UNIVERSITEIT VAN PRETORIA UNIVERSITEIT OF PRETORIA UNIVERSITEI VA PRETORIA

CHAPTER 7: SYSTEMS DEVELOPMENT AND TECHNIFICATION

VOLUME CALCULATIONS Introduction to Water Strategy and Intention

The main intention for the water systems in the design intervention deals with the water on three levels, ecological, social and economic.

The most important aspect of the water strategy is to ensure the purification of the river system, improving the water quality through various natural systems and processes.

The enhancement of ecological quality will yield economic and social benefits, forming the foundation of the success of the intervention. The rehabilitation of the quarry through the integration of the river systems and the process of purification is important for the improvement of ecologies, habitat creation and increase in biodiversity in the area.

The social element is concerned with the integration and connection of man and the natural environment, using the water systems and processes as a means of educating and raising awareness concerning the complexity of urban river systems and why their preservation and Protection is of great significance.

TOTAL CATCHMENT AREA: 204.22 km2

CATCHMENT COEFFICIENT: 0.2

The connection of societies as well as an and nature will influence and inform the use and structure of the water system.

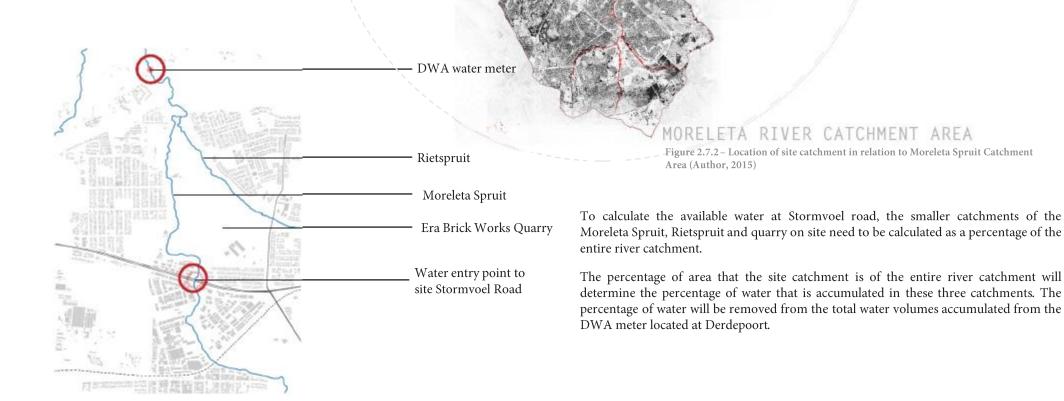
The choice of a decommissioned postindustrial landscape, a wasted space in the urban environment aids in the further connection of urban and natural environments on an economic and industrial level.

The transition between urban industrial and natural industrial will be created through the incorporation and use of the river system as a means of production for the surrounding environment.

The approach to the water systems was making use of natural systems and processes for purification, limited technological input into the system but used in a sustainable manner when required.

The design is intended to be able to harvest and make available through use of the river system and urban runoff, enough water to sustain all activities and meet all demands on site as a result of social and economic activities.

Figure 2.7.1 - Catchment Area (Author, 2015)


CALCULATION OF WATER CATCHMENT

The success of the design depends on the ability to Understand and manipulate the water systems in order to be able to purify and incorporate them into the urban environment as a resource for a number of activities.

The chosen site includes the main Moreleta Spruit, the Rietspruit tributary flowing in to the site from the east, as well as the Era Brick quarry. These three elements each have their own catchment in terms of runoff. The water readings given were obtained from the Department of Water Affairs water meter placed at Baviaanspoort in Derdepoort.

These readings are not able to be directly applied to the site as the meter is located above the site and after the point of convergence of the Moreleta Spruit and the Rietspruit.

These readings were however used in the calculations which were able to determine the water volumes of both the Rietspruit and the Moreleta Spruit at the entry points to the site.

Ô

UNIVERSITEIT VAN PRETORI UNIVERSITEIT OF PRETORI

CATCHMENT

Total site catchment: 14.8km₂

Figure 2.7.3 – Catchment Location Map (Author, 2015)

UNIVERSITEIT VAN PRETORIA UNIVERSITEIT VAN PRETORIA UNIVERSITEI OF PRETORIA

DAILY FLOW RATE (M³/S) READINGS AND CALCULATIONS FROM DWA METER AT DERDEPOORT OVER A 12 MONTH PERIOD

	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
1	0,479	2,512	0,477	0,886	0,625	0,574	0,536	0,472	0,346	0,242	0,265	0,777
2	0,765	3,69	() () () () () () () () () ()	0,881	0,626	0,584	0,505	0,46	0,327	0,255	0,379	0,455
3	0,642	6,769	· · · · · · · · · · · · · · · · · · ·	2,014	0,614	0,539	0,498	0,462	0,306	0,242	0,444	0,403
4	0,398	1,276		0,887	0,625	0,491	0,487	0,459	0,297	0,31	0,368	0,357
5	0,305	0,705		0,854	0,608	0,494	0,481	0,462	0,315	0,268	0,285	0,322
6	0,292	1,175	3,108	0,847	0,605	0,509	0,482	0,457	0,332	0,272	0,239	0,309
7	0,292	1,937	5,433	0,32	0,637	0,512	0,523	0,45	0,319	0,317	0,228	1,406
8	0,462	0,811	4,22	0,803	0,647	0,548	0,526	0,445	0,324	0,27	0,276	0,773
9	0,32	8,491	1,927	0,789	0,629	0,585	0,512	0,445	0,32	0,234	0,489	2,263
10	0,307	1,697	13,642	0,777	0,577	0,56	0,515	0,448	0,316	0,234	0,299	0,731
11	0,261	1,014	10,65	0,758	0,572	0,56	0,509	0,456	0,335	0,237	4,848	0,854
12	0,237	0,749	9,897	0,751	0,581	0,588	0,48	0,469	0,287	0,205	0,771	2,087
13	0,831	0,634	5,117	0,747	0,553	0,582	0,497	0,455	0,285	0,206	0,602	0,752
14	0,586	0,561	2,845	0,791	0,559	0,561	0,508	0,433	0,331	0,197	0,441	1,231
15	0,399	0,511	2,148	0,793	0,582	0,582	0,541	0,429	0,301	0,214	3,812	2,32
16	0,541	0,474	1,767	1,153	0,603	0,601	0,531	1,181	0,27	0,223	1,013	2,604
17	0,289	0,429	3,247	0,793	0,608	0,577	0,559	1,491	0,297	0,211	0,832	0,836
18	0,235	0,396	1,838	0,769	0,579	0,555	0,538		0,249	0,19	0,822	1,95
19	0,226	0,413	2,562	0,772	0,714	0,539	0,525		0,24	0,189	0,478	3,439
20	0,333	0,367	1,361	0,76	0,639	0,513	0,527		0,24	0,197	0,402	2,578
21	0,426	2,434	1,234	0,733	0,635	0,506	0,504	0,414	0,234	0,18	0,364	1,105
22	0,243	1,523	1,182	0,697	0,64	0,522	0,516	0,376	0,246	0,175	0,555	0,94
23	0,217	1,865	1,13	0,71	0,603	0,536	0,549	0,374	0,266	0,173	1,333	3,932
24	0,22	1,041	1,091	0,735	0,628	0,519	0,559	0,337	0,24	0,189	0,713	2,735
25	1,677	1,417	1,047	0,678	0,62	0,509	0,557	0,329	0,233	1,763	0,405	1,078
26	2,249	0,658	0,975	0,634	0,618	0,508	0,534	0,323	0,229	3,625	0,347	0,739
27	0,434	0,523	1,035	0,652	0,599	0,51	0,479	0,32	0,252	0,529	5,414	5,868
28	0,331	0,478	1,039	0,664	0,584	0,483	0,474	0,369	0,217	0,397	0,775	9,846
29	0,299		0,892	0,648	0,583	0,519	0,478	0,361	0,227	0,328	0,55	2,007
30	0,263	e	1,305	0,628	0,57	0,617	0,486	0,349	0,24	0,3	1,072	1,213
31	1,372		1,169		0,58		0,484	0,371		0,297		1,341
Average Flow Rate per day (m³/second)	1,719	1,58	2,656	0,785	0,601	0,543	0,513	0,476	0,28	0,402	0,955	1,84
Average Volume per day (m³)	148549,47	136512	229495,01	67824	51926,4	46828,8	44314,83	41126,4	24105,6	34732,8	82512	158976
Average volume per month (m ³)	4605033,6	3822336	7114348,8	2034720	1609718,4	1404864	1373760	1274918,4	723168	1076716,8	24875360	4928256
Average volume per year (m ³)	32443200										Minimum flow rate	Maximum flo rate

Table 2.7.1 – Daily Flow Rates at Derdepoort (Author, 2015)

UNIVERSITEIT VAN PRETORIA UNIVERSITEIT VAN PRETORIA VUNIBESITHI VA PRETORIA

FLOOD VOLUME (M3/S) READINGS FOR DERDEPOORT OVER THE LAST TEN YEARS

Year – October to October (Lowest and Highest Readings in that Month)

	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
JANUARY -	0,828	2,005	2,143	0,767	1,734	1,954	0,845	2,919	1,471	0,928	1,12
JANCAN	8,455	16,35	16,35	7,203	16,35	16,35	8,810	16,35	16,35	10,674	15,52
FEBRUARY	1,533	0,893	1,535	0,925	0,944	2,638	1,133	1,151	1,855	1,199	3,935
Lonoran	15,35	9,881	16,35	10,615	11,052	16,35	15,874	16,35	16,35	16,35	10,35
MARCH	1,345	0,729	2,833	0,48	1,806	1,671	1,077	3,185	1,195	0,697	2,904
meach	15,35	6,482	16,35	2,512	16.35	16,35	14,372	16,35	16,35	5,883	16,35
APRIL	1,055	1,002	1,241	0,602	0,879	0,267	0,889	1,28	0,504	1,235	0,774
Artic	15,8	12,501	10,50	4,205	5,00Z	0,374	5,780	10,30	2,820	10,50	7,50
MAY	1,456	0,219	0,257	0,217	0,76	0,253	0,888	0,608	0,222	0,481	0,313
mai	16,35	0,35	0,522	0,341	7,08	1,161	9,762	4,352	0,361	2,525	0,857
JUNE	0,36	0,18	0,205	0,991	0,347	0,573	0,272	0,918	0,19Э	0,28	0,293
JOILE	1,219	0,215	0,296	12,184	1,114	3,812	0,602	10,444	0,275	0,647	0,725
JULY	0,242	0,203	0,187	0,271	0,26	0,252	0,324	0,244	0,201	0,222	0,271
JOLI	0,499	0,287	0,235	0,596	0,535	0,495	0,935	0,458	0,281	0,361	0,596
AUGUST	0,212	0,252	1,036	0,147	0,244	0,563	0,215	0,682	0,207	0,237	0,707
AUCOUT	0,322	0,499	13,319	0,128	0,369	3,661	0,333	5,614	0,303	0,426	6,065
SEPTEMBER -	0,146	0,199	0,232	0,936	0,162	0,646	0,181	0,289	1,564	0,346	0,23
SEPTEMBEN	0,126	0,275	0,403	10,864	0,134	4,987	0,217	0,701	16,35	1,103	0,395
OCTOBER	0,453	0,45	0,881	1,386	0,669	0,887	0,749	1,272	1,372	1,249	1,399
OCTOBER	2,3	2,139	9,61	16,35	5,384	9,606	6,859	16,35	16,35	16,35	16,35
NOVEMBER -	0,689	0,885	1,058	0,971	1,594	1,155	1,182	2,249	1,509	1,249	1,413
	5,742	9,697	13,889	11,694	16,35	16,35	16,35	16,35	16,35	16,35	16,35
DECEMBER	1,614	1,023	2,969	1,677	1,229	1,053	3,281	1,882	1,152	1,833	2,851
OLLEWIDER	16,35	12,967	16,35	16,35	16,35	13,747	16,35	16,35	16,35	16,35	16,35

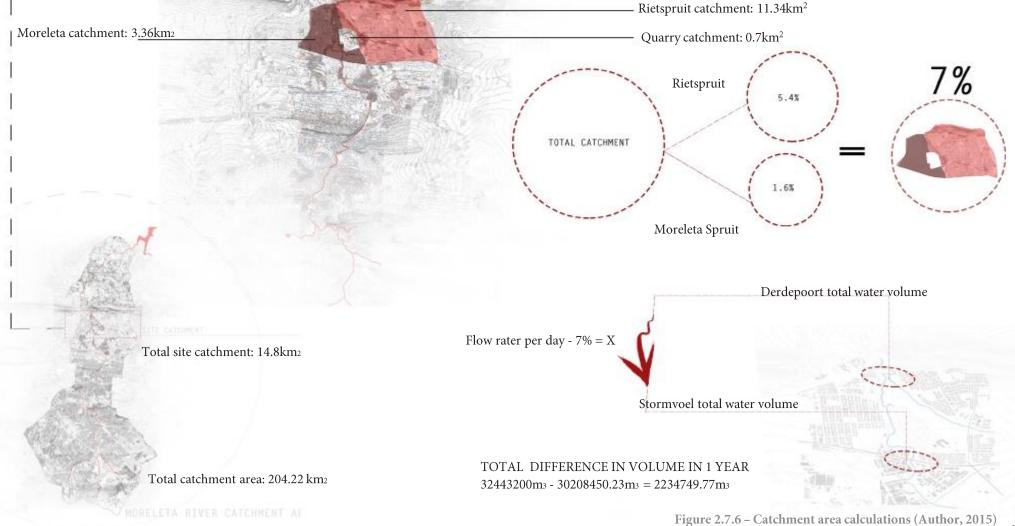
 Table 2.7.2 – Monthly Flood Volumes at Derdepoort (Author, 2015)

The peak floods have been highlighted in each year to gain an understanding of the trends in flooding as well as the values for further calculations. The designs of the water systems will need to cater for flood management and these values will provide maximum water rates and volumes.

QUARRY CATCHMENT AND CALCULATION

All stormwater which lands on the site is either directed towards the Moreleta Spruit, Rietspruit or into the quarry. The quarry catchment is removed from all calculations regarding the river systems as no water which falls on the quarry site ends up in the river systems. The quarry catchment is focused on the collection of storm water, harvesting and directing the storm water on site into the purification system.

The storm water management system within the quarry and industrial area will be responsible for draining the site of all runoff from hard surfaces including the purification and storage of the water for use and incorporation into the social and economic elements proposed in the design intervention.



CALCULATION OF WATER VOLUMES AND FLOOD RATES AT STORMVOEL ROAD

The quarry catchment is a closed catchment area as no water from the quarry enters into the river system. The quarry water calculations will be calculated at a later stage and contribute to the water systems as a calculation of a Storm water runoff value for that catchment area.

The Moreleta Spruit and Rietspruit catchments are calculated as 7% of the total river catchment area. The total water volumes from the Derdepoort water meter will need to be reduced by 7% in order to determine the total water volumes in both the Rietspruit and Moreleta Spruit when entering the site.

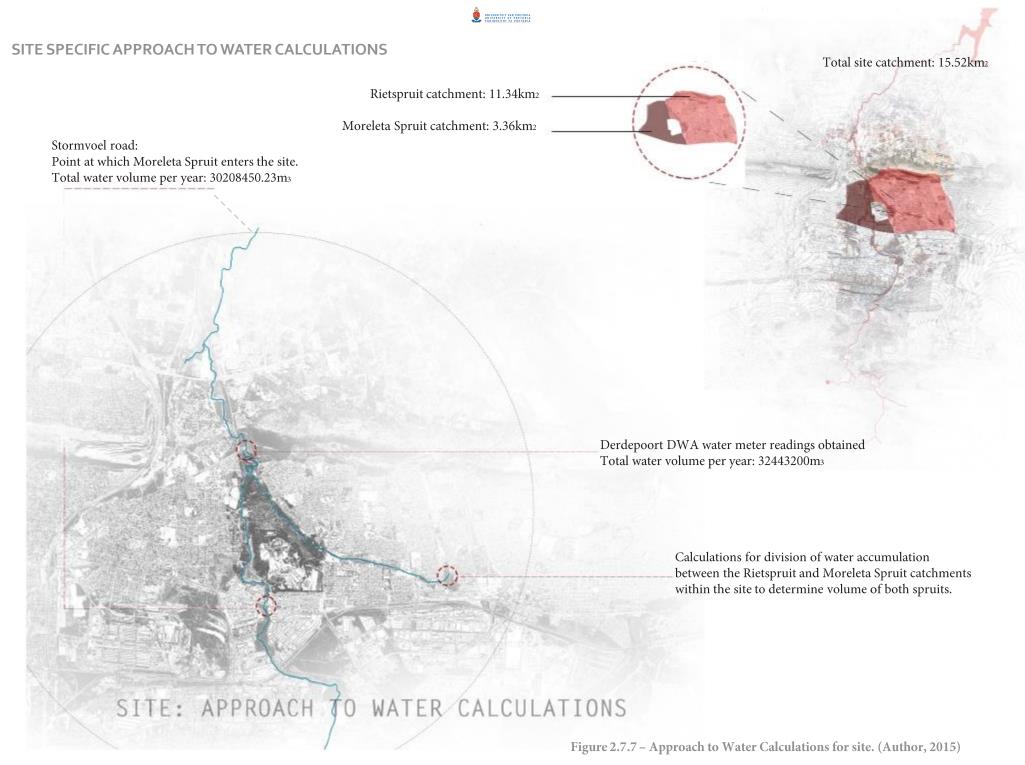
© University of Pretoria

UNIVERSITEIT VAN PRETORIA UNIVERSITEIT VAN PRETORIA UNIVERSITEI OF PRETORIA

DAILY FLOW RATE (M³/S) READINGS AND CALCULATIONS FOR MORELETA SPRUIT ENTERING SITE

	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
1	0,446	2,336	0,433	0,823	0,581	0,533	0,498	0,438	0,321	0,225	0,247	0,722
2	0,711	3,431		0,819	0,582	0,543	0,469	0,427	0,304	0,237	0,352	0,423
3	0,579	6,225		1,873	0,571	0,501	0,473	0,429	0,284	0,225	0,412	0,374
4	0,37	1,186		0,824	0,581	0,456	0,452	0,426	0,276	0,288	0,342	0,332
5	0,283	0,655		0,794	0,565	0,459	0,447	0,429	0,292	0,249	0,265	0,299
6	0,271	1,092	3,016	0,787	0,562	0,473	0,448	0,425	0,308	0,252	0,222	0,287
7	0,271	1,801	5,052	0,297	0,592	0,476	0,486	0,418	0,296	0,294	0,212	1,307
8	0,429	0,754	3,924	0,746	0,601	0,509	0,489	0,413	0,301	0,251	0,256	0,718
9	0,297	7,896	1,792	0,733	0,584	0,544	0,475	0,413	0,297	0,217	0,454	2,104
10	0,285	1,578	12,687	0,722	0,536	0,52	0,478	0,416	0,293	0,217	0,278	0,679
11	0,242	0,943	9,913	0,704	0,531	0,52	0,473	0,424	0,311	0,22	4,508	0,794
12	0,22	0,696	9,287	0,698	0,54	0,546	0,445	0,436	0,265	0,19	0,717	1,94
13	0,772	0,589	4,758	0,694	0,514	0,541	0,462	0,423	0,265	0,191	0,559	0,699
14	0,358	0,521	2,645	0,735	0,519	0,521	0,472	0,402	0,307	0,183	0,41	1,144
15	0,371	0,475	1,997	0,737	0,541	0,541	0,503	0,398	0,279	0,199	3,545	2,073
16	0,503	0,44	1,643	1,072	0,56	0,558	0,493	1,098	0,251	0,207	0,942	2,421
17	0,268	0,398	3,019	0,737	0,565	0,536	0,519	1,386	0,276	0,196	0,773	0,777
18	0,218	0,368	1,709	0,715	0,538	0,516	0,5	2,000	0,231	0,176	0,764	1,181
19	0,21	0,384	2,382	0,717	0,664	0,501	0,488		0,223	0,175	0,444	3,198
20	0,309	0,341	1,265	0,706	0,594	0,477	0,49		0,223	0,183	0,373	2,397
21	0,396	2,263	1,147	0,681	0,59	0,47	0,468	0,385	0,217	0,167	0,338	1,027
22	0,225	1,416	1,099	0,648	0,595	0,485	0,479	0,349	0,228	0,162	0,516	0,874
23	0,201	1,734	1,05	0,66	0,56	0,498	0,51	0,347	0,247	0,16	1,239	3,656
24	0,204	0,968	1,014	0,683	0,584	0,450	0,519	0,313	0,223	0,175	0,663	2,543
25	1,559	1,317	0,973	0,638	0,576	0,473	0,518	0,305	0,216	1,639	0,376	1,002
26	2,091	0,611	0,906	0,589	0,574	0,472	0,496	0,3	0,212	3,371	0,322	0,687
27	0,403	0,486	0,962	0,606	0,557	0,474	0,445	0,297	0,234	0,491	5,035	5,457
28	0,307	0,444	0,966	0,617	0,543	0,449	0,44	0,343	0,201	0,369	0,72	9,156
29	0,278	0,444	0,829	0,602	0,542	0,482	0,444	0,335	0,211	0,305	0,511	1,866
30	0,244	3	1,241	0,584	0,53	0,573	0,451	0,324	0,223	0,279	0,996	1,128
31	1,275		1,087	0,504	0,539	0,010	0,45	0,345	0,223	0,259	0,750	1,120
51	1,213	t <u>. </u> 13	1,007		0,355		0,40	0,543		0,233		1,247
Average Flow Rate per day (m³/second)	1,586	1,476	2,47	0,741	0,565	0,504	0,476	0,444	0,26	0,379	0,893	1,693
Average Volume per day (m³)	137055,48	127588,11	214037,88	64054,08	48816,85	43545,6	41198,86	38398,62	22510	32753,96	77158,08	146356,02
Average volume per month (m³)	4248720	3572467,2	6635174,4	1921644	1513322,35	1307145,6	1277164,8	1190357,48	675302,4	10 <mark>15372,8</mark>	2314742,4	4537036,8
Average volume per year (m³)	30208450,23										Minimum flow rate	Maximum fl rate

 Table 2.7.3 – Daily Flow Rates for Moreleta Spruit (Author, 2015)


UNIVERSITEIT VAN PRETORIA UNIVERSITEIT OF PRETORIA VONIBESITHI VA PRETORIA

FLOOD VOLUME (M3/S) READINGS FOR MORELETA SPRUIT OVER THE LAST TEN YEARS

Year – October to October (Lowest and Highest Readings in that Month)

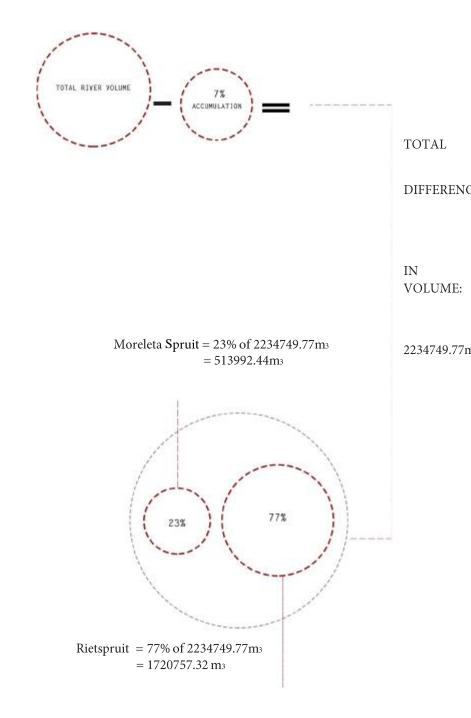
	2004	2005	2005	2007	2008	2009	2010	2011	2012	2013	2014
JANUARY	0,77	1,864	1,992	0,713	1,612	1,817	0,785	2,714	1,358	0,863	1,04
JANGART	7,872	16,33	16,33	6,698	10,33	10,35	8,201	10,35	10,35	9,926	14,43
FEBRUARY	1,425	0,83	1,427	0,85	0,877	2,453	1,053	1,07	1,726	1,115	3,65
TEDROPHT	16,35	9,189	16,35	9,871	10,278	16,35	14,762	16,35	16,35	16,35	16,3
MARCH	1,25	0,677	2,634	0,445	1,679	1,554	1,001	2,962	1,111	0,648	2,
MANSH	16,35	6,028	16,35	2,336	16,35	16,35	13,365	16,35	16,35	5,471	16,3
APRIL	0,981	0,931	1,154	0,559	0,817	0,248	0,826	1,19	0,458	1,148	0,71
Artic	12,834	12,044	16,35	3,964	8,89Z	0,533	9,1	15,35	2,627	15,35	6,83
MAY	1,354	0,203	0,239	0,201	0,705	0,328	0,825	0,565	0,206	0,447	0,29
MAR I	16,35	0,325	0,485	0,317	6,584	1,079	9,078	4,047	0,335	2,348	0,79
JUNE	0,334	0,167	0,19	0,921	0,322	0,532	0,252	0,853	0,185	0,26	0,27
JONE	1,13367	0,199	0,275	11,331	1,025	2,545	0,559	9,712	0,255	0,601	0,67
JULY	0,225	0,188	0,173	0,252	0,241	0,234	0,301	0,226	0,186	0,206	0,25
JOLI	0,464	0,265	0,218	0,554	0,497	0,45	0.869	0,425	0,251	0,335	0,55
AUGUST	0,197	0,234	0,963	0,135	0,225	0,523	0,199	0,634	0,192	0,22	0,65
A00031	0,299	0,464	12,385	0,119	0,343	3,404	0,309	5,221	0,261	0,396	5,64
SEPTEMBER	0,135	0,185	0,215	0,87	0,15	0,6	0,168	0,268	1,454	0,321	0,21
Serremsen	0,117	0,255	0,374	10,103	0,124	4,637	0,201	0,651	16,35	1,1025	0,35
OCTOBER	0,43	0,418	0,819	1,288	0,622	0,824	0,696	1,182	1,275	1,161	1,30
OCICHER	2,139	1,989	8,937	16,35	5,007	8,933	6,378	16,35	16,35	16,35	15,3
NOVEMBER	0,64	0,823	0,983	0,905	1,482	1,074	1.099	2,091	1,403	1,101	1,31
HOVEMBEN	5,34	9,018	12,916	10,875	16,35	16,35	16,35	16,35	16,35	16,35	16,3
DECEMBER	1,501	0,951	2,761	1,559	1,142	0,979	3,051	1,75	1,071	1,704	2,65
DECEMPEN	16,35	12,059	16,35	16,35	16,35	12,784	16,35	16,35	16,35	15,35	16,3

Table 2.7.4 – Monthly Flood Volumes at Moreleta Spruit (Author, 2015)

DIVISION OF ACCUMULATED WATER BETWEEN RIETSPRUIT AND MORELETA SPRUIT

The catchment of the site will be divided between the two river systems, the percentage of each rivers accumulation throughout the year will depend on the percentage of each catchment within the larger catchment of the overall site.

Rietspruit has a larger catchment area, all water in the river system is accumulated from this catchment. The Rietspruit will have a volume of 1720757.32m³ per year.


The Moreleta Spruit has a volume of 30208450.23m³ flowing into the site and through catchment runoff Accumulates 513992.44m³ during the year, the total volume of water leaving the site will be 30722442.67m³.

The total volumes from each river system:

- Moreleta Spruit 30722442.67m2

- Rietspruit 1720757.32m2

Which adds up to an accumulative volume of 32443200m² which is equal to the volume of water obtained from the DWA water meter at Derdepoort.

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA VUNIVERSITNI VA PRETORIA

DAILY FLOW RATE (M³/S) READINGS AND CALCULATIONS FOR RIETSPRUIT TRIBUTARY

1	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
1	0,024	0.126	0.024	0,044	0,031	0.029	0.027	0,024	0.017	0.012	0.013	0,039
2	0,038	0,185		0,044	0,031	0,029	0,025	0,023	0.015	0.013	0,019	0,023
3	0,032	0,338	12	0,101	0,031	0,027	0,025	0,023	0,015	0,012	0,022	0,020
4	0,020	0,064		0,044	0,031	0,025	0,024	0,023	0,015	0,015	0,018	0,018
5	0,015	0,035		0,043	0,030	0,025	0,024	0,023	0,015	0,013	0,014	0,016
6	0,015	0,059	0,155	0,042	0,030	0,025	0,024	0,023	0,017	0,014	0,012	0,015
7	0,015	0,097	0,272	0,016	0,032	0,026	0,026	0,023	0,015	0,016	0,011	0,070
8	0,023	0,041	0,211	0,040	0,032	0,027	0,026	0,022	0,015	0,014	0,014	0,039
9	0,015	0,425	0,096	0,039	0,031	0,029	0,026	0,022	0,016	0,012	0,024	0,113
10	0,015	0,085	0,682	0,039	0,029	0,028	0,026	0,022	0,016	0,012	0,015	0,037
11	0,013	0,051	0,533	0,038	0,029	0,028	0,025	0,023	0,017	0,012	0,242	0,043
12	0,012	0,037	0,495	0,038	0,029	0,029	0,024	0,023	0,014	0,010	0,039	0,104
13	0.042	0,032	0,256	0,037	0,028	0,029	0,025	0,023	0.014	0,010	0,030	0,038
14	0,029	0,028	0,142	0,040	0,028	0,028	0,025	0,022	0,017	0,010	0,022	0,062
15	0,020	0,026	0,107	0,040	0,029	0,029	0,027	0,021	0,015	0,011	0,191	0,116
16	0.027	0.024	0.088	0,058	0.030	0,030	0,027	0,059	0.014	0.011	0.051	0,130
17	0,014	0,021	0,162	0,040	0,030	0,029	0,028	0.075	0.015	0,011	0.042	0,042
18	0,012	0.020	0,092	0,038	0,029	0,028	0,027		0.012	0.010	0,041	0,098
19	0.011	0.021	0,128	0,039	0,036	0,027	0,026		0.012	0,009	0.024	0,172
20	0,017	0,018	0,058	0,038	0,032	0,026	0,026		0,012	0,010	0,020	0,129
21	0,021	0,122	0,062	0,037	0,032	0,025	0,025	0,021	0,012	0,009	0,018	0,055
22	0.012	0,076	0,059	0,035	0,032	0,026	0,026	0,019	0.012	0,009	0,028	0,047
23	0,011	0,093	0,057	0,036	0,030	0,027	0,027	0,019	0,013	0,009	0,057	0,197
24	0,011	0,052	0,055	0,037	0,031	0,026	0,028	0,017	0,012	0,009	0,036	0,137
25	0,084	0,071	0,052	0,034	0,031	0,025	0,028	0,015	0,012	0,068	0,020	0,054
25	0,112	0,033	0,049	0,032	0,031	0,025	0,027	0,015	0,011	0,181	0,017	0,034
27	0,022	0,025	0,052	0,033	0,030	0,025	0,024	0,015	0,011	0,025	0,271	0,293
28	0,022	0,024	0,052	0,033	0,029	0,024	0,024	0,018	0,013	0,020	0,039	0,492
20	0,017	0,024	0,045	0,032	0,029	0,026	0,024	0,018	0,011	0,020	0,028	0,432
30	0,013		0,045		0,029	0,031	0,024	0,015		0,015		0,061
			100000	0,031		0,031			0,012	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,054	
31	0,069		0,058		0,029		0,024	0,019		0,015		0,067
Average Flow Rate per day (m ² /second)	0,085	0,08	0,132	0,06	0,033	0,027	0,028	0,025	0,017	0,021	0,04	0,093
verage Volume per day (m ^s)	7447,12	6912	11474,47	5184	2851,2	2332,8	2419,2	2246,4	1468,8	1814,4	3456	8035,2
verage volume er month (m°)	230860,72	214272	355708,8	160704	88387,2	72316,8	74995,2	69038,4	45532,8	56246,4	107136	249091,2
verage volume	1724889,52			č.	C1.			1-		2	Minimum flow	Maximum f
per year (m ³)	AT 2-10(27)26										rate	rate

Table 2.7.5 – Daily Flow Rates for Rietpruit Tributary (Author, 2015)

FLOOD VOLUME (M³/S) READINGS FOR STORM VOEL OVER THE LAST TEN YEARS

Year - October to October (Lowest and Highest Readings in that Month)

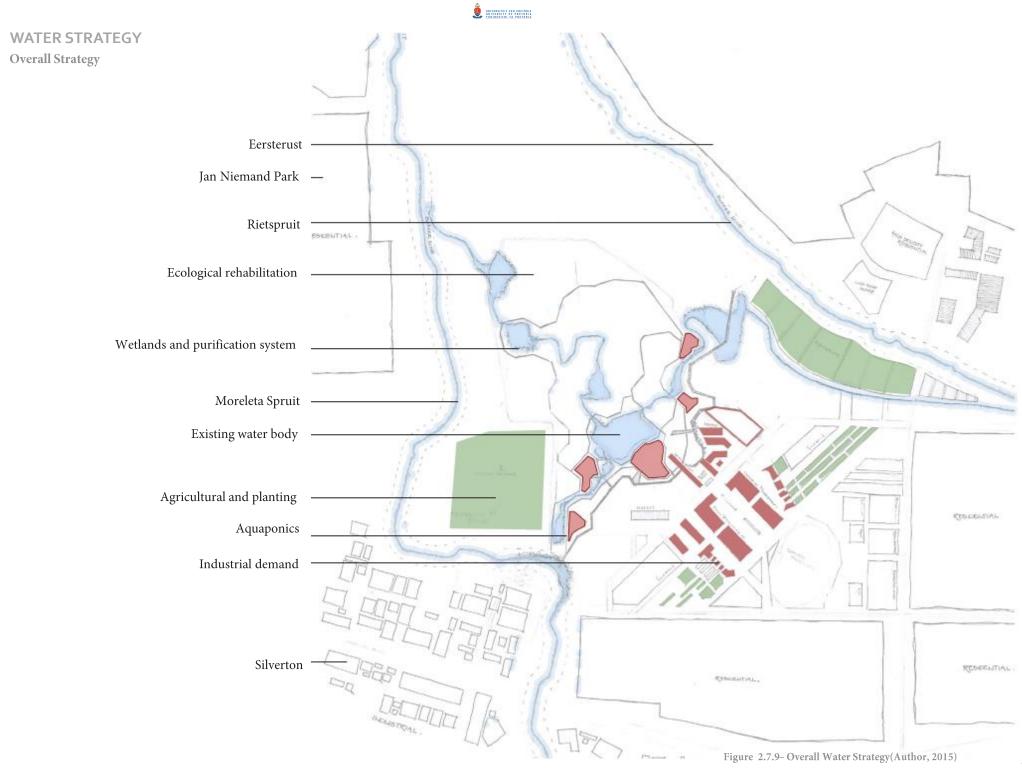
	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
JANUARY	0,041	0,100	0,107	0,038	0,087	0,098	0,042	0,146	0,074	0,046	0,056
JANOAN	0,423	0,818	0,818	0,360	0,818	0,818	0,441	0,818	0,818	0,534	0,776
FEBRUARY	0,077	0,045	0,077	0,046	0,047	0,132	0,057	0,058	0,093	0,060	0,197
TEDROART	0,818	0,494	0,818	0,531	0,553	0,818	0,794	0,818	0,818	0,818	0,818
MARCH	0,067	0,036	0,142	0,024	0,090	0,084	0,054	0,159	0,060	0,035	0,145
manen	0,818	0,324	0,818	0,126	0,818	0,818	0,719	0,818	0,818	0,294	0,818
APRIL	0,053	0,050	0,062	0,030	0,044	0,013	0,044	0,064	0,025	0,052	0,039
APRIL	0,690	0,648	0,818	0,213	0,478	0,029	0,489	0,818	0,141	0,818	0,368
MAY	0,073	0,011	0,013	0,011	0,038	0,018	0,044	0,030	0,011	0,024	0,016
MAT	0,818	0,018	0,026	0,017	0,354	0,058	0,488	0,218	0,018	0,126	0,043
JUNE	0,018	0,009	0,010	0,050	0,017	0,029	0,014	0,046	0,010	0,014	0,015
JUNE	0,061	0,011	0,015	0,609	0,056	0,191	0,030	0,522	0,014	0,032	0,036
UUX	0,012	0,010	0,009	0,014	0,013	0,013	0,015	0,012	0,010	0,011	0,014
JULY	0,025	0,014	0,012	0,030	0,027	0,025	0,047	0,023	0,014	0,018	0,030
AUGUST	0,011	0,013	0,052	0,007	0,012	0,028	0,011	0,034	0,010	0,012	0,035
AUGUSI	0,016	0,025	0,666	0,006	0,018	0,183	0,017	0,281	0,015	0,021	0,303
SEPTEMBER	0,007	0,010	0,012	0,047	0,008	0,032	0,009	0,014	0,078	0,017	0,012
SEPTEMBER	0,006	0,014	0,020	0,543	0,007	0,249	0,011	0,035	0,818	0,055	0,020
OCTOBER	0,023	0,023	0,044	0,069	0,033	0,044	0,037	0,064	0,069	0,052	0,070
OCTOBER	0,115	0,107	0,481	0,818	0,269	0,480	0,343	0,818	0,818	0,818	0,818
NOVEMBER	0,034	0,044	0,053	0,049	0,080	0,058	0,059	0,112	0,075	0,052	0,071
NOVEWBER	0,287	0,485	0,694	0,585	0,818	0,818	0,818	0,818	0,818	0,818	0,818
DECEMPTO	0,081	0,051	0,148	0,084	0,061	0,053	0,164	0,094	0,058	0,092	0,143
DECEMBER	0,818	0,648	0,818	0,818	0,818	0,687	0,818	0,818	0,818	0,818	0,818

Table 2.7.6 – Monthly Flood Volumes at Stormvoel (Author, 2015)

VOLUMES FOR USE IN FURTHER CALCULATIONS

Making use of the calculations previously explained, the same process was carried out for the last ten years worth of water data from the DWA Meter and Derdepoort.

This enabled the use of averages for each year and month for a more reliable and consistent set of data for the further calculations in the water scheme for the site.


The water calculations have determined the monthly average for each month over a period of the last ten years and from these averages the design will be able to ensure the functioning of the system at both the average maximum and average minimum flow rates and volumes. The system is designed to be in constant flow for the purification of water through the wetlands, additional calculations were done regarding the absolute minimum and maximum volumes and flow rates and have been designed to ensure the constant flow and functioning of the system even in extreme conditions. The absolute minimum value was determined through evaluation of all years and flow rates and the lowest recorded flow rate in the last ten years was used as the absolute minimum. The absolute maximum value was determined by the analysis of the floods recorded in the last ten years and the highest value was used as this is the maximum volume of water that the system will need to handle.

ABSOLUTE MINIMUM: 0.16m3/s ABSOLUTE MAXIMUM: 16,35m3/s

MONTH	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014		MOTHLY AVERAGE
JANUARY	0,863	4,15	5,26	0,997	4,93	3,85	0,962	5,34	1,84	1,46	1,38		3,1032
FEBRUARY	2,27	0,994	5,13	0,659	1,19	4,02	1,63	1,36	1,48	1,31	3,85		2,3893
MARCH	3,74	0,682	2,32	0,282	4	2,3	1,32	4,03	1,41	1,01	7,11		2,8204
APRIL	1,15	1,3	1,2	0,292	0,967	0,593	3,79	2,11	0,79	1,94	2,07		1,62
MAY	0,684	0,423	0,687	0,215	1,02	0,648	1,86	1,42	0,593	0,866	1,63		1,0045
JUNE	0,398	0,349	0,515	0,91	0,607	0,872	0,966	1,26	0,574	0,831	1,41		0,8665
JULY	0,405	0,363	0,462	0,347	0,6	0,696	0,93	1,04	0,546	0,635	1,37		0,7394
AUGUST	0,345	0,314	0,949	0,265	0,49	0,759	0,695	1,04	0,5	0,56	1,16	23	0,7077
SEPTEMBER	0,214	0,192	0,382	0,511	0,3	0,461	0,402	0,676	2,21	0,489	0,728		0,6475
OCTOBER	0,305	0,347	0,407	3,03	0,537	1,05	0,544	1,69	2,33	1,75	1,09		1,309
NOVEMBER	0,364	1,61	1,07	0,732	3,3	2,43	1,04	2,06	1,72	1,95	2,49		2,1835
DECEMBER	2,18	1,52	1,8	2,34	1,54	2,33	3,2	2,99	3,09	3,77	4,95		2,671
MONTHLY AVERAGE (million m²)	1076500	1020333,3	1681833	881666,66	1623416,66	1668250	1444916,66	2084666,66	1423583,33	1380916,66	2436500	Average	minimum
TOTAL VOLUME PER YEAR (m ³)	12918000	12244000	20182000	10580000	19481000	20019000	17339000	25016000	17083000	16571000	29238000	Average	maximum

AVERAGE MONTHLY FLOW RATES (M3/S) AND VOLUMES (M3) 2004-2014

 Table 2.7.7 – Monthly Average Flowrates and Volumes (Author, 2015)

© University of Pretoria

UNIVERSITEIT VAN PRETORIA UNIVERSITEIT VAN PRETORIA VONIBESITNI VA PRETORIA

RIVER DIVERSION AND PURIFICATION STRATEGY

STRATEGY 3:

Diversion of portion of Rietspruit into quarry purification system using same principles as described in Strategy 1, but with the inclusion of bioswale for irrigation of agriculture and storm water management.

STRATEGY 1:

Diversion of portion of Moreleta Spruit into the quarry purification system. Contour manipulation and dam creation for manipulation of water in to quarry.

STRATEGY 2:

Purification of water that is not diverted in to the purification system. In river purification strategy managing and purifying polluted runoff and stormwater outlets released in to river system.

UNIVERSITEIT VAN PRETORIA UNIVERSITEIT VAN PRETORIA VUNIBESITNI VA PRETORIA

STORM WATER COLLECTION MANAGEMENT

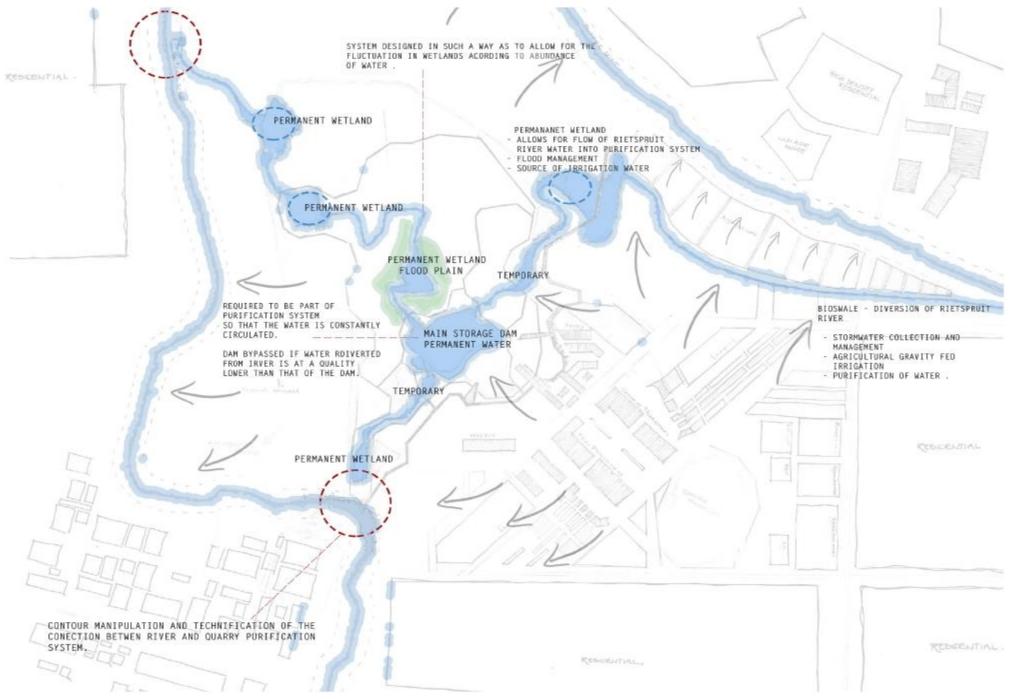


Figure 2.7.11 – Storm Water Collection (Author, 2015)

STRATEGY1

The diversion of the Moreleta Spruit requires intensive contour manipulation of the edge of the quarry to allow for direct water flow. The contour difference will require damming of the spruit to raise the water level allowing for free flow into the purification system.

Not all water will be diverted in order to preserve the spruit ecology. The spruit will be split upstream allowing half of the flow into the dam while the other half will be transported through a pipe beyond the dam directly into the river system downstream.

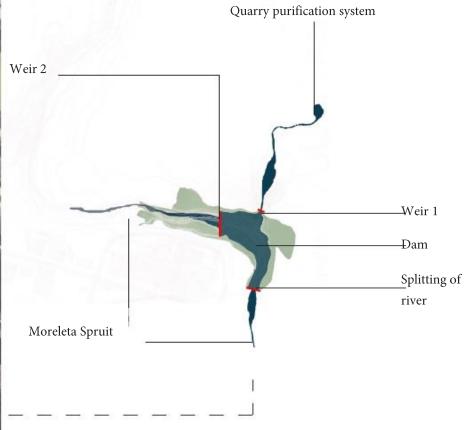
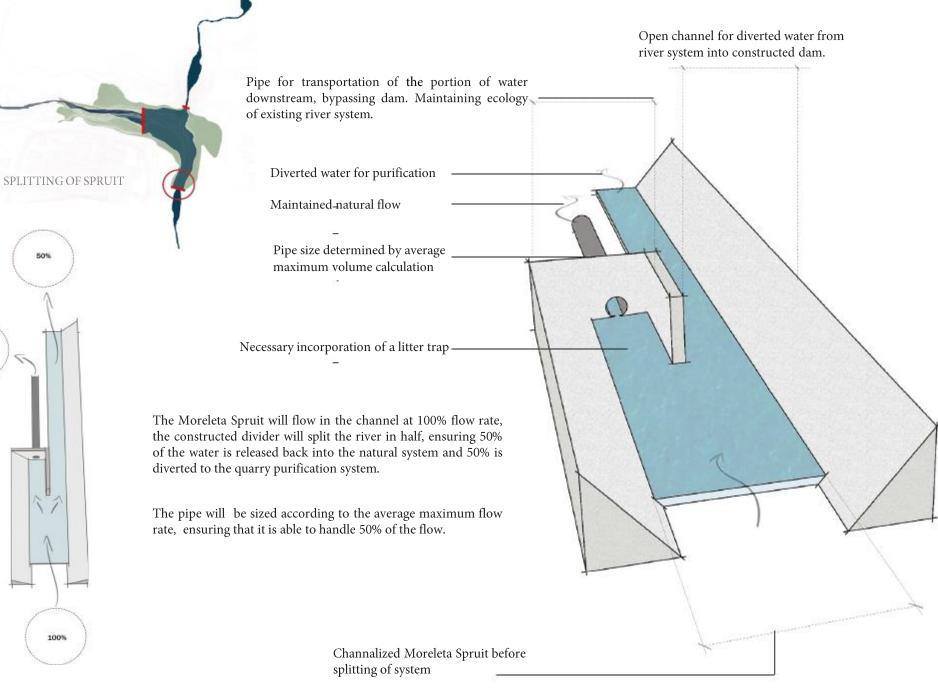


Figure 2.7.12 - Overall Water Strategy 1 and Contour Mapping (Author, 2015)



RIVER SYSTEM DIVERSION

50%

100%

50%

WEIR 1 SIZING - QUARRY ENTRANCE

Level X was determined by the height to which the water needed to be raised in order to be able to flow into the quarry which was 2m.

For the calculation of level Z, the cross sections of the wiers need to be able to accommodate $7.39m^3/s$. Therefore;

The first allows for $1.55m^3/s$, so the second part of the weir will need to allow through $5.84m^3/s$.

Weir 2

Overflow weir.

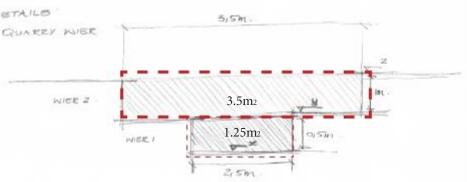
Only level Y.

Pipe can allow for a maximum

of 1.55m³/s, any flow rate above

this will be diverted to the dam.

Returned to river system


The flow rate for Z was calculated as follows: DETAILS

Flow rate: $16.35m^3/s/2 = 8.175m^3/s$ $8.175m^3/s - 1.55m^3/s = 6.625m^3/s$ $8.175m^3/s + 6.625m^3/s = 14.8m^3/s$

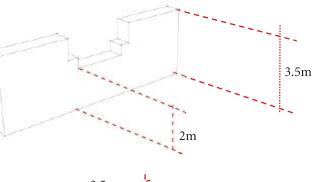
Therefore $14.8m^3/s$ is entering the dam so between weir 1 and weir 2 each will allow for $7.39m^3/s$

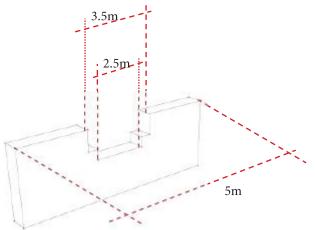
DAM

Diversion of river

Level Y is determined by the average maximum: $3.10m^3/s$

Calculation Size: $2.5m \ge 0.5m = 1.25m^2$ Flow rate $= 1.55m^3/s$ Velocity = 1.24m/sVolume $= 133\ 920m^3/day$ $= 4\ 151\ 520m^3/month$

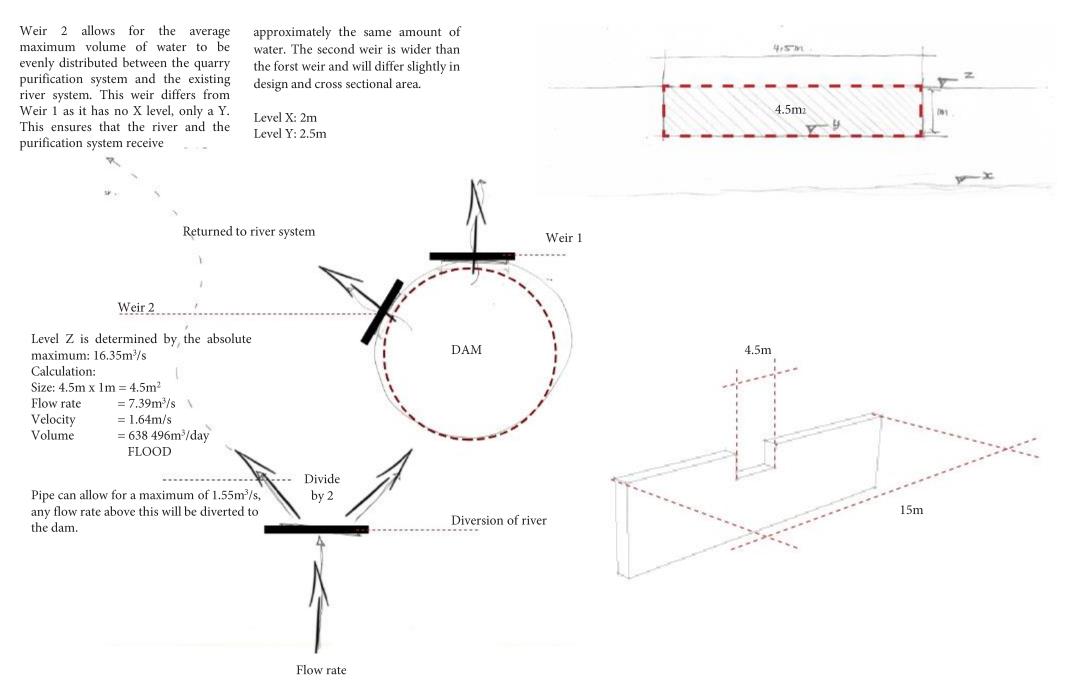

Weir 1


Level Z is determined by the absolute

maximum: 16.35m³/s

Calculation: Size: $3.5m \times 1m$ = $3.5m^2$ Flow rate = $5.84m^3/s$ Velocity = 1.66m/sm/sVolume = $504576m^3/day$ FLOOD

© University of Pretoria


Divide

by 2

Flow rate

UNIVERSITEIT VAN PRETORIA UNIVERSITU OF PRETORIA VUNIBESITNI VA PRETORIA

WEIR 2 SIZING: RETURN TO RIVER

© University of Pretoria

Figure 2.7.15 - Weir 2 Diversion and Flow Rates (Author, 2015)

WETLAND CHANNEL SIZING AND CALCULATION

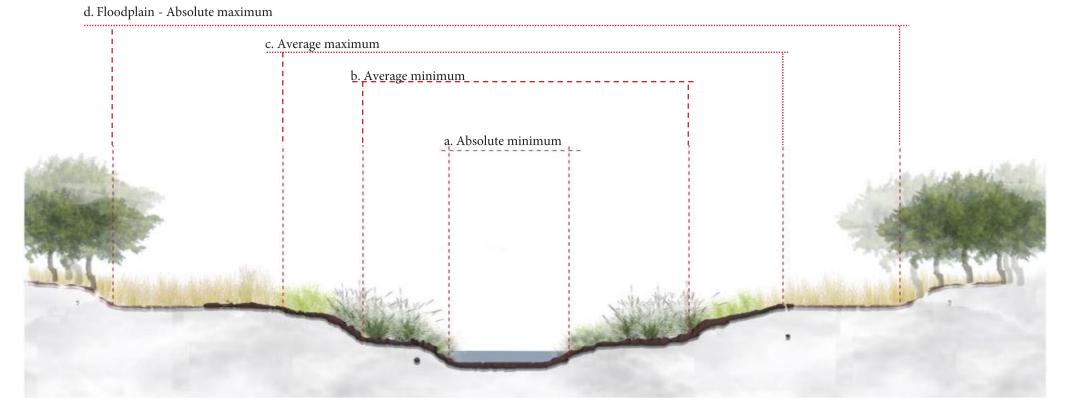
The water flowing from the dam needs to be slowed down in order for the water to travel at the optimum speed through the wetland for maximum purification.

The ideal speed would be 0.1m/s. Each calculation will determine the cross sectional area of the river channel for that specific volume of water, the size will ensure that the volume of water entering the system is slowed down and assisted through the system at 0.1m/s.a.

Level a is the Absolute minimum flow rate that has been recorded, the design of the system ensures that the system will continuously flow even when minimal water is available. In terms of the wetland channel design, this value will determine the permanent water level within the system and permanent channel sizes. Plants that require permanent water will be planted in this zone.

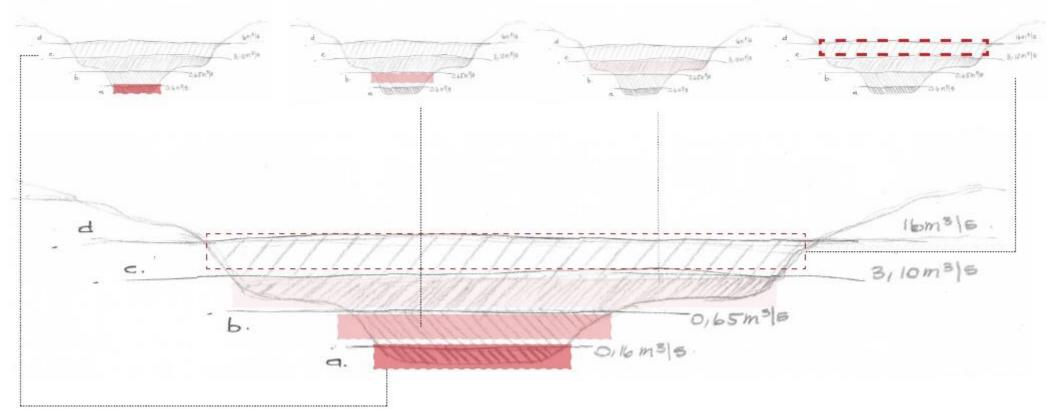
Level b is the Average minimum flow rate

that will pass through the system, this zone will be relatively permanent throughout the year and will be a zone of transitional planting for marginal plants


Level c will be determined by the Average maximum flow rate that passes through the system, if the volume of water at this level passes through the system at a speed of 0.1m/s, it ensures that smaller volumes of water will pass through at a slower rate, ideal for maximum purification.

This is a transitional zone between aquatic and terrestrial environments and will consist of marginal plants.

Level d, is the Absolute maximum and is the floodplain area which will aid in flood management .


The large volumes of water which will be passing through the system in such an event will not be able to pass through at a rate ideal for purification, but will be able to prevent damage downstream.

The design interventions will need to take into consideration the floodplain areas.

UNIVERSITEIT VAN PRETORIA UNIVERSITEIT VAN PRETORIA UNIVERSITEIT OF PRETORIA

CHANNEL A	CHANNEL B	CHANNEL C	CHANNEL D
Flow rate: 0.16m ³ /s	Flow rate: $0.65 \text{m}^3/\text{s}$	Flow rate: $3.10 \text{m}^3/\text{s}$	Flow rate: $16.35m^3/s$
= 0.08m ³ /s (division of river)	= $0.32 \text{m}^3/\text{s}$ (division of river)	= $1.55 \text{m}^3/\text{s}$ (division of river)	= $8.17m^3/s - 1.55m^3/s$
= 0.08m ³ /s passing through site	= $0.32 \text{m}^3/\text{s}$ passing through site	= $1.55 \text{m}^3/\text{s}$ passing through site	= $6.625m^3/s$ (division of river)
Water enters system at 0.08m ³ /s	Water enters system at 0.32m ³ /s	Water enters system at 1.55m ³ /s	$8.17m^3/s + 6.625m^3/s = 14.75m^3/s$
Required speed: 0.1m/s	Required speed: 0.1m/s	Required speed: 0.1m/s	
Area = $0.8m^2$	Area = $3.25m^2$	Area = $15.5m^2$	$14.75 \text{m}^3/\text{s} / 2 = 7.39 \text{m}^3/\text{s}$
Volume = $0.08 \text{m}^3/\text{s} \ge 60 \ge 60 \ge 24$	Volume = $0.32m^3/s \ge 60 \ge 60 \ge 24$	Volume = $1.55m^3/s \ge 60 \ge 60 \ge 24$	7.39m ³ /s passing through site
= $6912 \text{m}^3/\text{day}$	= 28 080m ³ /day	= $133 \ 920m^3/day$	Water enters system at 7.39m ³ /s
= $214\ 272 \text{m}^3/\text{month}$	= 870 480m ³ /month	= $4 \ 151 \ 520m^3/month$	Required speed: 0.1m/s
- 217 27 211 / monut	- 070 400m / month	- + 151 520m /month	Area = $73.9m^2$ - too large, speed will not be 0.1m.s

Figure 2.7.17 – Weir and Channel Sizing for Flow Rates (Author, 2015)

© University of Pretoria

STRATEGY₂

The water remaining in the Moreleta Spruit which is not diverted to the purification system needs to be treated as all storm water outlets from the urban runoff management system are located along the spruit. The highly polluted effluent requires treatment before joining the Moreleta Spruit. Pin point interventions are incorporated at the outlets, creating a treatment path for the water as it travels to the Moreleta Spruit.

Treatment of effluent on path to outlet into Moreleta Spruit, improving water quality before water is released into the natural river. Point specific purification of industrial stormwater Located at

Figure 2.7.18 – Strategy 2 (Author, 2015)

EFFLUENT MANAGEMENT APPROACH

Settling ponds, oil traps and trash traps need to be accessible for maintenance and waste removal purposes.

UNIVERSITEIT VAN PRETORIA UNIVERSITEIT OF PRETORIA

Through point specific purification strategies, water of a higher quality will be released into the natural systems.

Solubles

Incorporated planting to slow down flow of water and for uptake of nutrients and water purification of dissolved pollutants.

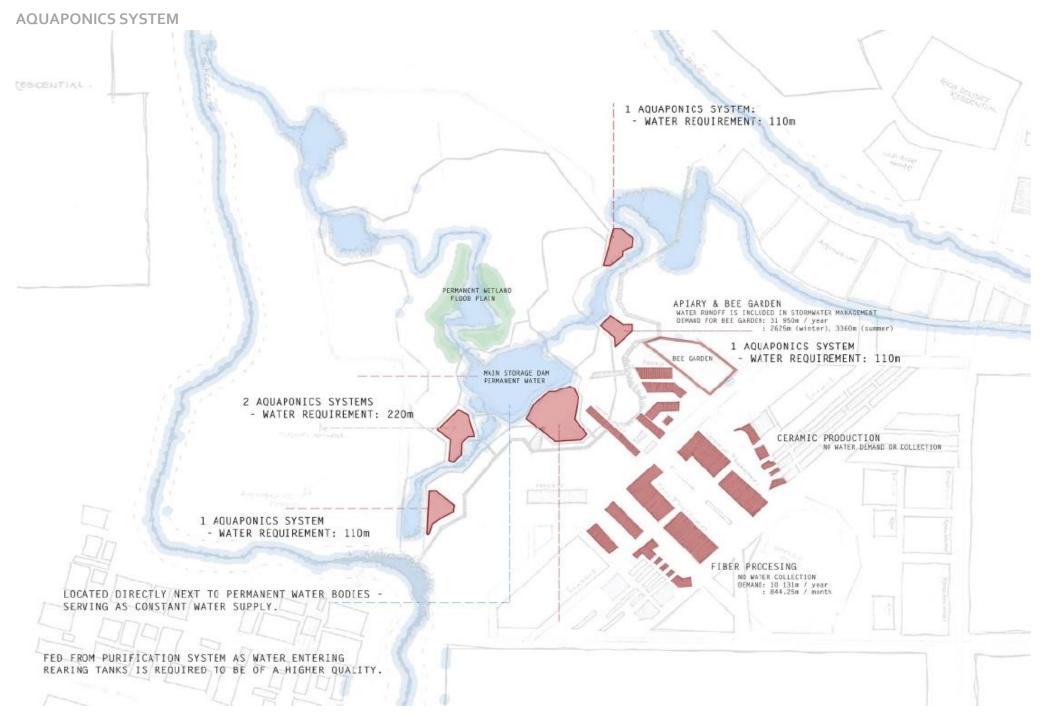
Suspended Solids

Settling pond for the removal of suspended particles and sediment in water

Oils and Greases

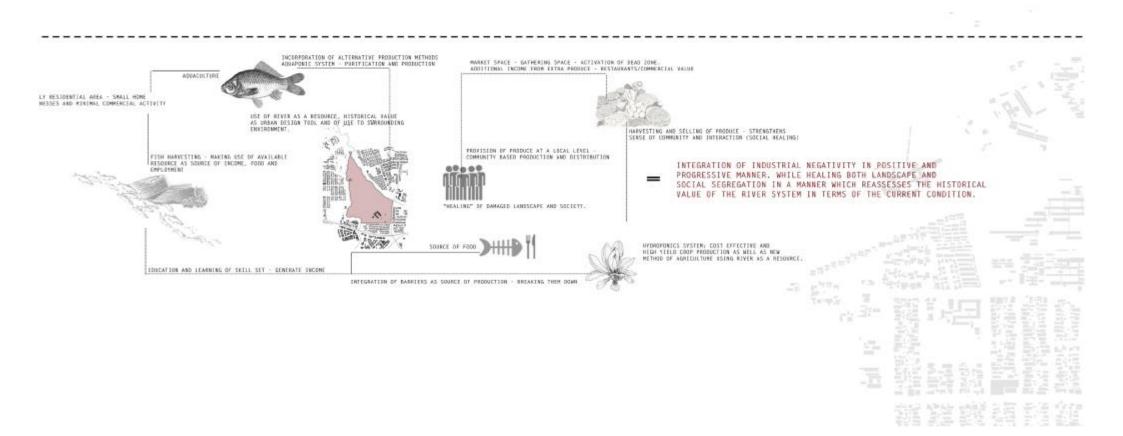
Incorporation of oil and trash trap in municipal passages between industries and dealing with greases and oils before water reaches natural system.

Nyelvendezne - Seming dan i

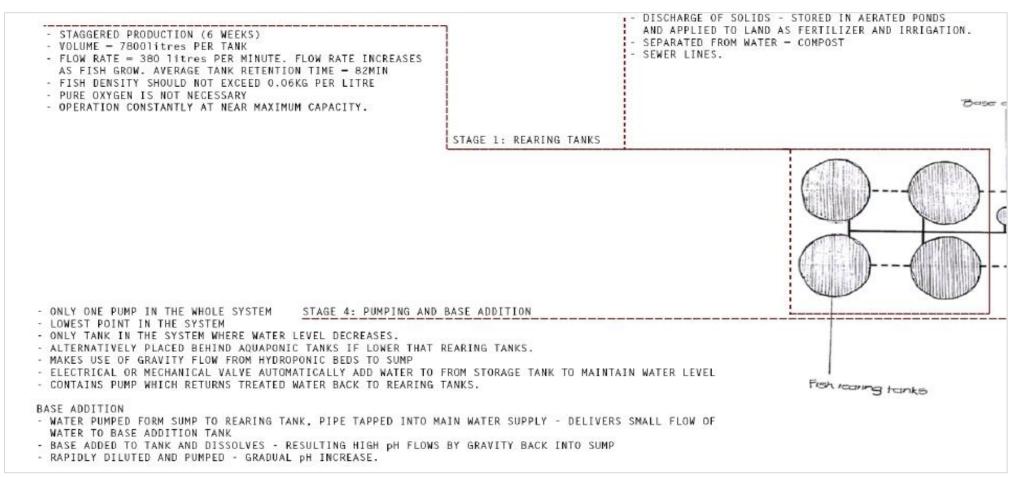

Ve MCI ecrept --- CSI Marp

aurisat pasiria * Nuharat Universitateni

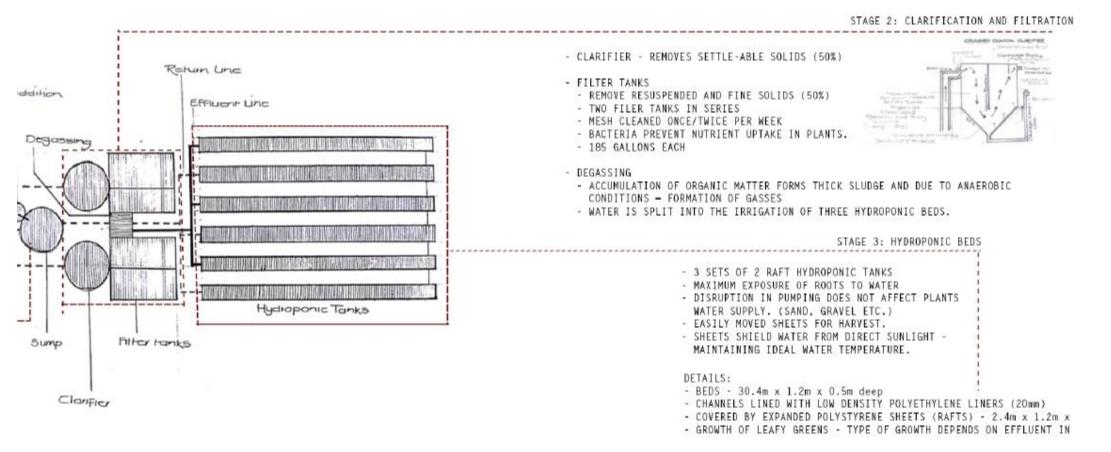
Effluent from industrial area.


Actor

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA VUNIBESITNI VA PRETORIA


UNIVERSITEIT VAN PRETORIA UNIVERSITTI VAN PRETORIA

SOCIAL AND ECONOMIC BENEFITS OF AQUAPONICS SYSTEM



AQUAPONICS SYSTEM

The approach to the project was the purification of the Moreleta Spruit and using the river once again as a natural resource to rebuild the lost connection between man and the natural environment. The choice of site location to be in a wasted landscape, a post-industrial landscape brought in the economic element and the isolation of man from industrial systems and processes. The incorporation of aquaponics was able to form a link between man and the natural environment as well as the natural and industrial environments. The recirculating system will be able to use the water from the purification system in the quarry, providing produce for the surrounding community and potentially external purchasers as a means of income for the area. The integration of the social, ecological and economic aspects around the introduction of this system to the area is a catalyst for further and more sustainable production practices within the urban environment. The water from the purification that comes from the Moreleta Spruit is successfully being used as both a resource, feeding and providing for the urban environment, as well as an urban design tool through the generation of public space centered around the functioning and production activities of the river. The fish species chosen is the Tilapia, one of the most successfully cultured fish for aquaculture. Tilapia occurs naturally in the river system but have sufficiently decreased in population as the quality of their natural environment was so drastically affected. There aquaponics system offers an opportunity to repopulate the river system if not all fish are harvested.

© University of Pretoria

UNIVERSITEIT VAN PRETORIA UNIVERSITEIT VAN PRETORIA VUNIBESITHI VA PRETORIA

AQUAPONICS SYSTEM FLOW RATES AND DESIGN

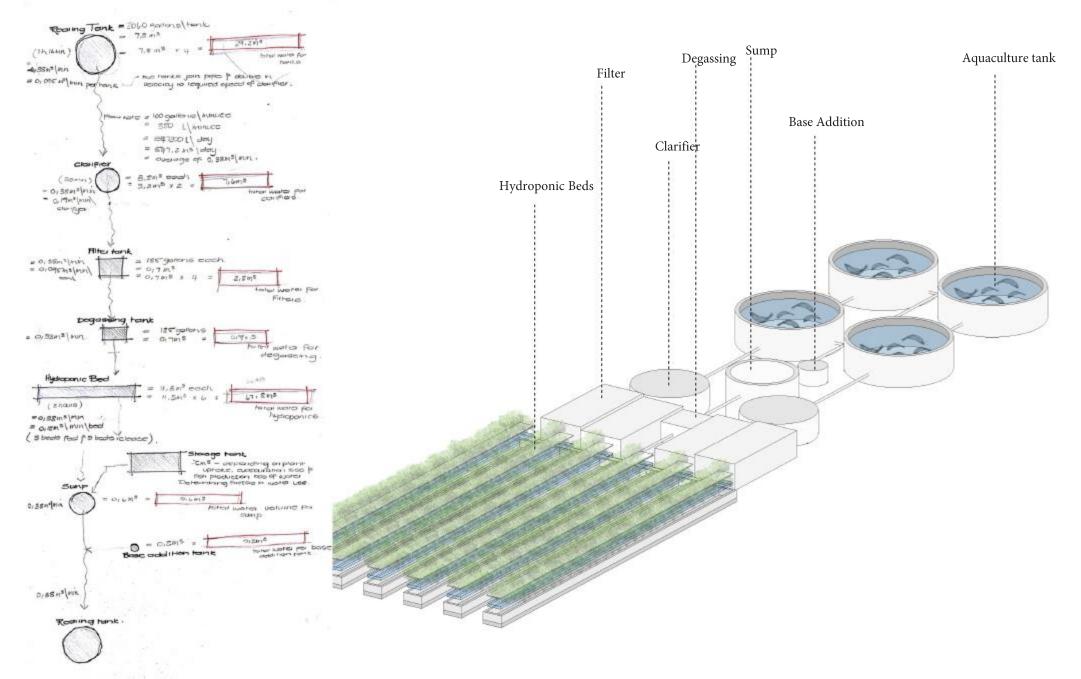


Figure 2.7.23– Aquaponics Systems Design and flow rates (Author, 2015)