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Abstract 

The unifying theme within this work is the production of porous activated carbon (AC) 

materials from different carbon-containing precursors for electrochemical 

supercapacitors (ES) applications. The activated carbon-based ES is an emerging 

storage technology that promises to play an important role in meeting the rising 

demands from the energy sector. Thus, it is necessary to study and produce various 

high-quality ACs by optimizing the micro/meso-porous architecture as electrodes and 

also study the effect of different electrolytes on the electrochemical behavior of the 

produced ACs. The produced ACs which are discussed in different sections in 

chapter 4 show specific surface area ranging from ~300 m2 g-1 to ~3000 m2 g-1, 

specific capacitances in the range of ~179 F g-1 to ~335 F g-1 and energy density in 

the range of ~15 Wh kg-1 to ~38 Wh kg-1 at a current density of 0.5 A g. Both 

symmetric and asymmetric devices also showed excellent long term stability and no 

capacitance loss after 10,000 charge discharge and the stable operating potential 

ranging from 1.2 V to 2 V depending on the electrolyte used. All devices kept the 

important property of supercapacitors which is a high power density even at low 

current densities. All the results presented above showed the great potential in the 

adoption of the synthesized activated carbon material for supercapacitor applications. 
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1 CHAPTER 1 

INTRODUCTION 

 BACKGROUND AND GENERAL MOTIVATION 

The humanity problem today (increasing population) is associated with increasing 

consumption and demand for energy, which has left the energy sector with a huge 

challenge of meeting the increased demand for energy due to the ever-expanding 

population. Thus, energy research technologies have become an important area of 

focus in the global scientific community. Fossil fuels are the primary sources for many 

energy systems, however, in many countries the fossil fuels are being depleted 

leaving the energy sector with the search for alternative sources of energy that are 

renewable and cost effective. Secondly, this source of energy is associated with 

environmental degradation and may cause a hazard to human life. Hence, 

decreasing the use of fossil fuel that leads to the emission of greenhouse gas has 

become global objectives in all society. Thus, to achieve this goal, the use of 

renewable energy sources that can be easily restored by a natural process and 

further improves the energy efficiency is the most promising solution. Renewable 

energy technology sources like solar and wind energy are becoming interesting and 

promising energy sources that have large fluctuations in the generation of electricity. 

Various exciting renewable technologies are being developed, and they include 



2 
 

mechanical, thermal, physical, chemical and electrochemical energy storage 

systems.  

Today batteries (such as lithium-ion or nickel–metal hydride) that have high energy 

density and electrochemical capacitors (ECs) that have high power density are the 

common energy storage devices. Thus, an efficient, high performance, low cost and 

environmentally safe all-in-one energy storage system that combines the properties 

of the batteries and capacitors is required. Furthermore, hybrid systems of the two 

devices might play complementary functions when they are combined with each 

other [1] and can give us a storage system with high energy and high power 

densities. 

Electrochemical capacitors (ECs) are emerging technologies with a promising future 

for energy storage. Scientists have studied ECs for the past few decades. In 1957, 

capacitor based on high surface area carbon was described by Becker [2]. Figure 1-1 

shows the reason ECs were able to gain significant attention in the scientific 

community. The figure presents the energy storage and conversion devices 

visualized in so-called ‘Ragone plot’ regarding their specific energy and specific 

power. ECs fills the gap (regarding specific energy as well as specific power) 

between batteries and conventional capacitors [3]. 
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Figure 1-1 Sketch of Ragone plot with specific energy and power for different energy 

storage devices [4] 

The initial benefits of ECs are that they offer excellent power capability (60–120 s is 

typical) offering solutions for energy storage and delivery applications in power 

systems and extended cycle life (>105). Normally they present 20–200 times higher 

capacitance per unit volume or mass than conventional capacitors [5]. Nevertheless, 

the energy density of the ECs is still small when compared with battery with an order 

of magnitude less. Hence, scientists focus on the fabrication of ECs devices that can 

match or compete with the batteries regarding specific energy and long cycle life. 

Improving the energy density and power density of ECs, scientist search for new 
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electrode materials, new electrolytes and new electrochemical concepts to meet the 

increasing demand [1,5–7]. 

ECs can be classified into two, namely; electrical double-layer capacitors (EDLCs) 

and faradaic capacitors [5] based on their mode of energy storage and the materials 

used for their fabrication. The EDLCs mainly focus on the use of different allotropes 

of carbon materials as electrode [8–10], while faradaic capacitor materials include a 

metal oxide and hydroxide [11,12], conductive polymers [13,14] and functionalized 

carbon [15]. 

Porous carbon materials are the usual materials for EDLCs because they have large 

specific surface area (SSA) [16,17], high electrical conductivity [18], different micro- 

and mesopores texture that are suitable for various electrolytes [1], highly stable 

giving rise to long cycle life [9] and enhanced capacitance values. For industrial 

applications, low cost and abundant availability of these porous carbons are 

necessary for use as electrode materials in EDLCs. Also, microporous carbons 

materials are available in a different form such as powders, fibers, cloths, monoliths, 

nanotubes, nanospheres and so on [1] and this availability helps the engineer to 

match the material in the correct form for a specific design. All the above reasons 

make microporous carbons the best and suitable candidate for ECs applications. This 

research work describes the design of microporous carbons from different precursors 

and electrochemical capacitor studies based on the produced carbon electrodes, with 

the main objective of enhancing the capacitance, potential voltage and the energy 

density of the device with a long cycle life. 
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Activated carbons (ACs) are forms of microporous carbon and have attracted great 

attention as an electrode material for ECs due to their highly porous nature, high 

SSA, chemical stability, relatively low synthesis cost, adjustable structural properties, 

and electrical conductivity [19]. The cost-effective and synthesis method for 

production of large amounts of ACs with high SSA is through chemical and physical 

activation technique from carbon containing materials such as polymers or natural 

biomass materials [16,20–22]. The chemical process leads to the formation of 

aerogel or hydrogel materials while the physical activation leads to the formation of 

porous ACs and is usually done with potassium hydroxide (KOH), zinc chloride 

(ZnCl2) and phosphoric acid (H3PO4) [23,24]. Thus, for EDLCs purposes, it is 

necessary to produce high-quality ACs by optimizing the micro/meso-porous 

architecture as an electrode, study various carbon materials sources for the 

production of ACs and the effect of different electrolytes on the electrochemical 

behavior of ACs. 

 AIM AND OBJECTIVES 

The aim and objectives of this research are divided into three parts as follows: 

1. Synthesis and characterization of activated carbon (AC) for high-performance 

electrochemical capacitors from different carbon sources which includes:  

 Hydrothermal and chemical vapor deposition (CVD) synthesis and 

characterization of AC based on polymers and graphene foam for high-

performance electrochemical capacitors. 
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 Effect of different carbon material on polymer based AC and their 

applications in high-performance supercapacitors electrodes 

 Synthesis and characterization of eco-friendly supercapacitor electrodes 

based on AC derived from pine tree cones. 

 Synthesis and characterization of new AC from expanded graphite (EG) for 

high-voltage supercapacitors. 

 

2. Study the effect of different electrolytes on the electrochemical behavior of 

supercapacitors based on AC such as: 

 Effect of different aqueous electrolytes on AC based supercapacitors. 

 Effect of different gel electrolytes on AC supercapacitors. 

 

3. Preparation and characterization of AC cathode material and α-MoO3 

transition metal oxide as anode material for high-performance asymmetric 

supercapacitors. 

 

 OUTLINE OF THESIS 

The thesis is divided into five chapters:  
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Chapter 1 presents a general introduction of the energy storage systems, the aim 

and the objective of the study. 

Chapter 2 presents a literature review on electrochemical capacitors.  

Chapter 3 presents the growth and characterization techniques used in this study. 

Chapter 4 presents the results obtained and detailed discussion of the results. A 

summary and conclusions from each experimental result will be presented in different 

sections of Chapter 4.  

Chapter 5 contains general conclusions and details of future work to be performed in 

this study.  
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2 CHAPTER 2 

ELECTROCHEMICAL CAPACITORS 

Electrochemical capacitors (ECs) also called supercapacitors (SCs) or 

ultracapacitors [25] store energy (charge) in the electric field of the electrochemical 

double-layer [3,5,26]. ECs possess excellent electrochemical properties such as; 

cycling performance, high rate capability and long lifespan thus considered as a 

promising candidate for energy storage [27]. 

The basic block of the ECs and batteries is an electrochemical cell that combined two 

active electrodes, one positive and one negative, separated by a separator such as 

microporous membrane or filter paper and sandwiched between two current 

collectors (leads) [28,29] as shown in Figure 2-1. The current collectors must be 

electronically conducting and ensure electrons transfer from and to the active 

electrodes. The separator must be electronically isolating to avoid self-discharge, but 

ionically conducting to allow the movement of ions through it during the charge and 

discharge time [30]. Active electrode materials inside the electrochemical cell are 

under electrochemical reactions; the electrodes are ionically connected to the 

separator and electronically connected to the current collector. The separator and the 

active masses need an ionically-conducting medium (electrolyte). The whole unit is 

generally contained in a sealed container [28,30]. 
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Figure 2-1 Electrochemical cell schematic part 

 

In the device setup shown above, each electrode-electrolyte interface represents a 

capacitor so that the complete cell can be considered as two capacitors in series. For 

a symmetrical capacitor (similar electrodes), the cell capacitance (Ccell), will therefore, 

be [23]: 

𝟏

𝑪𝒄𝒆𝒍𝒍
=

𝟏

𝑪𝟏
+

𝟏

𝑪𝟐
           1 

Where, C1 and C2 represent the capacitance of the first and second electrodes, 

respectively. The capacitance, measured in Farad (F), is defined as the ratio of total 

charge in Coulomb (Q) in each electrode to the potential difference (V) between the 

plates [28]: 
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𝑪 =
𝑸

𝑽
            2 

The capacitance is also proportional to the surface area (A) of the plates and 

inversely proportional to the distance (d) between the plates multiplied by a 

permittivity constant ɛ𝟎 (8.8542×10-12 C2 Nm-2) [28]: 

𝑪 =
ɛ𝟎𝑨

𝒅
           3 

Also, the double layer capacitance at each electrode interface is given by [23]: 

𝑪 =
ɛ𝑨

𝟒𝝅𝒅
           4 

Where ɛ is the dielectric constant of the electrical double-layer region, A the surface 

area (cm2) of the electrode and d is the thickness of the electrical double layer (cm). 

The stored energy of the capacitor in joules (J) is proportional to the capacitance (C) 

and voltage (V) square across the plates [28]: 

𝑬 =
𝟏

𝟐
𝑪 𝑽𝟐           5 

It should be noted that the energy equation assumes that the initial voltage of the 

capacitor is zero. If the voltage is not zero, then the energy equation becomes [28]: 

𝑬𝟏 − 𝑬𝟐 =
𝟏

𝟐
 𝑪(𝑽𝟐

𝟐 − 𝑽𝟏
𝟐)         6 

Where V2 is the final voltage and V1 is the initial voltage. 
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 CLASSIFICATION OF ELECTROCHEMICAL CAPACITORS 

ECs may be classified by some criteria such as the electrical energy storage 

mechanisms, the electrode material utilized, the electrolyte or the cell design [3,5]. In 

this section, we give a brief description of each. 

2.1.1 Electrical energy storage mechanisms 

Depending on the charge-storage mechanism, ECs can be classified as follows [5]: 

 Electric Double Layer Capacitors (EDLCs) 

 Redox Electrochemical Capacitors (RECs) or faradaic capacitors 

 Hybrid Electrochemical Capacitors (HECs) 

The materials used for the fabrication of ECs devices include different forms of 

carbon [8–10], transition metal oxides [11,12], and conductive polymers [13,14]. The 

EDLCs mainly focus on the use of carbon materials which store energy by the charge 

separation at the electrode/electrolyte interface, while faradaic capacitors materials 

include metal oxide, conductive polymers and doped carbon [15], which not only 

store energy like an EDLC, but also in the appropriate potential window represent 

electrochemical faradaic reactions between electrode materials and ions [5]. Figure 

2-2 presents an overview of each of these classes of electrochemical capacitors with 

their sub-groups and common electrode materials. 
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Figure 2-2 Classification of electrochemical capacitors depending on the charge-

storage mechanism 

 

2.1.1.1 EDLCs 

The energy storage of EDLCs is generally based on the electric charge stored by 

adsorption of electrolyte ions directly across the double-layer (DL) of the electrode, in 

other words, EDLCs store the energy based on pure electrostatic charge 

accumulation at the electrode/electrolyte interface [5,31]. EDLCs show the true 

capacitance effect because there are no charge transfer and reduction–oxidation 
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reactions across the interface which can store or supply charges by non-Faradaic 

processes. The specifications of the EDLCs are dependent on the surface structure 

of the electrode, the electrolyte and the potential field between the charges at the 

interface [32]. The mechanism of surface electrode charge generation includes 

surface dissociation as well as ion adsorption from electrolyte and crystal lattice 

defects [5]. The ions distributed across the separator and align themselves uniformly 

on the pores of the whole active surface, thus creating an electric field that allows the 

storage of energy in the capacitor. Therefore, high surface areas and pores adapt to 

electrolyte ion sizes that are necessary for EDLCs [33]. Figure 2-3 represent the 

schematic illustration of simple EDLCs energy storage method. 

 

Figure 2-3 Schematic Illustration of simple EDLCs energy storage method 
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When adsorption of electrolyte ions starts at the surface of active materials, two 

phases appear. Hermann von Helmholtz described the model to explain this behavior 

in EDLCs [34,35]. This model is similar to the conventional dielectric capacitors with 

two metal planar electrodes. When the electrode surface get an excess or deficiency 

of charge, the ions of the opposite charge build at the wall near the 

electrode/electrolyte interface to provide electroneutrality (see Figure 2-4 (a)) [36]. 

The thickness of the Helmholtz DL depends on the concentration of the electrolyte 

and the size of ions [5]. 

By increasing the distance d (m) between the ions and the electrode (Figure 2-4 (a)) 

the potential in the vicinity of the electrode decreases. This simplified Helmholtz DL 

can be considered as an electrical capacitor of capacitance CH defined by Equation 

(7) [1]: 

𝑪𝑯 = 𝜺𝟎
∗ 𝜺𝒓𝑺 𝒅⁄           7 

Where 𝛆𝟎
∗  is the vacuum permittivity (𝛆𝟎

∗  = 8.854·10−12 F m-1), 𝛆𝐫 the relative 

permittivity of the dielectric electrolyte (𝛆𝐫 is assumed as 10 for the water in the DL), d 

is the effective thickness of the DL, and the S is the surface area. The corresponding 

electric field in the electrochemical DL is as high as 106 V/cm [1,3,5]. 

Diffusion of ions in the solution and the interaction between the dipole moment of the 

solvent and the electrode is not taken into account in the Helmholtz model .Gouy and 

Chapman proposed a diffusion model of the EDL. This model treats the ions as point 

charges so that the ions’ movements in the electrolytes are driven by the influence of 
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diffusion [37] (Figure 2-4 (b)). The diffuse charge is determined by the Poisson-

Boltzmann equation in the Guoy-Chapman theory. The specific capacitance 

according to the diffuse layer, CD, can be evaluated as [37]: 

𝑪𝑫 = (
𝒏𝟎𝓔𝒆𝟎

𝟐

𝟐𝝅𝒌𝑻
)𝟏/𝟐 𝒄𝒐𝒔𝒉

𝒆𝟎𝑽

𝟐𝒌𝑻
         8 

Where n0 is the number of ions in the bulk electrolyte, V is the potential drop between 

the electrode and the bulk electrolyte, e0 is the charge of the ion, k is the Boltzmann 

constant, ℰ is the dielectric constant in the electrolyte, and T is the temperature. 

The Gouy-Chapman model, however, failed for highly charged double-layers, and 

because of this in 1924, Stern proposed a model combining the Helmholtz and Gouy-

Chapman models by taking into account the hydrodynamic motion of the ionic 

species in the diffuse layer and the accumulation of ions close to the electrode 

surface (Figure 2-4 (c)) [1].  

 

Figure 2-4 (a) Helmholtz, (b) Gouy-Chapman, and (c) Stern model of the electrical 

double-layer formed at a positively charged electrode in an aqueous electrolyte [1]. 
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These two layers are equivalent to two capacitors in series, CH (Stern layer) and CD 

(diffuse layer), and the total capacitance of the electrode (CDL) can be expressed as 

Equation (9) [1]: 

𝟏

𝑪𝑫𝑳
=

𝟏

𝑪𝑯
+

𝟏

𝑪𝑫
            9 

In an ideal EDLCs system, since there is no charge transfer between the electrode 

and electrolyte interface, there are no chemical or compositional changes associated 

with them and the electrolyte concentration and properties should remain the same 

while charging and discharging [6]. 

 

2.1.1.2 Faradaic capacitance 

In 1971, a new type of electrochemical capacitance was discovered in ruthenium 

dioxide (RuO2), called pseudocapacitance because that active material behaved like 

a capacitor, but not like an EDLCs and it involved faradaic charge-transfer reactions 

[38,39]. Faradaic capacitors or Redox Electrochemical Capacitors (RECs) store 

charge through the transfer of charges between the electrode and electrolyte 

Faradaically [5]. Different Faradaic mechanisms can occur in electrochemical charge 

storage in faradaic capacitors, and these include; electrosorption (underpotential 

deposition), reduction-oxidation reactions (redox pseudocapacitance) and 

intercalation (intercalation pseudocapacitance) [40]. These processes are illustrated 

in Figure 2-5 [38]. 
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Figure 2-5 Schematic showing different types of reversible redox mechanisms that 

give rise to faradaic capacitance (pseudocapacitance) [33]. 

 

Underpotential deposition occurs when the onset of deposition of metal adatoms 

(adsorbed atom [41]) at various types of substrates in potential ranges positive to the 

reversible equilibrium potential (also referred to as the Nernst potential) [42]. A 

classic example of underpotential deposition, is the deposition of lead (Pb) on the 

surface of a gold (Au) electrode [43], while redox pseudocapacitance occurs when 

the electrochemical adsorption of ions near surface or onto the surface of a material 

with a concomitant Faradaic charge-transfer [38] (for example, surface redox 

reactions as in RuOX [44]). Intercalation pseudocapacitance happens when ions 

intercalate into the pores or layers of a redox-active material accompanied by a 

Faradaic charge-transfer with no crystallographic phase change [38]. Underpotential 
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deposition and redox pseudocapacitance represent charge storage on the surface, 

however, in intercalation pseudocapacitance, charge storage does not occur on the 

surface but in the bulk material [44]. 

The remarkable difference between compatible materials for Faradaic capacitors and 

batteries are in the surface reactions, the charging and discharging behavior of 

faradaic capacitive materials which happens on the order of seconds and minutes. 

Battery materials utilize the bulk solid state to store charges that give them their high 

energy densities while faradaic capacitive materials are not limited by solid state 

diffusion, and the utility of energy storage is based on a kinetic behavior [38]. Figure 

2-6 shows capacitive and non-capacitive Faradaic charge storage. 

 

Figure 2-6 Capacitive and non-capacitive Faradaic charge storage 
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The most usually studied faradaic capacitors or Faradaic-like electrode [39] materials 

are transition metal oxides [6,45,46], transition metal hydroxides [47–49], transition 

metal nitrides [50,51], carbon material enriched with oxygen/nitrogen-containing 

functional groups [52,53], etc. A higher capacitance is observed for some of these 

materials as compared to EDLCs due to the Faradaic charge transfer process that 

takes place at the electrode surface. However, they have low power performance due 

to poor electrical conductivity and lower cycling stability when compared to pure 

EDLCs materials [54]. 

 

2.1.1.3 Hybrid electrochemical capacitors 

Hybrid electrochemical capacitors (HECs) combine properties of both EDLCs and 

faradaic capacitors with an asymmetrical configuration. HECs can bridge the gap 

between ECs and batteries because they have higher power density than Li-ion 

batteries and higher energy density than ECs [5]. 

2.1.2 Electrode materials for ECs 

The important parameters for selection of electrode materials for ECs are the 

following: (1) high SSA, important for the large capacitance, (2) small pore size, short 

pore length, and straight pathways pore connectivity for the high-speed ions 

diffusion, (3) low internal electric resistance to enable fast charging-discharging and 

low ohmic resistance, (4) low volume and weight, (5) low price and (6) 

environmentally friendly materials [5]. These materials section is divided into three 
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parts: electrode materials for EDLCs, electrode materials for faradaic capacitors and 

composite materials. 

 

2.1.2.1 Electrode Materials for EDLCs 

Carbon-based material such as activated carbons (ACs) [55], carbon aerogels 

(CAGs) [56], graphite’s [57], graphene [58,59], carbon nanotubes (CNTs) [60], 

carbon nanofibers (CNFs) [61] and nano-sized carbon [62] have been examined as 

the electrode materials for EDLCs because of their accessibility, relatively low cost, 

non-toxicity, high chemical stability, good electronic conductivity and wide 

temperature range [5,30,63]. Carbon materials are available in a different form 

(powders, woven cloths, felts or fibers) with a specific surface area up to ~3500 m2 g-

1. In general stability and conductivity of the porous carbon decrease with increasing 

surface area [3], the carbon structure including pore shape, surface functional 

groups, and electrical conductivity has to be considered for EDLCs. Based on carbon 

materials, different techniques have been used to increase their specific surface area 

(SSA) or improve on their pore size distribution (PSD) [5]. According to the energy 

storage mechanism of EDLCs, the SSA of carbon-based materials plays an important 

role. It is noted that to get higher specific capacitance, high SSA materials are 

needed. However, the main problem of high SSA carbon is that not all the Brunauer–

Emmett–Teller (BET) surface area is electrochemically accessible when in contact 

with the electrolyte, meaning that the gravimetric capacitance of different carbon 

materials does not increase linearly with the SSA. Microporous carbon with a high 
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SSA is effective to obtain a high capacitance with a relatively slow charge–discharge, 

however, to obtain a high rate performance, the negative electrode carbon should 

have a relative amount of mesopores [5].  

 

2.1.2.1.1 Activated carbon 

One of the major attractions of using carbon as an electrode material is that it can be 

converted into different forms with very high SSA. Generally, the process engaged to 

increase surface area and porosity from a carbonized organic precursor is known as 

activation and the resulting groups of materials are referred to as activated carbons 

(ACs) [23]. Changing activation conditions, particularly such as temperature, time and 

gaseous environment, and the carbon precursor allow some control over the resulting 

porosity, pore-size distribution and the nature of the internal surfaces. The ACs 

materials are commercially available and have proven to have applications in water 

treatment [64,65], CO2 capture [66], energy storage [23], and most typically 

heterogeneous catalysis [67,68]. Briefly, the processes of the activation of 

commercial carbons can be placed into two general categories; physical (Thermal) 

activation and chemical activation [23]. 

Physical (Thermal) activation uses hot gases to develop the structure into ACs. 

Physical activation is generally done by using one or a combination of the following 

steps: the first one is the carbonization, so-called pyrolysis of carbonaceous material 

at high temperature (~500-1100 °C) in an inert atmosphere to remove the maximum 
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of oxygen and hydrogen elements from the reaction chamber. The second one is the 

thermal activation at the same temperature as for pyrolysis or at a higher temperature 

in the presence of oxidizing gas such as steam, carbon dioxide, air or mixtures of 

these gases [23,24]. 

Chemical activation usually needs lower temperatures (~400-800 °C), and it is 

possible to make ACs in a single step. Pyrolysis and activation are carried out 

concurrently in the presence of dehydrating agents such as phosphoric acid (H3PO4), 

sulfuric acid (H2SO4), zinc chloride (ZnCl2) and potassium hydroxide (KOH) [23,24]. 

This process can give high porous carbons with a high specific surface area (SSA) of 

over 2500 m2 g−1. Remarkably high specific surface area materials (>2500 m2 g−1) 

have been prepared with KOH activation techniques [23]. KOH activation has been 

known since 1978. The pore microstructures of ACs depend on the activation 

parameters (such as the mass ratio of KOH/carbon, activation temperature, and time) 

and carbon sources used as precursors to produce the ACs [21]. Figure 2-7 shows a 

scanning electron microscopy image of the activated carbon material. 

ACs can be prepared from many carbon sources such as organic materials that they 

have a high carbon content, for example, wood [69], coal [70] and coconut shells 

[71,72]. In the recent years, many other carbon sources have been used for ACs 

production such as waste tea-leaves [73], potato starch [74], fish scale [75], waste 

coffee beans [76], etc. The main commercial producers of ACs in the world are 

Egypt, Iran, Saudi Arabia, United Arab Emirates, Pakistan, Algeria and other 

Mediterranean countries [24]. 
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Figure 2-7 Scanning electron microscopy image of activated carbon 

 

Carbon has different allotropes depending on the hybridization. Graphitic carbon has 

graphene layers that are settled parallel to each other in a three-dimensional 

crystalline network [77]. Non-graphitic carbon does not have a long-range three-

dimensional network, even if it has been made in graphitization process. Franklin (in 

the 1950s) showed that the non-graphitic carbon material can be classified into two 

types, which are graphitized and non-graphitized carbon material [78]. Schematic 

representation of these non-graphitic carbons is shown in Figure 2-8 (a) and (b). The 

basic structural characters of ACs are close to the structural properties of pure 

graphite. The graphite crystal is formed by layers of bonded hexagons held 

approximately 0.335 nm apart by van der Waals forces (Figure 2-8 (c)). 
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Figure 2-8 Schematic representation of the structure of (a) a non-graphitized carbon, 

(b) a graphitized (but non-graphitic) carbon [73] and (c) carbon atom arrangements in 

graphite crystal 

 

However, the structure of the ACs can be different from the structure of graphite. The 

structure of ACs is totally disorganized compared to the graphite because of random 

oxidation of graphite layer. During the carbonization process, some aromatic nuclei 

with a structure similar to that of graphite are formed [79]. Carbon from ACs are non-

graphitized, meaning that it cannot be converted into crystalline graphite even at 

temperatures of 3000 °C and above [80]. The non-graphitized carbons are shaped, 

normally, from materials containing little hydrogen or much oxygen in their structure. 

By heating these materials at low temperatures, one can create a strong system of 

cross-linking, which immobilizes the structure and unites the crystallites in a rigid 

mass. The random orientations of crystallites with crosslinking make up a porous 

structure [78]. 

ACs contains two types of admixtures: Inorganic part of the carbon source that is 

called ash after activation and chemically bonded elements which make the organic 
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structure with the carbon atoms. The chemically bonded structures, mainly oxygen 

and hydrogen elements. These structures remained in the ACs structure during 

carbonization or make chemical bonding to the surface during activation. Other 

atoms apart from the carbon atom into the network and on the surface of the ACs 

have a significant key role in the chemistry of ACs by influencing the adsorption 

properties [81]. The different behavior of the different ACs comes from the several 

surface functional groups which are formed by the interactions of the free radicals 

during carbonization and activation. Mainly oxygen and hydrogen containing 

functional groups are present on the surface of the ACs [82]. In the structure of ACs, 

carbon atoms at the edges of the basal planes are unsaturated because of the 

unpaired electrons [83] and the ratio of the edge to basal plane carbon atoms can be 

as high as 10-20% [84] and that causes a strong tendency for oxygen chemisorption. 

The chemisorbed area increases by chemical bonding of other atoms such as 

oxygen apart from the carbon atom and thus the surface functional groups have an 

effect on the surface characteristics and physicochemical properties of the ACs [85]. 

The amount of the oxygen generally decreases with increasing the activation 

temperature. The most common oxygen-containing surface functional groups found 

on carbon surfaces are given in Figure 2-9. Carbon source materials also have 

hydrogen in the form of hydrocarbon chain and rings that are attached to the edge 

atom of hexagon planes. Most of the hydrogen is removed from the structure of 

carbon during the carbonization time below 950 °C. 
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Figure 2-9 Oxygen Functional Groups on Carbon Surfaces [86] 

 

ACs can be produced with different porous structure and relatively low density which 

is generally less than 2 g cm-3. The International Union of Pure and Applied 

Chemistry (IUPAC) classified pores according to their size as follows [87]: 

 Micropores (nanopores): smaller than 2 nm 

 Mesopores: between 2 and 50 nm 

 Macropores: larger than 50 nm 

The pores of ACs can be in the shape of capillaries as shown in Figure 2-10. The 

macropores do not contribute to adsorption capacity and surface area of the 

adsorbent remarkably [87]. However, they are important in the kinetics of adsorption. 

The macropores act as broad transport arteries in the adsorption process with a 

minimum diffusional resistance [88,89].  
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Figure 2-10 Pore Structure of Activated Carbon 

 

The mesopores act as a transitional pore between the macropores and micropores. 

Usually, the surface area of AC is a combination of the micropores, mesopores, and 

macropores in the material. However, changing the parameters during the activation 

and carbonization can lead to ACs with different micropores, mesopores, and 

macropores area [87]. The micropores play an important role in the determination of 

the surface area and adsorption capacity of the material. Because of the proximity of 

the pore walls in micropores compare to the others, the interaction potential between 

adsorbent and adsorbate is higher than the other pores, therefore at a given relative 

pressure the amount of gas adsorbed is enhanced. Micropores and mesopores in 

ACs play a key role in the charge/discharge process of EDLCs as discussed above 

[90,91]. Earlier reports by Conway [40] showed that the larger pore sizes correspond 
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to higher power densities while smaller pore sizes correspond to higher energy 

densities. 

 

2.1.2.1.2 Graphene 

Graphene, discovered in 2004 [92,93], is a single flat layer of carbon atoms packed 

into honeycomb lattice and is regarded theoretically as the basis for the formation of 

all other sp2 allotropes of carbon. It's unique and amazing properties such as 

excellent electronic transportability, great mechanical strength, large surface area 

(~2630 m2 g-1), tunable band gap, excellent optical characteristics and thermal 

conductivity (~3000 W mK-1) [94–96], etc., has made it an exciting and suitable 

candidate for many applications [97,98]. Graphene can be synthesized by several 

methods such as Hummer’s method [16,99], dispersion method [100], microwave 

method [101], chemical vapor deposition (CVD) method [102] and etc. The excellent 

theoretical surface area and the other amazing properties of graphene have made it 

suitable as a potential electrode material for EDLCs. However, the graphene 

synthesized by the above-mentioned methods in reality, supplied low capacitance 

performance, which cannot be adopted for practical applications [58,59,103]. For that 

reason, researchers adopted to doping graphene [104] or make a composite of 

graphene with a conductive polymer [105] or some oxide materials [106] to improve 

the electrochemical behavior of the materials. 
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2.1.2.1.3 Carbon nanotubes 

Another allotrope of carbon is carbon nanotubes (CNTs). Theoretically, graphene can 

be rolled at certain axis to produce single-walled carbon nanotubes (SWCNTs) [107]. 

CNTs have one of the highest strength to weight ratios of any known material and are 

chemically and thermally resilient [108]. Some of the techniques that can produce 

CNTs are: arc discharge [109], laser ablation [110], high-pressure carbon monoxide 

disproportionation (HiPco) [111] and CVD [112,113]. Large amounts of CNTs can be 

synthesized by CVD method [114] as shown in Figure 2-11. CNTs can be produced 

as SWCNTs, double-walled carbon nanotubes (DWCNTs) and multi-walled carbon 

nanotubes (MWCNTs) [115].  

 

Figure 2-11 Scanning electron microscopy image of carbon nanotube 
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In the past few years, CNTs have been extensively studied for EDLCs [116,117]. 

CNTs have been used in two different ways in supercapacitor research. The first 

technique uses CNTs alone as the active electrodes [117] due to their unique 

beneficial pore and tubular structure. However, as the SSA of CNTs is generally 

lower than ACs, mostly their specific capacitance is much lower than ACs too, but 

their higher conductivity also gives them a lower equivalent series resistance (ESR) 

value as compared to ACs. In a second technique, CNTs are used as an additive in 

electrode materials [118], in order to enhance their electrical conductivity as well as 

provide mechanical stability. The internal resistance of the electrodes is decreased, 

thus increasing capacitance. 

2.1.2.2 Electrode Materials for faradaic capacitors 

2.1.2.2.1 Transition metal oxides/hydroxides (t-MO/t-MOH) 

Transition metal oxides/hydroxides are considered to be very good materials for ECs 

due to their high intrinsic specific capacitance and high specific power, which makes 

them very attractive for commercial applications [5]. Because the electrons combine 

with other elements that are available in more than one shell, they are appropriate 

choices for faradaic capacitors electrode materials where the Faradaic reaction is 

taking place. The transition metal oxides also can be formed as a stable metal oxide 

(t-MO) and hydroxide (t-MOH) nanostructures. Numerous t-MOs and t-MOHs such as 

MnO2 [119–121], Ni(OH)2 [122], NiO [123–125], RuO2 [126–128], Co(OH)2 [129], 

Co3O4 [130–132], SnO2 [133], V2O5 [134,135] and MoO3 [136,137] have gained great 

attention because of their wide applications for storing charge in ECs . 
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Transition metal oxides/hydroxides require some properties to be successfully used 

as electrode materials for ECs applications [40]. They must be electronically 

conductive in nature, the constituting metals must also have the capability to exist in 

variable oxidation states with no phase change involving reversible modifications of 

its structure and lastly, their structure should be designed in such a way that during 

redox reactions protons can freely intercalate in/out of the lattice of the material.  

As mentioned earlier, MoO3 has been extensively studied as a material for ECs 

application. For example, MoO3 had been used as a negative electrode by Peng et 

al. [138] in a 1 M H2SO4 aqueous electrolyte where they used a polymer material as 

the positive electrode. The assembled device with an extended operating voltage 

window of 2.0 V, showed excellent performance, such as a high specific capacitance 

of 518 F g-1 at a current density of 0.5 A g-1, reaching an energy density 71.9 Wh kg-1 

at a power density of 254 W kg-1. On the other hand, Tang et al. [139] used MoO3 as 

a positive electrode and activated carbon as a negative side in 0.5 M Li2SO4 aqueous 

electrolyte. The assembled device can deliver a high energy density of 45 Wh kg-1 at 

a power density of 450 W kg-1. The nanostructures of MoO3 have shown fascinating 

properties as well as exciting prospects for applications in energy storage. MoO3 can 

be produced in different morphology and thickness by different physical and chemical 

methods. By producing hierarchical nanostructures with 2D building blocks of MoO3 

(e.g., nanoflake, nanoplate and nanosheet) can further improve their functionality in 

energy storage [140]. 
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2.1.2.2.2 Conductive polymers (CPs) 

Recently, conducting (electronically) polymers (CPs) have been investigated as 

faradaic capacitor electrodes materials [141–143]. Because of the π-conjugated 

polymer chains in CPs, they have fast and reversible oxidation and reduction 

processes during energy storage [5]. The conductivity of CPs can be raised to 

metallic levels by chemical or electrochemical p-doping (oxidation), or n-doping 

(reduction) [144]. The p-doped polymers are more stable against degradation than n-

doped polymers [145]. Mostly, the doped polymer materials have the potential to 

exploit fully the maximum energy and power densities [146]. The most commonly 

studied CPs for EC applications are polyaniline (PANI) [147,148], polypyrrole (PPy) 

[149], polythiophene (PT) [150] and poly(3,4-ethylenedioxythiophene) (PEDOT) 

[141,151] because of their high conductivity, high storage ability, good thermal and 

environmental stability, high redox and capacitive current and biocompatibility [152]. 

The main problem of CPs is their low stability [153]. Mostly, for improved CPs for EC 

applications composites with carbon materials are usually produced [154,155]. 

2.1.2.3 Composite materials 

Composite materials (CMs) for EDLCs (non-Faradaic) and faradaic capacitors show 

the best intrinsic characteristics of both components. As previously mentioned, each 

EDLCs and faradaic capacitor materials have their strengths and weaknesses and 

CMs try to take advantage of the strengths of each one to make a material that has 

best SSA and porosity, large active sites, extended potential window, protecting 

active materials from mechanical degradation and improving cycling stability 
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[156,157]. An et al. [152] used polypyrrole (PPy)/carbon aerogel (CAG) as a 

composite material with high specific capacitance of 433 F g−1, while the capacitance 

of CAG electrode is only 174 F g−1. Khomenko et al. [155] used a composite of 

conducting polymer with multiwall carbon nanotubes (MWNTs) and they have 

measured specific capacitance values of 190 F g-1 for PPy/MWNTs and 360 F g-1 for 

polyaniline (PANI)/MWNTs in the two-electrode cell. Zhang et al. [156] incorporated 

manganese oxide (Mn2O3) homogeneously into a templated mesoporous carbon to 

prepare Mn2O3/carbon nanocomposites with the high specific capacitance of over 

600 F g-1. 

 

2.1.3 Electrolyte solutions for ECs 

One of the important parameters for EC system is the electrolyte due to the fact that 

it comprises ions that are necessary for charge transport and storage. The electrolyte 

can affect the voltage window, electrochemical stability, ionic concentration, solvated 

ionic radius, cost, toxicity and resistivity of the ECs. There are three main categories 

of liquid electrolytes used for ECs application; organic, aqueous and liquid salts 

(commonly known as ionic liquids) electrolytes [1,26]. 

2.1.3.1 Organic 

Since the energy of supercapacitors is related to the square of the operating voltage, 

organic electrolytes are commonly used in commercial supercapacitors and 

academic research. Organic electrolytes are regularly operated up to 2.3 V based on 



34 
 

acetonitrile (ACN) or propylene carbonate (PC) as solvents [26]. ACN can dissolve a 

lot of organic electrolytes and can improve the conductivity of the electrolytes [158]. 

However, the solubility of the salts in the organic solvents is comparatively low (their 

conductivity is ~100 mS cm-1 [159]), posting high internal resistance and there is an 

issue of electrolyte leakage [26,160]. They also suffer from environmental instability, 

toxicity problems and are highly flammable materials [161]. To keep large operating 

voltage window characteristic of organic electrolytes, the water content should also 

be kept to a minimum (normally below 3 – 5 ppm). 

 

2.1.3.2 Aqueous 

Aqueous electrolytes include acid, alkaline, and neutral media which are mostly used 

because of high conductivities and the special mechanism of proton transport (limited 

to ∼1.2 V) [26]. Acid-based (e.g., H2SO4 [162]) and alkali (e.g., KOH [163]) aqueous 

electrolytes have a high conductivity (up to ∼1 S cm-1). To achieve a low equivalent 

series resistance of ECs, the high conductivity of current collectors and electrolytes is 

required, and the contact resistance between them should be minimal [26]. However, 

operating voltage is relatively low (∼1 V) leading to the narrow electrochemical 

stability window (1.23 V) of water [164] and consequently, the energy that can be 

stored in the device is limited [1]. Aqueous electrolytes have the advantages of high 

ionic conductivity, low cost, non-corrosiveness, safety, non-flammability and 

convenient assembly in the air [165] which make ECs base on aqueous electrolyte 

attractive. 
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2.1.3.3 Ionic Liquids 

Ionic liquids are salt which are molten at room temperature. They have good 

conductivity [7], high thermal and electrochemical stability [166], low vapor pressure 

[167], low flammability, wide voltage window (usually 4.5 V) [168] and high thermal 

stability [167]. Ionic liquids are composed of cations and anions. However, the ionic 

conductivity of these liquids is low at room temperature [169]. Some of the ionic 

liquids used are imidazolium, pyrrolidinium, aliphatic ammonium salts such as 

tetrafluoroborate, trifluoromethanesulfonate, bis(trifluoromethanesulfonyl)imide, 

bis(fluorosulfonyl)imide or hexafluorophosphate, cyclic amines such as aromatic 

pyridinium, imidazolium and saturated piperidinium, pyrrolidinium and quaternary 

ammonium salts such as tetraalkylammonium [R4N]+ [7,170–172]. 

 

2.1.4 Cell design for ECs 

2.1.4.1 Symmetrical 

Symmetrical ECs suggest that both electrodes have the same materials as anode 

and cathode, so they have the same capacitance value. If C1 = C2, then Ctotal = C1/2. 

For symmetric capacitors, the total capacitance value equals half the value of a 

single electrode [173]. With the galvanostatic charge/discharge plots based on two-

electrode cells, the specific capacitance (CS) (F g-1) of a single electrode, the 
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maximum energy density (EM) (Wh kg-1) and the maximum power density (PM) (kW 

kg-1) of the supercapacitors are calculated using equations below [174]: 

𝑪𝑺 = 𝟒𝑪𝒕 =
𝟒 𝑰 ∆𝒕

𝒎 ∆𝑽
          10 

𝑬𝑴 =  
𝟏

𝟐
 𝑪 (∆𝑽)𝟐 =

𝟏𝟎𝟎𝟎×𝑪𝑺×∆𝑽𝟐

𝟐×𝟒×𝟑𝟔𝟎𝟎
=

𝑪𝑺 ×∆𝑽𝟐

𝟐𝟖.𝟖
       11 

𝑷𝑴 =
𝟑𝟔𝟎𝟎×𝑬𝒎

𝟏𝟎𝟎𝟎×∆𝒕
=

𝟑.𝟔×𝑬𝒎

∆𝒕
         12 

where Cs is the total specific capacitance of the cell, I is the constant discharge 

current (A), ∆t is the discharge time (s), and ∆V is the voltage window (V), and m is 

the total mass (g) of the active material in both electrodes, respectively. 

We can calculate the maximum power density (PM) (kW kg-1) of the supercapacitors 

by using equivalent series resistance (ESR) [175] (that will be discussed in section 

2.2.3.3) with the following equation: 

𝑫𝑷 =
𝟏

𝟒×(𝑬𝑺𝑹)
 
𝑽𝟐

𝒎
          13 

where ESR is the equivalent series resistance, m is the total mass of active material 

and V is the voltage window (V). The volumetric capacitance (F cm-3) is calculated 

from: 

𝑪𝒗 = 𝑪𝑺 × 𝑫           14 
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where D is the bulk density calculated as the average of the mass of many particles 

of the material divided by the total volume they occupy. The area capacitance (F cm-

2) of sample is calculated from: 

𝑪𝒂 =
𝑪𝒔

𝑨𝑩𝑬𝑻
           15 

where ABET is the SSA (m2 g-1) BET measurements. 

 

2.1.4.2 Asymmetrical  

Asymmetric capacitors make use of two different materials as anode and cathode 

respectively. One of the electrodes usually has a higher capacitance value than the 

other. In asymmetric ECs, the total capacitance may be approximately equal to the 

smaller capacitance electrode (If C1 >> C2, and then Ctotal ≈ C2) [173]. For an 

asymmetric cell, charges at both electrodes should be balanced and also equals to 

the charge of ions consumed from the electrolyte. The maximum charge from ions 

available in the electrolyte can be expressed as: 

𝑸𝒊 =
𝒎𝒊

𝝆
𝒄𝟎𝑭           16 

where mi and c0 are the mass and ion concentration of the electrolyte, ρ is the mass 

density (mass per unit volume) of the electrolyte, and F= 96484 F mol-1 is Faraday’s 

constant [176]. The swing voltage can be expressed as: 

𝑽 = 𝜸
𝑪−

𝑪+
           17 
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where γ = m-/m+ the mass ratio of the negative and the positive electrodes, V is the 

voltage swing during charge, C+ and C− the specific capacitance of the positive and 

the negative electrode material respectively [176]. In asymmetric ECs, the voltage 

window is dependent on the capacitance of the active material in each electrode. 

Therefore, the mass balancing of electrode materials is taken into account according 

to the equation: Q+ = Q-, where Q+ and Q- are the charges stored in the positive and 

negative electrodes, respectively. The charge can be expressed by [177]: 

𝑸 = 𝑪𝒔𝑴∆𝑼           18 

where Cs is the specific capacitance of active material, M is the mass of the active 

material and ∆U is the potential range during charge-discharge process. In order to 

get Q+ = Q-, the mass balancing will follow the equation below: 

𝑴+

𝑴−
=  

𝑪𝒔− ∆𝑼− 

𝑪𝒔+ ∆𝑼+
           19 

Once mass balancing has been taken care of, the capacitance of each electrode is 

same, meaning that the cell behaves like a symmetric cell and thus equation 10-12 

can be used for calculating the specific capacitance, energy, and power densities 

[178]. 

 ELECTROCHEMICAL TESTING OF ECS 

2.2.1 Experimental testing of materials 

Specific capacitance is regularly estimated for the capacitance of a single electrode, 

which is usually derived from a three-electrode laboratory test. Active materials 
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testing is usually conducted in a three-electrode configuration to find the best working 

parameters for ECs with the working electrode (materials to be tested), reference 

electrode (supposed to be operational in the electrolyte used) and a counter 

electrode (designed not to interfere with the working electrode). If successful results 

are obtained from three-electrode cell configuration, one can then proceed to the 

two-compartment cell [28]. 

 

2.2.1.1 Working Electrode 

To obtain appropriate information about active materials, the working electrode is 

made as similar as possible to the electrode of an operational device (real practical 

device). Working electrode is generally coated on the current collector. Current 

collectors are generally made with corrosion resistant materials, with good electronic 

conductivity, a classic example of current collectors are gold, platinum, vitreous 

carbon and nickel foam [179]. The active mass normally mixed with electronically 

conducting materials such as carbon black (or acetylene black) to improve the 

conductivity of the active mass and mixed with a binder to protect the active mass 

during the test such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene 

(PTFE) [28]. 
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2.2.1.2 Reference Electrode 

Reference electrodes are electrodes that assist as experimental reference points. 

The reference electrode operates as a set-point electrode which measures and 

regulates the potential of the working electrode without allowing any current through 

it. Selection of an appropriate reference electrode is critical to the success of any 

experimental process. The right reference electrode is reliant on the medium used. 

mercury/mercury oxide (Hg/HgO) or silver/silver chloride (Ag/AgCl) are often the 

electrodes of choice in the aqueous alkaline medium while saturated calomel 

electrode (SCE) or silver/silver chloride (Ag/AgCl) are used in many non-aqueous 

media such as acetic acid, etc. When the experiment needs large currents to flow 

between the working and the counter electrodes, specific attention must be paid to 

placing the reference electrode at an equipotential line close to the working electrode 

[28]. 

2.2.1.3 Counter electrode 

The counter electrode allows the required amount of current to be generated at the 

working electrode by varying its potential within the electrolyte. Suitable materials for 

CEs are conductive materials which do not react with the electrolyte during the 

experiment. Counter electrodes are usually made from Glassy carbon (vitreous 

carbon) or Platinum.  
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2.2.2 Electrode Experiments 

2.2.2.1 Two-Electrode Experiments 

Two-electrode experiments are the simplest cell setups. The experimental setup for 

two-electrode experiments will have the current and sensing leads connected 

together: Working and working sense are connected together as working electrode 

positive) and, reference and counter are connected together as a second electrode 

(negative). A diagram of two-electrode cell setup is shown in Figure 2-12. In this 

system, the potential difference between both electrodes is monitored, and additional 

electrochemical properties like the energy density, power density, and life cycle 

testing can be studied. 

 

Figure 2-12 Schematic view of the 2-electrode cell setup (Working (W), Working 

Sense (WS), Reference (R) and Counter (C)) 
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2.2.2.2 Three-Electrode Experiments 

The three-electrode experiments are initially used in order to obtain the separate 

electrochemical properties of each electrode material without the effect of other 

interaction factors that might arise when they are combined in two- electrode cell. In 

three-electrode experiments, the reference is separated from the counter. The 

reference electrode is most often positioned so that it measures a point very close to 

the working electrode (which has both working and working sense leads attached). A 

diagram of a three-electrode cell setup can be seen in Figure 2-13. 

 

Figure 2-13 Schematic view of the 3-electrode cell setup (Working (W), Working 

Sense (WS), Reference (R) and Counter (C)) 
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2.2.2.3 Four-Electrode Experiments 

In the four-electrode mode, the working sense, working electrode, reference, and 

counter are separated from each other. A diagram of a four-electrode setup can be 

seen in Figure 2-14. This setup is relatively uncommon in electrochemistry. Four-

electrode model measures the effect of an applied current, on the solution itself or 

some barrier in that solution. This setup is generally used for measuring impedance 

through some solution phase interface, like a membrane or liquid-liquid junction or to 

make very accurate measures of solution resistance or the resistance across the 

surface of some material (solid state cells). 

 

Figure 2-14 Schematic view of the 4-electrode cell setup (Working (W), Working 

Sense (WS), Reference (R) and Counter (C)) 
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2.2.3 Testing the electrochemical behaviors 

The most common techniques for testing electrodes are cyclic voltammetry (CV), 

galvanostatic charge/discharge (GCD), internal resistance, cyclic life, self-discharge 

and electrochemical impedance spectroscopy (EIS) and the basics of these 

techniques will be presented in the following sections. 

 

2.2.3.1 Cyclic voltammetry (CV) 

Cyclic voltammetry (CV) is a generally used electrochemical technique to study the 

role of thermodynamics and electron transfer kinetics of ECs at the interface between 

the electrode and electrolyte. In CV, the electrochemical cell is driven in a specific 

potential window, where the potential is applied to the working electrode and 

measured for different scan rates (e.g. 5, 20, 50, and 100 mV s-1). Scan rate is 

defined as the change in potential as a function of time. The electrochemical 

performance of a material can be estimated by detecting the current change in a 

cathodic and anodic scan. The specific capacitance (Cs) can be calculated from CV 

curves according to the following equation [177]: 

𝑪𝒔 =
∫ 𝑰 𝒅𝑽

 𝒗𝒎∆𝑽 
           20 

where I is the average current, ∆V is the voltage difference, v is the potential sweep 

rate (mV s-1), m is the mass of total electroactive material of electrodes including a 

positive electrode and the negative electrode. The maximum energy density (EM) and 
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maximum power density (PM) of ECs can then be calculated from Cs according to the 

following equations 11 and 12 above. 

 

 

Figure 2-15 A cyclic voltammogram showing the fundamental differences between 

static capacitance (rectangular) and faradaic capacitance (curved) 

 

For a reversible electrochemical process, the shape of the EDLCs should be close to 

the rectangular shape (Figure 2-15), while, faradaic capacitors have a curved shape 

with anodic and cathodic peak for a reversible electrochemical process. For a 
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reversible electrochemical process, the CV plots should have a peak voltage 

difference between the anodic and current cathodic peaks of ~ 59 mV. The peak 

positions do not change as a function of scan rate, the ratio of the peak currents 

should also be unity for a reversible electrochemical process. The peak current is 

related to the square root of the scan rate by the power law equation; I=v0.5 where I is 

the current and v is the scan rate 

2.2.3.2 Chronopotentiometry (CP) or Galvanostatic Charge/Discharge (GCD) 

This calculation is critical to the analysis and prediction of the active materials’ 

performance under practical operating situations. The working electrode is subjected 

to a constant current I (positive in charge or negative in discharge), and voltage 

versus time is recorded between minimal and maximal values [180]. The usual curve 

of galvanostatic charge-discharge process is in four regions as shown in Figure 2-16; 

(1) the cell behavior during charging, (2) the cell behavior during discharging, (3) the 

initial process, and (4) this section is responsible for the negative resistive ohmic loss 

associated with the resistance of the cell (Ohmic potential drop).  
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Figure 2-16 The typical curve of galvanostatic charge-discharge process 

 

2.2.3.3 Internal resistance 

An equivalent series resistance (ESR) and equivalent distributed resistance (EDR) 

can be considered as an internal resistance. ESR (pulse resistance) corresponds to 

all the resistive components within the ECs. The ESR would be fully elaborated and 

explained in the electrochemical impedance spectroscopy (EIS) section. EDR value 

comprises of ESR and extra contribution of the charge redistribution process in the 

non-uniform porous electrode [181]. EDR and ESR value, when charging/discharging 

the ECs with the constant current I (Оhm) can be calculated from the value of ∆𝐕𝐓 for 

EDR and ∆𝐕 (Ohmic voltage drop) for ESR with the following equation [182]: 

𝑬𝑫𝑹 =  
∆𝑽𝑻

𝟐𝑰
           21 



48 
 

𝑬𝑺𝑹 =  
∆𝑽

𝟐𝑰
           22 

where ∆𝐕𝐓 (from Figure 2-17) is voltage difference from the interception of the 

straight line with the vertical line at the moment when the discharge is switched on 

giving the voltage drop (∆𝐕), and I is the current. Equation (13) clearly shows the 

dependence of maximum power of the capacitor on the ESR; thus it is ideal to ensure 

that this value remains as small as possible for high power density. 

 

Figure 2-17 Measurement profile for ESR (from ∆𝑽) or EDR (from ∆𝑽𝑻) evaluation 

 

2.2.3.4 Cyclic life  

Ideal ECs can be charged and discharged for an infinite number of cycles. The cycle 

life for all rechargeable devices depends on the exact situations under which cycling 

takes place [173]. Applied current, voltage limits, device history, and temperature are 
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all important during cycling. Cyclic galvanostatic charge–discharge (CGCD) is the 

standard method used to test the performance and cycle life of ECs. The capacitance 

(from discharge time) of each cycle during the CGCD divided by the charging time 

multiplied by 100% give the coulombic efficiency as a function of cycle number. The 

coulombic efficiency of the ideal ECs stays at 100% for CGCD. However for normal 

ECs it can be observed that there is a reduction in capacitance after the period of the 

cycling. 

 

2.2.3.5 Self-discharge 

Self-discharge is the voltage drop on a charged cell without a load after a specified 

period of time. To get a realistic measure of the leakage or self-discharge currents, 

the capacitors need to be charged for several hours, after which it will be left without 

a load to discharge (Figure 2-18). The goal of the self-discharge test is to evaluate 

the energy loss over the test interval and to measure the decrease in capacitance of 

the capacitor’s voltage during the test. 
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Figure 2-18 Self-discharge test diagram. 

From Figure 2-18, the measured parameter is the voltage maintenance rate (VMR) 

(%), which is calculated by the following equation: 

𝑽𝑴𝑹 =  
𝑽𝑬𝒏𝒅

𝑽𝑴𝒂𝒙
× 𝟏𝟎𝟎%         23 

where VEnd is the voltage between open capacitor terminals after ~72 h and VMax is 

the rated voltage. 

 

2.2.3.6 Electrochemical impedance spectroscopy (EIS) 

Impedance spectroscopy is a technique which studies the behavior of small potential 

perturbations at different frequencies (mHz to MHz) at a constant AC signal or open 

circuit potential. The EIS is often represented by the Nyquist plot which presents the 

real and imaginary part of the impedance on the x and y-axis respectively. The 

Nyquist plot takes into account the different parameters (resistance, capacitance, 
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inductance and etc.) all being contingent on the frequency. Another important plot 

from the EIS measurements is the Bode plot. In EIS measurement, the Nyquist plot 

consists of the low-frequency region and the high-frequency region. In the low-

frequency region, the capacitance (C(ω)) can be defined as the combination of 

imaginary (C″(ω)) and real (C′(ω))parts of capacitance respectively, and they can be 

expressed as the following equations [26,183]: 

𝑪(𝝎) = 𝑪′(𝝎) + 𝒋𝑪″(𝝎)         24 

𝑪′(𝝎) = −
𝒁″(𝝎)

𝝎|𝒁(𝝎)𝟐|
          25 

𝑪″(𝝎) = −
𝒁′(𝝎)

𝝎|𝒁(𝝎)𝟐|
          26 

where C′(ω) corresponds to the static capacitance which is tested during the constant 

current discharge, C″(ω) corresponds to energy dissipation of the ECs by IR drop 

and an irreversible Faradaic charge transfer process, which can cause the hysteresis 

of the electrochemical processes. |Z(ω)| is the impedance modulus, and ω is the 

angular frequency [26,183]. The real (Cʹ (ω)) and imaginary (Cʹʹ (ω)) specific 

capacitances as a function of frequency can be plotted. A relaxation time τ can be 

calculated from knee frequency in the real and imaginary plot; from τ = 1/f where f is 

the characteristic frequency of the cell, corresponding to the maximum on the Cʹʹ (ω) 

curve versus frequency plot. τ is the time required to deliver efficiently the stored 

energy. This represents the boundary between a pure capacitive and resistive 

behavior of the ECs electrode. 
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The Nyquist plot (Figure 2-19) relates the imaginary part of impedance, Z(ω)“, with 

the real part of impedance, Z(ω)', [143]. The Nyquist plot is usually divided into three 

regions, low frequency, medium frequency and high-frequency region [184]. At the 

high-frequency region usually a small semicircle appears which normally for EDLCs 

material arises due to the kinetic phenomena and charge transfer resistance (RCT) 

and double layer capacitance (Cdl) [185]. It can be possible to make an equivalent 

circuit for each EIS result. The equivalent circuit that represents the electrochemical 

system should be as simple and give the best possible match between the model’s 

impedance and the measured impedance of the system [186]. Common circuit 

elements used in equivalent circuit models are resistance (R), capacitance (C), 

constant phase element (CPE), Warburg coefficient (W) and inductance (L). These 

parameters are described as follows: 

I. Resistances:  

a. Solution (electrolyte) resistance, RS, is the resistance of the electrolyte 

and it same as the ESR. 

b. Charge transfer resistance, RCT, has to do with the process of charge 

transfer from the electrode to the electrolyte. This occurs on the 

electrode surface perpendicular to the electrochemical double layer. 

c. Ohmic resistance, RΩ, is the potential drop between the reference 

electrode and the working electrode.  

d. Polarization Resistance, RP, is the resistance when the potential of an 

electrode is forced away from its value at open-circuit. 
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II. Capacitances: 

a. Double layer capacitance, CDL, exists at the interface between an 

electrode and electrolyte. It is formed when ions from the electrolyte 

stick on the active surface. 

b. Constant phase element, CPE, is an equivalent electrical circuit 

element that models the behavior of a double layer, and it happens 

when the capacitor behavior is not perfect. The electrical impedance 

can be calculated as follows: 

Z(ω)= Q (jω)-n         27 

when j=(-1)0.5, Q is is a constant with dimension F sn−1 (Q=1/|Z| at ω=1 

rad/s) and 0 < n < 1. when n = 1, the CPE behaves as a pure capacitor 

[187], while when n = 0, the CPE behaves a pure resistor and when n= 

0.5, the CPE is the equivalent of the so-called Warburg element. 

III. Warburg Impedance, W, is associated with CPE. Warburg impedance element 

represents diffusion element that can be used to model semi-infinite linear 

diffusion.  

The diameter of the semicircle of the Nyquist plot in the high-frequency region is RCT 

and the intercept of the impedance plot on the real |Z| axis gives information on the 

solution (electrolyte) resistance (RS). However, in the low-frequency region the plot is 

due to the diffusion mechanism of ions in the material for the ideal supercapacitors 

and should be parallel to the y-axis [188].  
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Figure 2-19 Nyquist impedance plot 

 

There are two types of Bode diagram: one where 𝑙𝑜𝑔 |𝑍"| is plotted against 𝑙𝑜𝑔 |𝑓| 

and the other where phase angle is plotted against 𝑙𝑜𝑔 |𝑓|. The capacitance (C) can 

be calculated from the linear portion of the Bode plot using the relation [6]: 

𝑪 =
𝟏

𝟐𝝅𝒇|𝒁"|
           28 

Unlike the Nyquist plot, the Bode plot explicitly shows frequency information. A tilted 

line with respect to the real axis with the angle of 45ᵒ ≤ θ ≤ 90ᵒ is achieved, and this 

has been explained to correspond to ion diffusion mechanism between the Warburg 

diffusion and ideal capacitive ion diffusion [189,190]. 
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3 CHAPTER 3 

GROWTH TECHNIQUES AND CHARACTERIZATION 

In this chapter all the experimental procedures used will be discussed. Detailed 

specific parameters for each material fabricated and tested will be discussed later in 

specific sections of chapter 4. 

 

 GROWTH TECHNIQUES 

3.1.1 Chemical vapor deposition (CVD) 

Chemical Vapor Deposition (CVD) was developed in the 1960s and 1970s to 

produce carbon fibers and carbon nanofibers [191,192]. Generally in CVD, a reactive 

gas mixture flows through a reactor chamber at a particular temperature, where the 

substrates are placed. This method is suitable for high purity, large scale and uniform 

layer deposition of materials. It is also reliable, cost effective and very efficient. [193]. 

The CVD system used in this study consists of a reaction chamber (a 2-inch diameter 

quartz tube) which was linked by flow meters to different gas supplies and enclosed 

in a furnace. Figure 3-1 shows a schematic diagram of the CVD system used in this 

study for the synthesis of graphene and for the production of activated carbon. The 

gases used in this study were of high purity and were as follows argon (Ar, grade 5 - 

99.999%), hydrogen (H2, grade 5 - 99.999%) and methane (CH4, grade 4.5 – 

99.995%). 
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Figure 3-1 Schematic of the chemical vapor deposition system in our laboratory 

 

Large area, high-quality graphene can be grown on catalytic transition metal surfaces 

such as nickel (Ni) and copper (Cu) by CVD [191,194,195]. Methane (CH4) is one of 

the generally used carbon sources for the growth of high-quality graphene. In this 

work, CH4 was used as the carbon source to grow graphene foam (GF) on Ni foam 

(NF) template. GF which is a three-dimensional foam-like structure of graphene was 

first reported by Chen et al. [196] using NF template directly in the CVD and 

subsequently quenching after the growth. Different cooling rates (quenching) [197], 

fast, medium and slow (are illustrated in figure 3-2), which strongly affects the 

thickness and quality of graphene films produced due to the non-equilibrium nature of 

the precipitation process [198]. Medium cooling rates is ideal for uniform carbon 
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segregation and produces few layer graphene. However, fast and slow cooling rates 

gives patches of graphene deposition on the substrate used for example Ni-substrate 

[199]. Also the microstructure of the nickel substrate plays an important role in the 

formation of the graphene film morphology [200,201]. 

 

Figure 3-2 Illustration of the different cooling rates of graphene growth 

 

This work mainly focuses on the synthesize of GF using CVD system as reported in 

reference [125]. Nickel foam substrate with 430 g m-2 areal density and 1.6 mm in 
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thickness was used as a template for the growth of graphene. Briefly, the NF was 

annealed at 800 °C in the presence of Ar and H2 for 30 minutes to remove any 

surface contaminations like oil residues as well as inorganic materials that might 

have originated from the manufacturing or packaging process, before the introduction 

of the CH4 gas at 1000 °C. The flow rates of the gases (CH4:H2:Ar) were 10:10:300 

sccm. After 15 - 30 minutes of deposition, the sample was cooled (medium cooling) 

by pushing the quartz tube to a lower temperature region [125,202]. After growth, the 

nickel template was removed by chemical means. The sample was placed in 2 M 

hydrochloric acid (HCl) solution at 80 °C and left for 48 hours to ensure complete 

removal of the nickel. The resulting GF sample was washed with deionized water to 

remove completely the HCl and dried at 50 °C in an electric oven. 

 

3.1.2 Hydrothermal synthesis 

The hydrothermal technique is a very popular method in the last fifteen years for 

production of nanomaterials. It was initially used by the British geologist, Sir Roderick 

Murchison (1792-1871), to describe the action of water at high temperature and 

pressure in bringing about changes in the earth’s crust leading to the formation of 

various rocks and minerals [203]. Hydrothermal synthesis takes into account the 

various techniques of crystallizing substances from high-temperature aqueous 

solutions at high vapor pressures where the synthesis is conducted in a stainless 

steel autoclave. The solvothermal process is a special case of hydrothermal 

synthesis. The solutions used in a solvothermal synthesis can be anything from water 
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(hydrothermal), ammonia (ammonothermal), alcohol (alcothermal, glycothermal) or 

any other organic or inorganic solvent [204]. One of the most important solvents in 

nature is Water. It has extraordinary properties as a reaction medium under 

hydrothermal conditions where it acts very differently from water at standard 

conditions. Hydrothermal synthesis is a cheap and direct synthesis route used to 

prepare bulk materials or composite materials with different nano-architectures with 

their unique chemical and physical properties. Such nanostructures include 

nanorods, nanowires, nanoflowers, nanosheets, etc. [205–209]. Figure 3-3 shows a 

complete system for the hydrothermal chemical growth. 

 

 

Figure 3-3 Complete system for the hydrothermal chemical growth; (a) shows the 

stainless steel autoclave system with the Teflon lining (b) shows the electric oven 

used for heating  
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3.1.3 The microwave technique 

The microwave technology (MT) is known to decrease reaction times and increase 

productivity yield of materials compared to some other technique such as the 

conventional hydrothermal system or the reflux systems. MT use a group of 

electromagnetic waves whose frequencies range from 0.3 GHz to 300 GHz (some 

industrial Microwave reactors can work at a frequency of 2.5 GHz or wavelength of 

12.25 cm). This technology makes use of two heating mechanisms, namely dipolar 

polarization and ionic conduction. The dipoles in the reaction chamber are involved in 

the polarization effect while the charged particles in a reaction chamber (usually ions) 

contribute to ionic conduction effect. When reaction chamber is irradiated, the dipoles 

or ions in the sample align themselves in the direction of applied electric field. When 

the applied field oscillates, the dipole or ion field realigns itself with the alternating 

electric field thereby losing energy in the form of heat through friction and dielectric 

loss. The microwave irradiation induces a volumetric heating by direct coupling of 

microwave energy with the molecules that are present in the reaction chamber. This 

increases the temperature of the whole liquid volume in the chamber simultaneously, 

compared with the conventionally heating system, where the reaction chamber in 

contact with the hot vessel walls is heated first [210,211]. The example of microwave 

system used in this study is Samsung Combi CP1395EST (Figure 3-4).  
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Figure 3-4 the Microwave system that used for this study (Samsung Combi 

CP1395EST). 

 

3.1.4 Synthesis of activated carbon (AC) 

In this study, a different technique such as CVD, hydrothermal technique and 

Microwave were used to prepare AC, and they are discussed briefly below. 

3.1.4.1 Hydrothermal synthesis of AC based on polymers and different carbon 

material 

Figure 3-5 presents the preparation process of hydrothermal and CVD carbonization 

of ACs based on polymers and a different carbon material such as graphene foam 

(GF), carbon nanotubes (CNTs) and expanded graphite (EG). The CNTs used in the 

work was prepared by CVD according to reference [113]. The expanded graphite 

(EG) samples were synthesized by exfoliation of expandable graphite (grade ES 250 
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B5 from Qingdao Kropfmuehi Graphite) in a quartz boat using a home based 

microwave system (Samsung Combi CP1395EST) at a power of 900 W, irradiated for 

1 minute. The starter material, as a hydrogel state was synthesized via the 

hydrothermal process. Briefly, the different mass of GF, CNT and EG were dispersed 

by ultrasonication in separate containers with 100 ml of water containing different 

masses of polyvinylpyrrolidone (PVP) and 11.11 g of polyvinyl alcohol (PVA) and. 

1.50 ml of hydrochloric acid (HCl) was then added to the solution as a cross-linker 

[16]. The approachused based on the procedure by Wajid et. al [212] successfully 

demonstrated an effective method to disperse carbon material using PVP as 

stabilizer where it is also known to noncovalently functionalize carbon material (like 

graphene) surface. That should allow the carbon material to easily disperse in the 

PVP solution and subsequently in the PVA matrix. Furthermore, the nitrogen 

contained in the PVP can be bond to the carbon, enhancing the conductivity of the 

final material. The mixture was further sonicated for few minutes and stirred for 30 

min to obtain a homogeneous dispersion before being transferred into a 150 ml 

Teflon-lined autoclave system. The solution was heated at 190 °C for 12 h. The 

hydrothermal process gave a porous network of the polymer hydrogel that allowed 

the loading of material to be activated inside the porous network. The resulting 

hydrogels were crushed and washed with deionized water and dried for 6 h. The 

hydrogels obtained was then soaked in aqueous KOH solution with a KOH/hydrogel 

mass ratio of 5, for 24 h and dried at 120 °C for 12 h before carbonization [16,213]. 

The composites were then placed in a horizontal tube furnace ramped from room 
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temperature to 800 °C at 10 °C/min under argon gas flow for 2 h. This procedure 

transforms the hydrogel into carbon materials consisting of a continuous pore 

network distribution created by the escape of the K+ ions. The obtained powders 

were washed with 3 M HCl to remove the remaining KOH and subsequently washed 

with deionized water and dried at 60 °C. 

 

Figure 3-5 Schematic diagram of ACs based on polymers and different carbon 

material 

 

3.1.4.2 Synthesis of AC based on expanded graphite (EG) 

Figure 3-6 presents the preparation process of activation of expanded graphite (EG) 

to produce activated carbon (AC). Firstly, 1 g of expanded graphite (EG) was 

dispersed in 100 ml of 10 wt% polyvinylpyrrolidone (PVP) solution to create high-

concentration dispersions [212], and the mixture was sonicated for 12 h. 5 g of KOH 

was then added to the solution, which was stirred for 2 h at 60 °C. After 2 h of 

stirring, the EG forms a solid precipitate at the surface of the solution. The solid 

precipitate obtained was collected and dried at 70 °C for 12 h. The dried solid 
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precipitate was then placed in a horizontal tube furnace which was ramped from 

room temperature to 800 °C at 5 °C/minute under argon and hydrogen gas flow and 

kept at this temperature for 2 h of carbonization. This procedure transforms the EG 

solid precipitate into flakes of carbon material denoted as activated expanded 

graphite (AEG). The black powder obtained was washed with 1 M HCl to remove the 

remaining KOH and subsequently with deionized water and dried at 60 °C. 

 

Figure 3-6 Schematic diagram of synthesis procedure of AC based on expanded 

graphite (EG) 

 

3.1.4.3 Synthesis of AC based on Pinecone (PC) 

Figure 3-7 presents an illustration of the preparation process adopted for the 

production of activated carbon derived from pine cone (PAC). Pine cones obtained 

from University of Pretoria campus Hatfield South Africa were first washed with 

acetone and deionized water to remove any adhering dirt and dried at 60 °C before 

being crushed. The crushed pine cone was then soaked in aqueous KOH solution 

with a KOH/pine cone mass ratio of 4 for 24 h and dried at 80 °C for 12 h before 
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carbonization. The mixture was then placed in a horizontal tube furnace ramped from 

room temperature to 800 °C at a constant rate of 10 °C/min. The tube containing the 

sample was subjected to argon and hydrogen gas flow for 2 h of carbonization. 

Thereafter, the sample was collected, washed with 3 M HCl to remove the remaining 

KOH and deionized water before final drying at 60 °C. 

 

Figure 3-7 Schematic diagram of synthesis of AC based on Pinecone (PC) 

 

3.1.5 Synthesis of α-MoO3 

Figure 3-8 presents the preparation process of α-MoO3. α-MoO3 prepared by the 

hydrothermal system by the procedure reported by Wang et al.[140]. First, 

ammonium paramolybdate ((NH4)6Mo7O24·4H2O) and sodium diethyldithiocarbamate 

((C2H5)2NCS2Na·3H2O) were dissolved in deionized water and magnetically stirred 

for 12 h, and the solution mixture was kept stationary under the ambient condition for 

another 12 h. The resulting yellow precipitate (Mo((C2H5)2NCS2)2O2) was filtered, 

washed with deionized water and dried at 70 °C for 12 h. After, which the 

Mo((C2H5)2NCS2)2O2 was placed into a 100 ml Teflon-lined stainless steel autoclave, 
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and 85 ml deionized water was added with stirring. The autoclave was sealed and 

maintained at 200 °C for 24 h. The resulting precipitates was filtered, washed 1st with 

deionized water, then ethanol and washed with deionized water again and dried 

under vacuum at 100 °C for 6 h. Nanostructured α-MoO3 was obtained by heating the 

hydrothermally synthesized powder in air at 370 °C for 6 h. 

 

Figure 3-8 Schematic diagram of synthesis of α-MoO3 

 

 MATERIALS CHARACTERIZATION 

3.2.1 Morphological Analysis 

In this study, we benefited from electron microscopes at the microscopy unit of the 

University of Pretoria for morphological analysis of the samples. An electron 

microscope uses a beam of accelerated electrons as a source of illumination. 

Scanning electron microscope (SEM) and Transmission electron microscopy (TEM) 

are briefly discussed below. 
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3.2.1.1 Scanning electron microscope (SEM) 

Scanning electron microscopy (SEM) is one of the most useful instruments available 

to examine and analyze the microstructural morphology and chemical composition 

when using energy dispersive x-ray spectrometer (EDs) with the electron 

microscope. The SEM uses focused electron beams which are made with a Schottky 

field emission source that utilizes a high applied field in an ultra-high vacuum to 

generate a variety of signals at the surface of solid specimen’s surface. The beam 

diameter is only a few nanometers which allow a great spatial resolution. When the 

electrons interact with the specimen’s surface, creating a multitude of signals that 

have information about the sample’s surface topography, composition and other 

properties such as electrical conductivity [214] are recorded as signals by suitable 

detectors. The produced signals (see Figure 3-9) include secondary electrons (SEs), 

characteristic X-rays (use for EDS analysis), bremsstrahlung X-rays, Auger electrons, 

backscattered electrons (BSEs), light, specimen current, electron beam induced 

current (EBIC) (in semiconductors) and transmitted electrons (thin samples). 
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Figure 3-9 Schematic of the electron-specimen interaction in an SEM 

 

The secondary electrons are used for imaging to obtain information about the 

morphology at the sample surface. High-resolution images of the order of 1 nm are 

visible with SEMs having secondary electron detectors for secondary electron 

imaging. X-ray emission involves electron reshuffling within the energy levels of the 

electronic structure and as such, the characteristic X-rays are used to identify 

composition and measure elemental abundance in the sample. The BSEs signal is 

linked to the atomic number of the signatory element at the sample surface. As such, 

the BSEs are often used for analytical SEM in conjunction with the X-ray to provide 

information about the elemental distribution of the sample. EDS characterization is 

typically combined into SEM instrument and includes a sensitive X-ray detector, a 

liquid nitrogen Dewar for cooling, and software to collect and analyze energy spectra. 



70 
 

EDS detector is used to separate the characteristic X-rays of different elements into 

an energy spectrum, and EDS software is used to analyze the energy spectrum in 

order to determine the specific elements present in the sample [214]. EDS can also 

be used to find the chemical composition of materials down to a spot size of a few 

microns, and to create an elemental composition. Normally for imaging in the SEM, 

the surface of the specimens must be electrically conductive and electrically 

grounded to prevent the accumulation of electrostatic charge on the surface and for 

nonconductive material they are coated with some material like gold, gold/palladium 

alloy, platinum, osmium, iridium, tungsten, chromium, or graphite. 

The surface morphology of all samples was investigated using a Zeiss Ultra Plus 55 

field emission scanning electron microscope (FE-SEM). “Image J” was used to 

measure the diameter of fibers from SEM images and for EDS, using a JEOL 5800LV 

scanning electron microscope equipped with energy dispersive operated at 20kV. 

 

3.2.1.2 Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) also makes use of an electron beam for 

illuminating a sample area and creating an image [215] when the high accelerating 

voltage electrons passes through the sample. In TEM, the source of illumination is a 

beam of electrons with high energy (very short wavelength), released from a tungsten 

filament at the top of a cylindrical column. The electrons with high accelerating 

voltage pass through the sample and they are scattered in different degree, losing or 
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prevailing initial energy. The elastically scattered electrons within the sample form an 

imaging contrast [216] and this is magnified by a series of magnetic lenses until it is 

recorded by a photographic plate. This is then portrayed to a monitor for viewing real-

time images. A JEOL JEM-2100F microscope operated at 200 kV was used in this 

work to analyze the nature of samples. TEM samples were prepared by dispersing 

the active material in powder form in ethanol and ultrasonicated to disperse the 

samples evenly. The ethanol solution containing the sample for the study was 

dropped on a lacey carbon-coated copper grid and left for some minutes to dry 

before being loaded into the chamber for analysis. 

 

3.2.2 Gas Adsorption Analysis 

Adsorption is surface phenomenon essential when adsorbate molecules (pollutants) 

attract to an adsorbent surface by the intermolecular force of attraction [217]. Liquid 

or gas phase can be used as an adsorbate molecules during the adsorption process. 

The pore analyzes of porous solid phase are mostly determined by methods 

belonging to gas adsorption [217]. To properly understand the pores structure 

desorption studies were carried out too. During adsorption/desorption, inert gases 

that do not have any form of interaction with the surface of the active materials are 

used. For this purpose, N2, CO2, Ar or He are commonly used gases [218]. Analysis 

of the adsorption/desorption isotherms gives information about the specific surface 

area, porosity, average pore volume and the general pore size distribution of a 

sample. 
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In this study, nitrogen adsorption/desorption isotherms were analyzed using a 

Micromeritics ASAP 2020 and a Micromeritics TriStar II 3020 (version 2.00) surface 

area and porosity analyzer. The surface area measurements were obtained using the 

Brunauer-Emmett-Teller (BET) method based on the Langmuir model. Pore size and 

pore volume were obtained by the Barrett-Joyner-Halenda (BJH) method from the 

desorption branch of the associated isotherm. The process for obtaining the 

isotherms involved initially degassing the pre-weighed sample at 180 °C for more 

than 12 h under vacuum conditions in order to remove any traces of moisture within 

the sample. The degassed sample was then transferred to the main chamber for the 

complete analysis using N2 gas at specified pressure and temperature of 77 K. 

Originally, the sample is dosed with a specific amount of gas which is then evacuated 

to obtain the quantity of gas absorbed by the sample over a relative pressure range, 

P/P0 (e.g., 0.01 < P/P0 < 0.2).  

The adsorption isotherms are classified according to the molecular interactions 

between the gas and adsorbent surface. After Brunauer et al. [219] explanation of 5 

adsorption isotherms in 1940, the International Union of Pure and Applied Chemistry 

(IUPAC) [220] published the types of the adsorption isotherms while Gregg and Sing 

[221] stated the differences among them with an additional isotherm. Typical shapes 

of isotherms are given in Figure 3-10 (a). 
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Figure 3-10 (a) The IUPAC classification of adsorption isotherms types for gas–solid 

equilibria [220], (b) the modern classification of hysteresis loops [222] 

 

A type I (Langmuir type), roughly characterized by a uniform approach to a limiting 

adsorption that seemingly corresponds to a complete monolayer and is usually used 

to describe adsorption on microporous adsorbents. Types II and III belong to non-

porous or macroporous adsorbents with strong and weak adsorbate–adsorbent 

interactions respectively. Types IV and V show hysteresis for strongly and weakly 

adsorbing surfaces. Type VI shows that the adsorption isotherms can have one or 

more steps. This isotherm represents stepwise multilayer adsorption on a uniform 
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nonporous surface. Figure 3-10 (b) shows the modern classification of hysteresis 

loops. H1 hysteresis, with the narrow hysteresis loop, presents porous materials 

made from agglomerates or compacts of almost uniform spheres and having a 

narrow pore size distribution. The H2 presents many porous adsorbents with narrow 

necks and wide bodies or when the porous material has an interconnected pore 

network. The H3 happens with aggregates of plate-like particles giving rise to slit-

shaped pores. The H4 generally presents narrow slit-like pores [222]. 

 

3.2.3 Raman Analysis 

Raman spectroscopy is a non-destructive technique used to observe vibrational, 

rotational, and other low-frequency modes in a sample [223]. This technique is based 

on inelastic scattering of monochromatic light usually produced from a laser source in 

the visible, near infrared or near ultraviolet region. Inelastic scattering means that the 

frequency of photons in monochromatic light changes upon interaction with a sample. 

The sample absorbed and then reemitted the photons of the laser light, and the 

reemitted photon’s frequency is shifted up or down in comparison with original 

monochromatic frequency, which is called the Raman effect [224]. This shift of 

frequency provides information about rotational, vibrational and other low-frequency 

transitions in molecules. Raman spectroscopy can be used to study solid, liquid and 

gaseous samples. In particular for graphitic materials, Raman spectroscopy provides 

useful information on the in-plane vibrations of sp2 carbon atoms (G-band), disorder 
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(D-band), out-of-plane stacking order (2D band), in-plane crystallite size, the 

crystallographic orientation of graphene and graphene doping [225–228]. 

In this study, all Raman spectra were recorded with a high-resolution Jobin–Yvon 

Horiba T64000 micro-Raman spectrometer equipped with a triple monochromator 

system to eliminate contributions from Rayleigh scattering. The samples were excited 

using the 514 nm wavelength of an argon excitation laser with a power of 1.5 mW at 

the source so that the heating effect on the sample is minimized. The laser was 

focused on the sample using a 50X objective with an acquisition time of 60 – 120 

seconds for each spectrum. Further analysis of the obtained spectra was done using 

LabSpec (Ver. 5.78.24) analytical software.  

 

3.2.4 Crystallinity and Qualitative Phase Analysis (XRD) 

X-ray powder diffraction (XRD) is an analytical technique mostly used to identify the 

phases of crystalline materials [229] and other additional information such as lattice 

parameters and phase distribution using Rietveld confinement [230]. XRD system 

consists of three basic elements: an X-ray tube, a sample holder, and an X-ray 

detector. In this system, electrons are produced from a cathode by heating a filament 

and accelerated to an anode target (commonly made of copper or cobalt) where 

bombardment takes place to produce X-rays in a cathode ray tube. When electrons 

have enough energy to dislodge inner shell electrons of the target material, specific 

X-ray spectra are produced. Depending on the anode material, characteristic X-rays 
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of different wavelength (Cu-λ = 1.5406 Å or Co-λ = 1.7890 Å) is produced. When the 

X-rays interact with the sample, constructive interference occurs where Bragg’s law is 

satisfied [231]: 

𝒏𝝀 = 𝟐𝒅 𝒔𝒊𝒏 𝜽          29 

where n is an integer value (1,2,3..), λ is the wavelength of the incident x-ray, d is the 

spacing between the planes in the atomic lattice and 𝜃 is the angle between the 

incident ray and scattering plane (The angle between the projection of the x-ray 

source and the detector is 2𝜃). This law relates the wavelength of electromagnetic 

radiation to the diffraction angle and the lattice spacing in a crystalline sample. 

From XRD result, the crystallite sizes were estimated by using Equation 30, which is 

known as the Scherrer formula [232]: 

𝑮𝒉𝒌𝒍 =  
𝒌𝝀

𝜷 𝑪𝒐𝒔(Ө)
          30 

where Ghkl is the average linear dimension of the crystal perpendicular to the 

diffracting plane (hkl) (diameter of the particles), β (radians) is the full-width at half-

maximum in the 2θ scan, k is a constant (0.89), λ is the wavelength of the X-rays and 

θ is the angle of the diffraction peak. 

The measurements were performed at the Department of Geology, University of 

Pretoria, on a Panalytical X’Pert PRO X-ray diffractometer in θ–θ configuration, 

equipped with a Fe filtered Co-Kα radiation (1.789Å) and with a X’Celerator detector 

and variable divergence- and fixed receiving slits. Samples were prepared according 
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to the standardized Panalytical backloading system, which provides nearly random 

distribution of the particles. The data was collected in the angular range 5° ≤ 2θ ≤ 90° 

with a step size 0.008° 2θ and a 13-s scan step time. Some of the samples were 

measured on a zero background holder. Due to small sample size, the samples were 

top loaded onto the zero-background holder and analyzed. The zero-background is a 

silicon wafer, cut in such a way that it does not produce peaks with XRD. Some of the 

samples have been measured with a Cu-tube in that case a Ni filter was used. The 

phases were identified using X’Pert High score plus and Match software.  

 

3.2.5 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative 

spectroscopic technique that measures the elemental composition at the parts per 

thousand range, empirical formula, chemical state and electronic state of the 

elements that exist within a material. A typical XPS spectrum is a plot of the number 

of electrons detected (sometimes per unit time) (Y-axis) versus the binding energy of 

the electrons detected (X-axis). Each element produces a characteristic set of XPS 

peaks at characteristic binding energy values that directly identify each element that 

exists in or on the surface of the material being analyzed. These characteristic 

spectral peaks correspond to the electron configuration of the electrons within the 

atoms, e.g., 1s, 2s, 2p, 3s, etc. The number of detected electrons in each of the 

characteristic peaks is directly related to the amount of element within the XPS 

sampling volume. For this study XPS analysis was performed on a physical 
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electronics VersaProbe 5000 instrument employing a 100 µm monochromatic Al-Kα 

to irradiate the sample surface. Photoelectrons were collected by a 180° 

hemispherical electron energy analyzer. Samples were analyzed at a 45° angle 

between the sample surface and the path to the analyzer. Survey spectra were taken 

at a pass energy of 117.5 eV, with a step size of 0.1 eV, which was used to obtain an 

estimate of the elemental analysis of the powders. 

 

3.2.6 Electrochemical Analysis 

The electrochemical properties of all samples coated on nickel foam (NF) and nickel 

foam graphene (NFG) templates were analyzed in two- and three-electrode test 

system on a Biologic SP-300 and VMP 300 PGSTAT workstation (Knoxville, TN 

37930, USA) controlled by an EC-Lab v10.44 software. The PGSTAT workstation is 

an electronic instrument designed to control the potential difference (E) applied to the 

working electrode (WE) with a current flow (in the form of either a half cell or a full 

cell) and a reference electrode (RE) with no current. The PGSTAT generates 

characteristic cyclic voltammetry curves which give us information on the possible 

thermodynamics of electrochemical reactions of the system. All tests in a three-

electrode configuration, active material serving as the working electrode, a 

rectangular glassy carbon rod serving as the counter electrode and a Ag/AgCl (3 M 

KCl) serving as the reference and in a two-electrode configuration, with coin-type 

cells (Glass microfiber filter paper was used as the separator) as shown in Figure 3-

11. 
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Figure 3-11 (a) Three-electrode and (b) Two-electrode set-up used for 

electrochemical testing of active materials electrodes 

 

The electrodes for supercapacitor were prepared as follows: The synthesized 

material was mixed with polyvinylidene fluoride (PVdF) as a binder and carbon black 

(CB) to improve the conductivity of the material (if the material conductivity is not 

good) with a weight ratio of 8:1:1. The slurry was made using N-Methyl-2-pyrrolidone 

(NMP) solution and was uniformly coated on nickel foam current collector. The 

electrodes were dried at 60 °C in an oven for 8 hours to ensure complete evaporation 

of the NMP. Cyclic voltammetry (CV), chronopotentiometry (CP), electrochemical 

impedance spectroscopy (EIS) and cycling life tested for all the samples. The CV 
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tests were carried out at the different potential range and different scan rates ranging 

from 5 mV s-1 to 100 mV s-1. EIS measurements were conducted in the frequency 

range from 0.1 Hz to 100 kHz with an open circuit potential (~ 0 V). 
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4 CHAPTER 4 

RESULTS AND DISCUSSION 

In this chapter, the results obtained from all experimental procedures outlined in the 

preceding chapter are fully explained. The resulting publications from each of the 

specific research studies are also presented afterward. 

 SYNTHESIS AND CHARACTERIZATION OF ACTIVATED CARBONS (ACS) FROM DIFFERENT 

CARBON SOURCES FOR HIGH-PERFORMANCE ELECTROCHEMICAL CAPACITORS  

4.1.1 Hydrothermal and chemical vapor deposition (CVD) synthesis and 

characterization of AC based on polymers and graphene foam.  

4.1.1.1 Introduction 

Activated carbons (ACs) are the most commonly used material for EDLC applications 

due to their environmentally friendly nature, highly porous structure, large surface 

area, good adsorption property, and high electrical conductivity [5]. Recently, 

research activities have been focused on the use of porous ACs materials with high 

SSA from different sources so as to improve the electrochemical performance of 

EDLC [16,17]. The electrochemical performance of EDLCs are related to the pore 

structure, surface area and surface chemistry of the ACs. Thus, production of large 

amounts of ACs with optimum properties via a cost-effective synthesis method would 

be a step in the right direction for advancement of supercapacitor technology [16,20–

22]. 
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In this section, the hydrothermal synthesis of three-dimensional porous carbons with 

a high SSA from the dispersion of graphene foam (GF) into two different low-cost 

polymers namely polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) polymer 

matrix solution is presented. PVA and PVP are chosen because they are well-known 

polymer blends [233–235]. PVA has some outstanding physical properties which 

include electrochemical stability, non-toxicity, and mechanical strength. PVP is also 

non-toxic and has excellent absorption and complex forming capabilities [236].PVA 

possess OH groups which freely attach to carbons and may also serve as a source of 

hydrogen bonding during the reaction. On the other hand, PVP being a vinyl polymer 

with a pyrrolidine group is good at attracting other polar groups and forming other 

bonds which lead to the formation of hydrogels.  

After the hydrothermal treatment as mentioned in (chapter 3.1.4.1), the hydrogels 

formed were collected and soaked in KOH for activation followed by carbonization to 

create a porous network of graphitic carbons. A systematic study was made on the 

effect of activation, the morphology and the SSA of the three-dimensional PVA-GF-

PVP produced carbons designated as 3D-PGP. The electrochemical characteristics 

of the 3D-PGP were investigated using both the three- and two-electrode 

configurations. The 3D-PGP displayed remarkable electrochemical properties in a 6 

M KOH aqueous electrolyte. Samples designated 3D-PG-1 represented when 50 mg 

of GF was added, 3D-PG-2 when 80 mg of GF was added, and 3D-PG-3 when 100 

mg of GF was added in 100 ml of PVA matrix solution without PVP. After 

characterizing all the samples produced, it was realized that the 3D-PG-3 sample had 
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the best properties for electrochemical applications. Furthermore, 3D-PGP-1 denotes 

the addition of 1.76 g PVP sample to 3D-PG-3, and 3D-PGP-2 indicates samples 

produced when 3.5 g of PVP was added to sample 3D-PG-3. 

 

4.1.1.2 Result and discussions 

The produced 3D-PGP materials were tested in three- and two-electrode 

configurations setup for electrochemical measurements in different electrolytes and 

the results will be presented in section 4.2. This section presents results obtained in 6 

M KOH electrolyte. A publication obtained from this work which details all the 

processes with the supporting information from the article is attached. 
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4.1.1.3 Concluding Remarks 

In summary, hydrothermal synthesis of 3D-PGP porous carbons, derived from 

various carbon precursors, with a very high surface area of 2994 m2 g−1 has been 

successfully produced. The symmetric supercapacitor electrodes fabricated from this 

material showed excellent electrochemical storage properties, including a high 

specific capacitance of 188 F g-1, high energy density of 16.71 Wh kg-1 and power 

density of 401 W kg-1 at 0.5 A g-1 with a stable operating voltage of 1.6 V and 

excellent long-term stability at a current density of 2 A g-1. These are interesting and 

promising results which shows that 3D-PGP carbons electrode could be excellent 

materials for high energy supercapacitors applications. 

 

4.1.2 Effect of different carbon material on polymer based AC and their 

applications in high performance supercapacitors electrodes 

4.1.2.1 Introduction 

In section 4.1.1, activated carbon base on low cost polymer with GF was presented. 

This section present results obtained when used in the previous section GF was 

replaced with other carbon materials such as carbon nanotube (CNT) and expanded 

graphite (EG) in the polymer matrix. The morphological, structural and 

electrochemical properties of the synthesized ACs materials were studied. The 

produced material were designated ACEG when 100 mg of EG added into PVA/PVP 

matrix solution, ACGF when 100 mg of CNTs was added to the PVA/PVP matrix 
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solution and 3D-PGP-1 when 100 mg of GF was added to the PVA/PVP matrix 

solution. 

4.1.2.2 Result and discussions 

A publication obtained from this work which details all the processes with the 

supporting information from the article is attached. 
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4.1.2.3 Concluding Remarks 

Porous carbons materials from low-cost polymer materials with different carbon 

source such as CNTs, GF and EG from dispersed into a matrix polymer have been 

successfully characterized. The low cost porous material made from expanded 

graphite (ACEG), exhibited the smallest SSA, but demonstrated the highest specific 

capacitance of 320 F g-1, energy density of 28.4 Wh kg-1 and a power density of 400 

W kg-1 at 0.5 A g-1, in aqueous electrolyte. The results showed that the EG can be a 

good candidate for production of carbon material from polymer based matrix to 

improve the performance of electrode materials for high energy supercapacitors. 

 

4.1.3 Synthesis and characterization of ACs from expanded graphite (EG) for 

high-voltage supercapacitors. 

4.1.3.1 Introduction 

In section 4.1.1 and 4.1.2, activated carbon based on low-cost polymer with different 

carbon materials such as graphene (G), carbon nanotube (CNT) and expanded 

graphite (EG) were produced and characterized as possible electrodes for EDLCs 

applications. In this section, porous carbon material from EG were synthesized as it 

has not been reported based on our knowledge of the literature on energy storage 

system. EG was activated as explained in (3.1.4.2) and the produced material was 

denoted as AEG. The whole concept and the idea was to create pores and by 
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opening up the interlayer spaces between the layers of the EG material and by the 

chemical activation process. 

4.1.3.2 Result and discussions 

The results of this section are currently under review for publication, and the will be 

presented below as submitted to the journal. 
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4.1.3.3 Concluding Remarks 

Novel carbon nanosheets (AEG) derived from EG were synthesized with presence of 

small amount of oxygen and nitrogen in the sample. An improved SSA of 457 m2 g-1 

for AEG as compared to the that of EG results gives high specific capacitance of 337 

F g-1, high energy density of 37.9 Wh kg-1 and power density of 450 W kg-1 at 0.5 A g-

1 with excellent rate capability in 6 M KOH aqueous electrolyte and no capacitance 

loss after 120 h of floating test. These results suggest that the AEG material has a 

great potential for high performance energy storage applications and is also expected 

to be useful to the broader scientific community on electrochemical capacitors if fully 

explored. 

 

4.1.4 Synthesis and characterization of supercapacitor electrodes based on 

AC derived from pine tree cones. 

4.1.4.1 Introduction 

Commercially available activated carbons (ACs) used as electrode materials for ECs 

are usually fabricated from coconut shells, coal, wood and pitch [71,237–239]. 

Recently attention has been shifted to the use of biomass or organic waste materials 

for the production of efficient, low-cost, scalable, locally available and renewable 

carbon materials for absorbents or energy storage applications [240]. These include 

materials such as waste tea-leaves [73], potato starch [74], fish scale [75], waste 

coffee beans [76], etc. as a source of carbon materials for ECs applications [241]. 



121 
 

However, there are few reports on the use of activated carbon from pine cones for 

supercapacitor application. Pines are coniferous trees in the genus Pinus family of 

the Pinaceae; they are among the most important species of tree that are highly 

valued throughout the world and are mostly composed of cellulose, hemicellulose, 

lignin, resin and tannins [242,243]. The common methods of activation have been 

extensively carried out earlier by other researchers for the production of activated 

carbons for absorbent applications [243–245]. Our choice of the pin econe is due to 

the fact that pine trees naturally abundant in large amounts especially in Africa and 

many countries across the world and can be easily activated by a facile activation 

method. 

4.1.4.2 Result and discussions 

Figure 4-1 (a) and (b) shows the morphology of the surface of the pine cone before 

activation. As seen from the figure, the surface of the sample composes of two 

different surfaces with an interconnected porous architecture and some flat surface 

which could be beneficial in providing a large ion-accessible platform for fast ion 

transport for high-performance supercapacitors. Figure 4-1 (c) shows the XRD 

patterns of the pine activated carbons (PACS) using a Co-Kα x-ray source with a 

wavelength of 1.7890 Å. It is noted that the XRD peak of PAC (JCPDS 00-008-0415) 

are identified with graphite peaks. It is observed that the PAC has a low crystallinity 

with the characteristic graphitic (carbon) peaks recorded, at a 2θ value of 26° (002). 

The surface area and pore size distribution of the pine activated carbon was 

measured from the nitrogen adsorption–desorption isotherms at 77 K. Figure 4-1 (d) 
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shows that the sample exhibits a type II isotherm with an H4 hysteresis behavior. A 

little hysteresis loop at a relative pressure P/P0 of about 0.45 - 0.65 was observed 

which is attributed to capillary condensation of the mesopores in the solid material 

[246]. The BET specific surface area of 808 m2 g1 was measured based on the 

standard BET method. The pore size distribution as analyzed by the Barrett Joyner 

Halenda (BJH) method indicates the presence of micro and mesopores in the 

material. The size of the mesopores likely arises from slit-like structures formed by 

randomly collapsed nanostructures with most of other micropores of diameters less 

than 2 nm. A small fraction of the meso/macro-pores with a wide pore diameter range 

of values greater than 4 nm originates from the bottleneck-like pores. The results 

from the surface area and pore volume distributions are summarized in Table 1. 

These results suggest that the material is suitable as a supercapacitor electrode 

material and that the microstructural properties are beneficial in improving the 

volumetric energy and power characteristics of the pine-based supercapacitors. 

Table 1 Surface area, micropore and cumulative volume and pore size of PAC 

Surface area 

(m2/g) 

micropore volumea 

(cm3/g) 

cumulative volumeb 

(cm3/g) 

Pore diameterc 

(nm) 

808 0.28 0.13 2.98 

a t-Plot micropore volume 

b BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter 

c BJH Desorption average pore diameter (4V/A) 
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Figure 4-1 (a) SEM micrographs of raw pine cone, (b) SEM micrographs of PAC (c) 

X-ray photoelectron spectroscopy and (d) the N2 adsorption-desorption isotherm of 

PAC 

Figure 4-2 (a) shows CV curves of PAC material at different operating voltages 

ranging from 0.8 V to 1.2 V in a three electrode system. Figure 4-2 (b) shows the 

results of the CV plots for the PAC material at scan rates ranging from 5 to 50 mV s-1 

in a 1.2 V potential window. The CV plots are characterized with no oxidation or 

reduction peaks indicating a typical EDL capacitor behavior.  

c d 
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Figure 4-2 (a) CV at different voltage windows in 6 M KOH aqueous electrolytes in 

three electrode system, (b) CV curves at scan rates from 5 to 50 mV s-1, (c) the 

galvanostatic charge/discharge curves from 0.5 to 10 A g-1 for PAC, (d) the specific 

capacitance as function of the current density. 

 

The galvanostatic charge and discharge curves at different current densities are 

shown in Figure 4-2 (c). The charge –discharge plots are almost triangular and 

symmetric which indicates a fast I-V response [177]. The measured value of the 

specific capacitance (Cs) of the PAC is 335 F g-1 at a current density of 0.5 A g-1. The 

a b 

c d 
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Cs value decreases from 335 F g-1 to 130 F g-1 with an increase in current density 

from 0.5 to 10 A g-1 as shown in figure 2 (d). This shows a quite stable reduction in 

the capacitance of the PAC electrode material with a considerable increase in current 

density. 

Figure 4-3 (a) demonstrates the stability of the electrode material by subjecting it to 

continuous charging and discharging at a constant current density over several 

cycles. The PAC shows no capacitance loss even after 10000 cycles at a current 

density of 2 A g-1. However, a small increase in the capacitance (~2.8 %) was 

observed after the initial cycling process which is similar to observations made by 

Ren et al.[247]. In their work, they attributed this occurrence to the possible swelling 

of the carbon material at some defective sites, which promotes electrolyte ions 

intercalation into the space created by the swelling or creation of more pores. This 

leads to the more accessible surface area and hence increase in the efficiency of the 

cell which was stable and maintained throughout the cycling process [247]. 

  

a b 
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Figure 4-3 (a) cycle stability at a constant current density of 2 A g-1 (b) EIS plot and 

fitting curve with the equivalent circuit (c) the real and imaginary part of the cell’s 

capacitance against frequency 

The electrochemical impedance spectroscopy (EIS) was used to study the rate 

capability of an electrode material. The Nyquist spectrum of the electrode material is 

shown in figure 4-3 (b). The EIS plot shows a semi-circle in the high-frequency region 

and a sloping line in the low-frequency region. The intercept on the real Z - axis 

denoted by RS represents the combined resistance of the electrolyte, the contact 

between the current collector, the metal leads and the electrode material. An Ohmic 

resistance (RS) value of 0.35 Ω was obtained which shows a good conductivity and 

high quality of the activated carbon electrode [248]. The diameter of the semi-circle in 

the high-frequency region corresponds to the charge transfer resistance (RCT) with a 

value of 2.1 Ω which is attributed to the double layer capacitance CDL and the redox 

reaction that might occur at the surface of the electrode material. At the low-

frequency region, the plot should be a parallel line to the imaginary axis. However, 

c 
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the resulting curve shows a deviation from this theoretical behavior which is due to 

the presence of leakage current denoted by RL. The impedance spectrum was further 

analyzed with the complex nonlinear least-squares (CNLS) fitting method using the 

ZFIT software and the equivalent circuit as shown in the inset to figure 4-3 (b) based 

on the equivalent RC model. The obtained plot also shows that the model used fits 

well with the experimental data. The capacitance as a function of the frequency 

(figure 3 (c)) was also used to check the charge propagation of the electrode material 

and was calculated. From figure 4-3 (c) above, the capacitance (C′) of the cell is 0.15 

F (from topmost part of the C′ graph) while C” which defines the transition frequency 

between a pure capacitive and a pure resistive behaviour has a relaxation time of 

~4.3 seconds obtained by taking the reciprocal of the maximum frequency in the C′′ 

graph [183]. 

 

4.1.4.3 Concluding Remarks 

In this section, for the first time, an excellent EDLC behaviour of porous and high 

surface area AC derived from pine cones (PAC) material synthesized obtained locally 

in South Africa and pyrolyzed by direct carbonization of chemically activated pine 

cones was successfully demonstrated. The choice of organic waste from biological-

based raw materials was inspired by its relative abundance, low cost and ultimately 

the environmental friendly nature associated with them.  
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The PAC electrode material when electrochemically tested exhibited a superior 

electrochemical performance due to the presence of a porous network which allows 

the efficient transport of electrolyte ions and the storage of charges within the 

material. An outstanding specific capacitance of 335 F g-1 at a current density of 0.5 

A g-1 with no capacitance loss after 10,000 charge–discharge cycles at current 

density of 2 A g-1. Thus, the results demonstrate the potential for applying pine cone 

activated carbon material as a suitable and promising electrode material for 

fabricating low cost energy storage devices. Although this study is still at its initial 

stage, enhancement of the results obtained so far can be further optimized with 

respect to the specific capacitance and the adoption of this electrode material in 

asymmetrical capacitors in order to boost the energy density of the entire 

supercapacitor device. 

 

 STUDY THE EFFECT OF DIFFERENT ELECTROLYTES ON THE ELECTROCHEMICAL 

BEHAVIOR OF SUPERCAPACITORS BASED ON AC 

4.2.1 Effect of different aqueous electrolytes on AC based supercapacitors. 

4.2.1.1 Introduction 

Organic and ionic electrolytes are commonly used for commercial energy storage 

applications due to their wide operating voltages [19,249] which increase the overall 

energy density. However, organic and ionic liquids are plagued with some demerits 

which include high cost, low conductivity, generally complicated handling procedures 
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involved, high flammability and electrolyte leakage [22]. In contrast, aqueous 

electrolytes have lower cost, environmentally friendly nature, facile preparation 

methods and operating stability, high ionic conductivity and proton transport which is 

necessary for obtaining lower internal resistance [250]. A major step to achieving 

best results in energy storage for AC is by studying the effect of different aqueous 

electrolytes on the electrochemical behavior of activated porous carbons in order to 

fully understand the adaptability of these porous networks with the associated 

electrolyte. Unfortunately, very few reports presently exist in which a detailed study 

have been carried out regarding this area. This study, therefore, investigates and 

elucidates the effect of different aqueous electrolytes on AC (3.1.4.1). The results 

obtained demonstrate a complete analysis of the electrochemical performance of 

carbon-based supercapacitors tested in KOH, LiCl and Na2SO4 electrolytes. The 

choice of these aqueous electrolytes is based on their unique properties which 

include the crystal radius, ionic mobility, Gibbs free energy amongst other properties 

mentioned earlier. The results show the potential for adopting activated porous 

carbons as suitable material for SC electrodes. 

 

4.2.1.2 Result and discussions 

A publication obtained from this work which details all the processes with the 

supporting information from the article is attached. 
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4.2.1.3 Concluding Remarks 

From this study, AC electrode in 6.0 M KOH exhibited excellent electrochemical 

storage properties. The charge/discharge efficiency of electrode at different current 

densities of 6 M KOH electrolyte is higher than both 1.0 M Na2SO4 and 6.0 M LiCl 

electrolytes and it’s close to 100%. The smallest Rs was obtained for the 6.0 M KOH 

electrolyte (0.66 Ω). These results suggest and confirm that 6.0 M KOH is an ideal 

aqueous electrolyte and concentration for AC based electrode materials. 

 

4.2.2 Effect of different gel electrolytes on AC supercapacitors 

4.2.2.1 Introduction 

A key component for application of supercapacitors in mobile communication 

and computing electronics is the solid-state electrolyte [251]. Solid state 

polymer based gel electrolytes comprise a polymer and an ionic component 

and have recently been explored because of their several advantages which 

include its anticorrosive characteristic, compatibility with metal current 

collectors, good physical contact, exhibit ion of liquid-like ionic conductivity with 

high stability over cycling, higher surface to volume - ratio, low internal 

corrosion, simple principle and mode of fabrication, higher reliability, 

environmentally friendly and handling safety [252–255]. Various polymer gel 

based electrolytes have been used in electrochemical supercapacitors 

applications. Here we report on the electrochemical performance of the 
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symmetric supercapacitors based on highly porous activated carbon material 

and solid-state polyvinyl alcohol (PVA) and potassium hydroxide (KOH) 

hydrogel membrane electrolytes with different additives such as carbon black 

(CB) and a conducting polymer Polyaniline (PANI). A comparative 

electrochemical study with four different gel electrolytes in terms of their 

specific capacitance, energy and power densities were elucidated. The gel 

polymer electrolytes obtained at the different dopants were denoted as PK, 

PKC, and PKP for PVA-KOH, PVA-KOH-CB and PVA-KOH-PANI hydrogels 

respectively. 

 

4.2.2.2 Result and discussions 

The result of effect of different gel electrolytes on AC supercapacitors together with 

supporting information are presented in paper below. 
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4.2.2.3 Concluding Remarks 

Gel electrolytes based on PVA polymer and KOH were produced and studied 

their electrochemical behavior for EDLCs application based on the produced 

AC material. The use of conductive additives such as carbon black in particular 

in the gel electrolyte, improves the energy density of the supercapacitor when 

compared to aqueous electrolyte or simple gel electrolyte. This was correlated 

with the improved conductivity of the electrolyte medium which is favorable for 

fast ion transport in the relatively viscous environment. In particular, this work 

produced a maximum energy density of 24 Wh kg-1 when carbon black was 

added to the gel electrolyte as conductive additive. This value is higher than 

that obtained in KOH (17 Wh kg-1) and other gel electrolytes PVA-KOH (16 Wh 

kg-1). Most importantly the cell remained stable with no capacitance loss after 

10000 cycles for all devices with PKC device showing slightly higher stability 

value throughout.  

 

 PREPARATION AND CHARACTERIZATION OF AC CATHODE MATERIAL AND Α-MOO3 

TRANSITION METAL OXIDE AS ANODE MATERIAL FOR HIGH-PERFORMANCE ASYMMETRIC 

SUPERCAPACITORS 

4.3.1 Introduction 

Aqueous asymmetric supercapacitors (AASs) are promising hybrid energy 

storage devices as they have been shown to provide a wider operating voltage 
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and higher energy density compared to symmetric capacitors [256,257] by 

combining a battery-type electrode Faradaic cathode (transition metal oxide) 

material and a capacitor-type electrode anode material (usually activated 

carbon). AASs make use of the different potential windows in the anode and 

cathode leading to an increased operational voltage of the aqueous electrolyte 

[257] and significantly improving the energy density of devices. Generally most 

AASs ECs make use of activated carbon (AC) as the negative electrode 

[258,259] because of the anomalous faradaic capacitance mechanism at the 

surfaces of carbon-based electrodes when scanned at negative potentials in 

aqueous electrolytes [260]. For the positive electrode, conductive polymers 

and various transition metal oxides [261–265] are widely studied due to rapid 

and reversible electron exchange reactions at the electrode interface which 

contribute to the high energy and power densities of AASs. In order to achieve 

high-performance AASs, MoO3 has been shown to exhibit good performance in 

energy storage devices [139]. In this study, AC from polymer based materials 

discussed earlier was used as the anode and α-MoO3 as the cathode material 

in an aqueous electrolyte media respectively. 

 

4.3.2 Result and discussions 

The result of asymmetric cell made from AC/ α-MoO3 is presented in the attached 

paper below with its supporting information. 
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4.3.3 Concluding Remarks 

Asymmetric supercapacitor device based on porous activated carbon material 

as negative electrodes and α-MoO3 as positive electrode has been 

successfully fabricated. The asymmetrical device shows high specific 

capacitance, energy density and power density with good stability after 10000 

cycles at an operating voltage of about 1.3 V in 6 M KOH aqueous electrolytes. 

It shows that pairing such hybrid device could be an excellent approach to 

produce supercapacitors with high energy and power densities. 
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5 CHAPTER 5 

GENERAL CONCLUSIONS AND FUTURE WORK 

In this chapter, the main results reported and discussed in chapter 4 are summarized 

Activated carbons (ACs) from different sources are produced in this work to obtain 

the best AC for high-performance electrochemical capacitors. First, ACs based on 

polymers and a different carbon material such as graphene foam (GF), carbon 

nanotubes (CNTs) and expanded graphite (EG) were synthesized using a 

hydrothermal and CVD technique. Secondly novel source of the carbons to produce 

AC was explored and thirdly the novel pine cone source was also explored for the 

production of the AC materials. The ACs, have been studied and optimized through 

all the parameters that could be important in activation and carbonization such as the 

ratio of the carbon/KOH during activation or effect of the time and temperature during 

carbonization time to get the best porous material. 

Each of the produced materials was characterized by scanning electron microscope 

(SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray 

photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherm (BET) and 

Raman. All produced materials were also analyzed in the electrochemical system as 

electrodes for supercapacitors both in the two and three electrode configurations. 

The asymmetric cell was further produced by combining the ACs produced as 

negative electrode and some metal oxide as a positive electrode for the asymmetric 

cell. All the cell tested in this study achieved very good electrochemical performance 
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based on common techniques for testing electrodes such as cyclic voltammetry (CV), 

galvanostatic charge/discharge (GCD), internal resistance, cyclic life, self-discharge 

and electrochemical impedance spectroscopy (EIS). 

In section 4.1, the synthesis and characterization of ACs for high-performance 

electrochemical capacitors from different carbon sources have been elucidated. In 

section 4.1.1, Report on the hydrothermal synthesis of three-dimensional porous 

carbons with a high SSA (2994 m2 g−1) based on two low-cost polymers namely 

polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) with graphene foam (GF) 

dispersed in the polymer matrix solution and fabricated symmetric supercapacitor 

was presented. The symmetric cell showed excellent electrochemical storage 

properties, including high specific capacitance (188 F g-1) with high energy densities 

(16.71 Wh kg-1) and power densities (401 W kg-1) at 0.5 A g-1 with a stable 1.6 V 

operation voltage and excellent long-term stability. These promising results show the 

potential of these three-dimensional porous carbons as electrodes for high energy 

and power densities supercapacitor devices. Section 4.1.2 presents the results of the 

addition of different carbon material such as carbon nanotube (CNT) and expanded 

graphite (EG) rather than the GF into the polymer matrix solution during the synthesis 

of the porous carbon material and studied the morphological, structural and 

electrochemical properties of the synthesized products materials. The result showed 

AC material made from these polymers by dispersing expanded graphite in the 

polymer matrix (ACEG) exhibiting the smallest SSA (627 F g-1) compared to ACGF 

and yet demonstrating the highest specific capacitance (320 F g-1) and energy 
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density (28.4 Wh kg-1) at 0.5 A g-1. The results showed that the EG is a good 

candidate that could be easily dispersed in a polymer matrix solution to produce ACs 

for high energy density supercapacitors. In section 4.1.3, It was shown that the EG 

material could be a good candidate as the base material for the production of ACs. 

Novel carbon nanosheets (AEG) derived from EG was synthesized and showed a 

high SSA (457 m2 g-1) compared to EG alone (20 m2 g-1). AEG showed highest 

specific capacitance (337 F g-1), high energy density (37.9 Wh kg-1) and power 

density (450 W kg-1) at 0.5 A g-1 with excellent rate capability in 6 M KOH aqueous 

electrolyte with no capacitance loss after 120 h of floating test. It showed that AEG 

material has great potential for high-performance energy storage device applications. 

Section 4.1.4 reported for the first time, an excellent EDLC behavior of porous and 

high surface area (808 m2 g-1) Pine cone activated carbon (PAC) material 

synthesized by direct carbonization of chemically activated pine cones obtained 

locally in South Africa. The electrochemical behavior of the PAC was a study in the 

three-electrode system and results obtained show that it works as a negative 

electrode in KOH electrolyte exhibiting a specific capacitance (335 F g-1) at a current 

density of 0.5 A g-1 with no capacitance loss after 10,000 charge–discharge cycles at 

a current density of 2 A g-1. Thus, demonstrating the potential of the PAC as a 

suitable and promising electrode material for fabricating low-cost green energy 

storage devices. 

In section 4.2, results based on the effect of different electrolytes on the 

electrochemical behavior of supercapacitors based on AC were presented. As 
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identified, the failure and destruction of ECs are also related to the electrolyte that it 

used in the ECs system. Section 4.2.1 showed that carbon material exhibit excellent 

electrochemical storage properties in 6 M KOH compared to other aqueous 

electrolyte and this electrolyte was adopted for all materials in section 4.1. To 

improve the electrochemical behavior of EDLCs material, in section 4.2.2, different 

gel electrolytes were produced, and their effect on symmetric ACs based 

supercapacitors was studied. A comparative electrochemical study with four different 

gel electrolytes in terms of their specific capacitance, energy, and power density was 

elucidated. In this study, solid-state KOH and PVA hydrogel membrane electrolytes 

with different additives such as carbon black (CB) and a conducting polymer 

polyaniline (PANI) were made and tested. The gel electrolyte made of PVA/KOH/CB 

(PKC) showed improved potential window and energy density of the supercapacitor 

when compared to aqueous electrolyte or simple gel electrolyte. In particular, in this 

work a maximum energy density of 24 Wh kg-1 was obtained from ACGF porous 

carbon when carbon black was added to the gel electrolyte as a conductive additive. 

This value is higher than that obtained in KOH (~17 Wh kg-1) for the same material. 

The results demonstrate the potential of this gel electrolyte for EDLCs material. 

Finally in section 4.3 Asymmetric supercapacitor devices based on porous activated 

carbon material as negative electrodes and α-MoO3 as positive electrode was 

successfully fabricated. The asymmetrical device shows good specific capacitance, 

energy density and power density with good stability after 10000 cycles with an 

operating voltage of about 1.3 V in 6 M KOH aqueous electrolyte. 
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In summary, the results clearly show the great potential of activated carbon drive 

from a different carbon sources, especially expanded graphite, as energy storage 

device electrodes and also showed that the potential of working on the nontoxic gel 

electrolyte such as PKC to improve the electrochemical behavior of supercapacitors. 

Future work could be further exploration of the EG as an active material for EDLCs 

and also explore other sources of carbon such as a coconut shell or biomass material 

as electrode materials for the improved electrochemical behavior of the EDLCs. 

Improve on the morphology and porosity of the pores of the produced carbon 

material to fully explore the potential of the produced carbon materials for optimum 

electrochemical performance. Finally, explore the possibility of novel electrolyte to 

improve the operating voltage window which will also improve the energy density and 

specific capacitance of the supercapacitor device. 
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