·713 2·291 1·2019 
40 .................. 2·0 8·944 1·789 1·2686 

a = arithmetical mean, 
s = normal standard deviation, 
m = geometrical mean, 
a = logarithmic or ' relative ' deviation coefficient, 

T max= point where the logarithmic curve has its maximum. 
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0·025 0·025 0·003 
0·099 0· 197 0·025 
0·221 0·436 0·083 
0·388 0·755 0· 196 
0·597 l · 141 0·378 
0·843 1·582 0 ·646 
l ·430 2·562 1·475 
2· 111 3·578 2·766 
2·850 4·540 4·549 
4·000 5·760 8· 195 
5·856 7·072 16·745 
7·196 7·557 25·554 
8·906 7·680 41 ·50 

10 ·287 7·422 59·81 
ll ·056 7· 155 73· 14 



'YOOL STUDIES. 

7. THE PROBABILI'l'Y INTEGRAL WHEN THE p ARAMETERS 01'' THE :NORMAL 

PoruLATION ARE usED FOR A LoGAIUTHMIC Dr TRIBUTION . 

For the Normal Population giYen by (1), the area under the 
curve beyond a poiTlt X= rv+ ns is given hy 1 - Pus where: 

a + ns (x-a) 2 

p)/8 = A

1
;- J e 

282 dx ................................. (15) 
s v 2n 

- 00 

The · total area outside the limits a± ris is given hy 2 ( 1 - P11 1), which is 
equal to:-

a+ ns 

s ~2n f e 
a - ns 

(x-a? 

~ dxl 
.l 

........... .. .. . ............ (16) 

Using the limits t=a±ns for the logarithmic population (2) the 
integral (15) becomes: 

a + ns 1 2 (~) 

. l/ _ J e - 2 0'2 loge in !!:!_._ ................ : .............. (17) 
a-y2n t 

- 00 

where m ancl a are given hy (7) and (8), anl1 the Yalue of (16) js giYen 
by: 

ri + ns 1 2(__i_) 
1 - .l/ _ J e - 2a2 loge m !!:!_._ ..................... (18) 

a ·v2n t 
a- ns 

Hence, to obtain the value of these integrals, it follows from 
paragraph (4) that the values of these limits by which Pearson's 
Table s for Statisticians arzd Biom etn'ciarzs is to be entered, are: 

t=-loq --1 (a ± ns) 
a ,e m 

These limits are affected by the arithmetical mean and the standard 
deviation, or to be more accurate, by the ordinary coefficient of varia­
bility. It has, therefore, been decided to consicler all the values of 8/a 
from 0 · 05 to 2. The prnbabilities of obtaining values of t below 
(a - ns), beyond (a+ ns) an<l both below and beyonc1 these two rnlues 
of t, where n= 1, 2 and 3 and the distribution of t are given by the 
logarithmic function (2). These probabilities for n= 1, 2 and 3 are 
represented by charts B, C and D respectively. The probabilities of 
getting values of t _::::a - ns and t >a + ns, written P { t _:::: (a-ns) } = P 1 
P { t _2: (a+ ns) } = P 2, and also· the .values for P 1 + P 2, as sf a varies 
from 0 to 2, are shown by curves on these charts. Furthermore the 
total probabilities (P) of getting deviations from the mean greater 
than one, two or three times the standard deviation, a, are shown by 
dotted lines on the respective charts. Hence the difference bet\yeen 
the dotted line value and the value on the P 1 +P2 line for a particular 
value of 8 /a show the difference between the assumed normal theorv 
Yalue and the artual value based on the logarithmic distribution. u 
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CHART B.-Giving P {t< (a-s) } =Pv P {t 2': (a+s) } =P2 and P1 +P2 
for m = 20 and o < ~ < 2. 

- a, -

t 
p 

.0 10 15 25 30 35 40 

CHARTC.-Giving P {t :=::: (a-2s) } = P1 , P { t ~ (a +2s)} =P2 and P1 +P2 
for the values m = 20 and o < ~ < 2. 

% 
0·05 

0 ·04 

O·Q3 

t 
p 

0·02 

0 ·01 

10 

- a -

- -,- - - - - - .. - - - - .. - - - - - - - - - - -· 

20 

s~ 
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CHART D.-Giving P { t :=: (a-3 s) } =P1 , P { t 2': (a + 3 s) } =P2 and 

P 1 + P 2 for values of rn = 20 and o :=: ~ ::::_ 2. 

0·015 

t 
p 0 ·01 

0 ·005 

10 15 20 

S-7 

25 30 35 40 

The t'rn probability values become more ec1ual as '/0 tends to ze l'O. 
In Chart B., i.e. where n = l, the normal theory value oYer-estimates 
the actual probability and this discrepancy increases with increasing 
values of ·' /,1 • P 1 rapidly approaches zern and the two probabilities are 
only approximately equal in the neighbourhood of -~/1i = U, i.e. where 
the logarithmic distribution approaches the normal curYe. 

In Chart U, i.e. n = 2, P 1 becomes zero very rapi<lly but P 1 +P2 

remains approximately equal to P over a wide range of values of sla· 
The normal theory provides a good approximation for P, wheE the 
values of the coefficient of variability (100~/a ) are below 100 rper cent. 
This is very important from a practical point of view. The proba­
bility of getting deviations from the mean greater than twice the 
standard deviation is near tbe 5 per cent. value which forms a critical 
value in test criteria . Hence for n= 2 no serious error will follow 
when the normal theory is applied to a logarithmic distribution to 
es ti mate P, provided s la is below 1. 

\iVhen n= 3 it follows from Chart D that P 1 becomes ze1·0 when 
8 /a is still extremely small whereas P2 increases very rapidly with 
increasing values of s/a and at reasonably small values of s/a, P 

2 
becomes 

mauy iimes greater than the normal theory value P = 0·0027. The 
discrepancy between the normal theory va]ue P and the probability 
for the logarithmic chtitribution is such that for reasonable values of 

8 /a, P = 0·0027 considerably un<lerestimates the actual probability 
I\+ P2 , as calculated horn the logarithmic curve. 

The skewness of the logarithmic currn is demonstrated by the 
P 1 and P2 curves on the above charts. P 1 rapidly tends to zero as n 
is increased and beoomes zero when ns is equal to or greater than a. 
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8. MATERIAl •. 

The ~ata, _in the ~resent study, which intends the application of 
the loganthunc function (2) to observed frequencv distributions in 
fibre thickness measurements, '"ere obtained by two different sampling 
methoch. Tht first group of samples, Group A, was taken by the 
method ?£ prac~ice ~t the O~derstepoort Wool Laborafory. This 
method is det:lcnhed m a previous paragraph. The two samples of 
Group B '"ere obtained by mounting a small t:lample of stretched 
fibres on a 8li<le for measurement. 

The t:iamples of Uroup A figure in an independent i1wet:ltigation 
but were placed at the author's dispo8al for the purpose of this study. 
There were altogether six samples from each of a fine, medium and a 
strong wool. These Yrnol classes were selected from a large number of 
fleeces and ultimately sampled. 

In the second group of samples eYery fibre was measured once 
only, in order to eliminate Yariation " "·ithin " fibres. 'l'he 
thicknesset:l in this group 'rnre also measured on an anti-logarithmic 
scale of which the scale diYisions are proportional to numbern with 
equally spaced natural logarithms (Chart E). Thus when the histo­
gram ,,·hich represents obserYecl frequencies is drawn on a logarithmic 
base the group interrnb are equal and the logarithmic function (2) 
becomes normal. An image of the magnified scale is giYen below. 
(Chart E.) 

8. l)RESE JTATION 01" DATA. 

G1·oup A. 

'l'bis group of observations was taken from three different 
thirkness classes and is presented accordingly in three separate tables. 
Together with each obsened sample are giYen in adjacent columns 
the expected frequencies fr.om both a normal and a logarithmic 
population, with the estimated mean and deYiation coefficients below 
the respective columns. For the normal theory the standard deYia­
tions and coefficients of variability are both giyen but for the log­
arithmic distributio1rn only the measure of percentage deYiation is 
shmni. The nlues of the ordinary coefficients of Yaria1iility are 
about 20 per cent . and therefore approximately 0 · 2 per cent. greater 
than the ooefficients of relafrrn variability as shmrn by the tabulaterl 
values for 8/a and a in paragraph 3, Tabl~ I. 

The agreement between " observed " and " expected " 
frequencies is measured by x2

• The relative merits of the t"·o distri­
butions, normal and logarithmic, as the parent population, may be 
judged from the respective probabilities. These probabilities, giYen 
in the last ro"' of the tables, refer to the chances of obtaining the 
samplet) from the respectiYe theoretical distributions. 

The l·ogarithmic natme of the fre(1 uency distributions of fibre 
thickness measurements is further illustrated by Figures 1, 2 and 3, 
where the frequency histograms of the data in Tables III, IV and V 
respectively and the best fitting normal and logarithmic curves are 
produced. The observed distributions in these graphs are typical of 
observed distributions of fibre thickness measurements. 
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C H ART E.-'f hc anti-logarithmic Scale . 

.:J.:339' ~ 
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1·813 

1·665' 
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/ ·089 

/'000 a 
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Group Interval. 
(,.L). 

--- -- -·--- -

7·5-10 ......... . . 
10 - 12·5 . .. . . , .. 
12·5-15 .· .......... 
15 -17·5 ..... . . .. 
17 ·5-20 ........... 
20 -22 ·5 ... . . . ... 
22·5-25 . .. ........ 
25 -27·5 . . ....... 
27 ·5-30 .. ...... . .. 
30 - 32·5 . ........ 
32·5-35 . .......... 
35 -37·5 . ... . .... 
37 ·5-40 ........... 

Total. . .. .. .. ... . ... 
lVIean . . .......... . .. 
S.D .. ....... . . .. .... 
Percentage Deviation 

% 2 o 0 0 0. 0 0 0. 0. 0. 0 0 0 0. 

Degrees of freedom ... . 
P(x2 ) ......... . ..... 

18 

Observed. , 

2 
13 
56 

106 
151 

91 
49 
21 
4 
2 
2 
3 

-

500 
- I 
-
-
-
-
-

17 

Normal. I Logarithm. Observed., 

I 

5·7 1· 9 5 
19·3 12·6 14 
53 · 1 62 ·1 63 
98·8 117·3 119 

124·2 125·4 150 
105·9 91 ·1 84 
61·3 50·9 39 
24·0 23·6 15 
7·7 15 ·0 7 
- - 3 
- - 2 
- - -
- - -

500·0 499 ·9 501 
19·0 18·6 -
3·940 - -

20·8 20·5 -
17·3 8 ·6 -
6 6 -
0·008 0·20 -

Freq1twncy D ·istTibution in P1:7.JTe Thickness of a F i ne TVool. 

SAMPLES. 

18 19 30 

I Logarithm. 

I 

I Logarithm. ObserYed. , I Logarithm. Normal. Observed. I Normal Normal 

I 
6·4 - 1 - - 3 6·4 -

22·2 18 ·2 15 27·4 17·3 19 22·4 17 ·3 
60·5 72·0 69 60·1 71 ·4 63 61·2 69·0 

108·5 126·2 136 109·3 126·9 130 109·5 124·6 
128·2 125· 1 126 129·5 125·9 125 129·3 126·1 
100·7 84·8 80 100·6 84·9 92 100·2 87·0 
52·1 44 · :{ 44 50·9 43·6 42 46·3 46·2 
17·8 19·2 17 16·9 18·6 19 22·2 . 20·2 
4·7 7·3 I 6 4 ·2 7·0 

I 

7 4·4 11·8 
- 3 .;{ - - 3·5 1 - -
- - 4 - - 1 - -
- - - - - - - -

1 I - - -

I 
- - - -

501 ·1 500·4 499 498·9 499·1 502 501·9 502·2 
18·5 18· 1 - 18·5 18·1 - 18·5 18·3 
3·813 - - 3·762 - - 3·796 -

20 ·6 20 .,~ - 20·3 20·1 - 20·5 20·3 
30·0 9·0 

' 

- 22·8 

I 

2 ·1 - 13·3 3·4 
6 6 - 5 6 - 6 5 
- 0·17 - - 0·91 - 0 ·039 0·64 

,r ) 
--

271-2-72 

A. P . MALAN. 

I 31 32 

Observed., Normal. I Logarithm. Observecl.l Normal. I Logarithm. 

I 
4 7 ·2 - 1 - -

18 23·5 20·0 13 24·3 14·5 
66 61 ·4 73·8 68 57·8 67 ·5 

126 107·4 125·1 ll7 109·9 128·0 
127 125·7 122·4 145 133 ·8 131 ·0 

89 98·8 83·0 95 104 ·4 88·5 
36 51·8 43·7 35 52 ·2 44·9 

. 23 18·2 19·3 17 16·7 18 ·7 
7 5·0 7·6 10 3 ·9 10 
2 - 4·1 1 - -

- - - l - -
1 - - - - -

- - -· - - -

I 

499 499·0 499·0 503 503 ·0 503·1 
- 18·5 18·1 - 18 ·6 18o2 
- 3·880 - - 3·676 -
- 21·0 20 ·8 - 19·8 19 ·6 
- 15·3 4·06 - 30·9 5·7 
- 6 6 - 5 5 
- Oo018 0·67 - - 0·34 
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rrABLE IV. 

FTequency JJistTibut·iorzs in Fibre Thickness of a JV! edium lVool. 

SAMPLES. 

4 6 
I 

8 7 
Group Interval 

(/-<) . 
. Observed.[ Normal. I Logarithm. Observed.[ Normal. JLoga:ithm . 0 bserved.[ .Normal. I Logarithm. Observed.[ Normal. I Logarithm. 

10 -12·5 ......... 4 I 13·7 5·2 4 I 17·0 

I 
6·8 4 12·1 4·1 I 6 15·0 5·3 

12·5-15 .. . ........ 27 33·9 33·6 33 35·5 37·2 33 23·0 29·4 26 30 ·7 30·6 
15 -17·5 .... .. ... 94 73·5 90·4 82 71·4 88·2 69 67·4 81·9 74 62·6 77·4 
17 ·5-20 ........... 129 1ll·1 144·2 136 104·8 ll7·5 127 105·6 ll9·6 119 94·4 109·9 
20 -22 ·5 . . ..... . . 121 117 ·1 88·4 115 111·9 106·3 116 119·4 112·3 106 108·4 106·2 
22 ·5-25 .. ......... 64 86 ·1 71·9 66 87 ·4 72 ·8 78 91·8 77·7 85 91·2 77·8 
25 -27·5 ......... 33 44·1 38·0 42 49·6 41·4 46 50·8 42·9 40 57·4 46·9 
27·5-30 ......... . . 14 15·8 17·2 10 20·6 20·4 17 24·9 20·3 22 27·0 24·7 
30 -32·5 ......... 9 4 ·7 7·0 10 7·8 15·4 5 7·2 8·6 10 \)·4 11.7 
32·5-35 ......... . . 2 - 4·0 4 - - 5 - 3·3 5 :~ ·1 5·1 
35. - 37·5 ....... . ·I 2 - - 1 - - 1 - 1·8 5 - 3·5 
37 5-40 . .. ... .. . .. 1 - - 2 - - 1 - - 1 

I 

-- -
40 -42·5 ...... . . : - - - - - - - - - - -

I 

-

42·5-45 ........... - - - - - - - - - - - -
45 -47·5 . ........ - - - 1 - -

--=---1 
- - - -- -

I 
I 

Total. ..... . ........ 500 500·0 499·9 506 

I 
506·0 506·0 502 502·2 501·9 499 499·2 499·1 

lVIean ............. . . - 20 ·4 20 ·0 - 20·5 20·1 - 20·7 20 · 3 - 21·6 20 ·6 
S.D ................. - 4·100 - - 4·389 - - 4·178 - - 4·557 -
Percentage Deviation - 20·1 19·9 - 21·4 21·1 - 20·1 20·0 - 21· 6 21·4 
uz ..... .. .... .. ..... - 44·1 18·3 - 42·8 11·8 - 19·3 6·1 - 41 ·5 5·7 
Degrees of freedom .. - 6 7 - 6 6 - 6 8 - 7 8 
P(u 2) ••••••••••••••• - - 0·011 - - 0 ·068 -

I 

0 ·004 0·64 - - 0·67 
I i il 

273-274 

-

g 

0 bserved.[ Normal. I Logarithm. 

- -

I 
-

25 46·3 37 ·2 
88 66·1 81·3 

137 100·5 114·3 
99 110·7 106·9 
68 89·5 75·1 
43 52·6 44·2 
20 22·5 21· 6 
11 8·9 9·8 
1 - 6·6 
3 - -

- - -
1 - -
1 

I 
- -

- - -

497 497.] 497 ·0 
- 20·8 20 ·3 
- 4·387 -
- 21·1 20 ·9 
- 39·1 10·7 
- 5 6 
- - 0·10 
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-

I 10 

I Ob,ecved. l No,maL I Logarithm. 

6 
I 

16·4 6·4 
32 34·1 35·4 
80 I 68·9 85·2 

130 102·0 . 115 ·6 
106 110·9 129·0 

72 87·9 50·5 
40 51·2 42·4 
19 21· 8 21·3 
9 8·7 9 ·6 
5 - 4·0 
2 - 2·6 

- - -
1 - -

- - -
- - -

-----

502 501·9 502·0 
- 20·7 20 ·2 
- 4·424 -
- 21·4 21 ·2 
- 34·0 16·5 
- 6 8 
-

I 

- 0·036 

\VOOL s ; 

36 1 
Group------,-----

r served. l Normal. I 

7 · .5-HJ. ' 4 
10 -12 ·! 6 
12·5- 15. 15 
15 -17· : 69 
17 ·5-20. 138 
20 -22· ; 143 
22·5-25. 94 
25 -27· 1 66 
27·5-30. 33 
30 -32· 22 
32·5-35. 6 
35 -37· : 2 
37·5-40 _; 1 
40 -42· : 1 
42 ·5 - 45. 
45 -47 · I 

Total. .. . ·' 600 
Mean ..... 1 

S.D ..... .. 
P

2
ercentag\ 

u ........ 
Degree of 
P(u 2) ••••• I 

l!J 

2·9 
9·6 

28·6 
64·7 

106·1 
130·3 
118·2 
79·9 
39·9 
14·9 
5·0 

600·] 
21· 7 
4·516 

20·8 
36·3 

8 
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----

10 

'"'dl Normal. I Logarithm. 

, - ~- · - ~--

6 

I 
16·4 6·4 

32 34·] 35· 4 
80 68 ·9 85·2 
30 102·0 115 ·6 
06 110·9 129·0 
72 87·9 50·5 
40 51·2 42·4 
19 21 ·8 21·3 
9 8·7 9·6 
5 4 ·0 
2 2·6 

------1----

i02 501 ·9 
20 ·7 
4·424 

21·4 
34 ·0 

6 

502·0 
20·2 

21·2 
16·5 

8 
0·036 

\ 
\VOOL STUDIES. 

I 

I 

I 

Group Tnterval 
(fl,). 

7·5-10 ......... 0. 

10 -12·5 ........ . 
12·5-15 .. ......... 
15 -17·5 ......... 
17 ·5-20 ... . . .. ... . 
20 -22·5 .. ..... 0. 

22·5-25 0 •••••••• • • 

25 -27·5 ......... 
27·5 - 30. 0 •• ••••••• 

30 -32·5 ......... 
32·5-35. 0 ••••• • ••• 

35 -37·5 .. .. ... . . 
37·5-40 ........... 
40 -42 ·5 ..... .. .. 
42·5-45 0 0 ••••••• •• 

45 -47·5 ......... 

Total. .............. 
J\11ean ............... 
S.D ................. 
Percentage Deviation 
' 2 . ... .. . .. . .. -· .... 
Degree of freedom ... 
P(x 2) ••••••••••••••• 

lU 

20 II 

Observed. I Normal. I Logarithm. Observed. I 

1 - - -

4 17 ·9 6·2 2 
25 28·9 29·1 17 
7l 54·0 67·1 61 

107 80·4 97 ·9 96 
87 94·6 98·5 110 
84 89·4 79·5 92 
58 66 ·9 54·2 66 
27 40·0 32 ·6 30 
20 18·9 18·1 17 
8 9·9 9·3 3 
5 - 4·6 3 
1 - 4·0 3 
2 - - -
1 - - 1 

- - - -

) 
501 500·9 501·1 

) 

501 
- 21·8 21·2 -
- 5·182 - --
- 23·7 23·4 -
- 35·5 5·2 -
- 7 9 -
- - 0·82 -

I 

A. P. MALAN. 

TABLE V. 

Frequency Distribution w Fib?'e Thickness o/ a Strong Wool. 

SAMPLES. 

22 33 34 36 37 

Normal. I Logarithm. Observed. I Normal. I Logarithm. Observed. I Normal. I Logarithm. Observed. I Normal. I Logarithm. Observed. I Normal. I Logarithm. 

I I - -- -- - 1 - - 1 - - 4 2 · 9 - - - -
- 3 .,! 2 9 ·2 2·3 6 21· 9 7·1 6 9·6 - 3 11·1 2·6 

32·0 17. ~~ 14 21·3 ]8·4 42 42·1 40·6 15 28·6 28·6 16 26·8 22 ·3 
49·3 58·6 57 48·4 59·2 87 84·5 10·1 ·6 69 64 ·7 77·4 71 61·6 73 ·1 
82·4 99·3 102 82·2 100·9 173 130·3 154·7 138 106·1 126·0 135 104·7 125·0 

104·0 109·9 109 104 ·9 110 ·9 168 153·9 156·7 143 130·3 133·6 143 131·8 1:36 ·6 
99·7 89·8 96 100·7 89·6 110 139·5 121·8 94 118·2 104·4 99 122·7 109·5 
71·9 56·8 53 72·3 58·5 69 96·4 78·5 66 79·9 65·6 77 84·5 69·7 
39·0 35·4 38 39·1 32·3 54 51·2 44·8 33 39 ·9 35 ·2 34 43 ·1 37·7 
16·0 16·9 16 15·8 15·9 23 20·8 21·6 I 22 14·9 16·9 20 16·2 23·1 
6·3 14·7 8 6·1 7·1 9 8·4 10·5 6 5·0 7·4 6 5·6 8·2 
- - 2 - 5·0 3 - 8·1 2 - 5·0 1 ~ 

-
- - 1 - - 2 - - 1 - - 1 - -
- - 1 - - 2 - - 1 - - - - -
- - - - - - - - - - - 1 - -
- - - - - - - - - - - 1 - -

501·0 502 ·0 500 500·0 500·0 749 749·0 749·0 600 600·1 600 ·1 608 608·1 607·8 
22·1 21·13 - 22·1 21· 7 - 21·6 21·0 - 21·7 21·2 - 21·9 21·4 
4·654 - - 4·610 - - 4 ·786 - - 4·516 - - 4·496 -

21·1 20·8 - 20·8 20·6 - 22·2 21·9 - 20·8 20·6 - 20·5 20·3 
16·0 4·'75 - 26·2 3·7 - 47·2 11·0 - 36·3 6·3 - 32·9 5·77 
6 7 - 7 8 - 7 8 - 8 7 - 7 7 
0·014 0·69 - - 0·88 - - 0·20 - - 0·51 - - 0·59 

I II I 

215-276 
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Scale. 

--- Logarithmic Curve . 

- - - - - - Norm•I Curve. 

1 5 10 12 ·5 15 17 5 20 22 ·5 25 27 ·5 30 32·5 35 37 ·5 40 

fi'JG. 1. - The Frequency Di tribution of 3005 Fibre Thickness Measurements 
of a Fine Wool (µ). 

Scale 

--- Logarithmic Curve . 

7 · 5 10 12 ·5 15 17 ·5 20 22 ·5 25 27 ·5 30 32 ·5 35 37 ·5 40 42 ·5 45 47 ·5 

20 

.Frc. 2.-The Frequrncy Distribution of .3006 :F'ihre Thickness Measurements 
of a Med ium Wool (tJ..)· 

217 
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7 · 5 10 12 ·5 15 17 ·5 20 22·5 25 27 ·5 30 32 ·5 35 37·5 40 42 ·5 45 47 · 5 

Frc. 3.-The Frequency Distribution of 3-159 Fibre Thickness :Measurements 
of a Strong Wool(11) . 

Normal Curve. 

l<'ra. 4.-The Distribution of the Natural Logarithms of 557 Fibre Thickness 
Measurements. 

278 
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G1·oup B. 

'l'he two sample in this group were obtained from slides of 
stretched fibres, representing an ordinary shoulder sample and a 
sample .of tops respectiYely. 'rhese measurements were taken by two 
mea urmg cales, tbe ordinary cale with a group interval of 2·5 µ 

[?-1ahle VI (a) J, and an anti-logarithmic scale (Chart E) with a 
difference of 0 · 0 5 behrnen the natural logarithms of consecuti-rn 
c1ivisions [Table YI (b)J. Unit di tance on thi latter scale \ras 
adju ted at approximately 20 · 5 µ for the shoulder sample and 21 µ 
for the top . This adjustment of the magnification to obtain the 
pr~cise. value ju µ which corresponds with unity on the anti-log­
anth1111c . cale, needs great care . Measurements by the ordinary 
scale in the eyepiece are not affected by alterations in magnification 
but for a loo e cale the <legTee of magnification is essential for the 
ultimate conversion of coefficients into unit of µ. 

The logarithmic <li . tribution of the ordinary measurements and 
the normality of the logarithmic measurements are clearly shown by 
Table VI. The normalitv is further illustrated in the cases of the 
shoulder sample, by Fig. '4, "here the observed frequencies and best 
fitting normal curw for the logarithmic measurements for the 
shoulder . ample are shown . 

10. DrnrussrnN. 

When the normal theory is con. i<lered the apparent defic-ient 
number of relatively thin fibres anc1 excessive numher of thick fibreR 
are obviou . Thi ~s shown by all samples and illm;trated by the 
graph in Figures 1, 2 and 8. The obserYed distributions are 
deci<ledly Rke"· and on the whole by no means normal. The proba­
bilities for xll in the case of the normal curve are almost throughout 
highly ignificant and in the majority of cases o small, less than 
0 · 001, that the Yalues are not given in the tables. When the limit 
for significance i taken at the one per cent. probability leYel it is 
seen that there are only two samples, (3) and (31) in Table III, none 
in Table IV, one (22) in Table V, and one (the shoulder sample) in 
Table VI (a), which can reasonably be assumed as random samples 
from a normal population. When the 5 per cent. probability level 
is taken not a single sample can be assumed to come from a normal 
population. 

Considering, however, the a umption that these samples are 
taken from logarithmic populations the position is reversed and the 
agreements are on the whole within the ranges of reasonable expec­
tation. The general trend of the logarithmic curve closely follows 
that of the observed histogram as shown by Figures 1, 2 and 3. The 
probabilities for x 2 vary between 0 · 91 (Table III, sample 19) and 
0 · 011 (Table IV,, samp

0

le 4). None of the samples disagree signifi­
cantly with the logarithmic theory when the one per cent. probability 
level is assumed. For a 5 per cent. probability level there are only 
three samples (4, G and 10) in Table IV, and none in the other tables 
for which the x 2 values are significant. T n this connection it is 
interesting to note that when modal frequency is grouped with !he 
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one following it, the significance is removed in all three cases. So for 
instance the probabilities for samples 4 and 10 (Table IV) become 
0 · 42 and 0 · 85 respectively. 

The distributions of Table VI (a) are in close agreement with 
those in the .first three tables in that the normal theory does ·not 
seem to account for the observed distributions while the logarithmic 
theory supplies a good " fit " for both samples. ·Both methods of 
sampling, therefore, gave distributions which conform with the 
logarithmic function. This fact is £urther illustrated by the distri­
butions in rrable VI (b). The latter observations were obtained by 
using the anti-logarithmic scale as a measuring rule. The x2 values 
for these samples. are in agreement with the. assumption that they 
are taken from a population which becomes normally distributed 
when the logarithms of the values are taken. 

In view of all these samples .it appears reasonable to take the 
logarithms of wool fibre diameter measurements for purposes of 
statistical analysis. · When this is done the arithmetical mean is 
replaced by the geometrical mean and since the latter is for fibre 
thickness measurements always slightly less than the former, it is 
advisan1e 0 give the quality numbers and class standards in terms 
of both means. The geometrical mean has various advantages for 
this purpose, being nearer the modal value and equal to the median. 
When the arithmetical mean is used to classify wool it is possible 
that the greater majority of fibres may actually fall in a lower class, 
which is obviated by the use of the geometrical mean. 

11. SUMMARY. 

The logarithmic nature of distributions in wool fibre thickness 
measurements has been suggested by the constancy 0£ the coefficient 
of variability in previous work. 

The distribution of a variable, the logarithm 6f whi~h 1s 
normally distributed, is discussed. 

The application of what is in the text called the logarithmic 
function to 18 different samples is given and the " fit " compared 
with that of the normal distribution. 

Two further samples, which were also measured ·by an anti­
logarithmic scale, are included and show that the logarithms of fibre 
thicknesses are normally distributed. 

The logarithmic nature of the distributions of fibre thickness 
measurements and the normality 0£ the logarithms of such measure­
ments are illustrated by Figures 1, 2, 3 and 4 respectively. ' 

It is suggested that the logarithms of fibre thickness measure­
ments be used for statistical analysis. This would mean that the 
arithmetical mean is to be replaced by the geometrical mean to 
represent average fibre thickness. 
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