
 
 
 
 

i 
 

 

Alternative Methods to 

Parametric Significance 

Testing in Linear Regression and 

ANOVA 

By 

Nhlanhla Makhanya 

10308343 

Submitted in partial fulfilment of the requirements for the degree 

 

Magister Scientiae (Mathematical Statistics) 

 

in the 

 

Faculty of Natural and Agricultural Sciences 

 

at the 

 

University of Pretoria 

 

Date of Submission  
 

August 2015 

Promoter: Prof F.E Steffens 

               Dr L Fletcher 



 
 
 
 

ii 
 

Declaration 
 

I Nhlanhla Makhanya declare that the dissertation, which I hereby submit for the 

degree Magister Scientiae (Mathematical Statistics) at the University of Pretoria, is 

my own work and has not previously been submitted by me for a degree at this or 

any other tertiary institution 

 
  

 
 

Signature  Date 

 

 

 

 

 

 

 

 

 

 
 

 



 
 
 
 

iii 
 

Abstract 
 

Alternative Methods to Parametric Significance Testing in Linear  

Regression and ANOVA 

N.W. Makhanya 

Supervisor: Prof F.E. Steffens & Dr L. Fletcher 

Department of Statistics 

University of Pretoria, 

August 2015 

The aim of the study was to survey permutation tests, bootstrapping and jackknife methods and their 

application to significance testing of regression coefficients in linear regression analysis. A Monte 

Carlo simulation study was performed in order to compare the different methods in terms of empirical 

probability of type 1 error, power of a test and confidence interval where coverage and average length 

of confidence interval were used as measures of comparison. The empirical probability of type 1 error 

and power of a test were used to compare permutation tests, bootstrapping and parametric methods, 

while the confidence intervals were used to compare jackknife, bootstrap as well as the parametric 

method. These comparisons were performed in order to investigate the effect of (1) sample size (2) 

when errors are normally, uniformly and lognormally distributed (3) when the number of explanatory 

variables is 1, 2 and 5. (4) When the correlation coefficient between the explanatory variables is 0, 0.5 

and 0.9. The results obtained from the Monte Carlo simulation study showed that permutation and 

bootstrap methods produced similar probability of type 1 error results while the parametric methods 

understated probability of type 1 error when errors are lognormally distributed. In the absence of 

multicollinearity all the methods were almost equally powerful and in presence of multicollinearity they 

all suffered equally in terms of power. The jackknife produced poor result in terms of 100(1 −

𝛼)% confidence interval while the bootstrap produced reasonable results especially for larger sample 

sizes. The improvement was observed under the jackknife method when percentile based intervals 

were applied. It was concluded that permutation tests as well as bootstrap methods are good 

alternative methods to use in significance testing in regression and ANOVA. 
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Chapter 1 

 Introduction              
  

In this project non-parametric/resampling methods will be explored, in particular 

permutation tests, jackknife and bootstrapping methods and their application to 

significance testing in regression analysis. The goal of this project is to explore which 

methods work best in terms of probability of type 1 error, power and confidence 

intervals and to make recommendations on the appropriate method to use under 

different conditions namely: 

 When errors are normally, uniformly and lognormally distributed; 

 Varying number of covariables present in the explanatory variables; and 

 Effect of multicollinearity among those exploratory variables 

For a very long time parametric methods which relied heavily on normal theory were 

applied in many situations with inexperienced statistical practitioners applying them 

without testing whether embedded assumptions are satisfied. Aldrich (2005) gives a 

good account of the development of regression theory focussing on Fisher’s 

contribution as one of the pioneers. Although R.A Fisher was firstly a pioneer of 

regression analysis under normal theory, he is also well known for his exploration of 

permutation/randomisations tests in the “Design of experiments” book in 1935 

(Kempthorne, 1955). Jackknife and bootstrapping methods emerged much later with 

the jackknife method first introduced in 1949 (Quenouille, 1949) and bootstrap 

introduced in 1979 (Efron, 1979).  This study will consist of the following: 

Chapter 2 will cover the literature review with focus on the history of permutation 

tests, jackknife and bootstrapping methods. 

Chapter 3 will cover significance testing using permutation, jackknife and bootstrap 

methods in regression analysis. 

Chapter 4 will cover the application of permutation tests, jackknife and bootstrap in 

confidence intervals and percentile based intervals. 
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Chapter 5 will cover the research methodologies which will detail how these methods 

were applied in this project. 

Chapter 6 will cover the result obtained through simulations and their discussions. 

Chapter 7 will be the conclusion detailing the alignment of the findings from the 

results and similar studies done previously as well as recommendations on the 

appropriate method for different conditions. 
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Chapter 2 

Literature Survey 
 

2.1 Introduction 
 

This chapter will address the early development of the chosen non-parametric 

methods, namely permutation test, jackknife and bootstrap methods. The work 

covered in this chapter is limited to the original use of the methods excluding their 

use in regression analysis. This aspect will be explored in the next chapter. In the 

permutation test, earlier work by Neyman in 1923 (Neyman, Dabrowska, Speed, 

1990), Pitman (1937a, 1937b, 1938), Fisher in 1935 (Fisher, 1937), Kempthorne 

(1955) and many others who contributed meaningfully in the early work on the topic 

will be explored. In jackknife the main authors would include Quenouille (1949), 

Tukey (1958), Miller (1974) and others. Bootstrap was mainly developed by Efron 

(1979).  

The structure of this chapter will be to follow the history of these methods in their 

sequence, starting with the oldest of the three, namely permutation tests, followed by 

the jackknife technique and bootstrap methods. The latter two took the world by 

storm after computers became available, unlike the previous methods which also 

relied heavily on the computer although they were very difficult to access at the time. 

The unavailability of computers was the primary factor in the difficulty of using 

permutation tests.  

 

2.2 Permutation Tests 

 

Many authors, including Welch (1990), Freedman et al. (1983) and Kennedy (1995) 

pointed out that the history of permutation tests dates back to 1935 as indicated in 

R.A.Fisher’s book titled Design of experiments. Kempthorne (1955) gave a more 
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detailed description of Fisher’s discovery by stating the following: “it seems to have 

escaped recognition that the physical act of randomisation…, affords the means, in 

respect of any body of data, of examining the wider hypothesis in which no normality 

distribution is implied”.   

Anderson (2001) explained in his paper that Fisher described an experiment to 

compare growth rate of self-fertilised and cross fertilised Zea maize plants. There 

were in total 15 pairs of Zea maize plants where each 𝑖𝑡ℎ pair can be denoted as 

(𝑥𝐴𝑖,, 𝑥𝐵𝑖)  where A and B represent self-fertilised and cross-fertilised plants 

respectively. The pairs are randomly allocated to the plot. The test statistic used was 

the difference in growth rate say 𝑑𝑖 = 𝑥𝐴𝑖 − 𝑥𝐵𝑖. Let D denote the distribution of sum 

of differences from all possible outcomes under the null hypothesis and the sum of 

observed differences by 𝐷𝑜𝑏𝑠.  The p value was then computed as 𝑝 𝑣𝑎𝑙𝑢𝑒 =

𝑛𝑜.𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 |𝐷|≥𝐷𝑜𝑏𝑠

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑛𝑜.𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 |𝐷|
. Kempthorne (1955) further mentions Fisher’s findings that he 

observed only 1726 of 215 combinations of 15 pairs from two samples which had 

differences greater than or equal to the observed difference.  This gave a 

significance level of 
1726

215 = 0.05267  while the normal theory produced a significance 

level of 0.05158 after applying the Yates correction for continuity. 

 A well-structured and comprehensive work came two years after Fisher’s work in 

1937 by Pitman (1937a, 1937b, 1938) who produced a series of papers titled 

Significance tests which may be applied to samples from any population I, II, III.  

Papers in this order dealt with tests of significance of difference of means which is an 

equivalence of Student t under normal theory, significance tests for linear 

dependencies which is an equivalence of the correlation coefficient under normal 

theory and lastly the analysis of variance test of significance which is an equivalence 

of F tests under normal theory.  In his papers he acknowledged Fisher as the first 

author to come up with the idea of permutation tests by saying that “the idea is not 

new, it seems to be implicit in all Fisher’s writings”.  

 Other authors such as te Braak (1992) and Anderson (2001) contend that 

permutation tests date further back to 1923 by Neyman. However, many authors 

failed to consider the Neyman paper because it was written in Polish with a summary 
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only in German. It was not until 1990 when the majority of the statistical community 

was exposed to the earlier work by Neyman (1923) when Dabrowska and Speed 

translated Neyman’s paper from Polish to English. Rubin (1990) discussed the work 

that is contained in Neyman’s paper that was published in 1923 and also clarified 

contributions by Neyman and R.A. Fisher on the topic. Rubin mentioned the 

following: “To my knowledge, this paper represents the first attempt to evaluate, 

formally and informally, the repeated-sampling properties of statistics over their 

nonnull randomisation distributions, and so I believe this contribution is uniquely and 

distinctly Neyman’s”. He also mentioned that “Fisher’s mode of randomisation-based 

inference in experiments was distinctly different from Neyman’s”. He concluded 

section 6 of the same paper by mentioning that “Neyman’s prescription offers a 

general plan for evaluating proposed procedures, whereas Fisher’s prescription 

directly provides distribution free p-values for sharp null hypothesis. I find the 

approaches complimentary”. 

 Kempthorne (1955) discussed the randomisation tests in the linear models for 

experimental designs in cases of completely randomised design, randomised block 

designs as well as Latin squares with much emphasis on completely randomised 

design. His paper generally addressed the comparative experiment where for 

example, the difference between two yields is established after different fixed 

treatments have been applied to the plot. In his paper he showed how randomisation 

can be used to make the statistical inference in the comparative experiment. He 

does not deal with the type of comparative experiment with a population for which 

inference needs to be made by using a sample for that population. As Pitman 

(1937a, 1937b, and 1938) indicated, the randomisation theory can be applied to 

samples without any knowledge of population. 

All the work done by the authors mentioned here and other authors of that time was 

mainly centred on the design of experiments and observational studies. The use of 

permutation tests is permissible by randomisation in design of experiments and the 

exchangeability in observational studies. Their use however was not practical 

because they are computer intensive and the lack of computer availability made it 

practically impossible to perform them in real problems, even those of small 
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samples. Pitman (1938) showed that the F test is an approximation to permutation 

tests which is an exact test; hence their use was limited to justifying the validity of the 

ANOVA F test.  

 

2.3 Jackknife 

 

In 1949 Quenouille(1949) introduced the jackknife technique to eliminate the bias on 

the serially correlated estimators in time series by splitting the sample into two 

groups. He explored the splitting of the sample size n=kg into g groups of size k. In 

his review of the jackknife technique Miller(1974) pointed out that much of the theory 

developed for jackknife technique uses n=g and k=1. Quenouille introduced the use 

of jackknife as a technique for bias reduction while Tukey (1958) introduced it as a 

technique to obtain robust interval estimation. Adopting the Huber (2002) notation, 

the idea of the jackknife technique is as follows: 

DEFINITION. Let 𝑥1, 𝑥2 …… . . 𝑥𝑛  be a sample of independent and identically 

distributed random variables and Let 𝑇𝑛 = 𝑇𝑛(𝑥1, 𝑥2, . . . 𝑥𝑛)  be an arbitrary statistic 

based on sample size  𝑛  and 𝑇𝑖,𝑛−1 = 𝑇𝑛−1(𝑥1, 𝑥2, . . . 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛)  be a statistic 

based on sample size 𝑛 − 1  with an observation 𝑥𝑖 omitted. A bias reduced estimate 

𝑇𝑛
∗ estimates the same quantity as 𝑇𝑛 based on the sample of size 𝑛. Define 

 
𝑇𝑖,𝑛

∗ = 𝑛𝑇𝑛 − (𝑛 − 1)𝑇𝑖,𝑛−1 

 
(2.1)  

The estimator 𝑇𝑖,𝑛
∗  above measures the contribution of 𝑥𝑖 to 𝑇𝑛. 

The Quenouille’s estimator for the mean  

 
𝑇𝑛

∗ = 𝑛−1 ∑𝑇𝑖,𝑛
∗

𝑛

𝑖=1

 

  

(2.2)  

has a smaller bias than 𝑇𝑛. 
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Tukey pioneered the use of jackknife for interval estimation. He wanted to assess the 

influence of the individual point or observation on the statistic of interest and tools for 

estimating its variability (Huber; 2002). The tool for bias reduction developed by 

Quenouille (1949,1956) was best suited for his purpose. He referred to the technique 

as “jackknife”. Tukey established that 

 

1

𝑛(𝑛 − 1)
∑(𝑇𝑖,𝑛

∗ − 𝑇𝑛
∗)2

𝑛

𝑖=1

 

 

(2.3)  

is a variance estimate for both 𝑇𝑛and 𝑇𝑛
∗. He further proved that the statistic  

 

√𝑛(𝑇𝑖,𝑛
∗ − 𝑇𝑛

∗)

(
1

𝑛(𝑛 − 1)
∑ (𝑇𝑖,𝑛

∗ − 𝑇𝑛
∗)2𝑛

𝑖=1 )
1/2

 
(2.4)  

 

has an approximate 𝑡 distribution with 𝑛 − 1 degrees of freedom and for large 𝑛 the 

statistic is approximately normally distributed, which is useful for robust interval 

estimation. Although this result has been shown for a special case where 𝑔 = 𝑛 and 

𝑘 = 1 it also holds for a general case where there are 𝑔 groups of  𝑘 observations. In 

such a case 𝑛 is replaced by 𝑔 in the above formula. This was a very important 

contribution by Tukey that lead to the technique being called Tukey-Quenouille 

jackknife in recognition of the authors’ contribution. Brillinger (1964) used maximum 

likelihood methods to show that the statistic (2.4) has a limiting t-distribution with 

𝑔 − 1 degrees of freedom if 𝑔 is fixed and 𝑘 tends to infinity. He also outlined the 

procedure for constructing approximate confidence intervals for the parameter being 

estimated by an estimator (2.2). This is done by calculating the maximum likelihood 

estimates which are independent and asymptotically normal for each of 𝑔 groups of 

𝑘 observations. These estimates can be used for constructing the 𝑡 statistic and their 

associated confidence intervals. The smaller mean square error is achieved by 

increasing the number of groups rather than their sizes (Miller, 1974).  

Some of the authors who made further contributions to the technique for bias 

reduction are Schucany, Gray and Owen (1971) in the second-order jackknife (Miller, 
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1974). In the same paper Schucany, Gray and Owen further addressed the cases 

where bias is of order greater than 2 to provide the jackknife generalisation (Miller, 

1974). Durbin (1959) applied the jackknife to ratio estimation by investigating what 

happens to the estimator 

 
𝑇 = 2𝑇1 −

1

2
(𝑇2 + 𝑇3) 

 

(2.5)  

where 𝑇1 is an estimate based on n observations and 𝑇2 𝑎𝑛𝑑 𝑇3 are estimates based 

on two groups of size 
1

2
𝑛. The estimator 𝑇 has bias of 𝑂(𝑛−2). The ratio estimator 

𝑦/𝑥  is applied to the simple linear regression𝑦 = 𝛼 + 𝛽𝑥 + 𝜀 , where 𝑥  is normally 

distributed. By ignoring the 𝑂(𝑛−4) Durbin (1959) established that the estimator T 

has a smaller bias and variance than the normal ratio estimator 𝑅 = 𝑌̅/𝑋̅. When 𝑥 

has a Gamma distribution and coefficient of variation less than ¼ he established that 

the estimator T above has smaller bias and mean square error compared to the 

estimator R, but as pointed out by Quenouille (1949 and 1956) the reduction in bias 

often leads to the increase in variance. That increase is however, of smaller order  

compared to the variance itself. The variance of t is slightly higher than that of R. 

This is not of major concern since the estimator with bias and smaller mean square 

error is preferable. The optimum number of groups for the jackknife is n for the 

normal distribution i.e. each observation in its own group (Rao, 1965). This also 

holds for the gamma distribution (Rao and Webster, 1966). 

 

2.4 Bootstrap 

 

Since its inception by Quenouille (1949) the jackknife gained momentum for bias 

reduction and variance estimation. It was not until 1979 that Efron defined another 

robust non-parametric method similar to jackknife and referred to it as bootstrap. The 

two techniques are very similar: jackknife can be viewed as drawing samples of size 

n-1 without replacement while bootstrapping can be viewed as drawing the samples 

of size n with replacement. Since its inception, bootstrap gained a lot of ground and 
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became a widely used technique (Efron, 1979) as it proved to be more reliable than 

the traditional jackknife. Efron further showed that the jackknife method can be 

viewed as a linear expansion to the approximation of bootstrap. The problem 

statement in bootstrapping is: 

Given the random variables 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝑛)  its realization 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) from 

the unknown distribution function F. The bootstrap estimates in case of one sample 

can be estimated in three steps as outlined in Efron (1979) namely: 

1. Construct the empirical distribution function   𝐹̂ , putting mass 1 𝑛 ⁄ at each 

point 𝑥1, 𝑥2, … , 𝑥𝑛. 

2. With 𝐹̂ fixed, draw an independent random sample of size 𝑛 from 𝐹̂ 

3. Estimate the sampling distribution of the statistic of interest using the 

bootstrap distribution of the statistic of interest. 

If the empirical distribution 𝐹̂ = 𝐹  then the results derived from the bootstrap 

distribution should be close to the one calculated from the original sampling 

distribution (Efron, 1979). The effectiveness of the bootstrap estimator as estimator 

depends on the choice of the statistic being measured. Three methods of calculating 

the bootstrap distribution as outlined in Efron (1979) are: 

1. Direct theoretical calculations. 

2. Monte Carlo approximation to the bootstrap distribution. 

3. Taylor series expansion methods can be used to obtain the approximate 

mean and variance of the bootstrap distribution. 

 

The third method is the same as using a certain form of jackknife (Efron, 1979). 

However, the bootstrap method gained a lot of popularity because it can be easily 

implemented on the computer. The other work that Efron covered in his 1979 paper 

was the use of bootstrapping method in sample median estimation where the 

jackknife is known to fail. This was another reason why bootstrapping was seen as 

superior to the standard jackknife method. In this problem standard jackknife does 

not produce the asymptotically consistent variance for the sample median while the 

bootstrap produces the correct asymptotic variance. Bootstrapping also outperforms 
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the crossvalidation and other nonparametric methods in estimating the error rates in 

discriminant analysis (Efron, 1979).  

 

2.5 Conclusion 

 

In this chapter permutation tests were discussed from their inception. Their use at 

the time was limited by the unavailability of computers and they served as a 

motivation for the validity of ANOVA F tests. Most statisticians at that time were 

happy using the normal theory in dealing with significance testing. In design of 

experiment problems, permutation tests had lot of grounds and were perfectly 

justifiable under randomisation. In 1945 a bias reduction method by Quenouille 

emerged which Tukey later named “jackknife”. The development of jackknife applied 

to time series problems but it never gained momentum in this field. It however, 

quickly found its use in a wider spectrum of problems which Miller reviewed (1974). 

After carefully studying the jackknife Efron (1979) found some limitations of jackknife 

in its form as developed by Quenouille. This gave birth to a new method closely 

related to the jackknife which Efron (1979) created in his paper titled: Bootstrap 

another look at jackknife. This method gained a lot of ground because of its flexibility 

and it could be applied to a much wider spectrum of problems.   
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Chapter 3 

Significance Testing Using Permutation, Jackknife and Bootstrap in 

Regression. 
 

3.1 Introduction 
 

This chapter explores significance testing using permutation tests, the jackknife and 

bootstrap methods in regression.  The simple linear regression case is explored in 

some detail for all the methods. In cases where extension from simple linear to 

multiple linear regression is straight forward the procedure/algorithm is briefly 

discussed as would be seen to be the case for bootstrap and jackknife. The multiple 

regression case in permutation tests does not follow directly from the simple linear 

regression (Kennedy, 1995) unlike jackknife and bootstrap. 

 

3.2 Simple Linear Regression 

 

3.2.1 Significance testing using permutation tests in simple linear regression 

 

There is a general consensus on the application of permutation tests in simple linear 

regression where Y is regressed against X (Anderson, 2001) and (Kennedy et al., 

1996). In the equation  

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖  (3.1)  

 

where 𝛽0 is the intercept, 𝛽1 is the slope of the straight line, 𝑋𝑖 is considered fixed 

and 𝜀𝑖  is the random error. The null hypothesis of interest is 𝐻0: 𝛽1 = 0  and the 

alternative is 𝐻1: 𝛽1 ≠ 0. Under normal circumstances the significance test that would 

be applied to test the null hypothesis is the Student t test i.e. let 𝑛 be a sample size, 
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𝑠𝑒(𝛽̂1) be a standard error of 𝛽̂1 , 𝛼  be level of significance then the two sided t 

statistic is  

 
𝑡0 =

𝛽̂1

𝑠𝑒(𝛽̂1)
 ~𝑡𝑛−2. 

  

(3.2)  

The null hypothesis is rejected if  |𝑡0 | ≥ 𝑡𝛼/2;𝑛−2 or if the probability of obtaining the 

test statistic that is at least as extreme as the observed t value i.e. the p-value is less 

than the level of significance 𝛼. 

 In an event where errors in (3.1) are not identically and independently normally 

distributed with constant variance, the normality assumption in the errors can be 

substituted with an exchangeability assumption and a permutation test applied as 

follows: 

1. Compute the t value, say 𝑡0 on the original sample.  

2. Generate permuted samples by permuting either X or Y. 

3. Compute the t values for each permuted sample (say 𝑡𝑖). 

4. Construct the distribution of the resulting t values. 

5. Plot the value of 𝑡0 on the distribution constructed in step 4. 

 

The null hypothesis is rejected if the proportion of t values greater than or equal to 𝑡0 

in absolute value, are less than the level of significance 𝛼. In practice the sample 

sizes are such that it is not computationally feasible to use all possible permutations. 

Step 2) will then be replaced by taking a random sample of permutations.  

 

3.2.2 Significance testing using jackknife method in simple linear regression 

 

The jackknife method developed by Quenouille (1949) for bias reduction and Tukey 

(1958) for variance estimation provides another resampling method used for 

statistical significance test under non-normality assumptions. Jackknife is closely 

related to the bootstrapping method (Efron, 1979). Here the significance testing will 
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be explored by using the jackknife method. The two choices that will be explored in 

this section are traditional Quenouille (1949) methods by delete 1 jackknife from the 

original sample and delete d jackknife (Efron and Gong, 1983). As the names 

suggest, deleting 1 jackknife deletes one observation at a time and computes the 

estimates of interest i.e. each statistic is computed from the n samples of size n-1 

each, while the delete d jackknife has samples of size 𝑛 − 𝑑 . Wu (1986) also 

proposes using the weighted jackknife estimates which is robust for the variance of 

𝛽̂1 against the effects of heteroskedastic errors. 

The simple linear regression model (3.1) will now be considered. The steps for 

delete 1 jackknife significance testing for null hypothesis (𝐻0: 𝛽1 = 0 𝑣𝑠 𝐻1: 𝛽1 ≠ 0)    

is as follows: 

1. Regress Y on X using equation (3.1) to obtain the least squares estimates. 

𝛽̂0, 𝛽̂1 and the standard error 𝑠𝑒(𝛽̂1), then compute the t statistic 𝑡0 =
𝛽̂1

𝑠𝑒(𝛽̂1)
⁄   

2. Order the pairs (𝑋𝑟 , 𝑌𝑟) 𝑟 = 1,… . , 𝑛 of observations in a sequence. 

3. Omit the rth pair (𝑋𝑟 , 𝑌𝑟) at a time and draw a sample of the remaining  𝑛 − 1 

pairs. 

4. Compute the least squares estimator  𝛽̂1
𝐽𝑟  𝑟 = 1,… , 𝑛  and its standard error 

from the sample with the rth pair omitted. 

5. Compute the respective the t statistic as 𝑡𝐽𝑟 =
 𝛽̂1

𝐽𝑟
−𝛽̂1

𝑠𝑒( 𝛽̂1
𝐽𝑟

)
 , 𝑟 = 1,… . , 𝑛  for the 

sample. 

6. Repeat step 3 to 5 and generate the empirical distribution of 𝑡𝐽𝑟. 

7. The t statistic 𝑡0 from the original sample is plotted on the distribution of 𝑡𝐽𝑟. 

 

The null hypothesis is rejected against a two sided alternative if the absolute value of 

𝑡0 is greater than or equal to the 100 (1 −
𝛼

2
)  percentile of jackknife distribution. The 

delete d jackknife follows a similar algorithm. The only difference is at step 3 where 

d-observations are deleted each time resulting in smaller sample sizes (𝑑 > 1) for 
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each jackknife sample. The sample sizes are 𝑛 − 𝑑  and there would be 𝑆 = (𝑛
𝑑
) 

samples.  

 3.2.3 Significance testing using the bootstrapping method in simple linear 

regression 

 

As discussed in the previous chapter, bootstrapping methods are well known for their 

credibility in estimating confidence intervals. Their use in significance testing was not 

studied in great detail until almost a decade later. Among the first authors to explore 

the use of bootstrap method in significance testing were Hinkley (1988), Hall and 

Wilson (1991). The close relationship between confidence intervals and hypothesis 

testing made studying hypothesis testing using bootstrap tests easier since the use 

of bootstrapping in confidence interval was studied in great details.  

 

Hall and Wilson (1991) gave two guidelines for the use of bootstrapping in 

hypothesis testing. “The first guideline says that care should be taken to ensure that 

even if the data might be drawn from the population that fails to satisfy 𝐻0 , 

resampling is done in the way that reflects  𝐻0 ” (Hall and Wilson, 1991).  “The 

second guideline argues that bootstrap hypothesis testing should use methods that 

are already recognised as having good features in the closely related problem of 

confidence interval construction” (Hall and Wilson, 1991). The second guideline 

immediately connects bootstrap hypothesis testing with bootstrap confidence 

intervals where great strides had been made in terms of theory. Hall and Wilson 

(1991) argue that the first guideline has a direct impact on the power of a test. This 

implies that not adhering to the first guideline, compromises the power of the test 

against the alternative hypothesis. The second guideline does not have a direct 

impact on power. However its non-adherence has a huge impact on the coverage 

accuracy. This reason shaped the direction for hypothesis testing using 

bootstrapping methods. Hall and Wilson (1991) mentioned that these guidelines had 

been implicit in the work done prior to 1991 but due to heavy theory in the papers 

presented before, it could have easily escaped the attention of biometricians with a 

resulting non adherence to the guideline. In both bootstrapping methods to be 
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considered in the next section both possibilities of resampling the observations and 

residuals will be explored 

Consider the regression equation (3.1). 

 

There are two choices on what to bootstrap, namely;  

1) Bootstrap pairs ( 𝑋𝑖
∗, 𝑌𝑖

∗)  𝑖 = 1,2, … , 𝑛 of size 𝑛  with replacement 

from (𝑋1, 𝑌1), (𝑋2, 𝑌2); … (𝑋𝑛, 𝑌𝑛). 

2) Bootstrap the residuals 𝜀𝑖
∗ 𝑖 = 1,2, … , 𝑛  of size 𝑛  with replacement from 

𝜀1̂, 𝜀2̂, … , 𝜀𝑛̂ 

The choice of an appropriate method is determined by the practitioner and depends 

on the properties of the dataset. There is no single method that works well in all 

different situations as both methods have their advantages and disadvantages. This 

implies that certain assumptions are required before the choice of method to use is 

made. The two methods will be dealt with in some detail in the next subsections. 

 

3.2.3.1 Bootstrapping pairs 

 

Method 1 (bootstrapping pairs) which was proposed by Freedman (1981) implicitly 

means that there is no conditioning on 𝑋𝑡  because each bootstrap sample has a 

different 𝑋𝑡 . It is on this note that Hinkley (1988) criticized this method after the 

observation that method 1 might not be suitable for the regression problem since the 

inference in regression model is made conditional to say 𝐺 = (𝑥1, 𝑥2, … , 𝑥𝑛) and by 

bootstrapping the 𝑋’𝑠  one runs a risk of simulating a dataset whose distribution 

𝐺∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗) is very different from G. Despite Hinkley’s view, bootstrapping 

pairs is a very useful tool. MacKinnon (2002) outlines the advantages of this method 

as follows; 

 Bootstrapping pairs works well even when there is a presence of 

heteroskedasticity in the residuals. 
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 It works well for dynamic models i.e. regressing the dependent variable on the 

lagged dependent variables.  

 It can be applied in a wide range of models. 

 In multivariate models the pairs and residual bootstrap can be combined by 

organising residuals as a matrix and applying pairs on its rows, thus 

preserving cross-equation correlations. 

 

The general procedure of significance testing in a regression model in the presence 

of heteroskedasticity is outlined below: 

Consider simple linear regression 

 
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖 ,          𝑢𝑖 = 𝜎𝑖𝜀𝑖, 

 

(3.3)  

where 𝜎𝑖
2 is the variance of the error terms, here the dependent and independent 

variable pair is sampled and each bootstrap regression equation is 

 
𝑌𝑖

∗ = 𝛽0 + 𝛽1𝑋𝑖
∗ + 𝑢𝑖

∗  

 

(3.4)  

where each pair (𝑋𝑖
∗, 𝑌𝑖

∗) is drawn from the pairs (𝑋𝑖, 𝑌𝑖) where 𝑖 = 1,2, … . , 𝑛. Suppose 

that the hypothesis of interest is   𝐻0 ∶  𝛽1 = 0  and  𝐻1 ∶  𝛽1 ≠ 0 as is generally the 

case. The least squares estimate 𝛽̂1  is calculated for the regression equation. A 

usual t test is computed 

 𝑡0 =
𝛽̂1

𝑠𝑒(𝛽̂1)
  

 

(3.5)  

where 𝑠𝑒(𝛽̂1) is the standard error of 𝛽̂1. Suppose 𝛼 is the level of significance. The 

same procedure is applied B times on B bootstrap samples calculating the least 

squares estimators (say 𝛽̂1,𝑗
∗ ) and their corresponding standard errors (𝑠𝑒(𝛽̂1,𝑗

∗ ))  then 

the 𝑡 statistic is calculated for each 𝑗𝑡ℎ bootstrap sample as follows  

𝑡𝑗
∗ =

𝛽̂1,𝑗
∗ − 𝛽̂1

𝑠𝑒(𝛽̂1,𝑗
∗ )
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according to Hall and Wilson (1991) second guideline which states that the test 

statistics should be based on 
𝜃̂∗−𝜃̂

𝜎̂∗
 where 𝜃∗ is a bootstrap estimate, 𝜃 is the estimate 

based on the original sample  and 𝜎̂∗ is the standard error of a bootstrap estimate, in 

this study the above quantities are given by 𝛽̂1,𝑗
∗ , 𝛽̂1 and 𝑠𝑒(𝛽̂1,𝑗

∗ ). 

 

The empirical distribution of bootstrapped t statistic  𝑡𝑗
∗, 𝑗 = 1,… , 𝐵 is constructed and 

the value of 𝑡0 is plotted on the bootstrapped distribution. The null hypothesis of 𝛽1 is 

rejected in favour of alternative if the absolute value of 𝑡0 is greater than or equal to 

the 100 (1 −
𝛼

2
)  percentile of the bootstrap distribution. 

 

3.2.3.2 Bootstrapping residuals 

 

The bootstrapping residuals have been generally accepted by many authors and the 

method allows for direct comparison with other re-sampling methods like permutation 

test. A practitioner needs to answer two questions before applying the bootstrapping 

residual method, namely: 

 Are the errors identically distributed? 

 Are the errors independent? 

If the answer is yes to both questions, then the bootstrapping residuals generally 

outperform the bootstrapping pairs method. From this point of view the bootstrapping 

residuals methods will be dealt with in detail. Two methods of bootstrapping 

residuals will be considered, namely restricted residuals and unrestricted residuals. 

Consider equation (3.1) 

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖     𝑖 = 1,2, … . , 𝑛  (3.6)  

 

with 𝜀𝑖 identically distributed with mean zero and a constant variance. The test of 

significance for the least squares estimator 𝛽̂1 can be conducted firstly in a way that 
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reflects the null hypothesis even if the bootstrap samples are drawn for the 

population that fails to satisfy the null hypothesis (Hall and Wilson, 1991). 

Paparoditis and Politis (2005) outline the steps as follows: 

1. Regress Y on X as in equation (3.8) to obtain the least squares estimates 

𝛽̂0, 𝛽̂1 and the standard error of 𝛽̂ then compute the t statistic 𝑡0 . 

2. Assume that the null hypothesis is true, then fit the constant model to 

obtain the estimate  𝛽̂0. 

3. Estimate the residuals under null hypothesis (𝐻0 : 𝛽1 = 0) as 𝜀𝑖̂ = 𝑦𝑖 − 𝛽̂0. 

4. Sample the residuals 𝜀𝑖
∗   𝑖 = 1,2, … , 𝑛 with replacement from the empirical 

distribution 𝜀1̂, 𝜀2̂, … . . 𝜀𝑛̂. 

5. Generate the corresponding Y observations from  𝑌𝑖
∗ = 𝛽̂0 + 𝜀𝑖

∗. 

6. Regress the bootstrapped Y i.e. 𝐸(𝑌∗|𝑋) = 𝛽0 + 𝛽1𝑋  to obtain the least 

squares estimator 𝛽̂1
∗
  and its standard error from the bootstrap sample. 

7. Repeat step 4 to 6 B times and compute  𝑡𝑗
∗ statistic for each bootstrap 

sample and generate the empirical distribution of the 𝑡𝑗
∗. 

8. Plot 𝑡0 on the bootstrapped distribution. 

 

The null hypothesis of 𝛽1 is rejected by the bootstrap method if the absolute value of 

𝑡0 is greater than or equal to the 100 (1 −
𝛼

2
) bootstrap percentile 𝑡

1−
𝛼

2

∗ . Paparoditis 

and Politis (2005) also provide an alternative way of applying the bootstrapping 

residual. In that case the null hypothesis is not imposed in the way that residuals are 

bootstrapped. This is referred to as an unrestricted residual bootstrapping (te Braak, 

1992). The bootstrap residuals 𝜀𝑖
∗   𝑖 = 1,2, … , 𝑛  are sampled from the empirical 

sample of residual 𝜀1̂, 𝜀2̂, … . . 𝜀𝑛̂ generated as 

𝜀𝑖̂ = 𝑌𝑖 − 𝛽̂0 − 𝛽̂1𝑋𝑖 

The choice of method to use for bootstrapping residuals (restricted vs. unrestricted) 

depends on the choice of test statistic. In the above procedure (step 7) the t-statistic 

is used as a pivotal quantity. In this case the results from both methods are 
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approximately equivalent, regardless of whether the null hypothesis is true or not. 

According to Hall and Wilson (1991) the first guideline for bootstrap hypothesis 

testing is that the first method is appropriate. Many authors have advocated the use 

of pivotal statistic in the bootstrap hypothesis testing because they are robust 

enough to be insensitive to the choice of the set of residuals used in re-sampling 

step (Paparoditis and Politis, 2005).  

 

If a non-pivotal statistic is used in step 7 of the above procedure, the choice of 

method to use is extremely critical because if the null hypothesis (𝐻0) is true then the 

two cases are approximately equivalent and the restricted residuals are generally 

preferable. However if the alternative hypothesis (𝐻1)  is true then the first case 

(restricted) can be very erratic and the unrestricted residuals are then preferable 

(Paparoditis and Politis, 2005). The reason is that if the alternative hypothesis is true, 

then the empirical variance of restricted residuals is greater than that of the 

unrestricted residuals based on the least squares estimator. Although both methods 

achieve a desired level of test, there are power concerns when the restricted 

residuals method is applied because it “may fail to identify the optimum critical region 

for the test under alternative hypothesis” (Paparoditis and Politis, 2005). It is for this 

reason that the pivotal statistic is recommended for this type of bootstrap hypothesis 

testing. 

 

3.3 Multiple Linear Regression 
 

The next sections will be outlining the use of permutation tests, jackknife and 

bootstrapping methods in the significance testing in multiple regression. In matrix 

notation the model is described as follows, 

 

 

 

𝒀 = 𝑿𝜷 + 𝒁𝜸 + 𝜺 

 

(3.7)  
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where 𝒀 is an (n x 1) response vector, X and Z are (n x p) and (n x q) matrices of 

explanatory variables respectively containing 𝜷  and 𝜸  of size p and q unknown 

regression coefficients and 𝜺  the error distributed with mean zero and variance 

covariance matrix 𝑰𝜎2 . The null hypothesis test is 𝐻0: 𝜷 = 𝟎 𝑣𝑠 𝐻1: 𝜷 ≠ 𝟎  ie. the 

effects of variable X in predicting Y in the presence of the variable Z is zero.  

The following section will begin by showing why the extension from simple linear 

regression is not straight forward. 

3.3.1 Significance testing using permutation tests in multiple linear regression 

 

In section 3.2.1 significance testing in simple linear regression using permutation test 

was considered. In simple linear regression the t-statistic was used to derive the p-

value, however other equivalent choices of the statistic can be considered in deriving 

the p-values. For a simple linear regression model permuting the dependent variable 

or permuting the explanatory variable was equally correct.  

 
𝑆𝑥𝑦 = ∑(𝑥𝑖𝑦𝑖)

𝑛

𝑖=1

 

 

(3.8)  

is monotonically related to the least squares estimate 

 
𝛽̂1 =

𝑆𝑥𝑦

𝑆𝑥𝑥
 

 

(3.9)  

the t statistic 

 
𝑡 =

𝑆𝑥𝑦

𝑆𝑥𝑥𝑠𝑒(𝛽̂1)
 

 

(3.10)  

and the square of the correlation coefficient 

 
𝑟2 =

𝑆𝑥𝑦
2

𝑆𝑥𝑥𝑆𝑦𝑦
 

 

(3.11)  
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When permuting X variable only 𝑆𝑥𝑦 the numerator is affected hence any of the test 

statistics outlined above are “equivalent” statistics under permutation (Kennedy and 

Cade, 1996). This relationship only works for simple linear regression. It does not 

hold under multiple linear regression because of the presence of the covariables. 

The theory takes a different direction when multiple linear regression is considered.  

In multiple regression there are many choices of what to permute, unlike in simple 

linear regression where the response variable Y is permuted (Anderson & Robinson, 

2001). Several permutation methods in multiple linear regression have been 

explored in the literature. Manly (1991), te Braak (1992), Kennedy (1995), Kennedy 

and Cade (1996), Anderson and Legendre (1999), Anderson and Robinson (2001) 

are among those who gave an account of these different methods. Anderson and 

Legendre (1999) and Kennedy (1995) applied Monte Carlo methods in different 

permutation tests and found that the tests were not exact and none of them gave 

identical results. Anderson and Robinson (2001) gave a theoretically exact 

permutation test for the null hypothesis.  

3.3.1.1 Exact permutation tests 

 

This subsection will follow the work of Anderson and Robinson (2001). Permutation 

tests considered in section 3.2.1 are exact tests and Anderson and Robinson (2001) 

state that even when n is large and it is not possible to consider all n! permutations, 

taking a subset 𝑚 ≤ 𝑛! the test is still exact. The multiple regression exact tests are 

often not possible in practice because they require knowledge of the relationship of 

the response variable and the explanatory covariable under the null hypothesis 

(Anderson and Robinson, 2001). Exact permutation tests in multiple regression 

proceed as follows: 

Consider the following univariate case of equation (3.7).Without loss of generality if 

Y, X and Z are standardised variables with mean zero i.e. 

 
𝑌𝑖 = 𝛽1𝑋𝑖 + 𝛽2𝑍𝑖 + 𝜀𝑖 

 

(3.12)  
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According to equation (3.12) when the null hypothesis is true, Y is directly related to 

Z and only related to X through Z giving the two equations 

 
𝑌𝑖 = 𝛿𝑍𝑖 + 𝜇𝑖 

 

(3.13)  

and  

 
𝑋𝑖 = 𝛾𝑍𝑖 + 𝑢𝑖 . 

 

(3.14)  

 

Instead of the t-statistic Anderson and Robinson (2001) used the squared correlation 

coefficient as a test statistic when examining the different permutation methods, 

which uses the relationship of X and Z in equation (3.14). Anderson and Legendre 

(2001) showed that the squared correlation coefficient is a pivotal test statistic and 

also showed the relationship between the squared correlation coefficient and the t-

statistic.  

Assuming that the null hypothesis is true as it is the case in Hall and Wilson (1991) 

guideline. Under the null hypothesis 𝐻0: 𝛽1 = 0 , 𝑌𝑖 = 𝛿𝑍𝑖 + 𝜇𝑖 and adopting the 

notation used by Anderson and Robinson (2001) the hypothesis testing is based on 

 𝑟2 =
∑{(𝑌𝑖 − 𝛿𝑍𝑖)(𝑋𝑖 − 𝛾𝑍𝑖)}

2

∑(𝑌𝑖 − 𝛿𝑍𝑖)2 ∑(𝑋𝑖 − 𝛾𝑍𝑖)2
 

(3.15)  

 

with 𝛿 =
𝑆𝑧𝑦

𝑆𝑧𝑧
⁄  and for fixed X and Z, 𝛾 is known. (3.15) provides the means to do 

the partial test for the relationship between Y and Z in the presence of other 

relationship of X and Z. If 𝛿  is known then the exact test can be obtained by 

permuting Y conditioned on X. The residuals can be calculated from the known 

relationship between Y and X and from the distribution of true errors 𝜇𝑖  , 𝑖 = 1, . . , 𝑛  

permute the residuals  µ𝑖
𝜋 𝑖 = 1,… , 𝑛 .  Using permuted residuals under the null 

hypothesis the true observations Y conditional on X can be generated as 



 
 
 
 

23 
 

 
𝑌𝑖(𝜋) = 𝛿𝑍𝑖 + 𝜇𝑖

𝜋 

 

(3.16)  

where the 𝜋 superscripted variable is the permuted variable and the 𝜋 subscripted 

variables are derived from the permuted and non-permuted variables. The test 

statistic under the null hypothesis for an exact test uses equation (3.15) with 

𝛿𝜋 =
∑𝑌𝑖(𝜋)𝑋𝑖

∑𝑋𝑖
2⁄  and 𝑌𝑖(𝜋) i.e. 

 
𝑟𝜋

2 =
∑{(𝑌𝑖(𝜋) − 𝛿𝜋𝑍𝑖)(𝑋𝑖 − 𝛾𝑍𝑖)}

2

∑(𝑌𝑖(𝜋) − 𝛿𝜋𝑍𝑖)2 ∑(𝑋𝑖 − 𝛾𝑍𝑖)2
 

 

(3.17)  

where 𝑌𝑖(𝜋 ) − 𝛿𝜋 𝑋𝑖 is the residual of 𝑌𝑖(𝜋) without the effect of X. The p-value of an 

exact test of hypothesis is the proportion of 𝑟2 calculated from the n! permutations 

that are greater than or equal to the 𝑟2 calculated from the original sample. This test 

depends on the order statistic of the original Y observations (Anderson and 

Robinson, 2001). However as mentioned earlier this exact test assumes that 𝛿 is 

known which is not the case in reality, making it impossible to conduct this test in a 

practical situation. This resulted in the reliance on approximate permutation tests to 

perform significance testing in multiple regression. Approximate permutation tests fall 

within two categories namely permuting raw data and permuting residuals. There are 

choices on what to permute, namely raw data permutation and the model under 

which residuals are permuted. These will be dealt with in the next subsection. 

 

3.3.1.2 Permuting raw data 

 

Two methods of permutation tests that have been studied in literature are 

permutation of the dependent variable Y which authors such as Kennedy and Cade 

(1996) and Anderson and Robinson (2001) attribute to Manly (1991), and 

permutation of the X variable which te Braak (1992) and Kennedy and Cade (1996) 

have mainly attributed to Collins (1987) and Oja (1987). From equation (3.14) X, Y 

and Z are multivariate variables but for notational ease X, Y and Z are restricted to a 

univariate case. The univariate version of equation (3.14) is equation (3.15). Without 
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loss of generality Y, X and Z are standardised variables with mean zero. The 

hypothesis test of interest is 𝐻0: 𝛽1 = 0 against the two sided alternative.  

 

Permute the X variable 

 

The following algorithm can be used for test of hypothesis when the X covariable is 

permuted. From the multiple regression equation (3.12):  

1. Fit the regression model to the data and obtain the least squares estimate, its 

standard error and compute the t statistic. 

2. Permute the X variable to generate the permuted 𝑋𝜋 observations. 

3. Regress the original Y on the permuted X and original Z. 

4. Repeat step 2 and 3 a number of times to obtain the t-statistic distribution. 

5. Plot the t-statistic computed from the original data on the distribution of the 

permuted t-statistic. The p-value is the proportion of 𝑡𝑖(𝜋) ≥ 𝑡0. 

 

This method has been criticised by te Braak (1992) and Welch (1990) because it 

does not preserve the collinearity between the predictor variables X and Z as it 

violates the ancillary principle. Kennedy and Cade (1996) however point out that if 

the pivotal statistic is employed, the collinearity in the original sample should not 

affect the test. Under a simple linear regression, the least squares estimate is 

equivalent in randomisation to a t-test (refer to equations 3.8 to 3.11). According to 

Kennedy and Cade (1996), Oja and Collins extended this equivalence to the multiple 

regression where it is no longer applicable. The least squares estimate of the 

parameters in equation (3.14) is given by  

 
𝛽̂ =

𝑆𝑥𝑦𝑆𝑦𝑦 − 𝑆𝑧𝑦𝑆𝑥𝑧

𝑆𝑥𝑥𝑆𝑦𝑦 − (𝑆𝑥𝑧)2
. 

 

(3.18)  

Clearly the denominator of the least squares estimate is affected by the permutation 

of the X variable in this case, hence the equivalence relation does not hold anymore. 
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This method is only useful in repeated samples if it uses a pivotal statistic (Kennedy 

and Cade, 1996). 

 

Permute the Y variable 

 

Permuting X method is not commonly used primarily because of its violation of the 

“ancillary principle”1 because it ignores the collinearity between X and Z (Welch, 

1990). The alternative method of permuting a raw variable which does not violate the 

ancillary principle is permuting the Y variable method. The same procedure used in 

the permute X method is applicable to permute Y method with the exception of step 

3. In step 3 the permuted Y variable is regressed against X and Z (unpermuted) to 

obtain the least squares estimate of 𝛽. The preference of the permute Y method over 

permute X methods arises from this point since it preserves collinearity between X 

and Z (Anderson and Legendre, 1999). Kennedy and Cade (1996) were not in favour 

of this method claiming that this method is not justified when the nuisance parameter 

𝛽2  in equation (3.12) is not equal to zero. Anderson and Legendre (1999) are of a 

different view when they mentioned that “The rationale for this method is that the 

permutable units for the test are the original Y values, independent of any model 

which might be imposed: that is any value of Y could have been observed 

associated with any combination of paired values (X,Z)”. The common criticism from 

Anderson and Legendre (1999) and Kennedy and Cade (1996) was Manly’s use of 

non-pivotal statistic (least squares estimate 𝛽̂1). 

 

3.3.1.3 Permutation of residuals 

 

Two methods of permuting residuals will the discussed in this subsection namely: 

permutation of residuals under the reduced model and permutation of residuals 

under the full model. 

                                                           
1 The principle underlying hypothesis testing is to compare what 

was actually observed with what could have been observed in hypothetical 
repetitions of the original experiment, under the null hypothesis (Sandved, 1966) 
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 Permuting residuals under the reduced model 

 

The methods by Freedman and Lane (1983) and Kennedy (1995) are two closely 

related methods which both permute the residuals under the reduced model. 

Anderson and Legendre (1999) outline the procedure as follows: 

1. Regress Y on both X and Z as in equation (3.12) to obtain the least squares 

estimates of 𝛽̂1 of 𝛽1 and t-statistic 𝑡0. 

2. Regress Y on Z as in equation (3.13) and obtain the least squares estimate 

𝛿 ̂of 𝛿   and residuals 𝜇̂𝑖. 

3. Permute the residuals  𝜇𝑖
𝜋  from the distribution of 𝜇̂𝑖 𝑖 = 1,… , 𝑛 . 

4. Generate the new pseudo values of Y by using the residuals found in step 3 

using (3.13) i.e. 𝑌𝑖(𝜋) = 𝛿 ̂𝑍𝑖 + 𝜇𝑖
𝜋. 

5. The new Y observations found in step 4 are then regressed against X and Z 

using equation (3.14) i.e. 𝐸(𝑌𝑖(𝜋)) = 𝛽1(𝜋)𝑋𝑖 + 𝛽2(𝜋)𝑍𝑖  to obtain the estimate 

𝛽̂1(𝜋) and 𝑡𝑗(𝜋) =
𝛽̂1(𝜋) 

𝑠𝑒(𝛽̂1(𝜋))
⁄  the t-statistic. 

6. Step 2 to 5 is repeated many times to obtain the distribution of the 

permutation t-statistic. 

7. The p-value of the two sided t-test is calculated as the proportion of the 

permutation t statistic greater than or equal in absolute value to the reference 

t-statistic from the full model with the original variables. 

 

Instead of the t-statistic Anderson and Robinson (2001) used the squared correlation 

coefficient as a test statistic when examining the different permutation methods, 

which uses the relationship of X and Z in equation (3.16) i.e.  

 

 𝑟𝜋
2 =

∑{(𝑌𝑖(𝜋) − 𝛿𝜋𝑍𝑖)(𝑋𝑖 − 𝛾𝑍𝑖)}
2

∑(𝑌𝑖(𝜋) − 𝛿𝜋𝑍𝑖)2 ∑(𝑋𝑖 − 𝛾𝑍𝑖)2
 

(3.19)  
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Freedman and Lane (1983) specified that the sample size has to be large, there 

should be no outliers in the data and the degree of collinearity between X and Z 

should be low. Kennedy (1995) explores a method similar to Freedman and Lane’s 

method but his paper does not provide details on how to apply this method. 

Anderson and Legendre (1999) outline the detailed procedure that can be followed 

when this method is applied as follows: 

1. Regress Y on both X and Z as in equation (3.12) to obtain the least squares 

estimates 𝛽̂1 of 𝛽1 and t-statistic 𝑡0. 

2. Regress Y on Z as in equation (3.13) and obtain the least squares estimate 

𝛿 ̂of 𝛿   and residuals 𝜇̂𝑖. 

3. Permute the residuals   𝜇𝑖
𝜋  from the distribution of 𝜇̂𝑖. 𝑖 = 1,… , 𝑛 . 

These three steps are exactly the same as the Freedman and Lane method. The two 

methods differ from step 4. 

4. Original X variable is regressed against Z using equation (3.14) to obtain the 

residuals𝑢𝑖  𝑖 = 1, … . . , 𝑛 . These residuals remain fixed across all different 

permutations. 

5. Regress the permuted residuals in step three against residuals found in step 4 

according to the model 𝐸(𝜇𝑖
𝜋  ) =  𝛽1(𝜋)𝑢𝑖 to obtain the least squares estimate 

𝛽̂1(𝜋) and t test statistic 𝑡𝑗(𝜋). 

6. Repeat step 3 and step 5 many times and compute the t-statistic under 

permutation each time.  

7. The p-value of the two sided t-test is calculated as the proportion of the 

permutation t-statistic greater than or equal in absolute value to the reference 

t-statistic from the full model with the original variables 

Kennedy’s method gives the same slope coefficient as Freedman and Lane’s 

method but different values of the t-statistic under permutation (Anderson and 

Legendre, 1999). However the results obtained from both models are similar. 
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Permuting residuals under the full model 

 

The second type of permutation of residuals does not assume that the null 

hypothesis is true, unlike the Kennedy and Freedman and Lane methods. In this 

method permutation is performed under the alternative hypothesis. It was first 

presented by te Braak (1992) as permutation analogue of a bootstrap significance 

test. Under the alternative hypothesis the exchangeability of residuals requirement is 

not required (te Braak, 1992). It differs from the bootstrapping residuals method in 

that in bootstrapping the residuals are sampled with replacement while in 

permutation methods they are sampled without replacement. The application of this 

method was detailed by Anderson and Legendre (1999) as follows: 

1. Y is regressed on both X and Z as in equation (3.12) to obtain the estimates 

𝛽̂1, 𝛽̂2 of 𝛽1, 𝛽2 respectively, t statistic for 𝛽̂1 and the residuals 𝜀𝑌̂|𝑋𝑍. 

2. From the distribution of 𝜀𝑌̂|𝑋𝑍  draw the sample of residuals 𝜀𝑌|𝑋𝑍
𝜋  without 

replacement. 

3. The new values of Y are calculated from equation (3.12) by replacing the 

unknown errors 𝜀𝑖 by the permuted residuals from step 2. 

4. The new values of Y say 𝑌𝜋 are regressed on X and Z to find 𝛽̂1(𝜋), and its 

standard error used to compute the t statistic under permutation as follows  

𝑡𝑗(𝜋) =
𝛽̂1(𝜋) − 𝛽̂1

𝑠𝑒(𝛽̂1(𝜋))
. 

Alternatively in step 4 the permuted residuals can be regressed against X and Y to 

obtain the 𝛽̂1(𝜏) different from the one in step 4 and the t statistic computed as 

𝑡𝑗(𝜏) =
𝛽̂1(𝜏)

𝑠𝑒(𝛽̂1(𝜏))
 

 (Anderson and Legendre, 1999). 

5. Steps 2 to 4 are repeated many times to generate the distribution of the t-

statistic under permutation. 
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6. The t-statistic calculated for the original sample is placed on the distribution of 

the t-statistic from the permutated data. The p value is computed as the 

proportion of the t-statistic from the permuted samples greater than or equal in 

absolute value to the t-statistic from the original sample i.e. 𝑝 𝑣𝑎𝑙𝑢𝑒 = 𝑃(𝑡𝜏 ≥

𝑡0). 

 

In all the permutation test methods the null hypothesis is rejected if the p value is 

less than the level of significance 𝛼.  

 

3.3.2 Significance testing using bootstrap in multiple linear regression 

 

Bootstrap hypothesis testing in multiple regression extends directly from the simple 

linear regression similar to the jackknife method. The two methods or procedures of 

bootstrapping namely bootstrapping pairs and bootstrapping residuals are applicable 

in a multiple regression setup. Equation (3.12) written in matrix form can be 

considered as in equation (3.7) and the interest is in testing the effect of X in 

explaining Y in the presence of the covariable Z. In the presence of 

heteroscedasticity in the errors, MacKinnon (2002) suggests using the bootstrapping 

pairs method of Freedman (1981) to handle this problem. In this method each Y 

observation sampled is sampled together with the 𝑿 row to form 

 𝑌𝑖
∗ = 𝑿𝒊

∗′𝜷 + 𝜺𝒊
∗. (3.20)  

 

The row vector (𝑿𝑖
∗, 𝑌𝑖

∗)  is of the exact form as (𝑿𝒊, 𝑌𝒊)  the original row vector, 

for 𝑖 = 1,2, … , 𝑛 . The method follows in a straightforward way from the simple linear 

regression case. A bootstrapping residuals method has more flexibility and allows for 

direct comparison with permutation tests (te Braak, 1992). The two choices of 

bootstrapping residuals (restricted and unrestricted bootstrapping) as outlined by 

Paparodotis and Politis, (2005) still hold in multiple regression as they do in the 

simple linear regression case.  
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3.4 Analysis of Variance (ANOVA) 
 

In the previous sections permutation tests, jackknife and bootstrapping were 

considered for significance testing of a partial regression coefficient in the presence 

of other covariables.  The same procedure can be used in the analysis of variance. 

Consider the one factor ANOVA model 

 𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜀𝑖𝑗                 𝑖 = 1,2, … , 𝑘; 𝑗 = 1, . . 𝑛 (3.21)  

 

where 𝑦𝑖𝑗 is the (𝑖𝑗) observation, 𝜇 is the common mean across all factors, 𝛼𝑖 is the 

𝑖𝑡ℎ factor and 𝜀𝑖𝑗  is the random error component. For the case of equal weightings 

the constraints on 𝛼𝑖 is; 

∑𝛼𝑖

𝑘

𝑖=1

= 0 

Hence one of the 𝑘 parameters 𝛼𝑖 can be derived from other 𝑘 − 1 parameters 𝛼𝑖 in 

the following manner: 

𝛼𝑘 = −𝛼1 − 𝛼2 − ⋯− 𝛼𝑘−1 

(Kutner et al, 2005). The ANOVA is concerned with testing the equality of the 𝑘 

factors namely 𝐻0: 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑘 = 0 vs 𝐻1: at least one of 𝛼𝑖 ≠ 0. Equation (3.21) 

can be written in a regression equation by defining the 𝑘 − 1 dummy variables 

resulting in a design matrix of the form; 

 𝑿 =

⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
 
1
⋮
⋮
⋮
⋮
⋮
⋮
⋮
1

       1
        ⋮
       1
       0
       ⋮
       0

       −1
       ⋮

       −1

       0
        ⋮
       0
       1
       ⋮
       1

       −1
       ⋮

       −1⌉
⌉
⌉
⌉
⌉
⌉
⌉
⌉
 

 

(3.22)  
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The column vector 𝜷 = [
𝜇
𝛼1

𝛼2

] 

for an example of 𝑘 = 3. By writing the design matrix in the form of equation (3.22) it 

allows for the ANOVA model (3.21) to be written in a regression form as follows: 

 𝒀 = 𝑿𝜷 + 𝜺 (3.23)  

 

Once the ANOVA model is represented as a regression equation (3.23) the null 

hypothesis 𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0 𝑣𝑠 𝐻1: at least one of 𝛽𝑖 ≠ 0, 𝑖 = 1,2, … , 𝑝. 

The appropriate test statistic is the Fisher’s F statistics given by 𝐹 =
𝑆𝑆𝑅/𝑝

𝑆𝑆𝐸/(𝑛−𝑝−1)
 for 

the linear model which includes the intercept.  The same idea was described in the 

previous section of resampling appropriately for a relevant method and computing 

the resampled F statistic  𝐹∗  each time. The p-value is thus computed as 𝑝 =

(𝑛𝑜 𝑜𝑓 𝐹∗≥𝐹)

(𝑡𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝐹∗)
 (Anderson, 2001). 

 

3.5 Conclusion 
 

In this chapter different resampling techniques were explored in some detail. In 

permutation methods there is a wide variety of choices of what to permute in multiple 

linear regression, namely the response variable Y, the explanatory variable X or 

residuals under the full model (te Braak, 1992) or under the reduced model 

(Freedman and Lane 1983). A general consensus in simple linear regression is 

permuting the response variable Y. In the jackknife method the two methods 

considered were delete 1 and delete d methods. In bootstrapping there are two 

choices on whether to bootstrap the residuals or bootstrap the observations.  
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Chapter 4 

Confidence Intervals and Percentile Based Intervals 
 

4.1 Introduction 

 

This chapter will explore the application of bootstrap and jackknife 100(1 −

𝛼) confidence intervals as well as the 𝛼/2  and (1 − 𝛼/2) percentile intervals. 

Parametric confidence intervals can be used whenever the assumption of normality 

is satisfied while the percentile interval does not require the normality assumption. It 

involves construction of an empirical distribution of least squares estimates of the 

regression coefficient computed from bootstrap/jackknife samples to obtain the 

upper  1 − 𝛼/2 and lower 𝛼/2  limits in the case of two sided percentile interval. 

 

4.2 Confidence Interval by Normal Approach 

 

Another form of significance testing for regression coefficients is through the 

computation of confidence intervals and the null hypothesis is rejected whenever the 

value under the null hypothesis does not fall within the interval limits. 

 

4.2.1 Bootstrap confidence interval by Normal Approach 

  

It is in the area of confidence intervals where the bootstrapping technique proved to 

be a very useful tool in statistics. Bootstrapping confidence internals has been 

studied in great details hence there are many ways to construct bootstrap confidence 

interval than there are to perform bootstrap tests (MacKinnon, 2002). Among many 

bootstrapping confidence interval methods the two which are constructed in a very 

similar way as the standard normal confidence interval are bootstrap t interval and 

interval based on bootstrap standard errors. The latter is referred to as bootstrap 
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confidence interval by normal approach by Sahinler and Topuz (2007). Bootstrap t 

interval uses the bootstrap test statistic 

 𝑡𝑗
∗ =

𝛽̂𝑗
∗ − 𝛽̂

𝑠𝑒(𝛽̂𝑗
∗)

,   𝑗 = 1,2, …𝐵 
(4.1)  

 

Where 𝛽̂𝑗
∗  is estimated from each bootstrap sample together with its standard 

error 𝑠𝑒(𝛽̂𝑗
∗), 𝛽̂ the estimate of 𝛽 and 𝑠𝑒(𝛽̂) the standard error of 𝛽̂ are is estimated 

from the original sample. If  𝑠𝑒(𝛽̂𝑗
∗) is replaced by 𝑠𝑒(𝛽̂) in computing test statistic 𝑡𝑗

∗, 

the resulting test statistic  𝑡𝑗
∗ is not asymptotically pivotal (MacKinnon, 2002). The 

bootstrap t interval is then given by  

  

 𝛽̂ −  𝑡1−𝛼 2⁄
∗  𝑠𝑒(𝛽̂) ; 𝛽̂ −  𝑡𝛼 2⁄

∗  𝑠𝑒(𝛽̂)  (4.2)  

 

where  𝑡𝛼 2⁄
∗  and  𝑡1−𝛼 2⁄

∗  are the (𝛼 2)%⁄  and (1 − 𝛼 2)%⁄  quantiles of the ordered  𝑡𝑗
∗. 

This method works well if the test statistic on which it is based is approximately 

pivotal (MacKinnon, 2002). Bootstrapping t can lead to intervals that are skewed 

since it may be asymmetric about zero. Efron and Tibshirani (1993) stated that this 

method cannot be trusted for setting up confidence interval for a correlation 

coefficient. 

 

The other widely used method is constructing interval based on bootstrapped 

standard errors (MacKinnon, 2002) and this is the method which will be detailed 

further following the work that was published by Sahinler and Topuz (2007) which 

they referred to as bootstrapping confidence interval by normal approach. This 

approach will be outlined below. 

 



 
 
 
 

34 
 

Sahinler and Topuz (2007) described an algorithm for bootstrapping residuals, 

estimating the regression coefficients, computing the standard error of the regression 

coefficients and finally computing the confidence interval by normal approach. 

1. Regress Y on X as in equation (3.23) to obtain the least squares 

estimates 𝜷̂ .  

2. Estimate the vector of residuals as 𝜺̂ = 𝒀 − 𝒀̂. 

3. Randomly select the random sample of residuals 𝜀𝑖
∗   𝑖 = 1,2, … , 𝑛  with 

replacement from the vector of residuals  𝜺̂. 

4. Generate the bootstrap 𝒀∗ observations using the bootstrapped sample of 

residuals from residual vector 𝜺̂  from step 3 above and ordinary least 

squares estimate obtained from step 1 i.e 𝒀∗ = 𝑿𝜷̂ + 𝜺∗. 

  

5. Regress the bootstrapped Y on fixed X i.e 𝐸(𝒀∗|𝑿) = 𝑿𝜷 to obtain the 

least squares estimator 𝜷̂𝒃𝒓   and its standard error  𝑠𝑒(𝜷̂𝒃𝒓 ) from the 

𝑟𝑡ℎ bootstrap sample. 

6.  Repeat step 3 to 6 for 𝑟 = 1,2, … . . 𝐵. 

7. Generate the empirical distribution of 𝜷̂𝒃𝒓 say 𝐹(𝜷̂𝒃𝒓). 

 

A similar approach can be followed for the bootstrap based on resampling 

observations rather than residuals which is generally applicable whenever the 

regressors are as random as the dependent variable. The algorithm is as follows: 

1. Draw a sample of size n from the elements of the Y vector and 

corresponding rows of the X matrix. 

2. Regress the resulting Y vector on the X matrix to obtain ordinary least 

squares estimates of regression coefficients. 

3. Repeat step 1 and step 2 for 𝑟 = 1,2, … . 𝐵. 

4. Generate the empirical distribution of 𝜷̂𝒃𝒓 say 𝐹(𝜷̂𝒃𝒓). 
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For both techniques (bootstrapping residuals and bootstrapping observations) 𝜷̂𝒃 the 

bootstrap estimator of 𝜷 is then computed as the mean of the individual ordinary 

least squares regression coefficient estimates computed in each of the B bootstrap 

samples considered i.e. 

 
𝜷̂𝒃 =

1

𝐵
∑𝜷̂𝒃𝒓

𝐵

𝑟=1

 

 

(4.3)   

 

and its standard error is given by 

 
𝑠𝑒(𝜷̂𝒃) = (

1

𝐵 − 1
 ∑(𝜷̂𝒃𝒓

𝐵

𝑟=1

− 𝜷̂𝒃)(𝜷̂𝒃𝒓 − 𝜷̂𝒃)′)

𝟏/𝟐

 

 

(4.4)  

The two sided 100(1 − 𝛼)%  bootstrap confidence by normal approach limits 

computed as  

 

 𝜷̂𝒃 − 𝑡
(𝑛−𝑝,1−

𝛼
2
)
𝑠𝑒(𝜷̂𝒃) < 𝜷 < 𝜷̂𝒃 + 𝑡

(𝑛−𝑝,1−
𝛼
2
)
𝑠𝑒(𝜷̂𝒃) (4.5)  

 

Due to the 𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  being assumed, the 𝛼/2 and (1 − 𝛼/2 )  quantiles of the 

distribution are symmetrical around the origin. The upper limit depends on the lower 

critical value and vice versa i.e. 𝑡𝛼/2 = -𝑡1−𝛼/2. The equation 4.3 can therefore be 

rewritten as  

 

 𝜷̂𝒃 − 𝑡
(𝑛−𝑝,1−

𝛼
2
)
𝑠𝑒(𝜷̂𝒃) < 𝜷 < 𝜷̂𝒃 − 𝑡

(𝑛−𝑝,
𝛼
2
)
𝑠𝑒(𝜷̂𝒃) (4.6)  

 

A null hypothesis of the regression coefficient is rejected whenever the value of the 

coefficient under the null hypothesis falls outside of the confidence limits.  
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4.2.2 Jackknife confidence interval by Normal Approach 

 

When a jackknife technique is applied in regression, a general way of testing a 

hypothesis is through a confidence interval. It can be done by following the algorithm 

given by Sahinler and Topuz (2007), which is as follows: Given the regression model 

in equation (3.23). 

1. Draw the sample (𝑋𝑖, 𝑌𝑖) of size n and number from 𝑖 = 1,2, …… . 𝑛. 

2. Omit one row of the pair (𝑋𝑖, 𝑌𝑖) starting with the first pair. 

3. Compute the least squares estimate from the (𝑛 − 1) elements and label the 

estimate say 𝜷̂𝑱𝒊. 

4. Repeat step 2 and 3 𝑛 times by deleting 1 observation at the time. 

5. Construct the distribution of jackknife estimates 𝜷̂𝑱𝟏 , 𝜷̂𝑱𝟐 , … . . 𝜷̂𝑱𝒏. 

6. Compute the jackknife regression coefficient estimates as the mean of the 

𝛽̂𝐽𝑖𝑠 i.e. 

 𝜷̂𝑱 =
1

𝑛
∑𝜷𝑱𝒊

𝑛

𝑖=1

 
(4.7)  

 

with its standard error given by  

 

 𝑠𝑒(𝜷̂𝑱) = (
𝑛 − 1

𝑛
∑(𝜷̂𝑱𝒊 − 𝜷̂𝑱)(𝜷̂𝑱𝒊 − 𝜷̂𝑱)′
𝑛

𝑖=1

)

1/2

 

(4.8)  

(Friedl and Stampfer, 2002). 

The jackknife bias is measured by  

 

 𝑏𝑖𝑎𝑠(𝜷̂𝑱) = (𝑛 − 1)(𝜷̂𝑱 − 𝜷̂) (4.9)  

 

The jackknife confidence interval is given by  
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 𝜷̂𝑱 − 𝑡
(𝑛−𝑝,1−

𝛼
2
)
𝑠𝑒(𝜷̂𝑱) < 𝜷 < 𝜷̂𝑱 + 𝑡

(𝑛−𝑝,1−
𝛼
2
)
𝑠𝑒(𝜷̂𝑱) (4.10)  

 

Friedl and Stampfer (2002) outlined two deficiencies of the jackknife technique, 

namely:  

1. The jackknife variance estimator is not consistent for the sample median 

because the sample median cannot be approximated linearly. 

2. Jackknife does not directly provide distribution estimators. 

 

However, Friedl and Stampfer (2002) claim that these deficiencies can be overcome 

by the delete d method. The delete d method can be applied using a similar 

algorithm except that d rows/observations are deleted at a time instead of deleting 1. 

The resulting number of samples is  𝑆 = (
𝑛
𝑑
) of size (𝑛 − 𝑑) each. The variance of 

the delete d method is given by  

 𝑠𝑒(𝜷̂𝑱−𝒅) = (
𝑛 − 𝑑

𝑆𝑑
∑(𝜷̂𝑱𝒊 − 𝜷̂𝑱)(𝜷̂𝑱𝒊 − 𝜷̂𝑱)′
𝑆

𝑖=1

)

1/2

 

(4.11)  

 

The fraction d and n has to be large enough for (4.11) to be consistent (Friedl and 

Stampfer, 2002). It can be noted that for 𝑑 = 1, equation (4.11) is equivalent to (4.8) 

i.e. 𝑑 = 1 is a special case of delete d method.  

 

4.3 Percentile Based Interval 
 

In real life problems it is often not appropriate to assume a symmetric distribution of 

the data, especially when there is a scarcity of data. In this instance a 100(1 − α)% 

confidence interval can be very misleading by overstating or understating the length 

of the confidence limits due to the use of the 𝑡 distribution when the data are not 
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symmetric around any point. Here α/2 and (1 − α/2) percentiles intervals give more 

reliable estimates because the percentile intervals are derived from the distribution 

itself regardless of the shape.  If the distribution is skewed to one side the percentile 

interval will produce the smaller length of the confidence interval that is concentrated 

to the side where there are more data points (Efron and Tibshirani ,1993). 

4.3.1 Bootstrap Percentile Based interval 

 

The percentile interval makes use of the distribution of bootstrap regression 

coefficients generated from each of B bootstrap samples. For the regression model 

considered in Section 4.2 above the observed values of the bootstrap regression 

coefficient 𝛽̂𝑏𝑟 are ordered in an ascending order. The 𝛽̂𝑏𝑟(𝑙𝑜𝑤𝑒𝑟) is the lower (
𝛼

2
)𝐵 

bootstrap estimate of the regression coefficient and 𝛽̂𝑏𝑟(𝑢𝑝𝑝𝑒𝑟)  is the (1 −
𝛼

2
)𝐵 

bootstrap estimate of the coefficient. The percentile based interval therefore 

becomes 

 𝜷̂𝒃𝒓(𝑙𝑜𝑤𝑒𝑟) < 𝜷 < 𝜷̂𝒃𝒓(𝑢𝑝𝑝𝑒𝑟). (4.12)  

 

The null hypothesis is rejected if the value of the regression coefficient does not fall 

within the limits of the percentile interval. The percentile based bootstrap can be 

improved by what Efron and Tibshirani (1993) refer to as bias-corrected and 

accelerated (BCa) and approximate bootstrap confidence intervals (ABC).  These 

methods will not be described further here because a similar extension of jackknife is 

not possible (Efron, 2003). 

 

4.3.2 Jackknife Percentile Based interval 

 

The application of confidence intervals in jackknife does not produce reliable 

confidence limits (Efron and Tibshirani, 1993). It is for this reason that it is more 

appropriate to compute percentile intervals of jackknife. The formulation of percentile 

intervals is similar to the bootstrap interval above. For both the delete 1 and delete d 
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methods, the computed estimates of the regression coefficient are ranked from the 

smallest to the largest. For the delete 1 method 𝛽̂𝐽(𝑙𝑜𝑤𝑒𝑟) is the (
𝛼

2
) 𝑛𝑡ℎ jackknife 

estimate of regression coefficient and  𝛽̂𝐽(𝑢𝑝𝑝𝑒𝑟)  is the (1 −
𝛼

2
) 𝑛𝑡ℎ  of jackknife 

estimate of regression coefficient. For delete d method the lower and upper limits 

indices are  

 𝑙𝑜𝑤𝑒𝑟 = (
𝛼

2
) 𝑆 𝑎𝑛𝑑 𝑢𝑝𝑝𝑒𝑟 = (1 −

𝛼

2
)𝑆 

(4.13)  

 

 Therefore the percentile interval is expressed as  

 

 𝜷̂𝑱(𝑙𝑜𝑤𝑒𝑟) < 𝜷 <  𝜷̂𝑱(𝑢𝑝𝑝𝑒𝑟) (4.14)  

which can also be written as  

𝑪𝑫𝑭𝑱 (
𝜶

𝟐
) ; 𝑪𝑫𝑭𝑱 (𝟏 −

𝜶

𝟐
) 

where CDFJ () is the empirical distribution function based on 𝛽̂𝐽 (Sahinler and 

Topuz, 2007 and Wu, 1986). 

4.4 Conclusion 
 

Sections 4.2.1 and 4.2.2 showed that both techniques (bootstrap and jackknife) can 

be used to first compute the estimate of the regression coefficient and the standard 

errors which are used in the derivation of the confidence intervals. Completely non-

parametric percentile intervals are a viable method for both jackknife and bootstrap. 
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Chapter 5 

Research Methodology and Design 
 

5.1 Introduction 
 

This chapter describes the methodology followed in a simulation study of the 

bootstrap, jackknife and permutation test for significance testing in regression 

analysis which was discussed in Chapter 3 and computation of confidence intervals 

and percentile intervals as discussed in Chapter 4. This chapter will be organised as 

follows: the introduction, problem statement, research procedure and conclusion. 

 

5.2 Problem Statement 
 

Bootstrap, jackknife and permutation tests are explored as alternative methods to 

parametric methods, especially when the errors are not normally distributed. 

Parametric, bootstrap and permutation significance testing for regression coefficient 

are compared in terms of power and probability of type 1 error. In the second part of 

the study parametric, bootstrap and jackknife confidence intervals are compared in 

terms of the probability of including the correct value of 𝛽1 when the correct value of 

𝛽1 = 0 and 𝛽1 = 2 (coverage) and the average length of the interval in a Monte Carlo 

simulation study. 

 

5.3 Research Procedure 

 

In this section the performance of parametric, bootstrap and permutation tests are 

compared in testing the significance of partial regression coefficient i.e. 𝐻0: 𝛽1 = 0 

under the model  
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 𝒀 = 𝑿𝜷 + 𝜺 (5.1)  

 

where X is 𝑛 × (𝑝 + 1) with the first column containing 1’s. 

The Monte Carlo simulation study for significance testing of a single partial 

regression coefficient was investigated under different conditions to ascertain the 

robustness of the techniques under investigation. (1)The effect of a sample size was 

considered ranging from a very small sample size to a relatively large sample size, 

(2) number of covariates in the model, (3) the distribution of the added random error 

(4) and the effect of collinearity among the independent variables in the model 

when 𝑝 > 1. The exact choices of the factors outlined above are given below namely: 

1. The number of independent variables was  𝑝 = (1, 2, 5 ) resulting in the 

following regression equations: 

𝑌1 = 𝛽0 + 𝛽1𝑋1 + 𝜀 

𝑌2 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀 

𝑌5 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝜀 

 

The interest is to establish the impact that that increase in the number of 

covariables has on the probability of type 1 error and power of a test. 

 

2. The sample sizes 𝑛 = (5𝑝, 10𝑝, 25𝑝, 50𝑝).  

The aim is to ensure that we can study the behaviour of probability of type 1 

error and power of a test for a wider range of sample size. This will help to 

ascertain how different methods behave from the smallest sample size of 5 to 

the largest sample size of 250. 

  

3. Error distributions considered are 𝜺~  (standard normal, uniform (0, 1), 

lognormal).  

The aim is to establish the influence of error distribution has to the probability 

of type 1 error and power of a test for different methods to see what methods 

are robust enough when errors are deviating from normality. 
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4. The collinearity structure of the independent variables was correlated 

with 𝜌 = (0, 0.5, 0.9). 

 

The aim is to establish what happens to the probability of type 1 error and 

power of a test when there are inherent shortcomings in the data. 

Below are the specific techniques assessed under the factors outlined above. 

1. Bootstrapping the observations. 

2. Bootstrapping the residuals. 

3. Permuting the observations. 

4. Freedman and Lane permutation method. 

 

The jackknife method was considered but it did not yield positive results and there 

was a shortage of literature where the jackknife method is used for significance 

testing. It was therefore assessed through confidence intervals computation. 

SAS statistical software was used in the analysis. However there were no readily 

available procedures in SAS that could perform these techniques. SAS macros have 

been developed which are useful in testing the significance of differences in the 

statistic of choice such as mean between two populations. These macros are not for 

the application of bootstrap and permutation tests in the regression model. The SAS 

Iterated Matrix Language procedure (Proc IML) was used for programming. The W 

matrix used to construct the X matrix was generated independently from Uniform 

(0,1) distribution using the randgen call routine with randseed initialised to ensure 

that the sampling process can be replicated to obtain the same sample. The randgen 

call routine “uses the Marsenne-Twister random number generator developed by 

Matsumoto and Nishimura (1998) ”. Matrix X was constructed as follows  

 
𝐗 = 𝟏𝐖 = (

1   w11 ⋯ w1p

⋮        ⋮ ⋱ ⋮
 1   wn1 ⋯ wnp

) 

 

(5.2)  
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The correlation structure among the independent variables was introduced through 

using the square root of the correlation matrix R as follows 

 
𝐑1/2 = [

1 ⋯ ρ
⋮ ⋱ ⋮
ρ ⋯ 1

]

1/2

 

 

(5.3)  

where matrix R is a (p × p) matrix. Matrix 𝐗𝐑; the matrix with correlated covariables 

was constructed as follows 

 𝑿𝑹 = 𝟏𝐖𝐑 = 𝟏𝐖𝐑1/2. (5.4)  

 

Under multicollinearity the regression model is 

 𝒀 = 𝑿𝑹𝜷 + 𝜺. (5.5)  

 

The added random error distributions were generated using SAS randgen call 

routine with a fixed random seed. Initially the number of Monte Carlo simulations 

were chosen to be 1000 and this resulted in empirical estimates of probability of type 

1 error as large as 20% for very small sample sizes. This meant that the number of 

simulations had to be increased. 5000 Monte Carlo simulations were generated with 

the number of bootstrap samples equal to 999 as it is desirable to have 𝛼(𝐵 + 1) that 

is an integer (MacKinnon, 2002). MacKinnon (2002) showed that the loss of power is 

generally small when 𝐵 ≥ 999. The number of permutations was chosen to be equal 

to the number of bootstrap samples for comparison purposes. The empirical 

probability of type 1 errors were calculated from the 5000 Monte Carlo simulated 

data where 𝛽1 = 0. The level of significance was chosen to be 5%. Under the null 

hypothesis the data was generated for 𝑝 = 1,2,5 from the equations 

𝑌1 = 𝛽0 + 𝜀 

𝑌2 = 𝛽0 + 𝛽2𝑋2 + 𝜀 

𝑌5 = 𝛽0 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝜀 



 
 
 
 

44 
 

For each simulation the reference t-statistic was computed from the originally 

simulated data using equation (3.2) using the regression module on proc iml. This 

reference t-statistic was passed to all the modules for bootstrap and permutation 

methods. Within the bootstrap and permutation modules the t-statistics were 

computed 999 times to obtain the empirical distribution of the t-statistic. The p-value 

of the two sided t-test was then calculated as the proportion of the 

permutation/bootstrap t-statistic greater than or equal in absolute value to the 

reference t-statistic. This process was repeated 5000 times resulting in 5000 p-

values for each method. The probability of type 1 error was then computed as the 

proportion of times that the p-value is less than or equal to the level of significance 

(0.05). It was expected that the number of p-values which are significant would be 

around 250.  

The power of the test was examined under the same conditions with 𝛽1 = 2 (null 

hypothesis false) was chosen as an appropriate value to have the null hypothesis 

rejected quite frequently but not all the time. Under the alternative the data was 

generated for 𝑝 = 1,2,5 from the equations 

𝑌1 = 𝛽0 + 2𝑋1 + 𝜀 

𝑌2 = 𝛽0 + 2𝑋1 + 𝛽2𝑋2 + 𝜀 

𝑌5 = 𝛽0 + 2𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝜀 

The same process used in computing the probability of type 1 error was followed for 

the computation of power.  

The two-sided confidence and percentile intervals were computed under the null 

hypothesis i.e.  𝛽1 = 0  and also when  𝛽1 = 2 . Due to the program running much 

longer for confidence and percentile intervals the number of Monte Carlo simulations 

was kept to 1000. The confidence interval data generation involved the two sets of 

equations one with   𝛽1 = 0  and the other with   𝛽1 = 2 which are outlined above. 

Note that it was not necessary to work with two sets of 𝛽1, one value of  𝛽1 would 

suffice. Also note that it was not necessary to work with these specific values of 𝛽1. 

The difference between the probability type 1 error/power and confidence interval is 

that for the probability of type 1 error and power the null hypothesis is assumed to be 
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true within the module while on confidence interval the estimation of the regression 

coefficients are taking place without assuming the null hypothesis.  The coverage of 

the confidence interval was performed by computing the number of times that the 

correct value of  𝛽1  was within the confidence limits. The average length of a 

confidence interval was computed by first computing the length of interval (upper 

confidence limit-lower confidence limit) within each module. This process was 

repeated 1000 times producing 1000 values of length of an interval. An average was 

then computed resulting in the average length of an interval. 

 

5.4 Conclusion 
 

This chapter explained the methodology employed in the comparative study of 

jackknife, bootstrap and permutation tests as alternatives to the parametric methods. 

SAS proc IML using predefined modules for the implementation of these techniques 

was employed as a statistical tool in the absence of readily available SAS 

procedures. Prog Gplot was utilised for probability of type 1 error graph plots and 

power of a test plots. 
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 Chapter 6 

Simulation Results 
 

 6.1 Introduction 
 

In this chapter results obtained during analysis using the methodology outlined in 

Chapter 5 of this document will be presented and their significance discussed. The 

tables of probability of type 1 error and power used to generate the graphs can be 

found on the appendix. The chapter will be organised in the following way: (1) 

probability of type 1 error investigation, (2) power of the tests and (3) confidence 

interval comparisons and (4) a conclusion. 

6.2 Probability of type 1 error  
 

This section will be split into three parts: Probability of type 1 error for the null 

hypothesis 𝐻0: 𝛽1 = 0 vs 𝐻1: 𝛽1 ≠ 0  will be presented for cases where: 

1. Explanatory variables are independent from each other. 

2. Explanatory variables are correlated to each other. 

3. Effect of increasing correlation within explanatory variables. 

The following models are considered 

𝑌1 = 𝛽0 + 𝛽1𝑋1 + 𝜀 

𝑌2 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀 

𝑌5 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝜀 

The results for each of the probability of type 1 error graphical representation are 

presented twice to portray two findings. The probability of type 1 error is stable 

around the chosen significance level 0.05 although the type one error is not exactly 

the same for all the methods. The former is made more visible through the 

expansion of the y axis to cover from zero to 1 and the latter is achieved by allowing 

SAS to automatically select the y axis scale.  The tables showing the probability of 
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type 1 error and power of a test results are contained in Appendix A and B 

respectively.   The bootstrapping observation method produced singular matrices for 

𝛽̂1 computations when the sample size is 5p for cases where p=1 and p=2. This is 

because in sampling 999 times with replacement in a “population” of say 5, each pair 

has 20% chance of being selected, this result in a same pair being repeated in at 

least one of the samples. This results in problem when the matrices are inverted 

hence no results are displayed for this method.                                                                                                                                                                                                        
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6.2.1 Probability of type 1 error for independent explanatory variables 

 

Probability of type 1 error results for p=1 Normal and rho=0.0 

Figure 1: Type 1 error for 𝐩 = 𝟏 𝐚𝐧𝐝 𝛆~𝐍𝐨𝐫𝐦𝐚𝐥(𝟎, 𝟏) on wider vertical axis 

Figure 2: Type 1 error for 𝒑 = 𝟏 𝒂𝒏𝒅 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏)on narrow vertical axis 
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Probability of type 1 error results for p=1 Uniform and rho=0.0 

Figure 3: Type 1 error for 𝒑 = 𝟏 𝒂𝒏𝒅 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏)on wider vertical axis 

 

Figure 4: Type 1 error for 𝒑 = 𝟏 𝒂𝒏𝒅 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏)on narrow vertical axis 
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Probability of type 1 error results for p=1 LOGN and rho=0.0 

Figure 5: Type 1 error for 𝐩 = 𝟏 𝐚𝐧𝐝 𝛆~𝐋𝐎𝐆𝐍(𝟎, 𝟏)on wider vertical axis 

Figure 6: Type 1 error for 𝐩 = 𝟏 𝐚𝐧𝐝 𝛆~𝐋𝐎𝐆𝐍(𝟎, 𝟏)on narrow vertical axis 
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Probability of type 1 error results for p=2 Normal and rho=0.0 

 

Figure 7: Type 1 error for 𝒑 = 𝟐, 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎 on wider vertical axis 

 

Figure 8: Type 1 error for 𝒑 = 𝟐, 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on narrow vertical axis 
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Probability of type 1 error results for p=2 Uniform and rho=0.0 

Figure 9: Type 1 error for 𝒑 = 𝟐, 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on wider vertical axis 

Figure 10: Type 1 error for 𝒑 = 𝟐, 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on narrow vertical axis 
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Probability of type 1 error results for p=2 LOGN and rho=0.0 
 

 

Figure 11: Type 1 error for 𝒑 = 𝟐, 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on wider vertical axis 

 

Figure 12: Type 1 error for 𝒑 = 𝟐 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on narrow vertical axis 
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Probability of type 1 error results for p=5 Normal and rho=0.0 

 

Figure 13: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on wider vertical axis 

 

Figure 14: Type 1 error for 𝒑 = 𝟓, 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏)) 𝒂𝒏𝒅 𝝆 = 𝟎 on narrow vertical axis 
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Probability of type 1 error results for p=5 Uniform and rho=0.0 

 

Figure 15: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎 on wider vertical axis 

 

Figure 16: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on narrow vertical axis 
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Probability of type 1 error results for p=5 LOGN and rho=0.0 

 

Figure 17: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on wider vertical axis 

 

Figure 18: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on narrow vertical axis 
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When errors are normally distributed, no method consistently outperforms others. 

For 𝑝 = 1 all methods produced a probability of type 1 error bounded between 0.043 

and 0.058 both inclusive. The minimum and maximum probability of type 1 error of 

0.043  and 0.058  are both obtained under bootstrapping observations when the 

sample size is 10𝑝 and 25𝑝 respectively. When 𝑝 = 2 all methods slightly overstate 

the probability of type 1 error for smaller sample sizes. The biggest overstatement of 

the probability of type 1 error is 0.058 which is observed when sample size is 25𝑝 for 

both bootstrapping observations and Freedman and Lane permutation method. It is 

difficult to point out which method performed best when 𝑝 = 5. It can be observed 

that in all cases where errors are normally distributed the maximum probabilities of 

type 1 error were attained at sample size 25𝑝  with the Freedman and Lane 

permutation method being the biggest at 0.056. Generally all methods moved in the 

same direction (increasing/decreasing) with the increase in sample size. The 

minimum probability of type 1 error of 0.0308  is observed for bootstrapping 

observation when the sample size is 5𝑝. 

 

When errors are distributed uniformly the case where 𝑝 = 1  shows a consistent 

understatement of the probability of type1 error across all resampling methods at 

sample size 5𝑝. From size 10p there is a close alignment of all the methods in 

stating the probabilities of type 1 error with an exception of bootstrapping 

observations method which consistently overstates the probability of type 1 error for 

sample sizes 10𝑝 to 50𝑝. For 𝑝 = 2 the bootstrapping observations method produced 

probability of type 1 error of 0.0606 for samples sizes 10𝑝 and 25𝑝 and dropped to 

0.051 at sample size 50p which is bringing it in line with the rest of the methods. The 

rest of the methods produced similar probability of type 1 error throughout the 

sample sizes. Similar values of probability of type 1 error errors were observed when 

𝑝 = 2  at size 10𝑝  and 50𝑝 are comparable to those observed when 𝑝 = 1  at the 

same sizes. This is an indication that the introduction of an extra explanatory 

variable independent of the first variable does not impact the probability of type 1 

error for 𝛽1 = 0.  
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The close alignment between all methods continue to be prevalent across methods 

including the bootstrapping observations method which was slightly different from the 

rest for 𝑝 = 1 and 𝑝 = 2 when errors are uniformly distributed. For the bootstrapping 

observations the close alignment to the rest of the methods starts from the sample 

size of 10𝑝, for the sample size of 5𝑝 the probability of type 1 error is the lowest at 

0.0386 for bootstrapping observations method. 

When errors are lognormally distributed all methods except bootstrapping 

observations are closely aligned and with minimal fluctuations around the true 

probability of type 1 error of 0.05  across sample sizes and in all cases (i.e. 

explanatory variables cases 𝑝 = 1, 2 𝑎𝑛𝑑 5).  The bootstrapping observations method 

consistently understates the probability of type 1 error across all cases.  
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6.2.2 Probability of type 1 error in the presence of multicollinearity (𝝆 = 𝟎. 𝟓) 

 
Probability of type 1 error results for p=2 Normal and rho=0.50 

Figure 19: Type 1 error for 𝐩 = 𝟐 , 𝛆~𝐍𝐨𝐫𝐦𝐚𝐥(𝟎, 𝟏)𝐚𝐧𝐝 𝛒 = 𝟎. 𝟓 on wider vertical axis 

 

Figure 20: Type 1 error for 𝒑 = 𝟐 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on narrow vertical axis 
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Probability of type 1 error results for p=2 Uniform and rho=0.50 

 

Figure 21: Type 1 error for 𝒑 = 𝟐 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on wider vertical axis 

 

Figure 22: Type 1 error for 𝒑 = 𝟐 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on narrow vertical axis 
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Probability of type 1 error results for p=2 LOGN and rho=0.50 

Figure 23: Type 1 error for 𝒑 = 𝟐 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on wider vertical axis 

Figure 24: Type 1 error for 𝒑 = 𝟐 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on narrow vertical axis 
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Probability of type 1 error results for p=5 Normal and rho=0.50 

 

Figure 25: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on wider vertical axis 

 

Figure 26: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on narrow vertical axis 
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Probability of type 1 error results for p=5 Uniform and rho=0.50 

Figure 27: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on wider vertical axis 

Figure 28: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on narrow vertical axis 
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Probability of type 1 error results for p=5 LOGN and rho=0.50 

Figure 29: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on wider vertical axis 

Figure 30: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on narrow vertical axis 
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The introduction of a correlation structure in the independent variables affected the 

profile of the probability of type 1 error produced when errors are normally distributed 

for the case where 𝑝 = 2 . In the presence of multicollinearity, all methods 

consistently overstated the probability of type 1 error for all considered sample sizes. 

The maximum probability of type 1 error of 0.0594 was observed for bootstrapping 

observations at a sample size 25𝑝. The minimum observed probability of type 1 was 

0.0526 which was observed under bootstrapping residuals method at a sample size 

10𝑝.  

For the case where 𝑝 = 5, the probability of type 1 error produced by all methods is 

closely aligned for all sample sizes considered with an exception of bootstrapping 

observations method. This is an indication that the increase in the number of 

explanatory variables did not affect the probability of type 1 error for 𝛽1 when errors 

are normally distributed even in the presence of multicollinearity. 

The introduction of a correlation structure in the explanatory variables when errors 

are uniformly distributed in the case where 𝑝 = 2 did not significantly affect the result 

probability of type 1 error. A slight shift upward in the probability of type 1 error is 

observed in all methods. The minimum and maximum probability of type 1 error 

obtained increased from 0.0476  to 0.0488  and 0.0606  to 0.0706  respectively. The 

maximum in both cases (𝜌 = 0  and 𝜌 = 0.5)  was attained for the bootstrapping 

observations method which is observed to consistently overstate the probability of 

type 1 error. 

For the case where  𝑝 = 5  there is very minimal difference in the type1 errors 

produced under multicollinearity and independence of explanatory variables. This 

indicates that multicollinearity of 0.5 among the explanatory variables does not distort 

the data enough to have an effect on probability of type 1 error. 

An improvement in the type1 errors across all the methods was observed after the 

introduction of multicollinearity for the case 𝑝 = 2  when errors are lognormally 

distributed. All the methods considered showed a much closer alignment as the 

samples sizes increased. A similar trend was also observed for 𝑝 = 5. 
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6.2.3 Probability of type 1 error in the presence of increased multicollinearity (𝝆 = 𝟎. 𝟗) 

 
Probability of type 1 results for p=2 Normal and rho=0.90 

Figure 31: Type 1 error for 𝒑 = 𝟐 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on wider vertical axis 

Figure 32: Type 1 error for 𝒑 = 𝟐 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on narrow vertical axis 
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Probability of type 1 results for p=2 Uniform and rho=0.90 

Figure 33: Type 1 error for 𝒑 = 𝟐 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on wider vertical axis 

Figure 34: Type 1 error for 𝒑 = 𝟐 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on narrow vertical axis 
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Probability of type 1 results for p=2 LOGN and rho=0.90 

Figure 35: Type 1 error for 𝒑 = 𝟐 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on wider vertical axis 

Figure 36: Type 1 error for 𝒑 = 𝟐 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on narrow vertical axis 
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Probability of type 1 results for p=5 Normal and rho=0.90 

Figure 37: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on wider vertical axis 

Figure 38: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on narrow vertical axis 
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Probability of type 1 results for p=5 Uniform and rho=0.90 

Figure 39: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on wider vertical axis 

Figure 40: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on narrow vertical axis 
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Probability of type 1 results for p=5 LOGN and rho=0.90 

Figure 41: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on wider vertical axis 

Figure 42: Type 1 error for 𝒑 = 𝟓 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on narrow vertical axis 
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The increasing multicollinearity in the explanatory variables for the regression model 

with normally distributed errors for 𝑝 = 2 did not affect the probabilities of type1 error 

for all sample sizes and across all methods. There are cases where slight random 

fluctuations are observed when the multicollinearity is increased from 0.5  to 0.9 

however none of these are significant. A similar trend is observed for 𝑝 = 5. 

For the case of 𝑝 = 2 when errors are uniformly distributed the trend is similar to that 

of 0.5 multicollinearity where all other methods are closely aligned to each other with 

an exception of bootstrapping observations method. This method is overstating the 

probability of type 1 error more than the rest of the other methods, more especially 

for smaller sample sizes. Convergence with other methods is observed as the 

sample size increases. For the case of 𝑝 = 5 there is a much closer alignment of 

bootstrapping observations with other methods more especially from sample size of 

10𝑝. This is an indication that all the methods converge for larger sample sizes. 

When errors are lognormally distributed the trends observed under the 

multicollinearity of 0.5 are still evident even when there has been an increase of 

multicollinearity to 0.9. Bootstrapping observation continues to severely understate 

the probability of type 1 error while the other methods are closely aligned around the 

true 0.05 probability of type 1 error. This is the case for both 𝑝 = 2 and 𝑝 = 5. The 

minimum and maximum probability of type 1 error achieved by bootstrapping 

observations are 0.021  and 0.0294  respectively for 𝑝 = 2  and 0.015  and 0.0378 

respectively for 𝑝 = 5. It can be observed that though the bootstrapping observations 

understates the probability of type 1 error, this understatement of the probability of 

type 1 error improves as the sample size increase.  
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6.3 Power of a test 
In all the cases power is examined when 𝐻1 is 𝛽1 = 2, Table of result can be seen at Appendix B. 

6.3.1 Power under independent explanatory variables 

 
Power results for p=1 Normal rho=0.0 

Figure 43: Power for 𝒑 = 𝟏  𝒂𝒏𝒅 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) on wider vertical axis 

Figure 44: Power for 𝒑 = 𝟏  𝒂𝒏𝒅 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) on narrow vertical axis 
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Power results for p=1 Uniform rho=0.0 

Figure 45 Power for 𝒑 = 𝟏  𝒂𝒏𝒅 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) on wider vertical axis 

Figure 46: Power for 𝒑 = 𝟏  𝒂𝒏𝒅 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏)on narrow vertical axis 

 



 
 
 
 

75 
 

Power results for p=1 LOGN rho=0.0 

Figure 47: Power for 𝒑 = 𝟏  𝒂𝒏𝒅 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏)on wider vertical axis 

Figure 48: Power for 𝒑 = 𝟏  𝒂𝒏𝒅 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏)on narrow vertical axis 
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Power results for p=2 Normal rho=0.0 

Figure 49: Power for 𝒑 = 𝟐 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎 on wider vertical axis 

Figure 50: Power for 𝒑 = 𝟐 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on narrow vertical axis 
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Power results for p=2 Uniform rho=0.0 

Figure 51: Power for 𝒑 = 𝟐 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎 on wider vertical axis 

Figure 52: Power for 𝒑 = 𝟐 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎 on narrow vertical axis 
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Power results for p=2 LOGN rho=0.0 

Figure 53: Power for 𝒑 = 𝟐 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎 on wider vertical axis 

Figure 54: Power for 𝒑 = 𝟐 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on narrow vertical axis 
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Power results for p=5 Normal rho=0.0 

Figure 55: Power for 𝒑 = 𝟓 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on wider vertical axis 

Figure 56: Power for 𝒑 = 𝟓 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on narrow vertical axis 
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Power results for p=5 Uniform rho=0.0 

Figure 57: Power for 𝒑 = 𝟓 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on wider vertical axis 

Figure 58: Power for 𝒑 = 𝟓 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on narrow vertical axis 
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Power results for p=5 LOGN rho=0.0 

Figure 59: Power for 𝒑 = 𝟓 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏)𝒏𝒅 𝝆 = 𝟎 on wider vertical axis 

Figure 60: Power for 𝒑 = 𝟓 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎 on narrow vertical axis 
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There were no substantial power differences when errors are normally distributed. 

As could be generally expected, power increased with increase in sample size. The 

bootstrapping observations method is the least powerful method when the sample 

size is 10𝑝 however from the sample size 25𝑝 there are no visible differences for 

𝑝 = 1 and 𝑝 = 2. For 𝑝 = 5 the bootstrapping observations method is least powerful 

at sample size 5𝑝. 

For uniformly distributed errors there are differences only for smaller sample sizes 

and from the sample size of 25𝑝  and 10p for 𝑝 = 1  and 𝑝 = 2  respectively the 

maximum power of approximately 1 was attained. For 𝑝 = 1 at sample size 5𝑝 the 

parametric method is the best while permuting observations is the worst. 

Bootstrapping observations is slightly less powerful at sample size 10𝑝. For 𝑝 = 2 

and 𝑝 = 5 all methods are equally powerful.  

All the methods are almost equally powerful when errors have a lognormal 

distribution with an exception of bootstrapping observations which is consistently 

less powerful for all cases 𝑝 = 1, 2 𝑎𝑛𝑑 5. It can be seen that the parametric method 

is slightly less powerful than the other methods excluding the bootstrapping 

observations method. 

It can be noted that for lognormal errors all methods are less powerful compared to 

normal and uniform errors. The largest attainable power when 𝑝 = 1  in case of 

lognormally distributed errors is approximately 0.6. A power of 0.97 is only attainable 

when 𝑝 = 5 under lognormally distributed errors and this power is attained for 𝑝 = 1 

in case of normally distributed errors. 
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6.3.2 Power in the presence of multicollinearity 

 

Power results for p=2 Normal rho=0.50 

Figure 61: Power for 𝒑 = 𝟐 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on wider vertical axis 

Figure 62: Power for 𝒑 = 𝟐 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on narrow vertical axis 
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Power results for p=2 Uniform rho=0.50 

Figure 63: Power for 𝒑 = 𝟐 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on wider vertical axis 

Figure 64: Power for 𝒑 = 𝟐 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on narrow vertical axis 
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Power results for p=2 LOGN rho=0.50 

Figure 65: Power for 𝒑 = 𝟐 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on wider vertical axis 

Figure 66: Power for 𝒑 = 𝟐 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on narrow vertical axis 
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Power results for p=5 Normal rho=0.50 

Figure 67: Power for 𝒑 = 𝟓 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on wider vertical axis 

Figure 68: Power for 𝒑 = 𝟓 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on narrow vertical axis 
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Power results for p=5 Uniform rho=0.50 

Figure 69: Power for 𝒑 = 𝟓 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on wider vertical axis 

Figure 70: Power for 𝒑 = 𝟓 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on narrow vertical axis 
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Power results for p=5 LOGN rho=0.50 

Figure 71: Power for 𝒑 = 𝟓 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on wider vertical axis 

Figure 72: Power for 𝒑 = 𝟓 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎. 𝟓 on narrow vertical axis 
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The impact of an increase in collinearity among explanatory variables was the slight 

decrease in power of all methods under consideration. For normally distributed 

errors there are no significant differences in power across all methods. For 𝑝 = 2 the 

impact of the introduction of multicollinearity on the minimum and maximum power is 

a decrease in minimum power from 0.2758 to 0.226 and maximum power from 1 to 

0.9978 across all methods.  For 𝑝 = 5 a similar observation was made only for the 

minimum power where it decreased from 0.5866 to 0.4048 while the maximum was 

not affected. However while the maximum of 1 was reached at sample size 25𝑝 

under independent explanatory variables, the same power was only attained at 

sample size 50𝑝.  

For uniformly distributed errors the small decrease brought by the introduction of 

multicollinearity can be observed under the case where 𝑝 = 2 on small sample sizes 

only. In the case of 𝑝 = 2 the worse power attained for sample size 5𝑝 is 0.9536 

compared to 0.9848 attained in the absence of multicollinearity. For 𝑝 = 5 the power 

remains unaffected by an introduction of multicollinearity. There is no one method 

that outright outperforms others. 

The power possessed by different methods tends to suffer when errors are 

lognormally distributed but the decrease in power ranges between 11% and 13% for 

same sample sizes. The maximum power attained for cases 𝑝 = 2 and 𝑝 = 5 are 

0.69 𝑎𝑛𝑑 0.87  respectively compared to the maximum power of 0.76 𝑎𝑛𝑑 0.95 . 

Bootstrapping observations methods is generally the least powerful of all methods. 
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6.3.3 Power in the presence of increased multicollinearity 

 
Power results for p=2 Normal rho=0.90 

Figure 73: Power for 𝒑 = 𝟐 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on wider vertical axis 

Figure 74: Power for 𝒑 = 𝟐 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on narrow vertical axis 
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Power results for p=2 Uniform rho=0.90 

Figure 75: Power for 𝒑 = 𝟐 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on wider vertical axis 

Figure 76: Power for 𝒑 = 𝟐 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on narrow vertical axis 
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Power results for p=2 LOGN rho=0.90 

Figure 77: Power for 𝒑 = 𝟐 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on wider vertical axis 

Figure 78: Power for 𝒑 = 𝟐 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on narrow vertical axis 
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Power results for p=5 Normal rho=0.90 

Figure 79: Power for 𝒑 = 𝟓 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on wider vertical axis 

Figure 80: Power for 𝒑 = 𝟓 , 𝜺~𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on narrow vertical axis 
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Power results for p=5 Uniform rho=0.90 

Figure 81 : Power for 𝒑 = 𝟓 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on wider vertical axis 

Figure 82: Power for 𝒑 = 𝟓 , 𝜺~𝑼𝒏𝒊𝒇𝒐𝒓𝒎(𝟎, 𝟏) 𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on narrow vertical axis 
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Power results for p=5 LOGN rho=0.90 

Figure 83: Power for 𝒑 = 𝟓 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on wider vertical axis 

Figure 84: Power for 𝒑 = 𝟓 , 𝜺~𝑳𝑶𝑮𝑵(𝟎, 𝟏)𝒂𝒏𝒅 𝝆 = 𝟎. 𝟗 on narrow vertical axis 
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The effect of increasing multicollinearity from 0.5 𝑡𝑜 0.9 resulted in a further reduction 

of power across all methods. For the case where errors are normally distributed the 

resulting maximum power decreased from 0.997 𝑡𝑜 0.6896  when 𝑝 = 2  and when 

𝑝 = 5 the maximum power decreased from 1 𝑡𝑜 0.89.  

 

For uniformly distributed errors the difference between the methods is still not 

visually possible regardless of scale. The reduction in power across all methods is 

only observed for the smaller sample sizes 5𝑝 and 10𝑝 for both cases of 𝑝 = 2 and 

𝑝 = 5. When errors are uniformly distributed the multicollinearity does not affect the 

power of a test for bigger sample sizes. 

 

The loss of power due to increase in multicollinearity when errors are lognormally 

distributed is substantial since the maximum attained power is 0.27  for 𝑝 =

2 𝑎𝑛𝑑 0.34 for 𝑝 = 5 . The least powerful is the bootstrapping observations for all 

sample sizes. There is no substantial difference in power attained across all other 

methods. 
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6.4 Confidence Intervals 
 

The 95% confidence interval will be presented comparing the results obtained under 

parametric, jackknife and bootstrap methods under the following conditions 

1. Residuals are normally, uniformly and lognormally distributed. 

2. Correlation structure within the explanatory variables is 0, 0.5 and 0.9. 

3. Number of covariables is 1, 2, and 5. 

The number of Monte Carlo simulation used was 1000 and number of bootstrap 

replications used was 𝐵 = 999. The jackknife and bootstrap confidence interval was 

computed using the methodology outlined in Chapter 4 while the parametric method 

is referring to the standard normal confidence intervals. The comparison will be 

performed in terms of the 95% confidence interval coverage as well as the average 

length of the confidence intervals.  The 95% confidence interval coverage computed 

for the cases where 𝛽1 = 0 and 𝛽1 = 2. Where the coverage is the assessment of 

how often does the true value of 𝛽1  is within the confidence limits. The average 

length of confidence interval was computed by averaging the length of confidence 

interval calculated for each of the 1000 Monte Carlo simulations.  

The bootstrapping observation method produced singular matrices for 𝛽̂1 

computations when the sample size is 5𝑝 for cases where 𝑝 = 1 and 𝑝 = 2. This is 

because in sampling 999 times with replacement in a “population” of say 5, each pair 

has 20% chance of being selected, this result in a same pair being repeated in at 

least one of the samples. This results in problem when the matrices are inverted 

hence no results are displayed for this method. The SAS program provided an error 

while running the jackknife delete 2 method when the number of explanatory 

variables was 5 and the sample size 50𝑝. The error had to do with the size of the 

memory being insufficient “(ERROR: (execution) Unable to allocate 

sufficient memory. At least 2147483647 more bytes required.)”. The 

results are therefore not presented for that case.  
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95% Confidence Interval Coverage Average Length of 95% Confidence Limits 

no_of_par rho error Beta1 N Ssize parametric 

Jackknife 

delete 1 

Jackknife 

delete 2 

Bootstrap 

residual 

Bootstrap 

observations Parametric 

Jackknife 

delete 1 

Jackknife 

delete 2 

Bootstrap 

residual 

Bootstrap 

observations 

1 0 Normal 

0 

5p 5 93 95 98 88 0 11.700 17.665 28.908 9.074   

10p 10 88 89 90 85 90 5.457 6.126 6.338 4.879 6.103 

25p 25 74 76 76 71 73 2.932 3.029 3.036 2.810 2.894 

50p 50 48 50 50 47 48 1.995 2.032 2.033 1.954 1.976 

2 

5p 5 99 99 100 98 0 11.700 17.665 28.908 9.074   

10p 10 100 100 100 100 100 5.457 6.126 6.338 4.879 6.103 

25p 25 100 100 100 100 100 2.932 3.029 3.036 2.810 2.894 

50p 50 100 100 100 100 100 1.995 2.032 2.033 1.954 1.976 

2 0 Normal 

0 

5p 10 91 93 94 86 0 5.866 7.112 7.500 4.902   

10p 20 79 80 81 74 78 3.451 3.696 3.720 3.180 3.506 

25p 50 51 53 53 48 50 2.021 2.075 2.076 1.956 2.006 

50p 100 19 20 20 17 19 1.389 1.408 1.408 1.366 1.382 

2 

5p 10 100 100 100 99 0 5.866 7.112 7.500 4.902   

10p 20 100 100 100 100 100 3.451 3.696 3.720 3.180 3.506 

25p 50 100 100 100 100 100 2.021 2.075 2.076 1.956 2.006 

50p 100 100 100 100 100 100 1.389 1.408 1.408 1.366 1.382 

5 0 Normal 

0 

5p 25 77 84 84 69 82 3.290 3.770 3.803 2.866 3.626 

10p 50 54 59 59 50 54 2.074 2.208 2.211 1.941 2.101 

25p 125 12 13 13 11 12 1.252 1.283 1.283 1.221 1.251 

50p 250 2 2   2 3 0.870 0.880   0.859 0.868 

2 

5p 25 100 100 100 100 100 3.290 3.770 3.803 2.866 3.626 

10p 50 100 100 100 100 100 2.074 2.208 2.211 1.941 2.101 

25p 125 100 100 100 100 100 1.252 1.283 1.283 1.221 1.251 

50p 250 100 100   100 100 0.870 0.880   0.859 0.868 
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2 0.5 Normal 

0 

5p 10 93 93 95 87 0 6.716 8.076 8.525 5.610   

10p 20 82 83 83 78 81 3.974 4.248 4.276 3.664 4.031 

25p 50 60 62 62 58 59 2.329 2.380 2.381 2.255 2.304 

50p 100 31 31 31 30 30 1.604 1.622 1.622 1.578 1.593 

2 

5p 10 100 100 100 100 0 6.716 8.076 8.525 5.610   

10p 20 100 100 100 100 100 3.974 4.248 4.276 3.664 4.031 

25p 50 100 100 100 100 100 2.329 2.380 2.381 2.255 2.304 

50p 100 100 100 100 100 100 1.604 1.622 1.622 1.578 1.593 

5 0.5 Normal 

0 

5p 25 86 88 89 79 88 4.247 4.809 4.851 3.699 4.635 

10p 50 68 72 73 64 69 2.671 2.837 2.841 2.501 2.700 

25p 125 29 31 31 27 29 1.614 1.659 1.659 1.574 1.616 

50p 250 6 7   5 6 1.123 1.135   1.108 1.118 

2 

5p 25 100 100 100 100 100 4.247 4.809 4.851 3.699 4.635 

10p 50 100 100 100 100 100 2.671 2.837 2.841 2.501 2.700 

25p 125 100 100 100 100 100 1.614 1.659 1.659 1.574 1.616 

50p 250 100 100   100 100 1.123 1.135   1.108 1.118 

2 0.9 Normal 

0 

5p 10 95 96 97 92 0 13.376 16.119 17.045 11.171   

10p 20 92 92 92 90 91 7.895 8.461 8.516 7.275 8.014 

25p 50 87 88 88 86 86 4.619 4.717 4.721 4.475 4.567 

50p 100 76 77 77 75 76 3.183 3.225 3.225 3.134 3.169 

2 

5p 10 99 99 99 99 0 13.376 16.119 17.045 11.171   

10p 20 99 100 100 99 99 7.895 8.461 8.516 7.275 8.014 

25p 50 100 100 100 100 100 4.619 4.717 4.721 4.475 4.567 

50p 100 100 100 100 100 100 3.183 3.225 3.225 3.134 3.169 

5 0.9 Normal 

0 

5p 25 95 95 96 91 95 9.270 10.543 10.633 8.075 10.141 

10p 50 90 91 91 87 90 5.858 6.203 6.213 5.488 5.909 

25p 125 80 81 81 78 80 3.548 3.650 3.650 3.460 3.555 

50p 250 66 67   65 67 2.467 2.495   2.435 2.458 

2 

5p 25 99 99 99 99 100 9.270 10.543 10.633 8.075 10.141 

10p 50 100 100 100 100 100 5.858 6.203 6.213 5.488 5.909 

25p 125 100 100 100 100 100 3.548 3.650 3.650 3.460 3.555 

50p 250 100 100   100 100 2.467 2.495   2.435 2.458 

Table 1: Confidence Intervals when errors are normally distributed 
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95% Confidence Interval Coverage Average Length of 95% Confidence Limits 

no_of_pa

r rho Error 

Beta

1 n Ssize 

parametri

c 

Jackknif

e delete 1 

Jackknif

e delete 2 

Bootstra

p 

residual 

Bootstrap 

observatio

n 

Parametri

c 

Jackknif

e delete 1 

Jackknif

e delete 2 

Bootstra

p 

residual 

Bootstrap 

observation

s 

1 0 
Unifor

m 

0 

5p 5 76 82 93 62 0 3.472 5.283 8.647 2.684 

 10p 10 30 40 42 21 38 1.556 1.733 1.795 1.391 1.733 

25p 25 3 3 3 3 3 0.848 0.883 0.885 0.812 0.841 

50p 50 2 3 3 3 3 0.576 0.584 0.585 0.564 0.569 

2 

5p 5 100 100 100 100 0 3.472 5.283 8.647 2.684 

 10p 10 100 100 100 100 100 1.556 1.733 1.795 1.391 1.733 

25p 25 100 100 100 100 100 0.848 0.883 0.885 0.812 0.841 

50p 50 100 100 100 100 100 0.576 0.584 0.585 0.564 0.569 

2 0 
Unifor

m 

0 

5p 10 38 52 57 27 0 1.751 2.136 2.263 1.466 

 10p 20 5 7 7 5 6 1.007 1.087 1.094 0.928 1.026 

25p 50 3 3 3 3 3 0.586 0.601 0.601 0.568 0.581 

50p 100 3 3 3 3 3 0.402 0.408 0.408 0.395 0.400 

2 

5p 10 100 100 100 100 0 1.751 2.136 2.263 1.466 

 10p 20 100 100 100 100 100 1.007 1.087 1.094 0.928 1.026 

25p 50 100 100 100 100 100 0.586 0.601 0.601 0.568 0.581 

50p 100 100 100 100 100 100 0.402 0.408 0.408 0.395 0.400 

5 0 
Unifor

m 

0 

5p 25 3 6 6 4 5 0.947 1.091 1.101 0.826 1.046 

10p 50 2 2 2 3 2 0.601 0.637 0.638 0.564 0.606 

25p 125 2 2 2 3 3 0.363 0.371 0.371 0.354 0.362 

50p 250 3 3 

 

3 3 0.252 0.255 

 

0.249 0.252 

2 

5p 25 100 100 100 100 100 0.947 1.091 1.101 0.826 1.046 

10p 50 100 100 100 100 100 0.601 0.637 0.638 0.564 0.606 

25p 125 100 100 100 100 100 0.363 0.371 0.371 0.354 0.362 

50p 250 100 100 

 

100 100 0.252 0.255 

 

0.249 0.252 
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2 0.5 
Unifor

m 

0 

5p 10 50 61 65 37 0 1.994 2.401 2.552 1.668 

 10p 20 9 13 13 8 11 1.162 1.251 1.259 1.071 1.183 

25p 50 3 3 3 4 3 0.678 0.696 0.697 0.658 0.673 

50p 100 2 2 2 3 3 0.464 0.470 0.470 0.456 0.461 

2 

5p 10 100 100 100 100 0 1.994 2.401 2.552 1.668 

 10p 20 100 100 100 100 100 1.162 1.251 1.259 1.071 1.183 

25p 50 100 100 100 100 100 0.678 0.696 0.697 0.658 0.673 

50p 100 100 100 100 100 100 0.464 0.470 0.470 0.456 0.461 

5 0.5 
Unifor

m 

0 

5p 25 10 17 17 7 14 1.216 1.393 1.405 1.060 1.335 

10p 50 2 2 2 3 2 0.775 0.822 0.823 0.726 0.782 

25p 125 2 2 2 2 2 0.468 0.477 0.477 0.456 0.466 

50p 250 3 3 

 

3 3 0.325 0.329 

 

0.321 0.324 

2 

5p 25 100 100 100 100 100 1.216 1.393 1.405 1.060 1.335 

10p 50 100 100 100 100 100 0.775 0.822 0.823 0.726 0.782 

25p 125 100 100 100 100 100 0.468 0.477 0.477 0.456 0.466 

50p 250 100 100 

 

100 100 0.325 0.329 

 

0.321 0.324 

2 0.9 
Unifor

m 

0 

5p 10 84 86 89 75 0 3.947 4.752 5.056 3.299 

 10p 20 60 66 66 53 62 2.307 2.492 2.508 2.126 2.356 

25p 50 18 19 19 16 18 1.346 1.386 1.387 1.303 1.339 

50p 100 2 2 2 2 2 0.922 0.935 0.935 0.907 0.916 

2 

5p 10 100 100 100 100 0 3.947 4.752 5.056 3.299 

 10p 20 100 100 100 100 100 2.307 2.492 2.508 2.126 2.356 

25p 50 100 100 100 100 100 1.346 1.386 1.387 1.303 1.339 

50p 100 100 100 100 100 100 0.922 0.935 0.935 0.907 0.916 

5 0.9 
Unifor

m 

0 

5p 25 68 74 74 58 73 2.668 3.033 3.061 2.326 2.919 

10p 50 36 40 40 31 37 1.701 1.804 1.807 1.594 1.716 

25p 125 3 3 3 3 3 1.027 1.048 1.048 1.001 1.023 

50p 250 3 3 

 

3 3 0.713 0.721 

 

0.705 0.711 

2 

5p 25 100 100 100 100 100 2.668 3.033 3.061 2.326 2.919 

10p 50 100 100 100 100 100 1.701 1.804 1.807 1.594 1.716 

25p 125 100 100 100 100 100 1.027 1.048 1.048 1.001 1.023 

50p 250 100 100 

 

100 100 0.713 0.721 

 

0.705 0.711 

Table 2: Confidence Intervals when errors are uniformly distributed 
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95% Confidence Interval Coverage Average Length of 95% Confidence Limits 

no_of_pa

r rho Error 

Bet 

a1 n Ssize 

parametri

c 

Jackknif

e delete 

1 

Jackknif

e delete 

2 

Bootstra

p 

residual 

Bootstrap 

observation

s 

Parametri

c 

Jackknif

e delete 

1 

Jackknif

e delete 

2 

Bootstra

p 

residual 

Bootstrap 

observation

s 

1 0 
Lognorma

l 

0 

5p 5 93 95 98 89 0 19.684 30.578 48.199 15.274 

 10p 10 90 92 93 87 92 9.782 10.678 11.082 8.749 10.839 

25p 25 87 86 86 85 85 5.619 5.682 5.697 5.392 5.484 

50p 50 78 76 76 76 75 3.938 3.915 3.917 3.851 3.822 

2 

5p 5 98 99 100 97 0 19.684 30.578 48.199 15.274 

 10p 10 100 100 100 99 100 9.782 10.678 11.082 8.749 10.839 

25p 25 100 100 100 100 100 5.619 5.682 5.697 5.392 5.484 

50p 50 100 100 100 100 100 3.938 3.915 3.917 3.851 3.822 

2 0 
Lognorma

l 

0 

5p 10 93 95 96 88 0 10.613 12.426 13.202 8.885 

 10p 20 88 89 89 85 88 6.446 6.711 6.758 5.937 6.427 

25p 50 80 80 80 79 77 4.029 4.031 4.034 3.902 3.917 

50p 100 66 65 65 65 64 2.863 2.828 2.829 2.817 2.783 

2 

5p 10 100 100 100 100 0 10.613 12.426 13.202 8.885 

 10p 20 99 100 100 99 100 6.446 6.711 6.758 5.937 6.427 

25p 50 100 100 100 100 100 4.029 4.031 4.034 3.902 3.917 

50p 100 100 100 100 100 100 2.863 2.828 2.829 2.817 2.783 

5 0 
Lognorma

l 

0 

5p 25 88 92 93 83 92 6.330 7.167 7.235 5.509 6.947 

10p 50 81 83 83 78 81 4.088 4.274 4.281 3.828 4.086 

25p 125 61 60 60 60 59 2.610 2.628 2.628 2.543 2.568 

50p 250 41 40 

 

41 39 1.829 1.824 

 

1.805 1.802 

2 

5p 25 100 100 100 100 100 6.330 7.167 7.235 5.509 6.947 

10p 50 100 100 100 100 100 4.088 4.274 4.281 3.828 4.086 

25p 125 100 100 100 100 100 2.610 2.628 2.628 2.543 2.568 

50p 250 100 100 

 

100 100 1.829 1.824 

 

1.805 1.802 
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2 0.5 
Lognorma

l 

0 

5p 10 95 96 97 90 0 12.047 14.117 15.024 10.078 

 10p 20 89 89 89 87 89 7.434 7.743 7.799 6.846 7.428 

25p 50 83 84 84 82 81 4.642 4.611 4.614 4.499 4.486 

50p 100 73 72 72 73 70 3.310 3.232 3.233 3.257 3.183 

2 

5p 10 100 100 100 99 0 12.047 14.117 15.024 10.078 

 10p 20 100 100 100 100 100 7.434 7.743 7.799 6.846 7.428 

25p 50 100 100 100 100 100 4.642 4.611 4.614 4.499 4.486 

50p 100 100 100 100 100 100 3.310 3.232 3.233 3.257 3.183 

5 0.5 
Lognorma

l 

0 

5p 25 91 94 95 86 94 8.186 8.964 9.055 7.121 8.770 

10p 50 86 89 90 84 88 5.260 5.458 5.468 4.927 5.232 

25p 125 73 73 73 72 72 3.368 3.405 3.406 3.283 3.328 

50p 250 59 56 

 

58 55 2.362 2.344 

 

2.328 2.316 

2 

5p 25 100 100 100 99 100 8.186 8.964 9.055 7.121 8.770 

10p 50 100 100 100 100 100 5.260 5.458 5.468 4.927 5.232 

25p 125 100 100 100 100 100 3.368 3.405 3.406 3.283 3.328 

50p 250 100 100 

 

100 100 2.362 2.344 

 

2.328 2.316 

2 0.9 
Lognorma

l 

0 

5p 10 97 97 98 94 0 24.005 28.246 30.070 20.070 

 10p 20 95 95 95 92 95 14.777 15.540 15.651 13.608 14.880 

25p 50 93 94 94 92 92 9.209 9.139 9.146 8.922 8.895 

50p 100 91 90 90 90 89 6.567 6.506 6.507 6.468 6.408 

2 

5p 10 99 100 100 99 0 24.005 28.246 30.070 20.070 

 10p 20 99 100 100 98 100 14.777 15.540 15.651 13.608 14.880 

25p 50 99 100 100 99 100 9.209 9.139 9.146 8.922 8.895 

50p 100 100 100 100 100 100 6.567 6.506 6.507 6.468 6.408 

5 0.9 
Lognorma

l 

0 

5p 25 96 98 98 94 98 17.832 19.383 19.578 15.524 19.005 

10p 50 94 95 95 93 94 11.531 11.987 12.008 10.805 11.503 

25p 125 91 92 92 90 91 7.404 7.505 7.507 7.219 7.336 

50p 250 89 88 

 

88 87 5.187 5.134 

 

5.114 5.071 

2 

5p 25 99 100 100 99 100 17.832 19.383 19.578 15.524 19.005 

10p 50 99 100 100 99 100 11.531 11.987 12.008 10.805 11.503 

25p 125 99 100 100 99 100 7.404 7.505 7.507 7.219 7.336 

50p 250 99 100 

 

99 99 5.187 5.134 

 

5.114 5.071 

Table 3: Confidence Intervals when errors are lognormally distributed
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6.4.1 Normally distributed errors 

 

The confidence interval was compared for  𝛽1 = 0 and for 𝛽1 = 2. Under normally 

distributed errors and independent explanatory variables, the confidence intervals 

consistently over-cover for 𝛽1 = 2 with the least coverage of 98% being of observed 

under bootstrapping residuals. For  𝛽1 = 0 a reasonable coverage is observed for the 

sample size equal 5𝑝 and 10𝑝 when 𝑝 = 1 and 𝑝 = 2. The coverage becomes rapidly 

poorer with the increase in sample size for  𝛽1 = 0 while the average length of the 

confidence interval becomes narrower with an increase in sample size. The jackknife 

methods resulted in higher coverage compared to bootstrap methods; however 

bootstrap methods have a narrower average length of confidence interval. In all 

methods, delete 2 jackknife methods have the largest average length of confidence 

interval of 28.9  and the highest coverage of 98%  for  𝛽1 = 0  which is observed 

when  𝑝 = 1 . The true coverage of 95%  for  𝛽1 = 0   is only attained by delete 

1  jackknife methods when 𝑝 = 1 and sample size 5𝑝. For the case where there are 5 

regressors and sample size is 50𝑝  the coverage of the confidence interval is 

extremely poor for  𝛽1 = 0  . Coverage is 2% across all methods with an exception of 

bootstrapping observations which has coverage of 3% while the average length of 

the confidence interval is very narrow, ranging from 0.859 to 0.88 for 𝛽1 = 0.  

The increase in correlation among the regressors generally improves the confidence 

interval coverage while increasing the average length of the confidence interval. 

When 𝜌 = 0.5 and 𝑝 = 2 the true coverage of 95% is obtained for the jackknife delete 

2 method when sample size is 5𝑝. The jackknife delete 1 method overstates the 

coverage by 1% when the sample is 5𝑝 and provides the true coverage of 95% when 

sample size is 10𝑝 together with a delete 2 jackknife. The true coverage however is 

achieved at a cost of a wider average length of the confidence interval. The 

bootstrap residual and observation methods provide better average lengths of the 

confidence interval compared to both delete 1 and delete 2 jackknife methods under 

the same conditions. 

The increase of the correlation coefficient between regressors from 0.5  to 0.9 

significantly widens the average length of the confidence interval from 6.7 to 13.38 
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and 8.5  to 17.04  under parametric and delete  2  jackknife respectively for a 

combination of 𝑝 = 2 and sample size  5𝑝 . In general the relationship between 

confidence interval coverage and the average length of the confidence interval is that 

they are directly proportional to one another. There is a notable improvement in 

coverage in the presence of multicollinearity which is achieved at an expense of 

wider confidence interval. 

6.4.2 Uniformly distributed errors 

 

When errors are uniformly distributed and 𝜌 = 0 the confidence interval coverage is 

consistently understated across all methods for the case where  𝛽1 = 0 except for the 

jackknife delete 2 method when 𝑝 = 1 and sample size 5𝑝 where the coverage is 

understated by 2%. For the case  𝛽1 = 2  the coverage is always 100%. The level at 

which the coverage is understated is more severe for the uniformly distributed errors 

compared to the normally distributed errors because the average length of the 

confidence interval is much narrower. For 𝑝 = 5  a 2% coverage is observed for 

parametric and bootstrapping observation methods at a sample size 25𝑝 which was 

never observed under normality. Instances of poor coverage are observed when 

𝜌 = 0 across all methods. The delete 1 and delete 2 jackknife methods give better 

coverage at small sample sizes and coverage deteriorates at a rapid rate as the 

sample size increases.  

As under normality, the coverage improves with the increase in correlation among 

explanatory variables at an expense of wider average length of confidence interval. 

The best coverage of 89%  was observed under jackknife delete 2 method when 

𝑝 = 2 and 𝜌 = 0.9. This coverage was attained at an expense of the widest average 

length of confidence interval of 5.06. The bootstrap residual method produced the 

shortest average length of confidence interval in all cases as compared to the rest 

other the methods considered. 

6.4.3 Lognormally distributed errors 

 

For the lognormally distributed errors a trade-off between the coverage and average 

length of confidence interval is observed. There is a significant improvement in 
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coverage of all methods for   𝛽1 = 0 compared to normally and uniformly distributed 

errors. When  𝜌 = 0 the true coverage of 95% is observed for jackknife delete 1 

method when 𝑝 = 1, 𝑝 = 2  and sample size 5𝑝. In both instances this method has 

the second widest average length of a confident interval of 30.58 for 𝑝 = 1 and 12.43 

for 𝑝 = 2. The largest overstatement of coverage (98%) is observed under delete 2 

jackknife together with an average distance of confidence interval of 48.2 which is 

observed when 𝑝 = 1,  𝜌 = 0  and a sample size of 5𝑝 . When 𝜌 = 0  the biggest 

understatement of coverage observed was 39% coverage which was seen under 

bootstrapping observations when 𝑝 = 5  and sample size 50𝑝  and the observed 

average length of interval was 1.802 which is the smallest average length.  

The introduction of a correlation factor of 0.5 among the explanatory variables 

produced an improved coverage particularly for 𝛽1 = 0. The worst coverage of 55% 

is observed under bootstrapping observations when 𝑝 = 5 and the sample size 50𝑝 

with the average lengths of the confidence interval being 2.3. An overstatement of 

coverage (98%) for 𝛽1 = 0  is observed under delete1, delete2 jackknife and 

bootstrapping observation when 𝑝 = 5 and 𝜌 = 0.9 with the corresponding average 

length of the confidence interval of 19.38, 19.56 and 19.01 respectively. The true 

coverage (95%) for 𝛽1 = 0  is attained under parametric, jackknife delete 1, jackknife 

delete 2 and bootstrapping observations when 𝑝 = 2 and 𝜌 = 0.9. At this instance the 

parametric method has the smallest average length of confidence interval of 14.78 

followed by bootstrapping observation method with an average length of confidence 

interval of 14.89. The true coverage (95%) is also attained under jackknife delete 1 

and jackknife delete 2 methods when 𝑝 = 5  and  𝜌 = 0.9  with the parametric and 

bootstrapping observations methods producing coverage of 94%. For 𝜌 = 0.5 and 

𝜌 = 0.9 bootstrapping residuals method is always providing a slightly less coverage 

for all sample sizes except sample size 50𝑝.  

                                                                                                                                                                                                                                

6.5 Percentile Based Interval 
  

Percentile based intervals are presented for jackknife and bootstrapping methods. 

For consistency the comparison is performed on the general percentile method 
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described in Chapter 4 and not on methods that improve the percentile based 

confidence interval for bootstrapping because the same improvement can’t be 

performed for the jackknife method (Efron, 2003). 
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Coverage of Percentile Based Intervals Average Length of Percentile Limits 

no_of_par rho error Beta1 N Ssize 

Jackknife 

delete 1 

Jackknife 

delete 2 

Bootstrap 

residual 

Bootstrap 

observations 

Jackknife 

delete 1 

Jackknife 

delete 2 

Bootstrap 

residual 

Bootstrap 

observations 

1 0 Normal 

0 

5p 5 57 85 76 0 3.948 13.177 5.500 

 10p 10 45 54 78 82 1.640 2.416 4.158 5.092 

25p 25 33 28 67 70 0.722 0.879 2.671 2.762 

50p 50 37 32 45 47 0.304 0.434 1.913 1.937 

2 

5p 5 88 97 94 0 3.948 13.177 5.500 

 10p 10 91 94 100 100 1.640 2.416 4.158 5.092 

25p 25 97 98 100 100 0.722 0.879 2.671 2.762 

50p 50 99 99 100 100 0.304 0.434 1.913 1.937 

2 0 Normal 

0 

5p 10 50 62 78 0 1.861 2.808 4.073 

 10p 20 32 33 71 74 0.914 1.190 2.966 3.289 

25p 50 39 34 47 48 0.307 0.445 1.914 1.966 

50p 100 41 38 17 18 0.157 0.212 1.356 1.373 

2 

5p 10 93 96 99 0 1.861 2.808 4.073 

 10p 20 96 97 100 100 0.914 1.190 2.966 3.289 

25p 50 99 99 100 100 0.307 0.445 1.914 1.966 

50p 100 100 100 100 100 0.157 0.212 1.356 1.373 

5 0 Normal 

0 

5p 25 33 32 65 79 0.902 1.091 2.698 3.445 

10p 50 40 34 48 52 0.326 0.476 1.896 2.056 

25p 125 41 39 11 12 0.123 0.173 1.213 1.246 

50p 250 46 

 

2 3 0.061 

 

0.858 0.868 

2 

5p 25 96 97 100 100 0.902 1.091 2.698 3.445 

10p 50 98 98 100 100 0.326 0.476 1.896 2.056 

25p 125 100 100 100 100 0.123 0.173 1.213 1.246 

50p 250 100 

 

100 100 0.061 

 

0.858 0.868 
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2 0.5 Normal 

0 

5p 10 50 65 81 0 2.139 3.191 4.661 

 10p 20 37 39 74 78 1.075 1.376 3.415 3.790 

25p 50 39 33 56 58 0.353 0.523 2.206 2.258 

50p 100 42 39 28 29 0.183 0.249 1.564 1.584 

2 

5p 10 92 96 99 0 2.139 3.191 4.661 

 10p 20 94 95 100 100 1.075 1.376 3.415 3.790 

25p 50 98 99 100 100 0.353 0.523 2.206 2.258 

50p 100 100 100 100 100 0.183 0.249 1.564 1.584 

5 0.5 Normal 

0 

5p 25 38 39 75 85 1.176 1.401 3.476 4.405 

10p 50 38 32 62 68 0.421 0.632 2.442 2.647 

25p 125 40 36 28 29 0.159 0.229 1.564 1.608 

50p 250 45 

 

5 6 0.079 

 

1.108 1.119 

2 

5p 25 94 96 100 100 1.176 1.401 3.476 4.405 

10p 50 97 98 100 100 0.421 0.632 2.442 2.647 

25p 125 100 100 100 100 0.159 0.229 1.564 1.608 

50p 250 100 

 

100 100 0.079 

 

1.108 1.119 

2 0.9 Normal 

0 

5p 10 61 73 88 0 4.263 6.340 9.286 

 10p 20 51 57 87 88 2.137 2.746 6.771 7.526 

25p 50 38 36 85 86 0.700 1.032 4.379 4.475 

50p 100 40 37 74 74 0.362 0.493 3.105 3.145 

2 

5p 10 84 91 97 0 4.263 6.340 9.286 

 10p 20 85 89 99 99 2.137 2.746 6.771 7.526 

25p 50 89 92 100 100 0.700 1.032 4.379 4.475 

50p 100 93 94 100 100 0.362 0.493 3.105 3.145 

5 0.9 Normal 

0 

5p 25 55 60 89 94 2.596 3.077 7.589 9.645 

10p 50 38 40 86 89 0.921 1.390 5.360 5.797 

25p 125 40 37 77 80 0.350 0.502 3.441 3.532 

50p 250 46 

 

65 66 0.174 

 

2.436 2.459 

2 

5p 25 84 86 99 100 2.596 3.077 7.589 9.645 

10p 50 84 88 100 99 0.921 1.390 5.360 5.797 

25p 125 90 91 100 100 0.350 0.502 3.441 3.532 

50p 250 95 

 

100 100 0.174 

 

2.436 2.459 

Table 4: Percentile based interval when errors are normally distributed 
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Coverage of Percentile Based Intervals Average Length of Percentile Limits 

no_of_par rho Error Beta1 N Ssize 

Jackknife 

delete 1 

Jackknife 

delete 2 

Bootstrap 

residual 

Bootstrap 

observations 

Jackknife 

delete 1 

Jackknife 

delete 2 

Bootstrap 

residual 

Bootstrap 

observations 

1 0 Uniform 

0 

5p 5 33 61 36 0 1.173 3.968 1.626 

 10p 10 29 18 15 23 0.457 0.689 1.178 1.447 

25p 25 31 27 4 4 0.194 0.251 0.770 0.802 

50p 50 36 31 3 3 0.083 0.119 0.552 0.557 

2 

5p 5 99 100 100 0 1.173 3.968 1.626 

 10p 10 100 100 100 100 0.457 0.689 1.178 1.447 

25p 25 100 100 100 100 0.194 0.251 0.770 0.802 

50p 50 100 100 100 100 0.083 0.119 0.552 0.557 

2 0 Uniform 

0 

5p 10 26 20 20 0 0.554 0.845 1.211 

 10p 20 30 24 5 6 0.258 0.349 0.863 0.962 

25p 50 38 34 3 3 0.086 0.123 0.555 0.569 

50p 100 43 39 4 3 0.043 0.059 0.392 0.397 

2 

5p 10 100 100 100 0 0.554 0.845 1.211 

 10p 20 100 100 100 100 0.258 0.349 0.863 0.962 

25p 50 100 100 100 100 0.086 0.123 0.555 0.569 

50p 100 100 100 100 100 0.043 0.059 0.392 0.397 

5 0 Uniform 

0 

5p 25 29 24 5 5 0.251 0.312 0.774 0.993 

10p 50 39 33 4 2 0.092 0.132 0.550 0.594 

25p 125 42 40 3 3 0.034 0.048 0.351 0.360 

50p 250 45 

 

3 3 0.017 

 

0.249 0.252 

2 

5p 25 100 100 100 100 0.251 0.312 0.774 0.993 

10p 50 100 100 100 100 0.092 0.132 0.550 0.594 

25p 125 100 100 100 100 0.034 0.048 0.351 0.360 

50p 250 100 

 

100 100 0.017 

 

0.249 0.252 
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2 0.5 Uniform 

0 

5p 10 28 23 26 0 0.627 0.945 1.379 

 10p 20 29 24 8 10 0.306 0.403 0.995 1.111 

25p 50 37 33 4 4 0.102 0.145 0.642 0.660 

50p 100 43 40 3 2 0.052 0.069 0.452 0.458 

2 

5p 10 100 100 100 0 0.627 0.945 1.379 

 10p 20 100 100 100 100 0.306 0.403 0.995 1.111 

25p 50 100 100 100 100 0.102 0.145 0.642 0.660 

50p 100 100 100 100 100 0.052 0.069 0.452 0.458 

5 0.5 Uniform 

0 

5p 25 27 23 6 13 0.332 0.403 0.994 1.271 

10p 50 38 33 4 3 0.121 0.175 0.708 0.767 

25p 125 42 40 3 3 0.045 0.063 0.453 0.463 

50p 250 45 

 

3 3 0.023 

 

0.321 0.324 

2 

5p 25 100 100 100 100 0.332 0.403 0.994 1.271 

10p 50 100 100 100 100 0.121 0.175 0.708 0.767 

25p 125 100 100 100 100 0.045 0.063 0.453 0.463 

50p 250 100 

 

100 100 0.023 

 

0.321 0.324 

2 0.9 Uniform 

0 

5p 10 37 48 64 0 1.238 1.891 2.723 

 10p 20 30 25 48 58 0.606 0.804 1.975 2.213 

25p 50 39 35 15 17 0.203 0.288 1.274 1.314 

50p 100 41 37 2 2 0.102 0.137 0.898 0.909 

2 

5p 10 95 98 99 0 1.238 1.891 2.723 

 10p 20 98 99 100 100 0.606 0.804 1.975 2.213 

25p 50 100 100 100 100 0.203 0.288 1.274 1.314 

50p 100 100 100 100 100 0.102 0.137 0.898 0.909 

5 0.9 Uniform 

0 

5p 25 30 28 54 70 0.722 0.879 2.181 2.782 

10p 50 37 31 29 36 0.267 0.386 1.555 1.685 

25p 125 43 40 3 3 0.100 0.140 0.994 1.017 

50p 250 45 

 

3 3 0.050 

 

0.704 0.711 

2 

5p 25 98 98 100 100 0.722 0.879 2.181 2.782 

10p 50 100 100 100 100 0.267 0.386 1.555 1.685 

25p 125 100 100 100 100 0.100 0.140 0.994 1.017 

50p 250 100 

 

100 100 0.050 

 

0.704 0.711 

Table 5: Percentile based interval when errors are uniformly distributed 
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Coverage of Percentile Based Intervals Average Length of Percentile Limits 

no_of_par rho Error Beta1 N Ssize 

Jackknife 

delete 1 

Jackknife 

delete 2 

Bootstrap 

residual 

Bootstrap 

observations 

Jackknife 

delete 1 

Jackknife 

delete 2 

Bootstrap 

residual 

Bootstrap 

observations 

1 0 Lognormal 

0 

5p 5 59 84 76 0 6.847 21.362 9.268 

 10p 10 50 59 82 83 2.949 4.128 7.597 8.802 

25p 25 41 43 83 78 1.503 1.725 5.244 5.141 

50p 50 39 33 76 70 0.475 0.998 3.836 3.724 

2 

5p 5 88 97 93 0 6.847 21.362 9.268 

 10p 10 89 93 99 99 2.949 4.128 7.597 8.802 

25p 25 95 95 99 100 1.503 1.725 5.244 5.141 

50p 50 91 96 100 100 0.475 0.998 3.836 3.724 

2 0 Lognormal 

0 

5p 10 56 66 83 0 3.337 4.831 7.509 

 10p 20 42 45 82 81 1.793 2.186 5.669 5.916 

25p 50 41 36 79 72 0.500 1.024 3.895 3.807 

50p 100 43 39 66 60 0.250 0.404 2.834 2.754 

2 

5p 10 92 95 99 0 3.337 4.831 7.509 

 10p 20 94 95 99 99 1.793 2.186 5.669 5.916 

25p 50 92 96 100 100 0.500 1.024 3.895 3.807 

50p 100 93 95 100 100 0.250 0.404 2.834 2.754 

5 0 Lognormal 

0 

5p 25 43 45 80 87 1.859 2.140 5.276 6.485 

10p 50 43 38 77 76 0.556 1.064 3.806 3.970 

25p 125 45 40 60 57 0.189 0.339 2.560 2.547 

50p 250 47 

 

41 40 0.091 

 

1.821 1.800 

2 

5p 25 93 94 100 100 1.859 2.140 5.276 6.485 

10p 50 91 96 100 100 0.556 1.064 3.806 3.970 

25p 125 95 97 100 100 0.189 0.339 2.560 2.547 

50p 250 99 

 

100 100 0.091 

 

1.821 1.800 
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2 0.5 Lognormal 

0 

5p 10 57 68 84 0 3.837 5.511 8.541 

 10p 20 46 50 85 81 2.092 2.526 6.554 6.830 

25p 50 40 37 82 77 0.566 1.182 4.509 4.355 

50p 100 42 37 73 67 0.286 0.461 3.296 3.153 

2 

5p 10 90 95 98 0 3.837 5.511 8.541 

 10p 20 91 92 99 99 2.092 2.526 6.554 6.830 

25p 50 90 96 100 100 0.566 1.182 4.509 4.355 

50p 100 91 93 100 100 0.286 0.461 3.296 3.153 

5 0.5 Lognormal 

0 

5p 25 48 51 85 90 2.344 2.687 6.852 8.234 

10p 50 42 40 83 84 0.702 1.382 4.922 5.081 

25p 125 45 40 73 68 0.241 0.435 3.325 3.292 

50p 250 45 

 

59 54 0.116 

 

2.356 2.315 

2 

5p 25 91 93 99 100 2.344 2.687 6.852 8.234 

10p 50 86 95 100 100 0.702 1.382 4.922 5.081 

25p 125 89 92 100 100 0.241 0.435 3.325 3.292 

50p 250 97 

 

100 100 0.116 

 

2.356 2.315 

2 0.9 Lognormal 

0 

5p 10 65 75 90 0 7.649 10.954 16.984 

 10p 20 60 64 90 90 4.197 5.075 13.019 13.677 

25p 50 43 50 92 89 1.118 2.331 8.938 8.635 

50p 100 41 39 90 87 0.570 0.912 6.528 6.342 

2 

5p 10 85 90 97 0 7.649 10.954 16.984 

 10p 20 82 86 98 99 4.197 5.075 13.019 13.677 

25p 50 78 87 99 99 1.118 2.331 8.938 8.635 

50p 100 78 82 100 100 0.570 0.912 6.528 6.342 

5 0.9 Lognormal 

0 

5p 25 62 65 93 95 5.072 5.802 14.971 17.837 

10p 50 45 54 92 91 1.510 3.059 10.800 11.151 

25p 125 44 40 90 88 0.532 0.951 7.315 7.254 

50p 250 47 

 

89 86 0.256 

 

5.181 5.068 

2 

5p 25 82 84 99 99 5.072 5.802 14.971 17.837 

10p 50 75 85 99 99 1.510 3.059 10.800 11.151 

25p 125 74 78 99 100 0.532 0.951 7.315 7.254 

50p 250 82 

 

99 99 0.256 

 

5.181 5.068 

Table 6: Percentile based interval when errors are lognormally distributed
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6.5.1 Normally distributed errors 

 

For  𝛽1 = 0  and 𝑝 = 1  the best coverage of 85% is observed under the jackknife 

delete 2 method when the samples size is  5𝑝. The same method produced the 

largest average length of the confidence interval of 13.18. An increase in sample 

size resulted in all the methods showing a decrease in both the coverage and 

average length of an interval.  

For 𝛽1 = 2 and 𝑝 = 1,  jackknife methods provided coverage that is closest to the true 

coverage of 95% and a shorter average length of an interval than bootstrap methods 

while the bootstrap methods are consistently overstating the coverage. The 

coverage increased with the increase in sample size for this case. 

Bootstrapping methods are observed to be performing better than jackknife methods 

in terms of coverage for small sample sizes and thereafter deteriorate rapidly as the 

sample size increase for the case of 𝛽1 = 0 when 𝑝 = 2 and 𝑝 = 5. For 𝑝 = 2 and 

𝑝 = 5 bootstrapping residuals method showed a 78% and 65% coverage at a sample 

size of 5𝑝  and 17% and 2% at a sample size of 50𝑝  respectively. Meanwhile 

jackknife delete 1 showed 50% and 33% coverage at sample size 5𝑝 and 41% and 

46% at sample size 50𝑝  respectively. For 𝛽1 = 2  all methods are overstating the 

coverage when 𝑝 = 2  and  𝑝 = 5  with an exception of jackknife delete 1 method 

which provided a coverage of 93% for the sample size 5𝑝. 

The introduction of 𝜌 = 0.5 between explanatory variables showed an increase in 

both the coverage and average length of an interval for the case where is 𝛽1 = 0. An 

improvement in the coverage of all methods was observed at an expense of an 

increased length of an interval, however increases are not very significant compared 

to the same case when the explanatory variables were independent. Bootstrap 

methods provided very consistent coverage across all sample sizes. For  𝛽1 = 0 

bootstrapping residuals showed the best coverage of 81% when 𝑝 = 2  while 

bootstrapping observations showed the best coverage of 85% when 𝑝 = 5.  

For   𝛽1 = 2  the both bootstrapping methods consistently overstate the coverage 

while the jackknife methods fluctuate around the 95% coverage while providing a 

shorter length of interval. The best coverage observed under the jackknife delete 2 
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method is 95%  which was observed at sample size 10𝑝   with 1.4  as the 

corresponding lengths when 𝑝 = 2. 

An increase in multicollinearity among the explanatory variables from 𝜌 = 0.5  to 

𝜌 = 0.9 resulted in the improved coverage for bootstrapping methods for both cases 

( 𝛽1 = 0 and  𝛽1 = 2) when 𝑝 = 2 and 𝑝 = 5. This improvement however came at the 

expense of the significantly increased length of the confidence interval. For  𝑝 = 2 

the widest length of an interval is 9.3 when 𝜌 = 0.9, from 4.7, when 𝜌 = 0.5 while the 

shortest length of an interval is 0.36 from 0.18 these are both observed for sample 

sizes 5𝑝  and  50𝑝 . For  𝛽1 = 2  coverage under jackknife methods improves 

substantially as the sample size increase. 

6.5.2 Uniformly distributed errors 

 

In the case where all explanatory variables are independent, the coverage of the 

percentile based confidence interval is understated across all methods considered 

for 𝛽1 = 0. The two jackknife methods are performing better in both coverage and 

average length of an interval than their bootstrap counterpart. The best coverage 

observed is 61% was observed under the jackknife delete 2 method. This coverage 

is observed when 𝑝 = 1. The worst coverage of 2% is observed under bootstrapping 

observations when 𝑝 = 5 and sample size 10𝑝. The worst coverage observed under 

the jackknife method is 20% which was observed under the jackknife delete 2 

method when 𝑝 = 2  and sample size  5𝑝 . For corresponding sample sizes the 

jackknife methods consistently showed shorter lengths of interval except for one 

case where jackknife delete 2 method is 4.0  which is observed when 𝑝 = 1  and 

sample size  5𝑝 . The shortest length of interval (0.02)  was observed under the 

jackknife delete 1 method when 𝑝 = 5 and sample size 50𝑝, compared to 0.25 and 

0.252  observed under bootstrapping residuals and bootstrapping observation 

respectively.  

An introduction of multicollinearity had very minimal impact on the coverage as well 

as in the average length of an interval across all methods. The only notable result is 



   
 
 
 

116 
 

the achievement of 95% coverage for  𝛽1 = 2  which is observed under jackknife 

delete 1 method when 𝑝 = 5 and 𝜌 = 0.9. 

6.5.3 Lognormally distributed errors 

 

The results are showing that when independent variables are uncorrelated there is a 

general understatement of coverage across all methods for  𝛽1 = 0. Bootstrapping 

methods are outperforming the jackknife methods in coverage while the jackknife 

methods are showing shorter average length of interval. The best coverage of 87% is 

observed under bootstrapping observations when 𝑝 = 5 and the sample size5𝑝. 

For  𝛽1 = 2, jackknife methods are showing coverage closer to the true coverage of 

95% while bootstrapping methods are consistently overstating the coverage. True 

coverage of 95% percent were observed for both jackknife methods when 𝑝 = 1 and 

sample size 25𝑝. Jackknife delete 2 method also achieved the true coverage of 95% 

for sample sizes 5𝑝, 10𝑝 and 50𝑝 when 𝑝 = 2. The only case where a true coverage 

was not achieved in this instance was when the sample size was 25𝑝, even then the 

coverage attained is 96%. 

The introduction of a correlation structure with 𝜌 = 0.5 sees the improvement in the 

bootstrapping methods in terms of coverage and worsening of the average length of 

an interval. The best coverage of 90% is attained for bootstrapping observations 

when 𝑝 = 5 and sample size 5𝑝 for  𝛽1 = 0 while the average length of an interval 

increased to 8.2. For the case where for  𝛽1 = 2 the introduction of the correlation 

factor among the explanatory variables did not affect the coverage achieved under 

the jackknife methods. 

Increase of 𝜌 from 0.5 to 0.9 resulted in a huge increase in the average length of the 

interval. The largest increase from 6.9 to 17 was observed for bootstrapping 

residuals when 𝑝 = 2 and sample size 5𝑝.  
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6.6 Conclusion 

 

The 95% confidence interval coverage was easily attainable due to longer average 

length of the confidence interval compared to the percentile based coverage where 

relatively shorter lengths of intervals were observed. The unsuitability of the 

application of confidence interval in the jackknife methods was because it produces 

poor coverage and wider lengths of interval. Percentile based confidence intervals 

are more appropriate for jackknife methods. The length of an interval decreases with 

an increase in sample size regardless of the presence of multicollinearity in the data. 

However there is no definite conclusion on the behaviour of coverage when the 

sample size increases. Multicollinearity in the data results in inflated length of 

confidence intervals. It should be noted that though in some instances jackknife 

methods performed better than bootstrapping methods in terms of the coverage and 

average length on an interval, this is not a conclusive result. The bootstrap percentile 

can be improved while jackknife cannot (Efron, 2003). 
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Chapter 7 

Conclusion 
 

In this project the Monte Carlo study compared resampling methods in terms of 

probability of type 1 error, power of a test as well as confidence intervals. The 

objective was to explore permutation tests, bootstrapping and jackknife methods as 

possible alternative for the parametric methods in significance testing of regression 

coefficients. These comparisons were performed in order to investigate the effect of 

(1) sample size (2) when errors are normally, uniformly and lognormally distributed 

(3) when the number of explanatory variables is 1, 2 and 5. (4) When the correlation 

coefficient between the explanatory variables is 0, 0.5 and 0.9.   By examining 

probability of type 1 error results it was clear that parametric methods, bootstrapping 

residuals, bootstrapping observations, permuting observations and Freedman and 

Lane permutations provided reasonable probability of type 1 errors which was 

within  𝑝̂ ± 1.96√𝑝̂(1 − 𝑝̂)/𝑛. The probability of type 1 error was not affected by all 

the factors outlined above. 

The power results indicated that these methods are almost equally powerful except 

for bootstrapping observations method when errors are lognormally distributed 

where it was observed to be less powerful.  One of the reasons for the failure of 

bootstrapping observations in certain instances was partly due to the fact that this 

method is appropriate for dynamic models where there is heteroscedasticity in the 

errors (MacKinnon, 2002), while in this study design the errors were independently 

identically distributed. 

Based on the probability of type 1 error and power results all methods considered in 

the study are “equally” appropriate except for the bootstrapping observations when 

errors are lognormally distributed.  There is no outright method that is superior.  

The presence of multicollinearity did not affect the probability of type 1 error while it 

compromised the power of the tests. This is more prevalent when errors are normally 
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or lognormally distributed. When errors are uniformly distributed the impact is not as 

severe. In all probability of type 1 error analyses it is clear that it is safe to use any of 

the methods considered in this project. In this project it became clear that the 

inherent flaws in the data cannot be remedied by better/more robust methods i.e if 

there is a presence of multicollinearity in the data the use of permutation or 

bootstrapping does not necessarily give better results than those given by parametric 

methods. 

 In this project power of a test was investigated for an extreme case of  𝛽1 = 2 for 

different sample sizes. For future research the analysis of power of a test can be 

performed for incremental sizes of  𝛽1 say 0.5, 1, 1.5 and 2. In future studies it would 

be worth considering more extreme cases where errors are sampled from a 

distribution that has much higher kurtosis such a double exponential. 
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Appendix A – Probability of type 1 error 

Type1 error when errors are normally distributed 

p  Rho n 
Sample 

size 
Parametric 

Bootstrapping 

residuals 

Bootstrapping 

observations 

Permuting 

observations 

Freedman 

& Lane 

Permutation 

1 0 

5p 5 0.0488 0.0452   0.0434 0.043 

10p 10 0.0498 0.0496 0.043 0.0516 0.049 

25p 25 0.0508 0.0498 0.058 0.0502 0.0532 

50p 50 0.0476 0.0476 0.053 0.0476 0.0474 

2 

0 

5p 10 0.053 0.0532 
 

0.0526 0.0524 

10p 20 0.0514 0.051 0.0524 0.0512 0.0506 

25p 50 0.0578 0.0566 0.058 0.0572 0.058 

50p 100 0.0476 0.0478 0.049 0.048 0.0478 

0.5 

5p 10 0.056 0.056 
 

0.0562 0.056 

10p 20 0.0544 0.0526 0.0536 0.0542 0.0538 

25p 50 0.0554 0.054 0.0594 0.0562 0.0546 

50p 100 0.0526 0.051 0.0558 0.0532 0.0528 

0.9 

5p 10 0.0534 0.0542 

 

0.054 0.0544 

10p 20 0.053 0.0522 0.0536 0.0512 0.053 

25p 50 0.0516 0.05 0.058 0.0506 0.0512 

50p 100 0.052 0.0518 0.0522 0.0502 0.0512 

5 

0 

5p 25 0.0456 0.046 0.0308 0.046 0.0482 

10p 50 0.0462 0.0466 0.048 0.0452 0.0456 

25p 125 0.0544 0.0546 0.0558 0.0534 0.056 

50p 250 0.0502 0.0494 0.0512 0.0494 0.0498 

0.5 

5p 25 0.0528 0.053 0.0402 0.0514 0.0532 

10p 50 0.0486 0.0498 0.054 0.0494 0.051 

25p 125 0.0534 0.0542 0.0542 0.055 0.053 

50p 250 0.0474 0.049 0.0508 0.0472 0.0478 

0.9 

5p 25 0.049 0.0492 0.038 0.049 0.0474 

10p 50 0.051 0.0494 0.054 0.0484 0.05 

25p 125 0.0512 0.052 0.051 0.0518 0.0526 

50p 250 0.0514 0.052 0.0514 0.0514 0.0518 

Table 7: Type 1 error when errors are normally distributed 
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Type1 error when errors are uniformly distributed 

p Rho n 
Sample 

size 
Parametric 

Bootstrapping 

residuals 

Bootstrapping 

observations 

Permuting 

observations 

Freedman 

& Lane 

Permutation 

1 0 

5p 5 0.0454 0.0406   0.0388 0.0402 

10p 10 0.0524 0.0538 0.0596 0.0502 0.0524 

25p 25 0.0488 0.0488 0.0614 0.0476 0.0468 

50p 50 0.0576 0.0578 0.0636 0.056 0.0574 

2 

0 

5p 10 0.054 0.054 
 

0.0516 0.0506 

10p 20 0.0516 0.0522 0.0606 0.0522 0.0518 

25p 50 0.0564 0.0542 0.0606 0.0566 0.0552 

50p 100 0.0482 0.0492 0.051 0.0476 0.0488 

0.5 

5p 10 0.0574 0.0574 
 

0.0568 0.0552 

10p 20 0.0508 0.0488 0.0706 0.0508 0.0488 

25p 50 0.051 0.0516 0.0592 0.0524 0.051 

50p 100 0.052 0.0526 0.0546 0.0526 0.0528 

0.9 

5p 10 0.0542 0.0534 

 

0.0524 0.0544 

10p 20 0.0526 0.0514 0.065 0.0524 0.052 

25p 50 0.0488 0.0484 0.0558 0.0472 0.047 

50p 100 0.051 0.0514 0.0564 0.0514 0.0516 

5 

0 

5p 25 0.0512 0.0506 0.0386 0.0508 0.0526 

10p 50 0.0456 0.0464 0.046 0.0464 0.0462 

25p 125 0.051 0.05 0.0534 0.0506 0.05 

50p 250 0.0486 0.0476 0.0484 0.048 0.0484 

0.5 

5p 25 0.0526 0.0524 0.0454 0.0522 0.0534 

10p 50 0.0486 0.0486 0.052 0.047 0.0472 

25p 125 0.0468 0.0464 0.0518 0.0486 0.0478 

50p 250 0.0456 0.0464 0.0492 0.0448 0.044 

0.9 

5p 25 0.0508 0.052 0.0474 0.0506 0.0516 

10p 50 0.0472 0.0466 0.0542 0.0464 0.0488 

25p 125 0.0476 0.0476 0.05 0.0494 0.0466 

50p 250 0.0496 0.0502 0.0524 0.0492 0.0512 

Table 8 :Type 1 error when errors are uniformly distributed 
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Type1 error when errors are lognormally distributed 

p Rho n 
Sample 

size 
Parametric 

Bootstrapping 

residuals 

Bootstrapping 

observations 

Permuting 

observations 

Freedman 

& Lane 

Permutation 

1 0 

5p 5 0.0514 0.0436   0.0464 0.0472 

10p 10 0.0448 0.05 0.0204 0.0504 0.0526 

25p 25 0.049 0.0532 0.0236 0.056 0.0554 

50p 50 0.0446 0.0464 0.0216 0.0488 0.0492 

2 

0 

5p 10 0.0536 0.0534 
 

0.0572 0.056 

10p 20 0.0432 0.0454 0.018 0.0492 0.0486 

25p 50 0.046 0.0498 0.0256 0.0512 0.0504 

50p 100 0.0432 0.0466 0.0266 0.0464 0.0464 

0.5 

5p 10 0.052 0.053 
 

0.0566 0.0562 

10p 20 0.048 0.0498 0.018 0.0512 0.0516 

25p 50 0.0486 0.0516 0.0282 0.052 0.0518 

50p 100 0.0472 0.0482 0.0284 0.0484 0.0488 

0.9 

5p 10 0.0514 0.051 

 

0.0574 0.0564 

10p 20 0.0438 0.0446 0.021 0.0486 0.0488 

25p 50 0.0478 0.0476 0.0204 0.0508 0.0486 

50p 100 0.05 0.0516 0.0294 0.0506 0.0518 

5 

0 

5p 25 0.0494 0.0498 0.0106 0.053 0.0492 

10p 50 0.0448 0.0466 0.021 0.0488 0.047 

25p 125 0.0478 0.048 0.03 0.0512 0.0496 

50p 250 0.0454 0.0466 0.039 0.0486 0.048 

0.5 

5p 25 0.0488 0.0512 0.0136 0.0488 0.0502 

10p 50 0.052 0.0502 0.0242 0.0518 0.052 

25p 125 0.051 0.0526 0.0342 0.0518 0.0494 

50p 250 0.0464 0.0458 0.0338 0.0464 0.047 

0.9 

5p 25 0.0486 0.0484 0.015 0.0504 0.0508 

10p 50 0.0512 0.0518 0.025 0.0516 0.053 

25p 125 0.0524 0.05 0.031 0.0546 0.0554 

50p 250 0.0452 0.0464 0.0378 0.0444 0.0464 

Table 9: Type 1 error when errors are lognormally distributed 
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Appendix B – Power of a test 

Power when errors are normally distributed 

p  Rho n 
Sample 

size 
Parametric 

Bootstrapping 

residuals 

Bootstrapping 

observations 

Permuting 

observations 

Freedman 

& Lane 

Permutation 

1 0 

5p 5 0.1336 0.1162 
 

0.112 0.114 

10p 10 0.324 0.3222 0.2782 0.3188 0.3224 

25p 25 0.7618 0.7592 0.7544 0.7602 0.759 

50p 50 0.9734 0.9734 0.9726 0.9734 0.9724 

2 

0 

5p 10 0.2782 0.279 
 

0.2782 0.2758 

10p 20 0.6338 0.63 0.6002 0.632 0.6316 

25p 50 0.969 0.9686 0.9636 0.9678 0.968 

50p 100 1 1 0.9998 1 1 

0.5 

5p 10 0.226 0.2258 
 

0.2282 0.228 

10p 20 0.5178 0.5172 0.5002 0.5132 0.5158 

25p 50 0.9126 0.912 0.907 0.9104 0.9122 

50p 100 0.9976 0.9978 0.9974 0.997 0.9976 

0.9 

5p 10 0.0946 0.0964 

 

0.0942 0.0982 

10p 20 0.177 0.1752 0.1732 0.1756 0.173 

25p 50 0.3984 0.3962 0.399 0.3992 0.399 

50p 100 0.6924 0.688 0.6938 0.6896 0.6934 

5 

0 

5p 25 0.6806 0.6758 0.5866 0.679 0.68 

10p 50 0.9646 0.9632 0.9576 0.9628 0.9644 

25p 125 1 1 1 1 1 

50p 250 1 1 1 1 1 

0.5 

5p 25 0.4872 0.4878 0.4048 0.4884 0.4866 

10p 50 0.831 0.8302 0.816 0.8312 0.8314 

25p 125 0.9978 0.9976 0.9976 0.998 0.998 

50p 250 1 1 1 1 1 

0.9 

5p 25 0.147 0.1462 0.111 0.1444 0.1444 

10p 50 0.2774 0.275 0.2766 0.2764 0.2752 

25p 125 0.6102 0.6058 0.6092 0.606 0.6092 

50p 250 0.8902 0.8888 0.8858 0.887 0.8886 

Table 10: Power of a test when errors are normally distributed 
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Power when errors are uniformly distributed 

p  Rho n 
Sample 

size 
Parametric 

Bootstrapping 

residuals 

Bootstrapping 

observations 

Permuting 

observations 

Freedman 

& Lane 

Permutation 

1 0 

5p 5 0.6798 0.6236 
 

0.5742 0.5764 

10p 10 0.9928 0.9926 0.9776 0.993 0.9928 

25p 25 1 1 1 1 1 

50p 50 1 1 1 1 1 

2 

0 

5p 10 0.9852 0.9854 
 

0.9856 0.9848 

10p 20 1 1 1 1 1 

25p 50 1 1 1 1 1 

50p 100 1 1 1 1 1 

0.5 

5p 10 0.9574 0.9558 
 

0.9536 0.9554 

10p 20 1 0.9998 0.9998 0.9998 1 

25p 50 1 1 1 1 1 

50p 100 1 1 1 1 1 

0.9 

5p 10 0.5218 0.5144 

 

0.51 0.5174 

10p 20 0.9222 0.9202 0.908 0.9208 0.9216 

25p 50 1 1 1 1 1 

50p 100 1 1 1 1 1 

5 

0 

5p 25 1 1 1 1 1 

10p 50 1 1 1 1 1 

25p 125 1 1 1 1 1 

50p 250 1 1 1 1 1 

0.5 

5p 25 1 1 0.9998 1 1 

10p 50 1 1 1 1 1 

25p 125 1 1 1 1 1 

50p 250 1 1 1 1 1 

0.9 

5p 25 0.8308 0.8298 0.7592 0.8266 0.8296 

10p 50 0.9946 0.9944 0.9942 0.9946 0.9948 

25p 125 1 1 1 1 1 

50p 250 1 1 1 1 1 

Table 11 : Power of a test when errors are uniformly distributed 
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Power when errors are lognormally distributed 

p  Rho n 
Sample 

size 
Parametric 

Bootstrapping 

residuals 

Bootstrapping 

observations 

Permuting 

observations 

Freedman 

& Lane 

Permutation 

1 0 

5p 5 0.1398 0.1318 
 

0.1308 0.1334 

10p 10 0.2354 0.2438 0.154 0.251 0.2482 

25p 25 0.4166 0.4254 0.3718 0.4254 0.4282 

50p 50 0.591 0.5954 0.56 0.598 0.6016 

2 

0 

5p 10 0.2138 0.2154 
 

0.2192 0.2166 

10p 20 0.3534 0.3584 0.2856 0.3628 0.3594 

25p 50 0.5686 0.5744 0.5368 0.5778 0.5762 

50p 100 0.7812 0.7866 0.7644 0.7886 0.789 

0.5 

5p 10 0.186 0.183 
 

0.1904 0.193 

10p 20 0.2902 0.291 0.229 0.2924 0.2938 

25p 50 0.4776 0.4804 0.453 0.4834 0.4814 

50p 100 0.6942 0.6946 0.6904 0.693 0.6982 

0.9 

5p 10 0.082 0.0814 

 

0.0852 0.0858 

10p 20 0.1088 0.1062 0.0644 0.1094 0.1124 

25p 50 0.1772 0.179 0.1532 0.1794 0.1814 

50p 100 0.27 0.2732 0.2646 0.2704 0.2742 

5 

0 

5p 25 0.3594 0.3612 0.25 0.3676 0.3638 

10p 50 0.5632 0.5642 0.5204 0.5672 0.5668 

25p 125 0.8414 0.845 0.8182 0.8456 0.848 

50p 250 0.9692 0.97 0.9536 0.9706 0.9708 

0.5 

5p 25 0.2546 0.2534 0.1584 0.2556 0.2562 

10p 50 0.4056 0.4048 0.3816 0.4056 0.4088 

25p 125 0.6908 0.6898 0.6816 0.691 0.6924 

50p 250 0.8944 0.8932 0.8742 0.8932 0.8952 

0.9 

5p 25 0.094 0.0946 0.041 0.0944 0.0938 

10p 50 0.1298 0.1318 0.0982 0.1326 0.1328 

25p 125 0.236 0.2364 0.2222 0.2364 0.2362 

50p 250 0.3496 0.3504 0.3614 0.348 0.347 

Table 12: Power of a test when errors are lognormally distributed 
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Appendix C – SAS Programs 
 

Probability of type 1 and Power Program 
* Masters dissertation program; 

 

 

libname nhla "C:\Users\Sibu\Documents\Nhlanhla"; 

 

 

/*Appendix C – SAS Programs*/ 

/**/ 

/*Type 1 and Power Program*/ 

/** Masters dissertation program;*/ 

 

 

proc iml; 

 

*starting the standard regression analysis; 

 

  start regress1 (x,y) 

Global(t1,pvalue_b1,F,crit,LCLOri,UCLOri,dist_Ori,betaOri);  /* 

begin module */  

  alpha=0.05; 

  

    xpxi=inv(t(x)*x);         /* inverse of X'X          */  

    beta=xpxi*(t(x)*y);       /* parameter estimate      */  

    yhat=x*beta;              /* predicted values        */  

        resid=y-yhat;                 /* residuals           */  

        sse=ssq(resid);               /* SSE                 */  

     n_0=nrow(x);                    /* sample size         */  

        dfe=nrow(x)-ncol(x);          /* error DF            */  

        mse=sse/dfe;                  /* MSE                 */  

        cssy=ssq(y-sum(y)/n_0);         /* corrected total SS  */  

        rsquare=(cssy-sse)/cssy;      /* RSQUARE             */  

   ssr=t(beta)*xpxi*beta; 

   msr=ssr/(ncol(x)-1); 

   F=msr/mse; 

        stdb=sqrt(vecdiag(xpxi)*mse); /* std of estimates    */  

        t=beta/stdb;  /* parameter t tests   */  

 

        t1=t[2];   

        prob=1-probf(t#t,1,dfe);      /* p-values            */  

  pvalue_b1=prob[2]; 

         

finish regress1;                  /* end module          */ 

store module=(regress1); 

 

*-------------------------------------------------------------------

---------------------------------------------------; 
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/* The beginning of Hypothesis testing using bootstrapping and 

Permutation test*/  

 

*bootstrapping residuals; 

 

start regress_br(x,y,n) Global(t1,pvalue_br,F);                  /* 

begin module */  

n=nrow(x); 

rep=999; 

t1_br=j(rep,1,1); 

beta1_br=J(rep,1,1); 

stdb1_br=J(rep,1,1); 

f=j(n,1,1); 

 

 

p_br=0;  

pf=0; 

 

k=j(n,1); 

 

xpxi=inv(t(x)*x);         /* inverse of X'X          */  

    beta=xpxi*(t(x)*y);       /* parameter estimate      */  

 beta[2,1]=0;            /*under null hypothesis beta1=0*/ 

    yhat=x*beta;              /* predicted values        */  

    resid=y-yhat;  

 

do j=1 to rep; 

 

call randgen(k,"uniform"); 

f=ceil(k#n); 

 

v=resid[f]; 

 

ybr=yhat+v; 

  

    xbrpxbri=inv(t(x)*x);         /* inverse of X'X          */  

    beta_br=xbrpxbri*(t(x)*ybr);       /* parameter estimate      */  

    ybrhat=x*beta_br;              /* predicted values        */  

        resid_br=ybr-ybrhat;                 /* residuals           

*/  

        sse_br=ssq(resid_br);               /* SSE                 

*/  

  dfe_br=nrow(x)-ncol(x);          /* error DF            

*/  

        mse_br=sse_br/dfe_br;                  /* MSE                 

*/  

     ssr=t(beta_br)*xbrpxbri*beta_br; 

  msr=ssr/(ncol(x)-1); 

  Fbr=msr/mse_br; 

        stdb_br=sqrt(vecdiag(xbrpxbri)*mse_br); /* std of estimates    

*/  

        t_br=beta_br/stdb_br;                  /* parameter t tests   

*/  
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    t1_br[j]=t_br[2]; 

 beta1_br[j]=beta_br[2] ; 

    stdb1_br[j]=stdb_br[2] ; 

 

    if abs(t1_br[j]) >= abs(t1) then p_br=p_br+1; 

 if Fbr>=F then pf=pf+1; 

 

end; 

 

 pvalue_br=p_br/rep; 

 pvalueFbr=pf/rep; 

 

 

finish regress_br;                  /* end module          */ 

store module=(regress_br); 

 

*-------------------------------------------------------------------

----------------------------------------------- 

 

*bootstrapping observations; 

 

start regress_b(x,y,n)Global(t1,pvalue_b,F);  /* begin module */  

n=nrow(x); 

h=j(n,1,1); 

rep=999; 

t1_b=j(rep,1,1); 

*Fb=j(rep,1,1); 

beta1_b=J(rep,1,1); 

stdb1_b=J(rep,1,1); 

 

p_b=0; 

pf=0; 

 

v=j(n,1); 

 

 xpxi=inv(t(x)*x);         /* inverse of X'X          */  

    beta=xpxi*(t(x)*y);  

 

do j=1 to rep; 

call randgen(v,"uniform"); 

h=ceil(v#n); 

 

xb=x[h,]; 

yb=y[h,]; 

 

 

    xbpxbi=inv(t(xb)*xb);         /* inverse of X'X          */  

    beta_b=xbpxbi*(t(xb)*yb);       /* parameter estimate      */  

    ybhat=xb*beta_b;              /* predicted values        */  

        resid_b=yb-ybhat;                 /* residuals           */  

        sse_b=ssq(resid_b);               /* SSE                 */  

        n_b=nrow(x);                    /* sample size         */  
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        dfe_b=nrow(x)-ncol(x);          /* error DF            */  

        mse_b=sse_b/dfe_b;                  /* MSE                 

*/  

        ssr=t(beta_b)*xbpxbi*beta_b; 

  msr=ssr/(ncol(x)-1); 

  Fb=msr/mse_b; 

 

        stdb_b=sqrt(vecdiag(xbpxbi)*mse_b); /* std of estimates    

*/  

        t_b=(beta_b-beta)/stdb_b;                  /* parameter t 

tests   */  

         

         

  t1_b[j]=t_b[2]; 

  beta1_b[j]=beta_b[2]; 

  stdb1_b[j]=stdb_b[2]; 

 

     if abs(t1_b[j]) >= abs(t1) then p_b=p_b+1; 

  if Fb>=F then pf=pf+1; 

       

end; 

  pvalue_b=p_b/rep; 

  pvalueFb=pf/rep; 

 

 

 

finish regress_b; /* end module    */ 

 

*-------------------------------------------------------------------

--------------------------------------------; 

*permutation tests; 

 

start regress_p(x,y,n) Global (t1,pvalue_p,F); /* begin module */ 

perm=999; 

 

u = j(n,1);              /* allocate vector */ 

 

t1_p=j(perm,1,1); 

*Fp=j(perm,1,1); 

beta1_p=J(perm,1,1); 

stdb1_p=J(perm,1,1); 

 

p_p=0; 

pf=0; 

 

do i = 1 to perm; 

 

   call randgen(u, "uniform"); /* fill u with random uniform  */ 

 

   yp = y[ rank(u) ];        /* permute y use RANK(u) to permute 

data */ 
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    xpxi=inv(t(x)*x);         /* inverse of X'X          */  

    beta_p=xpxi*(t(x)*yp);       /* parameter estimate      */  

    yphat=x*beta_p;              /* predicted values        */  

        resid=yp-yphat;                 /* residuals           */  

        sse=ssq(resid);               /* SSE                 */  

        n_p=nrow(x);                    /* sample size         */  

        dfe=nrow(x)-ncol(x);          /* error DF            */  

        mse=sse/dfe;                  /* MSE                 */  

        cssyp=ssq(yp-sum(yp)/n_p);         /* corrected total SS  */  

        rsquare=(cssyp-sse)/cssyp;      /* RSQUARE             */  

  ssr=t(beta_p)*xpxi*beta_p; 

  msr=ssr/(ncol(x)-1); 

  Fp=msr/mse; 

        stdb_p=sqrt(vecdiag(xpxi)*mse); /* std of estimates    */  

        t_p=beta_p/stdb_p;                  /* parameter t tests   

*/  

                  

        t1_p[i]=t_p[2]; 

        beta1_p[i]=beta_p[2]; 

        stdb1_p[i]=stdb_p[2];  

       

     if abs(t1_p[i]) >= abs(t1) then p_p=p_p+1; 

  if Fp>=F then pf=pf+1; 

 

 

      end; 

  pvalue_p=p_p/perm; 

  pvalueFp=pf/perm; 

 

finish regress_p;                  /* end module          */ 

 

 

*-------------------------------------------------------------------

-----------------------------------------; 

 

start delcol(x,i);     /*starting the function to delete column*/ 

return(x[,setdif(1:ncol(x),i)]); 

finish; 

 

start regress_FL(x,y,n) Global (t1,pvalue_FL,F); /* begin module */ 

perm=999; 

 

u = j(n,1);              /* allocate vector */ 

 

t1_FL=j(perm,1,1); 

beta1_FL=J(perm,1,1); 

stdb1_FL=J(perm,1,1); 

 

X1=x[,1:2]; 

x2=delcol(x,2); 

 

p_p=0; 

pf=0; 
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do i = 1 to perm; 

 

 

    xpxi=inv(t(x2)*x2);         /* inverse of X'X          */  

    beta=xpxi*(t(x2)*y);       /* parameter estimate      */  

    yhat=x2*beta;              /* predicted values        */  

        resid=y-yhat;                 /* residuals           */  

 

  

   call randgen(u, "uniform"); /* fill u with random uniform  */ 

 

   resid_p = resid[ rank(u) ];        /* permute residuals use 

RANK(u) to permute data */ 

 

   yp=x2*beta+resid_p; 

 

    xpxi=inv(t(x)*x);         /* inverse of X'X          */  

    beta_p=xpxi*(t(x)*yp);       /* parameter estimate      */  

    yphat=x*beta_p;              /* predicted values        */  

        resid=yp-yphat;                 /* residuals           */  

        sse=ssq(resid);               /* SSE                 */  

        n_p=nrow(x);                    /* sample size         */  

        dfe=nrow(x)-ncol(x);          /* error DF            */  

        mse=sse/dfe;                  /* MSE                 */  

        cssyp=ssq(yp-sum(yp)/n_p);         /* corrected total SS  */  

        rsquare=(cssyp-sse)/cssyp;      /* RSQUARE             */  

  ssr=t(beta_p)*xpxi*beta_p; 

  msr=ssr/(ncol(x)-1); 

  FpFL=msr/mse; 

        stdb_p=sqrt(vecdiag(xpxi)*mse); /* std of estimates    */  

        t_p=beta_p/stdb_p;                  /* parameter t tests   

*/  

                  

        t1_FL[i]=t_p[2]; 

        beta1_FL[i]=beta_p[2]; 

        stdb1_FL[i]=stdb_p[2];  

       

     if abs(t1_FL[i]) >= abs(t1) then p_p=p_p+1; 

  if FpFL >=F then pf=pf+1; 

 

  

     end; 

  pvalue_FL=p_p/perm; 

  pvalueFpFL=pf/perm; 

 

     

    finish regress_FL;                  /* end module          

*/ 

 

store module=regress1; 

store module=(regress_br regress_b regress_p regress_FL delcol);  

store module=(regress_br); 

quit; 
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%macro ssize(size,er,h0,p,rho,pr); 

 

proc iml; 

load module=regress1; 

 

no=5000; 

 

/*pvalues declarations*/ 

pval_N&size=j(no,1,.); 

pval_br&size=j(no,1,.); 

pval_b&size=j(no,1,.); 

pval_p&size=j(no,1,.);  

pval_FL&size=j(no,1,.); 

 

 

meth="&er"; 

alpha=0.05; 

h0="&h0"; /*Null hypothesis*/ 

 

call randseed(12); 

 

do k=1 to no; 

 

 n=&p*&size; /* sample size */ 

/* A={10,0,20,30,40,50};*/ 

  b=j(&p+1,1,1); 

/* b=A;*/ 

 

 

 *b[1]=0; 

 if h0="true" then  b[2]=0; 

 else b[2]=2;   

 

 R=j(&p,&p,1); *correlation matrix; 

 

  

 

 if &p > 1 then do; 

  do i=1 to &p; 

  do j=1 to &p; 

  if i ^= j then  R[i,j]=&rho; 

  end; 

  end; 

  end; 

 

 e&size.&er=j(n,1,.); 

 w=J(n,&p,1); 

 

   call randgen(e&size.&er,"&er"); 

   call randgen (w,"Uniform"); 

   x=j(n,1,1)||w*root(R); 
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   y = x*b+e&size.&er; 

 

 

 *reset noprint; 

 run regress1(x,y); 

 run regress_br(x,y,n); 

 if (&size>5 & (&p=1 | &p=2))|&p=5 then run regress_b(x,y,n); 

 run regress_p(x,y,n);  

 run regress_FL(x,y,n); 

 

 pval_N&size[k]=pvalue_b1; 

 pval_br&size[k]=pvalue_br; 

 if (&size>5 & (&p=1 | &p=2))|&p=5 then 

pval_b&size[k]=pvalue_b; 

 pval_p&size[k]=pvalue_p;  

 pval_FL&size[k]=pvalue_FL; 

 

 end; 

 

if h0="true" then do; 

 

 type1_N&size=sum(pval_N&size<alpha)/no; 

 if pval_br&size=. then type1_br&size=.; else  

type1_br&size=sum(pval_br&size<alpha)/no; 

 if (&size>5 & (&p=1 | &p=2))|&p=5 then 

type1_b&size=sum(pval_b&size<alpha)/no;else type1_b&size=.; 

 type1_p&size=sum(pval_p&size<alpha)/no; 

 type1_FL&size=sum(pval_FL&size<alpha)/no; 

 

end; 

 

else do;  

 power_N&size=sum(pval_N&size<alpha)/no; 

 if pval_br&size=. then power_br&size=.; else 

power_br&size=sum(pval_br&size<alpha)/no; 

    if (&size>5 & (&p=1 | &p=2))|&p=5 then 

power_b&size=sum(pval_b&size<alpha)/no;else  power_b&size=.; 

 power_p&size=sum(pval_p&size<alpha)/no;  

 power_FL&size=sum(pval_FL&size<alpha)/no;  

 

end; 

 

if meth="Normal" then error=0; 

else if meth="Uniform" then error=1; 

else error=2; 

 

 

if h0="false" then do; 

 

 pw&size=error||&p||&size||n||&rho||power_N&size||power_br&size

||power_b&size||power_p&size||power_FL&size; 
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 pn={"Error","no of 

par","size","Ssize","Rho","PowerNormal","PowerBootR","PowerBootO","P

owerPerm","PowerFL"}; 

 create nhla.power&size.&er.&pr from pw&size[colname=pn]; 

 append from  pw&size;   

 

end; 

 

else do; 

 

 tp&size=error||&p||&size||n||&rho||type1_N&size||type1_br&size

||type1_b&size||type1_p&size||type1_FL&size; 

 

 tn={"Error","no of 

par","size","Ssize","Rho","Type1Normal","Type1BootR","Type1BootO","T

ype1Perm","Type1FL"}; 

 create nhla.type1&size.&er.&pr from tp&size[colname=tn]; 

 append from  tp&size;  

 

end; 

 

 

quit; 

%mend ssize; 

%ssize(5,Normal,true,1,0,0); 

%ssize(10,Normal,true,1,0,0); 

%ssize(25,Normal,true,1,0,0); 

%ssize(50,Normal,true,1,0,0);  

 

%ssize(5,Uniform,true,1,0,0); 

%ssize(10,Uniform,true,1,0,0); 

%ssize(25,Uniform,true,1,0,0); 

%ssize(50,Uniform,true,1,0,0); 

 

%ssize(5,LOGN,true,1,0,0); 

%ssize(10,LOGN,true,1,0,0); 

%ssize(25,LOGN,true,1,0,0); 

%ssize(50,LOGN,true,1,0,0); 

 

%ssize(5,Normal,false,1,0,0); 

%ssize(10,Normal,false,1,0,0); 

%ssize(25,Normal,false,1,0,0); 

%ssize(50,Normal,false,1,0,0);  

 

%ssize(5,Uniform,false,1,0,0); 

%ssize(10,Uniform,false,1,0,0); 

%ssize(25,Uniform,false,1,0,0); 

%ssize(50,Uniform,false,1,0,0); 

 

%ssize(5,LOGN,false,1,0,0); 

%ssize(10,LOGN,false,1,0,0); 

%ssize(25,LOGN,false,1,0,0); 

%ssize(50,LOGN,false,1,0,0); 
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/*ods html 

body="C:\Users\nhlanhla\Documents\important\dessertation\results"*/ 

/*         

gpath="C:\Users\nhlanhla\Documents\important\dessertation\results\" 

style=journal;*/ 

%macro comp(er,rho,p); 

 

data nhla.power_&er.&rho; 

length n $3; 

set nhla.power5&er.&rho nhla.power10&er.&rho nhla.power25&er.&rho 

nhla.power50&er.&rho; 

if size=5 then n="5p"; 

else if size=10 then n="10p"; 

else if size=25 then n="25p"; 

else if size=50 then n="50p"; 

 

run; 

 

data nhla.type1_&er.&rho; 

length n $3; 

set nhla.type15&er.&rho nhla.type110&er.&rho nhla.type125&er.&rho 

nhla.type150&er.&rho; 

if size=5 then n="5p"; 

else if size=10 then n="10p"; 

else if size=25 then n="25p"; 

else if size=50 then n="50p"; 

run; 

  

proc datasets; 

delete type15&er.&rho type110&er.&rho type125&er.&rho 

type150&er.&rho power5&er.&rho power10&er.&rho power25&er.&rho 

power50&er.&rho; 

 

%mend comp; 

%comp (Normal,0,1); 

%comp (Uniform,0,1); 

%comp (LOGN,0,1); 

 

data nhla.type1_p1; 

set nhla.type1_Normal0 nhla.type1_Uniform0 nhla.type1_LOGN0; 

run; 

data nhla.power_p1; 

set nhla.power_Normal0 nhla.power_Uniform0 nhla.power_LOGN0; 

run;  

 

ods html close; 

*p=2; 

 

%ssize(5,Normal,true,2,0,0); 

%ssize(10,Normal,true,2,0,0); 

%ssize(25,Normal,true,2,0,0); 

%ssize(50,Normal,true,2,0,0); 
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%ssize(5,Uniform,true,2,0,0); 

%ssize(10,Uniform,true,2,0,0); 

%ssize(25,Uniform,true,2,0,0); 

%ssize(50,Uniform,true,2,0,0);  

 

%ssize(5,LOGN,true,2,0,0); 

%ssize(10,LOGN,true,2,0,0); 

%ssize(25,LOGN,true,2,0,0); 

%ssize(50,LOGN,true,2,0,0); 

 

%ssize(5,Normal,false,2,0,0); 

%ssize(10,Normal,false,2,0,0); 

%ssize(25,Normal,false,2,0,0); 

%ssize(50,Normal,false,2,0,0); 

 

%ssize(5,Uniform,false,2,0,0); 

%ssize(10,Uniform,false,2,0,0); 

%ssize(25,Uniform,false,2,0,0); 

%ssize(50,Uniform,false,2,0,0); 

 

%ssize(5,LOGN,false,2,0,0); 

%ssize(10,LOGN,false,2,0,0); 

%ssize(25,LOGN,false,2,0,0); 

%ssize(50,LOGN,false,2,0,0); 

 

%comp(Normal,0,2); 

%comp (Uniform,0,2); 

%comp (LOGN,0,2); 

 

*-------------------------------------------------------------------

--------------------------; 

 

%ssize(5,Normal,true,2,0.5,50); 

%ssize(10,Normal,true,2,0.5,50); 

%ssize(25,Normal,true,2,0.5,50); 

%ssize(50,Normal,true,2,0.5,50); 

 

%ssize(5,Uniform,true,2,0.5,50); 

%ssize(10,Uniform,true,2,0.5,50); 

%ssize(25,Uniform,true,2,0.5,50); 

%ssize(50,Uniform,true,2,0.5,50); 

 

%ssize(5,LOGN,true,2,0.5,50); 

%ssize(10,LOGN,true,2,0.5,50); 

%ssize(25,LOGN,true,2,0.5,50); 

%ssize(50,LOGN,true,2,0.5,50); 

 

%ssize(5,Normal,false,2,0.5,50); 

%ssize(10,Normal,false,2,0.5,50); 

%ssize(25,Normal,false,2,0.5,50); 

%ssize(50,Normal,false,2,0.5,50); 
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%ssize(5,Uniform,false,2,0.5,50); 

%ssize(10,Uniform,false,2,0.5,50); 

%ssize(25,Uniform,false,2,0.5,50); 

%ssize(50,Uniform,false,2,0.5,50); 

 

%ssize(5,LOGN,false,2,0.5,50); 

%ssize(10,LOGN,false,2,0.5,50); 

%ssize(25,LOGN,false,2,0.5,50); 

%ssize(50,LOGN,false,2,0.5,50); 

 

 

 

*---------------------------------------------------------; 

 

%comp(Normal,50,2); 

%comp (Uniform,50,2); 

%comp (LOGN,50,2); 

*-------------------------------------------------------------------

---------------------; 

 

%ssize(5,Normal,true,2,0.9,90); 

%ssize(10,Normal,true,2,0.9,90); 

%ssize(25,Normal,true,2,0.9,90); 

%ssize(50,Normal,true,2,0.9,90); 

 

%ssize(5,Uniform,true,2,0.9,90); 

%ssize(10,Uniform,true,2,0.9,90); 

%ssize(25,Uniform,true,2,0.9,90); 

%ssize(50,Uniform,true,2,0.9,90); 

 

%ssize(5,LOGN,true,2,0.9,90); 

%ssize(10,LOGN,true,2,0.9,90); 

%ssize(25,LOGN,true,2,0.9,90); 

%ssize(50,LOGN,true,2,0.9,90); 

 

 

%ssize(5,Normal,false,2,0.9,90); 

%ssize(10,Normal,false,2,0.9,90); 

%ssize(25,Normal,false,2,0.9,90); 

%ssize(50,Normal,false,2,0.9,90); 

 

 

%ssize(5,Uniform,false,2,0.9,90); 

%ssize(10,Uniform,false,2,0.9,90); 

%ssize(25,Uniform,false,2,0.9,90); 

%ssize(50,Uniform,false,2,0.9,90); 

 

%ssize(5,LOGN,false,2,0.9,90); 

%ssize(10,LOGN,false,2,0.9,90); 

%ssize(25,LOGN,false,2,0.9,90); 

%ssize(50,LOGN,false,2,0.9,90); 
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%comp(Normal,90,2); 

%comp (Uniform,90,2); 

%comp (LOGN,90,2); 

 

data nhla.type1_p2; 

set nhla.type1_Normal0 nhla.type1_Uniform0 nhla.type1_LOGN0 

nhla.type1_Normal50 nhla.type1_Uniform50 nhla.type1_LOGN50 

nhla.type1_Normal90 nhla.type1_Uniform90 nhla.type1_LOGN90; 

run; 

data nhla.power_p2; 

set nhla.power_Normal0 nhla.power_Uniform0 nhla.power_LOGN0 

nhla.power_Normal50 nhla.power_Uniform50 nhla.power_LOGN50 

nhla.power_Normal90 nhla.power_Uniform90 nhla.power_LOGN90; 

run; 

*p=5; 

 

%ssize(5,Normal,true,5,0,0); 

%ssize(10,Normal,true,5,0,0); 

%ssize(25,Normal,true,5,0,0); 

%ssize(50,Normal,true,5,0,0); 

 

%ssize(5,Uniform,true,5,0,0); 

%ssize(10,Uniform,true,5,0,0); 

%ssize(25,Uniform,true,5,0,0); 

%ssize(50,Uniform,true,5,0,0); 

 

%ssize(5,LOGN,true,5,0,0); 

%ssize(10,LOGN,true,5,0,0); 

%ssize(25,LOGN,true,5,0,0); 

%ssize(50,LOGN,true,5,0,0);  

 

%ssize(5,Normal,false,5,0,0); 

%ssize(10,Normal,false,5,0,0); 

%ssize(25,Normal,false,5,0,0); 

%ssize(50,Normal,false,5,0,0); 

 

 

%ssize(5,Uniform,false,5,0,0); 

%ssize(10,Uniform,false,5,0,0); 

%ssize(25,Uniform,false,5,0,0); 

%ssize(50,Uniform,false,5,0,0); 

 

 

%ssize(5,LOGN,false,5,0,0); 

%ssize(10,LOGN,false,5,0,0); 

%ssize(25,LOGN,false,5,0,0); 

%ssize(50,LOGN,false,5,0,0); 

 

 

%comp(Normal,0,5); 

%comp (Uniform,0,5); 

%comp (LOGN,0,5); 
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*-------------------------------------------------------------------

-------------------; 

 

%ssize(5,Normal,true,5,0.5,50); 

%ssize(10,Normal,true,5,0.5,50); 

%ssize(25,Normal,true,5,0.5,50); 

%ssize(50,Normal,true,5,0.5,50); 

 

%ssize(5,Uniform,true,5,0.5,50); 

%ssize(10,Uniform,true,5,0.5,50); 

%ssize(25,Uniform,true,5,0.5,50); 

%ssize(50,Uniform,true,5,0.5,50); 

 

%ssize(5,LOGN,true,5,0.5,50); 

%ssize(10,LOGN,true,5,0.5,50); 

%ssize(25,LOGN,true,5,0.5,50); 

%ssize(50,LOGN,true,5,0.5,50); 

 

%ssize(5,Normal,false,5,0.5,50); 

%ssize(10,Normal,false,5,0.5,50); 

%ssize(25,Normal,false,5,0.5,50); 

%ssize(50,Normal,false,5,0.5,50); 

 

%ssize(5,Uniform,false,5,0.5,50); 

%ssize(10,Uniform,false,5,0.5,50); 

%ssize(25,Uniform,false,5,0.5,50); 

%ssize(50,Uniform,false,5,0.5,50); 

 

%ssize(5,LOGN,false,5,0.5,50); 

%ssize(10,LOGN,false,5,0.5,50); 

%ssize(25,LOGN,false,5,0.5,50); 

%ssize(50,LOGN,false,5,0.5,50); 

 

 

 

%comp(Normal,50,5); 

%comp (Uniform,50,5); 

%comp (LOGN,50,5); 

 

*-------------------------------------------------------------------

--------------------; 

 

%ssize(5,Normal,true,5,0.9,90); 

%ssize(10,Normal,true,5,0.9,90); 

%ssize(25,Normal,true,5,0.9,90); 

%ssize(50,Normal,true,5,0.9,90); 

 

%ssize(5,Uniform,true,5,0.9,90); 

%ssize(10,Uniform,true,5,0.9,90); 

%ssize(25,Uniform,true,5,0.9,90); 

%ssize(50,Uniform,true,5,0.9,90); 

 

%ssize(5,LOGN,true,5,0.9,90); 
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%ssize(10,LOGN,true,5,0.9,90); 

%ssize(25,LOGN,true,5,0.9,90); 

%ssize(50,LOGN,true,5,0.9,90); 

 

%ssize(5,Normal,false,5,0.9,90); 

%ssize(10,Normal,false,5,0.9,90); 

%ssize(25,Normal,false,5,0.9,90); 

%ssize(50,Normal,false,5,0.9,90); 

 

%ssize(5,Uniform,false,5,0.9,90); 

%ssize(10,Uniform,false,5,0.9,90); 

%ssize(25,Uniform,false,5,0.9,90); 

%ssize(50,Uniform,false,5,0.9,90); 

 

%ssize(5,LOGN,false,5,0.9,90); 

%ssize(10,LOGN,false,5,0.9,90); 

%ssize(25,LOGN,false,5,0.9,90); 

%ssize(50,LOGN,false,5,0.9,90); 

 

%comp(Normal,90,5); 

%comp (Uniform,90,5); 

%comp (LOGN,90,5); 

 

data nhla.type1_p5; 

set nhla.type1_Normal0 nhla.type1_Uniform0 nhla.type1_LOGN0 

nhla.type1_Normal50 nhla.type1_Uniform50 nhla.type1_LOGN50 

nhla.type1_Normal90 nhla.type1_Uniform90 nhla.type1_LOGN90; 

run; 

 

data nhla.power_p5; 

set nhla.power_Normal0 nhla.power_Uniform0 nhla.power_LOGN0 

nhla.power_Normal50 nhla.power_Uniform50 nhla.power_LOGN50 

nhla.power_Normal90 nhla.power_Uniform90 nhla.power_LOGN90; 

run; 

 

 

 

Confidence Intervals 
  

* Masters dissertation program; 

libname nhla "C:\Users\Sibu\Documents\Nhlanhla"; 

proc iml; 

 

 

*starting the standard regression analysis; 

 

  start regress1 (x,y) 

Global(t1,pvalue_b1,F,crit,LCLOri,UCLOri,dist_Ori,betaOri,beta1);  

/* begin module */  

  alpha=0.05; 
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    xpxi=inv(t(x)*x);         /* inverse of X'X          */  

    beta=xpxi*(t(x)*y);       /* parameter estimate      */  

    yhat=x*beta;              /* predicted values        */  

        resid=y-yhat;                 /* residuals           */  

        sse=ssq(resid);               /* SSE                 */  

     n_0=nrow(x);                    /* sample size         */  

        dfe=nrow(x)-ncol(x);          /* error DF            */  

        mse=sse/dfe;                  /* MSE                 */  

        cssy=ssq(y-sum(y)/n_0);         /* corrected total SS  */  

        rsquare=(cssy-sse)/cssy;      /* RSQUARE             */  

  ssr=t(beta)*xpxi*beta; 

  msr=ssr/(ncol(x)-1); 

  F=msr/mse; 

        stdb=sqrt(vecdiag(xpxi)*mse); /* std of estimates    */  

        t=beta/stdb;  /* parameter t tests   */  

   

        prob=1-probf(t#t,1,dfe);      /* p-values            */  

  pvalue_b1=prob[2]; 

      

  crit=tinv(1-(alpha/2),dfe);    /* t critical value for 

95% confidence interval*/ 

  LCL=beta - crit#stdb; 

  UCL=beta + crit#stdb; 

         beta1=beta[2]; 

   t1=t[2]; 

   LCLOri=lcl[2]; 

   UCLOri=UCL[2] ; 

     dist_ori=ucl[2]-lcl[2]; 

 

 

     finish regress1;                  /* end module          */ 

 

 

*-------------------------------------------------------------------

------------------------------------; 

  *starting a modele to dertemine the quantile/pecentiles; 

/** Qntl: compute quantiles (Defn. 5 from the UNIVARIATE doc) **/ 

/** Arguments: 

   q   upon return, q contains the specified sample quantiles of 

       the data. 

   x   is a matrix. The module computes quantiles for each column. 

   p   specifies the quantiles. For example, 0.5 specifies the 

       median, whereas {0.25 0.75} specifies the first and 

       third quartiles. 

   This module does not handle missing values in the data.  **/ 

start Qntl(q, x, p);       /** definition 5 from UNIVARIATE doc **/ 

   n = nrow(x);            /** assume nonmissing data **/ 

   q = j(ncol(p), ncol(x));/** allocate space for return values **/ 

   do j = 1 to ncol(x);    /** for each column of x... **/ 

      h = x[,j]; 

      call sort(h,1);      /** sort the values **/ 

      do i = 1 to ncol(p); /** for each quantile **/ 
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         k = n*p[i];       /** find position in ordered data **/ 

         k1 = int(k);      /** find indices into ordered data **/ 

         k2 = k1 + 1; 

         g = k - k1; 

         if g>0 then 

            q[i,j] = h[k2];/** return a data value **/ 

         else              /** average adjacent data **/ 

            q[i,j] = (h[k1]+h[k2])/2; 

      end; 

   end; 

finish; 

store module = qntl; 

*-------------------------------------------------------------------

-------------------------------------; 

 

 

start delrow(x,i);     /*starting the function to delete rows*/ 

return(x[setdif(1:nrow(x),i),]); 

finish delrow; 

 

start regress_j(x,y) 

Global(t1,pvalue_j,F,crit,q,LCLJ,UCLJ,Beta1J,PercLJ,PercUJ,betaJ1,di

st_J,distP_J) ;   /* starting the regression function*/ 

n=nrow(x); 

p_j=0; 

pf=0; 

t1_j=J(nrow(x),1,1); 

beta1_j=J(nrow(x),1,1); 

stdb1_j=J(nrow(x),1,1); 

 

do i=1 to nrow(x); 

 

xj=delrow(x,i);        

yj=delrow(y,i); 

 

 

    xjpxji=inv(t(xj)*xj);         /* inverse of X'X          */  

    beta_j=xjpxji*(t(xj)*yj);       /* parameter estimate      */  

    yjhat=xj*beta_j;              /* predicted values        */  

        resid_j=yj-yjhat;                 /* residuals           */  

        sse_j=ssq(resid_j);               /* SSE                 */  

  n_j=nrow(xj);                    /* sample size         

*/  

        dfe_j=nrow(xj)-ncol(xj);          /* error DF            */  

        mse_j=sse_j/dfe_j;                  /* MSE                 

*/  

        cssb_j=ssq(yj-sum(yj)/n_j);         /* corrected total SS  

*/  

        rsquare_j=(cssb_j-sse_j)/cssb_j;      /* RSQUARE             

*/  

  ssr=t(beta_j)*xjpxji*beta_j; 

  msr=ssr/(ncol(xj)-1); 

  F_j=msr/mse_j; 
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        stdb_j=sqrt(vecdiag(xjpxji)*mse_j); /* std of estimates    

*/  

        t_j=beta_j/stdb_j;                  /* parameter t tests   

*/  

         

  /* creating the vectors of beta1 separately*/ 

 t1_j[i]=t_j[2]; 

 beta1_j[i]=beta_j[2] ; 

    stdb1_j[i]=stdb_j[2] ; 

end; 

 

     

*Estimate of confidence interval; 

 

beta1J=beta1_j[:];  /*Jackknife estimate of beta1*/ 

varbj=((n-1)/n)*sum(vecdiag((beta1_j-beta1J)* t(beta1_j-beta1J))); 

/* Jackknife variance estimate*/ 

stdJ=sqrt(varbJ);  /* standard error of jackknife estimate*/ 

LCLJ=beta1J - crit#stdJ;  /* Lower Normal 95% confidence interval of 

beta 1*/ 

UCLJ=beta1J + crit#stdJ; /* Upper Normal 95% confidence interval of 

beta 1*/ 

 

p={0.025 0.975};   /* alpha/2 and 1-alpha/2 percentiles*/ 

run qntl(q, beta1_j, p);     /* call module to compute sample 

quantiles **/ 

call sort (beta1_j,1);        

 

PercLJ=q[1];  /* Lower Percentile confidence limit*/ 

PercUJ=q[2];   /* Upper Percentile confidence limit*/ 

 

dist_J=uclj-lclj; 

distP_J=percUJ-percLJ; 

 

 

finish regress_j ; 

 

/*------------------------------------------------------------------

-----------------------------------------*/ 

 

start delrow2(x,g); 

return(x[setdif(1:nrow(x),g),]); 

finish; 

 

start regress_j2 (x,y,n) 

Global(t1,pvalue_j2,F,crit,LCLJ2,UCLJ2,Beta1J2,PercLJ2,PercUJ2,betaJ

2,dist_J2,distP_J2); 

n=nrow(x); 

j=2; 

p_j2=0; 

pf=0; 

h=comb(n,j) ; 
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t1_j2=j(h,1,1); 

*Fj2=j(h,1,1); 

beta1_j2=j(h,1,1); 

stdb1_j2=j(h,1,1);  

   

u=1:nrow(x) ; /*print u;  */ 

l=0; 

 

do i=1 to nrow(x)-(j-1); 

  do k=1 to nrow(x)-i; 

  r=k+i;  

  g=u[i||r]; 

  l=l+1; 

  

 

 c=delrow2(x,g); 

 d=delrow2(y,g); *c=x in this case and d equals y; 

 

 cpci=inv(t(c)*c);         /* inverse of X'X          */  

    beta_j2=cpci*(t(c)*d);       /* parameter estimate      */  

    bhat=c*beta_j2;              /* predicted values        */  

        resid_j2=d-bhat;                 /* residuals           */  

        sse_j2=ssq(resid_j2);               /* SSE                 

*/  

  n_j2=nrow(c);                    /* sample size         

*/  

        dfe_j2=nrow(c)-ncol(c);          /* error DF            */  

        mse_j2=sse_j2/dfe_j2;                  /* MSE                 

*/  

        cssb_j2=ssq(d-sum(d)/n_j2);         /* corrected total SS  

*/  

        rsquare_j2=(cssb_j2-sse_j2)/cssb_j2;      /* RSQUARE             

*/  

  ssr=t(beta_j2)*cpci*beta_j2; 

  msr=ssr/(ncol(c)-1); 

  stdb_j2=sqrt(vecdiag(cpci)*mse_j2); /* std of estimates    

*/  

        t_j2=beta_j2/stdb_j2;     /* parameter t tests   */  

 

           

    t1_j2[l]=t_j2[2]; 

 beta1_j2[l]=beta_j2[2] ; 

    stdb1_j2[l]=stdb_j2[2] ;  

 

if abs(t1_j2[l]) >= abs(t1) then p_j2=p_j2+1; 

 

    end;  

     

 end; 

  pvalue_j2=p_j2/h; 

  

 

*Estimate of confidence interval; 
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beta1J2=beta1_j2[:];  /*Jackknife estimate of beta1*/ 

varbj2=((n-2)/(2*l))*sum(vecdiag((beta1_j2-beta1J2)* t(beta1_j2-

beta1J2))); /* Jackknife variance estimate*/ 

stdJ2=sqrt(varbJ2);  /* standard error of jackknife estimate*/ 

LCLJ2=beta1J2 - crit#stdJ2;  /* Lower Normal 95% confidence interval 

of beta 1*/ 

UCLJ2=beta1J2 + crit#stdJ2; /* Upper Normal 95% confidence interval 

of beta 1*/ 

 

p={0.025 0.975};   /* alpha/2 and 1-alpha/2 percentiles*/ 

call qntl(q, beta1_j2, p);       /* call module to compute sample 

quantiles **/ 

call sort (beta1_j2,1);        

 

PercLJ2=q[1];  /* Lower Percentile confidence limit*/ 

PercUJ2=q[2];   /* Upper Percentile confidence limit*/ 

 

 

dist_J2=uclj2-lclj2; 

distP_J2=percUJ2-percLJ2; 

 

 

finish regress_j2 ; 

 

/*------------------------------------------------------------------

-------------------------------------------------*/ 

 

*bootstrapping residuals; 

 

start param_br(x,y,n) 

Global(crit,LCLBr,UCLBr,Beta1Br,PercLBr,PercUBr,betaBr,dist_Br,distP

_Br,beta1);      /* begin module */  

n=nrow(x); 

rep=999; 

beta1_bpr=J(rep,1,1); 

stdb1_bpr=J(rep,1,1); 

f=j(n,1,1); 

 

k=j(n,1); 

 

xtxi=inv(t(x)*x);         /* inverse of X'X          */  

    betabpr=xtxi*(t(x)*y);       /* parameter estimate      */  

  

    yhat=x*betabpr;              /* predicted values        */  

    resid=y-yhat;  

 

do j=1 to rep; 

 

 

call randgen(k,"uniform"); 

f=ceil(k#n); 

 



   
 
 
 

150 
 

v=resid[f]; 

 

ybpr=yhat+v; 

  

    xbrtxbri=inv(t(x)*x);         /* inverse of X'X          */  

    beta_bpr=xbrtxbri*(t(x)*ybpr);       /* parameter estimate      

*/  

    ybprhat=x*beta_bpr;              /* predicted values        */  

        resid_bpr=ybpr-ybprhat;                 /* residuals           

*/  

        sse_bpr=ssq(resid_bpr);               /* SSE                 

*/  

                n_br=nrow(x);                    /* sample size         

*/  

        dfe_bpr=nrow(x)-ncol(x);          /* error DF            */  

        mse_bpr=sse_bpr/dfe_bpr;                  /* MSE                 

*/  

        

 beta1_bpr[j]=beta_bpr[2] ; 

     

    end; 

 

 *Bootstrap beta1 estimate and its confidence interval; 

beta1Br=beta1_bpr[:]; 

varBr= (1/rep)*sum(vecdiag((beta1_bpr-beta1Br)* t(beta1_bpr-

beta1Br))); 

stdBr=sqrt(varBr); 

LCLBr=beta1Br - crit#stdBr;  /* Lower Normal 95% confidence interval 

of beta 1*/ 

UCLBr=beta1Br + crit#stdBr; /* Upper Normal 95% confidence interval 

of beta 1*/ 

 

p={0.025 0.975};   /* alpha/2 and 1-alpha/2 percentiles*/ 

call qntl(q, beta1_bpr, p);       /* call module to compute sample 

quantiles **/ 

call sort (beta1_bpr,1);        

 

PercLBr=q[1];  /* Lower Percentile confidence limit*/ 

PercUBr=q[2];   /* Upper Percentile confidence limit*/ 

dist_Br=uclbr-lclBr; 

distP_Br=percUBr-percLBr; 

 

finish param_br;                  /* end module          */ 

 

*-------------------------------------------------------------------

----------------------------------------------- 

 

*bootstrapping observations; 

 

start 

param_b(x,y,n,p)Global(t1,F,crit,LCLb,UCLb,Beta1b,PercLB,PercUB,beta

B,dist_B,distP_B);  /* begin module */  

n=nrow(x); 
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h=j(n,1,.); 

 

if (n=5 & p=1) | (n=10 & p=2) then do; 

dist_B=.; 

distP_B=.; 

LCLb=.; 

UCLb=.; 

Beta1b=.; 

PercLB=.; 

PercUB=.; 

betaB=.; 

end; 

 

else do; 

rep=999; 

 

beta1_bp=J(rep,1,1); 

 

v=j(n,1); 

 

do j=1 to rep; 

call randgen(v,"uniform"); 

h=ceil(v#n); 

 

xb=x[h,]; 

yb=y[h,]; 

 

    xbtxbi=inv(t(xb)*xb);         /* inverse of X'X          */  

 beta_bp=xbtxbi*(t(xb)*yb);       /* parameter estimate      */  

    ybphat=xb*beta_bp;              /* predicted values        */  

         

beta1_bp[j]=beta_bp[2]; 

 

 

 end; 

 

*Bootstrap beta1 estimate and it confidence interval; 

beta1B=beta1_bp[:]; 

varB= (1/rep)*sum(vecdiag((beta1_bp-beta1B)* t(beta1_bp-beta1B))); 

cc= (beta1_bp-beta1B)* t(beta1_bp-beta1B); 

stdB=sqrt(varB); 

LCLB=beta1B - crit#stdB;  /* Lower Normal 95% confidence interval of 

beta 1*/ 

UCLB=beta1B + crit#stdB; /* Upper Normal 95% confidence interval of 

beta 1*/ 

 

p={0.025 0.975};   /* alpha/2 and 1-alpha/2 percentiles*/ 

call qntl(q, beta1_bp, p);       /* call module to compute sample 

quantiles **/ 

call sort (beta1_bp,1);        

 

PercLB=q[1];  /* Lower Percentile confidence limit*/ 

PercUB=q[2];   /* Upper Percentile confidence limit*/ 
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  method=j(3,1,4); 

beta11=j(3,1,beta1b); 

betaB=method||beta11||(.//LCLB//PercLB)||(.//UCLB//PercUB); 

*print betaB; 

 

dist_B=uclB-lclB; 

distP_B=percUB-percLB; 

 

end; 

 

 

    finish param_b; /* end module          */ 

 

 

 

 /*End of bootstrap and jackknife resampling algorithms for 

regression parameters estimation*/ 

 

 

*-------------------------------------------------------------------

-------------------------------; 

 

 

store module=regress1; 

store module=regress_j;  

store module=delrow;  

store module=delrow2;   

store module=(regress_j2 param_br param_b);  

 

 

quit; 

 

 

%macro ssize(size,er,h0,p,rho,pr); 

 

proc iml; 

load module=regress1; 

no=1000; 

 

/*confidence interval declaration*/ 

LCLOri&size=j(no,1,.); 

UCLOri&size=j(no,1,.); 

LCLJ&size=j(no,1,.); 

UCLJ&size=j(no,1,.); 

LCLJ2&size=j(no,1,.); 

UCLj2&size=j(no,1,.); 

LCLBr&size=j(no,1,.); 

UCLBr&size=j(no,1,.); 

LCLB&size=j(no,1,.); 

UCLB&size=j(no,1,.); 
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dist_Ori&size=j(no,1,.); 

dist_J&size=j(no,1,.); 

dist_J2&size=j(no,1,.); 

dist_B&size=j(no,1,.); 

dist_Br&size=j(no,1,.); 

 

 

PercLJ&size=j(no,1,.); 

PercUJ&size=j(no,1,.); 

PercLJ2&size=j(no,1,.); 

PercUJ2&size=j(no,1,.); 

PercLBr&size=j(no,1,.); 

PercUBr&size=j(no,1,.); 

PercLB&size=j(no,1,.); 

PercUB&size=j(no,1,.); 

 

distP_J&size=j(no,1,.); 

distP_J2&size=j(no,1,.); 

distP_B&size=j(no,1,.); 

distP_Br&size=j(no,1,.); 

 

meth="&er"; 

alpha=0.05; 

h0="&h0"; /*Null hypothesis*/ 

 

 

call randseed(89721); 

 

do k=1 to no; 

 

n=&p*&size; /* sample size */ 

b=j(&p+1,1,1); 

 

 

if h0="true" then  b[2]=0; 

else b[2]=2;   

 

R=j(&p,&p,1); *correlation matrix; 

 

if &p > 1 then do; 

 do i=1 to &p; 

 do j=1 to &p; 

 if i ^= j then  R[i,j]=&rho; 

 end; 

 end; 

 end; 

 

e&size.&er=j(n,1,.); 

w=J(n,&p,1); 

 

p=&p; 

 

  call randgen(e&size.&er,"&er"); 
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  call randgen (w,"Uniform"); 

  x=j(n,1,1)||w*root(R); 

  y = x*b+e&size.&er; 

 

 

 

run regress1(x,y); 

run regress_j(x,y); 

if &size ^= 50 & &p ^= 5 then do; 

run regress_j2(x,y,n);end; 

run param_br(x,y,n); 

run param_b(x,y,n,p); 

 

/*confidence interval declaration*/ 

LCLOri&size[k]=LCLOri; 

UCLOri&size[k]=UCLOri; 

LCLJ&size[k]=LCLJ; 

UCLJ&size[k]=UCLJ; 

LCLJ2&size[k]=LCLJ2; 

UCLj2&size[k]=UCLj2; 

LCLBr&size[k]=LCLBr; 

UCLBr&size[k]=UCLBr; 

LCLB&size[k]=LCLB; 

UCLB&size[k]=UCLB;  

 

dist_Ori&size[k]=dist_Ori; 

dist_J&size[k]=dist_J; 

dist_J2&size[k]=dist_J2; 

dist_B&size[k]=dist_B; 

dist_Br&size[k]=dist_Br;  

 

PercLJ&size[k]=PercLJ; 

PercUJ&size[k]=PercUJ; 

PercLJ2&size[k]=PercLJ2; 

PercUJ2&size[k]=PercUJ2; 

PercLBr&size[k]=PercLBr; 

PercUBr&size[k]=PercUBr; 

PercLB&size[k]=PercLB; 

PercUB&size[k]=PercUB;  

 

distP_J&size[k]=distP_J; 

distP_J2&size[k]=distP_J2; 

distP_B&size[k]=distP_B; 

distP_Br&size[k]=distP_Br;   

 

 

 end; 

 

Ave_LCLOri&size = LCLOri&size[:]; 

Ave_UCLOri&size= UCLOri&size[:] ; 

Ave_LCLJ&size=LCLJ&size[:]; 

Ave_UCLJ&size=UCLJ&size[:]; 

Ave_LCLJ2&size=LCLJ2&size[:]; 
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Ave_UCLj2&size=UCLj2&size[:]; 

Ave_LCLBr&size=LCLBr&size[:]; 

Ave_UCLBr&size=UCLBr&size[:]; 

Ave_LCLB&size=LCLB&size[:]; 

Ave_UCLB&size=UCLB&size[:]; 

 

Ave_dist_Ori&size=dist_Ori&size[:]; 

Ave_dist_J&size=dist_J&size[:]; 

Ave_dist_J2&size=dist_J2&size[:]; 

Ave_dist_B&size=dist_B&size[:]; 

Ave_dist_Br&size=dist_Br&size[:]; 

 

 

Ave_PercLJ&size=PercLJ&size[:]; 

Ave_PercUJ&size=PercUJ&size[:]; 

Ave_PercLJ2&size=PercLJ2&size[:]; 

Ave_PercUJ2&size=PercUJ2&size[:]; 

Ave_PercLBr&size=PercLBr&size[:]; 

Ave_PercUBr&size=PercUBr&size[:]; 

Ave_PercLB&size=PercLB&size[:]; 

Ave_PercUB&size=PercUB&size[:];  

 

Ave_distP_J&size=distP_J&size[:]; 

Ave_distP_J2&size=distP_J2&size[:]; 

Ave_distP_B&size=distP_B&size[:]; 

Ave_distP_Br&size=distP_Br&size[:];  

 

 

if h0="true" then do; 

 

CIOri&size=100*(sum(LCLOri&size <= 0 <= UCLOri&size)/no); 

CIJ&size= 100*(sum(LCLJ&size <= 0 <= UCLJ&size)/no); 

CIJ2&size= 100*(sum(LCLJ2&size <= 0 <= UCLJ2&size)/no); 

CIBr&size= 100*(sum(LCLBr&size <= 0 <= UCLBr&size)/no); 

CIB&size= 100*(sum(LCLB&size <= 0 <= UCLB&size)/no);  

 

 

PIJ&size= 100*(sum(PercLJ&size <= 0 <= PercUJ&size)/no); 

PIJ2&size= 100*(sum(PercLJ2&size <= 0 <= PercUJ2&size)/no); 

PIBr&size= 100*(sum(PercLBr&size <= 0 <= PercUBr&size)/no); 

PIB&size= 100*(sum(PercLB&size <= 0 <= PercUB&size)/no);   

 

 

 

end; 

 

   else do;  

 

CIOri&size=100*(sum(LCLOri&size <= 2 <= UCLOri&size)/no); 

CIJ&size= 100*(sum(LCLJ&size <= 2 <= UCLJ&size)/no); 

CIJ2&size= 100*(sum(LCLJ2&size <= 2 <= UCLJ2&size)/no); 

CIBr&size= 100*(sum(LCLBr&size <= 2 <= UCLBr&size)/no); 

CIB&size= 100*(sum(LCLB&size <= 2 <= UCLB&size)/no);  
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PIJ&size= 100*(sum(PercLJ&size <= 2 <= PercUJ&size)/no); 

PIJ2&size= 100*(sum(PercLJ2&size <= 2 <= PercUJ2&size)/no); 

PIBr&size= 100*(sum(PercLBr&size <= 2 <= PercUBr&size)/no); 

PIB&size= 100*(sum(PercLB&size <= 2 <= PercUB&size)/no);  

   end; 

 

if &size = 50 & &p = 5 then do; 

CIJ2&size=.;Ave_dist_J2&size=.; 

PIJ2&size=.;Ave_distP_J2&size=.; 

end; 

 

 

if meth="Normal" then error=0; 

else if meth="Uniform" then error=1; 

else error=2; 

 

rn={"Beta1","no of 

par","Size","Ssize","rho","method","CIOri","AveDistOri","CIJ","AveDi

stJ","CIJ2","AveDistJ2","CIBr","AveDistBr","CIB","AveDistB","PIJ","A

veDistPJ","PIJ2","AveDistPJ2","PIBr","AveDistPBr","PIB","AveDistPB"}

; 

 

if h0="false" then do; 

 

beta1=2;  

ciF&size=beta1||&p||&size||n||&rho||error||CIOri&size 

||Ave_dist_Ori&size||CIJ&size||Ave_dist_J&size|| 

CIJ2&size||Ave_dist_J2&size|| CIBr&size||Ave_dist_Br&size|| CIB&size 

||Ave_dist_B&size||PIJ&size 

||Ave_distP_J&size||PIJ2&size||Ave_distP_J2&size|| PIBr&size 

||Ave_distP_Br&size||PIB&size||Ave_distP_B&size ; 

 

 

create confIF&size.&er.&pr from ciF&size[colname=rn]; 

append from ciF&size;    

 

end; 

 

else do; 

 

beta1=0; 

ciT&size=beta1||&p||&size||n||&rho||error||CIOri&size 

||Ave_dist_Ori&size||CIJ&size||Ave_dist_J&size|| 

CIJ2&size||Ave_dist_J2&size|| CIBr&size||Ave_dist_Br&size|| CIB&size 

||Ave_dist_B&size||PIJ&size 

||Ave_distP_J&size||PIJ2&size||Ave_distP_J2&size|| PIBr&size 

||Ave_distP_Br&size||PIB&size||Ave_distP_B&size ; 

 

 

create confIT&size.&er.&pr from ciT&size[colname=rn]; 

append from ciT&size;   

end; 
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quit; 

%mend ssize; 

%ssize(5,Normal,true,1,0,0);  

%ssize(10,Normal,true,1,0,0); 

%ssize(25,Normal,true,1,0,0); 

%ssize(50,Normal,true,1,0,0);  

 

%ssize(5,Uniform,true,1,0,0); 

%ssize(10,Uniform,true,1,0,0); 

%ssize(25,Uniform,true,1,0,0); 

%ssize(50,Uniform,true,1,0,0); 

 

%ssize(5,LOGN,true,1,0,0); 

%ssize(10,LOGN,true,1,0,0); 

%ssize(25,LOGN,true,1,0,0); 

%ssize(50,LOGN,true,1,0,0); 

 

%ssize(5,Normal,false,1,0,0); 

%ssize(10,Normal,false,1,0,0); 

%ssize(25,Normal,false,1,0,0); 

%ssize(50,Normal,false,1,0,0);  

 

%ssize(5,Uniform,false,1,0,0); 

%ssize(10,Uniform,false,1,0,0); 

%ssize(25,Uniform,false,1,0,0); 

%ssize(50,Uniform,false,1,0,0); 

 

%ssize(5,LOGN,false,1,0,0); 

%ssize(10,LOGN,false,1,0,0); 

%ssize(25,LOGN,false,1,0,0); 

%ssize(50,LOGN,false,1,0,0); 

 

ods html 

body="C:\Users\nhlanhla\Documents\important\dessertation\results" 

         

gpath="C:\Users\nhlanhla\Documents\important\dessertation\results\" 

style=journal; 

%macro comp(er,rho,p); 

 

 

data CI_&er.&rho; 

length n $3; 

set confit5&er.&rho  confit10&er.&rho  confit25&er.&rho  

confit50&er.&rho confif5&er.&rho confif10&er.&rho confif25&er.&rho 

confif50&er.&rho; 

if size=5 then n="5p"; 

else if size=10 then n="10p"; 

else if size=25 then n="25p"; 

else if size=50 then n="50p"; 

drop size; 
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run;  

 

  

/*proc datasets;*/ 

/*confit5&er.&rho  confit10&er.&rho  confit25&er.&rho  

confit50&er.&rho confif5&er.&rho confif10&er.&rho confif25&er.&rho 

confif50&er.&rho;*/ 

 

%mend comp; 

%comp (Normal,0,1); 

%comp (Uniform,0,1); 

%comp (LOGN,0,1); 

 

data nhla.conf_int_p1; 

set CI_Normal0 CI_Uniform0 CI_LOGN0; 

run; 

 

*p=2; 

 

%ssize(5,Normal,true,2,0,0); 

%ssize(10,Normal,true,2,0,0); 

%ssize(25,Normal,true,2,0,0); 

%ssize(50,Normal,true,2,0,0); 

 

%ssize(5,Uniform,true,2,0,0); 

%ssize(10,Uniform,true,2,0,0); 

%ssize(25,Uniform,true,2,0,0); 

%ssize(50,Uniform,true,2,0,0);  

 

%ssize(5,LOGN,true,2,0,0); 

%ssize(10,LOGN,true,2,0,0); 

%ssize(25,LOGN,true,2,0,0); 

%ssize(50,LOGN,true,2,0,0); 

 

%ssize(5,Normal,false,2,0,0); 

%ssize(10,Normal,false,2,0,0); 

%ssize(25,Normal,false,2,0,0); 

%ssize(50,Normal,false,2,0,0); 

 

%ssize(5,Uniform,false,2,0,0); 

%ssize(10,Uniform,false,2,0,0); 

%ssize(25,Uniform,false,2,0,0); 

%ssize(50,Uniform,false,2,0,0); 

 

%ssize(5,LOGN,false,2,0,0); 

%ssize(10,LOGN,false,2,0,0); 

%ssize(25,LOGN,false,2,0,0); 

%ssize(50,LOGN,false,2,0,0); 

 

%comp(Normal,0,2); 

%comp (Uniform,0,2); 

%comp (LOGN,0,2); 
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*-------------------------------------------------------------------

--------------------------; 

 

%ssize(5,Normal,true,2,0.5,50); 

%ssize(10,Normal,true,2,0.5,50); 

%ssize(25,Normal,true,2,0.5,50); 

%ssize(50,Normal,true,2,0.5,50); 

 

%ssize(5,Uniform,true,2,0.5,50); 

%ssize(10,Uniform,true,2,0.5,50); 

%ssize(25,Uniform,true,2,0.5,50); 

%ssize(50,Uniform,true,2,0.5,50); 

 

%ssize(5,LOGN,true,2,0.5,50); 

%ssize(10,LOGN,true,2,0.5,50); 

%ssize(25,LOGN,true,2,0.5,50); 

%ssize(50,LOGN,true,2,0.5,50); 

 

%ssize(5,Normal,false,2,0.5,50); 

%ssize(10,Normal,false,2,0.5,50); 

%ssize(25,Normal,false,2,0.5,50); 

%ssize(50,Normal,false,2,0.5,50); 

 

%ssize(5,Uniform,false,2,0.5,50); 

%ssize(10,Uniform,false,2,0.5,50); 

%ssize(25,Uniform,false,2,0.5,50); 

%ssize(50,Uniform,false,2,0.5,50); 

 

%ssize(5,LOGN,false,2,0.5,50); 

%ssize(10,LOGN,false,2,0.5,50); 

%ssize(25,LOGN,false,2,0.5,50); 

%ssize(50,LOGN,false,2,0.5,50); 

 

 

 

*---------------------------------------------------------; 

 

%comp(Normal,50,2); 

%comp (Uniform,50,2); 

%comp (LOGN,50,2); 

*-------------------------------------------------------------------

---------------------; 

 

%ssize(5,Normal,true,2,0.9,90); 

%ssize(10,Normal,true,2,0.9,90); 

%ssize(25,Normal,true,2,0.9,90); 

%ssize(50,Normal,true,2,0.9,90); 

 

%ssize(5,Uniform,true,2,0.9,90); 

%ssize(10,Uniform,true,2,0.9,90); 

%ssize(25,Uniform,true,2,0.9,90); 

%ssize(50,Uniform,true,2,0.9,90); 
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%ssize(5,LOGN,true,2,0.9,90); 

%ssize(10,LOGN,true,2,0.9,90); 

%ssize(25,LOGN,true,2,0.9,90); 

%ssize(50,LOGN,true,2,0.9,90); 

 

 

%ssize(5,Normal,false,2,0.9,90); 

%ssize(10,Normal,false,2,0.9,90); 

%ssize(25,Normal,false,2,0.9,90); 

%ssize(50,Normal,false,2,0.9,90); 

 

 

%ssize(5,Uniform,false,2,0.9,90); 

%ssize(10,Uniform,false,2,0.9,90); 

%ssize(25,Uniform,false,2,0.9,90); 

%ssize(50,Uniform,false,2,0.9,90); 

 

%ssize(5,LOGN,false,2,0.9,90); 

%ssize(10,LOGN,false,2,0.9,90); 

%ssize(25,LOGN,false,2,0.9,90); 

%ssize(50,LOGN,false,2,0.9,90); 

 

 

%comp(Normal,90,2); 

%comp (Uniform,90,2); 

%comp (LOGN,90,2); 

data nhla.conf_int_p2; 

set CI_Normal0 CI_Uniform0 CI_LOGN0 CI_Normal50 CI_Uniform50 

CI_LOGN50 CI_Normal90 CI_Uniform90 CI_LOGN90; 

run; 

 

 

*p=5; 

 

%ssize(5,Normal,true,5,0,0); 

%ssize(10,Normal,true,5,0,0); 

%ssize(25,Normal,true,5,0,0); 

%ssize(50,Normal,true,5,0,0); 

 

%ssize(5,Uniform,true,5,0,0); 

%ssize(10,Uniform,true,5,0,0); 

%ssize(25,Uniform,true,5,0,0); 

%ssize(50,Uniform,true,5,0,0); 

 

%ssize(5,LOGN,true,5,0,0); 

%ssize(10,LOGN,true,5,0,0); 

%ssize(25,LOGN,true,5,0,0); 

%ssize(50,LOGN,true,5,0,0);  

 

%ssize(5,Normal,false,5,0,0); 

%ssize(10,Normal,false,5,0,0); 

%ssize(25,Normal,false,5,0,0); 

%ssize(50,Normal,false,5,0,0); 
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%ssize(5,Uniform,false,5,0,0); 

%ssize(10,Uniform,false,5,0,0); 

%ssize(25,Uniform,false,5,0,0); 

%ssize(50,Uniform,false,5,0,0); 

 

 

%ssize(5,LOGN,false,5,0,0); 

%ssize(10,LOGN,false,5,0,0); 

%ssize(25,LOGN,false,5,0,0); 

%ssize(50,LOGN,false,5,0,0); 

 

%ssize(50,Uniform,true,5,0,0); 

%ssize(50,LOGN,true,5,0,0);  

%ssize(50,Normal,false,5,0,0); 

%ssize(50,Uniform,false,5,0,0); 

%ssize(50,LOGN,false,5,0,0); 

 

 

%comp(Normal,0,5); 

%comp (Uniform,0,5); 

%comp (LOGN,0,5); 

*-------------------------------------------------------------------

-------------------; 

 

%ssize(5,Normal,true,5,0.5,50); 

%ssize(10,Normal,true,5,0.5,50); 

%ssize(25,Normal,true,5,0.5,50); 

%ssize(50,Normal,true,5,0.5,50); 

 

%ssize(5,Uniform,true,5,0.5,50); 

%ssize(10,Uniform,true,5,0.5,50); 

%ssize(25,Uniform,true,5,0.5,50); 

%ssize(50,Uniform,true,5,0.5,50); 

 

%ssize(5,LOGN,true,5,0.5,50); 

%ssize(10,LOGN,true,5,0.5,50); 

%ssize(25,LOGN,true,5,0.5,50); 

%ssize(50,LOGN,true,5,0.5,50); 

 

%ssize(5,Normal,false,5,0.5,50); 

%ssize(10,Normal,false,5,0.5,50); 

%ssize(25,Normal,false,5,0.5,50); 

%ssize(50,Normal,false,5,0.5,50); 

 

%ssize(5,Uniform,false,5,0.5,50); 

%ssize(10,Uniform,false,5,0.5,50); 

%ssize(25,Uniform,false,5,0.5,50); 

%ssize(50,Uniform,false,5,0.5,50); 

 

%ssize(5,LOGN,false,5,0.5,50); 

%ssize(10,LOGN,false,5,0.5,50); 
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%ssize(25,LOGN,false,5,0.5,50); 

%ssize(50,LOGN,false,5,0.5,50); 

 

%ssize(50,Normal,true,5,0.5,50); 

%ssize(50,Uniform,true,5,0.5,50); 

%ssize(50,LOGN,true,5,0.5,50); 

%ssize(50,Normal,false,5,0.5,50); 

%ssize(50,Uniform,false,5,0.5,50); 

%ssize(50,LOGN,false,5,0.5,50); 

 

%comp(Normal,50,5); 

%comp (Uniform,50,5); 

%comp (LOGN,50,5); 

 

*-------------------------------------------------------------------

--------------------; 

 

%ssize(5,Normal,true,5,0.9,90); 

%ssize(10,Normal,true,5,0.9,90); 

%ssize(25,Normal,true,5,0.9,90); 

%ssize(50,Normal,true,5,0.9,90); 

 

%ssize(5,Uniform,true,5,0.9,90); 

%ssize(10,Uniform,true,5,0.9,90); 

%ssize(25,Uniform,true,5,0.9,90); 

%ssize(50,Uniform,true,5,0.9,90); 

 

%ssize(5,LOGN,true,5,0.9,90); 

%ssize(10,LOGN,true,5,0.9,90); 

%ssize(25,LOGN,true,5,0.9,90); 

%ssize(50,LOGN,true,5,0.9,90); 

 

%ssize(5,Normal,false,5,0.9,90); 

%ssize(10,Normal,false,5,0.9,90); 

%ssize(25,Normal,false,5,0.9,90); 

%ssize(50,Normal,false,5,0.9,90); 

 

%ssize(5,Uniform,false,5,0.9,90); 

%ssize(10,Uniform,false,5,0.9,90); 

%ssize(25,Uniform,false,5,0.9,90); 

%ssize(50,Uniform,false,5,0.9,90); 

 

%ssize(5,LOGN,false,5,0.9,90); 

%ssize(10,LOGN,false,5,0.9,90); 

%ssize(25,LOGN,false,5,0.9,90); 

%ssize(50,LOGN,false,5,0.9,90); 

 

%ssize(50,Normal,true,5,0.9,90); 

%ssize(50,Uniform,true,5,0.9,90); 

%ssize(50,LOGN,true,5,0.9,90); 

%ssize(50,Normal,false,5,0.9,90); 

%ssize(50,Uniform,false,5,0.9,90); 

%ssize(50,LOGN,false,5,0.9,90); 
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%comp(Normal,90,5); 

%comp (Uniform,90,5); 

%comp (LOGN,90,5); 

 

data nhla.conf_int_p5; 

set CI_Normal0 CI_Uniform0 CI_LOGN0 CI_Normal50 CI_Uniform50 

CI_LOGN50 CI_Normal90 CI_Uniform90 CI_LOGN90; 

run; 

ods html close; 

 

Graph and Confidence Interval tables Preparation 
 

data nhla.confidence_int; 

set nhla.conf_int_p1 nhla.conf_int_p2 nhla.conf_int_p5; 

run; 

 

data nhla.conf; 

retain "no of par"n rho method beta1 n ssize ciori cij cij2 cibr cib 

AveDistOri AveDistJ AveDistj2 AveDistBr AveDistB; 

set nhla.confidence_int; 

 

keep "no of par"n rho method beta1 n ssize ciori cij cij2 cibr cib 

AveDistOri AveDistJ AveDistj2 AveDistBr AveDistB; 

run; 

proc sort data=nhla.conf; by method rho ;run; 

data nhla.perc; 

retain "no of par"n rho method beta1 n ssize piori pij pij2 pibr pib 

AveDistJ AveDistj2 AveDistBr AveDistB; 

set nhla.confidence_int; 

 

keep "no of par"n rho method beta1 n ssize  pij pij2 pibr pib  

AveDistpJ AveDistpj2 AveDistpBr AveDistpB; 

run; 

proc sort data=nhla.perc; by method rho ;run; 

 

data nhla.power; 

set nhla.power_p1 nhla.power_p2 nhla.power_p5; 

run; 

data nhla.type1; 

set nhla.type1_p1 nhla.type1_p2 nhla.type1_p5; 

run; 

 

data nhla.powerN nhla.powerU nhla.powerL; 

set nhla.power; 

retain error no_of_par rho n ssize powerNormal -- powerFL; 

if error=0 then output nhla.powerN;else 

if error=1 then output nhla.powerU; else 

output nhla.powerL; 
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run; 

 

data nhla.type1N nhla.type1U nhla.type1L; 

set nhla.type1; 

retain error no_of_par rho n ssize type1Normal -- type1FL; 

drop size ; 

if error=0 then output nhla.type1N;else 

if error=1 then output nhla.type1U; else 

output nhla.type1L; 

run; 

Probability of type 1 Error Graphs 
 

goptions reset=all border; 

 

symbol1 interpol=join 

value=star 

       cv=red 

    ci=red 

       width=2; 

symbol2 interpol=join 

value=dot 

       cv=blue 

       ci=blue 

    line=3 

       width=2; 

symbol3 interpol=join 

value=circle 

       cv=green 

       ci=green 

    line=8 

       width=2; 

symbol4 interpol=join 

value=triangle 

       cv=black 

       ci=black 

    line=33 

       width=2;  

symbol5 interpol=join 

value=square 

       cv=brown 

       ci=brown 

    line=29 

       width=2; 

 

 

legend1 label=none 

        position=(top center outside) 

  offset=(0,0) 

  mode=reserve; 

 

   

axis1 label=(angle=90 h=2 color=black "Power") ; 

axis2 label=(c=black h=2 "Sample size")  

      order=(5 10 25 50) 

      value=("5p" "10p" "25p" "50p") ; 

axis3 label=(angle=90 h=2 color=black "Type1 Error") ; 
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axis4 order =(0 to 1 by 0.1) label=(angle=90 h=2 color=black "Type1 Error")

 ; 

 

 

 

data T1N0 T1U0 T1L0 T2N0 T2U0 T2L0 T2N50 T2U50 T2L50 T2N90 T2U90 T2L90 T5N0 

T5U0 T5L0 T5N50 T5U50 T5L50 T5N90 T5U90 T5L90; 

set nhla.type1(rename=(Type1Normal=Parametric 

Type1BootR=Bootstrap_Residuals Type1BootO=Bootstrap_Observations 

Type1Perm=Observation_Permutation Type1FL=FreedmanLane_Permutation)); 

if no_of_par=1 then do; 

     if (error=0 & rho=0) then output T1N0; 

     else if (error=1 & rho=0) then output T1U0; 

     else if (error=2 & rho=0) then output T1L0; 

end; 

 

if no_of_par=2 then do; 

      if rho=0 then do; 

           if error =0 then output T2N0; 

     else if error =1 then output T2U0; 

     else output T2L0; 

   end; 

   else if rho=0.5 then do; 

         if error =0 then output T2N50; 

     else if error =1 then output T2U50; 

     else output T2L50; 

   end; 

 

   else if rho=0.9 then do; 

         if error =0 then output T2N90; 

     else if error =1 then output T2U90; 

     else output T2L90; 

   end; 

 

end; 

 

if no_of_par=5 then do; 

      if rho=0 then do; 

           if error =0 then output T5N0; 

     else if error =1 then output T5U0; 

     else output T5L0; 

   end; 

   else if rho=0.5 then do; 

         if error =0 then output T5N50; 

     else if error =1 then output T5U50; 

     else output T5L50; 

   end; 

 

   else if rho=0.9 then do; 

         if error =0 then output T5N90; 

     else if error =1 then output T5U90; 

     else output T5L90; 

   end; 

 

end; 

 

run; 
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%macro comp(data,er,rho,p); 

 

title "Probability of type 1 results for p=&p &er and rho=0.&rho"; 

proc gplot data=&DATA; 

plot (Parametric--FreedmanLane_Permutation)*size/overlay haxis=axis2 

vaxis=axis4 vref=0.05 legend=legend1 ; 

plot (Parametric--FreedmanLane_Permutation)*size/overlay haxis=axis2 

vaxis=axis3 vref=0.05 legend=legend1 ; 

 

run;  

 

%mend; 

 

%comp (T1N0,Normal,0,1); 

%comp (T1U0,Uniform,0,1); 

%comp (T1L0,LOGN,0,1); 

%comp (T2N0,Normal,0,2); 

%comp (T2U0,Uniform,0,2); 

%comp (T2L0,LOGN,0,2); 

%comp (T5N0,Normal,0,5); 

%comp (T5U0,Uniform,0,5); 

%comp (T5L0,LOGN,0,5); 

 

%comp (T2N50,Normal,50,2); 

%comp (T2U50,Uniform,50,2); 

%comp (T2L50,LOGN,50,2); 

%comp (T5N50,Normal,50,5); 

%comp (T5U50,Uniform,50,5); 

%comp (T5L50,LOGN,50,5); 

 

%comp (T2N90,Normal,90,2); 

%comp (T2U90,Uniform,90,2); 

%comp (T2L90,LOGN,90,2); 

%comp (T5N90,Normal,90,5); 

%comp (T5U90,Uniform,90,5); 

%comp (T5L90,LOGN,90,5); 

 

Power Graphs 
goptions reset=all border; 

 

symbol1 interpol=join 

value=star 

       cv=red 

    ci=red 

       width=2; 

symbol2 interpol=join 

value=dot 

       cv=blue 

       ci=blue 

    line=3 

       width=2; 

symbol3 interpol=join 

value=circle 

       cv=green 

       ci=green 

    line=8 

       width=2; 
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symbol4 interpol=join 

value=triangle 

       cv=black 

       ci=black 

    line=33 

       width=2;  

symbol5 interpol=join 

value=square 

       cv=brown 

       ci=brown 

    line=29 

       width=2; 

 

 

legend1 label=none 

        position=(top center outside) 

  offset=(0,0) 

  mode=reserve; 

 

   

axis1 label=(angle=90 h=2 color=black "Power") ; 

axis2 label=(c=black h=2 "Sample size")  

      order=(5 10 25 50) 

      value=("5p" "10p" "25p" "50p") ; 

axis3 label=(angle=90 h=2 color=black "Type1 Error") ; 

axis4 order =(0 to 1 by 0.1) label=(angle=90 h=2 color=black "Power") ; 

 

 

 

data P1N0 P1U0 P1L0 P2N0 P2U0 P2L0 P2N50 P2U50 P2L50 P2N90 P2U90 P2L90 P5N0 

P5U0 P5L0 P5N50 P5U50 P5L50 P5N90 P5U90 P5L90; 

set nhla.POWER(rename=(PowerNormal=Parametric 

PowerBootR=Bootstrap_Residuals PowerBootO=Bootstrap_Observations 

PowerPerm=Observation_Permutation PowerFL=FreedmanLane_Permutation)); 

if no_of_par=1 then do; 

     if (error=0 & rho=0) then output P1N0; 

     else if (error=1 & rho=0) then output P1U0; 

     else if (error=2 & rho=0) then output P1L0; 

end; 

 

if no_of_par=2 then do; 

      if rho=0 then do; 

           if error =0 then output P2N0; 

     else if error =1 then output P2U0; 

     else output P2L0; 

   end; 

   else if rho=0.5 then do; 

         if error =0 then output P2N50; 

     else if error =1 then output P2U50; 

     else output P2L50; 

   end; 

 

   else if rho=0.9 then do; 

         if error =0 then output P2N90; 

     else if error =1 then output P2U90; 

     else output P2L90; 

   end; 
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end; 

 

if no_of_par=5 then do; 

      if rho=0 then do; 

           if error =0 then output P5N0; 

     else if error =1 then output P5U0; 

     else output P5L0; 

   end; 

   else if rho=0.5 then do; 

         if error =0 then output P5N50; 

     else if error =1 then output P5U50; 

     else output P5L50; 

   end; 

 

   else if rho=0.9 then do; 

         if error =0 then output P5N90; 

     else if error =1 then output P5U90; 

     else output P5L90; 

   end; 

 

end; 

 

run; 

 

%macro comp(data,er,rho,p); 

title "Power results for p=&p &er rho=0.&rho"; 

 

proc gplot data=&DATA; 

plot (Parametric--FreedmanLane_Permutation)*size/overlay haxis=axis2 

vaxis=axis4 legend=legend1; 

plot (Parametric--FreedmanLane_Permutation)*size/overlay haxis=axis2 

vaxis=axis1 legend=legend1; 

 

run; 

 

%mend; 

 

%comp (P1N0,Normal,0,1); 

%comp (P1U0,Uniform,0,1); 

%comp (P1L0,LOGN,0,1); 

%comp (P2N0,Normal,0,2); 

%comp (P2U0,Uniform,0,2); 

%comp (P2L0,LOGN,0,2); 

%comp (P5N0,Normal,0,5); 

%comp (P5U0,Uniform,0,5); 

%comp (P5L0,LOGN,0,5); 

 

%comp (P2N50,Normal,50,2); 

%comp (P2U50,Uniform,50,2); 

%comp (P2L50,LOGN,50,2); 

%comp (P5N50,Normal,50,5); 

%comp (P5U50,Uniform,50,5); 

%comp (P5L50,LOGN,50,5); 

 

%comp (P2N90,Normal,90,2); 

%comp (P2U90,Uniform,90,2); 

%comp (P2L90,LOGN,90,2); 

%comp (P5N90,Normal,90,5); 
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%comp (P5U90,Uniform,90,5); 

%comp (P5L90,LOGN,90,5); 

 

 

 

   

 

 

 

 

   

 

 

 


