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Abstract

Malaria is one of the most widespread and complex parasitic diseases in the world.

According to the World Health Organization’s records for the year 2013, there

were 207 million malaria cases with 627,000 deaths in 2012 globally. Although its

control and prevention has been pursued for a long time, however, because the

parasite developed resistance to many of the standard treatments, it is becoming

more difficult for researchers to stay ahead of the disease. In this dissertation, two

deterministic models for the transmission dynamics of malaria are presented. First

we comprehensively studied the dynamical interaction of sporozoites with humans,

production of merozoites, and the invasion of red blood cells during erythrocytic

stage of malaria infection. Then we construct a model, which takes the form of

an autonomous deterministic system of non-linear differential equations with stan-

dard incidence, consisting of seven mutually-exclusive compartments representing

the human and vector dynamics. The model is then extended to incorporate addi-

tional compartment of vaccinated individuals. Rigorous analysis of the two models



(with and without vaccine) shows that, both the non-vaccinated and vaccinated

models have a locally asymptotically stable disease-free equilibrium (DFE) when-

ever their respective threshold parameters, known as the basic reproduction number

and the vaccinated reproduction number are respectively less than unity, and the

DFE is unstable when they are greater than unity. In addition, the models exhibit

the phenomenon of backward bifurcation, where the stable disease-free equilibrium

coexists with a stable endemic equilibrium when the associated reproduction num-

bers are less than unity. Furthermore, it was shown that, the backward bifurcation

phenomenon can be removed by substituting the associated standard incidence

function with the mass action incidence, this is achieved using Lyapunov functions

in conjunction with LaSalle invariance principle. We further presented numerical

simulations using parameter values for both low and high malaria incidence regions.

v



Contents

Declaration i

Acknowledgements ii

Dedication iii

Abstract iv

1 Introduction to Malaria 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Malaria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Causes of Malaria . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Symptoms of Malaria . . . . . . . . . . . . . . . . . . . . 2

1.2.3 Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.5 Prognosis and prevention . . . . . . . . . . . . . . . . . . 4

2 Mathematical and Epidemiological Preliminaries 6

2.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Equilibria of linear and non-linear autonomous systems . . . 6

vi



CONTENTS CONTENTS

2.1.2 Stability of solutions . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Hartman-Grobman theorem . . . . . . . . . . . . . . . . . 9

2.1.4 Bifurcation Theory . . . . . . . . . . . . . . . . . . . . . . 12

2.1.5 Lyapunov functions and LaSalle’s invariance principle . . . . 13

2.1.6 Limit sets and invariance principle . . . . . . . . . . . . . . 14

2.1.7 Methods for local stability of equilibria . . . . . . . . . . . 15

2.1.8 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Epidemiological preliminaries . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Incidence function . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Reproduction number . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Next generation method . . . . . . . . . . . . . . . . . . . 20

2.2.4 Backward Bifurcations . . . . . . . . . . . . . . . . . . . . 23

3 Basic malaria model and analysis 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Incidence function . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Model equation . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Basic properties of the model . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Existence, positivity and boundedness of solutions . . . . . 36

3.4 Existence and stability of equilibria . . . . . . . . . . . . . . . . . 37

3.4.1 Disease-free equilibrium (DFE) . . . . . . . . . . . . . . . 38

3.4.2 Interpretation of R0 . . . . . . . . . . . . . . . . . . . . . 41

3.4.3 Endemic equilibrium and backward bifurcation . . . . . . . 42

3.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Analysis of the mass action model . . . . . . . . . . . . . . . . . . 54

3.6.1 Global stability of the DFE . . . . . . . . . . . . . . . . . 58

vii



CONTENTS CONTENTS

4 Malaria model with vaccination 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Basic properties of the model . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Existence, positivity and boundedness of solutions . . . . . 67

4.4 Stability analysis of the equilibria . . . . . . . . . . . . . . . . . . 67

4.4.1 Existence and stability of the DFE . . . . . . . . . . . . . 68

4.4.2 Existence of the endemic equilibrium . . . . . . . . . . . . 71

4.4.3 Backward bifurcation analysis . . . . . . . . . . . . . . . . 72

4.4.4 Existence of backward bifurcation . . . . . . . . . . . . . . 74

4.5 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Vaccination model with the mass action incidence . . . . . . . . . 87

4.6.1 Global stability of the DFE . . . . . . . . . . . . . . . . . 91

4.7 Analysis of Vaccine impact . . . . . . . . . . . . . . . . . . . . . . 93

4.7.1 Vaccine impact and critical coverage . . . . . . . . . . . . 93

4.7.2 Vaccine efficacy and coverage . . . . . . . . . . . . . . . . 96

Bibliography 98

viii



List of Figures

3.1 Life cycle of Plasmodium:- (1) Sporozoites in salivary glands of

an infected mosquito, (2) Sporozoites transported to liver cells,

(3) Invasion of liver cells and production of merozoites, (4) Flow

and invasion of red blood cells by the merozoites, (5) Merozoites

that developed into male and female gametocytes and circulate the

peripherals of blood, (6) Taking up of gametocytes by a susceptible

mosquito which mature to male and female gametes, (7) Fertilized

zygotes which produce sporozoites, (8) Movement of sporozoites

to salivary glands of a mosquito. . . . . . . . . . . . . . . . . . . 26

3.2 Model flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Backward Bifurcation diagram . . . . . . . . . . . . . . . . . . . . 47

3.4 Simulation of model (3.6) for the exposed, infected and recov-

ered humans converge to the DFE when R0 = 0.1923 in areas

of low malaria incidence using parameter values in Table 3.3 with

SH(0) = 5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) =

500, EV (0) = 20, and IV (0) = 10. . . . . . . . . . . . . . . . . . 49

ix



LIST OF FIGURES LIST OF FIGURES

3.5 Simulation of model (3.6) for the exposed, infected and recovered

humans converge to a non-zero solution(EE) when R0 = 2.4073

in areas of high malaria incidence using parameter values in Ta-

ble 3.3 with SH(0) = 5000, EH(0) = 100, IH(0) = 10, RH(0) =

0, SV (0) = 500, EV (0) = 20, and IV (0) = 10. . . . . . . . . . . . 49

3.6 Zoomed section of Figure 3.5 showing the convergence of the Ex-

posed class to a non-zero solution. . . . . . . . . . . . . . . . . . 50

3.7 Simulation of the model (3.6) showing disease prevalence in areas

of low malaria infection using parameter values in Table 3.3 with

SH(0) = 5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) =

500, EV (0) = 20, IV (0) = 10 so that R0 = 0.1923. . . . . . . . . . 50

3.8 Simulation of the model (3.6) showing disease prevalence in areas

of high malaria infection using parameter values in Table 3.3 with

SH(0) = 5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) =

500, EV (0) = 20, IV (0) = 10 so that R0 = 2.4073. . . . . . . . . . 51

3.9 Simulation of the model (3.6) showing the total infectives (Exposed

+ Infected + Recovered) with different initial conditions converg-

ing to the DFE in areas of low malaria infection using parameter

values in Table 3.3 with SH(0) = 5000, EH(0) = 100, IH(0) =

10, RH(0) = 0, SV (0) = 500, EV (0) = 20, and IV (0) = 10 so that

R0 = 0.1923. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.10 Simulation of the model (3.6) showing the total infectives (Exposed

+ Infected + Recovered) with different initial conditions converg-

ing to the EE in areas of high malaria infection using parameter

values in Table 3.3 with SH(0) = 5000, EH(0) = 100, IH(0) =

10, RH(0) = 0, SV (0) = 500, EV (0) = 20, and IV (0) = 10 so that

R0 = 2.4073. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

x



LIST OF FIGURES LIST OF FIGURES

4.1 Flow chart of the Vaccinated Model (4.1) . . . . . . . . . . . . . . 66

4.2 Simulation of the model (4.1) for the exposed, infected and recov-

ered humans converge to the DFE when R0v = 0.0938 in areas

of low malaria incidence using parameter values in Table 3.3 with

SH(0) = 5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) =

500, EV (0) = 20, IV (0) = 10. . . . . . . . . . . . . . . . . . . . . 84

4.3 Simulation of the model (4.1) for the exposed, infected and recov-

ered humans converge to the DFE when R0v = 0.9054 in areas

of high malaria incidence using parameter values in Table 3.3 with

SH(0) = 5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) =

500, EV (0) = 20, IV (0) = 10. . . . . . . . . . . . . . . . . . . . . 84

4.4 Simulation of the model (4.1) showing the disease prevalence in ar-

eas of low malaria infection using parameter values in Table 3.3 with

SH(0) = 5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) =

500, EV (0) = 20, IV (0) = 10 so that R0v = 0.0938. . . . . . . . . 85

4.5 Simulation of the model (4.1) showing the disease prevalence in

areas of high malaria infection using parameter values in Table

3.3 with SH(0) = 5000, EH(0) = 100, IH(0) = 10, RH(0) =

0, SV (0) = 500, EV (0) = 20, IV (0) = 10 so that R0v = 0.9054. . . 85

4.6 Simulation of the model (4.1) showing the total infectives (Exposed

+ Infected + Recovered) with different initial conditions converg-

ing to the DFE in areas of low malaria infection using parameter

values in Table 3.3 with SH(0) = 5000, EH(0) = 100, IH(0) =

10, RH(0) = 0, SV (0) = 500, EV (0) = 20, and IV (0) = 10 so that

R0v = 0.0938. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi



LIST OF FIGURES LIST OF FIGURES

4.7 Simulation of the model (4.1) showing the total infectives (Exposed

+ Infected + Recovered) with different initial conditions converg-

ing to the DFE in areas of high malaria infection using parameter

values in Table 3.3 with SH(0) = 5000, EH(0) = 100, IH(0) =

10, RH(0) = 0, SV (0) = 500, EV (0) = 20, and IV (0) = 10 so that

R0 = 0.9054. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xii



List of Tables

3.1 Parameters descriptions in both human and mosquito populations . 35

3.2 Parameters values used in illustrating the backward bifurcation . . . 48

3.3 High and low incidence Parameters values used in numerical simu-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xiii



Chapter 1
Introduction to Malaria

1.1 Introduction

This chapter is devoted to the study of some of the fundamental concepts of

malaria.

1.2 Malaria

Malaria is a complex parasitic disease, it is mostly confined to tropical and subtrop-

ical regions of Africa and Asia because of rainfall, warm temperatures, stagnant

waters, and poor sanitation that pave way for the provision of conducive environ-

ment for mosquito breeding [3, 52, 69]. Although there were tremendous progresses

in the fight against malaria, according to the World Health Organization’s records

for the year 2013, there were 207 million malaria cases worldwide with 627,000

deaths in 2012 [73].

Malaria infection is characterized by high fever, chills, sweating, fatigue, headache,

and nausea which if left untreated can cause acute anemia, organ failure or brain

damage among other problems. It can be treated and cured but because the par-
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asite has developed resistance to many of the standard treatments, it is becoming

more difficult for researchers to stay ahead of the disease [24, 29, 72].

Malaria is common and life-threatening public health problem in many tropical

and subtropical areas of the world. It is currently endemic in over hundred coun-

tries. Each year, approximately three hundred million people fall ill with malaria and

one million deaths are recorded. It is transmitted by female Anopheles mosquitoes

which bite mainly between sunset and sunrise [5, 71].

1.2.1 Causes of Malaria

Human malaria is caused by five different species of the parasite belonging to

genus Plasmodium: Plasmodium falciparum (the most deadly), Plasmodium vivax,

Plasmodium knowlesi, Plasmodium malariae, and Plasmodium ovale, the last two

are fairly uncommon. Many animals can get malaria but human malaria does

not spread to animals, except for Plasmodium knowlesi, animal malaria does not

spread to humans [47]. A person gets malaria when bitten by a female mosquito

who is looking for a blood meal and is infected with the malaria parasite [24]. The

parasites enter the blood stream and travel to the liver where they multiply, when

they re-emerge into the blood, symptoms appear. By the time a patient shows

symptoms, the parasites have reproduced very rapidly, clogging blood vessels and

rupturing blood cells. Malaria cannot be casually transmitted directly from one

person to another, instead, a mosquito bites an infected person and then passes

the infection on to the next human it bites [27, 29].

1.2.2 Symptoms of Malaria

The amount of time between the mosquito bite and the appearance of symptoms

varies depending on the strain of parasite involved. The incubation period is usually
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between 8 to 12 days for falciparum malaria, but it can be as long as a month for

the other types. Symptoms from some strains of P. vivax may not appear until 8

to 10 months after the mosquito bite occurred. The primary symptom of all types

of malaria is the ”malaria ague” (chills and fever), in most cases, the fever has

three stages, beginning with uncontrollable shivering for an hour or two, followed

by a rapid spike in temperature (as high as 410C) which lasts three to six hours,

and suddenly the patient begins to sweat profusely which will bring down the fever.

Other symptoms may include fatigue, severe headache or nausea and vomiting, as

the sweating subsides, the patient typically feels exhausted and falls asleep. In

many cases, this cycle of chills, fever and sweating occurs every other day or every

third day and may last for between a week and a month. Those with the chronic

form of malaria may have a relapse as long as 50 years after the initial infection

[27, 29].

1.2.3 Treatment

Falciparum malaria is a medical emergency that should be treated in the hospital.

The type of drugs, method of administration and length of the treatment depend

on where the malaria was contracted and how sick the patient is. Except for

falciparum, the treatment for malaria is usually Chloroquine (Aralen) taken by

mouth for three days, strains of falciparum suspected to be resistant to chloroquine

are usually treated with a combination of quinine and tetracycline. In countries

where quinine resistance is developing, other treatments may include Clindamycin

(Cleocin), Mefloquin (Lariam) or Sulfadoxone/Pyrimethamine (Fansidar). Those

who are very ill may need intensive care and intravenous (IV) malaria treatment

for the first three days. Chloroquine is an early antimalarial drug first used in the

1940s, but it lost its effectiveness against Plasmodium falciparum, the deadliest of

the malaria parasites, however, it is still used in many African countries because
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of its affordability [27, 29].

1.2.4 Control

Malaria control requires an integrated approach, comprising of prevention (basically

vector control) and treatment with effective antimalarial drug [73]. The increase

in drug resistance to the antimalarial drugs has intensified the need for a malaria

vaccine, a new candidate for malaria vaccine with the potential to neutralise all

strains of the most deadly species of malaria parasite has been developed and the

Phase III efficacy trials in Burkina-Faso, Gabon, Ghana, Kenya, Malawi, Mozam-

bique and Tanzania have shown that it offers protection of about 18 months, it

was particularly observed that it nearly reduced to half the total number of malaria

cases in young children (aged 5-17 months at first vaccination) and to around

a quarter of the malaria cases in infants (aged 6-12 weeks at first vaccination)

[29, 61].

Mathematical modeling plays some vital and important roles in quantifying the

effects of disease control strategies and helps in determining which strategies are

more effective in the control or even eradication process.

1.2.5 Prognosis and prevention

If treated in the early stages, malaria can be cured. Those who live in areas where

malaria is endemic can however, contract the disease repeatedly and may not fully

recover between bouts of acute infection. The complex life cycle of the parasite

makes it difficult to develop a vaccine for it. A parasite has much more genetic

material than a virus or bacterium, for that reason, it has been difficult to develop

a successful vaccine. Malaria is an especially difficult disease to prevent by vacci-

nation because the parasite goes through several separate stages [29].
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The World Health Organization (WHO) has been trying to eliminate malaria for

the past 30 years by controlling mosquitoes, their efforts were successful as long

as the pesticides dichlorodiphenyltrichloroethane (DDT) kills mosquitoes and an-

timalarial drugs cure those who were infected. However, the problem has returned

a hundredfold, especially in Africa, because the parasite is now extremely resistant

to the insecticides designed to kill it, governments are now trying to teach people

to take antimalarial drugs as a preventive medicine and avoid getting bitten by

mosquitoes [27, 71].



Chapter 2
Mathematical and Epidemiological

Preliminaries

2.1 Mathematical Preliminaries

This section provides the basic mathematical theories and methodologies required,

in the analysis and understanding of the results presented in subsequent chapters.

Throughout this section, for any n ∈ N, we denote by Rn the Euclidean space of

dimension n.

2.1.1 Equilibria of linear and non-linear autonomous systems

Consider the system of differential equation below,

ẋ = f(x, t) x(0) = x0. (2.1)

Here f : U × R+ → Rn with x ∈ U ⊂ Rn, t ∈ R+, n ∈ N, and U open in Rn.

The over dot in (2.1) represents the derivative with respect to time ( d
dt

) and (2.1)

is referred to as a vector field on Rn or ordinary differential equation.
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Vector fields which explicitly depend on time are called non-autonomous, while

vector fields that are independent of time are called autonomous, we will be re-

stricted to the autonomous type in this work, hence, for x ∈ U ⊂ Rn,

ẋ = f(x), x(0) = X ∈ Rn. (2.2)

Definition 2.1.1. By a solution of (2.2), we mean a continuously differentiable

function x : I(X)→ Rn such that x(t) satisfies (2.2) [66].

Definition 2.1.2. System (2.2) defines a dynamical system in a subset E ⊂ Rn

if, for every X ∈ E, there exist a unique solution of (2.2) defined for all t ∈ R+

[66].

Definition 2.1.3. Let U be an open subset of Rn. A function f : U → Rn is

Lipschitz if for all x, y ∈ U , there is a K called Lipschitz constant such that

||f(x)− f(y)|| ≤ K||x− y||.

Here ||.|| stands for the Euclidean norm in Rn. If f is Lipschitz on every bounded

subset of Rn, then f is said to be globally Lipschitz [51].

Theorem 2.1.1. Let f : Rn → Rn be globally Lipschitz on Rn. Then there exist

a unique solution x(t) to (2.2) ∀ t ∈ R+. Therefore (2.2) defines a dynamical

system in Rn [66].

Definition 2.1.4. An equilibrium (fixed) point of (2.2) is a point x̄ ∈ R such that

f(x̄) = 0.

Clearly, the constant function x(t) ≡ x̄ is a solution of (2.2) and by uniqueness

of solutions, no other solution curve can pass through x̄.

If U is the state space of some biological systems described by (2.2), then x̄ is an

equilibrium state if when the system starts at x̄ it will always be at x̄ [70].
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Theorem 2.1.2. Consider (2.1) where f(x, t) ∈ Cr, r ≥ 1, on some open set

U ⊆ Rn × R+, and let (x0, t0) ∈ U . Then there exist a local solution to the

equation through the point x0 at t = t0 denoted by x(t, t0, x0) with x(t0, t0, x0) =

x0 for | t−t0 | sufficiently small. This solution is unique in the sense that any other

solution through x0 at t = t0 must be the same as x(t, t0, x0) on their common

interval of existence. Moreover x(t, t0, x0) is a Cr function of t, t0 and x0 [70].

Theorem 2.1.3. Let C ⊂ U ⊆ Rn × R+ be a compact set containing (x0, t0).

The solution x(t, t0, x0) can be uniquely extended forward in t up to the boundary

of C [44, 70].

Theorem 2.1.4. Gronwall Lemma Let x(t) satisfy

dx

dt
≤ px+ q, x(0) = x0,

for p, q constants. Then for t ≥ 0

x(t) ≤ eptx0 +
q

p
(ept − 1), p 6= 0

and

x(t) ≤ x0 + qt, p = 0 [66].

2.1.2 Stability of solutions

Intuitively speaking, we say that an equilibrium point x̄(t) of the differential equa-

tion (2.2) is locally stable if all solutions starting near x̄(t) (meaning that the initial

condition is in the neighborhood of x̄(t0)) at a given time remains near x̄(t) for

all later times. It is locally asymptotically stable if it is locally stable and further-

more, all solutions starting near x̄(t) tend to x̄(t) as t −→∞. These concepts are

formally defined as:
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Definition 2.1.5. Let x̄ ∈ Rn be an equilibrium point of a dynamical system on

E defined by (2.2). Then x̄ is said to be:

1. stable if for any ε > 0, there exist δ = δ(ε) > 0 such that if ||x̄(0)−y(0)|| <

δ, then, ||x̄(t)− y(t)|| < ε for all t ≥ 0,

2. locally attractive if ||x̄(t)−y(t)|| → 0 as t→∞ for all ||x̄−y(0)|| sufficiently

small,

3. locally asymptotically stable if x̄ is stable and locally attractive. For an

asymptotically stable equilibrium point x̄ of (2.2), the set of all initial data

x(0) such that

lim
t→∞

Φ(t)x(0) = x̄

is said to be the basin of attraction of x̄,

4. globally attractive if (2) holds for any x(0) ∈ E, i.e. the basin of attraction

of x̄ is E,

5. globally asymptotically stable if (1) and (4) hold,

6. unstable if (1) fails

2.1.3 Hartman-Grobman theorem

Definition 2.1.6. The Jacobian matrix of f at the equilibrium x̄, denoted by

Df(x̄), is the matrix
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∂f1
∂x1

(x̄) . . . ∂f1
∂xn

(x̄)

. . .

. . .

. . .

∂fn
∂x1

(x̄) . . . ∂fn
∂xn

(x̄)



,

of partial derivatives of f evaluated at x̄ [51].

It is not generally easy to investigate the stability and asymptotic stability of

an equilibrium solution of (2.2) using Definition 2.1.5 and 2.1.6. The easiest way

is by considering the linearized form of (2.2) given by

U̇ = JU (2.3)

near x̄(t) where J is the Jacobian of the function f at x̄. It is assumed that f is

differentiable.

Definition 2.1.7. Let x = x̄ be an equilibrium solution of (2.2), x̄ is called a

hyperbolic equilibrium point if none of the eigenvalues of Df(x̄) have zero real

part [70]. An equilibrium point that is not hyperbolic is called non hyperbolic.

Let X and Y be two topological spaces.

Definition 2.1.8. A function f : X → Y is a homeomorphism if it is continuous,

bijective with a continuous inverse [51].

Definition 2.1.9. A function h : X → Y is a C1 diffeomorphism if it is invertible

and both h and it’s inverse h−1 are C1 maps [51].
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Consider two functions f : Rn → Rn and g : Rm → Rm.

Definition 2.1.10. f and g are said to be conjugate if there exist a homeomor-

phism h : Rn → Rm such that, the composition goh = hof (sometimes written

as g(h(x)) = h(f(x))), x ∈ Rn [51].

Definition 2.1.11. A Cr(r ≥ 1) function φ : U ×R+ → Rn, U ⊂ Rn is called a

flow for (2.2) if it satisfies the following properties

• φ(x0, 0) = x0

• φ(x0, s+ t) = φ(φ(x0, s), t)

Definition 2.1.12. The set of all points in a flow φ(t;xo) for (2.2) is called the

orbit or trajectory of f(x) with initial condition x0, we write the orbit φ(x0). When

we consider t ≥ 0, we say that, φ(t;xo) is a forward orbit or forward trajectory.

Proposition 2.1.5. If f and g are Ck conjugate, then the orbits of f maps to the

orbits of g under h, as f, g and h were defined in Definition 2.1.12.

Proposition 2.1.6. If f and g are Ck conjugate, k ≥ 1, and x0 is a fixed point

of f , then the eigenvalues of Df(x0) are equal to the eigenvalues of Dg(h(x0)).

Theorem 2.1.7. (Hartman and Grobman) Assume that f : Rn → Rn is of class

C1 and consider a hyperbolic equilibrium point x̄ of the dynamical system defined

by (2.2). Then there exist δ > 0, a neighborhood N ⊂ Rn of the origin and a

homeomorphism h defined from the ball B = {x ∈ Rn : ||x − x̄|| < δ} onto N

such that

u(t) = h(x(t)) solves (2.3) if and only if x(t) solves (2.2).

The direct application of the Hartman-Grobman theorem is that an orbit struc-

ture near a hyperbolic equilibrium solution is qualitatively the same as the orbit
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structure given by the associated linearized (around the zero equilibrium) dynamical

system.

Theorem 2.1.8. Suppose all of the eigenvalues of Df(x̄) have negative real

parts. Then the equilibrium solution x = x̄ of the non linear vector field (2.2) is

asymptotically stable [70].

2.1.4 Bifurcation Theory

Mathematical models of phenomena in applied sciences like medicine, biology,

physics or engineering typically lead to equations depending on one or more pa-

rameters, which are allowed to vary over specified set (the parameter space).

Definition 2.1.13. Bifurcation can be defined as a qualitative change in dynamics

of ẋ = f(x, µ) occurring upon a small change in the parameter (µ).

Bifurcation occurs at parameter values where the qualitative nature of the flow,

such as the number of stationary points or periodic orbits change. If the stationary

point (x̄) is hyperbolic, a small perturbation of the system will not change the

stability characteristics of the stationary point, hyperbolic stationary points are

structurally stable, so local bifurcations occur at points in parameter space where

a stationary point is non hyperbolic [64].

Definition 2.1.14. Consider a one-parameter family of one-dimensional vector

field ẋ = f(x, µ), an equilibrium solution given by (x̄, µ) = (0, 0) is said to

undergo bifurcation at µ = 0 if the flow for x near zero is not qualitatively the

same as the flow near x = 0 at µ = 0 [44].

There are several types of bifurcations but we are interested in only two in this

dissertation, they are: forward and backward bifurcations, their definitions follow

in the next section.
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2.1.5 Lyapunov functions and LaSalle’s invariance principle

Definition 2.1.5 and 2.1.6 are local, that is they describe the behavior of the system

near an equilibrium point.

Definition 2.1.15. A function V : Rn −→ R is said to be positive definite if,

• V (x) > 0, for all x 6= 0,

• V (x) = 0, if and only if x = 0,

• V (x) −→∞ as x −→∞.

The function V is locally positive definite if there exists U ⊂ Rn containing a fixed

point x = x̄ such that

• V (x̄) = 0,

• V (x) > 0 for all x ∈ U\{x̄}.

Definition 2.1.16. Assume that (2.2) defines a dynamical system on an open

subset U ⊂ Rn and x̄ is an equilibrium point. A function V ∈ C1(U,R) is called

a Lyapunov function of the system (2.2) for x̄ on a neighborhood B ⊂ U of x̄ if

V̇ (x) := lim
h→0

V (x+ hf(x))− V (x)

h
= 5V (x).f(x) ≤ 0, ∀x ∈ B, (2.4)

where V̇ (x) is the directional derivative of V in the direction of f . If in addition,

V (x̄) = 0 and V (x) > 0 ∀x ∈ U\{x̄}, then V is said to be a positive definite

Lyapunov function at x̄.

Theorem 2.1.9. Let V be a positive definite Lyapunov function of the dynamical

system (2.2) on a neighbourhood U of an equilibrium point x̄. Then x̄ is stable.

If, in addition, V̇ (x) < 0 ∀x ∈ U\{x̄}, then x̄ is asymptotically stable, and x̄ is

unstable if V̇ (x) > 0, ∀x ∈ U\{x̄}.
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2.1.6 Limit sets and invariance principle

Since general epidemiology models deal with population of humans or animals, it

is important to consider non negative populations, thus, epidemiological models

should be considered in (feasible) regions where such property of non-negativity is

preserved.

Definition 2.1.17. Let x(t) be a solution of (2.2). A point p is said to be a

positive limit of x(t), if there exists a sequence {tn} with tn −→∞ as n −→∞,

such that x(tn) −→ p as n −→ ∞. The set of all positive limit points of x(t) is

called the positive limit set of x(t).

Definition 2.1.18. Let φ be the flow of (2.1). A point x0 ∈ Rn is called ω-limit

point of x ∈ Rn, denoted by ω(x), if there exists a sequence {tn}, tn −→∞ such

that,

φ(tn, x) −→ x0.

Similarly, a point x0 ∈ Rn is called α-limit point of x ∈ Rn, denoted by α(x), if

there exists a sequence {tn}, tn −→ −∞ such that,

φ(tn, x) −→ x0.

The set of all ω-limit points of a flow is called the ω-limit set, while the set of all

α-limit points of a flow is called the α-limit set [70].

Definition 2.1.19. A set M is said to be an invariant set with respect to the

autonomous ordinary differential equation (2.2) if,

x(0) ∈M ⇒ x(t) ∈M, ∀t ∈ R.

That is, if any trajectory starts in M , it will stay in M for all time [64].
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If we restrict t ≥ 0 in the above definition, then M is said to be positively

invariant set. In other words, solutions in a positively invariant set remain there

for all positive time.

Theorem 2.1.10. (LaSalle’s invariance principle)

Let x̄ be an equilibrium point of (2.2) defined on Ω ⊂ Rn. Let V be a positive

definite Liapunov function for x̄ on the set Ω. Furthermore let Ωa = {x ∈ Ω̄ :

V̇ (x) = 0} and if

S = {the union of all trajectories that start and remain in Ωa for all t > 0},

that is, S is the largest positively invariant subset of Ωa such that S ⊂ Ω, then

x̄ is globally asymptotically stable on Ω if and only if it is globally asymptotically

stable on S [70].

2.1.7 Methods for local stability of equilibria

Here we will study two standard methods for analyzing the local stability of equi-

libria of disease transmission models.

2.1.8 Linearization

Determining the stability of an equilibrium (fixed) point x̄(t) requires the under-

standing of the nature of solutions near it. Let,

x = x̄(t) + ε. (2.5)
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If we substitute (2.5) in the general autonomous system (2.2) where f is at least

twice differentiable and apply Taylor’s expansion at x̄ we get,

ẋ = ˙̄x+ ε̇ = f(x̄(t)) +Df(x̄(t))ε+O(|ε|2),

where |.| is the Euclidean norm on Rn. Hence,

ε̇ = Df(x̄(t))ε+O(|ε|2). (2.6)

Equation (2.6) describes the evolution of orbits near x̄ [64, 37]. The behavior of

the solutions arbitrarily close to x̄ is obtained by studying the associated linear

system,

ε̇ = Df(x̄(t))ε. (2.7)

However, if x̄(t) is an equilibrium solution, i.e f(x̄) = 0, then Df(x̄) is a matrix

with constant entries, and the solution of (2.7) through the point ε0 ∈ Rn at t = 0

is given by,

ε(t) = exp(Df(x̄(t)))ε0. (2.8)

Theorem 2.1.11. Suppose all of the eigenvalues of Df(x̄) have negative real

parts, then, the equilibrium solution x = x̄ of the non-linear system (2.2) is asymp-

totically stable [10, 37].
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2.2 Epidemiological preliminaries

This section discusses some of the basic principles and methods associated with

modeling in epidemiology. Epidemic models are used to describe rapid outbreaks

that occur in less than one year, while endemic models are used for studying

diseases over a longer periods, during which there is renewal of susceptibles by

birth or recovery from partial immunity [43].

2.2.1 Incidence function

In this subsection, we give short descriptions of some of the most commonly used

incidence functions, we refer to [43, 68] for more details on various incidence

functions in mathematical epidemiology.

Consider a community where the total population is denoted by N , the susceptibles

by S while the infectives by I. Disease incidence is defined as the infection rate

of susceptible individuals through their contact with infectives [28]. Incidence in

disease models is generally characterized by an incidence function (a function that

describes the mixing pattern within the community). Infections are transmitted

through contact. The number of times an infective individual comes into contact

with other members per unit time is defined as the contact rate, it often depends on

the total number N of individuals in the population, and it is denoted by a function

C(N). If the individuals contacted by an infected individual are susceptible, then

they may be infected, assuming that the probability of infection by every contact

is β0, then the product β0C(N) is called the effective contact rate, it shows the

ability of an infected individual infecting others (depending on the environment,

the toxicity of the virus or bacterium, etc). Since apart from the susceptibles, the

individuals in other compartments of the population can not be infected when they

make contact with the infectives, and the fraction of the susceptibles in the total
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population is S(t)
N(t)

, therefore, the mean adequate contact rate of an infective to the

susceptible individuals is β0C(N) S(t)
N(t)

, which is called the infective rate. Further,

the total number of new infected individuals resulting per unit time at time t is

β0C(N) S(t)
N(t)

I(t), which is called the incidence of the disease.

When C(N) = kN , that is the contact rate is proportional to the size of the total

population, the incidence is β0kS(t)I(t) = βS(t)I(t) (where β0k = β is defined as

the transmission coefficient) is called the bilinear incidence or simple mass-action

incidence [68].

When C(N) = k, that is the contact rate is a constant, the incidence becomes

β0k
S(t)
N(t)

I(t) = β s(t)
N(t)

I(t) (where β0k = β), this type of incidence function is

termed as the standard incidence [68].

Conventionally, it is assumed that new cases are generated through homoge-

neous mixing, yielding either the mass action incidence term (independent of the

total population as described above) or the standard incidence term (dependent

on the total population), this assumption may be inaccurate, particularly under

certain circumstances, examples where the incidence does not depend linearly on

the number of currently infected individuals include, situations where a larger den-

sity of infected individuals decrease their per capita infectivity (saturation effect)

and situations where multiple exposure to an infected individuals are required for

transmission to occur (threshold effect) [11].

Other forms of contact rates were also proposed, such as those with saturation

as introduced by Dietz in 1982 [68] and Heesterbeek and Metz in 1993 [10], with

contacts respectively given by

C(N) =
αN

1 + ωN
, and, C(N) =

αN

1 + bN +
√

1 + 2bN



Mathematical and Epidemiological Preliminaries 19

satisfying

C(0) = 0, C ′(N) ≥ 0,
(C(N)

N

)′
≤ 0 lim

N→∞
C(N) = C0 [68].

Moreover, other incidences for special cases such as βSpIq, βSpIq

N
were also intro-

duced [68].

2.2.2 Reproduction number

One of the fundamental results in mathematical epidemiology is that, mathematical

epidemic models, including those that have high degree of heterogeneity exhibit

a threshold behavior. In epidemiological terms, this can be stated as follows:

There is a difference in epidemic behavior when the average number of secondary

infections caused by an average infective individual during his or her period of

infectiousness, called the basic reproduction number, is less than one and when

this quantity exceeds one [23]. The basic reproduction number R0 is defined as the

number of secondary infections caused by a single infectious individual introduced

into a wholly susceptible population over the course of the infection of this single

infectious individual [10]. The famous threshold criterion states that:

The disease can invade the population if R0 > 1, whereas it cannot invade the

population if R0 < 1 [26, 28].

The course of the disease outbreak could be rapid enough that there are no sig-

nificant demographic effects in the population, or there is flow of individuals into

the population who may become infected, in either case, the disease will die out

if the basic reproduction number is less than one, and if it is greater than one,

there will be an epidemic. Mathematically, if R0 < 1, the disease-free equilibrium

is approached by solutions of the model describing the situation. If R0 > 1, the

disease-free equilibrium is unstable and solutions flow away from it. There is also
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an endemic equilibrium, with a positive number of infective individuals, therefore,

the disease remains in the population [23]. However, the situation may be more

complicated with more than one stable equilibrium when the basic reproduction

number is less than one.

2.2.3 Next generation method

Although the linearization is the standard method that is applied in the analysis

of the stability of equilibria in general, the next generation method, which is also

a linearization method is used to establish the local asymptotic stability of the

disease-free equilibrium (DFE). The method was first introduced by Diekmann

and Hesterbeek [26] and refined for epidemiological models by van den Driessche

and Watmough [28], we shall follow the description in [10].

Consider a heterogeneous population whose individuals are distinguishable by

their disease status and can be grouped into n homogeneous compartments. The

idea is based on computing a matrix whose (i, j) element represents the number

of secondary infections in compartment i caused by an individual in compartment

j. We refer to disease compartment as the compartment where individuals are

infected. We should note that, we will consider the disease compartment in a

broader way compared to the clinical method hence it includes stages of infection

like exposed stages in which infected individuals are not necessarily infective.

Suppose there are n disease compartments and m non disease compartments, and

let x ∈ Rn and y ∈ Rm be the sub populations in each of these compartments.

Further, we denote by Fi the rate at which secondary infections increase the i− th

disease compartment and by Vi the rate at which disease progression, death, and

recovery decrease the i − th compartment. The compartmental model can then
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be written in the form

x
′

i = Fi(x, y)− Vi(x, y), i = 1, 2, ...n,

y
′

j = gj(x, y), j = 1, 2, ...,m.

(2.9)

Note that the decomposition of the dynamics into F and V and the designation of

compartments as infected or uninfected may not be unique; different decomposi-

tions correspond to different epidemiological interpretations of the model.

The derivation of the basic reproduction number is based on the linearization

of the ODE model about a disease-free equilibrium. For an epidemic model with

a line of equilibria, it is customary to use the equilibrium with all members of the

population susceptible. We assume:

• Fi(0, y) = 0 and Vi(0, y) = 0 for all y = 0 and i = 1, ..., n.

• The disease-free system y
′
= g(0, y) has a unique equilibrium that is asymp-

totically stable, that is, all solutions with initial conditions of the form (0, y)

approach a point (0, y0) as t→∞. We refer to this point as the disease-free

equilibrium.

The first assumption says that all new infections are secondary infections arising

from infected hosts; there is no immigration of individuals into the disease com-

partments. It ensures that the disease-free set, which consists of all points of the

form (0, y), is invariant. That is, any solution with no infected individuals at some

point in time will be free of infection for all time. The second assumption ensures

that the disease-free equilibrium is also an equilibrium of the full system. The

uniqueness of the disease-free equilibrium in the second assumption is required for

models with demographics. Although it is not satisfied in epidemic models, the

specification of a particular disease-free equilibrium with all members of the pop-

ulation susceptible is sufficient to validate the results.
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Next, we assume:

• Fi(x, y) ≥ 0 for all nonnegative x and y and i = 1, ..., n.

• Vi(x, y) ≤ 0 whenever xi = 0, i = 1, ..., n.

•
∑n

i=1 Vi(x, y) ≥ 0 for all nonnegative x and y.

The reasons for these assumptions are that the function F represents new infec-

tions and cannot be negative, each component Vi represents a net outflow from

compartment i and must be negative (inflow only) whenever the compartment is

empty, and the sum
∑n

i=1 Vi(x, y) represents the total outflow from all infected

compartments. Terms in the model leading to increases in
∑n

i=1 xi are assumed

to represent secondary infections and therefore belong to F.

Suppose that a single infected person is introduced into a population originally

in the absence of disease. The initial ability of the disease to spread through the

population is determined by an examination of the linearization of (2.9) about the

disease-free equilibrium (0, y0). It is easy to see that the assumption Fi(0, y) =

0,Vi(0, y) = 0 implies

∂Fi
∂yj

(0, y0) =
∂Vi
∂yj

(0, y0) = 0

for every pair (i, j). This implies that the linearized equations for the disease

compartments x are decoupled from the remaining equations and can be written

as

x
′
= (F − V )x, (2.10)

where F and V are the n× n matrices with entries

F =
∂Fi
∂xj

and V =
∂Vi
∂xj

.
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Because of the assumption that the disease-free system y
′

= g(0, y) has a

unique asymptotically stable equilibrium, the linear stability of the system (2.9) is

completely determined by the linear stability of the matrix (F − V ) in (2.10).

The number of secondary infections produced by a single infected individual

can be expressed as the product of the expected duration of the infectious period

and the rate at which secondary infections occur [10].

Definition 2.2.1. The Matrix K = FV −1 is referred to as the next generation

matrix for the system (2.9) at the disease-free equilibrium [10].

The (i, j) entry of K is the expected number of secondary infections in com-

partment i produced by individuals initially in compartment j, assuming, of course,

that the environment experienced by the individual remains homogeneous for the

duration of its infection [10].

Lemma 2.2.1. The basic reproduction number R0 = ρ(FV −1) and the disease-

free equilibrium is asymptotically-stable if R0 < 1 and unstable if R0 > 1 [10].

2.2.4 Backward Bifurcations

Bifurcation analysis is the mathematical study of changes in the solutions of the

system of differential equations when changing the parameters. These qualitative

changes in the dynamics of the system are called bifurcations. The parameter

values where they occur are called bifurcation points. By analyzing the existence

of behavior of the model in such points, one can derive much about the systems

properties. It is well known in disease transmission modeling that a disease can be

eradicated when the basic reproduction number R0 < 1.

However, when a backward bifurcation occurs, stable endemic equilibria may

also exist for R0 < 1, this means that the condition that R0 < 1 is only a

necessity but not sufficient to guarantee the elimination of the disease, indeed,
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the quantity R0 must be reduced further to avoid endemic states and guarantee

eradication. The scenario is qualitatively described as follows: in the neighborhood

of 1, for R0 < 1, a stable disease-free equilibrium coexists with stable endemic

equilibrium. The endemic equilibrium disappears by saddle-node bifurcation when

R0 is decreased below a critical value Rc < 1 [14, 39].

Definition 2.2.2. A forward bifurcation occurs when R0 crosses unity from be-

low; a small positive asymptotically-stable equilibrium appears and the disease-free

equilibrium losses its stability. Backward bifurcation happens when R0 is less than

unity; a small positive unstable equilibrium appears while the disease-free equi-

librium and a larger positive endemic equilibrium are locally-asymptotically stable

[16].



Chapter 3
Basic malaria model and analysis

3.1 Introduction

Malaria infection starts with a bite and injection of sporozoites by an infectious

mosquito, the sporozoites are taken to the liver cells where they asexually reproduce

uninucleate merozoites, they flow into and invade the red blood cells which result

to the disease. Some merozoites evolve to male and female gametocytes that

circulate the peripherals of the blood until they are taken by a female mosquito

[22, 30].

The gametocytes taken by mosquito develop into male and female gametes,

they fertilize and form zygotes within the lumen of the mosquitos gut, the zy-

gotes penetrate the guts wall and form oocytes, multiplication occurs within the

oocytes which results in the formation of sporozoites that move to the salivary

glands [24, 30]. Figure 3.1 summarizes the process.
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Figure 3.1: Life cycle of Plasmodium:- (1) Sporozoites in salivary glands of an
infected mosquito, (2) Sporozoites transported to liver cells, (3) Invasion of liver
cells and production of merozoites, (4) Flow and invasion of red blood cells by the
merozoites, (5) Merozoites that developed into male and female gametocytes and
circulate the peripherals of blood, (6) Taking up of gametocytes by a susceptible
mosquito which mature to male and female gametes, (7) Fertilized zygotes which
produce sporozoites, (8) Movement of sporozoites to salivary glands of a mosquito.



Basic Malaria model and analysis 27

Modeling the transmission dynamics of malaria can be dated back to 1911 when Sir

Ronald Ross, the 1902 Nobel prize winner in physiology constructed and analysed

a mathematical model that captures the transmission dynamics of malaria in the

second edition of his book, The Prevention of Malaria in 1911 [13, 60]. Kermack

and McKendrick collaborated and worked on different epidemic models including

Ross’s work on malaria [13].

Since then, there has been surge in the development of new models which attempt

to capture as much as possible, essential dynamical features in the transmission dy-

namics of malaria, some of which include: J.C. Aron [7], N. Chitnis et al. [20, 21],

J.C. Koella [48], S. Mandal [50], Ngwa and Shu [53], F.T. Oduro et al. [55]. In this

dissertation, following some recent facts on malaria pathogenesis [22, 24, 30, 54],

we attempted to improve on the afore mentioned work, for instance by incorporat-

ing additional compartment for the vaccinated individuals and allowing for malaria

transmission by the exposed individuals.

3.2 Model formulation

The model considered in this study consists of seven non intersecting compart-

ments describing the dynamics of the disease, the first four of the compartments

represent the human population while the remaining three represent the mosquito

population.

The state vector for the model is given by (SH , EH , IH , RH , SV , EV , IV ),

where the various state variables respectively represent the populations of suscep-

tible humans, exposed humans, infected humans, recovered humans, susceptible

mosquitoes, exposed mosquitoes and infected mosquitoes. The total human pop-

ulation, denoted by NH is given by NH = SH + EH + IH + RH , while the total

mosquito population, also denoted by NV is given by NV = SV + EV + IV .
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At any time t, the susceptible humans have either never had malaria or they have

recovered from it without having partial immunity at that time, hence they are

prone to infection, they can get the disease after receiving sufficient amount of

bites capable of transmission either from an infected or exposed mosquito. Human

infectivity increases with the increase in the amount of gametocytes in a typical

blood meal [30], so that the class of humans at an early stage of infection (do not

typically show physical sign of infection but they are clinically infectious) are con-

sidered exposed, they can probably transmit the disease to a susceptible mosquito,

though with a reduced probability compared with infected humans, for that reason

we introduce a parameter ηH (0 < ηH < 1) to cater for the reduction in the trans-

missibility. Infected humans are at the stage where the amount of gametocytes

in the blood compelled physical signs of the disease, high fever, vomiting, etc.,

they are assumed to transmit the disease to mosquitoes whenever they bite them,

the disease is at its peak, because they have shown signs of infectivity, they may

undergo treatment.

Infectious gametocytes could be found in the blood for many days after a

malaria patient has been treated with the artemisinin-based combination therapy

and likely doing better, nonetheless, the artemisinin-based combination therapy is

the recommended and most widely used, this happens because it primarily tar-

gets the asexual stage of malaria parasite [8, 46, 57, 67], with this fact, recovered

humans may still be infectious and some of them may have partial immunity, we

similarly use the parameter ηR (0 < ηR < 1) to cater for the reduction in the

transmissibility of the recovered humans in comparison to the infected humans,

on receiving bites, fraction of individuals in the recovered class progress to the

exposed class, while the gametocytes completely dies out or their immunity wanes

without getting reinfection to move to the susceptible class.

The susceptible vectors consist of mosquitoes that have never had malaria but they
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can get infection either from an exposed, infected or recovered humans, afterwards,

they move to the exposed class, a class where they can infect a susceptible hu-

man, although with a reduction in transmissibility in comparison with the infected

mosquitoes, we again introduce a parameter ηV (0 < ηV < 1) to account for the

reduction, the increase in the amount of the parasite to a stage when each bite

is capable of disease transmission transfers the vector from the exposed to the

infected class, once a mosquito is infected, it lives with the infection to the end of

its life.

3.2.1 Incidence function

Here, we formulated the functional form of the standard incidence function used in

the transmission dynamics of malaria. Similar to those in [9, 34, 35], the formula-

tion was based on the fact that anopheles mosquitoes bite humans only, so that in

any community, the average number of bites by anopheles mosquitoes is equal to

the average number of bites received by humans. Furthermore, we assumed that,

each bite by an infectious (exposed or infected) mosquito has an equal probability

of transmitting the disease to a susceptible human in the population, or suscepti-

ble mosquito acquiring infection from infectious (exposed, infected or recovered)

human. The force of infection of the humans (the rate at which new infections

occur in human population) is therefore given by:

λH =
CV H
NV

(ηVEV + IV ), (3.1)

while, the force of infection of the mosquito (the rate at which new infections

occur in the mosquito population) is also given by:

λV =
CHV
NH

(ηHEH + IH + ηRRH). (3.2)
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As previously discussed, the parameters 0 < ηV , ηH , ηR < 1 account for the reduc-

tion in the transmissibility of an exposed mosquito relative to an infected mosquito,

exposed and recovered humans relative to an infected humans, respectively. CHV

represents the effective contact rate of mosquitoes (contact capable of leading to

infection from human to mosquito), it is the product of the transmission probabil-

ity from humans to mosquitoes (PHV ) and the average biting rate of susceptible

mosquitoes (bs), that is,

CHV = PHV bs.

Similarly, CV H represents the effective contact rate of humans (contact capable

of leading to infection from mosquito to human) defined as the product of the

transmission probability from mosquitoes to humans (PV H) and the average biting

rate of infectious (infected or exposed) mosquitoes (bi), such that,

CV H = PV Hbi.

The fact that anopheles mosquitoes feed on human blood [54, 74], together with

the assumption that both humans and mosquitoes live in the same community, the

conservation of the total number of bites in the population implies that, the total

number of bites by the mosquito population should be equal to the total number

of bites received by humans, and since each mosquito bite has equal probability of

disease transmission we have,

CHVNV = CV H(NH , NV )NH . (3.3)
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Assuming that, in any population with homogeneous mixing of humans and mosquitoes,

CHV 6= 0, therefore we have,

NV =
CV H(NH , NV )NH

CHV
, (3.4)

which implies that,

λH =
CHV
NH

(ηVEV + IV ). (3.5)

3.2.2 Model equation

The susceptible human population is generated either by birth or immigration at

a constant rate ΠH , or from recovered humans at the rate (1 − π)ξH , where

0 ≤ π < 1 with π = 0 representing the case when all recovered humans are

immune from mosquito bites and hence, either their partial immunity wanes out

or they totally recover without partial immunity and move to the susceptible class,

the population decreases due to infection at the rate λH , or as a result of natural

death at the rate µH , thus, the rate at which the susceptible human population

changing is given by:

dSH
dt

= ΠH + (1− π)ξHRH − SH(λH + µH).

The population of the exposed humans is generated either through the infection

of susceptible humans at the rate λH , and by reinfection of recovered humans at

the rate πξH , it decreases due to disease progression at the rate τH , and natural

death at the rate µH , such that:

dEH
dt

= SHλH + πξHRH − EH(τH + µH).
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Infected human population is generated from the exposed class at the rate τH , and

decreases as a result of the disease induced death at the rate δH , due to natural

death at µH , or progression to the recovered class at the rate θH , so that:

dIH
dt

= EHτH − IH(θH + δH + µH).

The population of recovered individuals is generated by the recovery of infected

humans at the rate θH . It decreases due to progression to susceptible and exposed

humans (because of immunity wanning and reinfection respectively), and due to

natural death, so that:

dRH

dt
= IHθH −RH(ξH + µH).

In a similar way, the population of the mosquitoes changes, except for the fact

that once a mosquito is infected, it lives with the infection until it dies [24].

The following system of non-linear ordinary differential equations represents the

dynamics of the model.

dSH
dt

= ΠH + (1− π)ξHRH − SH(λH + µH),

dEH
dt

= SHλH + πξHRH − EH(τH + µH),

dIH
dt

= EHτH − IH(θH + δH + µH),

dRH

dt
= IHθH − ξHRH − µHRH ,

dSV
dt

= ΠV − λV SV − µV SV ,

dEV
dt

= SV λV − τVEV − µVEV ,

dIV
dt

= EV τV − δV IV − µV IV ,

(3.6)
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The restriction on the initial population arises from the fact that, the variables

describe the dynamics of human and mosquito populations, therefore, for the model

to be biologically meaningful, all the initial conditions and parameters must be

non-negative. Thus SH(0) > 0, EH(0) ≥ 0, IH(0) ≥ 0, RH(0) ≥ 0, SV (0) > 0,

EV (0) ≥ 0, IV (0) ≥ 0.

The model represented by (3.6) extends numerous malaria transmission models in

the literature, such as those in [20, 21, 50, 53, 55] by:

• Allowing for malaria transmission by the exposed humans and vectors.

• Allowing the movement of a fraction of recovered individuals to the exposed

class.

• Introducing modification parameters in the transmission of the recovered and

exposed individuals.

• Analysing malaria model with mass action incidence function.

• Incorporating additional compartment for the vaccinated individuals.

None of these extensions were considered in any of [20, 21, 50, 53, 55]. The model

is represented by the flow chart in Figure 3.2 and Table 3.1 gives the description

of the parameters used in the model for the human and mosquito populations:
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Figure 3.2: Model flow chart
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Table 3.1: Parameters descriptions in both human and mosquito populations

Parameter Interpretation Dimension

ΠH Recruitment rate of humans Humans×day−1

λH Transmission rate of humans Day −1

µH Natural death rate of humans Humans×day−1

τH Progression rate from exposed to infected humans Day−1

δH Disease induced death rate of humans Day−1

θH Progression rate from infected to recovered humans Day−1

ξH Progression rate from recovered to exposed humans Day−1

π Modification parameters in humans population

ηH Reduction in infectiousness of exposed humans

ηR Reduction in infectiousness of recovered humans

ΠV Recruitment rate of mosquitoes Mosquitoes×day−1

λV Transmission rate of mosquitoes Day −1

µV Natural death rate of mosquitoes Mosquitoes×day−1

τV Progression rate from exposed to infected mosquitoes Day−1

δV Disease induced death rate of mosquitoes Day−1

ηV Modification parameter in mosquito population

σH Vaccination rate of susceptible humans Day−1

ρ Vaccination rate of newly recruited people Day−1

ϕH Vaccine waning rate

ε Vaccine efficacy
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3.3 Basic properties of the model

Here we explore some of the basic dynamical properties of system (3.6).

3.3.1 Existence, positivity and boundedness of solutions

For the model represented by (3.6), with non-negative initial populations to be

biologically meaningful and consistent, then, at any time t, all the state variables

must remain non-negative and bounded.

Theorem 3.3.1. The solution
(
SH(t), EH(t), IH(t), RH(t), SV (t), EV (t), IV (t)

)
of the system (3.6) with non-negative initial condition exist for all t ≥ 0 and is

unique. Furthermore, it is positive and bounded for all t ≥ 0.

Proof. It easy to see that each of the right hand side of (3.6) and its partial

derivative with respect to the variables exist and continuous, by the existence and

uniqueness theorem, the solution to the initial value problem (3.6) exist and it is

unique locally [51, 70].

Observe that the system represented by (3.6) is monotone with positive initial

condition and a local unique solution, therefore by applying proposition B.7 of [63]

we can conclude that the solution is non-negative for all t ≥ 0.

Furthermore, adding the first four and last three equations of system (3.6) we

have:
dNH

dt
= ΠH −NHµH − δHIH , (3.7)

and,
dNV

dt
= ΠV −NV µV − δvIV . (3.8)

which implies,

dNH

dt
≤ ΠH − µHNH , and,

dNV

dt
≤ ΠV − µVNV ,
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therefore, applying Gronwall lemma we have,

NH(t) ≤ NH(0)e−tµH +
ΠH

µH
(1− e−tµH ), (3.9)

and,

NV (t) ≤ NV (0)e−tµV +
ΠV

µV
(1− e−tµV ). (3.10)

which are bounded. �

Theorem 3.3.2. The model (3.6) is a dynamical system in the biologically-feasible

region given by

Ω =

{
(SH , EH , IH , RH , SV , EV , IV ) ∈ R7

+ : NH ≤
ΠH

µH
, NV ≤

ΠV

µV

}
,

Proof. It is clear from (3.9) and (3.10) that NH(t) ≤ ΠH

µH
if NH(0) ≤ ΠH

µH
, and

NV (t) ≤ ΠV

µV
if NV (0) ≤ ΠV

µV
. Consequently, all solutions of the model with initial

conditions in Ω remains in Ω for all t > 0 (the ω-limits set of the system are

contained in Ω). Therefore the system represented by (3.6) is a dynamical system

in Ω [66].

The implication of the theorem is that, model (3.6) is well-posed epidemiologi-

cally and mathematically in Ω [43], hence, it is sufficient to study qualitatively the

dynamics of (3.6) in Ω.

3.4 Existence and stability of equilibria

Well constructed epidemic models support at least two equilibria, the disease-free

equilibrium and the endemic equilibrium [17], though they may not explicitly be

determined, but their existence can be shown. The existence and stability of the

equilibria of system (3.6) are explored as follows.
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3.4.1 Disease-free equilibrium (DFE)

In the absence of the disease (i.e. λH = λV = 0 ⇒, EH = IH = RH = EV =

IV = 0), we obtain an equilibrium point known as the disease-free equilibrium

(DFE) by setting the right hand side of (3.6) to be equal to zero, such that,

ΠH − SHµH = 0⇒ SH =
ΠH

µH
, EH = 0, IH = 0, RH = 0,

ΠV − SV µV = 0⇒ SV =
ΠV

µV
, EV = 0, IV = 0,

(3.11)

and therefore, from (3.11) the DFE is given by,

P0 = (S∗H , E
∗
H , I

∗
H , R

∗
H , S

∗
V , E

∗
V , I

∗
V ) =

(
ΠH

µH
, 0, 0, 0,

ΠV

µV
, 0, 0

)
. (3.12)

The local stability of P0 can be established using the next generation operator

method on the system (3.6) [28]. For P0, the vector of appearance of new infec-

tions and that of the transfers out of and into the compartments are respectively

given by:

F =



SH
CHV

NH
(ηVEV + IV )

0

0

SV
CHV

NH
(ηHEH + IH + ηRRH)

0



, V =



EHK1 − πξHRH

IHK2 − EHτH

RHK3 − IHθH

EVK4

IVK5 − EV τV



,
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where,

K1 = µH + τH , K2 = µH + δH + θH , K3 = µH + ξH , K4 = µV + τV and,

K5 = µV + δV .

The matrix of the partial derivatives of F and V with respect to the variables at

the disease-free equilibrium P0, represented by F and V are respectively given by:

F =



0 0 0 CHV ηV CHV

0 0 0 0 0

0 0 0 0 0

CHV S
∗
V ηH

N∗H

CHV S
∗
V

N∗H

CHV S
∗
V ηR

N∗H
0 0

0 0 0 0 0



,

V =



K1 0 −ξHπ 0 0

−τH K2 0 0 0

0 −θH K3 0 0

0 0 0 K4 0

0 0 0 −τV K5



,

Following [28, 41], the basic reproduction number of the system (3.6), which is

the spectral radius of the next generation matrix (FV −1) denoted by R0 is given by,
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R0 = ρ(FV −1) =

√
C2
HV ΠV µH(ηVK5 + τV )(K2K3ηH +K3τH + θHτHηR)

µV ΠHK4K5(K1K2K3 − θHτHξHπ)
.

Evaluating part of the denominator in R0 we have,

K1K2K3 − θHτHξHπ = (µH + τH)(µH + δH + θH)(µH + ξH)− θHτHξHπ,

= µHK3

(
K2 + τH

)
+ τHξH

(
µH + δH

)
+ τHξHθH

(
1− π

)
> 0.

Observe that, if π = 0, then R0 reduces to

R0 = ρ(FV −1) =

√
C2
HV ΠV µH(ηVK5 + τV )(K2K3ηH +K3τH + θHτHηR)

µV ΠHK1K2K3K4K5

,

Thus, we claim the following result (Theorem 2 of [28]):

Lemma 3.4.1. The disease-free equilibrium (P0) of the model (3.6) represented

by (3.12) is locally asymptotically stable (LAS) if R0 < 1, and unstable if R0 > 1.

The basic reproduction number (R0) of the disease, is the expected number

of secondary cases produced, in a completely susceptible population, by a typical

infective individual [26, 28].

On average, if R0 < 1, an infected individual produces less than one new infection

over the course of it’s infectious period, and the disease dies out with time. On

the contrary, if R0 > 1, then, each infected individual produces on average, more

than one new infection, and the disease can invade the population [4, 28].

The direct consequence of Lemma 3.4.1 is that, when the basic reproduction

number is less than one, introducing a small number of infected mosquitoes into

a community means there will be no disease outbreak, which means the disease

eventually dies out, however we will later see that, the disease may still persist

even when R0 < 1.



Basic Malaria model and analysis 41

3.4.2 Interpretation of R0

The basic reproduction number is interpreted as follows: Through an effective

contact with either an exposed human(EH), an infected human(IH), or a recovered

human(RH), susceptible mosquito can acquire infection. The number of infection

by an exposed human (near the DFE) is given by the product of the infection rate

of exposed human
(
CHV ηH

µH
ΠH

)
, the average duration spent in the exposed class(

1
K1

)
, and the probability that an individual survives the infection through exposed,

infected, and recovered class K1K2K3(
K1K2K3−τHθHξHπ

) .

The number of infections generated by an infected human (near the DFE) is given

by the product of its infection rate
(
CHV

µH
ΠH

)
, the probability that an individual

survives exposed class and move to the infected class τH
K1

, the average duration

spent in that class 1
K2

, and the probability that an individual survives the infection

through exposed, infected, and recovered class K1K2K3(
K1K2K3−τHθHξHπ

) .

The number of infections caused by a recovered human near DFE is given by

the product of its infection rate
(
CHV ηR

µH
ΠH

)
, the probability that an individual

survives exposed class and move to the infected class θH
K2

, the probability that

an individual survives the infected class and move to recovered class, the average

duration spent in recovered class 1
K3

, and the probability that an individual survives

the infection through exposed, infected, and recovered class K1K2K3(
K1K2K3−τHθHξHπ

) .

Therefore, the total average number of new vector infections (near the DFE) is

the total average number of new vector infections caused by exposed, infected,

and recovered humans, which is given by:

CHV S
∗
V µH

ΠH

(
K1K2K3 − τHθHξHπ

)[K2K3ηH +K3τH + θHτHηR

]
.
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At DFE, S∗V = ΠV

µV
so that the above equation can be simplified to,

CHV ΠV µH

ΠHµV
(
K1K2K3 − τHθHξHπ

)[ηHK2K3 + τHK3 + ηRθHK1

]
. (3.13)

Similarly, susceptible humans acquire infection after receiving effective number of

bites from either exposed or infected mosquito. Therefore, the number of human

infections generated by an exposed and infected mosquitoes are respectively given

by,
CHV µHηV

ΠHK4

S∗H and
CHV µHτV
ΠHK4K5

S∗H . (3.14)

So that the average number of new human infections can be obtained by taking

the sum of (3.14) which we obtained,

(
CHV µHηV

ΠHK4

+
CHV µHτV
ΠHK4K5

)
S∗H = CHV

(
K5ηV + τV
K4K5

)
, since S∗H =

ΠH

µH
at DFE.

(3.15)

The square root of the product of (3.13) and (3.15) gives the basic reproduction

number.

3.4.3 Endemic equilibrium and backward bifurcation

The endemic equilibrium occurs when at least one of the infected components of

(3.6) is non-zero, let P1 be any arbitrary endemic equilibrium, it can be obtained by

setting the right hand side of (3.6) to be zero, considering the first four equations
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of (3.6) (human components) we have,

ΠH + (1− π)ξHR
∗∗
H − S∗∗H (λH + µH) = 0⇒ S∗∗H =

ΠH + (1− π)ξHRH

(λH + µH)
,

S∗∗H λH + πξHR
∗∗
H − E∗∗H (τH + µH) = 0⇒ E∗∗H =

λHS
∗∗
H + πξHR

∗∗
H

(τH + µH)
,

E∗∗H τH − I∗∗H (θH + δH + µH) = 0⇒ I∗∗H =
τHE

∗∗
H

(θH + δH + µH)

I∗∗H θH −R∗∗H (ξH + µH) = 0⇒ R∗∗H =
θHI

∗∗
H

(ξH + µH)
=

τHθHE
∗∗
H

(θH + δH + µH)(ξH + µH)
∴

R∗∗H =

[
λHΠH + λH(1− π)ξHR

∗∗
H + (λH + µH)πξHR

∗∗
H

]
τHθH

(τH + µH)(θH + δH + µH)(ξH + µH)(λH + µH)
⇒

R∗∗H =
λHΠHτHθH

(τH + µH)(θH + δH + µH)(ξH + µH)(λH + µH)− θHτHξH(λH + πµH)

and substituting the value of R∗∗H in S∗∗H , the value of S∗∗H , R∗∗H in E∗∗H and E∗∗H in

I∗∗H we obtained,

S∗∗H =
ΠH

[
(τH + µH)(θH + δH + µH)(ξH + µH)− θHτHξHπ

]
(τH + µH)(θH + δH + µH)(ξH + µH)

(
λ∗∗H + µH

)
− θHτHξH

(
λ∗∗H + µHπ

) ,
E∗∗H =

λ∗∗HΠH(θH + δH + µH)(ξH + µH)

(τH + µH)(θH + δH + µH)(ξH + µH)
(
λ∗∗H + µH

)
− θHτHξH

(
λ∗∗H + µHπ

) ,
I∗∗H =

λ∗∗HΠHτH(ξH + µH)

(τH + µH)(θH + δH + µH)(ξH + µH)
(
λ∗∗H + µH

)
− θHτHξH

(
λ∗∗H + µHπ

) ,
R∗∗H =

λ∗∗HΠHτHθH

(τH + µH)(θH + δH + µH)(ξH + µH)
(
λ∗∗H + µH

)
− θHτHξH

(
λ∗∗H + µHπ

) .
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Furthermore, equating the right hand side of the last three equations of (3.6) (the

vector components) to zero gives,

ΠV − S∗∗V (λV + µV ) = 0⇒ S∗∗V =
ΠV

(µV + λ∗∗V )
,

S∗∗V λV − E∗∗V (τV + µV ) = 0⇒ E∗∗V =
λ∗∗V S

∗∗
V

τV + µV
=

λ∗∗V ΠV

(µV + λ∗∗V )(τV + µV )
,

E∗∗V τV − I∗∗V (δV + µV ) = 0⇒ I∗∗V =
τVE

∗∗
V

δV + µV
=

τV λ
∗∗
V ΠV

(µV + λ∗∗V )(τV + µV )(δV + µV )
.

Therefore the endemic equilibrium point P1 =
(
S∗∗H , E

∗∗
H , I

∗∗
H , R

∗∗
H , S

∗∗
V , E

∗∗
V , I

∗∗
V

)
has coordinates given by,

S∗∗H =
ΠH

(
K1K2K3 − θHτHξHπ

)
K1K2K3

(
λ∗∗H + µH

)
− θHτHξH

(
λ∗∗H + µHπ

) ,
E∗∗H =

λ∗∗HΠHK2K3

K1K2K3

(
λ∗∗H + µH

)
− θHτHξH

(
λ∗∗H + µHπ

) ,
I∗∗H =

λ∗∗HΠHτHK3

K1K2K3

(
λ∗∗H + µH

)
− θHτHξH

(
λ∗∗H + µHπ

) ,
R∗∗H =

λ∗∗HΠHτHθH

K1K2K3

(
λ∗∗H + µH

)
− θHτHξH

(
λ∗∗H + µHπ

) ,
S∗∗V =

ΠV

µV + λ∗∗V
E∗∗V =

λ∗∗V ΠV

(µV + λ∗∗V )K4

, I∗∗V =
τV λ

∗∗
V ΠV

(µV + λ∗∗V )K4K5

,

(3.16)

K1 = τH+µH , K2 = θH+δH+µH , K3 = ξH+µH , K4 = τV +µV , K5 = δV +µV .

The forces of infections are given by:

λ∗∗H =
CHV (ηVE

∗∗
V + I∗∗V )

N∗∗H
, (3.17)

and

λ∗∗V =
CHV (ηHE

∗∗
H + I∗∗H + ηRR

∗∗
H )

N∗∗H
, (3.18)
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with,

N∗∗H = S∗∗H + E∗∗H + I∗∗H +R∗∗H .

Substituting the values of E∗∗H , I∗∗H , R∗∗H , E∗∗V , I∗∗V from (3.16) in (3.17) and (3.18)

gives:

λ∗∗Hλ
∗∗
V K4K5NH + λ∗∗HµVK4K5NH − CHV ΠV λ

∗∗
V

(
ηVK5 + τV

)
= 0, (3.19)

with

λ∗∗V =
CHV λ

∗∗
HΠH

(
ηHK2K3 + τHK3 + ηRθHτH

)
NH

[
K1K2K3

(
λ∗∗H + µH

)
− θHτHξH

(
λ∗∗H + µHπ

)] , (3.20)

and

N∗∗H =

ΠH

{(
K1K2K3 − τHθHξHg

)
+ λ∗∗H

(
K2K3 + τHK3 + τHθH

)}
[
K1K2K3

(
λ∗∗H + µH

)
− θHτHξH

(
λ∗∗H + µHπ

)] . (3.21)

Therefore, substituting (3.20) and (3.21) in (3.19), it can be shown that λ∗∗H

satisfies the following polynomial:

λ∗∗H

[
a(λ∗∗H )2 + bλ∗∗H + c

]
= 0, (3.22)

where,

a =
(
K2K3 + τHK3 + θHτH

)(
ΠH

)2
K4K5

[
CHV ηHK2K3 + CHV τHK3 + CHV ηRτH

θH + µVK2K3 + µV τHK3 + µV τHθH

]
,
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b =
(
ΠH

)2
K4K5

(
K1K2K3 − τHθHξHπ

)[
CHV

(
ηHK2K3 + τHK3 + ηRτHθH

)
+ 2µV

(
K2K3 + τHK3 + τHθH

)]
−
[
C2
HV ΠV ΠH

(
ηVK5 + τV

)(
K1K2K3 − τHθHξH

)
(
ηHK2K3 + τHK3 + ηRτHθH

)]
and,

c = K4K5µV
(
K1K2K3 − τHθHξHπ

)2(
ΠH

)2
[
1−R2

0

]
.

Notice that, λ∗∗H = 0 corresponds to the DFE. Further, the coefficient a in the

polynomial is always positive, while b can either be positive or negative, and the

positivity or otherwise of c depends on whether R0 is less than or greater than

unity. Suppose λ∗∗H 6= 0, then the positive endemic equilibrium of the model can

be obtained by solving for the non-negative roots of λ∗∗H in equation (3.22) and

substituting the result in (3.16). The values of λ∗∗H depends on the nature of the

discriminant. The next theorem summarizes the different possibilities:

Theorem 3.4.2. The malaria model represented by (3.6) has;

(i) a unique endemic equilibrium if c < 0;

(ii) a unique endemic equilibrium if b < 0 and either of c = 0 or b2 − 4ac = 0;

(iii) two endemic equilibria if c > 0, b < 0 and b2 − 4ac > 0, else;

(iv) no endemic equilibrium.

Proof. If c < 0 (R0 > 1), the model has a unique positive endemic equilibrium,

which corresponds to Case (i). Furthermore, the model has a unique positive

endemic equilibrium
(
λ∗∗ = −b

a

)
when c = 0 (R0 = 1) and b < 0, otherwise there

is no positive endemic equilibrium, hence Case (ii).

If c > 0 (R0 < 1), then b2−4ac = 0 corresponds to Case (ii), else if b2−4ac > 0,

c > 0 and b < 0, we have two positive roots of λ∗∗H , stable and unstable, this

indicates the possibility of backward bifurcation, that is, the phenomenon where

a stable endemic equilibrium co-exists with a stable disease-free equilibrium when
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the associated reproduction number is less than unity (R0 < 1) [12, 16, 39] and

no endemic equilibrium otherwise. �

Assume that b < 0, a > 0, b2 − 4ac > 0, and c depending on R0, λ∗∗H =

−b±
√
b2−4ac

2a
≥ 0, then the function f(λ∗∗H ) = a

(
(λ∗∗H + b

2a
)2 − (b2−4ac)

4a2

)
has global

minimum λ∗∗H = −b
2a
> 0, which is attained when b2−4ac = 0, that it is the critical

value of R0 = Rc given by

Rc =

√
1− b2

4a
(
ΠH

)2(
K1K2K3 − τHθHξHπ

)2
K4K5µV

.

Using the numerical values in Table 3.2 which were chosen for simulation purposes

and may be epidemiologically unrealistic, the simulation of the existence of back-

ward bifurcation for model (3.6) is depicted in Figure 3.3. below,
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Figure 3.3: Backward Bifurcation diagram
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Table 3.2: Parameters values used in illustrating the backward bifurcation

Parameter Value Parameter Value

CHV 0.9028 ΠH 20

δH 0.9994 ΠV 30

δV 0.047167 µV 0.017

τH 0.455 µH 0.024599

θH 0.07 τV 0.25

π 0.5 ηV 0.209

ξH 0.99 ηH 0.9902

ηR 0.6

Computation from values in Table 3.2 shows that R0 = 0.9309204015 < 1 and

Rc = 0.8044563559 < 1 satisfying Rc < R0 < 1. Similarly a = 0.5052161735,

b = −0.0740325169 and c = 0.001025254966. Numerically, Figure 3.3 shows that

model (3.6) undergoes backward bifurcation when Case (iii) of Theorem 3.4.2

holds and Rc < R0 < 1. The consequence of the phenomenon is that locally

asymptotically stable DFE co-exists with a locally asymptotically stable EE though

R0 < 1, epidemiologically, the basic requirement for the reproduction number to

be less than unity becomes only a necessity, but not sufficient enough to guaran-

tee the elimination of the disease (hence, the presence of this phenomenon in the

transmission dynamics of a disease makes its control more difficult) [14, 39].
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3.5 Numerical simulations

In [21], the authors determined the values of important parameters in areas of high

and low malaria incidences. Data from [21] in Table 3.3 was used for simulation.
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Figure 3.4: Simulation of model (3.6) for the exposed, infected and recovered
humans converge to the DFE when R0 = 0.1923 in areas of low malaria incidence
using parameter values in Table 3.3 with SH(0) = 5000, EH(0) = 100, IH(0) =
10, RH(0) = 0, SV (0) = 500, EV (0) = 20, and IV (0) = 10.
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Figure 3.5: Simulation of model (3.6) for the exposed, infected and recovered
humans converge to a non-zero solution(EE) when R0 = 2.4073 in areas of high
malaria incidence using parameter values in Table 3.3 with SH(0) = 5000, EH(0) =
100, IH(0) = 10, RH(0) = 0, SV (0) = 500, EV (0) = 20, and IV (0) = 10.
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Figure 3.6: Zoomed section of Figure 3.5 showing the convergence of the Exposed
class to a non-zero solution.
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Figure 3.7: Simulation of the model (3.6) showing disease prevalence in areas of low
malaria infection using parameter values in Table 3.3 with SH(0) = 5000, EH(0) =
100, IH(0) = 10, RH(0) = 0, SV (0) = 500, EV (0) = 20, IV (0) = 10 so that
R0 = 0.1923.
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Figure 3.8: Simulation of the model (3.6) showing disease prevalence in areas
of high malaria infection using parameter values in Table 3.3 with SH(0) =
5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) = 500, EV (0) = 20, IV (0) =
10 so that R0 = 2.4073.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

140

160

180

200

Time(days)

In
fe

ct
ed

 h
um

an
s

Figure 3.9: Simulation of the model (3.6) showing the total infectives (Exposed +
Infected + Recovered) with different initial conditions converging to the DFE in
areas of low malaria infection using parameter values in Table 3.3 with SH(0) =
5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) = 500, EV (0) = 20, and
IV (0) = 10 so that R0 = 0.1923.
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Figure 3.10: Simulation of the model (3.6) showing the total infectives (Exposed
+ Infected + Recovered) with different initial conditions converging to the EE in
areas of high malaria infection using parameter values in Table 3.3 with SH(0) =
5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) = 500, EV (0) = 20, and
IV (0) = 10 so that R0 = 2.4073.

From the above simulation, Figure 3.4 shows that when R0 = 0.1923 < 1, solu-

tion of (EH , IH , RH) approaches zero, while from Figure 3.5 and Figure 3.6, the

solution (EH , IH , RH) does not approaches zero when R0 = 2.4073 > 1, this is

in line with Lemma 3.4.1. Similarly, Figure 3.7 (R0 = 0.1923) and Figure 3.8

(R0 = 2.4073) respectively show the disease prevalence dies and persists with

time. In Figure 3.9, for different initial conditions, infectives approach zero solu-

tion (DFE) while Figure 3.10 shows the convergence to non-zero solution (EE) of

infectives when the basic reproduction number is less than and greater than one

respectively, thus, the Lemma 3.4.1.
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Table 3.3: High and low incidence Parameters values used in numerical simulations

Parameter High Low Dimension

ΠH 0.03311 0.041055 Human×day−1

µH 0.0000163 0.000009 Human×day−1

τH 0.1 0.1 Day−1

βHV 0.48 0.24 Day−1

κH 19 4.3 Day−1

δH 0.00009 0.000018 Day−1

θH 0.0035 0.0035 Day−1

ξH 0.00055 0.0027 Day−1

π 0.7 0.1 -

ηH 0.2 0.05 -

ηR 0.3 0.01 -

ΠV 0.13 0.13 Mosquito×day−1

µV 0.03302 0.03304 Mosquito×day−1

τV 0.091 0.083 Day−1

δV 0.0005 0.0005 Day−1

κV 0.5 0.33 Day−1

ηV 0.01 0.01 -.
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3.6 Analysis of the mass action model

One of the causes of the backward bifurcation as highlighted by [39], is the use of

standard incidence function, it can be removed by substituting it with the associ-

ated mass action incidence function. The mass action incidence is obtained when

the effective contact rate per infectious human (exposed, infected or recovered),

or per infectious mosquito (exposed or infected), is proportional to the total pop-

ulation [43, 68], that is when the total population is assumed to be constant, such

assumption could be made in cases where a disease occurs within a short period

of time, the case of Dengue in some countries is an example. In the case of the

mass action incidence, the forces of infection for human and vector are respectively

given by,

λmH = CHV (ηVEV + IV ), (3.23)

and,

λmV = CHV (ηHEH + IH + ηRRH). (3.24)

It can be shown that the disease-free equilibrium of the model with mass action

incidence is the same as (3.12), consequently, at the DFE, the vector of appear-

ance of new infections and that of the transfers out of and into the compartments

are respectively given by:
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F =



SHCHV (ηVEV + IV )

0

0

SVCHV (ηHEH + IH + ηRRH)

0



, V =



EHK1 − πξHRH

IHK2 − EHτH

RHK3 − IHθH

EVK4

IVK5 − EV τV


so that, the associated next generation matrices for the mass action incidence

are given by:

Fm =



0 0 0 CHV ηV S
∗
H CHV S

∗
H

0 0 0 0 0

0 0 0 0 0

CHV S
∗
V ηH CHV S

∗
V CHV S

∗
V ηt 0 0

0 0 0 0 0



,
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Vm =



K1 0 −πξH 0 0

−τH K2 0 0 0

0 −θH K3 0 0

0 0 0 K4 0

0 0 0 −τV K5



.

The basic reproduction number for the model with the mass action incidence

formulation, denoted by Rm
0 = ρ(FmV

−1
m ), is given by:

Rm
0 =

√
C2
HV ΠV ΠH(ηVK5 + τV )(K2K3ηH +K3τH + θHτHηR)

µV µHK4K5(K1K2K3 − θHτHπξH)
= R0

ΠH

µH
.

Recall that, we have seen the positivity of K1K2K3 − θHτHπξH in subsection

3.4.1. Next result follows from Theorem 2 of [28]:

Lemma 3.6.1. The disease-free equilibrium (P0) of the mass action model (3.6)

with the forces of infections given by (3.23) and (3.24) is locally asymptotically

stable if Rm
0 < 1, and unstable if Rm

0 > 1.

Theorem 3.6.2. The mass action model (3.6) with the forces of infections given

by (3.23) and (3.24) has no endemic equilibrium when Rm
0 < 1 and has a unique

endemic equilibrium when Rm
0 > 1.

Proof. The endemic equilibrium occurs when at least one of the infected com-

partments is different from zero, it is the similar to the endemic equilibrium point

obtained in subsection 3.4.3, let J1 =
(
Sm∗H , Em∗

H , Im∗H , Rm∗
H , Sm∗V , Em∗

V , Im∗V
)

be
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an endemic equilibrium, where:

Sm∗H =
ΠH

(
K1K2K3 − θHτHπξH

)
K1K2K3

(
λm∗H + µH

)
− θHτHξH

(
λm∗H + µHπ

) ,
Em∗
H =

λm∗H ΠHK2K3

K1K2K3

(
λm∗H + µH

)
− θHτHξH

(
λm∗H + µHλ

) ,
Im∗H =

λm∗H ΠHτHK3

K1K2K3

(
λm∗H + µH

)
− θHτHξH

(
λm∗H + µHπ

) ,
Rm∗
H =

λm∗H ΠHτHθH

K1K2K3

(
λm∗H + µH

)
− θHτHξH

(
λm∗H + µHπ

) ,
Sm∗V =

ΠV

µV + λm∗V
, Em∗

V =
λm∗V ΠV

(µV + λm∗V )K4

, Im∗V =
τV λ

m∗
V ΠV

(µV + λm∗V )K4K5

,

(3.25)

with the forces of infections given by (3.23) and (3.24). Substituting (3.25) in

(3.23) and (3.24), the forces of infections satisfy the following equations:

λm∗H λm∗V K4K5 + λm∗H µVK4K5 − CHV ΠV λ
m∗
V (ηVK5 + τV ) = 0, (3.26)

and,

λm∗V =
CHV λ

m∗
H ΠH

(
ηHK2K3 + τHK3 + θHτH)(

K1K2K3 − θHτHξH
)
λm∗H +

(
K1K2K3 − θHτHπξH

)
µH

. (3.27)

Substituting (3.26) in (3.27), it can be shown that the non-zero equilibria of the

model satisfies the following polynomial equation:

λm∗H K4K5

[
CHV ΠHλ

m∗
H

[
K2K3ηH + τHK3 + ηRτHθH

](
K1K2K3 − θHτHξH

)
λm∗H +

(
K1K2K3 − θHτHπξH

)
µH

+ µV−

C2
HV ΠHΠV

(
ηVK5 + τV

)(
K2K3ηH + τHK3 + ηRτHθH

)
K4K5

[(
K1K2K3 − θHτHξH

)
λm∗H +

(
K1K2K3 − θHτHπξH

)
µH
]] = 0,

(3.28)
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but from the basic reproduction number,

C2
HV ΠHΠV

(
ηVK5 + τV

)(
K2K3ηH + τHK3 + ηRτHθH

)
= R2

0K4K5µV µH
(
K1K2K3

− τHθHπξH
)

(3.29)

so that, substituting (3.29) in (3.28), and after simplification, λm∗H satisfies:

λm∗H K4K5[(
K1K2K3 − θHτHξHπ

)
λm∗H +

(
K1K2K3 − θHτHπξH

)
µH
][aλm∗H + b

]
= 0

where,

a = CHV ΠH

(
K2K3ηH + τHK3 + ηRτHθH

)
+ µV

(
K1K2K3 − θHτHξH

)
and,

b = µV µH
[
K1K2K3 − θHτHπξH

][
1− (Rm

0 )2

]
.

The case when λm∗H = 0 corresponds to the DFE. Further, it is clear that, a > 0

and λm∗H = −b
a

, so that if b < 0 (Rm
0 > 1), then, λm∗H = −b

a
> 0. Thus, the mass

action model (3.6) has a unique endemic equilibrium whenever Rm
0 > 1. �

3.6.1 Global stability of the DFE

To show the global stability of the DFE, we use similar approach as that of [62].

The following set

Ω =

{
(SH , EH , IH , RH , SV , EV , IV ) ∈ R7 : SH + EH + IH +RH ≤

ΠH

µH
, SV +

EV + IV ≤
ΠV

µV

}
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was in Theorem 3.3.2 shown to be positively-invariant, hence we claim the follow-

ing:

Theorem 3.6.3. The DFE P0 of the mass action model represented by (3.6) with

the forces of infection given by (3.23) and (3.24) is globally asymptotically stable

(GAS) in Ω if Rm
0 ≤ 1.

Proof. Consider the following function,

V = H1EH +H2IH +H3RH +H4EV +H5IV ,

where,

H1 = CHV ΠV µHR
m
0

(
ηVK5 + τV

)(
K2K3ηH +K3τH + ηRθHτH

)
,

H2 = CHV ΠV µHR
m
0

(
ηVK5 + τV

)(
ηHθHξHπ + ηRθHK1 +K1K3

)
,

H3 = CHV ΠV µHR
m
0

(
ηVK5 + τV

)(
K2ηHξHπ + τHξHπ + ηRK1K2

)
,

H4 =
(
Rm

0

)2
µV µH

(
ηVK5 + τV

)(
K1K2K3 − θHτHξHπ

)
,

H5 =
(
Rm

0

)2
µV µHK4

(
K1K2K3 − θHτHξHπ

)
.

(3.30)

The derivative V̇ in the direction of the right-hand side of (3.6) is given by

V̇ = H1ĖH +H2
˙IH +H3ṘH +H4ĖV +H5

˙IV ,

and substituting the values of ĖH , ˙IH , ṘH , ĖV , ˙IV from (3.6) and λmH , λmV from
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(3.23) and (3.24) we have:

V̇ = H1

[
CHV

(
EV ηV + IV

)
SH +RHπξH − EHK1

]
+H2

[
EHτH − IHK2

]
+

H3

[
IHθH −RHK3

]
+H4

[
CHV

(
EHηH + IH +RHηR

)
SV − EVK4

]
+

H5

[
EV τV − IVK5

]
.

which is simplified to:

V̇ = EH

(
−K1H1 +H2τH +H4CHV SV ηH

)
+ IH

(
H3θH +H4CHV SV −H2K2

)
+RH

(
ξHπH1 +H4CHV SV ηR −H3K3

)
+ EV

(
H1CHV SHηR +H5τV −H4K4

)
+ IV

(
H1CHV SH −H5K5

)
.

But at DFE SV ≤ ΠV

µV
, SH ≤ ΠH

µH
, so that substituting the inequality and the values

of Hi in (3.30) in the above expression, after simplification we have:

V̇ ≤ EH

[
CHV ΠV µHηHR

m
0

(
K1K2K3 − θHτHπξH

)(
ηVK5 + τV

)(
Rm

0 − 1
)]

+ IH[
CHV ΠV µHR

m
0

(
K1K2K3 − θHτHπξH

)(
ηVK5 + τV

)(
Rm

0 − 1
)]

+RH

[
CHV ΠV

Rm
0 µHηR

(
K1K2K3 − θHτHπξH

)(
ηVK5 + τV

)(
Rm

0 − 1
)]

+ EV

[(
Rm

0

)2
µHµVK4

K5ηV
(
K1K2K3 − θHτHπξH

)(
Rm

0 − 1
)]

+ IV

[(
Rm

0

)2(
K1K2K3 − θHτHπξH

)
µHµVK4

(
Rm

0 − 1
)]
,
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further simplification gives,

V̇ ≤
(
Rm

0 − 1
){
EH

[
CHV ΠV µHηHR

m
0

(
ηVK5 + τV

)(
K1K2K3 − θHτHξH

)]
+

IH

[
CHV ΠV µHR

m
0

(
ηVK5 + τV

)(
K1K2K3 − θHτHξH

)]
+RH

[
CHV ΠVR

m
0 µH

ηR
(
ηVK5 + τV

)(
K1K2K3 − θHτHξH

)]
+ EV

[(
Rm

0

)2
µHµVK4K5ηV

(
K1K2K3

− θHτHξH
)]

+ IV

[(
Rm

0

)2
µHµVK4

(
K1K2K3 − θHτHξH

)]}
.

It should be recalled from subsection 3.4.1 that K1K2K3− θHτHξhπ > 0, so that

V̇ ≤ 0 if Rm
0 ≤ 0.

LetM⊂ Ω such that, x ∈M⇒ V̇ (x) = 0 and S be a positively invariant subset

of M. If Rm
0 < 1 and X̄(t) ∈ S then V̇ (X̄) = 0 ⇒ S = P0.

On the other hand, suppose Rm
0 = 1 and X̄(t) ∈ S, then dV (X̄(t))

dt
= 0 which

implies that

H1ĖH +H2İH +H3ṘH +H4ĖV +H5İV = 0

which is equivalent to

H1EH +H2IH +H3RH +H4EV +H5IV = K for all t, where K is a constant

but,

H1, H2, H3, H4, H5 > 0 while EH ≥ 0, IH ≥ 0, RH ≥ 0, EV ≥ 0, IV ≥ 0,⇒

EH = C1, IH = C2, RH = C3, EV = C4, IV = C5, C1, C2, C3, C4, C5 constants,

(3.31)
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therefore from (3.31) we have

dEH
dt

=
dIH
dt

=
dRH

dt
=
dEV
dt

=
dIV
dt

= 0⇒ EH = IH = RH = EV = IV = 0,

so that,
dNH

dt
= ΠH − µHNH ⇒

dSH
dt

= ΠH − µHSH ,

dNV

dt
= ΠV − µVNV ⇒

dSV
dt

= ΠV − µV SV ,

hence,

SH →
ΠH

µH
, SV →

ΠV

µV
as t→∞.

Claim:

X̄(t) = {ΠH

µH
, 0, 0, 0,

ΠV

µV
, 0, 0} = P0 for all t,

Otherwise then,

X̄(t)→ {ΠH

µH
, 0, 0, 0,

ΠV

µV
, 0, 0} = P0 even when R0 > 1.

Therefore

X̄(t) = P0 ∀ t.

Hence, V is a Lyapunov function on Ω, in addition, the largest invariant set in Ω

such that V̇ (x) = 0 is the singleton set {P0}. Therefore, it follows by LaSalle’s

invariance principle [40] that every solution of (3.6) with mass action incidence

converges to P0 as t −→∞ whenever Rm
0 ≤ 1. �

The result shows that, for the mass action incidence function, the disease can be

eliminated from the community if the associated basic reproduction number Rm
0

is less than unity, unlike when we used the standard incidence function, where it

was established that, bringing the associated basic reproduction number R0 below

unity was only a necessarily condition but was not sufficient to guarantee the
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elimination of malaria from a community. Data strongly suggest that, standard

incidence formulation is more suited for modeling human diseases [4, 68], the

above result shows that, the backward bifurcation is an important property of the

transmission dynamics of malaria. It is worth mentioning that, similar approach

was used by Garba et al. [34] for dengue model and west nile virus model [35],

Gumel [39] in showing the causes of backward bifurcation and Sharomi et al. [62]

for HIV model.



Chapter 4
Malaria model with vaccination

4.1 Introduction

Although vaccination is a common method for controlling diseases, there is yet

no vaccine for malaria, recently, there were breakthrough in the development of

malaria vaccine, the RTS,S/AS01 has been clinically effective, trials in Gabon,

Kenya, Malawi etc., have shown that it is safe, immunogenic, tolerated by human

system and produces some efficacy [2, 38, 58, 61]. Researches are ongoing to

improve and maximize it’s efficacy. In this chapter we investigate the impact of a

malaria vaccine by adding to the model (3.6) a compartment consisting of people

vaccinated with an imperfect malaria vaccine.

4.2 Model formulation

The model (3.6) was further extended to include additional compartment of vac-

cinated individuals denoted by VH , it is generated either by vaccinating some sus-

ceptible humans at the rate σH , or through vaccinating newly recruited members

of the population at the rate ΠHρ, with ρ ∈ [0, 1]. The recruitment rate of the
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susceptibles will be reduced to ΠH(1− ρ), the fact that the vaccine is not perfect

implies that, vaccinated individuals may acquire infection at a reduced rate λH(1-

ε)VH , where 0 < ε < 1 accounts for the efficacy of the vaccine. Similarly, the

vaccine waning effect allows for the movement of individuals from the vaccinated

class back to the susceptible class at the rate ϕH . Thus the following system of

nonlinear equation represents the transmission dynamics of malaria in human (with

vaccination) and mosquito populations;

dSH
dt

= ΠH(1− ρ) + (1− π)ξHRH + ϕHVH − (λH + σH + µH)SH ,

dVH
dt

= ΠHρ+ σHSH −
[
λH(1− ε) + ϕH + µH

]
VH ,

dEH
dt

= λH ((1− ε)VH + SH) + ξHπRH − (τH + µH)EH ,

dIH
dt

= τHEH − θHIH − δHIH − µHIH ,

dRH

dt
= θHIH − ξHRH − µHRH ,

dSV
dt

= ΠV − λV SV − µV SV ,

dEV
dt

= λV SV − τVEV − µVEV ,

dIV
dt

= τVEV − δV IV − µV IV ,

(4.1)

with the forces of infections given by (3.2) and (3.5), while the model (4.1) can

be represented by the following flow chart,
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λHSH 
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µHEH 
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µVSV 

µVEV 
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Figure 4.1: Flow chart of the Vaccinated Model (4.1)
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4.3 Basic properties of the model

Here we explore the basic dynamical properties of model (4.1). All parameters of

the model are assumed to be nonnegative. Furthermore, since the model monitors

human and mosquito populations, it is assumed that all the state variables are

nonnegative at time t ≥ 0.

4.3.1 Existence, positivity and boundedness of solutions

Theorem 4.3.1. The solution
(
SH(t), VH(t), EH(t), RH(t), SV (t), EV (t), IV (t)

)
of the system (4.1) with non-negative initial condition exist for all t ∈ R+, and it

is unique. Furthermore, the solution is positive and bounded.

Proof. The Theorem is proved using similar argument as in the proof of Theorem

3.3.1. �

Theorem 4.3.2. Consider the biologically-feasible region:

∆ =

{
(SH , VH , EH , IH , RH , SV , EV , IV ) ∈ R8

+ : NH ≤
ΠH

µH
, NV ≤

ΠV

µV

}
,

The model represented by (4.1) is a dynamical system on ∆.

Proof. The proof follows from the proof of Theorem 3.3.2. The dynamics of the

vaccination model (4.1) will be studied in ∆ defined above.

4.4 Stability analysis of the equilibria

In this section, as in the previous section, we will also analyse the stability of

the disease-free and the endemic equilibria of the malaria model with vaccination

represented by (4.1).
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4.4.1 Existence and stability of the DFE

The DFE of the vaccination model (4.1) is obtained by equating the right-hand

side of (4.1) to zero with the infected compartments (EH , IH , RH , EV , IV ) also

equal to zero, such that:

ΠH(1− ρ) + ϕHVH − SH(σH + µH) = 0⇒ SH =
ΠH(1− ρ) + ψHVH

σH + µH
,

ΠHρ+ σHSH − VH
(
ϕH + µH

)
= 0⇒ VH =

ΠHρ+ σHSH
ψH + µH

,

EH = 0, IH = 0, RH = 0,

ΠV − SV (λV − µV ) = 0⇒ SV =
ΠV

λV + µV
, EV = 0, IV = 0,

(4.2)

solving for SH and VH from the first two equations of (4.2) we obtained

SH =
ΠH(ϕH + µH − ρµH)

µH(ϕH + σH + µH)
, VH =

ΠH(σH + ρµH)

µH(ϕH + σH + µH)
, (4.3)

and hence, the DFE of (4.1) denoted by Z0 is given by

Z0 = (S∗H , V
∗
H , E

∗
H , I

∗
H , R

∗
H , S

∗
V , E

∗
V , I

∗
V ) = (S∗H , V

∗
H , 0, 0, 0, S

∗
V , 0, 0) , (4.4)

with S∗H , V
∗
H as defined in (4.3) and S∗V in (4.2).

The vectors of appearance of new infections and that of the transfers out of and

into the compartments are respectively given by:
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F =



[
SH + VH(1− ε)

]
CHV

NH
(ηVEV + IV )

0

0

SV
CHV

NH
(ηHEH + IH + ηRRH)

0



and , V =



EHK1 − πξHRH

IHK2 − EHτH

RHK3 − IHθH

EVK4

IVK5 − EV τV



,

where,

K1 = (τH + µH), K2 = (θH + δH + µH), K3 = (ξH + µH), K4 = (µV + τV )

and K5 = (µV + δV ).

The next generation matrices of the model are given by:

F =



0 0 0
CHV ((1−ε)V ∗H+S∗H)

N∗H

CHV ((1−ε)V ∗H+S∗H)

N∗H

0 0 0 0 0

0 0 0 0 0

CHV ηHS
∗
V

N∗H

CHV S
∗
H

N∗H

CHV ηRS
∗
V

N∗H
0 0

0 0 0 0 0



,
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V =



K1 0 −πξH 0 0

−τH K2 0 0 0

0 −θH K3 0 0

0 0 0 K4 0

0 0 0 −τV K5



,

The vaccinated reproduction number of the model (4.1), which is the spectral

radius of (FV −1) [26, 28, 41, 42], denoted by R0v is given by:

R0v =√
C2
HV ΠV µH(ηHK2K3 + τHK3 + ηRθHτH)(ηVK5 + τV )[ϕH + µH(1− ερ) + σH(1− ε)]

(K1K2K3 − τHθHξHπ)(ϕH + σH + µH)K4K5ΠHµV

= R0

√
ϕH + µH(1− ερ) + σH(1− ε)

ϕH + σH + µH
.

Recall that (K1K2K3−θHτHξHπ) > 0 as shown in subsection 3.4.1. The following

result from Theorem 2 of [28] follows:

Lemma 4.4.1. The DFE of the model with vaccination (4.1), Z0, is LAS if

R0v < 1 and unstable if R0v > 1.

R0v represents the average number of new infections that one infected indi-

vidual will generate in a population where fraction of susceptibles individuals are

vaccinated.
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4.4.2 Existence of the endemic equilibrium

The endemic equilibrium occurs when at least one of the infected compartments is

not zero, it is obtained by equating the right hand side of (4.1) to zero. Equating

the right hand side of (4.1) to zero and after simple evaluation we obtained

SH =
ΠH(1− ρ) + (1− π)ξHRH + ϕHVH

λH + σH + µH
, VH =

ΠHρ+ σHSH
λH(1− ε) + ϕH + µH

,

EH =
λH ((1− ε)VH + SH) + ξHπRH

τH + µH
, IH =

τHEH
θH + δH + µH

,

RH =
θHIH

ξH + µH
, SV =

ΠV

λV + µV
, EV =

λV SV
τV + µV

, IV =
τVEV
δV + µV

,

(4.5)

after some simplifications, the endemic equilibrium of the vaccinated model (4.1)

denoted by J1 =
(
S∗∗H , V

∗∗
H , E∗∗H , I

∗∗
H , R

∗∗
H , S

∗∗
V , E

∗∗
V , I

∗∗
V

)
has,

S∗∗H =
ΠH

(
M1 +M2

)
M3 −M4

, V ∗∗H =
ΠH

[
ρ
(
M3 −M4

)
+ σH

(
M1 +M2

)]
M5

(
M3 −M4

) ,

E∗∗H =
λ∗∗HK2K3

[
ϕH + µ(1− ερ) + σH(1− ε)

][
K1K2K3 − θHτHξHπ

](
ϕH + σH + µH

) ,
I∗∗H =

λ∗∗H τHK3

[
ϕH + µ(1− ερ) + σH(1− ε)

][
K1K2K3 − θHτHξHπ

](
ϕH + σH + µH

) ,
R∗∗H =

λ∗∗H τHθH
[
ϕH + µ(1− ερ) + σH(1− ε)

][
K1K2K3 − θHτHξHπ

](
ϕH + σH + µH

) ,
S∗∗V =

ΠV

µV + λ∗∗V
E∗∗V =

λ∗∗V ΠV

(µV + λ∗∗V )K4

, I∗∗V =
τV λ

∗∗
V ΠV

(µV + λ∗∗V )K4K5

,

(4.6)
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where,

M1 =
[
1− ρ

]{(
K1K2K3 − θHτHξHπ

)(
λ∗∗H (1− ε) + ψH + µH

)}
,

M2 = ρ
{
ϕH
[
K1K2K3 − θHτHξHπ

]
+ [1− ε](1− π)ξHτHθHλ

∗∗
H

}
,

M3 =
(
λ∗∗H [1− ε] + ψH + µH

)2{(
K1K2K3 − θHτHξHπ

)[
λ∗∗H + σH + µH

]
−

(1− π)ξHθHτHλ
∗∗
H

}
,

M4 = σH
{
ϕH
(
K1K2K3 − θHτHξHπ

)
+ (1− ε)(1− π)

[
λ∗∗H
(
1− ε

)
+ ϕH + µH

]
ξHτHθHλ

∗∗
H

}
and,

M5 = λ∗∗H (1− ε) + ψH + µH .

The endemic equilibrium can be explicitly obtained by solving for the positive values

of λ∗∗H and λ∗∗V and substituting in (4.6) above.

4.4.3 Backward bifurcation analysis

Several factors could be responsible for a backward bifurcation in epidemiological

models, some of which include: the use of an imperfect vaccine [12, 31, 39, 62],

exogenous re-infection [1, 33], treatment [39], acquired immunity [59] etc.. The

fact that, the model (3.6) possesses backward bifurcation is enough to investigate

its existence or otherwise in model (4.1). However, the complex nature of the

equilibrium points in (4.6) makes it difficult to apply the method used in subsection

3.4.2, its application will result to higher order polynomials, consequently, we opted

on applying the Center Manifold theory [16, 28]. The Center Manifold theory can

be used to describe not only the local stability of a non-hyperbolic equilibrium

point but in settling the existence of another equilibrium point (bifurcated from a

non hyperbolic equilibrium point). The theory follows:
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Consider a general system of ODEs with a parameter φ:

dx

dt
= f(x, φ), f : Rn × R −→ Rn and f ∈ C2(Rn × R) (4.7)

Without loss of generality, it is assumed that 0 is an equilibrium for system (4.7)

for all values of the parameter φ, that is,

f(0, φ) ≡ 0 for all φ (4.8)

Theorem 4.4.2. (Castillo-Chavez and Song)[16].

A1: A = Dxf(0, 0) =
(
∂fi
∂xi

(0, 0)
)

is the linearization matrix of system (4.5)

around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue

of A and all other eigenvalues of A have negative real parts;

A2: Matrix A has a nonnegative right eigenvector w and a left eigenvector v

corresponding to the zero eigenvalue.

Let fk be the kth component of f and,

a =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0) (4.9)

b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0) (4.10)

The local dynamics of (4.7) around 0 are totally determined by a and b.

i a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable, and

there exists a positive unstable equilibrium; when 0 < φ� 1, 0 is unstable

and there exists a negative and locally asymptotically stable equilibrium;

ii a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ �
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1, 0 is locally asymptotically stable, and there exists a positive unstable

equilibrium;

iii a > 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable, and there exists a

locally asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is

stable, and a positive unstable equilibrium appears;

iv a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability

from stable to unstable. Correspondingly a negative unstable equilibrium

becomes positive and locally asymptotically stable.

Remark 1 of [16] states that: The requirement that w is nonnegative in the

theorem is not necessary. When some components in w are negative, we still can

apply this theorem, but one has to compare w with the actual equilibrium because

the general parametrization of the Center Manifold before the coordinate change

is,

W c =

{
x0 + c(t)w + h(c, φ) : v.h(c, φ) = 0, |c| ≤ c0, c(0) = 0

}
,

provided that x0 is a nonnegative equilibrium of interest (usually x0 is the disease-

free equilibrium). Hence, x0 − 2bφ
a
> 0 requires that wj > 0 whenever x0(j) = 0.

If x0(j) > 0, then w(j) need not be positive [16].

Corollary. When a > 0 and b > 0, then, the bifurcation at φ = 0 is backward.

4.4.4 Existence of backward bifurcation

From (4.1), we let,

(
SH , VH , EH , IH , RH , SV , EV , IV

)
=

(
x1, x2, x3, x4, x5, x6, x7, x8

)
,
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and hence, the total human and mosquito populations are:

NH = x1 + x2 + x3 + x4 + x5 and NV = x6 + x7 + x8.

Using vector notation, we have,

x =

(
x1, x2, x3, x4, x5, x6, x7, x8

)T
and

dx

dt
=

(
f1, f2, f3, f4, f5, f6, f7, f8

)
,T

where,

dx1

dt
= f1 = ΠH(1− ρ) + ϕHx2 + (1− π)ξHx5 −

CHV (ηV x7 + x8)

x1 + x2 + x3 + x4 + x5

x1 − x1K1,

dx2

dt
= f2 = ΠHρ+ σHx1 −

CHV (ηV x7 + x8)

x1 + x2 + x3 + x4 + x5

x2(1− ε)− x2K2,

dx3

dt
= f3 =

CHV (ηV x7 + x8)

x1 + x2 + x3 + x4 + x5

((1− ε)x2 + x1) + πξHx5 − x3K3,

dx4

dt
= f4 = τHx3 − x4K4,

dx5

dt
= f5 = θHx4 − x5K5,

dx6

dt
= f6 = ΠV −

CHV (ηHx3 + x4 + ηRx5)

x1 + x2 + x3 + x4 + x5

x6 − x6µV ,

dx7

dt
= f7 =

CHV (ηHx3 + x4 + ηRx5)

x1 + x2 + x3 + x4 + x5

x6 − x7K6,

dx8

dt
= f8 = τV x7 − x8K7.

(4.11)

with,

K1 = σH + µH , K2 = ϕH + µH , K3 = τH + µH , K4 = θH + δH + µH ,

K5 = ξH + µH , K6 = µV + τV and K7 = µV + δV .
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It is not convenient using R0 directly as the bifurcation parameter [28], notwith-

standing, we can conveniently choose a different parameter. Let CHV be our

bifurcation parameter, so that when R0v = 1, we have:

C∗HV =

√
(K1K2K3 − τHθHξHπ)K4K5Π2

HµV
ΠV µ2

H(ηHK2K3 + τHK3 + ηHθHτH)(ηVK5 + τV )[S∗H + V ∗H(1− ε)]

The Jacobian of (4.1), evaluated at the disease-free equilibrium with CHV = C∗HV ,

is given by

J∗ =



−K1 ϕH 0 0 (1− π)ξH 0 d17 d18

σH −K2 0 0 0 0 d27 d28

0 0 −K3 0 πξH 0 d37 d38

0 0 τH −K4 0 0 0 0

0 0 0 θH −K5 0 0 0

0 0 d63 d64 d65 −µV 0 0

0 0 d73 d74 d75 0 −K6 0

0 0 0 0 0 0 τV −K7



,
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where,

d17 =
−C∗HV ηV S∗H
S∗H + V ∗H

, d18 =
−C∗HV S∗H
S∗H + V ∗H

, d27 =
−C∗HV ηV (1− ε)S∗H

S∗H + V ∗H
,

d28 =
−C∗HV (1− ε)S∗H

S∗H + V ∗H
, d37 =

C∗HV ηV
[
(1− ε)V ∗H + S∗H

]
S∗H + V ∗H

,

d38 =
C∗HV

[
(1− ε)V ∗H + S∗H

]
S∗H + V ∗H

, d63 =
−C∗HV ηHS∗V
S∗H + V ∗H

, d64 =
−C∗HV S∗V
S∗H + V ∗H

,

d65 =
−C∗HV ηRS∗V
S∗H + V ∗H

, d73 =
C∗HV ηHS

∗
V

S∗H + V ∗H
, d74 =

C∗HV S
∗
V

S∗H + V ∗H
, d75 =

C∗HV ηRS
∗
V

S∗H + V ∗H
.

According to [15, 70], the jacobian matrix of the system (4.1) has simple zero

eigenvalues with all other eigenvalues having negative real parts. It can be shown

that, the associated left eigenvector denoted by Vi are given by:

V1 = 0, V2 = 0, V3 > 0 (psoitive constatnt)

V4 =

V3

[
θH
(
πξHK6K7 +K7d75d37 + τV d75d38

)
+K5d74

(
K7d37 + τvd38

)]
K4K5K6K7

,

V5 =

V3

[
K6K7πξH + d75

(
K7d37 + τV d38

)]
K5K6K7

, V6 = 0

V7 =

V3

(
K7d37 + τV d38

)
K6K7

, V8 =
V3d38

K7

,
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and the associated right eigenvector Wj are given by:

W1 =
W2ϕH +W5(1− π)ξH +W7d17 +W8d18

K1

,

W2 =
W1σH +W7d27 +W8d28

K2

,

W3 ≥ 0 (positive constant), W4 = W3
τH
K4

, W5 = W3
θHτH
K4K5

W6 =

W3

(
K4K5d63 +K5τHd64 + θHτHd65

)
K4K5µV

,

W7 =

W3

(
K4K5d73 +K5τHd74 + θHτHd75

)
K4K5K6

,

W8 =

W3

(
K4K5τV d73 +K5τHτV d74 + θHτHτV d75

)
K4K5K6K7

,

with the positive constants V3 and W3 chosen in such a way that,

V3·W3 =
K2

4K
2
5K

2
6K

2
7

K2
4K

2
5K

2
6K

2
7 +M1K5K6K7 +M2K4K6K7 +M3K4K5K7 +M4K4K5K6

in which case, it can be shown that V ·W = 1 with,

M1 = θHτH
(
πξHK6K7 +K7d75d37 + τV d75d38

)
+K5τHd74

(
K7d37 + τvd38

)
M2 = θHτH

[
K6K7πξH + d75

(
K7d37 + τV d38

)]
M3 =

[
K7d37 + τV d38

](
K4K5d73 +K5τHd74 + θHτHd75

)
and,

M4 = d38

(
K4K5τV d73 +K5τHτV d74 + θHτHτV d75

)
.
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Observe that, Vi ≥ 0 for all i ∈ {1, 2, 3, 4, 5, 6, 7, 8}, while W1 and W2 are

arbitrary and W6 < 0, the choice of Vi strictly greater than zero follows from

condition A2 of Theorem 4.1 in [16] and Lemma 3 of [28].

We observe that, the second partial derivatives of f4, f5 and f8 with respect to

any of the variables are zero, hence, to compute a and b, we only need to compute

the second partial derivatives of f3 and f7 with respect to the variables and the

bifurcation parameter.

Computation of a: By direct computation, at the disease-free equilibrium, for i

= 1, 2, 3, 4, 5, 6 we have:

∂2f3

∂x1∂xi
=

∂2f3

∂x2∂xi
=

∂2f3

∂x3∂xi
=

∂2f3

∂x4∂xi
=

∂2f3

∂x5∂xi
=

∂2f3

∂x6∂xi
= 0,
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where as,

∂2f3

∂x1∂x7

=
∂2f3

∂x7∂x1

= CHV ηV

{
1

S∗H + V ∗H
−
[
S∗H + V ∗H

(
1− ε

)](
S∗H + V ∗H

)2

}
,

∂2f3

∂x1∂x8

=
∂2f3

∂x8∂x1

= CHV

{
1

S∗H + V ∗H
−
[
S∗H + V ∗H

(
1− ε

)](
S∗H + V ∗H

)2

}
,

∂2f3

∂x2∂x7

=
∂2f3

∂x7∂x2

= CHV ηV

{
1− ε

S∗H + V ∗H
−
[
S∗H + V ∗H

(
1− ε

)](
S∗H + V ∗H

)2

}
,

∂2f3

∂x2∂x8

=
∂2f3

∂x8∂x2

= CHV

{
1− ε

S∗H + V ∗H
−
[
S∗H + V ∗H

(
1− ε

)](
S∗H + V ∗H

)2

}
,

∂2f3

∂x3∂x7

=
∂2f3

∂x4∂x7

=
∂2f3

∂x5∂x7

= −CHV ηV
[
S∗H +

(
1− ε

)
V ∗H(

S∗H + V ∗H
)2

]
,

∂2f3

∂x7∂x3

=
∂2f3

∂x7∂x4

=
∂2f3

∂x7∂x5

= −CHV ηV
[
S∗H +

(
1− ε

)
V ∗H(

S∗H + V ∗H
)2

]
,

∂2f3

∂x3∂x8

=
∂2f3

∂x4∂x8

=
∂2f3

∂x5∂x8

= −CHV
[
S∗H +

(
1− ε

)
V ∗H(

S∗H + V ∗H
)2

]
,

∂2f3

∂x8∂x3

=
∂2f3

∂x8∂x4

=
∂2f3

∂x8∂x5

= −CHV
[
S∗H +

(
1− ε

)
V ∗H(

S∗H + V ∗H
)2

]
.
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In a similar way,

∂2f7

∂x1∂xi
=

∂2f7

∂x2∂xi
= 0, for i = 1, 2, 6, 7, 8

∂2f7

∂x3∂x7

=
∂2f7

∂x3∂x8

= 0,

∂2f7

∂x4∂x7

=
∂2f7

∂x4∂x8

= 0,

∂2f7

∂x5∂x7

=
∂2f7

∂x5∂x8

= 0,

∂2f7

∂x6∂x1

=
∂2f7

∂x6∂x2

=
∂2f7

∂x6∂x6

=
∂2f7

∂x6∂x7

=
∂2f7

∂x6∂x8

= 0,

∂2f7

∂x1∂xi
=

∂2f7

∂x1∂xi
= 0, for i = 1, 2, 3, 4, 5, 6, 7, 8,

while,

∂2f7

∂x1∂x3

=
∂2f7

∂x2∂x3

=
∂2f7

∂x3∂x1

=
∂2f7

∂x3∂x2

= − CHV S
∗
V ηH(

S∗H + V ∗H
)2 ,

∂2f7

∂x1∂x4

=
∂2f7

∂x2∂x4

=
∂2f7

∂x4∂x1

=
∂2f7

∂x4∂x2

= − CHV S
∗
V(

S∗H + V ∗H
)2 ,

∂2f7

∂x1∂x5

=
∂2f7

∂x2∂x5

=
∂2f7

∂x5∂x1

=
∂2f7

∂x5∂x2

= − CHV S
∗
V ηR(

S∗H + V ∗H
)2 ,

∂2f7

∂x3∂x3

= − 2CHV S
∗
V ηH(

S∗H + V ∗H
)2

∂2f7

∂x3∂x4

=
∂2f7

∂x4∂x3

= − CHV S
∗
V ηH(

S∗H + V ∗H)2
− CHV S

∗
V(

S∗H + V ∗H
)2

∂2f7

∂x3∂x5

=
∂2f7

∂x5∂x3

= − CHV S
∗
V ηH(

S∗H + V ∗H)2
− CHV S

∗
V ηR(

S∗H + V ∗H
)2

∂2f7

∂x3∂x6

=
∂2f7

∂x6∂x3

=
CHV ηH(
S∗H + V ∗H

)
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∂2f7

∂x4∂x4

= − 2CHV S
∗
V(

S∗H + V ∗H
)2 ,

∂2f7

∂x4∂x5

=
∂2f7

∂x5∂x4

= − CHV S
∗
V(

S∗H + V ∗H
)2 −

CHV S
∗
V ηR(

S∗H + V ∗H
)2 ,

∂2f7

∂x4∂x6

=
∂2f7

∂x6∂x4

=
CHV(

S∗H + V ∗H
) ,

∂2f7

∂x5∂x6

=
∂2f7

∂x6∂x5

=
CHV ηR(
S∗H + V ∗H

) ,
therefore, after computation, the value of a is given by:

a =
n∑

k,i,j=1

VkWiWj
∂2fk
∂xi∂xj

(0, 0) =
−2CHV(
S∗H + V ∗H

)2

{
W7V3ηV

(
W3 +W4 +W5

)[
S∗H

+ V ∗H

]
+ V ∗HW8V3

(
W3 +W4 +W5

)[
1− ε

]
+ S∗HV

∗
3

(
W2W8ε+W3W8 +W4W8

+W5W8 +W2W7ηV ε

)
+ S∗V V7

(
W1 +W2 +W3 +W4 +W5

)[
W3ηH +W4

+W5ηR

]
−W6V7

(
W3ηH +W4 +W5ηR

)[
V ∗H + S∗H

]
− V ∗HV3ε

(
W1W7ηV

+W3W7ηV +W4W7ηV +W5W7ηV +W1W8

)}
Computation of b: To compute b, we need the second order partial derivatives

of f3 and f7 with respect to xi and CHV as the second variable, but, at the

disease-free equilibrium,

∂2f3

∂xi∂CHV
= 0 for i = 1, 2, 3, 4, 5, 6 while,

∂2f3

∂x7∂CHV
=
ηV
[
S∗H + V ∗H(1− ε)

](
S∗H + V ∗H

) and,

∂2f3

∂x8∂CHV
=
S∗H + V ∗H(1− ε)(

S∗H + V ∗H
) ,
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similarly, at the disease-free equilibrium,

∂2f7

∂xi∂CHV
= 0 for i = 1, 2, 6, 7, 8 also,

∂2f7

∂x3∂CHV
=

S∗V ηH(
S∗H + V ∗H

) ,
∂2f7

∂x4∂CHV
=

S∗V(
S∗H + V ∗H

) and,

∂2f7

∂x5∂CHV
=

S∗V ηH(
S∗H + V ∗H

) ,
so that, the value of b is given by:

b =
n∑

k,i=1

VkWi
∂2fk
∂xi∂φ

(0, 0) = V3

[
S∗H + V ∗H(1− ε)

]
(
S∗H + V ∗H

) {
W7ηV +W8

}
+

S∗V V7(
S∗H + V ∗H

)
×
[
W3ηH +W4 +W5ηR

]
.

Theorem 4.4.3. The malaria model with vaccination (4.1) has backward bifur-

cation if a is positive.

Proof. Following Theorems in [16, 28], the direction of the bifurcation is forward

when a < 0 and b > 0, while it is backward when a > 0 and b > 0 as well.

From the expression of b above coupled with the fact that, W3, W4, W5, W7 and

W8 are all positive implies that b > 0, therefore, the direction of the bifurcation

is governed by the sign of a, such that, if a > 0 then, it is backward, else it is

forward. �
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4.5 Numerical simulation

Using data in Table 3.3 with σH = 0.4 and σH = 0.8 for low and high malaria

incidences respectively, ε = 0.8, ρ = 0.3 and ψH = 0.2 we have the following;
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Figure 4.2: Simulation of the model (4.1) for the exposed, infected and recovered
humans converge to the DFE when R0v = 0.0938 in areas of low malaria incidence
using parameter values in Table 3.3 with SH(0) = 5000, EH(0) = 100, IH(0) =
10, RH(0) = 0, SV (0) = 500, EV (0) = 20, IV (0) = 10.
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Figure 4.3: Simulation of the model (4.1) for the exposed, infected and recovered
humans converge to the DFE when R0v = 0.9054 in areas of high malaria incidence
using parameter values in Table 3.3 with SH(0) = 5000, EH(0) = 100, IH(0) =
10, RH(0) = 0, SV (0) = 500, EV (0) = 20, IV (0) = 10.
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Figure 4.4: Simulation of the model (4.1) showing the disease prevalence in ar-
eas of low malaria infection using parameter values in Table 3.3 with SH(0) =
5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) = 500, EV (0) = 20, IV (0) =
10 so that R0v = 0.0938.
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Figure 4.5: Simulation of the model (4.1) showing the disease prevalence in ar-
eas of high malaria infection using parameter values in Table 3.3 with SH(0) =
5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) = 500, EV (0) = 20, IV (0) =
10 so that R0v = 0.9054.
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Figure 4.6: Simulation of the model (4.1) showing the total infectives (Exposed +
Infected + Recovered) with different initial conditions converging to the DFE in
areas of low malaria infection using parameter values in Table 3.3 with SH(0) =
5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) = 500, EV (0) = 20, and
IV (0) = 10 so that R0v = 0.0938.
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Figure 4.7: Simulation of the model (4.1) showing the total infectives (Exposed +
Infected + Recovered) with different initial conditions converging to the DFE in
areas of high malaria infection using parameter values in Table 3.3 with SH(0) =
5000, EH(0) = 100, IH(0) = 10, RH(0) = 0, SV (0) = 500, EV (0) = 20, and
IV (0) = 10 so that R0 = 0.9054.
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Using the parameter values in [21] together with the above assumed values for

the vaccination parameters, the vaccinated reproduction number R0v is less than

the basic reproduction number, the simulation in Figure 4.2 shows that, the con-

vergence to the DFE of the solution is faster with vaccination. In the model with

vaccination, the solution converges to DFE even in areas of high malaria incidences

as indicated in Figure 4.3, the prevalence dies in both high and low malaria inci-

dence areas as in Figure 4.4 and Figure 4.5. The infectives also converge to the

DFE in either cases, that shows numerically that, the use of an imperfect vaccine

will have a positive impact in a society as in Figure 4.6 and Figure 4.7.

4.6 Vaccination model with the mass action inci-

dence

Similar to model (3.6), we again replace the standard incidence function with the

mass action incidence, in which case the backward bifurcation was found to be

eliminated. Consider the system represented by (4.1) with the mass action in-

cidence functions, the vectors of appearance of new infections and that of the

transfers out of and into the compartments are respectively given by:

F =



[
SH + VH(1− ε)

]
CHV (ηVEV + IV )

0

0

SVCHV (ηHEH + IH + ηRRH)

0



and , V =



EHK1 − πξHRH

IHK2 − EHτH

RHK3 − IHθH

EVK4

IVK5 − EV τV



,
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where,

K1 = (τH + µH), K2 = (θH + δH + µH), K3 = (ξH + µH), K4 = (µV + τV ),

and, K5 = (µV + δV ),

so that the next generation matrices denoted by F and V are as follows:

F =



0 0 0 CHV ((1− ε)V ∗H + S∗H) CHV ((1− ε)V ∗H + S∗H)

0 0 0 0 0

0 0 0 0 0

CHV ηHS
∗
V CHV S

∗
H CHV ηRS

∗
V 0 0

0 0 0 0 0



,

and

V =



K1 0 −πξH 0 0

−τH K2 0 0 0

0 −θH K3 0 0

0 0 0 K4 0

0 0 0 −τV K5



.

The associated reproduction number of the vaccinated model (4.1) with the mass
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action is therefore given by,

Rm
V =√
C2
HV ΠV (ηHK2K3 + τHK3 + ηRθHτH)(ηVK5 + τV )

[
ϕH + µH(1− ερ) + σH(1− ε)

](
K1K2K3 − τHθHξHπ

)
(ϕH + σH + µH)K4K5µV

= R0v

√
ΠH

µH
.

(4.12)

Next lemma follows from Theorem 2 of [28]

Lemma 4.6.1. The DFE of the vaccinated model (4.1) with mass action is LAS

if Rm
V < 1 and unstable if Rm

V > 1.

Theorem 4.6.2. The vaccination model (4.1) with mass action incidence function

has no endemic equilibrium when Rm
V ≤ 1 and has a unique endemic equilibrium

otherwise.

Proof. The endemic equilibrium of model (4.1) denoted by J1 is obtained similar
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to (4.6) and given by:

Sm∗H =

ΠH

(
M1 +M2

)
M3 −M4

, V m∗
H =

ΠH

[
ρ
(
M3 −M4

)
+ σH

(
M1 +M2

)]
M5

(
M3 −M4

) ,

Em∗
H =

λm∗H K2K3

[
ϕH + µ(1− ερ) + σH(1− ε)

]
[
K1K2K3 − θHτHξHπ

](
ϕH + σH + µH

) ,
Im∗H =

λm∗H τHK3

[
ϕH + µ(1− ερ) + σH(1− ε)

]
[
K1K2K3 − θHτHξHπ

](
ϕH + σH + µH

) ,
Rm∗
H =

λm∗H τHθH

[
ϕH + µ(1− ερ) + σH(1− ε)

]
[
K1K2K3 − θHτHξHπ

](
ϕH + σH + µH

) ,
Sm∗V =

ΠV

µV + λm∗V
, Em∗

V =
λm∗V ΠV

(µV + λm∗V )K4

, Im∗V =
τV λ

m∗
V ΠV

(µV + λm∗V )K4K5

,

(4.13)

with,

M1 =
[
1− ρ

][(
K1K2K3 − θHτHξHπ

)(
λm∗H (1− ε) + ψH + µH

)]
,

M2 = ρ

[
ϕH
(
K1K2K3 − θHτHξHπ

)
+ (1− ε)(1− π)ξHτHθHλ

m∗
H

]
,

M3 =
(
λm∗H (1− ε) + ψH + µH

)2
[(
K1K2K3 − θHτHξHπ

)(
λm∗H + σH + µH

)
− (1− π)ξHθHτHλ

m∗
H

]
,

M4 = σH

[
ϕH
(
K1K2K3 − θHτHξHπ

)
+ (1− ε)(1− π)

[
λm∗H

(
1− ε

)
+ ϕH + µH

]
,

ξHτHθHλ
m∗
H

]
and,

M5 = λm∗H (1− ε) + ψH + µH
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and the forces of infections given by (3.23) and (3.24), so that substituting Em∗
V

and Im∗V from (4.13) in (3.23) we obtained,

λm∗H λm∗V K4K5 + λm∗H µVK4K5 − λm∗V CHV ΠV (ηVK5 + τV ) = 0, (4.14)

similarly, substituting from (4.13), the values of Em∗
H , Im∗H and Rm∗

H in (3.24) we

have,

λm∗V =
λm∗H CHV

[
VH(1− ε) + SH

][
ηHK4K5 + τHK5 + ηRθHτH

]
K3K4K5 − θHτHξHπ

, (4.15)

now, substituting λm∗V from (4.15) in (4.14) and after simplifications we have,

λm∗H
{
λm∗H (RM

0 )2 + ΠV µV
[
ηVK5 + τV

][
1− (Rm

0 )2
]}

= 0. (4.16)

The case when λmH = 0 corresponds to the DFE, else, if λmH 6= 0 we have,

λm∗H = −
ΠV µV

[
ηVK5 + τV

][
1− (Rm

0 )2
]

(Rm
0 )2

. (4.17)

From (4.17), it is clear that when 0 < Rm
0 < 1, then λm∗H < 0 which is biologically

meaningless, therefore, when Rm
0 < 1, no endemic equilibrium exist. On the other

hand, if Rm
0 > 1, then λm∗H is a unique positive constant, so that, substituting its

value in (4.13) gives a unique endemic equilibrium, which completes the proof. �

4.6.1 Global stability of the DFE

Just like in subsection 3.5.2, the dynamic of the mass action model (4.1), with

(3.23) and (3.24) will be considered in the positively invariant region ∆.

Theorem 4.6.3. The DFE of the of the vaccinated model (4.1) with the mass

action incidence functions (3.23) and (3.24) is globally asymptotically stable (GAS)
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in ∆ if Rm
0 ≤ 1.

Proof. Consider the function defined by:

F = F1EH + F2IH + F3RH + F4EV + F5IV ,

where the constants are given by:

F1 = CHV ΠV

(
ηVK5 + τV

)(
K2K3ηH +K3τH + ηRθHτH

)
,

F2 = CHV ΠV

(
ηVK5 + τV

)(
ηHθHξHπ + ηRK1θH +K1K3

)
,

F3 = CHV ΠV

(
ηVK5 + τV

)(
ηHξHπK2 + ξHπτH + ηRK1K2

)
,

F4 = Rm
0 µV

(
ηVK5 + τV

)(
K1K2K3 − θHτHξHπ

)
,

F5 = Rm
0 µVK4

(
K1K2K3 − θHτHξHπ

)
,

therefore Ḟ in the direction of the right-hand side of (4.1) gives,

Ḟ = F1ĖH + F2
˙IH + F3ṘH + F4ĖV + F5

˙IV (4.18)

and substituting ĖH , ˙IH , ṘH , ĖV , ˙IV from (4.1), (3.23) and (3.24) in (4.18) to-

gether with the fact that at DFE S∗V ≤ ΠV

µV
we obtained,

Ḟ ≤ EH

[
CHV ΠV ηH

(
K1K2K3 − θHτHξHπ

)(
ηVK5 + τV

)(
Rm

0 − 1
)]

+ IH

[
CHV ΠV

(
K1K2K3 − θHτHξHπ

)(
ηVK5 + τV

)(
Rm

0 − 1
)]

+RH

[
CHV ΠV ηR

(
K1K2K3 − θHτHξHπ

)(
ηVK5 + τV

)(
Rm

0 − 1
)]

+ EV

[
Rm

0

(
Rm

0 − 1
)
K4K5

ηV µV
(
K1K2K3 − θHτHξHπ

)]
+ IV

[
Rm

0 K4µV
(
K1K2K3 − θHτHξHπ

)(
Rm

0 − 1
)]
,
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therefore the above expression is simplified to,

Ḟ ≤
(
Rm

0 − 1
){
EH

[
CHV ΠV ηH(ηVK5 + τV )(K1K2K3 − θHτHξHπ)

]
+ IH

[
CHV ΠV (ηVK5 + τV )

(
K1K2K3 − θHτHξHπ

)]
+RH

[
CHV ΠV ηR

(
ηVK5 + τV

)
(
K1K2K3 − θHτHξHπ

)]
+ EV

[
Rm

0 µVK4K5ηV
(
K1K2K3 − θHτHξHπ

)]
+ IV

[
Rm

0 K4µV
(
K1K2K3 − θHτHξHπ

)]}
.

The proof is completed using similar approach as in Theorem 3.6. �

4.7 Analysis of Vaccine impact

The main aim of vaccination programmes is to reduce the prevalence of an in-

fectious disease and ultimately to eradicate it. Having seen that the two malaria

models with the mass action incidence function posses the property that when-

ever the basic reproduction number is less than one, the disease-free equilibrium

is globally asymptotically stable, we investigate the impact of the widespread use

of an imperfect malaria vaccine in a community with the mass action incidence

function and also analysed a threshold vaccine number.

4.7.1 Vaccine impact and critical coverage

Observe that the vaccinated reproduction number of the vaccinated model (4.1)

is a function of both the basic reproduction number of the system (3.6) and

the fraction of the vaccinated individuals, in fact, Rm
v = Rm

0 when VH = 0,

furthermore, at DFE, S∗H + V ∗H = N∗H so that the fraction of the vaccinated
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individuals ρ =
V ∗H
N∗H

< 1, that is

Rm
v = Rm

0

√
S∗H + V ∗H − V ∗Hε

N∗H
= Rm

0

√
S∗H + V ∗H
N∗H

− V ∗Hε

N∗H
= Rm

0

√
1− ρε.

Therefore to qualitatively determine the vaccine impact, we find the partial deriva-

tive of the vaccinated reproduction number of model (4.1) with respect to the

fraction of individuals that were vaccinated (ρ =
V ∗H
N∗H

). Differentiating we obtain

∂Rm
v

∂ρ
= − Rm

0 ε

2
√

1− ρε
. (4.19)

Since 0 < ε < 1 and 0 ≤ ρ < 1 then (4.19) is always negative, hence Rm
v is a

decreasing function of ρ =
V ∗H
N∗

, therefore we conclude that an imperfect vaccine

for malaria will have positive impact in any community whenever 0 < ρ =
V ∗H
N∗H

< 1

and ε > 0, that is, so long as the vaccine is effective, vaccinating any fraction of

the susceptible population at the DFE reduces the rate of infection in comparison

to when vaccination is absent.

To compute the critical proportion needed to be vaccinated for the control of

the disease, we need the vaccinated reproduction number to be less than one, that

is equivalent to ρ > 1
ε

(
1 − 1

(Rm
0 )2

)
, so that, the critical proportion needed to be

vaccinated for the control of the disease will be ρc = 1
ε

(
1− 1

(Rm
0 )2

)
.

Theorem 4.7.1. The DFE (Z0) of the model with vaccination (4.1) is GAS if

ρ > ρc and unstable if ρ < ρc.

Proof. Simplifying Rm
v we have,

Rm
v = Rm

0

√
SH + VH − VHε

NH

= Rm
0

√
1− ρε, (4.20)

since at DFE SH = S∗H , VH = V ∗H and NH = N∗H , also S∗H + V ∗H = N∗H , ρ =
V ∗H
N∗H

.
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From (4.20) it implies that,

Rm
v < 1 ⇔ Rm

0

√
1− ρε < 1 ⇔ ρ >

1

ε

(
1− 1

(Rm
0 )2

)
= ρc.

By Theorem 4.6.3, the DFE is GAS whenever Rm
v < 1 which implies that ρ > ρc.

From Lemma 4.6.1 the DFE is unstable when Rm
v > 1 which implies ρ < ρc. �

The theorem can be interpreted as follows; if the fraction of the vaccinated

individuals at the steady state exceeds the threshold level ρc, then the DFE is

globally asymptotically stable and unstable otherwise.

For disease to persist, we assume that Rm
0 > 1, also, the requirement for disease

eradication (ρ > ρc) is equivalent to

1

ε

(
1− (Rm

v )2

(Rm
0 )2

)
>

1

ε

(
1− 1

(Rm
0 )2

)

which is the same as,

(Rm
0 )2 − (Rm

v )2 = (Rm
0 )2 − (Rm

0 )2[1− ερ] = (Rm
0 )2ερ > (Rm

0 )2 − 1 > 0

but then (Rm
0 )2 − (Rm

v )2 is

C2
HV ΠV µH(ηVK5 + τV )(K2K3ηH +K3τH + θHτHηR)[σH + ρµH ]ε

µV ΠHK4K5[ϕH + σH + µH ](K1K2K3 − θHτHξHπ)
> 0

this also shows that the vaccine will always have positive impact so long as the

difference between the basic reproduction number and the vaccinated reproduction

number is positive.
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4.7.2 Vaccine efficacy and coverage

From the vaccinated reproduction number, we can clearly see that ρ = 1
ε

(
1 −

(Rm
0 )2

(Rm
0 )2

)
, so that ε → 0 then ρ grows larger, that is more people will need to be

vaccinated, while ε→ 1 implies ρ reduces, therefore, increasing the vaccine efficacy

will reduce the number of people that need to be vaccinated for the disease control.

In essence, the vaccination coverage depends on the efficacy of the vaccine.

Applying similar method with [31], we can determine the vaccine impact when the

entire population were vaccinated, that is V ∗H = N∗H and S∗H = 0, such that,

Rm
a =

√
C2
HV ΠV µ2

H(ηHK2K3 + τHK3 + ηHθHτH)(ηVK5 + τV )(1− ε)(
K1K2K3 − τHθHξHπ

)
K4K5Π2

HµV
, (4.21)

we can therefore express Rm
a as follows,

(Rm
a )2 = (Rm

0 )2(1− ε) = (Rm
0 )2− (Rm

0 )2 + (Rm
a )2 = (Rm

0 )2

[
1−

(
1− (Rm

a )2

(Rm
0 )2

)]
(4.22)

the vaccine impact can be defined via z, where,

z =

(
1− (Rm

a )2

(Rm
0 )2

)
, (4.23)

Consequently, we claim the following

Theorem 4.7.2. The use of imperfect malaria vaccine in a community will

(i) Reduce infection if z > 0;

(ii) Increase infection if z < 0;

(iii) Have no impact on infection rate if z = 0.
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Proof. From (4.22) and (4.23), we have,

(Rm
a )2

(Rm
0 )2

= 1−z. (4.24)

Obviously Rm
a < Rm

0 implies reduction in infection and Rm
a > Rm

0 means increase

in infection due to vaccinating the entire population, similarly Rm
a = Rm

0 means

vaccinating the entire population has no impact on the severity of infection. But

from (4.24), z =
Rm

0 −Rm
a

Rm
0

so that z > 0 ⇒ Rm
a < Rm

0 , z < 0 ⇒ Rm
a > Rm

0 and

z = 0 ⇒ Rm
a = Rm

0 .

It is also clear from (4.12) and (4.21) that,

(Rm
a )2

(Rm
0 )2

= 0 < (1− ε) < 1,

which implies that Rm
0 > Rm

a , thus, the vaccine will always have positive impact.

�
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