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Abstract 

The establishment of Trans-frontier Conservation Areas in southern Africa facilitates the 

roaming of wildlife across international borders. The probability of disease transfer 

associated with wildlife and livestock contact zones is a cause of concern for conservationists 

and local communities. Assessing and monitoring vegetation is an important part of 

ecological research and management, as vegetation characteristics are often fundamental to 

habitat differentiation. In the challenge to find cost-effective ways for vegetation monitoring, 

remotely sensed data such as satellite imagery offers a possible alternative to field based 

techniques. However, imagery with good spatial, spectral, radiometric and/or temporal 

resolution may be too expensive for frequent use. This study investigated the potential and 

challenges associated with the analysis of mainly savanna vegetation structure using in-situ 

observations and pixel-based classifications derived from multispectral SPOT 5 images in a 

selected subset of the Greater Limpopo Trans-frontier Park (GLTP).  

The availability of cost free SPOT 5 imagery and the suitability of currently available land 

cover and ancillary information in the GLTP area were investigated and described. Using the 

acquired imagery, supervised (Maximum Likelihood) and unsupervised (ISODATA) pixel-

based classification methods were examined and tested. Normalized Difference Vegetation 

Index (NDVI) and Second Modified Soil Adjusted Vegetation Index (MSAVI2) values were 

added as additional bands to the SPOT 5 image bands. Pair separation statistics and 

thresholds were used to evaluate and describe the potential effect of training area sizes and 

image-index band combinations on classification results. Classified images were assessed 

using qualitative (visual comparison) and quantitative (error matrix) methods. The 

applicability of estimated desktop and in-situ field observations as ground truth validation 

tools were evaluated and compared. From the various classified products, the most suitable 

classified image was selected and an appropriate level of generalisation was chosen based on 

overall accuracy and Kappa values.  The potential sources of error inherent in all processes, 

such as field based observations, image acquisition, pre-processing, classification, 

generalisation and interpretation, have been acknowledged and described. Visualising 

techniques and guidelines aimed at the thematic presentation of a classification product along 

with its associated confidence levels were explored and illustrated. Furthermore, the 
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incorporation of ancillary information to improve the applicability of the results was 

illustrated. 

This study revealed, illustrated and discussed the influence of image resolution, classification 

methods, band selection, vegetation indices and training area characteristics on the suitability 

of remote sensing to classify vegetation characteristics in remote or inaccessible savanna 

areas. From the results it can be concluded that the use of medium resolution multispectral 

SPOT 5 imagery for pixel-based classification of vegetation structure in the study area may 

be limited in its application value and should be used perceptively and with caution.  Overall 

it must be noted that although the use of satellite imagery as a whole may have reached 

almost unlimited potential, there are still many challenges for researchers in the various 

application fields of this technology.  

Keywords:  Vegetation structure, Savanna, Image classification, SPOT 5, Thresholds 
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Chapter 1  Introduction 

This chapter provides background information about the motivation for this research, the 

application potential and the physical location of the study area. The research problem, aim, 

objectives and limitations are also discussed. Finally, the possible significance of the research 

is offered and an overview of the rest of the dissertation is provided. 

1.1 Background 

A common challenge within wildlife management and ecological studies is the establishment 

of cost effective methods for vegetation classification and the monitoring of seasonal changes 

in forage resource quantity and quality. This is particularly relevant in regions with high 

spatial variation in vegetation type and structure. The available vegetation information in a 

study area may be restrictive. For instance, the data may lack the spatial scale, temporal 

characteristics or vegetation class delineations required for a particular application. 

Field based vegetation studies are generally costly and time-consuming and even more so in 

remote or inaccessible areas (Liu et al., 2007). In recent years the use of satellite imagery 

became a focal point of numerous vegetation related studies. Vegetation indices for 

vegetation classification derived from Landsat imagery were already in use during the early 

1970s (Tucker, 1979). Since then, the use of remotely sensed data for vegetation studies has 

been reported widely in the literature (Kawamura et al., 2005, Zhang et al., 2003, Nagler et 

al., 2001). Remote sensing imagery is constantly being acquired by a wide range of airborne 

or space-borne sensors with an equally varied range of attributes. Important attributes of 

imagery are its spatial, spectral, temporal and radiometric characteristics, but very often the 

availability and cost of required imagery may be equally important. 

In biogeographically-centred research projects the cost and practicalities associated with a 

particular solution may often influence its suitability. Data with a high temporal frequency, 

high spatial resolution or high spectral resolution may often be too expensive to be applied as 

a portion of a larger geographic or environmental analysis, especially if it needs to be 

repeatable. 
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Even in the case of smaller geographical extents, it may not be possible to monitor vegetation 

cost-effectively in an area by aircraft mounted sensors, high resolution satellite sensors or 

even sensors attached to Unmanned Aerial Vehicles (UAVs).  More accessible types of 

remotely sensed data with lower spatial and temporal resolutions like MODIS, Landsat and 

SPOT, may however still add value to such projects. The value of remotely sensed data in the 

depiction of environmental conditions like foliage-height diversity and horizontal vegetation 

structure is underlined in a paper by Wood et al. (2012).  Additionally, studies by Gillespie et 

al. (2008), Turner et al. (2003) and Roughgarden et al. (1991) on the subject of biodiversity 

assessments, as well as Laurent et al. (2005) on the prediction of wildlife occurrences, 

underlined the value of remote sensing data in ecological research. Kerr and Ostrovsky 

(2003) and Turner et al. (2001) also cautions that analysis techniques in ecological studies 

should allow for the integration of supplementary ecological data and suggests that 

researchers should be aware of both the potential and the pitfalls associated with satellite 

information. 

1.2 Motivation 

Since 2003, the establishment of Trans-frontier Conservation Areas (TFCAs) in southern 

Africa (Figure 1.1) facilitates the roaming of wildlife across international borders between 

South Africa and its neighbouring countries.  

 
Figure 1.1 Trans-frontier conservation areas in southern Africa 
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At the time of the introduction of the southern-African TFCAs, the concept of trans-border 

protected areas was already promoted by the World Conservation Union (Sandwith et al., 

2001). An initial feasibility study completed by Tinley and Van Riet (1991) recommended 

further studies to better assess the political, socio-economic and ecological implications of 

introducing a trans-frontier conservation scenario. A follow-up report commissioned by the 

World Bank (1996) suggested greater emphasis on multiple resource use by local 

communities and envisaged the linking of these communities with the goals of biodiversity 

conservation. However this report also acknowledged potential complications due to the 

increased risk of disease transfer between animals.  

One of the most prominent (largest) TFCAs in southern Africa is the Great Limpopo Trans-

frontier Park (GLTP). This core area of more than 37 000km2 was proclaimed by way of an 

international treaty signed on 9 December 2002 (SANParks, 2013) and connects established 

protected areas across the borders of three countries, linking the Limpopo National Park in 

Mozambique, Kruger National Park (KNP) in South Africa and the Gonarezhou National 

Park (GNP), Manjinji Pan Sanctuary and Malipati Safari Area in Zimbabwe (Figure 1,2).  

 

Figure 1.2 The Greater Limpopo Trans-frontier Conservation Area (GLTFCA)  
(Source: http://www.peaceparks.co.za) 
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Two added areas between the KNP in South Africa and the GNP in Zimbabwe, namely the 

Sengwe communal land in Zimbabwe and the Makuleke region in South Africa facilitates the 

interconnectivity of the established conservation areas. Figure 1.2 also illustrates the extent of 

a proposed second-phase Greater Limpopo Trans-frontier Conservation Area (GLTFCA) of 

up to 100 000km2 which is planned to include even more of the bordering private and state-

own protected areas (Peace Parks Foundation, 2013). Cummings (2004) mentions the 

possible major implications for animal disease control associated with a large “edge effect” 

along areas with diverse tenure in the GLTFCA.  

The probability of disease transfer is a cause of concern for conservationists and communities 

alike. A better understanding of the driving forces influencing wildlife and livestock overlap 

trends is vital to conservation and rangeland management, and even more so in semi-arid 

savanna environments similar to the GLTP (Zvidzai et al., 2013, Cumming, 2004). Wildlife 

related diseases such as Bovine tuberculosis (BTb) and Foot and Mouth Disease (FMD) 

which may generate substantial economic losses for the livestock sector of beef producing 

regions and could adversely impact on the livelihoods and health of rural communities (Jori 

et al., 2009).  Similarly, wildlife species may also be negatively affected by alien pathogens 

transferred from domestic animals (Caron et al., 2013). 

Among wild south-African species, buffalo (Syncerus cafer) is known to be one of the key 

species responsible for the maintenance and potential spread of diseases (de Garine-

Wichatitsky et al., 2010). Recent detection of BTb strains originating from KNP in buffalo 

from the Gonarezhou National Park (GNP-Zimbabwe) may indicate an association with the 

dispersion of pathogens and the movement of buffalo (or cattle) across international borders 

(de Garine-Wichatitsky et al., 2010, Caron et al., 2003) 

A project focussed on studies pertaining to the trans-boundary movements of buffalo within 

the GLTP was launched by CIRAD1 in 2010. In collaboration with the veterinary authorities 

from Zimbabwe, South Africa and Mozambique, GPS collars were deployed in selected 

buffalo herds from the three countries. Preliminary data of buffalo movements demonstrated 

that the buffalo herds moved frequently across the international boundaries. Research 

1 CIRAD is a French research centre working with developing countries to tackle international agricultural and 
development issues 
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conducted in 2010-2011 indicated an incidence of FMD antibodies in cattle populations that 

varied among sites as a function of the contact rate with African Buffalo (Miguel et al., 

2013). A better understanding of the factors influencing the movement dynamics and grazing 

patterns of buffalo herds in the high risk contact areas could assist wildlife managers and 

community members in the prediction of possible contact zones and the initiation of timely 

preventative methods to limit possible transfer of pathogens between wildlife and livestock. 

Amongst various biotic and abiotic factors, forage resources are often cited as a prominent 

driver of animal movements (Boone et al., 2006, Fryxell et al., 2004, Musiega and Kazadi, 

2004). In this regard vegetation structure and species composition is fundamental to habitat 

differentiation in areas like the KNP (Venter, 1990). Forage resources in natural areas are 

generally related to the climate, landforms, geology and soils which, in the case of the 

Greater Limpopo Trans-frontier Park (GLTP), is highly variable. The nature of available 

vegetation information sources for this area varies in scale, characteristics and across national 

and/or park borders. Structural vegetation classifications can provide simple, consistent 

results for a variety of purposes and must be seen as complimentary to floristic and other 

types of vegetation analysis (Edwards, 1983). A uniform description of vegetation structure 

in a diverse study area like this may be a first step towards an adjustable forage estimation 

tool for better understanding of current animal movement patterns.  

In recent years a myriad of sensors and remote sensing methods developed in quick 

succession (Dhumal et al., 2013, Kar and Kelkar, 2013, De Roeck et al., 2009). 

Notwithstanding the immense scientific and technological advancements within the remote 

sensing industry, imagery with superior spatial, spectral, radiometric and/or temporal 

resolution(s) are still too expensive to be used cost-effectively in most continuous 

environmental monitoring environments, especially those in the developing world (Cho et al., 

2012). Several recent studies in the KNP utilized hyperspectral imagery like HYmap in the 

analysis and /or prediction of potential forage resources with great success (Mutanga, 

Skidmore, & Prins, 2004, Mutanga & Skidmore, 2004 and Skidmore et al., 2010). However, 

the availability and accessibility of hyper spectral data in southern Africa is expensive and 

severely limited. Despite the merits of hyperspectral imagery, the high financial and logistical 

input required for obtaining hyper spectral data currently disqualifies this type of data for 

ecological research that may require continuous or repetitive analysis. 
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When seeking meaningful ways to evaluate the landscape, researchers in Africa are mostly 

limited to freely available MODIS and Landsat multispectral imagery that may be 

downloaded from various web portals. Additionally, South African researchers and 

government organisations have - through the South African National Space Agency 

(SANSA) - access to free SPOT 4 and 5 images. Imagery from the SPOT 6 sensors launched 

in 2012 may also become available under a multi-user government agreement. However, the 

usefulness and availability of these SPOT images from the SANSA catalogue may be subject 

to, amongst others, atmospheric conditions and limited download periods. 

1.3 Location and characteristics of study area 

In a bid to support other research efforts in the GLTP, the test surface for this research is an 

area of approximately 87.243 km2 (87 243 Ha) which coincides with movement data 

associated with three buffalo and seven cattle herds tracked along the far northern boundary 

of the Kruger National Park (KNP). The choice of study area and the target classes for 

analysis where influenced by requests and input from CIRAD researchers currently working 

in the region. This area (Figure 1.3) is diverse with regards to land cover and land use. Due to 

the practical, logistical and financial limitations, the Pafuri land system within the borders of 

the KNP, about 42% of the total study area, was considered to be the core study area for field 

visits. Adjacent areas to the west and north are included as a larger application area where 

contact with domestic livestock may occur (Figure 1.3). In the study region, the accessible 

and open Limpopo river valley as well as areas where tracts of the KNP fence line have been 

removed, allow natural movement of game between all sectors of the GLTP and facilitate 

probable contact between wildlife and livestock. 

Although the KNP has been the focus of scientific studies for decades, the location of the 

Pafuri land system in the far northern KNP is remote with limited road access in some areas. 

A large portion of this region comprises of the Makuleke Contractual Park which is owned by 

the Makuleke Community Property Association (CPA) but managed by the South African 

National Parks Board (SANParks). The conservation protocol in the region serves as a 

showcase of a sincere effort to harmonize biodiversity conservation with the interests of local 

communities in South Africa. This area also includes the Makuleke Wetlands, a system of 

inland pans within the Limpopo and Luvhuvhu floodplains which has been proclaimed an 
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official Ramsar site in 2007 (www.ramsar.org). In the 2008 management plan for the Kruger 

National Park, this area is classified as “primitive” with limited access, wilderness qualities 

and controlled access with regards to numbers, frequency and the size of tourist groups 

allowed (Freitag-Ronaldson and Venter, 2008). Adjacent to the KNP in the west is an 

additional small contract park area and also the Makuya National park. Management 

approaches in these two areas are currently unclear with very little information publically 

available.  

 
Figure 1.3 The study area in the Greater Limpopo Trans-frontier Conservation Area 

(GLTFCA). Delineations regarding land use ownership, land use, wetlands and proposed 
protected areas are illustrated 

 

Mixed land uses occur in the broader application area adjacent to the GLTP. The rest of the 

study area on South African soil includes various land uses but mostly consists of communal 

land with small scale crop production and livestock farming. The section of the study region 

that occurs in southern Zimbabwe includes mainly rural communal areas where mixed dry 

land cultivation and traditional livestock farming occurs (FAO, 2004). Livestock here 

includes small stock like chickens and goats as well as relatively small (less than 10 head per 

household) cattle herds (FAO, 2004).  

Although the Pafuri land system is considered as being part of the broader savanna biome in 

its entirety, the zone is complex and highly variable with regards to underlying geology, soils 
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and vegetation (Venter, 1990). This land system represents the driest area within the KNP 

with a high annual variability in precipitation and a long term annual precipitation average of 

only 422mm (Deacon, 2007). This is also essentially a summer rainfall area, with most 

precipitation occurring from November to March but very low or no precipitation between 

May and August.  Average monthly temperatures drops to 9°C in winter (Jun-Aug) but often 

rises to above 31°C in summer months (Nov-Febr) (Figure 1.4).  

 

 

Figure 1.4 Average temperature and precipitation in the Pafuri region measured between 2000 
and 2012 

(Source: http://www.worldweatheronline.com/Pafuri-weather-averages/Gaza/MZ.aspx)  
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Extreme maximum temperatures above 40°C in summer add to very high evaporation figures 

which exceeds the rainfall by more than 2300mm per year (Deacon, 2007). The flood plains 

of the Levuvhu and Limpopo rivers are prone to flooding after heavy rainfall episodes in their 

respective catchment areas. These catchment areas are mainly located outside the boundaries 

of the conservation area. 

1.4 Problem statement and study rationale 

The broader geology, geomorphology and vegetation zones for the KNP are well researched 

(Venter, 1990, Gertenbach, 1983, Van Rooyen, 1978), but detailed and current studies for 

this area are not readily available. Available information for the adjacent regions of concern 

is mostly unconsolidated, acquired at a very coarse scale, or not available in the public 

domain. A common description of vegetation structure across the whole study area may be 

used as input in conjunction with plant phenology and additional environmental data to 

establish forage estimation models. 

Due to the remoteness of the area and because of the fact that it extends across international 

borders, continuous and effective in-situ field sampling to measure and assess vegetation 

characteristics in the study area may be an impossible and very expensive task. If an 

acceptable level of vegetation structural analysis can be achieved with remotely sensed data, 

this may be a cost-effective method to assist in the vegetation classification of similarly 

remote or inaccessible savanna areas. Although savannas – often also referred to as tropical 

grasslands – are known as a world biome, the factors determining the status of these areas are 

not clear-cut. Various aspects like seasonality, grazing, soil, geomorphology and fire have 

been cited as important causal factors to the presence and condition of this vegetation type 

(Kent and Coker, 1992).  

The fact that savanna vegetation is essentially a double layered system with a canopy formed 

by varying densities of trees and shrub and a lower layer of sub-strata consisting of grass and 

herbaceous vegetation – also in varying densities, results in a very complex problem when 

classifying vegetation with remote sensors that essentially measures what is perceived from 

above (Higgins et al., 2011, Hill et al., 2011, Tuanmu et al., 2010). The applicability of 

satellite imagery for structural analysis of vegetation is restricted by various factors which 

include the ground sampling distance (GSD) of the image sensor (spatial resolution), the 
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wavelengths or bands of measurement (spectral resolution), the frequency of measurements 

(temporal resolution), the various radiometric and geometric characteristics associated with 

the specific sensor instrument used, the availability of and accessibility to suitable imagery 

and ultimately the size of the study area and the accuracy requirements of the project. This 

study is mostly reliant on the SPOT5 image classification supported by estimated in-situ field 

recordings and field photographs. 

A description of the issues surrounding the use of SPOT 5 images in vegetation analysis, 

classification and analysis procedures may be of value to other researchers in similarly varied 

savanna conservation areas. 

1.5 Research Aim and Objectives 

This research effort aims to investigate the potential use of pixel-based classifications derived 

from 10m multispectral SPOT 5 images as well as in-situ observations to analyse vegetation 

structure in a selected subset of the GLTFCA area.   

The following specific objectives will expound on the project aim: 

• To investigate the suitability of using free SPOT 5 imagery to analyse vegetation 

structure in the GLTFCA area. 

• To assess the effect of image band combinations, vegetation indices and analyst 

interpretation when using standard supervised and unsupervised pixel-based 

classification methods towards classifying savanna vegetation using SPOT 5 imagery. 

• To evaluate pixel-based classification approaches within the realm of the uncertainties 

inherent to the classification methods used and to assess the relevance of estimated 

desktop and in-situ field observations as ground truth validation tools. 

• To illustrate visualising techniques and application options aimed at the dissemination 

of thematic information which may compliment conservation management efforts in 

the GLTFCA region.  
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1.6 Dissertation statement 

The effectiveness of remote sensing in vegetation classification is determined by image 

availability, sensor characteristics, the methods applied, the type of vegetation and the output 

required (Kar and Kelkar, 2013, Turner et al., 2003, Woodcock and Strahler, 1987). In the 

study area for this project, various application conundrums are associated with all of the 

above mentioned aspects. 

1.7 Delineations, limitations and assumptions 

A myriad of approaches and methods could potentially be applied in a research effort like 

this. For the sake of clarity, the delineations, limitations and assumptions associated with this 

study are explained from the onset. 

1.7.1 In-situ observations 

Due to accessibility and logistical issues, field work was limited to the core study area 

in the Kruger National park and only a limited number of field work sites could be 

visited. This fact impacts on the usability of these ground truth points for useful 

quantifiable accuracy statistics. 

1.7.2 Vegetation classification and data 

The study is focussed on vegetation structure analysis and although certain plant 

communities may be mentioned, there is no attempt to achieve a floristically based 

classification in the field assessments or with regards to image classification. 

1.7.3 Ancillary data sources 

Only freely available ancillary data sources are considered or used. The scale and 

availability of these data sources may vary between the different land use areas in the 

study area. 

1.7.4 Satellite imagery and data analysis 

For image analysis in this study, only SPOT5 imagery freely available from SANSA 

and within a one year period (September 2010 to September 2011) is considered. For 

11 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



validation purposes, an attempt was made to obtain higher resolution data through the 

DigitalGlobe Foundation. The most suitable data available on the DigitalGlobe search 

engine was limited to a small north-south strip of IKONOS imagery acquired in 

February 2010. Although these images could have been useful in setting up an 

additional validation dataset, the request for free data was unsuccessful due to the 

high volume of applications that the DigitalGlobe Foundation receives per month and 

the filters and quotas applied to image requests. From this it can be deducted that one 

cannot make the assumption that high resolution satellite imagery will be obtainable 

for validation purposes. 

1.7.5 Image analysis 

Only standard pixel-based classifying methods (supervised and un-supervised) and 

published indices were considered for use in this study. It is acknowledged from the 

onset that uncertainties will exist in a pixel-based classification process of savanna 

vegetation – especially due to the fact that a large percentage of pixels are not pure. 

An attempt will be made to report these uncertainties in all cases. 

As will be discussed in Chapters 2 and 4, image classification as presented in this text 

is in its core a subjective process and closely associated with the interpretation and 

skill of the analyst. 

1.7.6 Application limitations 

A satisfactory level of spatial correlation between datasets was not always achieved 

and these issues will be declared where applicable. 

Within the constraints mentioned above, the structural vegetation classification 

method applied in this study assumes at least some relationship between tree canopy 

size and tree height. This may not be equally true in all the described vegetation 

classes. Anomalies in this regard will be discussed.  

Despite differences in land use in the core study area and the adjacent application 

areas, a similarity between the natural vegetation types present is assumed.   
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It is acknowledged that the effects of overgrazing, trampling, fire and other damage 

could impact on results but although the effects of these aspects may be mentioned, 

they are not the core issues in this study. 

Spatial prediction of habitat selection is a complex issue which preferably should also 

include specie behavioural modelling (Roever et al., 2014). Although it is hoped that 

the classification products of this research will be useful with regards to further 

studies on buffalo movement dynamics, aspects pertaining to the animal telemetry fall 

outside the scope of this current study. 

1.8 Significance of the study 

The significance of this study lies within its attempt to describe and acknowledge some of the 

limitations that may currently exist in southern Africa with regards to the use of remotely 

sensed data in savanna biomes. The issues discussed in this dissertation should emphasise the 

factors that impact on the accuracy and application value of image classification products. 

The discussions and findings may assist researchers in the fields of environmental sciences, 

wildlife management and geography to decide up-front on the suitability of SPOT 5 (or 

similar) image analysis for a specific research topic.  

Furthermore the various described pitfalls associated with different well-known vegetation 

analysis strategies should augment critical thinking by environmental researchers when using 

results derived from satellite imagery. The scope of this study therefore encompasses the 

fields of Remote Sensing, Geographical Information Science and Environmental research in 

southern Africa. 

1.9 Chapter Outline 

Chapter 2: Literature review 

The literature review for this research focussed on relevant scholarly articles and official 

documents on trans-boundary conservation and drivers of animal movements as well as 

applicable vegetation and remote sensing studies in the study region. 

  

13 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 3: Target classes and field based observation 

This chapter provides an overview of the materials and methods used for in-situ observations. 

Additionally, the process of selecting the target classes for the image classification processes 

used in Chapter 4 is explained. 

Chapter 4: Image classification: Data and methods 

Processes with regards to image acquisition, pre-processing, classification and post 

classification are described and explained. Various methods are investigated in attempts to 

limit the effect of factors which may introduce error and uncertainty to research results. 

Chapter 5: Evaluation of classification methods and results 

The success of qualitative and quantitative evaluation methods which may be applied to 

assess the success of SPOT 5 pixel-based classification results are described and discussed. 

Chapter 6: Mapping the results of classification processes 

Various factors which may influence the visualisation of classification results in thematic 

maps are described. 

Chapter 7: Conclusions and Recommendations 

In this chapter, the methods used and results obtained are summarized and discussed based on 

the four research objectives. 
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Chapter 2 Literature review 

Literature review for this research contains a review of relevant scholarly articles and official 

documents focussed on six main aspects: 

• Trans-boundary conservation initiatives (globally and locally) 

• Vegetation as a driver of animal movements 

• The characteristics of savanna vegetation 

• Vegetation classification based on selected vegetation characteristics 

• Important land cover and vegetation studies applicable to the study region  

• The use of remote sensing in vegetation classification 

• Factors which may influence the visualisation of classification results 

2.1 Trans-boundary conservation initiatives 

Word wide, trans-boundary natural resource management (TBNRM), is viewed as a viable 

approach to regional natural resource management and substantial amounts of time and 

money are being channelled towards these efforts (Van der Linde et al., 2001). The interest in 

these ventures grew from 136 cases worldwide as reported in 1997 (Zbicz and Green, 1997) 

to around 169 in 2001 (Table 2.1) and an estimated 230 in 2009 (Büscher and Schoon, 2009). 

In 2001, a substantial portion (36%) of the reported transboundary initiatives involving 34 

countries and 148 individual protected areas was located in Africa (Table 2.1). Of these, 

about 20 are located in the Southern African Development Community (SADC) (Büscher and 

Schoon, 2009). 

Table 2-1 Trans-boundary protected area complexes worldwide and in Africa  
(adapted from Van der Linde et al., 2001) 

 Number of protected 
area complexes 

Number of countries 
involved 

Number of individual 
protected areas involved 

Worldwide 169 113 667 

Africa 35 34 148 
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There are different concepts and terminology - with slight variations in meaning - associated 

with cross-border biodiversity and conservation (Van Amerom and Büscher, 2005). For 

clarity in this dissertation, the term Trans-frontier Parks (TFPs) refers to trans-boundary 

zones where the land use is strictly conservation, whilst reference to Trans-frontier 

Conservation Areas (TFCAs) refer to areas which may comprise of multiple land use types, 

including conservation, rural community-managed natural areas and concession hunting 

grounds (Van Amerom and Büscher, 2005). 

The concept of “Peace Parks” is often used in association to TFPs and TFCAs and hints 

towards the wider application levels of these regions to include not only the goals of 

conservation and preserved biodiversity but also to promote community ownership and 

development, sustainable inter-governmental collaboration and a drive towards improved 

regional coordination of resources (Büscher and Schoon, 2009, Van Amerom and Büscher, 

2005).  

In southern Africa, the Great Limpopo Trans-frontier Park (GLTP) encapsulates a core area 

of 37 000km2 along the connecting borders between South Africa, Zimbabwe and 

Mozambique. As shown in Figure 1.2, a proposed extended area of 100 000km2, often 

referred to as the Greater Limpopo Trans-frontier Conservation Area (GLTFCA), forms part 

of future conservation management planning in the region (Caron et al., 2013, Cumming, 

2004). The establishment of a GLTFCA assists the movement of wildlife through 

international borders and extends the possibility of contact between wildlife, people and 

domestic life stock. Concern exists about the spread and control of wildlife related diseases 

which may generate substantial economic losses for the livestock sector of beef producing 

regions (Jori et al., 2009). 

Main diseases that can be carried and transmitted by both wildlife and domestic livestock in 

and around the Great Limpopo Trans-frontier Park (GLTP) includes Bovine Tuberculosis 

(BTb), Bovine Brucellosis, Foot and Mouth Disease (FMD), Corridor Disease, Distemper, 

Rabies and African swine fever (Bice, 2004). According to this 2004 GLTP newsletter, the 

animals generally affected by these diseases include kudu (Tragelaphus strepsiceros), buffalo 

(Syncerus caffer), warthogs (Phacochoerus africanus), impala (Aepyceros melampus), 

domestic cows (Taurus/indicus hybrids), pigs (Sus scrofa domesticus) and sheep (Ovis aries), 
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whereas domestic dogs (Canis familiaris) also present concerns with regards to rabies and 

distemper. The newsletter also reported that there were, at the time, approximately 20 000 

people living inside the Limpopo National Park in Mozambique with their roaming livestock 

consisting of approximately 10 000 cattle, 6 000 goats and 2 000 sheep. Although similar 

conditions are likely to exist in surrounding areas, specific information could not be found for 

the relevant communal areas and reserves located in Zimbabwe.  

The Sengwe communal lands in the south eastern lowveld of Zimbabwe separate the 

Gonarezhou National Park (GNP) from the KNP. These communal lands in Zimbabwe 

encompass zones included in a proposed wildlife migration corridor between the KNP and 

the GNP (Wolmer, 2003). A document released by the United Nations Food and Agriculture 

Organization (FAO) in 1997, refers to this region in southern Zimbabwe and the Limpopo 

valley as “low lying with erratic rainfall and widespread farming” (1997). Land-use patterns 

in Zimbabwe have since been influenced by land invasions and associated problems during a 

period of economic and political instability, but regardless of such events, the region may 

benefit by the comparative ecological and economic advantages often associated with 

wildlife-based land uses (Du Toit, 2005). The wildlife industry may also include new 

participants, either on a community basis or as individual entrepreneurs and in order to 

support this, more comprehensive stakeholder dialogue and planning with regards to farming 

methods and disease control will be needed (Du Toit, 2005). In South Africa, communal land 

in the Vhembe district of the Limpopo province borders the GLTP along the north-western 

boundary of the KNP.  

2.2 Vegetation as a driver of animal movements 

A review of the scholarly work on animal movement dynamics revealed that the 

identification of causal factors that may influence the movement of large herbivores, is 

complex (Bailey et al., 2006, Bowers, 2006, Fryxell et al., 2004). Several biotic and abiotic 

factors are listed as influential to movement patterns, but available forage is often noted as 

one of the key drivers of these movement trends (Bar-David et al., 2009, Winnie et al., 2008, 

Bailey et al., 2006).  

A research methodology reported in Winnie et al. (2008) examined the variation in spatial 

distribution of African buffalo in relation to geologic substrate and the variation in food 
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quality and quantity in the KNP. In the mentioned research a Normalized Difference 

Vegetation Index (NDVI) derived from 30 m resolution Landsat satellite imagery (the 

Environmental Thematic Mapper (ETM)), was used as a measure of vegetation quality. In 

addition to this, forage quantity information obtained from SANParks Veld Condition 

Assessments (VCA) and three years of radio-tracking data were employed to assess the 

impact of forage quality, quantity, and heterogeneity on the distribution and movement 

behaviour of African buffalo in the KNP. Forage quality & heterogeneity emerged as a 

important driver of buffalo behaviour in spite of the fact that buffalo is seen as a “herd-

living” species with a well-established need for water (Winnie et al., 2008).   

Research completed by Redfern et al. (2003) also states the challenge of identifying 

determinants of herbivore movements on landscape scale2. Although this research mainly 

examined correlations between animal movements and water resources, it also mentions the 

work done by Rutherford (1980) which indicated that forage quantity is positively correlated 

with rainfall and forage quality. Redfern et al. (2003) also mentioned research conducted by 

Bell (1982), Venter (1986) and Scholes (1990) which suggested that the differences in the 

nutrient-rich clay soils of the basalt-dominated eastern KNP landscape and the nutrient-poor 

sandy soils of the granite-dominated western KNP landscape could largely serve as a 

“potential surrogate” for forage quality whilst precipitation is then a determinant for forage 

quantity.  The Redfern study dated 2003 also differentiates between browsers and grazers - 

including specific reference to buffalo – and results suggested that large grazers like buffalo 

tend to roam further away from water sources when forage quantity is reduced. Unfortunately 

the conditions in the far northern parts of the KNP have been omitted from the Redfern study 

due to data limitations in this region. 

Various other studies within South African and similsr conservation areas included more 

comprehensive analysis of available forage (grass) and even faecal analysis with or without 

the added benefits of remotely sensed information (Macandza et al., 2004, Tshabalala et al., 

2010).  

2 The term “landscape scale” has not been interpreted consistently between texts and disciplines. The Redfern 
study differentiates between two “landscapes” within the KNP based mainly on soil characteristics derived 
from the parent material. 
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The results of all the above mentioned studies reiterate the notion that there are definite 

adaptive changes made by buffalo herds in response to seasonal vegetation variations but it 

must be noted that there are also noticeable variations to the nature of these reported 

responses in different environments which may indicate that the results and methodologies 

cannot necessarily be readily applied to other regions. 

2.3 The characteristics of savanna vegetation 

Savanna vegetation covers vast areas on the globe and has been the focus of numerous books, 

articles and scientific papers. The discussion here touches on only a few primary global and 

regional characteristics. Savannas are ecosystems associated with global rangeland, livestock 

and wild herbivore biomass and are characterized by the co-existence of trees and 

herbaceous/grass cover, where the woody cover is then often considered the main 

determinant of its properties, (Sankaran et al., 2005, Solbrig et al., 1996, Scholes and Walker, 

1993). Within continents, regional differences in soil and climate often regulate the principal 

types of savannas while at local scales, differences in topography and geomorphology may 

impact local vegetation structure and floristic composition (Solbrig et al., 1996). The 

descriptive term “savanna” has therefore often been applied to somewhat varying forms of 

vegetation and with localised terminology dependant on the specific continent and region 

(Cole, 1986).  In Africa - south of the equator – the definition of savanna vegetation includes 

open deciduous woodlands with well-defined grass stratum referred to as miombo, as well as 

various other combinations of tree, shrub and herbaceous/grass cover. In southern Africa, 

including the GLTFCA, the term bushveld is mostly used for park-like tree, shrub and grass 

combinations (Solbrig et al., 1996, Cole, 1986). 

Although the southern African savannas are only mentioned fleetingly in the Solbrig text 

(1996), it states that savannas located at the margins of the tropics characteristically show 

differences in mean January and July temperatures of more than 10°C and that, while rainfall 

may be a determinant of the savanna type, rainfall effectiveness are in turn affected by 

various other environmental factors. Multivariate predictive models applied by Thuiller et.al 

(2006) delineated the relative importance of factors influential to specie richness within the 

savanna biome of South Africa as: Topographic Heterogeneity (AHI), followed by Mean 

Annual Precipitation (MAP) and Potential Evapotranspiration (PET) (Figure 2.1). 

19 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

Figure 2.1 Relative importance of environmental variables selected in generalized boosted 
models explaining plant diversity patterns within the savanna biome in South Africa  

(extracted from Thuiller et al., 2006) 

 

Results from other investigations into the influence of mean annual precipitation (MAP) 

suggest that changes in precipitation may considerably affect the distribution of the woody 

component in savanna ecosystems (Sankaran et al., 2005). The influence of MAP is often 

applied when dividing savanna regions into wet and dry categories, with a difficult to classify 

intermediate state documented in South Africa as “mixed bushveld” (Scholes, 1990). This 

type of vegetation includes vast areas covered by Colospernum mopane savanna communities 

and is typical of the known cover types in the study area. Soil fertility, which is a function of 

other physical factors like geology, geomorphology, anthropology and biotic activity, may 

also affect savanna structure (Scholes, 1990). Baruch et al. in Solbrig et al. (1996) describes 

savanna as a structurally simple but spatially patchy ecosystem with a herbaceous layer and a 

woody component of which the height and density change in response to fire, “herbivory”, 

nutrient availability and/or climatic conditions.  Additionally, Young et.al (2009) notes that 

herbivore population density may impact on spatial distributions, which may in turn affect the 

range of landscapes used by grazers in a savanna biome. Classifying a very diverse savanna 

region as found in the study area therefore provides challenges both with regards to in-situ 

field measurements and the analysis of remotely sensed information. 
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2.4 Vegetation classifications based on selected vegetation characteristics 

A conservation guide on the management of natural forests in dry tropical regions produced 

by the Food and Agriculture Organization (FAO) of the United Nations (Bellefontaine et al., 

2000) lists and compares five main types of vegetation as identified by Yangambi in 1956 

(Table 2.2).  

Table 2-2 Types of natural forest areas in dry tropical regions listed in the FAO conservation 
guide (Bellefontaine et al., 2000) 

Yangambi 
(1956)  

FAO (1981) 
Descriptions 

Examples Illustration of structural 
characteristics 

Dry 
deciduous 
forest 

Closed  

broad-leaved 
forest 

Dry closed forest in the Sudanian 
domain. 

   

Woodland Mixed broad-
leaved Forest-
grassland tree 
formations 

Open woodlands in Sudanian domain 

Mopanes/miombos in Southern 
Africa  

Savanna 
woodland: 
 
Tree 
savanna  
 
 
Shrub 
savanna 

 
Mixed broad-
leaved Forest-
grassland tree 
formations 
 

Essentially 
shrub 
formations 

Tree savannas or savanna woodland 
in the Sudanian domain 
 
Open formations in the Sudano-
Sahelian domain  
 
 
Sabana abierta shrub (American 
tropics) 

 

 

 

Trees and 
shrub steppe 

 

Dwarf shrub 
steppe 

Forest-grassland 
tree formations 

Acacia senegal formations in Africa 
 
 
 
Xerophilous formations in India 

 
 

 

Thicket n/a Combretum formations in Africa 
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In a set of guidelines for vegetation survey and mapping, Brocklehurst et al. (2007) notes that 

vegetation classification aim to characterise and standardise vegetation descriptions to allow 

“comparison and meaningful groupings of plant species”. What constitutes a “meaningful 

grouping” is then dependent on the expected outcome or application. A field manual for 

“Rapid Vegetation Classification and Survey for general purposes” by Gillison in 2006, 

introduces a vegetation classification survey proforma in association with VegClass software 

for persons with limited botanical experience. This document states that classification 

methods based primarily on vegetation structure may omit changes in the spatial and 

temporal distribution of chlorophyll that is responsible for photosynthesis, and proposes a 

survey method which requires extensive field work and includes measurements with regards 

to vegetation structure, vascular plant species3 and plant functional types4 (Gillison, 2006). 

Because of the intensive field work required, this method is not a viable option in the 

GLTFCA area.  

As in the FAO conservation guide previously described, various non-floristic vegetation 

classifications found in the literature contains descriptions associated with vegetation 

structure. Vegetation structure is described as the combination of the horizontal distribution 

and vertical characteristics of dominant plants in an area (Hnatiuk et al., 2009). Although it 

may be possible to establish a correlation between pixel values in remotely sensed imagery 

and certain vegetation conditions, concurrent fieldwork measurements may be needed 

(Casson et al., 2009). Field sampling times should preferably overlap or be close to expected 

image acquisition and should also occur during periods when most species expected to occur 

are likely to be visible (e.g. mid to late-growing season, or across several seasons, or after a 

drought breaks) (Hnatiuk et al., 2009).  

A common classification system applied throughout the southern African landscape could not 

be found. This may in part be because of the differences with regards to different goals, 

methods and environments associated with various studies (Table 2-3).  

 

3 Plants with vascular conducting tissues 

4 Combinations of plant functional elements like leave size, life form and above-ground rooting systems 
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Table 2-3 Examples of recent vegetation delineations in three southern African regions  

Region Caprivi, Namibia Parque Nacional de Zinave, 
Mozambique 

Malilangwe Wildlife 
Reserve, Zimbabwe 

Overall 
goal 

Description and mapping 
of  vegetation units that 
people will recognise as 
real and relevant in the 
region 

Identification and description 
of individual plant 
communities in terms of 
species composition and 
structure  

Classification and mapping 
of vegetation to generate a 
realistic spatial perspective 
for forage resources and 
fine-scale habitat selection 
studies 

Classes Six broad vegetation 
communities:  

- Open water 

- Floodplains 

- Riverine woodlands 

- Mopane woodlands 

- Kalahari woodlands 

- Impallia woodlands + 
36 specie or area 
associated sub-
communities. 

Ten distinct plant 
communities were 
recognised. Different 
combinations of these plant 
communities can be grouped 
in six major landscapes: 

- Save River channel & 
banks  

- Save riverine forest  

- Acacia nigrescens 
woodland 

- Mopane landscape  

- Miombo landscape and  

- Sandveld landscape. 

Thirty-eight vegetation 
types were delineated: 

- One grassland type 

- Twenty-nine woodland 
types based on woody 
composition 

- Eight woodland types 
based on herbaceous 
composition 

Reference (Mendelsohn et al., 1997) (Stalmans and Peel, 2010) (Clegg and O'Connor, 2012) 

 

Several previous vegetation classification results specific to savanna and semi-arid regions in 

South African conservation areas were once-off studies depending heavily on extensive 

fieldwork, precise sampling methods and expert botanical knowledge (Van Staden, 2002, 

Gertenbach, 1983, Van Rooyen, 1978). In a study based primarily on the height and canopy 

cover of the woody component, Cole (1986) proposed a flexible structural classification 

specifically for savannas in Africa and Australia (Table 2-4).  
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Table 2-4 Summarised structural classification of savannah vegetation as proposed by Cole 
(1986) 

Class Woody component (Trees & shrubs) Herbaceous component (Grasses) 

Savanna woodlands Tall deciduous and semi-deciduous 
trees > 8 m 

Tall mesophytic5 grasses > 80 cm 

Savanna parkland Scattered deciduous trees < 8 m Tall mesophytic grasses < 80 cm 

Savanna grassland None Tall tropical grasses 

Low tree and shrub 
savanna 

Widely spaced low-growing trees 
and shrubs  < 2 m 

Shorter grasses < 80 cm 

Thicket and shrub Dense low trees and shrubs  

An alternative structural vegetation classification approach proposed by Edwards (1983) 

acknowledges the need for a stable classification scheme that may be used in non-plant 

specific research disciplines.  The Edwards (1983) structural classification has been used in 

the Zinave National Park, Mozambique, to describe the overall structural properties of sample 

plots (Stalmans and Peel, 2010).  Edwards refers to his structural classification as “purely 

complementary to” and “independent of” floristic and other forms of vegetation 

classification. Although Edwards had a broad-scale classification in mind, it displayed 

notable sensitivity to variations in vegetation structure on finer scales and is suitable to 

illustrate variations in vegetation structure in various conditions (from dense forest to bare 

desert). With the introduction of a two-way matrix depending on structural groups and 

formation classes, the procedure that Edwards provides offers a practical and hierarchical 

structural classification technique using estimations based on growth form, cover and height - 

aided by basic information about the substrata. In a simplified description, the observable 

“growth forms” are represented by trees, shrubs, grasses and herbaceous plant forms whereas 

“cover” refers to the vertical projection of the plant onto the ground. The cover of the upper 

growth form stratum is then fundamental to the definition of class irrespective of height. This 

characteristic of the classification method is especially attractive in savanna vegetation where 

considerable variations in height differences in the primary “growth form” may occur. Height 

is then added as an ordinal measure adapted to each growth form (Figure 2.2). 

5 Plants growing in conditions of well-balanced water supply 
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Figure 2.2 Example of the characteristics of the Woodland class according to the classification 
proposed by Edwards (1983) 

Due to the proven capability of the Edwards approach in savannah regions, the limited 

experience of the researcher, this system was chosen as the basis for categorizing the target 

classes in this study.  

2.5 Important regional land cover and vegetation studies applicable to the study 

region 

2.5.1 Across-border land cover analysis in the GLTFCA 

A standardised land cover database for all the proposed South African Trans-frontier 

Conservation Areas, based on multi-seasonal Landsat imagery (acquired in 2005) was 

commissioned by the international Peace Parks Foundation and is currently in process. A 

South African company, GEOTERRAIMAGE (GTi), has been appointed as the preferred 

provider of these derived land cover maps (http://www.geoterraimage.com/about-key-

projects.php) and to-date approximately 70 million ha have been classified – including the 

area of interest for this dissertation. 

2.5.2 South African national vegetation map 

In 2006 a National vegetation map alongside a comprehensive biodiversity resource on the 

vegetation of South Africa, Lesotho and Swaziland was released by the South African 

National Biodiversity Institute (SANBI). The map includes 440 zonal and azonal vegetation 

types mapped at a working scale of 1:250 000 and sometimes higher resolution. The map is 

the result of a concerted effort by about sixty individual contributors from various 

25 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.geoterraimage.com/about-key-projects.php
http://www.geoterraimage.com/about-key-projects.php


organizations and incorporated information from all available previous studies. It was 

compiled in order to provide floristically based vegetation units of South Africa, Lesotho and 

Swaziland at a greater level of detail than had been available before and differentiates 87 

vegetation types within the savanna biome. Of the 87 vegetation types, only 8 occurs within 

the core study area in the KNP and the section of the extended study area that falls within 

South African borders (Figure 2.3). Generally vegetation and cover types were restricted to 

minimum areas, e.g. 5 ha for forests, 20 ha for pans, 100 ha for dams. Units less than 1 ha 

were not mapped. 

 
Figure 2.3 Illustration of the biomes, bioregions and vegetation unit delineations as produced 

and published by the South African National Biodiversity Institute (SANBI). Areas in 
Zimbabwe were not included in this dataset 

 

Although the information obtained from South African national vegetation map also covers 

the land-locked neighbouring countries of Lesotho and Swaziland, it does not cover the 

surface areas in the study areas of interest that occur within Zimbabwean territory. As 

illustrated in Figure 2.3, the following vegetation units (by name) were delineated in the 

study area: 
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• Ironwood Dry Forest: This critically endangered forest occurs in patches in and 

around the northern KNP between altitudes of 280 m to 580 m within the bioregion 

Zonal and Intrazonal Forests. 

• Limpopo Ridge Bushveld: The Limpopo Ridge Bushveld covers considerable areas on 

hills and ridges in the Mopane bioregion. 

• Lowveld Riverine Forest: The strips of Azonal Forests (bioregion) occur in the river 

alluvia of the Limpopo and Levhuvhu rivers and are critically endangered. 

• Makuleke Sandy Bushveld: The vulnerable Makuleke Sandy Bushveld forms part of 

the Lowveld bioregion and occurs along the valleys of the Mutale River and mid- to 

lower Levuvhu River. 

• Musina Mopane Bushveld: Undulating plains occurring in the Mopane bioregion 

south of the Limpopo River in the eastern Limpopo Valley. 

•  Subtropical Alluvial Vegetation: This vegetation zone is described as part of the 

Azonal Vegetation biome in the Alluvial bioregion fully embedded within the 

Savanna biome and occurs in the study area in broad river alluvia and around pans 

• Subtropical Salt Pans: These pans occurs in the Azonal Vegetation biome in the 

Inland Saline vegetation bioregion. 

• Mopane Basalt Shrubland: Some plains in the Kruger National Park in the Mopane 

bioregion in altitudes of 200-450 m. 

Information derived from the South African National Vegetation Map proved too coarse for 

use in this relatively small study area. This problem is exemplified in Figure 2.4 which shows 

the diversity associated with the Subtropical Alluvial vegetation zone. Although this 

vegetation map includes the land-locked countries of Lesotho and Swaziland, it does not 

include the parts of the study area that falls outside South African borders in southern 

Zimbabwe. 
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Figure 2.4 Example of the diversity within current SANBI vegetation delineations with a false 

colour SPOT 5 image in the background. The most noticeable diversity is visible in the 
Subtropical Alluvial vegetation zone 

 

2.5.3 An earlier floristically based vegetation study 

The only comprehensive vegetation study in the northern section of the Kruger National Park 

which could be found was a master’s dissertation completed by Mr Noel Van Rooyen (Van 

Rooyen, 1978). It involved partially-subjective field based observations using the traditional 

tabular Braun-Blanquet method (Wikum and Shanholtzer, 1978) aimed at a floristic analysis, 

and a variable quadrant parcel method (Coetzee and Gertenbach, 1977) towards a structural 

analysis.  Using aerial photography, Van Rooyen identified five physionomical vegetation 

groups (forest, thicket, tree savanna, open tree savanna and shrub savannah), as described by 

Tinley (1969), as the basis for the vegetation description in the region. A total of 196 sites, 

representative of all physionomical groups but close to access roads were selected for 

recording floristic, structural and environmental observations. After the field-recorded 

information was processed with the Braun-Blanquet tabular method, six main vegetation 

groups - encompassing nineteen plant communities - were identified, mapped and described. 

Although the product of the 1978 Van Rooyen study may still have some bearing on the 

current vegetation characteristics, various factors (e.g. changes in wild life populations, 

trampling, overgrazing, veld fires and extreme weather events) may have impacted on the 

vegetation characteristics, reducing its applicability to current conservation challenges. 
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2.6 The use of remotely sensed data in vegetation classification 

As mentioned Chapter 1, the use of remotely sensed data for vegetation studies has been 

described extensively in scientific literature. It is however important to acknowledge that the 

variability that exists among leaves, plants and ecosystems presents serious challenges for 

spectral identification (based on satellite data) of structural or biochemical variables 

(Ollinger, 2011). One of the main advantages of using remotely sensed information is most 

likely the fact that data covering extensive areas on the earth can be acquired quickly and – in 

the case of satellite images – repeatedly, while otherwise inaccessible areas may also be 

viewed and analysed (Liu et al., 2007). The varying characteristics of multispectral and hyper 

spectral image bands facilitate the application of various equations, ratios and indices. 

2.6.1 Ratios and indices 

Multispectral sensor bands have been used in several vegetation ratios and indices. The 

process of photosynthesis in green plants is key to the development of most vegetation 

indices. Chlorophyll in green plants absorbs strongly at red (R) wavelengths and the cellular 

leaf structure is highly reflective in the near infrared (NIR) (Adams and Gillespie, 2006). 

Because the R and NIR radiations can be measured by multispectral sensors they form the 

basis of most vegetation indices. A very simple vegetation index can be derived by a ratio of 

NIR/R, but probably the most renowned vegetation index is the Normalized Difference 

Vegetation Index (NDVI) which varies in a fixed interval between -1 and 1. NDVI compiled 

data is often used in rangeland studies where the vegetation index over the entire growth 

season is applied as a proxy for available biomass production, which in turn may be used in 

the estimation of available forage.   NDVI is derived as follows: 

NDVI = (NIR-R) / (NIR+R) 

Where: NIR = Near Infrared and R = Red 

As explained in Beck et al. (2007), vegetation indices are valuable for investigating temporal 

dynamics and phenology of vegetation.  High NDVI values are usually associated with thick 

green vegetation such as a dense forest with closed tree canopies or a continuous green grass 

cover. Alternatively low NDVI values are then associated with fractional vegetation cover or 
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a non-green/non-vegetation cover like exposed bare soil or water. This index has also been 

applied in the estimation of the cumulative effect of rainfall on vegetation – this includes 

studies on carrying capacity of rangelands and potential crop yields (Wardlow and Egbert, 

2008, Wiegand et al., 2008, Flynn, 2006, Kawamura et al., 2005). 

A study by Van Bommel et.al published in 2006 integrated physiognomy and NDVI to 

produce a “nested NDVI-based classification” in order to assist in the differentiation of the 

qualitative and quantitative characteristics of forage occurrence (linked to impala 

distribution) in the Okavango Delta, Botswana. Landsat 7 ETM+ images were used to first 

classify the vegetation into three broad remotely sensed vegetation types and each vegetation 

type was then subdivided into further dissimilar NDVI classes. The NDVI subclasses  were 

subsequently split into three groups according to the number of pixels in each vegetation type 

to produce areas with low, intermediate or high NDVI values in each of the broad classes for 

April (late-wet season) and August (late-dry season) in the same year. The research results 

demonstrated NDVI-based analysis techniques within a spatially and temporally varied 

landscape and suggest that, under time and budget constraints, remote sensing techniques 

may contribute to forage analysis studies without extensive and expensive field sampling 

(van Bommel et al., 2006).  

In general, NDVI values derived from 30 m Moderate Resolution Imaging Spectroradiometer 

(MODIS) and Landsat 7 ETM+ imagery has been very popular because of its high temporal 

resolution and easy accessibility. It has been effectively applied in monitoring vegetation 

phenology (Zhang et al., 2003). Research results also suggested that MODIS imagery are 

limited in its application value as it heavily depends on the scale requirements of the project 

(Marshal et al., 2011). This paper by Marshal et al. (2011) also indicated that greenness 

values supported by information about the relative contribution of trees and grass to the 

derived NDVI values may be of value in animal movement studies. However, the paper 

points out that knowledge of the main vegetation component within such a pixel (tree canopy, 

shrub or grass/herbaceous) will result in a different interpretation of the vegetation greenness 

with regards to its value as specie specific forage.  

In a study which analysed the spatiotemporal dynamics of forage and water resources in 

western Africa, vegetation was first divided into four simplified vegetation zones derived 
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from a previous study and subsequently the results from a 16-day composite NDVI series of 

maps (MODIS) were then used to investigate the role of primary production in each 

vegetation zone (Cornélis et al., 2011). This study found a correlation between primary 

production and large-scale locational shifts in the early wet season but on a smaller scale 

within the seasonal home ranges of selected buffalo herds, no further significant predictive 

value could be attributed to NDVI. These results may be attributed to the coarse scale of the 

original MODIS data as well as the fact that these pixel-based index values quantifies 

greenness of pixels without being able to distinguish between photosynthetic activities 

measured from different growth forms e.g. trees, shrub or grass (Marshal et al., 2011, Holdo 

et al., 2009). 

In a comprehensive account of the sources of variability in canopy reflectance, Ollinger 

(2011) comments on the fact that NDVI has been applied in more than 2500 studies to 

identify a wide range of plant traits using a relatively small number of spectral features of 

which the near-infrared region (NIR) seems to be a vital determinant. Various other 

adaptations of ratio based indices have also been developed and described as these indices are 

generally more sensitive to vegetation parameters than individual bands (Liu et al., 2007, Qi 

et al., 1993). In areas with low vegetation cover, the influence of soil noise is naturally more 

relevant and NDVI in particular are strongly affected by these soil properties (Baret and 

Guyot, 1991). Variations in texture, colour, composition and moisture content of soils, will 

influence its reflectance spectra. This resulted in various attempts to compute indices that 

may reduce the effect of soil noise. Most of these indices are relying on the assumption that 

bare soil in an image will form a line in spectral space. When using Red and Near-Infrared 

bands the R-NIR line then expresses zero vegetation or bare soil and is referred to as the soil 

line. Ratio-based indices assume a single orientation point of convergence between the soil 

line and vegetation lines, with the slope of the lines indicating equal vegetation being 

measured.  

Using a constant soil-adjustment factor (L) to account for soil background variations, a Soil 

Adjusted Vegetation Index (SAVI), was introduced by Huete (1988). Even though Huete 

acknowledged the fact that an optimum adjustment factor would have to vary with vegetation 

density and soil characteristics, it was found that a constant factor of L = 0.5 was able to 

reduce soil noise across various vegetation densities.  
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Table 2-5 Examples of Ratio-based soil adjusted vegetation indices 
(summarised from Ray, 1994 and Qi et al., 1993) 

Name Equation Characteristics 

SAVI 

Soil Adjusted 
Vegetation Index  

 

𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 𝐿
 (1 + 𝐿) 

Where:  L = adjustment factor between 0 for very high vegetation 
cover to 1 for very low vegetation cover.  Typically used 
value is 0.5 (Ray, 1994). 

The adjustment factor 
L was found by trial 
and error. The soil 
line is assumed as 1 
and intercept as 0. 

Range:  -1 to +1 

TSAVI 

Transformed Soil 
Adjusted 
Vegetation Index 

𝑇𝑆𝐴𝑉𝐼 =  
𝑦 (𝑁𝐼𝑅 − 𝑦𝑅 − 𝑖)

𝑖𝑁𝐼𝑅 + 𝑅 − 𝑦𝑖 + 𝑋(1 + 𝑦2)
 

Where:  𝑦 = soil line slope 
                𝑖 = intercept 
              X = an adjustment factor 

Soil line slope and 
intercept are taken 
into account. 

Range:  -1 to +1 

MSAVI 

Modified Soil 
Adjusted 
Vegetation Index 

𝑀𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅1 
𝑁𝐼𝑅 + 𝑅 + 𝐿

 (1 + 𝐿) 

Where:  L =  1 − 2𝑦 𝑁𝐷𝑉𝐼 ∗ 𝑊𝐷𝑉𝐼 
  WDVI     = (𝑁𝐼𝑅 − 𝑦𝑅) 
  and 𝑦      = soil line slope 
 
The correction factor (L) used is based on the product of NDVI 
and a weighted difference vegetation index (WDVI) (Qi et al., 
1994). 

Provides a variable 
correction factor L, 
minimising soil 
influence while 
allowing an increase 
in vegetation 
sensitivity.  

Range -1 to + 1 

MSAVI2 

Second Modified 
Soil Adjusted 
Vegetation Index 

𝑀𝑆𝐴𝑉𝐼2 =  
2𝑁𝐼𝑅 + 1 −  �(2𝑁𝐼𝑅 + 1)2 − 8(𝑁𝐼𝑅 − 𝑅)

2
 

In the equation an iterative process was applied substituting 1-
MSAVI(n-1) as the L factor in MSAVI(n).  Then the iteration was 
inductively solved where MSAVI(n) = MSAVI(n-1).  
 (Qi et al., 1994) 

The need to pre-
calculate WDVI and 
NDVI and find the 
soil line are removed. 

Range -1 to + 1 

Although various modifications of the SAVI index have been documented, none of them 

seems to be widely used (Hashim et al., 2014, Kalbi et al., 2013, Bagheri et al., 2012, Liu et 

al., 2007). Some examples of these ratio based soil adjusted indices are summarised in Table 

2-5. It is important to note that applying these indices may inevitably reduce the effect of soil 

noise at the cost of the diminishing the dynamic range of the index and therefore may be less 

sensitive to vegetation changes than NDVI (Ray, 1994, Huete, 1988). The effect of one of the 
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modified soil adjusted vegetation indices (MSAVI2) will be included in the vegetation 

structural analyses procedures used this study (Chapter 4). 

Some research papers reported that vegetation indices are generally more sensitive to 

vegetation parameters like chemical composition, canopy structure and density, biomass, 

primary production and even habitat quality than single bands (Mueller et al., 2008, Wiegand 

et al., 2008, Beck et al., 2007, Flynn, 2006, Kawamura et al., 2005). However, various factors 

influence the effectiveness of individual indices and all are somehow dependant on sensor 

and environmental conditions. An investigation comparing the influence of viewing angle, 

atmosphere and soil on NDVI and SAVI using data from the French SPOT6 Satellite and 

aerial data reiterated these complex, intricately coupled and inter-dependant relationships (Qi 

et al., 1993).  

2.6.2 The use of SPOT 5 multispectral imagery in relevant scholarly studies 

Notwithstanding the fact that SPOT multispectral imagery has a finer spatial resolution 

compared to Landsat and MODIS, not as many vegetation studies using SPOT derived 

products could be found. This may be due to the fact that, in most countries, imagery from 

the SPOT sensors are not freely available and may be very costly – especially when temporal 

analysis is needed. Tu et al. (2012) compared various modelling approaches towards 

predicting potential habitat and species distribution. In their study two resampled SPOT 5 

images (a summer and autumn image of consecutive years) were used to generate a 

vegetation index which, together with four topographic variables, could assist in predicting 

the distribution of long- leaf Chinkapin trees (Castanopsis carlesii) in central Taiwan. 

Similarly a SPOT 5 fusion image (2.5m) were used for vegetation patch detection in China 

(Liu et al., 2011b) and vegetation change detection involving three coarse vegetation classes 

in the Brazilian Amazon (Lu et al., 2008). However, the three studies mentioned above were 

all applied in forested areas and the methodologies followed cannot be readily applied to 

savanna vegetation. 

6 Satellite Pour l'Observation de la Terre or “Satellite for observation of Earth” 
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2.6.3 Image interpretation and classification methods 

It is possible to visually interpret satellite imagery and make certain deductions about the land 

cover or objects that exist in reality, but over large areas this may become difficult and 

cumbersome. Digital image classification uses the spectral information represented by the 

digital numbers in one or more spectral bands towards the computerised manipulation and 

interpretation of images (Lillesand et al., 2004). An automated land cover classification can 

be achieved through pixel-based analysis techniques or object-based approaches (Aguirre-

Gutiérrez et al., 2012, Bellens et al., 2008).  Pixel-based digital image classification generally 

refers to attempts to analyse multispectral image data by applying statistically based rules to 

assign each individual pixel to a class based on its spectral information while object-based 

methods attempt to group pixels together in a meaningful way by adding contextual 

information such as texture, compactness, geometry, size, directionality and topological 

relationships (Aguirre-Gutiérrez et al., 2012, Bellens et al., 2008, Lillesand et al., 2004).  

Numerous land cover classifications using either pixel- or object based techniques or a 

combination thereof have been described in literature. Regularly the two techniques have 

been compared (Dingle Robertson and King, 2011, Ouyang et al., 2011, Johansen et al., 

2010, Martinfar et al., 2007, Whiteside and Ahmad, 2005). Results of these comparisons are 

varying and ultimately dependant on a plethora of research specific variables including, but 

not limited to, the image characteristics of the data used, the characteristics of the study area, 

the type of land cover to be extracted, the algorithms used and the level of generalization that 

could be tolerated by the research objective(s). Often, object-based approaches are described 

as being more robust and accurate when applied to high-resolution images while pixel-based 

may be best for certain land-cover categories (Aguirre-Gutiérrez et al., 2012). Dingle 

Robertson and King (2011) used Landsat TM image data to compare object-based 

classification results with that of a supervised Maximum Likelihood pixel-based classifier in 

a mixed land use region and found that, although overall accuracies were not meaningfully 

different, accuracies were lower in the object-based result for small and rare classes whereas 

visual inspection revealed that object-based results showed fewer errors with regards to land 

cover change detection. Similarly, when striving to derive vegetation structure using image 

texture analysis, the horizontal variations between grass, trees and shrubs in savanna regions 

may be better captured using fine resolution data (Wood, 2012).  
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The product of a classification process is normally a categorised image. This newly classified 

image may then be used to create and analyse statistics about resultant classes and/or create 

thematic maps that represent certain information about a particular area e.g. derived land 

cover types. Thematic maps are interpretive and this interpretation of spectral information 

requires careful consideration of the constraints imposed by the relevant spatial patterns and 

scene context and also a good understanding of physics and spectroscopy (Adams and 

Gillespie, 2006, Lillesand et al., 2004). 

Classification of multispectral imagery towards land cover classes aims to match spectrally 

uniform groups of pixels in the data to information classes of interest, e.g. land cover zones 

like “forest” or “grass”. Ultimately, decisions about the significance of the different spectral 

classes and their relationship to useful information classes lie with the analyst. Apart from the 

limitations inherent in the unique nature of remotely sensed imagery used, the choice of 

classification method and the definition of the desired target classes may affect the accuracy 

of remotely sensed data classification (Lu and Weng, 2007, Adams and Gillespie, 2006, 

Lillesand et al., 2004). Well-known pixel-based classification approaches are supervised 

classification and unsupervised classification, or hybrid procedures using both techniques 

(Lillesand et al., 2004). 

2.6.4 Commonly used pixel-based classification methods 

Various supervised classification algorithms have been developed and are generally included 

in most current remote sensing and geographic information system software applications. 

Supervised classification requires the input of an analyst in the identification of homogeneous 

spectrally representative samples of the desired information target classes. These samples are 

often referred to as training areas. The image analyst therefore controls the training areas, the 

computer algorithm and numerical descriptors used to statistically compare each pixel in the 

image to the spectral characteristics of pixels in the different training areas (Lillesand et al., 

2004). Each image pixel is then labelled with the corresponding class. While the selection of 

appropriate training areas is often based on the analyst's knowledge of the geographical area 

and actual target cover types present in the image, it is important to note that the basic types 

of automated computer classifiers do not allow for the incorporation of spatial context 

(Adams and Gillespie, 2006). Examples of standard supervised classifiers (in increasing 
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complexity) are parallelepiped, minimum distance, maximum likelihood, and mahalanobis 

distance (Adams and Gillespie, 2006, Xiang et al., 2005, Lillesand et al., 2004).  

In reality it is common that the spectral attributes of pixels in different training sites may 

overlap resulting in ambiguities with regards to the consignment of a pixel to a class. When, 

in spite of this, each pixel is assigned to only one information class, the result is labelled a 

“hard “classification (Schowengerdt, 1997). For the supervised classification in this study, the 

maximum likelihood classifier (MLC) will be applied. The MLC evaluates the variance and 

covariance of the spectral response patterns in a class training site when evaluating the 

highest probability value and assigning a pixel to the “most likely” class based on the 

assumption that the cluster distribution is normal (Gaussian) (Pal and Mather, 2003). When 

using this classifier it is important to ensure that enough pixels are selected in each training 

area to describe a normal distribution (Adams and Gillespie, 2006). 

Unsupervised classifiers in contrast do not use training areas or initial guidance from the 

analyst.  Instead, pixels in a dataset are clustered based on statistics only, without any user-

defined training classes. One such method is the K-means algorithm for which the analyst 

needs to specify a desired number of classes. The algorithm then locates the number of 

clusters in the multidimensional data and initially each pixel is assigned to a cluster based on 

an initial selection of mean values. Then revised means for the clusters/classes are derived 

and iteratively further refined until no significant changes in the class means between 

successive iterations are detected (Adams and Gillespie, 2006, Lillesand et al., 2004). 

Generally following a similar process, perhaps the most commonly used unsupervised LC/LU 

classifier is the Iterative Self-Organizing Data Analysis (ISODATA) classification algorithm 

(Tou and Gonzalez, 1974). During iterations, this algorithm allows merging, splitting and 

deletion of clusters and pixels are continuously reclassified into a revised set of clusters until 

no significant changes occur or until a set number of iterations have been completed 

(Lillesand et al., 2004).   Once an unsupervised classification has been achieved, the analyst 

must interpret the clusters and assign relevant information classes (e.g. land cover type). 

The vegetation indices and classification methods discussed above are based on pixel-based 

ratios or reflectance values and do not take into account the issue of sub-pixel mixing. It is 

important to be aware of the fact that pixel-based methods may necessarily be affected by 
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mixed pixels. The term mixed pixels refers to the fact that pixels under investigation in an 

image may contain more than one of the components that an analysis process is supposed to 

extract and the components may feature in varying combinations.  In the study area for this 

dissertation it is possible that a 10 m x10 m SPOT 5 pixel contains various components with 

different reflective characteristics in varying proportions that may not be linearly or even 

‘similarly’ mixed.  

The “unmixing” of pixels is normally based on a weighted function aimed at calculating the 

spectral contributions of separate components to the spectral values of pixels (Scanlon et al., 

2002).  Analysing or approximating the fractional contributions of various materials to the 

digital number (DN) values of pixels is referred to as Spectral Mixture Analysis (SMA). The 

SMA typically assumes a linear mixture of spectra and requires the spectra of a limited 

number of spectrally dominant components or “endmembers” present in the image. If the 

number of endmembers exceeds the number of bands plus one (B + 1) in the image, a 

suitably unique solution will not be possible (Lillesand et al., 2004).  Due to high variations 

in soil and vegetation characteristics in the study area, the identification of pure endmembers 

for such analysis will be problematic. Conversely, the use of more than five endmembers in a 

4 band SPOT 5 image will be inappropriate. Instead, the inherent uncertainties and fuzziness 

associated with pixel-based classification within the selected study area will be examined and 

discussed. 

2.7 Factors which may influence the visualisation of classification results 

In recent years the acknowledgement and visualisation of uncertainties in classification 

results received widespread attention amongst researchers (Smith et al., 2013, Brodlie et al., 

2012, Schiewe and Schweer, 2013, Griethe and Schumann, 2006, Ge et al., 2009, Aerts et al., 

2003, MacEachren et al., 2005). These authors stressed the importance of stating and/or 

illustrating the limitations of data that may be used in important decision-making processes. 

However, there is not yet consensus about how the identification of the appropriate levels of 

precision may support a thorough comprehension of uncertainty in the user (Smith et al., 

2013). Visualising uncertainty in maps adds an “increased burden” on cartographers. In 

particular, finding appropriate ways of visualisation involves a thorough understanding of the 

user requirements and effective communication techniques (Davis and Keller, 1997). In 
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certain instances such as the prediction of floods, the use of uncertainty information can 

improve decision-making processes but may also influence the level of trust that the user 

attaches to the information (Schiewe and Schweer, 2013). 

Visualisation of uncertainty may include straight forward graphical methods like the use of 

different colour intensities, line thickness (e.g. contour widths) or symbols (e.g. varying point 

symbols) indicating fuzzy membership as illustrated in  Comber (2012). Other designs may 

also include overlaying grid lines, varying contour widths, shading, animation and other types 

of graphical presentation like sequential illustration, interactive map options and/or 3D 

display (Brodlie et al., 2012, Pang, 2001).  

 

2.8 Summary 

The literature review for this research project encompassed several facets which could 

support a good understanding of the various components relevant to the study. Firstly, the 

concept of trans-boundary conservation and the issues associated with these initiatives were 

discussed. The cross-border transfer of animal diseases and the factors influencing animal 

movements were investigated. Vegetation was confirmed as one of the main drivers of animal 

movement dynamics. The characteristics of savanna vegetation were defined and a review of 

vegetation classification methods and relevant studies in the study region were provided.  An 

overview of application-based remote sensing techniques often used in vegetation 

classification studies was given. Finally, recent studies on visualisation techniques for 

reporting uncertainties in classification results were explored. 
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Chapter 3  Target classes and field based information 

3.1 Introduction 

This chapter provides a detailed overview of the investigation into the definition of the target 

classes for image analysis in Chapter 4.  Ancillary data sources were used during the data 

acquisition and field based research stages, but some of these also provided relevant 

information during various desktop interpretation and evaluation stages of image 

classification products (Chapters 5 and 6). The materials and methods used during the 

acquisition and interpretation of the field data are described. Interpreted results were then 

used during the process of selecting the target classes for the image classification processes 

used in Chapter 4. In line with objective three, the relevance of estimated field observations 

towards the assessment of classified results are discussed in Chapter 5. 

3.2 Data Acquisition 

3.2.1 Ancillary data 

From the South African National Park Data Repository various vector data sources are 

available to researchers in shapefile format, e.g. geology, soils, public roads, rivers, ecozones, 

landtypes, landscapes and camps (SANParks). Digital information derived from the South 

African National Vegetation Map (2006) where considered and discussed in Chapter 2, but 

generally proved too coarse for use in this relatively small study area.  

In 2002 the Council for Scientific and Industrial Research (CSIR) in South Africa published a 

land cover dataset striving towards a comprehensive, strategic regional cross-border 

inventory of land cover data to deliver base-line information for regional research and 

environmental management applications within the SADC region.  To facilitate copyright and 

commercialisation issues data was spatially degraded to a 1 km spatial resolution 

(Environmentek, 2006). Although this spatial resolution may be very useful on a regional 

scale, it is too course for this research project. 

A standardised remotely sensed land cover map for all the proposed Southern African Trans-

frontier Conservation Areas has been commissioned by the international Peace Parks 
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Foundation (Chapter 2, 2.5.1). To-date the land cover of approximately 70 million ha of 

proposed and / or actual conservation areas in the GLTFCA region has been mapped. This 

product was applied towards a qualitative comparative validation analysis of the 

classification results in this dissertation (Chapter 5). 

The electronic resource catalogue at the University of Pretoria revealed two relevant historic 

research products for the area: 

• A PhD thesis completed in 1990 on the classification of land for management planning 

in the KNP (Venter, 1990). Although this is an integrated study investigating various 

physical parameters like geology, landforms and vegetation – the main focus of this 

study is on soils. Generally, the information products from this study is on a scale of 

1:250 000 which is informative but coarse if applied to a smaller region like the study 

area.  

• As discussed in Chapter 2, a comprehensive floristically and structurally based 

vegetation study in the northern section of the Kruger National Park - which 

encompasses the core study area for this dissertation - was completed by Mr Noel Van 

Rooyen (Van Rooyen, 1978). Mapped results from the 1978 MSc dissertation were 

scanned, digitised and geo-referenced for the current study area. The Van Rooyen 

dissertation does not stipulate the scale accuracy, map projection or the level of 

generalisation used. During digitising, a false colour SPOT 5 image display was used in 

attempts to adapt the vegetation delineations to the scale and conditions in the 2011 

imagery. This data set is used to illustrate the possibilities of enhancing the results from 

a current remotely sensed product with more detailed data from another source 

(Chapter 6 and Appendix J). 
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3.2.2 In-situ observations 

3.2.2.1 Materials used in the field 

In the field a Garmin hand-held GPS device was used to locate and delineate sites for field 

visits.  Estimated field observations were recorded on hard copy sheets and backed up with 

photographic evidence collected using a Nikon D90 digital camera. 

3.2.2.2 Description of field site delineations, methods and challenges 

Due to accessibility issues, only areas within the KNP (the core study area) were used for 

field visits. Because buffalo movement data for the area were not available before the first 

field visit at the onset of the research, a core study area had to be selected according to oral 

reports from local field rangers. Lower lying areas along the northern and north-eastern park 

borders were deemed suitable and manageable with respect to the available time and 

resources. This relatively small area is complex and diverse in natural characteristics and road 

access is limited. 

Fieldwork was further constrained by various aspects: 

• Remote location inside a national park: The study area is situated in the far north-

eastern corner of South Africa. Fuel, accommodation, speed limits, overgrown roads, 

gate opening times and the ranger pick-up points impacted on the distances that could 

be covered in one day.  

• KNP regulations: All field visits had to be scheduled well in advance and could not be 

altered if conditions were not suitable. Park rangers were available for a limited period 

per day. Access was sometimes prohibited due to border or anti-poaching operations by 

the South African Police Services (SAPS).  

• The presence of wildlife: If and when certain wildlife species, especially lion, buffalo, 

or elephants, were present at a designated field site, field measurements and on-site 

photographs could not be taken. It was not always possible to return to the site. 

• The physical conditions of the area: Most vegetation types in the area are difficult to 

traverse and create equally sized field sites. As an alternative, an approximate 20m x 

20m polygon with four GPS logged corners was measured out in strides. 
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• Staff and field time: Being a single researcher with limited time in the field, the type of 

field measurements that could be taken was mostly restricted to structural estimations 

and the collection of photographic evidence.  

• Finances: Fuel and accommodation for field visits were mostly subsidized by CIRAD 

and the Wildlife Wilderness Trust (WWT) whereas the vehicle, Global Positioning 

System (GPS), camera, ranger fees and daily subsistence were covered by the 

researcher. In financial terms it was impossible to add more people or additional days to 

the fieldwork. 

A total of 33 sites that appeared to be homogeneous in nature were identified as potential 

fieldwork sampling areas. These sites were identified using 2009 Geo-corrected Spot imagery 

as well as available vector data on vegetation zones and land types in the Kruger National 

Park. A convenience sampling method was applied as each site had to be accessible from a 

road. Once all four field visits were completed and the movements of the tracked buffalo 

herds in the study area were known, the visited field sites were re-evaluated. Eventually only 

24 of 33 planned control sites were suitably located, had complete records and could be 

included in this study (Figure 3.1). 

  

Figure 3.1 Selected field sites and extracts of buffalo movement data (points) for eight buffaloes 
in two herds as indicated by the brown and blue colour point groups 

(Source of buffalo movement data: CIRAD) 
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3.2.2.3 Scheduling of field visits 

The methodology applied in this investigation heavily depended on the planned July 2010- 

October 2011 time-scale of buffalo tracking data and the potential available imagery. The 

field visits were scheduled to coincide with different seasons but the availability of 

corresponding SPOT 5 imagery could not be guaranteed in advance. However it was 

anticipated that an April/May image and a July/August image may become available as these 

time-periods are generally suitable for acquiring imagery without cloud contamination. 

Suitable images were obtained for three of the four time periods. (Table 3-1) 

Table 3-1 Field visit periods and the availability of corresponding SPOT5 imagery 

Dates in the field Time period  

(hydrological cycle) 

Acquisition dates of available 
SPOT5 multispectral images 

09 - 11 September 2010 End of dry season – just before 
the first Spring rains 

19 September 2010 

13 - 15 January 2011 Mid wet season No images available 

05 - 07 May 2011 End of wet (growth) season  30 April 2011 

10 - 12 August 2011 End of dry season 11 & 12 August 2011 

3.2.2.4 Delineation of target land cover and vegetation classes 

For the field-based observations by a non-plant scientist in the core study region (Pafuri), a 

very practical approach to classification of vegetation was needed. It was therefore decided to 

focus on a structural analysis of the vegetation which could later be enriched with ancillary 

information. The description of vegetation structure involves the physical horizontal 

distribution and vertical characteristics of dominant plants in an area (Hnatiuk et al., 2009).  

To this end, the previously discussed (Chapter 2) methodology suitable to illustrate variations 

in vegetation structure through a wide range of vegetation structural types - from forest to 

desert – as developed and described in Edwards (1983) was applied. With future cross-border 

collaboration in mind and in anticipation of collaboration with researchers from CIRAD 

working in Zimbabwe and Mozambique, some of the “Edwards” classes were consolidated 

into seven new vegetation classes (Table 3-2).  
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Table 3-2 Consolidated vegetation classes in association with vegetation structural types as 
developed and described by Edwards (1983) 

Consolidated 
Classes  

Code Corresponding 
Edwards classes* 

Summarised structural characteristics associated with 
the Edwards (1983) classification 

Riverine Forest  RF Forest 75-100% tree cover up to 20 m+. Shrub <10% if > 1 m high 

Woodland WL Closed Woodland 10-75% tree cover up to 20 m+. Shrub <10% if > 1 m high 

Open 
woodland  

OW Open Woodland 

Sparse Woodland 

1-10% tree cover up to 20 m+. Shrub <10% if > 1 m high    

0.1-1% tree cover up to 20 m+. Shrub <10% if > 1 m high 

Bushland  BL Thicket & Bushland 

Closed Shrubland 

1-100% tree cover up to 10 m. Shrub 10-100%; > 1 m high 

10-100% shrub cover up to 5 m high 

Open Bushland  OB Open Shrubland  1-10% shrub cover up to 5 m high 

Grassland  GL Closed Grassland    

Open Grassland 

10-100% grass cover up to 2 m+ high 

1-10% grass cover up to 2 m+ high 

Sparse 
vegetation 
cover  

SV Sparse Shrubland 

Sparse Grassland     

Desert Woodland 

Desert Shrubland 

Desert Grassland 

0.1-1% shrub cover up to 5 m high 

1-10% grass cover up to 2 m+ high 

Very low horizontal cover up to 10 m in height 

Very low horizontal cover up to 5 m in height 

Very low horizontal cover up to 2 m in height 

*Forbes/Herb cover is treated the same as grassland classes 

An adapted “Edwards” classification sheet (Appendix A) and a summarizing sheet (Appendix 

B) to record ancillary information were used during the four field surveys. New fieldwork 

sheets were completed during each visit and an independent on-the-spot field classification 

was made by the researcher during each field trip. This was done with the anticipation of 

comparing the different consecutive assessments and as a way of determining the level of 

consistency achieved. A Garmin hand-held GPS device was used to delineate sites and a 

Nikon D90 digital camera was used to record a 180° panoramic view of each site and other 

prevailing physical characteristics. A ranging rod with a length of 1 m was used as a scale 

reference in some of the photographs. In follow-up visits, printed photos from the first visit 

were used to determine the particular position and direction of subsequent photos. It was not 

always possible to visit the sites at the same time of day as for previous visits and in some 

cases the position of the sun and the weather conditions influenced the photographic results. 
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An example of the field photography showing the variation in vegetation characteristics and 

ground cover across the four seasonal visits can be viewed in Appendix C. 

3.2.2.5 Analysis of field work data 

After completion of the fourth and final field visit, a relational database with all relevant 

information was created. This database serves as a record of the field data. Queries were used 

to search the database when a specific characteristic had to be scrutinized during the desktop 

analysis. For further desktop analysis a 30 x 30 m square representing 9 SPOT 5 multispectral 

pixels was created for each site using the location of the roughly delineated field sites. The 

fieldwork process is visually summarised in Figure 3.2. 

 
Figure 3.2 Summarised fieldwork process: a) Edwards sheet, b) Summarised sheet, c) Examples 
of photographic records, d) Relational database and e) Adjusted 30 x 30 m field sites and their 

canopy cover estimates 

Consistency of observations between the different visits was generally good with three 

notable exceptions (Appendix D). Site 5 was constantly classified as Open Woodland in the 

field, but the desktop analysis showed that the canopy cover was under-estimated and the site 

was re-classified as Woodland. Field classes assigned to Sites 18 and 20 were also not 

45 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



consistent over the four field visits with only one of the four observations corresponding to 

the final derived desktop result as described in the section below and illustrated in Table 3-3.  

In an attempt to evaluate the researcher’s ability to estimate projected ground cover of trees 

in the field, a vector file was created for each applicable 30 x 30 m square representing a field 

site. These vector files were then used to create small regions of interest applied to 2008 dry 

season aerial photographs. A supervised classification using the aerial photography was used 

to map canopy cover, sub-strata, bare soil and shade in each 30 x 30 m square. Site specific 

regions of interest for each applicable field site were created on the aerial photographs. A 

supervised classification was then performed separately for each site and class statistics were 

derived for each result (Table 3-3). Although extensive tables like Table 3-3 are generally 

added as appendices to this document, the inclusion of the information here is to facilitate the 

discussion and was deemed appropriate. 

Table 3-3 This table summarises the location of original field sites on the 2008 aerial 
photography, the class statistics illustrating percentages canopy cover, sub-strata, soil and 

shadow as derived from a supervised MLC classification and the initial dry season field 
classification. The red outline on the aerial photo represents the original field site and the 

white/black outline represents the 30 x 30 m square (representing nine SPOT 5 pixels) which 
was used in the classification 

Field 
Site 
No. 

 

 

Aerial 
Photography 

2008 
(Photo no. 

and extract) 
 

Supervised 
classification 

(MLC) 

Dry season class statistics 
in % cover 

   TC=Tree Canopy  
   SC=Shrub canopy  
   DS=Dry sub-strata  
   LI = Litter  
   BS=Bare soil 
   SH=Shadow 

Final desktop classification  
and 

dry season field site 
photography 

 

TC 
SC 
DS 
LI 
BS 
SH 

 
 
 
 
 
 TC/SC DS/LI BS SH 

0 2231AD_17 

 

 

 

60 12 24 4 

WL - Woodland (Damaged) 

 

1 2231AD_16

 

 

 

49 5 39 7 

WL - Woodland
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2 2231AD_16

 

 

 

43 24 28 5 

BL – Bushland  

 

3 2231AD_16

 

 

 

19 0 80 1 

OB - Open bushland  

 

4 2231AD_16 

 

 

 

31 43 23 3 

OB - Open bushland 

 

5 2231AC_20 

 

 

 

64 26 6 4 

WL - Woodland 

 

6 2231AC_20 

 

 

 

34 14 47 5 

OW - Open woodland  

 

7 2231AC_20 

 

 

 

21 37 41 1 

OB - Open bushland 

 

8 2231AD_16 

 

 

 

25 52 22 1 

OW - Open woodland 

 

9 2231AD_16 

 

 

 

20 45 35 0 

SV - Sparse vegetation cover 
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10 2231AD_17 

 

 

 

9 47 42 2 

SV - Sparse vegetation cover 

 

11 2231AD_17 

 

 

 

38 45 16 <1 

OB - Open bushland (low shrub)  

 

12 2231AC_08 

 

 

 

n/a 75 25 n/a 

GL - Grassland 

 

13 2231AC_08 

 

 

  

56 25 16 2 

BL - Bushland  

 

14 2231AC_08 

 

 

 

37 51 12 <1 

BL - Bushland 

 

15 2231AC_08 

 

 

 

27 37 36 1 

OB - Open bushland 

 

16 2231AC_08 

 

 

 

95 0 1 4 

RF - Riverine forest 

 

17 2231AC_15 

 

 

 

28 46 24 2 

OW - Open woodland
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18 2231AD_11 

 

 

 

40 20 39 1 

BL - Bushland 

 

19 2231AC_15 

 

 

 

45 52 2 1 

BL - Bushland 

 

20 2231AC_20 

 

 

 

8 45 47 0 

SV - Sparse Vegetation 

 

21 2231AC_20 

 

 

 

5 33 62 0 

SV - Sparse Vegetation 

 

22 2231AC_20 

 

 

 

44 35 17 4 

OW - Open woodland 

 

23 2231AD_17 

 

 

 

87 6 0 7 

RF -  Riverine Forest 

 

Despite obvious issues like the time difference and slight spatial off-sets with regards to the 

use of the older 2008 aerial imagery in the analysis of the fieldwork canopy estimates, the 

results from Table 3-3 were considered useful in the critical analysis of the field based 

estimations and the final desktop classification of field sites. Additionally, the canopy cover 

results were used to adapt the structural characteristics for each selected class in accordance 

with the field based observations and a desk top inspection of all the ancillary information 

(Table 3-4).  
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The derived canopy values (%) were plotted to analyse the values and trend between all the 

sites in each class (Figure 3.3). As could be expected, the class canopy percentages increase 

from Grassland (GL) which is grass with zero canopy cover, through Open Bushland (OB), 

Open Woodland (OW), Bushland (BL) and Woodland (WL) with the Riverine Forest (RF) 

class containing the highest canopy cover. There are, however, overlaps in the derived 

canopy cover densities between various classes. The overlaps can be expected as the 

horizontal cover densities do not allow for the differences in vertical height between the 

bushland classes (OB or BL) and the woodland (OW or WL) classes which is up to 10 m and 

up to 20 m+ respectively. Similarly, there is also a slight overlap between the SV and OB 

classes. With one exception (Site 11 in the OB class) the minimum and maximum values per 

class were generally within an approximate 20% difference range. A polynomial trendline 

(2nd order) for the means per class revealed a good fit with an R-squared value of R2 = 

0.9654. After scrutiny of the field site data, it was decided to leave the classification of Site 

11 as Open Bushland (OB) due to the overgrazed condition of this low shrub area. 

 
Figure 3.3 Variation in percentage canopy cover per class with a polynomial trend line 

calculated for the mean values 

From the derived canopy cover values it became apparent that the percentage horizontal 

cover as indicated in the classification used by Edwards (1983) may not be specific enough to 

distinguish between all the classes as it was perceived in the field and from the on-site 

photography. Using the canopy cover as well as available ancillary data (Appendix E) the 

probable dry season canopy cover ranges per vegetation structural class were summarised for 

the study area (Table 3-4). It must be noted here that the vast differences in scale and 
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classification criteria between the ancillary data sources - as discussed in Chapter 2 and 

summarised in Appendix D - resulted in limited applicability towards refining the class 

criteria.  

Table 3-4 Land cover classes, adjusted canopy ranges, vegetation characteristics and associated 
field site numbers 

Vegetation structural- 
and land cover classes 

Probable 
canopy cover 
range* (%) 

Dominant cover  Height in m 
Associated 
field site 
numbers 

Riverine Forest RF 70 + Trees (woody) Up to 20 m+  16;23 

Woodland WL 45 – 70 Trees (woody) Up to 20 m  0;1;5 

Bushland BL 35 - 70 Trees (woody) Up to 10 m  2;13;14;18;19 

Open Woodland OW 20 - 45 Trees Up to 20 m  6;8;17;22 

Open Bushland OB 15 - 35 Trees (woody) Up to 10 m  3;4;7;11;15 

Sparse 
vegetation 

SV < 20 Trees/shrub 
(woody) 

Up to 5 m  9;10;20;21 

Grassland GL 0 Grass only  Up to 2 m 12 

Bare Soil BS N/A N/A N/A None 

Water WA N/A N/A N/A None 

                                                                      * These ranges may overlap 

 

For the SPOT 5 image analysis procedures discussed in the next chapter, a “Bare Soil” and a 

“Water” class were added as additional land cover classes (Table 3-4). In any land cover 

classification venture through automated image analysis, the selection of the desired 

information classes will have an effect on the usefulness of the resultant product. When 

applying pixel-based classifiers using medium resolution imagery like SPOT 5, there will 

inevitably be a compromise between the information classes desired, the spectral information 

available in the image and the method(s) used to delineate these classes.  
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3.3 Target classes and image classification 

The image analysis methods described in Chapter 4 is channelled towards extracting the 

target classes as listed in Table 3-4. Due to the characteristics of the SPOT 5 image data it 

cannot be expected that a perfectly accurate vegetation classification will realistically be 

achieved using the four multispectral bands and the 10 m resolution. The natural land cover 

in the study area represents a continuous physical phenomenon without precise and clearly 

discernible boundaries (Mucina and Rutherford, 2006, Van Rooyen, 1978). From this it must 

be noted from the onset that various transitional and marginal areas may be lost in a 

classification and thematic generalisation aimed at illustrating the target classes on a map 

(Chapter 6).  

3.4 Summary 

The goal of this chapter was to explore the availability of relevant ancillary data in the study 

area, to describe the acquisition of field estimations and to identify target classes for image 

classification.  

For the core study area in the KNP, older ancillary data sources describing the vegetation and 

soil characteristics (1978 and 1990 respectively) was obtained. Several recent land cover and 

vegetation data sources were also found but the application potential of these are limited 

mainly due to the spatial scale at which the data is available. Additional supportive digital 

data sources were obtained from SANParks and the Unit for Geoinformation and Mapping at 

the University of Pretoria.  

In the second part of this chapter, the materials and methods used for data acquisition in the 

field were described. An overview of the limitations and challenges associated with the field 

work data were given. In association with the fieldwork data and the Edwards structural 

classification (1983), adapted target classes for image classification processes in Chapter 4 

were derived. The next chapter, Chapter 4, will focus on the acquisition, processing and 

analysis of relevant SPOT 5 imagery for the structural vegetation classification in the study 

area. 

52 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4  Image classification: Data and methods 

4.1 Introduction 

In this chapter the focus is on the acquisition and analysis of SPOT 5 image data. In line with 

objective two, the effect of image band combinations, vegetation indices, different 

classification methods and analyst interpretation towards classifying savanna vegetation 

using SPOT 5 imagery are investigated. Image acquisition, pre-processing, classification and 

post classification processes are described and explained. The methods applied in attempts to 

limit the effect of various factors which may introduce error and uncertainties into studies of 

this nature are elucidated.  

4.2 Software used in digital processing of imagery 

All image pre-processing, classification and post-classification procedures were executed 

using ENVI 4.8 image analysis software. All GIS operations and mapping were completed 

using ArcGIS 10.1 software. 

4.3 Image data acquisition 

One of the main aspects complicating the suitability of remotely sensed data in ecologically 

based studies is the availability of quality images at the appropriate spatial and temporal 

resolution. Furthermore, the applicability of image data is generally also restricted by the 

scale of the pixel footprint, the size of the study area and the accuracy requirements of the 

project. Through the South African National Space Agency (SANSA), institutions like 

Government departments and tertiary educational facilities in South Africa currently have 

free access to selected SPOT 5 images.  

The SPOT satellite moves in conjunction with the rotation of the earth around a polar axis at 

an orbital plane inclination of 98 degrees in a 26-day cycle. The relevance of any comparison 

between images acquired on different dates over the same area depends on similar 

illumination conditions. The SPOT sensors strive to achieve this by its sun-synchronous orbit 

that ensures that the satellite passes over any given point on the earth’s surface at the same 

local time. Spot 5 sensors acquire data in two panchromatic bands which is used to generate a 
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2.5 m panchromatic product (0.48 – 0.71 µm), three 10 m multispectral bands (0.50 - 0.89 

µm)   and one 20 m short-wave infrared band (1.58-1.75 µm). More detail about the SPOT 5 

product is summarised in Table 4-1. 

Table 4-1 SPOT sensor and image information (summarised from a Spot satellite technical data 
source as published online (Astrium, 2010a)) 

Item Description 

Launch date 04 May 2002 

Orbit Sun-synchronous 

Local Equator Crossing 
time 

10:30 

Altitude at Equator 922 km 

Orbital period 101.4 minutes 

Orbital cycle 26 days 

Instruments 2 HRGs with stereo viewing capability 

Spectral bands and 
resolution 

2 panchromatic 5 m bands – combined to generate a 2,5 m 
panchromatic (P) product 

3 multispectral bands (10 m) 

1 short-wave infrared band (SWIR) (20 m – resampled to 10 m) 

Spectral ranges of bands P: 0.48 – 0.71 µm 

XS1/B1 = green 0.50-0.59 µm 

XS2/B2 = red 0.61-0.68 µm 

XS3/B3 = near-infrared (NIR) 1.78-0.89 µm 

XS4/B4 = SWIR 1.58-1.75 µm 

Imaging swath 60 km x 60 km to 80 km 

Image dynamics 8 bits 

Average revisit interval 
over a 26-day orbital cycle 

2-3 days (depending on latitude) 

Location accuracy  

Note: Absolute location 
accuracy for levels 1A, 1B 
and 2A applies to flat terrain 
and thus do not allow for 
parallax errors due to relief. 

30 m ( 1 σ) for HRG sensors 

Location accuracy was evaluated on the basis of a statistic calculated 
from a large number of scenes acquired from September 2003, across 
the globe 

                       1 σ = 1 sigma = 1 standard deviation 
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Theoretically the revisit time for SPOT 5 is 2-3 days, but when searching the SANSA 

catalogue, it is clear that unless funds are available to pre-order or commission a specific 

image, only a few images are downloaded / processed for use through the SANSA catalogue.  

In the present study, the intent was to use SPOT 5 imagery with a spatial resolution of 10m 

and a seasonal temporal resolution of approximately four months over a one year period from 

September 2010 to August 2011 during which buffalo herds were tracked in the study area. 

Suitable imagery with less than 20% cloud cover was identified from the SANSA catalogue 

and a (European) SPOT catalogue (at the time the catalogue was available 

at http://catalog.spotimage.com).  Multispectral imagery for 19 September 2010, 30 April 

2011 and 11/12 August 2011 in Tagged Image File Format (TIFF) at a level 1B processing 

stage was identified (Table 4.2). For label 1B processing,  images are corrected to 

compensate for radiometric variations due to detector sensitivity, systematic effects 

(including panoramic distortion), the Earth's rotation and curvature, and variations in the 

satellite's orbital altitude (Astrium, 2010b). Additionally one geo-corrected pan-sharpened 

(re-sampled) image for 12 August 2011 was obtained through a special request. 

All SPOT image data was received in GeoTIFF format. This format is based on TIFF which 

is supported by various commercial and open source software programs. The “Geo” part of 

this format refers to Geographic extensions which add geo-referencing information from the 

image file to the TIFF file. 

It was noted that SPOT 5 spectral bands from TIFF images are by default extracted in a XS3 

(NIR); XS2 (Red); XS1 (Green) order. This should for instance be taken into account when 

deriving indices in certain software packages, as SPOT products may open accordingly by 

default in the following RGB display scheme:  

R - XS3 displayed in red (because it is the first spectral band extracted) 

G - XS2 in green 

B - XS1 in blue 

Additionally, a 2009 Geo-corrected Spot image as provided to the University on the Fundisa 

resource disk was used during the initial search for field sites. The Fundisa resource disk is 

55 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://catalog.spotimage.com/


part of an on-going data dissemination initiative by the South African Council for Scientific 

and Industrial Research (CSIR). 

4.4 Image pre-processing 

Initial processing of the SPOT 5 image analysis for this study involved radiometric and 

geometric corrections, spatial sub-setting, the calculation of vegetation indices and the 

stacking of image and derived bands as depicted in Figure 4.1. 

 

Figure 4.1 Summary of image pre-processing workflow 

 

4.4.1 Radiometric calibration of the SPOT 5 imagery 

Digital satellite sensors record the intensity of electromagnetic radiation (ER) in per-pixel 

digital numbers (DN). The range of DN values depends on its radiometric resolution. SPOT 5 

sensors measure radiation on a 0-255 scale.  

Image processing are often based on raw DN values when actual spectral radiances are not of 

interest (e.g. when classifying a single satellite image). The DN values are image specific as 

they are dependent on the conditions at the time the image was taken i.e. the solar angle, the 

sensor view angle, possible changes in sensor characteristics and specific weather conditions. 

Consequently a spectral signature derived from DN values of a land cover class or feature are 

also not freely transferable among different images or sensors and cannot be readily 

compared to spectral signatures in spectral libraries (Gu et al., 2009, Lillesand et al., 2004, 

Chavez, 1996). Similarly, the DN values in the two temporally different SPOT 5 images with 

the same path and row but acquired on 30 April 2011 and 12 August 2011 respectively, are 
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uncorrected for atmospheric influences and the seasonal position of the sun. Therefore 

radiometric calibration measures were applied to achieve and improve the relationship 

association between pixel values in the two SPOT images. 

Absolute radiometric correction is achieved through conversion of DN to radiance which is 

then transferred to ground surface reflectance (Lillesand et al., 2004). The term radiance 

refers to any radiation leaving the earth toward the sensor (also referred to as radiant flux) 

whereas irradiance is attributed to radiation reaching the earth from the sun (also referred to 

as incident flux). Reflectance then represents the ratio of radiance to irradiance which 

provides a standardised measure which is comparable between images. Reflectance is 

dimensionless and is generally measured on a scale from 0 to 1 or given as a percentage.   

The true unit of electromagnetic radiation is W m-2 ster-1 μm-1. That is, the rate of transfer of 

energy Watt (W), recorded at a sensor, per square meter on the ground, for one steradian 

(three dimensional angle from a point on earth’s surface to the sensor), per unit wavelength 

being measured. This is the measure referred to as the spectral radiance. Radiation is affected 

by absorption which reduces its intensity, and scattering which alters its direction. Absorption 

occurs when electromagnetic radiation interacts with gases such as water vapour, carbon 

dioxide and ozone. Scattering results from interactions between electromagnetic radiation 

(ER) and both gas molecules and airborne particles (Adams and Gillespie, 2006, Smith, 2005, 

Lillesand et al., 2004, Chavez, 1996). 

The ENVI 4.8 image analysis software applies the following equation when converting SPOT 

DN values to Radiance for each band in each image: 

𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 (𝐿𝜆) = 𝐺𝑎𝑖𝑛 ∗ 𝐷𝑁 + 𝑂𝑓𝑓𝑠𝑒𝑡 

Gain and Offset values are contained in the metadata files associated with each image file. 

Top-of-atmosphere reflectance is derived using additional information on solar irradiance, 

sun elevation, and acquisition time which is also defined in the image metadata files. Solar 

irradiance values can also be obtained from the SPOT image website: http://www2.astrium-

geo.com/files/pmedia/public/r452_9_normalsolarirradiance.pdf  
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Reflectance (R) is computed using the following equation: 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 (𝜌𝜆) = 𝜋𝐿𝜆𝑑2/𝐸𝑆𝑈𝑁𝜆 sin 𝜃  

WHERE 

L𝜆𝜆 = Radiance in units of W/(m2 * sr * µm) 

d = Earth-sun distance, in astronomical units 

ESUN𝜆𝜆 = Solar irradiance in units of W/(m2 * µm) 

𝛳𝛳 = Sun elevation in degrees 

It is acknowledged here that various atmospheric correction methods are described and tested 

in literature (Chen et al., 2005, Chavez, 1996). Optimal radiometric corrections are complex 

and require various measured component values including, but not limited to, atmospheric 

conditions, topography and adjacent pixel influences. When the values of these parameters 

are known, complex mathematical models incorporating the main interactions may be applied 

towards deriving “absolute” reflectance (Xie et al., 2008).  Various relative radiometric 

corrections methods aiming at aligning radiometric properties between selected imagery by 

comparative calibration is often seen as more attainable  (Davranche et al., 2010, El Hajj et 

al., 2008, Chen et al., 2005). Although the corrections required for specific applications are 

often debated, radiometric correction is regarded as fundamental to image pre-processing 

when comparing or using multi-temporal or multi-sensor data, (Gu et al., 2009, Liu et al., 

2007, Qi et al., 2000). Although temporally different images were analysed in this study, the 

derived reflectance values were not used in a directly comparative approach. 

4.4.2 Geometric corrections and image subsets 

Image processing software (ENVI 4.8) was used to co-register the SPOT 5 multi-spectral 

images to the pan-sharpened geo-corrected SPOT 5 image. Due to the natural status of the 

area and the lack of discernible and well-defined features, co-registration proved challenging. 

Geo-correction was completed using 24 control points and achieved with tolerable levels of 

accuracy (RMS 1.7 and 2.6 respectively) for two of the acquired images for 2011, one 

coinciding with the end-of-wet-season dated 30 April 2011 and the other dated 12 August 

2011, typical of the end-of-dry season (Table 4-2).  
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A sub section (subset) encompassing the extended study area was produced from each of the 

two co-registered SPOT 5 images. These two image subsets were used for all the 

classification procedures investigated in this dissertation and will subsequently be referred to 

as the April image and the August image. To facilitate the option of using stacked bands (or 

derived bands) during classification the reflectance values of the pixels as derived from the 

original digital numbers are applied in all procedures. 

Table 4-2 Illustration of co-registration achieved between the images used in further 
classification processes 

Image season and date Screen illustration of the co-registration 
achieved 

SPOT 5  

End-of-growing-season  

Date: 30 April 2011 

Multispectral (False colour) 

 

SPOT 5  

End-of-dry season  

Date: 12 August 2011 

Multispectral (False colour) 

 

 

4.4.3 Vegetation Indices 

It was anticipated that one or more of the indices discussed in Chapter 2 may be helpful in 

distinguishing vegetation structural types that may be spectrally similar but vary with regards 

to seasonal changes. It was seen as probable that vegetation indices for two seasons could 

therefore help to differentiate between such vegetation classes. Due to the differences in 

temporal changes in the phenology between various plant species and in a bit to improve the 

application value of the classification, the Normalized Difference Vegetation Index (NDVI) 

was calculated for all pixels in both images.  
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During the field visits extensive areas with low vegetation cover due to overgrazing and 

trampling were observed. As discussed in Chapter 2, various indices modified to assist in the 

handling of soil noise have been applied in projects and described in literature. With this in 

mind, a modified soil index, the Second Modified Soil Adjusted Vegetation Index (MSAVI2) 

was also calculated. The MSAVI2 index was used because it did not require an assumption 

on what would be a suitable constant or soil line (e.g. the 0.5 often applied in the MSAVI 

equation) for the vastly different soil conditions encountered in the study area. 

4.4.4 Band stacking 

To facilitate the inclusion of the results from the two derived vegetation indices in the 

classification, available bands from the two images (surface reflectance values varying 

between 0 and 1) and the derived NDVI and MSAVI2 values (-1 to1) were stacked to create a 

12 band image. Various combinations of these bands were then applied towards deriving and 

analysing a number of classification and classification products. 

4.5 Image classification methods 

As discussed in Chapter 2, pixel-based image classification functions apply statistically based 

rules to assign each individual pixel to a class.  In a supervised approach, the analyst has to 

provide spectrally representative training samples of the desired information target classes. 

Image analysis software then provides a selection of computer algorithms which may be 

applied to statistically compare each pixel in the image to the spectral characteristics of pixels 

in the different training areas. Unsupervised classifiers, in contrast, clusters pixels in an 

image based on statistics only, without any user-defined training classes. The resulting 

classes must then be interpreted by the analyst and assigned to one of the target classes.  

Both the supervised and unsupervised approaches were applied using varying input variables 

towards a classified result. Post classification techniques were then applied to investigate the 

effect of the various inputs and to explore the impact of generalisation (Figure 4.2).  
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Figure 4.2 Summary of image classification workflows 

 

4.5.1 Supervised Classification 

In the supervised approach, the widely used supervised Maximum Likelihood Classifier 

(MLC) was applied using a set of image specific training areas referred to as Regions of 

Interest (ROIs). The selection of training samples depends largely upon the analyst and an 

understanding of the data, the study area and the classes to be extracted. For the supervised 

classification of the April and August image subsets, training ROIs were created using false 

colour displays in correspondence with the available pan sharpened SPOT 5 image. 

It may be perceived that, in an attempt to limit statistical distortion in the classification 

results, all vegetation ROIs should contain a similar number of pixels. In reality however, this 

seemed impractical as certain classes may comprise much smaller extents than others. During 

the process of creating training regions the diversity and fragmentation existing between 

vegetation types was noticeable. The ambiguity inherent in the process of visually selecting 

training areas for the supervised classification became more and more apparent. Various 

techniques were applied to investigate some of the aspects that could impact on the 

effectiveness of the training ROIs. 

4.5.1.1 Refinement of training regions and selection of image bands  

In a 10 m SPOT 5 pixel, one big tree may produce similar reflectance values than 5 smaller 

ones. Similarly, it may be difficult to distinguish between the reflectance from dry bushes, 

dry grassland and/or dry litter. Vegetation classes in the study area are intrinsically mixed and 
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there are very few classes with grouped “pure” pixels. The quality of the training sites often 

impacts on the quality of the supervised classification (Kar and Kelkar, 2013, Lillesand et al., 

2004). The range and extent of various possible impacts on ROIs and the effectiveness of 

supervised classification were investigated by: 

• examining the impact of the size and homogeneity of ROIs,  

• exploring the influences of shadow, agriculture and 

• combinations of image bands and indices. 

For a supervised classification procedure, enough training pixels must be chosen for each 

required spectral class to allow reasonable estimates of class mean vectors and covariance 

matrixes. For instance, in an n dimensional spectral space, the covariance matrix will be of 

size n x n which implies that a minimum of n(n+1) training samples are needed. Each pixel 

however contains n sample values (one for each image waveband), meaning that the 

minimum number of independent training pixels is only (n + 1), which would imply 5 pixels 

per class for the 4 band SPOT 5 pixels (Lillesand et al., 2004, Richards and Jia, 2006). It is 

however often suggested that a minimum of 10n to 100n is desirable because a higher 

number of training sites may improve classification results as more pixels could provide a 

better statistical presentation of each spectral class to be extracted (Kar and Kelkar, 2013, 

Lillesand et al., 2004).  

Apart from the size and homogeneity of ROIs, using the same ROIs on temporally different 

imagery may also affect analysis results. In theory, a vegetation structural class for a natural 

vegetation area should be stable from April to August in one year, but in reality seasonal 

changes will inevitably impact on the spectral properties of an image and thus may influence 

the classification outcome. 

The potential impact of ROIs, band selection and the two indices on the separability of 

training areas were investigated. Various combinations of training ROI size, homogeneity 

and image bands were selected and statistically tested with regards to the pair separation 

between the spectral ranges in the respective training areas. If the spectral distance between 

any two ROIs is not significant for any combination of bands, then the ROIs may not be 

distinct enough to produce a valuable classification (Gambarova et al., 2010). Both the 
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Jeffries-Matusita (J-M) and the Transformed Divergence distance (separability) measures are 

available when using the ENVI 4.8 image analysis software. In this investigation, the Jeffries-

Matusita distance measure, which has a saturating behaviour with increasing class separation, 

is reported as a quantitative measure to support and evaluate the training class grouping 

results. 

The J-M distance between a pair of prospective distributions (spectral class values) uses a 

function of the distance between class means and produces derived values between 0 and 2 

(Borges et al., 2007, Venkataraman et al., 2006, Marçal et al., 2005, Richards and Jia, 2006). 

The separability between two classes is generally considered good when the J-M distance is 

above 1.9 but class separability is considered poor when the J-M distance is below 1.0 

(Thomas et al., n.d., Thomas et al., 2000). The pair separation between a set of training 

Regions of Interest (ROIs) created from the April image was computed for the April image 

but also for the August image.  

However, a good separability report between ROIs in a training set may not necessarily be an 

indication that classification results from this set may be reliable. To investigate the effect of 

the size and separability associated with ROIs further, thresholds were applied when the sets 

of training regions were used in supervised classification. The MLC assumes a normal 

distribution of the statistics for each class in each band and computes the probability that a 

particular pixel belongs to a specific class. If no probability thresholds are assigned, every 

pixel in the image will be assigned to the class that it has the highest probability to fit in - 

irrespective of how small the actual probability of its class membership is (Richards and Jia, 

2006). If a threshold value is applied to the MLC, all pixels for which the highest probability 

(to any class) is smaller than the specified threshold will remain unclassified. In this study, 

thresholds were applied as an additional investigative measure of the suitability of training 

areas. Schowengert (1997) noted that threshold values or intervals are mostly case dependant. 

For this study, the threshold values were selected on an experimental basis.  

During initial trial runs it became apparent that the relatively small areas where shadow 

occurs due to topography (± 1% of the total image area) may also affect the statistical means 

and classification results. The terms shade, shading and shadow are not necessarily synonyms 

when discussed in remote sensing texts. Shadow is described by Adams & Gillespie (2006) 
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as a dark image on a surface due to light being intercepted (by something) whereas shade 

refers to the darkening in an image due to combined effects of albedo, shading and shadows.  

In all of the images used for the analysis in this study area, shadow occurred in the deep v-

shaped Levuvhu river valley, and in the south-western quadrant of the study area where a 

number of ridges occur. To compensate for this across various spectral bands, a shadow class 

was added to subsequent training files. Shadow occurs mostly on steep gradients which are 

not typical grazing terrains of large ungulates like buffalo (Figure 4.3). 

 
Figure 4.3 Example of a classification result which incorporates a separate class to compensate 

for shadow in the image. a) False colour presentation b) A classification result (MLC) with 
shadows depicted by white pixels 

 

Additional to the effect of shadow in the SPOT 5 images, the possible impact of subsistence 

agricultural activities occurring in portions of the study area outside the KNP borders was 

investigated. These areas may influence the classification results due to varying growth 

stages in crops, grazing practices, etc.  Agricultural areas were masked using a vector dataset 

with digitised agricultural polygons obtained from CIRAD researchers working in southern 

Zimbabwe. These polygons were verified using the 2011 pan-sharpened August image.  

With the results of all the above investigations, final ROIs for use in the supervised 

classification were refined by applying the following steps: 

• A separate set of ROIs were created for each of the two selected seasonal 

images to account for temporal differences. 
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• The size of the ROIs for each set was adapted to between 100 and 150 pixels 

per class to allow for a more suitable number of relevant pixels to be included 

without too much generalisation. 

• Jeffries-Matusita distance values were determined between all the classes in 

each ROI set and attempts were made to record and improve the training 

regions for the classes with the lowest pair separability values. 

• Additional ROIs were created to account for the impact of shadow and 

variation within classes (e.g. the Bushveld class). 

• To minimize the impact of the agricultural activities in the broader application 

area on the classification output, these areas were masked. 

 

The new and final set of ROIs created for each of the selected images (30 April 2011 and 12 

August 2011) included three sub-regions to accommodate the variations in the Bushland class 

and two sub-regions to accommodate variation in tree density amongst the Riverine Forest 

areas. Additionally, a training ROI was added for small Ironwood forests in study area and 

also for all areas were shadow may obscure the true vegetation characteristics. A total 

number of 14 training sub-ROIs encapsulating between 100 and 150 pixels per class were 

used for the classification procedures applied to each image. During post-classification 

procedures some of these were combined to produce the required land cover product (Table 

4-3).  

In all subsequent image analysis processes, all four SPOT 5 bands for each image were used 

in conjunction with the derived NDVI and MSAVI2 bands. Furthermore, all agricultural areas 

were consistently masked out. The final classification results for the August and April images 

respectively, were saved to be used in further post-classification procedures and evaluation 

processes (Chapter 5). 
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Table 4-3 Summary of the final selection of sub-ROIs and their associated land cover classes 
and codes 

ROIs including sub-regions Final land cover products  Code 

1 Riverine Forest 
1 Riverine Forest RF 

2 Open Riverine Forest 

3 Woodland 
2 Woodland WL 

4 Ironwood 

5 Open Woodland 3 Open Woodland OW 

6 Bushland 1 

4 Bushland BL 7 Bushland 2 

8 Bushland 3 

9 Open Bushland 5 Open Bushland OB 

10 Grassland 6 Grassland GL 

11 Sparse vegetation 7 Sparse vegetation SV 

12 Bare Soil 8 Bare Soil BS 

13 Water 9 Water WA 

14 Shadow 10 Shadow SH 

 

4.5.2 Unsupervised Classification 

For the second classification method the commonly used Iterative Self-Organizing Data 

Analysis (ISODATA) classification algorithm was applied. As discussed in Chapter 2, 

unsupervised classifiers (K-means and Isodata) measures and locates clusters in the data 

space, but an analyst is then required to interpret and identify these clusters. Two different 

approaches were applied and are described below. 

4.5.2.1 Hierarchical approach 

The methodology investigated in this approach incorporated a succession of unsupervised 

classifications on various band combinations in an almost hierarchical format. The method is 

described using  the full 12 band stack which comprises of the four SPOT 5 bands, the NDVI 

result and the MSAVI2 result for each of the two images. Firstly, a number of 48 classes were 
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created allowing up to 99 iterations on the stacked image. The ENVI 4.8 software completed 

all 99 iterations – running for several hours. From this initial classification product, the most 

dicernable classes were identified and assigned to their respective target classes. These were 

pixels clearly representing the Water, Bare Soil, Riverine Forest and Shadow classes. The 

already assigned areas were then masked out from subsequent classifications. The process 

was then repeated for the remaining pixels - each time using the new mask created - until all 

remaining pixels were classified.  

During this classification procedure, the identification of classes became increasingly 

difficult. Classes were identified by visually comparing the pan-sharpened corresponding 

image for August 2011, the available 2008 aerial photography and Google Earth historical 

imagery. Identifying representative sample areas of the selected land cover classes was 

increasingly challenging. During the first reiteration of the classification process, more areas 

with Riverine Forests and open Riverine Forests as well as some Woodland, Bushland, Open 

Bushland and Glassland pixels were fairly confidently identified. After the second repetition, 

additional pixels representing Bushland, Woodland, and Open Riverine Forest areas were 

assigned to their perceived respective classes but with dwindling confidence. Some areas 

with Sparse Vegetation cover were also identified.  

However, from the third repetition of the process, the remaining pixels to be classified were 

scattered and the classification product extremely fragmented. Subsequently the number of 

classes was reduced to 21 and the process repeated.  However, from this point onwards the 

class characteristics became progressively indistinct and the visual interpretation more and 

more ambiguous. Classes which could be described as “Low overgrazed grass and shrub” or 

“Open shrub and trees” or “Rocky Woodland” had to be “forced” into the required 

classification scheme. Finally, a classified image was achieved, but the uncertainties 

associated with this result were so apparent that attempts were not made to pursue this 

classification method further. The challenges describe above were encountered in all band 

combinations tested. 

4.5.2.2 Using a Principal Component Analysis 

Due to the interpretation concerns encountered during the hierarchical unsupervised attempts 

as described in the previous section, the option of reducing the dimensionality of the data by 
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employing a principal component transformation for each of the April and August images 

was investigated. In the ENVI software the principal component (PC) transformation may be 

applied to produce uncorrelated output bands and segregate noise components.  

Multispectral data bands are often highly correlated (as with the Red and Green bands of the 

SPOT 5 product). The principal components transformation was applied to produce a number 

of uncorrelated output bands. This is done by finding a new set of orthogonal axes that have 

their origin at the data mean and are rotated so that the data variance is maximized. The first 

PC band comprises the largest percentage of data variance; the second PC band contains the 

second largest data variance, etc. (Adams and Gillespie, 2006). 

During the PC transformations used in this analysis, the number of output PC bands was kept 

similar to the number of image bands used (6). The first three resultant PC bands described 

99.77% and 99.82% of the variation in the August and the April image respectively (Table 4-

4). The last PC bands appear noisy because they hold very little variance (Figure 4.4), much 

of which may be due to noise in the original spectral data. The first three PC bands were then 

used in an ISODATA classification with 14 classes only (to limit the class interpretation 

issues encountered in the hierarchical procedure discussed earlier).  

 

Table 4-4 Resultant PC bands, eigenvalues and data variance 

August image April image 

PC 
band 

Eigenvalue Cumulative 
data variance 

PC 
band 

Eigenvalue Cumulative data 
variance 

1 

2 

3 

4 

5 

6 

0.0097 

0.0026 

0.0004 

0.0000 

0.0000 

0.0000 

72.20% 

96.64% 

99.77% 

99.96% 

100.00% 

100.00% 

1 

2 

3 

4 

5 

6 

0.0223 

0.0023 

0.0007 

0.0000 

0.0000 

0.0000 

88.02% 

97.06% 

99.82% 

99.98% 

100.00% 

100.00% 
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1st PC band 

 

2nd PC band 

 

3rd PC band 

 

4th PC band 

 

5th PC band 

 

6th PC band 

 

Figure 4.4 Illustration of the increase in noise from PC band 1 to 6 

 

The image classes resulting from of the ISODATA classifications were interpreted to 

correspond as best as possible with the 14 subclasses which were used for the supervised 

classification procedures (Table 4-3). However, due to limitations inherent in the 

unsupervised ISODATA class divisions, target class distinction was compromised in some 

cases. In the April image, for instance, it was impossible to extract the Sparse Vegetation 

(SV) class as it was intrinsically mixed with Open Bushland (OB), Bare Soil (BS) and 

Grassland (GL). These images were nevertheless saved for further post-processing and 

analysis. 

4.6 Post Classification 

In a diverse natural environment as found in the study area, spectrally classified images may 

produce complex results which are fragmented with numerous isolated pixels. Various 

generalisation techniques may be applied to address this issue. In this section, some of the 

generalisation options and their potential impacts on the classification results are investigated 

and described. 
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4.6.1 Combining sub-regions 

For all the classified images to be assessed (supervised and unsupervised) all relevant sub-

classes were combined to produce a product with only eleven target classes – the nine target 

land cover and vegetation classes selected (Table 4-3) plus the shadow class and the 

agricultural regions. The process of combining sub-regions was uncomplicated for the images 

resulting from the supervised classification because all sub-classes were already aligned with 

specific target class (Table 4-3). However, in the unsupervised results derived from the 

principal component (PC) bands, several classes were very difficult to assign as overlapping 

between classes occurred (e.g. water and shadow; bare soil and sparse vegetation) that could 

not be adequately resolved. The effect of this was kept in mind when results were evaluated 

further. The classified outcomes obtained through both the supervised and unsupervised 

processes were later evaluated using qualitative and quantitative methods (Chapter 5, section 

5.3). For investigative purposes the final classified outputs are all illustrated using the same 

distinctive colours for each class or feature (Figure 4.5). 

 

Figure 4.55 Colours and abbreviations associated with each class or feature in all classified 
results 

4.6.2 Generalisation and smoothing 

Pixel-based classification of multispectral imagery like the SPOT 5 products used in this 

study often results in noisy images with a large number of isolated pixels or small pixel 

groups which may result in a thematic map that is be difficult to interpret (Yee et al., 1986).  

Various generalisation techniques were applied to each classified result (Chapter 5,Table 5-6) 

in order to remove these fragmented visual impacts, often referred to as the “salt and pepper” 

effect (Breytenbach et al., 2013, Lillesand et al., 2004, Stuckens et al., 2000). The levels of 
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generalisation that may be most suitable for this study area are considered and discussed in in 

Chapter 6. 

After sub-classes were combined (see 4.6.1), the resultant images were subjected to sieving, 

clumping and filtering procedures using various parameter inputs to illustrate and investigate 

the potential effects associated with each of these procedures. 

4.6.2.1 Sieving 

Sieving was applied to partially solve the problem of isolated pixels occurring in 

classification images (ENVI, 2012). Low pass or other types of filtering could be used to 

remove these areas, but by using these methods the class information may be contaminated 

by adjacent class codes. Although a threshold of 2 pixels was already introduced during the 

initial classification processes, the sieve function in the ENVI software menu was applied to 

examine the neighboring 8 pixels to determine if a pixel is grouped with pixels of the same 

class. The threshold number of pixels in a class was increased to 4. If the number of pixels in 

a class that are grouped is less than 4, these pixels will be then be removed from the class. 

When pixels are removed from a class using sieving, these will remain as unclassified pixels 

(Figure 4.6 c). During the sieving operation, the agricultural mask was not included in the 

sieving process as it has no isolated pixels and it remained unchanged in the output image. 

4.6.2.2 Clumping 

To re-classify the unclassified pixels that remained after sieving was applied, the Clump 

Classes function in the ENVI software were then used to clump adjacent similar classified 

areas together using morphological operators. The selected classes are clumped together by 

first performing a dilate operation then an erode operation on the classified image using a 

specified operator kernel size (ENVI, 2012). At first an operator size of 3 rows by 3 columns 

was applied, but this still left more than 72 600 and 102 800 pixels unclassified in the August 

and April results respectively. Repeating the same operation with a 6x6 kernel, reduced the 

number of unclassified pixels to about 46 000 and 54 000 respectively (Figure 4.6 e).  
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4.6.2.3 Filtering 

Various filters may be applied to produce output images in which the value for a given pixel 

is a function of the weighted average of a user-selected kernel of surrounding pixels. To 

smooth out the remaining isolated and unclassified pixels in the classification product, a 

convolution median filter using a 9 pixel neighborhood was applied. The median filter 

smooth the image, while preserving edges larger than the kernel dimensions. The median 

filter tool in ENVI Classic replaces each center pixel with the median value within the chosen 

neighborhood filter size. The output of this operation still left about 29 000 pixels 

unclassified in both the August and April classified products.  

Due to the filtering procedures, some linear features like narrow water channels, roads and an 

airstrip disappeared (Figure 4.6 f). Similarly some areas with shadow increased or decreased 

inappropriately, while the effect on the delineation of vegetation zones was also problematic. 

One example of the undesirable effect of the filtering process is the decline of the Riverine 

Forest class (bright green) in riverine areas in favor of Open Woodland (blue) and Bushland 

(dull green) as the generalization process progressed (Figure 4.6 a-f).  

The disappearance of man-made features like the roads and the airstrip in the generalized and 

smoothed result illustrated in Figure 4.6 (f) can be dealt with as these will remain stable and 

can be re-introduced using available vector layers. However, it may be important to retain all 

the originally classified water pixels as these are changing seasonally and may be informative 

when used in ecological applications. 

In the same way, the retention of smaller vegetation classes may be severely influenced by 

the smoothing effect of the median filtering process which may reduce accuracy to 

unacceptable levels. For example, reducing the neighborhood kernel size from 9x9 to 3x3 

pixels resulted in slightly blotchy result with more unclassified pixels (31 000) but allowed 

the retention of some linear feature parts (Figure 4.7). A majority analysis may also be 

applied to change isolated pixel groups within a larger class to that class. The kernel size used 

and the weight of the center pixel in the kernel may be set by the analyst (ENVI, 2012). 
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a) False colour display 

 

b) Sub-classes removed 

 

c) Sieved result 

 

d) Clumped result (3x3) 

 

e) Clumped result (6x6) 

 

f) Smoothed  

 

Figure 4.6 Extracts illustrating results from post-classification procedures applied to the August 
2011 classified image. a) Original false colour display with roads, the Levhuvhu river, a tourism 
airstrip and a shadowy spot clearly visible b) Sub-classes were removed by combining them  c) 
Sieving removed isolated pixels d) After lumping using a 3 x 3 kernel to re-assign unclassified 

pixels e) After clumping using a 6x6 kernel to re-assign unclassified pixels f) Applying a median 
filter produced a smoothed result  

 

   a) False colour 

 

b) Result from a 3x3 kernel 

 

c) Result from a 9x9 kernel 

 

Figure 4.7 Extracts from the April image post-classification products illustrating the effect of a 
3x3 (b) versus a 9x9 (c) neighbourhood kernel size when applying a median filter on linear 

features 

73 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



To limit the impact of the areas with shadow on the overall smoothing results, the shadow 

class pixels were sometimes smoothed by separate sieving and clumping actions before the 

above sieving and clumping processes (Figure 4.6 c & e). While this procedure seemed to 

improve the stability of the areas with shadow, it did not solve the problem regarding the 

linear features in a satisfactory manner, as the final smoothing operation using the median 

filter does not allow for the exclusion of regions. 

Determining a suitable level of generalisation and smoothing depends on the application 

(Foote and Huebner, 1995, Smits et al., 1999). It is important to find a balance between this 

generalization and the deteriorating accuracy levels brought about by smoothing and filtering 

techniques. The process used to determine a possible acceptable level of simplification in the 

study area is discussed in Chapter 6. 

4.7 Summary 

In this chapter, the acquisition of suitable SPOT 5 image data was described and the various 

pre-processing and image classification methods used in the study were discussed. 

Radiometric and Geometric pre-processing was completed for two temporally different 

images to enhance the possibilities of stacking image bands and comparing classification 

results. Two vegetation indices were derived for each image and their impact on supervised 

classification options was investigated. The potential influence of size and homogeneity of 

ROIs on supervised image classification results were considered. Two unsupervised 

approaches; hierarchical and using PC bands, were applied and the resultant classes were 

interpreted in order to align the results with the proposed target classes. Results from the 

supervised and unsupervised classification procedures were subjected to generalization to 

examine the possible impact of such procedures on the classified products. Four classified 

products, two supervised and two unsupervised results (Table 5-6), were created for 

quantitative and qualitative evaluation methods to be explained and discussed in Chapter 5. 

 

74 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5  Evaluation of classification methods and results 

5.1 Introduction 

In this chapter various qualitative and quantitative evaluation methods which may be applied 

to assess the success of SPOT 5 pixel-based classification results are explored and discussed. 

In line with the third study objective, the inherent uncertainties associated with pixel-based 

classification approaches are investigated. Additionally, the usefulness of estimated desktop 

and in-situ field observations as ground truth validation tools are assessed. 

5.2 Results from pair separation tests 

Results indicated that, when applied to all four SPOT 5 multispectral bands, the ROIs created 

from the April image resulted in good pair separation (J-M distance >1.9) between 24 of the 

45 pairs and less favourable pair separation between 21 of the 45 pairs. When the same ROIs 

were applied to the August image, results were reversed (Figure 5.1). The trend depicted in 

Figure 5.1 remained consistent when tested on training areas of various sizes and applied to 

different band combinations. Similar trends were apparent when the process was inverted and 

ROIs created from the August image was applied to the April image. 

 
Figure 5.1 Pair separation between ROIs created from the 30 April 2011 image as applied to the 

same image and the August 2011 image 

Pair separation improved (with more pairs illustrating a J-M distance value of 2) when the 

derived NDVI and MSAVI2 index bands were added to the separability calculations – even 

when applied to a temporally different image (Figure 5.2 and 5.3). Similarly, Lillisand (2004) 
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reported that classes that may not be distinguishable in single bands may be separated when 

more bands are analysed. Results displayed in Figures 5.2 & 5.3 also suggest that even in the 

semi-arid and often overgrazed study area, NDVI may have a larger impact on the 

separability between classes than MSAVI2. 

 

Figure 5.2 Pair separation between ROIs created from the 30 April 2011 image as applied to the 
same image and the August 2011 image using various band combinations 

 

Figure 5.3 Pair separation between ROIs created from the 12 August 2011 image as applied to 
the same image and the 30 April 2011 image using various band combinations 

 

Figures 5.2 and 5.3 were constructed from results obtained when similar sized ROIs were 

used on different images or image bands. However, the size and homogeneity of the training 
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areas were not yet tested. ROI training areas were created by the analyst by way of 

interpreting the image pixels based on various visual and contextual clues.  

In the course of the research, various ROI data sets were created applied using the MLC and 

the results were visually inspected. In Figure 5.4 the results from only two of these sets of 

ROIs are used to illustrate the impact of size, heterogeneity and image bands on pair 

separation in the April image. One of these sets consisted of small very concise and 

homogeneous ROIs (30 pixels per class). The other set allowed for more varied ROIs 

including larger areas which are well distributed over the study area. In this case the number 

of pixels varied according to the size of the class (1000+ pixels) as perceived visually and 

incorporated a wider variety of possibly inclusive pixels. As can be logically suspected, 

Figure 5.4 illustrates that separation values improve when small homogeneous training areas 

are selected opposed to larger more heterogeneous ROIs across all image band combinations. 

 
Figure 5.4 The relationship between the size of the training ROIs, the image bands used and the 

percentage of ROI training pairs with a J-M distance separabilily above 1.9. All image bands 
refer to the 30 April 2011 SPOT 5 image: 4b = all SPOT bands; 5b = 4b + NDVI; 6b = 5b + 

MSAVI2 

It may be deducted that training ROIs may be image specific when working with different 

seasons in a semi-arid “natural” savanna landscape (Figure 5.1). Interim results also 

suggested that the addition of vegetation indices may improve the capability of image 

software to distinguish between classes (Figures 5.2 and 5.3). 
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The MLC products associated with various ROI types and different thresholds were derived, 

compared and analysed. Some case examples of these comparisons are illustrated in Table 5-

1 and discussed thereafter. An illustration of the results can be seen in Appendix F. 

Table 5-1 Illustration of the effect of ROI characteristics on the percentage of unclassified pixels 
when using thresholds in a maximum likelihood classification  

Maximum Likelihood classification with thresholds 

Note: Classification is based on all four SPOT 5 bands plus NDVI and MSAVI2 

Case 1: April - Small 30 pixel ROIS (9 classes) 
Case 2: August - Bigger ±100 pixel ROIs with sub-classes 
Case 3: April - Large 1000+ pixel ROIs (9 classes)   

 

Threshold values 

Percentage (%) of unclassified pixels for each selected case 

Case 1 Case 2 Case 3 

0.8 98 82 76 

0.4 94 69 45 

0.2 90 59 29 

0.05 83 45 12 

0.01 75 33 5 

No threshold 0 0 0 

 

The small uniform ROIs applied to the April image as illustrated under Case 1 shows that, 

when a threshold of 0.8 is applied, only about 2% of the image pixels are statistically close 

enough to the mean of the training sets to be classified. Even a small threshold of 0.01 still 

resulted in 75% of pixels not being classified. This may illustrate that the reasonably good 

pair separation achieved by this set of ROIs during pair separation tests (Figure 5.4), will not 

necessarily result in a good overall classification. This may be because several types of land 

cover may not be captured within these training plots and/or the small ROIs do not include 
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enough pixel values to successfully represent some of the desired output classes.  

Substantially larger and more heterogeneous ROIs applied to the April image as illustrated 

under Case 3 shows that, when thresholds are applied, a much larger percentage of the image 

pixels are close enough to the statistical mean of the training sets to be classified. The 

heterogeneousness of these large ROIs in turn results in lower pair separation recorded during 

pair separation tests (Figure 5.4). The lower pair separation may negatively impact on the 

success of the MLC and confuse the classification output as there may be several types of 

land cover mixed within the training plots for each class.  

Figure 5.5 illustrates a noticeable variation in the number of pixels per class that were 

classified at the various threshold levels in Case 3 (Table 5-1). A small variation (as shown 

for Water, Bare Soil, Riverine Forests and Grass) most likely indicates that the corresponding 

class may be well extracted. Conversely, a big difference in the number of pixels classified 

between the highest and lowest thresholds (as for Open Woodland, Open Bushland, 

Woodland and Bushland) points towards a higher reliance on probability statistics and 

possibly a considerable amount of confusion in any supervised classification delineations in 

these classes. 

 

Figure 5.5 The variation in the number of pixels per class that were classified at the various 
threshold levels for Case 3 as given in Table 5-1 
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Case 2 (Table 5-1) illustrates the possible impact of using sub-classes instead of larger ROIs. 

In this instance ROIs with a varying pixel count in the region of 100 pixels each were used 

for MLC classification of the August image. Sub-regions were created in an attempt to strive 

towards the use of fairly homogeneous ROIs but to “fill in the gaps” by adding additional 

training areas. Results from the Case 2 investigation suggests that the establishment of sub-

ROIs for some classes may offer an improvement in “catching” class pixel values that would 

otherwise be lost. During post classification procedures these sub-groups are then combined 

as required. To illustrate how reflection values may vary within one structural vegetation 

class, some of the typical variations due to factors like different plant communities and soil 

types observed in the Bushland class are listed in (Table 5-2).  

Table 5-2 Typical examples (screen prints) of different false colour ranges within areas of 
perceived similar structural conditions in the Bushland class. Available ancillary information on 
plant communities, aspect of slope and soil types may not always account for these differences. 

Slope gradient was below 3 degrees in all of these areas 

August 2011 
SPOT image 
false colour 

display 

Aerial 
photograph 

(2008) 

Van Rooyen plant 
communities (1978) 

Aspect Soil types 
(Venter, 1990) 

  

Colophospernum Mopane 
Commiphora Glandulosa - 

Seddera Capensis 

NE-E Lithosol soil  
Arenaceous 
sediments 

  

Colophospernum Mopane 
Commiphora Glandulosa - 

Seddera Capensis 

N-NE Lithosol soil 
Arenaceous 
sediments 

  

Cholophospernum Mopane- 
Enneapogon Scoparius 

SE Lithosol soil  
Basic igneous 

rocks 

 

In order to investigate the impact of shadow and agricultural activities, various thresholds 

were applied to specific maximum likelihood supervised classifications with and without a 

shadow class and/or masking the agricultural areas.  Results indicated a reduction in the 
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percentage of unclassified pixels when a shadow class was added before the image pixels 

were classified using different thresholds. Similarly, there were less unclassified pixels within 

all results when the digitized agricultural areas were masked out before the image pixels were 

classified (Table 5-3). 

Table 5-3  The effect of shadow and an agricultural mask on the percentage of unclassified 
pixels when using thresholds during Maximum Likelihood classification procedures. All 
classifications are based on the four SPOT 5 bands plus the NDVI and MSAVI2 indices 

Threshold 
values 

April image: Small 30 pixel ROIS 
9 classes 

August image: Small 30 pixel ROIs 
10 classes (includes  shadow class) 

Percentage of unclassified pixels (%) 
No mask With Agricultural mask No mask With Agricultural mask 

0.8 98 % 91 % 96 % 89 % 

0.4 94 % 87 % 85 % 79 % 

0.2 90 % 84 % 75 % 70 % 

0.05 83 % 77 % 59 % 55 % 

0.01 75 % 70 % 46 % 42 % 

 

5.2.1.1 ROI separation and classification results using the August image 

Using a final set of 14 training ROIs on the August SPOT 5 image (and indices) with the 

agricultural areas masked out, resulted in favourable  pair separation statistics with 53 out of 

the 91 resultant pairs illustrating a J-M distance of 2 (Figure 5.6). A further 28 pairs 

illustrated a J-M distance above 1.99 but not 2. The lowest J-M distance was recorded 

between two sub-class ROIs that were in any case destined to be combined during post-

processing (Ironwood and Woodland).  However, another 9 pairs with J-M distance values 

between 1.7 and 1.98 showed less favourable pair separation (Appendix G). 

When compared to previous threshold results e.g. the results listed in Table 5-3, the 

classification runs using this refined set of 14 ROIs with various thresholds, resulted in lower 

percentages of unclassified pixels (Table 5-4). This may suggest the potential of somewhat 

improved classification outcomes when using these ROIs. 
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Table 5-4 Results from a supervised image analysis on the 12 August 2011 SPOT 5 image bands 
using sub-region ROIs. Masked agricultural areas shown in grey on the classification results 

SPOT 5 
image 

extracts 
Threshold 0.4 0.2 0.05 0.01 None 

False colour 
extract 

Percentage  un-
classified  pixels 74 65 52 40 0 

 

Screen print 
extracts of 

classification 
results 

      

5.2.1.2 ROI separation and classification results using the April image 

When applying a final set of 14 training ROIs specially adapted to the April SPOT 5 image 

(including the indices but with the agricultural areas masked out) less favourable pair 

separation statistics showed that only 33 out of the 91 resultant pairs achieved a J-M distance 

of 2 (Figure 5.6). A further 30 pairs illustrated a promising J-M distance above 1.99. The 

lowest J-M distance of 1.48 was recorded between two sub-class ROIs of the same land cover 

class (Riverine Forest and Open Riverine Forest).  Another 11 pairs with J-M distance values 

between 1.5 and 1.90 showed less favourable pair separation. The remaining 15 pairs 

displayed fair pair separation values between 1.9 and 1.99. Summarized pair separation 

statistics for the final ROIs as applied to the April and August images are illustrated in Figure 

5.6. 

 

Figure 5.6 Graph summarising the separation statistics for 91 pairs in the final selected ROI 
sets for the April and August images respectively  
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Classification runs using the final set of 14 ROIs on the April image with various thresholds 

(Table 5-5) resulted in lower percentages of unclassified pixels than observed in the August 

image analysis results (Table 5-4). Although these threshold results may seem like an 

improvement on the August image classification, the lower confidence indicated by the pair 

separation statistics (Figure 5.6) may suggest more confusion between classes and therefore 

further investigation seemed appropriate. 

Table 5-5 Results from a supervised image analysis on the 30 April 2011 SPOT 5 image bands 
using sub-training ROIs. Masked agricultural areas shown in grey on the classification results  

SPOT 5 
image 

extracts 
Threshold 0.4 0.2 0.05 0.01 None 

False colour 
extract 

Percentage  un-
classified  pixels 54 39 22 13 0 

 

Screen print 
extracts of 

classification 
results 

      

 

The ability to effectively use classified results in any application may depend on a thorough 

understanding of the possible inherent limitations within the product (Congalton, 1991, 

Jensen, 2009). Validation or evaluation of classification results is therefore necessary and the 

levels of accuracy and uncertainty should ideally be reported. Initial visual inspection of the 

final four classification products (two products from each of the supervised and unsupervised 

processes) seemed to illustrate similar overall patterns and class distributions (Table 5-6).  
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Table 5-6 Illustration of the supervised and unsupervised classification products that 
were used in the post-processing and analysis phase 

Image date Products of supervised 
Maximum Likelihood 

classifications 

Products of unsupervised  
ISODATA  classifications 
based on the three chosen 

principal component bands 

12 August 2011 

  

30 April 2011 

  

 

In order to select the most suitable classified product for the production of a thematic output, 

the final four classified results listed in Table 5-6 were evaluated against potential reference 

data sources. Reference data are often referred to as “ground truth” information. These are 

points or areas which may be used to assess and validate the success of a specific 

classification result. In this chapter, the qualitative and quantitative evaluation methods used 

to evaluate the various classified products are described and discussed.  

5.3 Evaluating the results 

The classified results obtained through both the supervised and unsupervised processes were 

evaluated using qualitative and quantitative methods. 
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5.3.1 Qualitative assessment 

5.3.1.1 Visual evaluation 

Jenson (1996) refers to the visual examination of classification results as a “confidence-

building assessment” to identify any obvious errors. For this study, the first visual inspection 

of the classified products seemed promising with main trends in vegetation zones and other 

classes illustrating a fair amount of uniformity. However, when individual sections were 

scrutinized, considerable differences became apparent with regards to class delineation 

between the two classification methods. Class delineation seemed to illustrate improved 

target class definition in the supervised results. This was expected as the ISODATA 

unsupervised procedure relied on “untrained” statistical evaluation of the data without 

“knowing” which target classes are required. 

Figure 5.7 illustrates examples of the two approaches applied to the August image. For 

reference, the August image is displayed in false colour and different zoom levels as 

displayed in the typical ENVI software display group are shown with a square indicating the 

area presented in the image below. Water was extracted well in both results, but in the 

unsupervised product the areas with shadow (e.g. the area indicated by the x in Figure 5.7) 

could not be separated from water phenomena.  The Riverine Forest (RF) areas, illustrated by 

bright red in the false colour images and bright green in the classified results, were more 

often misrepresented as Woodland (magenta) or Bushland (dull green) in the unsupervised 

result. Wetland areas (y) were confused with RF and BL in both the supervised and 

unsupervised results. Although there seems to be a fair correlation between Grassland (coral) 

and Bare soil (Cyan) in the two illustrated classification results, there are also substantial 

differences as could be seen in the highest zoom level. The agricultural areas (mustard green) 

were masked out before the classification processes and are stable across both classified 

results. 
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Figure 5.7 Example of the similarities and differences between results from two classification 
methods applied to the August image. Black squares are used to indicate the subsequent zoom 

area 

5.3.1.2 Comparison to the Landsat derived product developed by GTi 

A visual comparison between a smoothed classified product (derived from the August 2011 

SPOT 5 image) from this study and the results from the land cover product derived from 

Landsat imagery for the Peace Parks initiative (Chapter 2, 2.5.1), illustrated varying 

incidences of correlation and disparity. The Peace Parks map is not a final product and it is 

not presented as such. A direct comparison between the products was not suitable due to the 

incompatibility in some of the classes, but it seemed possible to at least compare the patterns 

and broader distributions of classes. In Figure 5.8, areas with similar descriptions are 

presented in similar colour. At first glance, there seemed to be limited correlation. Closer 

scrutiny revealed that this may be mainly due to inconsistency between different “bushland” 

class delineations in the maps. Figure 5.9 shows a much improved visual correlation when 

different bushland classes are presented in the same colour in both maps. This effectively 
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means amalgamation of the OB and BL classes in the classified result and “open sparse 

bushland” and “cc bushland and thicket (seasonal)” in the Peace Parks product. Another clear 

difference is the extent of agricultural areas which are much more pronounced in the 

classified result. This can be expected as the agricultural areas in the classified result were 

added as a mask (Chapter 4) and not extracted through image classification.  There is 

however, a good correlation with regards to the general location of the agricultural areas.  

Finer class delineations seemed to be more pronounced in the SPOT 5 classified result. There 

does not seem to be equivalents for the structural classes Open Riverine and Sparse 

Vegetation in the Peace Parks product. Generally the Landsat based Peace Parks 

classification results seemed to be substantially coarser than the SPOT 5 results. Some 

noticeable misclassifications occurred in the Landsat result, like bare soil areas classified as 

urban/settlements and sparse vegetation cover were often classified as bare soil. Riverine 

Forests areas (cc Tall Woodland) and Open Woodland (Open woodland/Bushland) seemed to 

correspond well, but grassland areas did not seem to correlate well.  

Figure 5.10 shows an extract of the two products in an overgrazed floodplain at the 

confluence of the Limpopo and Levuvhu rivers. Six field work sites were located in this area 

of approximately 10km2. Table 5-7 provides a comparison of the results in the two maps 

against the fieldwork estimates. Although the classes and class description obviously differ in 

these map extracts, it is noticeable that there is a similarity in the patterns that emerged. With 

regards to this comparison with the field work estimations as well as other areas in these 

maps, it seemed as if the SPOT 5 supervised classification may provide a better indication of 

the spatial variance that exists in the study area. 
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Figure 5.8 Visual comparison of the classified product and the Peace Parks (GTI) product 

 

 

Figure 5.9 Visual comparison after merging the colours of the separate bushland classes to one 
colour (yellow) in both products (Classified result on the left and Peace Parks product on the 

right) 
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Table 5-7 Comparative table showing field site classes, the classified results obtained through 
this study and the results from the Peace Parks product in a subset of the study area 

Site no. Field site classification Classified result Peace Parks product 

0 Woodland (damaged) Open woodland Sparse grasslands 

1 Woodland Open woodland Open woodland/bushland 

9 Sparse Vegetation Sparse vegetation Non-wet bare soil 

10 Sparse Vegetation Sparse vegetation Non-wet bare soil /Open sparse bushland 

11 Open Bushland Open Riverine Open sparse bushland 

23 Riverine  Riverine Forest Tall cc forest 

 

 

Figure 5.10 Extract of the classified result (on the left) and the Peace Parks product on the right 
in a degraded and overgrazed floodplain at the confluence of the Limpopo and Levuvhu rivers. 

The numbers on the extract represent some of the field work sites discussed in Chapter 3 

 

5.3.1.3 Evaluation against in-situ observations 

Though it is acknowledged that the in-situ field data from 24 sites is not statistically 

sufficient for a comprehensive quantitative validation, a qualitative evaluation was completed 

where results of different classifiers (before sieving, clumping and filtering) were compared 

with the estimated field vegetation structural classes as derived from the Edwards (1983) 

classification (Chapter 3). Where possible, the original field sites were used to distinguish 
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four levels of correlation: “Perfect” (■) if all pixels are in the class; “Partial” (□) if only some 

pixels or pixel parts are in the desired class; “Close” (+) if the desired class occurs within a 

distance of two pixels or less and “No correlation” (-). Although the supervised results (Cases 

1 and 2) provided more “perfect” correlations, the unsupervised products delivered less sites 

where “No correlation” occurred (Table 5-8). The full frequency table and the composition of 

each evaluation site can be seen in Appendix H. 

Table 5-8 Summary of four classification results against in-situ estimations (Appendix H) 

Levels of correlation 

Results from supervised MLC  for 
August (Case 1) and April (Case 2) 

images 

Results from ISODATA 
unsupervised classifier on three 

derived PC bands for August (Case 
3) and April (Case 4 – excludes 

Sparse Vegetation class) 
Case 1 Case 2 Case 3 Case 4 

■  Perfect correlations 

□  Partial correlations  

+  Close cases  

-   No correlations 

5 (20.8%) 

8 (33.3%) 

6 (25%) 

5 (20.8%) 

6 (25%) 

8 (33.3%) 

8 (33.3%) 

2 (8.3%) 

2 (8.3%) 

12 (50%) 

4 (16.7%) 

6 (25%) 

3 (15%) 

12 (60%) 

4 (20%) 

1 (5%) 

It was apparent that although the field work was valuable with regards to gaining insights on 

the physical properties of the landscape and vegetation distribution in the study area, the 24 

points were not enough to appropriately evaluate the success of the various classified 

products. In an attempt to improve on the above classification validation efforts, the 

possibility of using desktop created reference data for quantitative validation measurement 

was investigated.  

5.3.2 Quantitative evaluation using error matrices 

The quantitative evaluation applied in this study uses a comparison of the classified products 

against potential reference data sources. Reference data are often referred to as “ground truth” 

points or areas which may be used to assess and validate the success of a specific 

classification result (Lillesand et al., 2004). For this type of quantitative assessment method, 

sufficient and good quality reference data sets are required. 
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Since it was not possible to obtain a high number of quality in-situ reference points, different 

desktop methods were applied to obtain three sets of reference data which - and it is 

acknowledged beforehand - may contain error in all cases. Two of the reference data sets are 

“independent” samples with no connection to the classification processes used.  The use of 

independent samples is often preferred (Foody, 2004). During the development of the training 

samples for supervised classification, a portion of the ROIs (± 50%) were always kept 

separate to be used as a third reference data set. This is then a “dependent” sample. The 

development of the three reference data sets are discussed in more detail below. 

5.3.2.1 Independent Reference data 

a) Expert validation points (Expert points) 

In May 2012, during an educational visit to the Maison de la Teledetection, a specialised 

centre in Remote Sensing based in Montpellier, France, a set of approximately 30 validation 

points for each vegetation class was created by the late botanist, Dr Pierre Poilecot, using 

Google Earth and Aerial photography. Dr Poilecot was involved in various research projects 

associated with savanna vegetation and wildlife habitat (Poilecot and Gaidet, 2011, Gaidet-

Drapier et al., 2006, Hibert et al., 2008). 

b) Randomly distributed validation points (Random points) 

A second set of 200 randomly distributed validation points were created using the “Create 

Random Points” function available in the data management tools of the ArcGIS 10.1 

software. Each of the randomly positioned points were then scrutinized and where possible, 

assigned to a target class using the pan-sharpened August image, aerial photography and 

Google earth imagery. A simple random sampling like this may lead to insufficient points 

located in some classes or an “over presentation” in one or more classes. Furthermore several 

of these random points were not located in areas which could be soundly identified to be used 

as reference data. Eventually a total of 134 points could be used of which 56 were assigned to 

the Bushland class. The rest of the classes were represented by between 7 and 19 points each. 

It must be noted that any of the Random or Expert reference points discussed above may fall 

just inside or outside a corresponding classified area. However, this aspect of “closeness” will 

not be captured in the subsequent quantitative accuracy assessments.   
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5.3.2.2 Dependent reference data set 

a) Additional ROIs 

It is common practice to create a separate test dataset during the establishment of training 

areas (Lillesand et al., 2004). A large set of training areas are created and then divided into 

two sets of data: one set for training and another set for validation. Such a set of validation 

areas were created during the development of the image training ROIs. According to 

Lillisand (2004) the selected homogeneous areas like these may not provide a valid an 

unbiased indication of classification accuracy. This set of reference data is also different from 

the other two options discussed before because it includes groups of adjoining pixels as 

opposed to single pixels or points. Many more pixels were therefore included in the 

validation process, with the largest number of reference pixels (± 300) in the dominant 

Bushland (BL) class and the lowest number of reference pixels (± 80) in the Sparse 

Vegetation (SV) class. 

5.3.2.3 Characteristics of error matrices 

One of the recognized methods of evaluating classification accuracy is the application of an 

error matrix which summarizes the main characteristics of confusion between categories or 

classes (Bolstad, 2012). Several characteristics of classification results are expressed in an 

error matrix which compares (class by class) the relationship between known or real 

reference data with the information obtained through an automated image classification 

(Jensen, 1996, Lillesand et al., 2004). In these square error matrixes, also referred to as 

confusion matrixes or contingency tables, the number of columns and rows are the same 

(corresponding with the number of target classes).  

In this study error matrixes were used to compare classification results obtained through 

different methods with each particular set of reference data. Various characteristics of a 

particular classification result are conveyed by the error matrix. The diagonal of the matrix 

(shaded in the matrices shown in this text) provides the number or percentage of pixels that 

were assigned to the correct class according to the reference data. All miss-matches between 

the two sets of data are portrayed in the other cells below or above the diagonal. Each of 

these errors thus represents an omission from the correct class as well as a commission to a 
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wrong class. The error matrix thus summarizes the main characteristics of confusion between 

the respective target classes (Bolstad, 2012, Congalton, 1991).  

Various statistical accuracy measures are traditionally used and were computed through the 

ENVI software.  

• Overall accuracy is computed by dividing the sum of the correctly classified 

pixels by the total number of pixels in the matrix (Jensen, 1996, Lillesand et 

al., 2004, Olofsson et al., 2013). 

• Producer’s accuracy: The sum of correctly classified pixels in a class divided 

by the total number of pixels from that class in the reference data (column 

total). This provides a statistical probability of reference pixels being correctly 

classified (Jensen, 1996, Lillesand et al., 2004, Olofsson et al., 2013). 

• User’s accuracy: The sum of correctly classified pixels divided by the total 

number of pixels that were actually classified in that class (row total). This 

provides a statistical probability that a classified pixel actually represents that 

class in reality (Jensen, 1996, Lillesand et al., 2004, Olofsson et al., 2013). 

• Kappa Coefficient of agreement (Kappa analysis): The Kappa coefficient (K) 

is an additional measure of the accuracy of an image classification. This 

statistic is often applied in remote sensing to provide a measure of how much 

the agreement between the classified result and the reference data is “real” and 

not just by random change. This is achieved by applying the following 

equation as described in Jensen (1996): 

𝐾 =  
𝑁∑ 𝑥𝑖𝑖𝑟

𝑖=1 − ∑ (𝑥𝑖+)(𝑥+1) 𝑟
𝑖=1

𝑁2 − ∑ (𝑥𝑖+)(𝑥+1)𝑟
𝑖=1

 

• Where  

• N is the total number of observations in the matrix,  

• r is the number of rows in the matrix,  

• xii is the number in row i and column i,  

• x+i is the total for row i, and  

• xi+ is the total for column i 
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• The Kappa value generally ranges between 0 and 1, with “good” agreement 

approaching 1 and random or “by chance” agreement closer to 0. If there is a 

very high “by chance” agreement the K value may even be negative (Lillesand 

et al., 2004).  

To allow for the differences in the number of reference points/pixels in each of the three 

reference data sets, percentages were used in the error matrixes to display and compare the 

results. It was established that the water class (WA) and the bare soil class (BS) were very 

well extracted in most cases and that the high percentages of correlation in these classes 

inflated the overall accuracy values. These inflated overall accuracy values may create the 

wrong impression about the significance of a classification. Where possible these classes 

were omitted from the validation process in order to provide more realistic overall accuracy 

values with regards to the vegetation structural target classes.  

For validation purposes the final result of the four selected classifications (before any 

smoothing operations) were used. The best result obtained from each set of reference data is 

illustrated and discussed below and the overall results from all datasets are presented 

thereafter (Table 5-15). 

5.3.2.4 Accuracies associated with the expert validation points (Expert points) 

A confusion matrix was applied to quantitatively compare all the classification results with 

the validation points. The best overall accuracy was achieved by the MLC using the four 

April 2011 SPOT 5 image bands stacked together with its derived NDVI and MSAVI2 bands. 

At the time of Dr. Poilecot’s input, I did not yet have a Sparse Vegetation (SV) class in mind. 

For this matrix the Bare Soil class is added instead. Best overall accuracies were obtained on 

the two April image results (Table 5-15). The error matrix associated with the April image 

MLC result is illustrated in Table 5-9. For this evaluation, the overall accuracy was 53.6% 

and the Kappa value was only 0.46. These “poor” results may be indicative of the challenges 

associated with, and the uncertainties introduced by, the various processes. Creating suitable 

training areas was problematic due to the spatial variability in the study area and the “mixed 

pixel” issue. Further fuzziness was introduced by the supervised classification process 

applied (MLC). There are also issues associated with the use of points or single pixels as 

reference data. This discreet and automated process does not apply a search area and a 
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reference point/pixel may therefore be just inside or just outside a correct area, but this is not 

captured by the results. The accuracy values per class as shown on the diagonal (shaded cell) 

are nevertheless insightful, with the best classes extracted the Bare Soil (100%), the Riverine 

Forests (RF = 80.65%) and Bushland (BL = 60.61%). When examining the vegetation 

structural classes, it is evident that confusion mainly occurred between RF and two other 

classes (WL & OW). The BL class on the other hand, was misrepresented across at least four 

classes (WL; OW; OB and even GL). Open Woodland (OW) was the least well extracted and 

only achieved 35.71% accuracy with misrepresentation involving all the other vegetation 

classes.  

Table 5-9 Error matrix of the classification derived from the 30 April 2011 SPOT 5 image bands 
and the derived NDVI and MSAVI2  indices. Ground truth reference data is the expert 

validation points created by botanist, Dr Piere Poilecot. 

  Reference data (%) 

 Class RF WL OW BL OB GL BS Total 

C
la

ss
ifi

ca
tio

n 
%

 

RF 80.65 3.13 3.57 0 0 0 0 13.24 

WL 19.35 46.88 10.71 3.03 0 0 0 12.25 

OW 0 21.88 35.71 9.09 4.00 0 0 10.29 

BL 0 18.75 17.86 60.61 16.00 6.67 0 18.14 

OB 0 3.13 28.57 21.21 52.00 33.33 0 19.12 

GL 0 6.25 3.57 6.06 20 53.33 0 12.75 

BS 0 0 0 0 8.00 6.67 100 14.22 

Total 100 100 100 100 100 100 100 100 

 

Although the BS was 100% extracted, some of the Grassland (GL) pixels (4 out of 29) were 

also classified as BS. This constitutes a commission error of 14% and reduces the User’s 

Accuracy to 86% (Table 5-10). Lowest producer and user accuracies occurred in the “open” 

vegetation classes (OW & OB) where high omission (64%) and commission (67%) error 

respectively reveals the considerable confusion that may exist between classes.  
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Table 5-10 Producer and User accuracies derived from the error matrix in Table 5-9 with the 
associated omission and commission errors 

 

Producer's 
Accuracy 

Omission 
error 

User's 
Accuracy 

Commission 
error 

Class Pixels % Pixels % Pixels % Pixels % 

RF 25/31 81 6/31 19 25/27 93 2/27 7 

WL 15/32 47 17/32 53 15/25 60 10/25 40 

OW 10/28 36 18/28 64 10/21 48 11/21 52 

BL 20/33 61 13/33 39 20/37 54 17/37 46 

OB 13/25 52 12/25 48 13/39 33 26/39 67 

GL 16/30 53 14/30 47 16/26 62 10/26 38 

BS 25/25 100 0/25 0 25/29 86 4/29 14 

 

5.3.2.5 Accuracies associated with randomly distributed validation points (Random points) 

The best overall result measured against the randomly distributed validation points as shown 

in Table 5-11 was obtained through the MLC analysis result as applied to the August 2011 

image. For this evaluation, the overall accuracy was 55.2% with a Kappa coefficient of 0.45. 

The accuracy values per class shows good accuracy levels obtained for the RF class with an 

overall accuracy of 100% and good Producer and User figures of 100% and 91.7% 

respectively.  Sparse vegetation (SV) also seems to be extracted well with percentages above 

70% all round.  

On the other hand, the error matrix results for WL and OW were indicative of high levels of 

confusion between these two classes with almost 53% of woodland pixels “wrongly” 

classified as OW (Table 5-11). As a result,   there is a very high commission error regarding 

the OW class (72.7%) i.e. low user accuracy (Table 5-12). While instances of confusion 

between classes were mostly between similarly structured vegetation zones, the Bushland 

(BL) class depicted misrepresentation across the highest number of classes (WL; OW; OB; 

GL and SV). 
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Table 5-11 Error matrix of the classification derived from the August 2011 SPOT 5 image bands 
and the associated derived NDVI and MSAVI2  indices. Ground truth reference data is the 

desktop classified randomly distributed validation points 

  Reference data % 

 Class RF WL OW BL OB GL SV Total 

C
la

ss
ifi

ca
tio

n 
(%

) 

RF 100 5.26 0 0 0 0 0 9.60 

WL 0 26.32 0 0 0 0 0 4.00 

OW 0 52.63 66.67 9.43 0 0 11.11 17.60 

BL 0 15.79 33.33 49.06 0 0 0 25.60 

OB 0 0 0 28.30 58.82 42.86 0 22.40 

GL 0 0 0 9.43 35.29 57.14 11.11 12.80 

SV 0 0 0 3.77 5.88 0 77.78 8.00 

Total 100 100 100 100 100 100 100 100 

 

Table 5-12 Producer and User accuracies derived from the error matrix in Table 5-11 with the 
associated omission and commission errors 

 Producer’s 
Accuracy 

Omission 
error 

User’s Accuracy Commission 
error 

Class Pixels % Pixels % Pixels % Pixels % 

RF 11/11 100 0/11 0 11/12 92 1/12 8 

WL 5/19 26 14/19 74 5/5 100 0/5 0 

OW 6/9 67 3/9 33 6/22 27 16/22 73 

BL 26/53 49 27/53 51 26/32 81 6/32 19 

OB 10/17 59 7/17 41 10/28 36 18/28 64 

GL 4/7 57 3/7 43 4/16 25 12/16 75 

SV 7/9 78 2/9 22 7/10 70 3/10 30 

 

5.3.2.6 Accuracies associated with Additional ROIs 

The overall accuracies using the additionally created ROIs were much higher across all four 

selected classification results (Table 5-15). The best result was achieved by the 4 band 

97 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



August image and the associated derived NDVI and MSAVI2 bands with and overall 

accuracy of 89.46% and a Kappa coefficient of 0.87 which indicates a strong agreement 

between the classified image and the reference data. For the reference data set using the 

additional ROIs, the calculated accuracy percentages for all classes were above 70% (Table 

5-13). The RF and SV classes were the best extracted with high producer as well as user 

accuracy percentages (Table 5-14). 

Table 5-13 Error matrix of the classification derived from the  August 2011 SPOT 5 image 
bands and the associated derived NDVI and MSAVI2  indices. Ground truth reference 

validation data is the additional ROIs created during the classification process 

  Reference data % 

 Class RF WL OW BL OB GL SV Total 

C
la

ss
ifi

ca
tio

n 
re

su
lt 

%
 

RF 92.52 10.17 0 0 0 0 0 19.41 

WL 7.48 89.83 2.5 0 0 0 0 11.55 

OW 0 0 87.5 6.33 0 0 0 11.65 

BL 0 0 10 88.86 0 0 0 28.37 

OB 0 0 0 0 74.79 4.08 0 8.6 

GL 0 0 0 3.61 25.21 95.92 0 12.57 

SV 0 0 0 1.2 0 0 100 7.86 

Total 100 100 100 100 100 100 100 100 
 

Table 5-14 Producer and User accuracies derived from the error matrix in Table 5-13 with the 
associated omission and commission errors 

 Produser’s 
Accuracy 

Omission 
error 

User’s 
accuracy 

Commission 
error 

Class Pixels % Pixels % Pixels % Pixels % 

RF 198/214 93 16/214 8 198/210 94 12/210 6 

WL 106/118 90 12/118 10 106/125 85 19/125 15 

OW 105/120 88 15/120 13 105/126 83 21/126 17 

BL 295/332 89 37/332 11 295/307 96 12/307 4 

OB 89/119 75 30/119 25 89/93 96 4/93 4 

GL 94/98 96 4/98 4 94/136 69 42/136 31 

SV 81/81 100 0/81 0 81/85 95 4/85 5 

98 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



When using the dependent Additional ROIs, generally less confusion occurred between 

classes. The highest derived error values are the 25% omission error for the OB class and the 

almost 31% commission error in the GL class (Table 5-14).  In this end-of-dry-season image, 

the potential similarity in spectral characteristics between the OB and GL pixels could 

explain the confusion between these classes. 

Table 5-15 illustrates the overall accuracies and kappa values obtained by each classified 

product for each reference data set. According to Liu et al. (2011a), kappa coefficient values 

below 0.4 generally indicates poor results, with 0.4 - 0.6 illustrating fair agreement, 0.6 -0.8 

is good and above 0.8 is seen as excellent.  

Table 5-15 Error matrix showing the overall results obtained by four selected classifications 
against three reference data sources 

  
Reference Data Sources 

Averages   
Expert points Random points Additional 

ROIs 
 Accuracy 

measure Overall  Kappa  Overall  Kappa  Overall  Kappa  Overall Kappa 

C
la

ss
ifi

er
 a

nd
 b

an
ds

 

MLC on 
August 6 
band stack 51.80 0.42 55.20 0.45 89.46 0.87 65.49 0.58 

MLC on 
April 6 
band stack 53.60 0.46 50.82 0.39 74.29 0.69 59.57 0.51 

ISODATA 
on 3 August 
PC bands 44.33 0.35 39.84 0.26 69.12 0.62 51.10 0.41 

ISODATA 
on 3 April 
PC bands 53.64 0.46 47.86 0.34 59.70 0.52 53.73 0.44 
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Within the limitations of the information available it was not possible to determine which of 

the reference datasets may be the “best” or most “accurate”. In order to ultimately select one 

result for the thematic mapping process, it was assumed that the MLC result on the 6 band 

August 2011 stack showing the highest overall accuracy (65.86%) across all three applied 

methods and the best overall Kappa average (0.58) may be the most suitable for the final 

thematic mapping process (Table 5-15). It is acknowledged that using averages between the 

statistically different reference data sets may be a crude method of identifying a “best result”. 

However, as it was not possible to satisfactorily determine which of the reference data sets 

were “better”, this consideration was seen as a preferred alternative to just using one set of 

reference points. 

5.3.3 Discussion 

It is important to stress that each of the various validation attempts were subject to inherent 

uncertainties as discussed in the text. Uncertainties were also introduced throughout the 

image acquisition, pre-processing, classification and post-classification procedures used. It 

was not possible to correctly measure the level of uncertainty introduced during each phase 

and determine its contribution to the overall accuracy values.  It was, however, decided to 

identify the classified result which seemed to perform overall better than the others. The 

MLC result for the 6 band August 2011 SPOT 5  image stack which included the four SPOT 

5 bands and the derived NDVI and MSAVI2 bands was selected to use as the basis for further 

interpretation and the discussion on thematic mapping options in Chapter 6. 

5.3.4 Summary 

In this chapter the final four classified products produced in Chapter 4 were evaluated 

qualitatively and quantitatively. Qualitative assessment included visual comparisons between 

the four results, a visual comparison to an independent classified product and correlations 

with in-situ measurements obtained during field visits. Quantitative assessment was done 

using three desktop created reference data sets and error matrices. Supervised results seemed 

to generally illustrate higher classification accuracy levels. Finally the product with the best 

average overall results was selected for the thematic mapping processes to be investigated in 

Chapter 6.  
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Chapter 6  Mapping the results of classification processes 

6.1 Introduction 

In Chapter 4, four classified results were produced and various possible post-classification 

options aiming towards the creation of a usable thematic map were discussed.  The four 

selected classified results were then evaluated against potential reference data sources in 

Chapter 5 and one product (i.e., a MLC supervised result derived from the August 2011 

SPOT image) was chosen as the most appropriate for in the development of a thematic map 

which could be useful in ecological research/management projects in the study area. In this 

chapter, and in line with objective four, various factors which may influence the visualisation 

of classification results in a thematic map(s) are described.  Thereafter the potential value of 

using ancillary data from another research project to enhance the usability of the classified 

product is discussed. 

6.2 Visualising classification uncertainties on a thematic map 

6.2.1 Guidelines for creating a thematic map  

It is important to note that a statistically based classified result is not necessarily a ready-

made thematic map and further interpretation or analysis is often required. Adams & 

Gillespie (2006) noted that the user of a thematic map should not be in doubt about the 

physical evidence as it is interpreted in the map. In Adams & Gillespie (2006), six rules for 

creating image-based thematic maps were proposed and are paraphrased below: 

Rule 1: A theme is an interpretation and a thematic map is an expression of a few important 

features in a map (not everything). 

Rule 2: Interpretation is done by the mapmaker and not left to the user. 

Rule 3: The thematic map entails a depiction and assessment of physically based evidence. 

Rule 4: Thematic map results are predictive in that the author of the map predicts or estimates 

the characteristics in a geographical location. 

101 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Rule 5: A thematic map must suitably represent the properties of a landscape at a specific 

time, and uncertainty in the mapping results must be reported in appropriate ways. 

Rule 6: Although a thematic map expresses the specific interpretations of the map creator the 

scientific processes allow for the revision of the analysis results should new information or 

ideas become available. 

During the discussion around the development of the proposed thematic presentation of the 

vegetation structural information and other land cover information on a map, reference will 

be made to the above rules.  

6.2.2 Methods applied in the mapping process 

6.2.2.1 Determining a suitable level of generalization (Rules 1, 2 and 3) 

Choosing a suitable level of generalisation and smoothing is an important step as not all 

information can be shown (Rule 1). Applied to continuous physical data like the vegetation 

structural characteristics in this research project, it was challenging to determine what 

constitutes an acceptable level of simplification. It is important to find a balance between 

simplified “easy to understand” visualisation of the results and the dwindling accuracy levels 

brought about by smoothing and filtering techniques (Rules 1, 2 & 3).  

Various combinations of generalisation options (as discussed in Chapter 5) were applied to 

the selected classified image and the effects investigated. Fourteen of these generalized 

results were then each tested against all three reference data sets (Expert points, Random 

points and Additional ROIs) using error matrixes.  The overall accuracy levels (Figure 6.1) 

and the Kappa coefficients (Figure 6.2) of each result were captured and the average values 

were calculated. A summary of the generalisation processes and the associated averaged 

accuracy values can be seen in Appendix I.  

As an approximation of the deterioration in accuracy brought about by the post-classification 

generalization techniques, the fourteen different combinations were plotted against the 

original result after combining the sub-regions (no.1 in the graphs). Although the Expert and 

the Random reference points often produced similar Overall Accuracies (cases 3-10), the 
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Kappa Coefficients for the Expert point results are slightly higher. This may suggest that the 

agreement is more “true” and less “by chance” for the Expert point results. 

 
Figure 6.1 Overall accuracy values against three different reference data sets and across various 

levels and combinations of generalization (Appendix I) 

 

 
Figure 6.2 Derived Kappa coefficient values against three different reference data sets and 

across various levels and combinations of generalization (Appendix I) 
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To facilitate the selection of a suitable generalized product, percentage values of the average 

Kappa coefficient were calculated and these were then added to the Overall Accuracy 

averages to obtain an overall average for each generalized image product. These results were 

then sorted to identify the results with the highest overall correlation to the original classified 

image (no. 1). The “best” results with an all-inclusive average above 60% (Figure 6.3) were 

grouped together.  Visual evaluation of the eight identified “best” results revealed that 

options 2, 10 and 11 were still very fragmented and that there seemed to be very little 

difference between the remaining products. Ultimately one generalized result (no.15) was 

selected for the thematic mapping based on visual inspection and also the fact that it 

contained one of the lowest numbers of unclassified pixels (0.2%). The generalization 

techniques applied in the development of this selected post-classification product was sieving 

(using a group minimum threshold of 4 pixels), clumping (with a morphological operator size 

of 3x3) and a 7x7 majority filter (excluding the masked agricultural areas). 

 

Figure 6.3 Average Overall Accuracy and Kappa Coefficient percentages across fifteen 
classification and post-classification products 

 

Once the most suitable generalised product (no. 15) was selected, the data was transferred to 

the ArcGIS 10.1 software for further analysis. The raster classes were converted to vector 

polygons in order to make better use of the ancillary vector data. 
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6.2.2.2 Evaluating and adjusting each class using ancillary information (Rules 1, 2, 3 & 6) 

The classification results for each class were evaluated and interpreted alongside information 

available from ancillary data: 

Riverine Forest:  Assessment of classification product revealed various pockets of WL, OW, 

BL and OB identified in what seemed to be riverine areas. In ecologically based studies it 

may be important to improve the ability of the user to make the distinction between these 

classes in the riverine areas and otherwise. A combination of ancillary data including soil 

data (Alluvial soil) from Venter (1990), vegetation data (Lowveld Riverine Forest) from 

SANBI (2007), river and wetland data obtained from the department of Environmental 

Affairs (DEA), a 20 m digital elevation model (DEM) derived from 20m contours, visual 

inspection of false colour SPOT 5 imagery and knowledge obtained during field visits was 

processed and used to create a “riverine” polygon. This area was conservatively extracted to 

contain only areas that were definitely typical riverine vegetation. All original WL areas 

within these riverine polygons were removed from the WL class and re-assigned to the RF 

class (e.g. area x in Figure 6.4 b). The more open areas and areas with lower canopies (OW, 

BL and OB) within these riverine areas were extracted to be presented in the thematic map as 

Open Riverine Forest (ORF) areas (e.g. z in Figure 6.4 b). Some WL areas in the higher lying 

areas in Zimbabwe were misclassified as RF. Results from the 20 m DEM were used to 

identify and re-assign these areas to WL (area y in Figure 6.4 a). 

Woodland (WL): From the WL class, two miss-representations were removed; i) the WL 

pixels occurring in the riverine areas were re-assigned to the RF class, and ii)  certain grassy 

wetland areas which were misrepresented as WL was identified by their smooth texture and 

re-classified as GL. As mentioned above, Woodland areas in higher lying Zimbabwean hills 

which were originally misclassified as RF (location y in Figure 6.4 a) were also re-assigned 

to WL. 

Open Woodland (OW): Apart from re-classifying some of the OW areas to an additional 

riverine class, the OW classification result was kept. 

Bushland (BL): Apart from re-classifying some of the BL areas to an additional riverine class 

as described previously, the BL classification result was kept. 
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Grassland (GL): The original Grassland result plus the re-assigned WL areas. 

Sparse vegetation (SV): This class was kept as is. 

Bare soil (BS): This class was divided to distinguish between bare soil in the riverine areas 

and in other zones. 

Water (WA): Water pixels that disappeared due to generalisation were reintroduced by adding 

the water pixels from the original classified result. A few small shadowy areas wrongly 

classified as water was selected by distance (further than 1km) from the rivers and wetlands 

vector layer and reverted to Shadow (SH).  

 

Figure 6.4 Original generalized classification result (a) and the interpreted and adjusted result 
(b) 

6.2.2.3 Exploring the visualisation of the uncertainties inherent in the classification product 

(Rules 4 & 5) 

Due to the uneven propagation of uncertainties throughout the various image analysis 

processes and the lack of a large and reliable ground truth data set, it is not possible to 

provide or declare precise accuracy levels on the map. Moreover, providing an overall 

accuracy percentage surely cannot be sufficient if there may be a huge discrepancy between 

the accuracy levels in the different classes. As explained in Chapter 5, the accuracy levels 

regarding Water, Shadow and Bare Soil were generally high and using these in the error 

analysis could inflate the calculated overall accuracy results. In the thematic map to be 
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created, the focus was on the vegetation classes and it was deemed important to provide the 

user with a good understanding of the limitations contained in the results depicted on the 

map. Rossiter (2004) stresses the importance of quantitative statements on map accuracy 

when presenting thematic information. 

In Figure 6.5 the Producer (a) and User (b) accuracy levels for the original supervised MLC 

classification depicts some correlation in the accuracy trends for most vegetation classes 

against the various reference data sets. Producer accuracy levels illustrates less variation 

between classes, whereas User accuracies reveals higher variation with very low averages in 

the OW, OB and GL classes and much higher levels for RF, WL, BL and SV. The trends in 

WL and OW are reversed between the two accuracy measures because the large omission 

error (from WL) and commission error (to OW) indicates particular confusion between these 

classes. Similar trends (to a lesser degree) exist in the BL, OB zones with noticeable 

confusion occurring between BL and OB and also OB and GL. 
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Figure 6.5 Summary of User and Producer accuracy levels as derived from three reference data 
sets from the original MLC classification of the August 2011 SPOT 5 image bands and the 

associated derived NDVI and MSAVI2 indices 

The effect of the generalisation techniques applied to the selected generalised result (no.15) 

differed between classes. Given that a thematic map is typically produced with a user in 

mind, it was considered worthwhile to investigate (per class) the average user accuracies 

achieved for both the original classified image and the generalized product across the various 

reference data sets (Figure 6.6). After generalisation, the average user accuracy levels were 

lower in four classes (WL, OW, BL and GL) but improved slightly in the others (i.e., RF, 

OB, and SV). As depicted in Figure 6.6 the highest average accuracy levels were achieved in 

the RF and the SV classes and the lowest in the WL and OW areas.  
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Figure 6.6 Average User’s accuracies per class as derived from the selected original supervised 
classification result and the generalised result to be used in the thematic map product 

 

While the multiple uncertainties imbedded in the image analysis process and the limitations 

of the reference data as described in Chapter 5 may discourage the use of precise percentages 

when stating the fuzziness in the classification product, it may still provide valuable insights 

to the map user. Although the visualisation of uncertainty or marginal values in the 

classification results is not the main focus of this study, examples of three possible 

approaches, i.e. using symbols, annotation and the application of colour shading/intensity are 

illustrated. 

In the first example symbols are used to convey information about the level of correlation 

between the classified result (after generalisation and interpretation) and the original field 

estimates for each of the 24 field locations in the KNP. For the analysis the derived 9 pixel 

(30x30m) field site polygons as described in Chapter 3 were applied. Assessment of 

correlation was once again done qualitatively in four categories of correlation (Figure 6.7).  
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Figure 6.7 An example of the use of symbols to visualize accuracy on a map. In this case the 
correlation between the final classified product and the field estimations is compared at the 

numbered site locations 

When adding the additional information to a map, care should be taken not to apply too many 

categories as this may introduce confusion in the user and distract attention from the target 

information (Kinkeldey et al., 2013). In the second example, the user accuracies derived from 

the error analysis for the generalised classified product (no 15) were assigned to three 

confidence levels for use in the thematic map presentation. Class accuracy above 80% (RF & 

SV) was regarded as “good/high”, 55-79% (OB & BL) as “acceptable/fair” and below 55% 

(GL, WL and OW) as “muddled/low”. The choice of terminology used may be very data 

and/or user specific. The class added during interpretation in the riverine areas (ORF) was 

created with the use of various ancillary data sources and the accuracy was assumed to be 

good – but this was not tested as there were no reference data available. The varying 

confidence or accuracy levels were added to the thematic map as a notation in the legend by 
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grouping the vegetation classes according to the estimated user accuracy levels for the 

classified product (Figure 6.8).   

 

Figure 6.8 Example of a thematic presentation with accuracy information added as annotation  

 

In the last example, spatial visualisation of fuzziness across all classes using classification 

thresholds was investigated. The thresholds used during the original classification and band 

selection processes (Chapter 4) could be used to designate varying confidence levels within 

classes and then use graduated colour ranges to visualize these (Figure 6.8). In the RF and SV 

classes with high derived overall classification accuracies, even a low threshold may result in 

a fair to good accuracy and reasonable confidence in the thematic mapping result (Figure 

6.8). Similarly, the classification confidence in areas classified with a threshold probability 

which are associated with classes demonstrating lower overall class accuracies may be 

uncertain and should then also be acknowledged (Figure 6.10).  

Figure 6.9 illustrates two accuracy class groups with two confidence levels per class. It is 

however debatable if the uncertainty information as conveyed in the map should be 

visualized at all as it may confuse rather than enlighten the map user. Smith (2013) reported 
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that there is still ample scope for research which on the one hand cognitively assesses the 

appropriate levels of precision in pronouncing uncertainty and on the other hand measures the 

impact of uncertainty visualisation on decision makers. If the map forms part of a text 

document, if may be sufficient to acknowledge all limitations and uncertainties in the text. 

 

Figure 6.9 Example of the visualisation of confidence levels based on classification thresholds 
within two classes which illustrated high overall classification accuracies  

 

 

Figure 6.10 illustrates a visual representation of confidence levels based on threshold results 

across five classes which showed low to medium overall class accuracies. In technical or 

scientific reports it may be useful to declare specific threshold values as shown in the map 

legend. Alternatively, descriptive annotation may be used. 
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Figure 6.10 Example of the illustration of confidence levels based on classification thresholds 
within five classes which illustrated medium and low overall classification accuracies 

 

6.2.2.4 Using suitable colours  

During the classification process it was appropriate to use distinctive colours while exploring 

the results of the various processes, but when a final product is produced it may be necessary 

to change the colours to a more suitable and meaningful colour collection. The number of 

classes that needs to be illustrated and the scale or presentation will influence the extent to 

which various shades of the same colour may be suitable. In a natural area like the study area, 

it may not be fitting to present all types of vegetation in shades of green. An example of a 

possible colour composition is illustrated in Figure 6.11. When choosing these colours, it is 

important to keep in mind that different computer screens and printers may influence the final 

map presentation and class colours which may be distinctive on the map creator’s display 

may not be as distinctive on a different screen or monitor. It may therefore be necessary to re-
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adjust colours if the map is intended for users who will rely on visual inspection of digital or 

hard copy printouts.  

 
Figure 6.11 Visualization of classification results with improved colour selections. Confidence 

levels as applicable to the vegetation classes are indicated in the legend    

 

6.3 Enhancing classified map results with ancillary vegetation data 

The classification product as derived from the SPOT 5 data in this research is almost entirely 

the result of a statistical analysis which does not include the environmental factors and 

context as these aspects are not necessarily compounded in the spectral composition of the 

pixels in an image. The target classes may provide information on the structural composition 

of the vegetation distribution but does not reveal any floristically based characteristics or the 

possible species composition in the different areas. If an historic floristic analysis exists or if 

there is such an analysis available for a small part of the classified area, it may be possible to 

supplement the knowledge and understanding of the vegetation composition in some areas.  

Additional information about the possible vegetation types which could be present may 

augment the usability of the results for animal movement and habitat research or management 

applications. 
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The only detailed vegetation analysis completed for the core study area was done more than 3 

decades ago (Van Rooyen, 1978). This was a comprehensive ecological study on the plant 

communities in the northern KNP. As discussed in Chapters 2 and 3, the scale and levels of 

detail of other more recent products are generally too coarse for animal telemetry or habitat 

research.  The Van Rooyen dissertation is a floristic and structural analysis describing various 

types of vegetation (woody and herbaceous) and the associated soil conditions for each plant 

community. An investigation into the possibility of using older data like the information 

obtained from the Van Rooyen delineations in the core KNP study area to augment the 

derived classification product, revealed promising correlations. Conversely, several 

inconsistencies between the two products were also noted. A map and a discussion based on 

ten example areas are available in Appendix J. 

6.4 Summary 

In this chapter, the final results of the classification and post classification processes are 

mapped. Thematic mapping of the land cover and vegetation classes were managed along 

several guidelines which were documented in Adams and Gillespie (2006). Three possible 

ways of visualising classification uncertainties on the thematic map were discussed and 

illustrated. Although distinctive colours were used in the explanation of the visualisation 

options, a final map presentation with more suitable colour allocations were given. This was 

followed by a discussion on the possible usefulness of the results from a much older botanical 

study on the plant communities in the KNP in association with the classified product. Ten 

example areas were used to depict typical relationships that may exist and/or derivations that 

could possibly be extracted from the two data sets.  

In the next and final chapter (Chapter 7) the aims and objectives stated in Chapter 1 will be 

revisited and discussed and a summary of the methods and processes that lead to the final 

results as well as opinions and recommendations on the various issues encountered will be 

given. 
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Chapter 7  Conclusions and Recommendations 

7.1 Introduction 

This research essentially focused on investigating the potential and challenges associated 

with the 10m four band multispectral SPOT 5 products when classifying vegetation structure 

in a savanna biome. The focus was on pixel-based classifications derived from 10m 

multispectral SPOT 5 images supported by in-situ observations in a selected subset of the 

GLTP area. Various standard or commonly used pixel-based analysis techniques were 

applied and the impacts of different parameters and methods were analysed. Additionally, the 

viability and application potential of ancillary and fieldwork data were investigated and 

discussed. Finally, thematic mapping of the results and the possibilities of presenting 

uncertainties and additional information in association with the classified results were 

discussed and illustrated.  

In this chapter, the methods used and results obtained are summarized and discussed based on 

the four original research objectives set in Chapter 1.  

7.2 Availability of imagery and ancillary data 

Objective 1: To investigate the availability and suitability of free SPOT 5 imagery and 

currently available land cover and ancillary information in the GLTFCA area.  

7.2.1 Availability and suitability of free SPOT 5 data to researchers in South Africa 

From this investigation it was clear that the theory and practice regarding the probability of 

obtaining suitable and free imagery are some distance apart. Theoretically the revisit time for 

SPOT 5 is 2-3 days but it seems that only a few images are downloaded / processed and made 

available for use through the SANSA catalogue (http://catalogue.sansa.org.za). For instance, 

between 01 October 2010 and March 2011 (the wet season) no SPOT imagery over this area 

were downloaded at SANSA. 

One set of imagery dated 19 April 2011 could not be used due to incompatible amounts 

(87%) of cloud cover. It was only after searching internationally, that the 12 August 2011 
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image was also identified and obtained through the SANSA Sales and Customer Services 

division. Even if funds (± R14 000 per image at the time) were available to pre-order or 

commission an image for a specific future date, one cannot be sure that the study area on the 

image will be cloud free.  

The search for suitable SPOT 5 imagery with less than 20% cloud cover in the one year 

research period, three images obtainable at a level 1B processing stage was identified. 

Ultimately, two of these were selected based on their dates (30 April 2011 and 12 August 

2011). These images could provide both an end-of-growth and end-of-dry season reflectance 

over the study area, but no imagery for the higher rainfall summer months could be obtained.    

It can be concluded that, with regards to SPOT 5 images, a researcher may expect to find a 

maximum of 2 to 3 image dates annually when searching for free SPOT 5 multispectral 

imagery on the SANSA catalogue. These images are generally provided at processing level 

1B and will mostly require additional pre-processing. 

In future, the possibilities of obtaining satellite imagery for research purposes may improve. 

In 2013, SANSA and Astrium Services made data available from the newly launched SPOT 6 

sensor through a call for project proposals that would demonstrate potential applications 

related to valuable socio-economic research. However, the availability of this imagery in 

future is not clear and it is not yet available from the online SANSA catalogue. Other satellite 

images with higher resolution are available through SANSA (and various other vendors) but 

must be bought. At the onset of this research, standard geo-referenced IKONOS library data 

dated February 2010 delivered as a colour geotiff (0.8 m resolution) were available for 

purchase at US $10/km2. Digital Globe, through Southern Mapping Company, offers a 

student discount of 30% on standard archive imagery (not geo-referenced) – but with a 

minimum order of 25 m2 at $16/m2. The archived imagery over the study area in the 

GLTFCA were limited to a very narrow strip (Worldview 2) along the far western edge of the 

area dated August 2010 (e-mail communication). This and similar images may also be 

available from SANSA at a further reduced rate, but overall the data availability, cost and 

image dates were not suitable for this project. 

Cost effectiveness of remotely sensed imagery is complex, case-specific and may depend on 

many considerations (Carfagna, 2001). For a specific project area however, the set-up costs, 
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field observations and analyst time may be fairly constant amongst all the normal satellite 

sensors and the cost-effectiveness are then mostly associated with the map accuracy required 

and the price of the imagery (Mumby et al., 2000).  If vegetation information must be derived 

seasonally or annually, it will most likely not be cost-efficient to sustain high satellite data 

expenses in continuous environmental management projects and it thus follows that free 

satellite data sources is then the only available option. For South African researchers, this 

then constitutes mainly MODIS, Landsat and SPOT data.  

7.2.2 Currently available land cover and ancillary information in the GLTP area 

Although various sets of data exist for the study area, there were issues with regards to the 

scale, content, geographic extent and/or temporality of the data sources. Digital data from the 

South African National Vegetation map (SANBI, 2006) were created at working scales of 

between 1: 100 000 and 1:250 000 and did not capture the diversity in the study region well. 

The extent of the SANBI map does not include the parts of the study area that falls in 

Zimbabwe.  The land cover product derived from 2005 Landsat data produced for the Peace 

Parks foundation was useful for qualitative comparison with the research results but the land 

cover classes and time scale differed and the products could not be directly compared.  Land 

cover products produced for SADC are available at very coarse resolution (Environmentek, 

2006). Only one dated descriptive floristic study could be found for a section of the study 

area (Van Rooyen, 1978).  

It can be concluded that, in the GLTFCA, current and available data sources investigating 

physical parameters like geology, vegetation or soil are generally not readily available at 

suitable scales and time frames for ecological and animal movement studies. 

7.3 Factors influencing pixel-based classification results 

Objective 2: To assess the effect of image band combinations, vegetation indices and analyst 

interpretation when using standard supervised and unsupervised pixel-based classification 

methods towards classifying savanna vegetation using SPOT 5 imagery. 

To investigate the impact of ROIs, band selection and indices on the effectiveness of training 

areas and classified products, various combinations of ROI size, homogeneity and image 
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bands were selected and statistically tested. Pair separation between the spectral ranges in the 

ROI training areas used to extract selected target classes were derived, summarized and 

discussed. 

Available bands from two selected images (surface reflectance values) and the derived NDVI 

and MSAVI2 values were stacked together. Various combinations of these bands were then 

applied towards deriving and analysing a number of classification products. From the results 

it became apparent that the inclusion of vegetation indices could improve the possibility of 

statistically distinguishing between vegetation classes. Results also suggested that even in the 

semi-arid and overgrazed areas, NDVI may have a more noteworthy impact on the 

separability between classes than MSAVI2. Furthermore it was deduced that training ROIs 

may be image specific when working with images from temporally different seasons in a 

semi-arid savanna landscape. 

Both supervised and unsupervised approaches were applied using varying input variables 

towards a classified result. The MLC was used in supervised classifications. Thresholds were 

applied as an additional investigative measure for the suitability of training areas. Products 

associated with various ROI types and different thresholds were derived, compared and 

analysed. It was found that although small homogeneous ROIs may show good pair 

separation ability between classes, they will not necessarily produce a good overall 

supervised result. This may be because the diverse and continuously changing land cover 

types in the study area may not have been fully captured within these training plots. Small 

ROIs may also not include enough pixel values to successfully represent some of the desired 

output classes. Conversely it was illustrated that larger ROIs in turn may result in lower pair 

separation recorded between training ROIs. However, when applying thresholds to the 

supervised classification, a higher percentage of the image pixel values were close enough to 

the statistical mean of the bigger training sets to be classified. These results illustrated the 

possible impacts of the choices made by the analyst when developing the training areas for a 

supervised classification. It was found that the establishment of sub-ROIs for some classes 

may offer an improvement in “catching” class pixel values that would otherwise be lost. 

Results of further investigations also suggested improved results when areas with shadow and 

known agricultural activity were excluded from classification processes. 

119 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



In the unsupervised classification procedures it was found that the hierarchical approach to 

the interpretation of ISODATA classified results using the SPOT 5 bands and associated 

NDVI and MSAVI2 indices was challenging and a suitable result could not confidently be 

produced. Subsequently, the option of reducing the dimensionality of the data by employing a 

principal component transformation for each of the April and August images was 

investigated.  Image classes resulting from the ISODATA classifications based on 3 PC 

bands were interpreted to correspond as best as possible with the subclasses used for the 

supervised classification procedures. Visual inspection of the final four classification 

products (two products from each of the supervised and unsupervised processes) seemed to 

illustrate a correlation with regards to overall patterns and distributions (Table 5-6). However, 

closer examination revealed various and profound differences which needed further 

evaluation. 

7.4 Evaluation of results 

Objective 3: To evaluate pixel-based classification results within the realm of the 

uncertainties inherent to the classification methods and to assess the relevance of estimated 

desktop and in-situ field observations as ground truth validation tools. 

Classified results obtained through both the supervised and unsupervised processes in 

Chapter 4 were evaluated in Chapter 5 using qualitative and quantitative methods.  

7.4.1 Qualitative methods 

Although a superficial visual comparison between the four classified products revealed a 

similarity in the patterns that emerged, there were considerable differences with regards to 

class delineation between the two classification methods. Class delineation seemed to 

illustrate improved definition in the supervised results.   

One of the supervised results was then visually compared to the land cover dataset obtained 

from the Peace Parks Foundation. Despite incompatible description for some of the classes, 

there seemed to be fair correlation in the vegetation patterns and the broader distributions of 

classes. Generally the results based on the Landsat based Peace Parks classification seemed to 
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be coarser than the SPOT 5 results which may provide a better indication of the spatial 

variance in the study area.  

As discussed in Chapter 3, the field visits for this project proved to be challenging. Although 

it was possible to achieve a fairly good level of consistency in canopy cover estimations over 

four consecutive field visits, some sites were “mixed” and difficult to confidently assign to 

one class. In one specific woodland area the canopy cover was regularly underestimated.  

In retrospect it might have been more advantageous to reduce the frequency of field visits in 

favour of increasing the number of field operators and field sites. While an increased number 

of field operators may have enhanced the possibility to obtain more precise field 

measurements, this would definitely have complicated logistics and escalated the costs. 

When compared to the information associated with the 24 field data sites, it was found that 

there were various types of possible correlation with classified products. Most of the 

“perfect” correlations were achieved in the supervised classified results. However, higher 

numbers of “partial” correlations were achieved in the unsupervised results. It was concluded 

that although the field work and in-situ observations were valuable with regards to 

interpreting the physical properties of the landscape, the 24 field estimations were not enough 

to appropriately evaluate the effectiveness of the various classified products using statistical 

methods. Subsequently the possibility of using desktop created reference data for quantitative 

validation measurement was investigated.  

7.4.2 Quantitative methods 

Different desktop methods were applied to obtain two independent and one dependent 

reference data sets.  An error matrix was used to compare each classification result with each 

particular set of reference data. Percentages were used in the error matrixes to display and 

compare the results per class and also the overall averages. Results showed differences 

between class accuracies across the vegetation classes. The highest density (Riverine forest) 

and lowest density (Sparse vegetation) classes were extracted with high accuracy levels (80+ 

and 70+ respectively) in all cases. Class accuracies in all the other vegetation classes varied 

considerably with omission and commission errors occurring commonly between “adjacent” 

or similarly structured classes like WL and OW or BL and OB. Confusion also occurred 
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between OB and GL delineations. These mixed achievements were not entirely unexpected as 

the results were intrinsically influenced by the limitations inherent in the size of the SPOT 5 

pixel on the one hand, and the selection and number of target classes on the other.   

The MLC result derived from the 6 band August 2011stack illustrated the highest average 

overall accuracy across all three applied methods (65.86%) and the best overall Kappa 

average (0.58). This classification was then used for further discussions and thematic 

mapping processes in Chapter 6.  

7.5 Dissemination and application of results 

Objective 4:  To analyse and illustrate visualising techniques and application options aimed 

at the dissemination of thematic information which may compliment conservation 

management efforts in the GLTFCA region. 

The supervised maximum likelihood classification derived from the 6 band August stack 

which was selected for the thematic mapping process is a statistically based classified result. 

As such it contained too many isolated pixels or small pixels groups which may not be well 

presented in a thematic map. There were also some obvious misrepresentations due to 

environmental influences which could be improved on by analyst intervention.  Six rules 

suggested by Adams & Gillespie (2006) were used as the basis and motivation for the steps 

taken in the thematic mapping process.  

Various combinations of generalisation were applied to the selected classified result. A 

suitable level of generalisation and smoothing were chosen based on average overall accuracy 

and Kappa coefficients supported by visual investigations. Ancillary information on soil, 

vegetation, wetlands and elevation were used to refine some of the vegetation class extents 

and an Open Riverine area was added to accommodate the various open, trampled, damaged 

and overgrazed Riverine areas. This was seen as an important step as it was clear during 

fieldwork visits that these floodplains close to the rivers and pans were preferred 

environments for many grazers and browsers.  

Various factors influencing the accuracy and precision with which the results of this study 

could be achieved have been described and acknowledged. Although this could not be 

precisely measured, the confidence levels inherent in the thematic presentation of the 
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classification product ought to be reported. This may be done in associated documentation, in 

the metadata of digital data sets and/or on the map itself. Three possible techniques which 

could be applied on a map, i.e. using symbols, using annotation and the application of 

increasing colour intensity were investigated and illustrated. 

Finally the possible relationships which may still exist between the classified results and a 

historical descriptive vegetation study were investigated. This showed that the use of 

additional data may augment the usability of the classified results in certain environments. 

Additional probable characteristics with regards to vegetation height, plant composition and 

habitat may be inferred by adding ancillary data sources.  

7.6 Conclusion 

The results from this research effort suggest that the application value of freely available 

SPOT 5 data in association with standard pixel-based classification procedures may be 

influenced by various controllable and uncontrollable factors. Amongst others, the methods 

applied will depend on the research questions that must be answered, the characteristics 

and/or accessibility of the data and the proficiency of the analyst. Because there are many 

ways to extract information from the spectral characteristics of images, it may be difficult to 

decide on the analytical processes suitable for a specific application or situation. Adams and 

Gillespie (2006) note that there is often a need for flexible image analysis strategies because 

fieldwork and images may be “messy” due to many uncontrolled variables. 

Image classifications are abstractions and simplified presentations of reality. The number and 

type of vegetation structural classes in this study were partially dependent on the required 

product but also hinged on what could reasonably be identified in the field and derived from 

the available imagery. The lack of good reference or “ground truth” data was particularly 

challenging. To partially address this, techniques such as pair separation and the use of 

thresholds were applied in attempts to identify the best suitable training sets and band 

combinations even before final classification efforts. Three sets of reference data were 

created and the evaluated results were averaged to spread the effect of bias across classes.  

Once a final classified product was produced, error matrixes and visual inspection were used 

to decide on an acceptable level of generalization and also to interpret and re-classify some 

123 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



areas before creating the thematic map to visualise the results. Although the selected final 

product showed potential for use in ecological research projects, the accuracy levels between 

classes varied substantially.  Therefore the uncertainties associated with each class had to be 

communicated to potential users. Various visualisation techniques which could illustrate the 

inherent fuzziness of the data were presented. Finally, both the results of this study and a 

historical floristic analysis were used to discuss how these very different data sources may be 

used in combination. 

The main conclusion of this study is that although the usage of satellite imagery as a whole 

may have reached almost unlimited potential, there are still many challenges for researchers 

in the various application fields of this technology. In this study the focus of the image 

classification processes was on well-known pixel-based methods which may be commonly 

used in association with free imagery and data. From the results it can be concluded that the 

use of medium resolution multispectral imagery like the 10m SPOT 5 for pixel-based 

classification of vegetation structure in the study area is subject to various potential sources 

of error inherent in all processes e.g. field based observations, image acquisition, image pre-

processing, image classification, generalisation and interpretation for thematic mapping.  

Although the results could be useful to augment the information needed for ecological and 

habitat studies, it may be limited in its application value and should be used perceptively and 

with caution. This conclusion is supported by the findings from a wide range of studies which 

suggested that suitable vegetation classification methods applied to medium resolution 

multispectral sensors like Spot 5 and Landsat may be case, season and scale dependent or, in 

some cases, most useful as a tool for exploration or monitoring (Munyati et al., 2014, Bastin 

et al., 2012 & Van Bommel et al., 2006). 

7.7 Recommendations 

When applying similar methodologies and techniques as applied in this research project the 

following aspects should be taken into account. 

The time, cost and effort of obtaining in-situ data must be weighed against the application 

potential. In this research the four seasonal visits were useful with regards to understanding 

the temporal changes and the potential influence of these fluctuations on grazing and 

associated animal behaviour. However, the limited number of sites that could be visited each 
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time severely impacted on the potential of using these points as reference data when 

evaluating the image classification results. One or two much longer visits by a larger group of 

field workers may therefore be more beneficial towards creating a suitable reference data set. 

Regardless of the global advances in remote sensing technologies, it may not be possible to, 

without considerable financial input, access imagery with much improved spatial and 

temporal characteristics than the SPOT 5 data used in this project. However, a valuable future 

exercise could be to investigate the availability and capabilities of the more recently launched 

SPOT 6/7 sensor data which incorporates a blue band and has an improved spatial resolution 

of about 6 m. It must be acknowledged that the number of target classes that could reasonably 

be delineated from the SPOT multispectral data are limited. Although sub-pixel unmixing 

may enhance the extraction of some classes, it will be challenging to identify pure pixels to 

be used as “endmembers” for this purpose in a mixed and varied savannah biome like the 

GLTFCA. Even if pure pixels could potentially be found, it is possible that the horizontal 

distribution could be better identified but the vegetation height as a structural element may 

still not be extracted well. 

Thematic products from this study may be useful in ecological studies but should best be 

used in conjunction with additional environmental data. Once structural plant communities of 

importance are identified, NDVI indices derived from the SPOT 5 data may be useful in 

further temporal studies. However, the limited availability of accessible and frequent SPOT 

and Landsat data may necessitate the use of coarser (250 m) 16-day MODIS composite 

NDVI time-series information.  During field visits it seemed that similar plant communities 

may respond differently to seasonal changes depending on physical factors like the slope, soil 

and micro climatic conditions. For instance, some groups of tall Mopane trees remained 

greener than other groups which looked almost senescent, but in the “green” Mopane areas 

there were very little forage for grazers. Plant phenology in conjunction with a structural 

classification and a NDVI time series may therefore provide more insight into vegetation 

characteristics which could influence the grazing patterns and movement dynamics of buffalo 

and other grazers. Predictive research will require long term movement data in association 

with several physical data sources like vegetation, precipitation, temperature, hydrology and 

topography. 
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Ultimately, this study described various factors influencing the suitability of using satellite 

image classification in the GLTFCA and illustrated the potential of using additional 

techniques to address and communicate the inherent uncertainties in the results. Finally it was 

shown that it may be sensible and even necessary to incorporate ancillary information 

towards refining the results. 
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Appendix A 

Vegetation Field Data Sheet (Adapted from Edwards, 1983) 
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Appendix B 
Summary of vegetation at field sites 

Location: Pafuri region, Kruger National Park    Site no: _____________________________ 
Date:    _____________ Time: __________                         Observer: ___________________________ 
GPS location:  1 ______________ ______________ 3 ______________ _______________ 
  2 ______________ ______________ 4 ______________ _______________ 
Aspect  N NE E SE S SW W NW  

Slope gradient Flat Gentle Medium Steep  

Slope position Valley  Foot Mid Upper Plateau 

Litter present Little Thin single layer Multiple layers  

Soil (colour/texture)  

Geomorphology & physical processes   
Main Vegetation type  
and  
% cover (estimated) 

Woodland 
(mainly trees) 

Bushland 
(mainly shrubs) 

Grassland (mainly 
grasses) 

   
 Trees Shrubs Grass 
Vertical Structure - Mean height (m)    

Horizontal structure (Density)    
Low    
Med    
High    

Vegetation health    
Green (PV)    

Intermediate    
Dry (NPV)    

Vegetation condition    
Undisturbed    

Trampled    
Grazed    

Heavily grazed    
Burnt    

Recently burnt -regrowth visible    
Growth stage    

Immature    
Mature/ Flowering    

Seeding    
Senescent    

Photographic record Horizontal Vertical 
The site Vegetation profile Main species Grass density 
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Appendix C 

Field photography illustrating the variation in vegetation characteristics (on the right) and 
ground cover (on the left) across the four seasonal visits for field site no 14. 
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Appendix D 

Summary of field work observations and desktop analysis results 

Field Site 
No. 

Immediate Field classification during consecutive 
trips 

C
on

si
st

en
cy

 

Fi
na

l d
es

k 
to

p 
  

D
er

iv
ed

 tr
ee

 
co

ve
r (

%
) 

A
gr

ee
 w

ith
 

de
sk

to
p 

 
Y

/P
/N

 *
 

Oct 2010 Jan 2011 May 2011 Aug 2011     
0 WL WL WL WL 4/4 WL 60 Y 
1 WL WL WL WL 4/4 WL 49 Y 
2 BL BL BL BL 4/4 BL 43 Y 
3 OB OW OB OW 3/4 OB 19 Y 
4 OB OB OB OB 4/4 OB 31 Y 
5 OW OW OW OW 0/4 WL 64 N 
6 OB OW OW OB 2/4 OW 34 P 
7 OB OB OB SV 3/4 OB 21 Y 
8 OB OW OW OW 3/4 OW 25 Y 
9 SV GL/ SV SV SV 4/4 SV 20 Y 
10 SV SV SV SV 4/4 SV 9 Y 
11 OB OB OB OB 4/4 BL 38 N 
12 GL GL GL GL 4/4 GL - Y 
13 BL WL WL BL 2/4 BL 56 Y 
14 BL BL BL/OB BL/OB 2/4 BL 37 P 
15 OB OB OB OB 4/4 OB 27 Y 
16 RF RF RF RF 4/4 RF 95 Y 
17 OW OW OW OW 4/4 OW 28 Y 
18 OB N/a BL/OB OB 1/4 BL 40 P 
19 BL BL BL BL 4/4 BL 45 Y 
20 OB OB N/a SV/OW 1/4 SV 8 P 
21 SV SV SV SV 4/4 SV 5 Y 
22 BL OW OW/OB OB 2/4 OW 44 P 
23 RF RF RF RF 4/4 RF 87 Y 

*Y = Yes   P = Partial   N = No 
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Appendix E 

Summary: Ancillary data for field sites 
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Appendix F 

Illustration of the results summarized in Table 5.1 

Maximum Likelihood classification with thresholds 
Note: Classification is based on all four SPOT 5 bands plus NDVI and MSAVI2 

Threshold 
values 

Unclassified pixels 
for each selected 

case in 
percentage    (%) 

Image extracts representing a part of the Limpopo river basin: 
Case 1: April - Small 30 pixel ROIS (9 classes) 
Case 2: August - Bigger ±100 pixel ROIs with sub-classes 
Case 3: April - Large 1000+ pixel ROIs (9 classes)   

 1 2 3 1 2 3 

0.8 98 94 76 

       

0.4 94 89 45 

       

0.2 90 65 29 

       

0.05 83 45 12 

       

0.01 75 28 5 

       

No threshold 0 0 0 
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Appendix G 
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Appendix H 

Composition of each evaluation site as classified using unsupervised and supervised methods 
(Part 1) and the associated frequency table (Part 2). 

Appendix H Part 1 

 

Field 
Site 

In-situ 
classification  

Results from supervised MLC  for 
August ( Case 1) and April (Case 2) 

images 

Results from ISODATA unsupervised 
classifier on three derived PC bands 
for August (Case 3) and April (Case 4 
– excludes Sparse Vegetation class) 

Structural 
class 

Case 1 Case 2 Case 3 Case 4 

0 
Woodland 

(WL) 

    

1 
Woodland 

(WL) 
    

2 
Bushland 

(BL) 
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3 

Open 
Bushland 

(OB) 
    

4 

Open 
Bushland 

(OB) 
    

5 
Woodland 

(WL) 
    

6 

Open 
Woodland 

(OW) 
    

7 

Open 
Bushland 

(OB) 
    

8 

Open 
Woodland 

(OW) 
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9 

Sparse 
vegetation 

cover 

(SV)     

10 

Sparse 
vegetation 

cover 

(SV)     

11 

Open 
Bushland 

(OB) 
    

12 
Grassland 

(GL) 
    

13 
Bushland 

(BL) 
    

14 
Bushland 

(BL) 
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15 

Open 
Bushland 

(OB) 
    

16 

Riverine 
Forest 

(RF) 
    

17 

Open 
Woodland 

(OW) 
    

18 
Bushland 

(BL) 
    

19 
Bushland 

(BL) 
    

20 

Sparse 
vegetation 

cover 

(SV)     
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21 

Sparse 
vegetation 

cover 

(SV)     

22 

Open 
Woodland 

(OW) 
    

23 

Riverine 
Forest 

(RF) 
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Appendix H Part 2 

Field 
Control 

Site 

In-situ 
classification 

Results from supervised MLC  for 
August (1) and April (2) images 

Results from ISODATA unsupervised 
classifier on three derived PC bands for 

August (3) and April (4) 
Structural class Case 1 Case 2 Case 3 Case 4  (Excl. SV) 

0 Woodland □ □ □ □ 
1 Woodland + □ □ □ 
2 Bushland ■ ■ □ ■ 
3 Open Bushland □ □ ■ □ 
4 Open Bushland + □ - □ 
5 Woodland □ ■ □ □ 
6 Open Woodland ■ □ ■ - 
7 Open Bushland + + - □ 
8 Open Woodland + + + □ 
9 Sparse Vegetation  ■ + □ n/a 

10 Sparse Vegetation  □ □ - n/a 
11 Open Bushland - ■ - + 
12 Grassland - + □ □ 
13 Bushland - + □ + 
14 Bushland □ □ + ■ 
15 Open Bushland - - - ■ 
16 Riverine Forest □ ■ □ □ 
17 Open Woodland □ □ □ □ 
18 Bushland + + □ + 
19 Bushland + + + + 
20 Sparse Vegetation  - - - n/a 
21 Sparse Vegetation  ■ + + n/a 
22 Open Woodland ■ ■ □ □ 
23 Riverine Forest □ ■ □ □ 

SUMMARY 
■ => Perfect correlation 
□ => Partial correlation – 
some pixels correct 
+ => Close within 2 pix 
-  => No correlation 

■ => 5 (20.8%) 
□ => 8(33.3%) 
+ => 6 (25%) 
-  => 5 (20.8%) 

■ => 6 (25%) 
□ => 8 (33.3%) 
+ => 8 (33.3%) 
-  =>  2 (8.3%) 

■ => 2 (8.3%) 
□ =>12 (50%) 
+ =>  4 (16.7%) 
-  =>  6 (25%) 

■ => 3/20 (15%) 
□ => 12/20 (60%) 
+ =>  4/20 (20%) 
-  => 1/20 (5%) 
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Appendix I 

Generalization options and impacts 
 

Summary: Types of generalization processes applied to the selected August MLC result 

Generalisation 
Case Number 

Sub-
regions 

combined 
Sieved Clumped 

Kernel size 

Filters Classes excluded 

Type Kernel 
size Water Shade Agriculture 

1 Yes No No None n/a No No No 
2 Yes Yes 3x3 None n/a Yes Yes Yes 
3 Yes Yes 6x6 None n/a No No Yes 
4 Yes Yes 6x6 Median 3x3 Yes Yes Yes 
5 Yes Yes 6x6 Median 9x9 Yes Yes Yes 
6 Yes Yes 6x6 None n/a Yes Yes Yes 
7 Yes Yes 3x3 None n/a No No No 
8 Yes Yes 6x6 None n/a No No No 
9 Yes Yes 6x6 Median 9x9 No No No 

10 Yes Yes 3x3 None n/a No No No 
11 Yes No None Majority 3x3 No No Yes 
12 Yes No None Majority 5x5 No No Yes 
13 Yes No None Majority 7x7 No No Yes 
14 Yes Yes 3x3 Majority 3x3 No No Yes 
15 Yes Yes 3x3 Majority 7x7 No No Yes 

 

Summary of accuracies and Kappa values as tested against reference data sets 

 

Overall Accuracy for three reference 
data sets (%) 

Kappa values for the three different reference data 
sets 

Accuracy  
+  

Kappa 

Ca
se

 

Ex
pe

rt
 

Ra
nd

om
 

Ad
di

tio
na

l 

Av
er

ag
es

 

Ex
pe

rt
 

Ra
nd

om
 

Ad
di

tio
na

l 

Av
er

ag
es

 

Av
er

ag
es

 
%

 

Average 
(%) 

1 58.20 55.20 89.50 67.63 0.51 0.45 0.87 0.61 61.00 64.32 
2 57.10 54.40 88.80 66.77 0.50 0.45 0.86 0.60 60.33 63.55 
3 47.70 52.70 80.90 60.43 0.39 0.37 0.77 0.51 51.00 55.72 
4 47.90 51.90 80.40 60.07 0.39 0.37 0.76 0.51 50.67 55.37 
5 47.40 45.90 77.00 56.77 0.39 0.29 0.72 0.47 46.67 51.72 
6 47.70 52.70 82.00 60.80 0.39 0.37 0.79 0.52 51.67 56.23 
7 56.00 54.30 88.60 66.30 0.49 0.43 0.86 0.59 59.33 62.82 
8 47.70 52.70 81.00 60.47 0.39 0.37 0.77 0.51 51.00 55.73 
9 47.40 46.20 77.00 56.87 0.39 0.30 0.72 0.47 47.00 51.93 

10 58.20 55.10 89.50 67.60 0.51 0.45 0.87 0.61 61.00 64.30 
11 59.70 50.80 89.90 66.80 0.53 0.40 0.88 0.60 60.33 63.57 
12 58.20 48.80 89.20 65.40 0.51 0.38 0.87 0.59 58.67 62.03 
13 57.70 48.50 89.00 65.07 0.50 0.38 0.86 0.58 58.00 61.53 
14 57.30 53.50 88.20 66.33 0.50 0.42 0.86 0.59 59.33 62.83 
15 62.90 51.50 85.00 66.47 0.55 0.39 0.82 0.59 58.67 62.57 
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Appendix J 

Image classification result versus Van Rooyen delineations 
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Ten areas for discussion 

 
Visual comparison between a digitised version of the original Van Rooyen map and the 

image classification result. Ten areas for discussion (A – J) are indicated 

1. Example A – Riverine Forest, Open Riverine Forests and Grass (Table 1 no. 1-4) 

Although the extent of the riverine forest areas may differ between the two products, there is 

generally a very good correlation in the overall position of the Riverine Forest areas (1). 

From the 1978 floristic analysis it can be deducted that these riverine forest areas may still 

include various tall trees like Acacia albida, Ficus sycomoros, Acacia robusta, Trichilia 

emetic and Xanthocersis zambesiaca. This is confirmed in more recent text references with 

regards to the distribution of these trees (Grant et al., 2001, Venter and Venter, 1996). 

Various herbaceous plants are mentioned in the van Rooyen text and also a high incidence of 

nutritious and palatable grasses like Panicum maximum and Digitaria eriantha.                                            

Contrasting to this, the Grassland areas adjacent to the Riverine Forests in the Van Rooyen 

delineation illustrates an extreme mixture of classes in the classified product (2). This could 

be due to environmental factors that influenced this area over time and which may be 

partially embedded in the image time and pixel characteristics. This area is prone to flooding 

(with an extreme event recorded in the year 2000) and some parts of it may be extremely 
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overgrazed or trampled due to the availability of grass (forage) and the proximity to water. 

These factors may be specifically evident in the dry season August image where the pixel 

reflectance may have been contaminated with background noise. Additionally the 

composition of the vegetation may have changed due to weather events and wildlife 

pressures. 

Areas 3 and 4 show similar results for the classified product (mostly OW), but the Van 

Rooyen data suggest dissimilar floristic compositions in the two zones. The OW 

classification in area 3 seems acceptable and correlates well with the Open Tree savanna class 

in the van Rooyen map which points to the frequent occurrence of the noticeable Acacia 

Xanthophloea (Fewer) tree species in these peripheral fairly flat riverine areas along river 

banks, swamps and pans. These trees are unique in appearance with a greenish straight single 

trunk and a sparse canopy (Grant et al., 2001). During field visits the popularity of these areas 

for foraging (by buffalo in particular) was evident throughout the four seasons. Van Rooyen 

(1978) notes two conspicuous grass species associated with the Acacia Xanthophloea trees. 

These are a perennial specie which typically occurs in seasonally flooded areas, Sporobolus 

Consimilis, as well as a fairly nutritious and palatable specie, Setaria sphacelata (Van 

Oudtshoorn, 2002). Further visual inspection of the false colour August image and the 

original Van Rooyen map reveals that a possible miss-registration of the small no. 4 area 

(about 10 ha) in the digitising effort cannot be counted out and that the fragment may perhaps 

rather correspond with the area indicated by the arrow in Table 1. However the description of 

the Acacia Tortilis tree species (single stemmed, fine leaves) in Grant et al. (2011) also 

supports the notion that there may very well be a similarity between the reflectance of pixels 

with these trees as compared to the Acacia Xanthophloea communities.  Plant communities 

associated with the Acacia Tortilis tree species so close to riverine areas suggests the 

occurrence of palatable grasses and subsequent severe overgrazing. This may have resulted in 

the introduction of various pioneer herbaceous components.  Regardless of the possible issues 

associated with determining the possible specie compositions, it seems that the OW classified 

results for both area 3 and 4 is acceptable. Subsequently it may not be too far-fetched to 

suggest that OW areas in riverine/alluvial areas may often be associated with palatable 

grazing and the accompanying environmental issues like overgrazing and trampling. 

159 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Table 1: Comparison of historic data with the classified product: Example area A 

Map extracts: 
Classified results & 
August false colour extract 

 Van Rooyen delineation Image 
classification 

 

 

1 

Descr: Acacia Albida-Sycomorus 

Class: Riverine Forest 

Community: Riverine 

RF & ORF 

2 

Descr: Sporobolus Consimilis 

Class: Grassland 

Community: Riverine 

Mixed RF, ORF, 
OW, OB, GL & 
SV 

3 

Descr: Acacia Xanthophloea 

Class: Open tree savanna 

Community: Riverine 

Mostly mixed 
OW, GL 

4 

Descr: Acacia Tortilis 

Class: Tree savanna 

Community: Colophospernum Mopane 

OW 

 

2. Example B – Tree savannas and Open tree savannas in river flood plains (Table 2 no 5-8) 

There is again a correlation between the historic delineation and the image classification with 

regards to the Riverine forest areas surrounding the wetland area (5). However, the Open tree 

savanna delineation in the Van Rooyen zones at no 8 does not include reference to the RF 

areas picked up by the image classification. At no 6 and 7 the Tree savanna and Open tree 

savanna areas correspond mainly with the BL and OB target classes respectively. This 

suggests that the difference in the horizontal distribution of trees may be well captured in the 

classification target classes but that there may be uncertainties regarding the vertical height 

delimitation. The BL target class derived from the Edwards structural classification (Chapter 

3) allow tree heights of up to 10 m; while the Van Rooyen text indicates that the trees in these 

“Tree savanna” areas were mostly less than 6 m tall at the time.   
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Table 2: Comparison of historic data with the classified product: Example area B 

Map extract 
Classified results &  
August false colour 

 
Van Rooyen delineation Image classification 

 

 
 

5 

Descr: Acacia Albida-Sycomorus 

Class: Riverine Forest 

Community: Riverine 

RF 

6 

Descr: Acacia Tortilis 

Class: Tree savanna 

Community: Colophospernum Mopane 

Mainly BL with 
spots of OW, SV & 

BS 

7 

Descr: Acacia Tortilis 

Class: Open tree savanna 

Community: Colophospernum Mopane 

Mostly OB 

8 

Descr: Acacia Xanthophloea 

Class: Open tree savanna 

Community: Riverine 

RF & OW 

Other environmental factors may also influence the specie composition and this becomes 

apparent when these areas are compared to example C no. 10 and 12 respectively. More 

ancillary data sources like soil composition or historic data may therefore be necessary to 

make worthwhile conclusions about the ecological significance of these areas. 

3. Example C – Open woodland and Bushland (Table 3 no 9-12) 

When examining area 9 the patterns of class distribution seems to correspond, but the area 

covered by the OW target class delineation is extended (indicated by the arrows) when 

compared to the High tree savanna class of Van Rooyen. The height of the woody component 

in this Colophospernum Mopane community is described in the Van Rooyen text as typically 

10 – 15 m and the possible existence of a variety of palatable grasses are noted.  
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Table 3: Comparison of historic data with the classified product: Example area C 

Map extract 
Classified results & August 
false colour 

 Van Rooyen delineation Image 
classification 

 

 

 

9 

Descr: C. Mopane – Euclea Divinorum – 
Enteropogon Macrostachus 

Class: High tree savanna 

Community: Colophospernum Mopane 

OW 

10 

Descr: C. Mopane – Commiphora Glandulosa – 
Seddera Capensis 

Class: Open tree savanna 

Community: Colophospernum Mopane 

BL & OW 

11 

Descr: C. Mopane – Euclea Divinorum – 
Enteropogon Macrostachus OR Acacia Tortilis 

Class: High tree savanna OR Open tree savanna 

Community: Colophospernum Mopane 

SV, ORF 
& OW 

12 

Descr: C. Mopane – Commiphora Glandulosa – 
Seddera Capensis 

Class: Open tree savanna 

Community: Colophospernum Mopane 

OB 

Area 10 in Table 3 corresponds mostly with BL in the classification and Open tree savanna in 

the Van Rooyen delineation. The descriptions on the woody component in the Van Rooyen 

text refer to trees like Colophospernum Mopane, Kirkia acuminate and Sclerocarya caffra 

with heights between 6-8 m, but also mention the presence of typically taller species like 

Adansonia digitata (the well-known Baobab trees). This was confirmed by field work notes 

and photos taken during field visits. Understory plants includes various herbaceous plants 

like Seddara capensis and also grasses like Panicum maximum and Digitaria eriantha.  

Area 11 (Table 3) is located on the edge of the riverine region associated with the alluvial soil 

along the Levuvhu flood plain and shows the possible impact of animal pressures. The SV 

image classification result illustrates this while both the Van Rooyen class descriptions 

support this reasoning. The OB area (12) occurring in the transition zone between the riverine 

communities and the Colophospernum Mopane communities suggests further animal or other 

environmental impacts resulting in lower horizontal distribution and possible degraded land. 
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The other OB areas to the south in this extract may be mainly influenced by aspect of slope 

and soil conditions.  

4. Example D – Mixed dry forest (Table 4) 

This area appears in the Van Rooyen map as a “Mixed rocky and dry forest” community with 

various species, amongst others, Lebombo Ironwood trees (Androstachys Johnsonii) and the 

lavender fever-berry shrub/small tree  (Croton pseudopuchellus) present in the area. This 

seems to fit well with the image classification result which indicated a mixture of mainly WL, 

OW and BL classes in the areas and it is possible that the historic plant community 

descriptions may still be useful today.  

Table 4: Comparison of historic data with the classified product: Example area D 

Classified results and the Van 
Rooyen delineation 

August false colour 

  

The image classification result may further assist in delineating densities and distribution 

with regards to plant communities identified in ancillary studies. Analysts with a botanical 

perspective may also be able to use similar pixel-based image classification results or 

vegetation indices from more than one season to further differentiate between the various 

species in this area. 

5. Example E – Grassland, Open Bushland, Bushland and Open Woodland (Table 5)  

In this example, the van Rooyen map distinguishes between two regions only: Mixed dry 

forest (14) as described in example D and Open tree savanna (13) (Table 5). As in the 

previous example, the Mixed dry forest areas seems to correspond very well with the image 

classification result which mirrors such a mixture of vegetation structural types. However, 

large parts of the Open tree savanna areas in this map extract was classified through the 

image analysis process as being GL (14). Reasons for this may be diverse. The tree 
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distribution in the area may be particularly sparse or generally small or mostly deciduous and 

carrying no leaves towards the end of the dry season. Any combination of these conditions 

may result in minimizing their influence on the reflectance characteristics of the SPOT 5 

pixels.   

Table 5: Comparison of historic data with the classified product: Example area E 

Classified results & Van 
Rooyen delineation August false colour 

  

 

Additionally there may be coarseness with regards to the historic data and/or imperfections 

with regards to the image classification as the accuracy levels for the GL class were generally 

low (Chapters 4 & 5). This part of the study area is particularly inaccessible and could not be 

visited during field visits. From maps in the Van Rooyen publication it can be deducted that 

there were also no field work sites at this locality for the historic visits.  Visual inspection of 

the 2008 aerial photographs revealed a distribution of shrub and trees that is more associated 

with the OB than the GL class. However, the aerial photographs also provided a possible 

visual clue to the misclassification in this area as there seemed to be ample litter and dry 

grass on the ground. This may have dominated the average pixel reflectance and confused the 

image classification results.   

6. Example F – Various Tree savannas (Table 6 no 15-18)  

Example F again provides interesting information that may be gained from the historic data. 

The mixed OW, WL, BL and a few insets of OB in area 15 correlate well with the Mixed Dry 

forest Van Rooyen delineation. Areas 16, 17 and 18 all depicts Colophospernum Mopane 

communities, but the plant descriptions and class delineations from the Van Rooyen data 

provides additional information on the respective areas which may be valuable to researchers.  
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Table 6: Comparison of historic data with the classified product: Example area F 

Map extract 
Classified results & August false 
colour 

 Van Rooyen delineation Image 
classification 

 

 

15 Descr: Mixed dry forest 
Class: N/a 
Community: Mixed Rocky and Dry 
forest 

WL, OW, BL 

16 Descr: C. Mopane – Enneapogon 
Schoparius 
Class: Shrub or Tree savanna 
Community: C. Mopane 

BL, OW 

17 Descr: C. Mopane – Combretum 
Apiculatum – Digitaria Eriantha 
Class: Open Tree savanna 
Community: Colophospernum Mopane 

BL 

18 Descr: C. Mopane – Commiphora 
Glandulosa – Seddera Capensis 
Class: Open tree savanna 
Community: C. Mopane 

OB, BL 

 

7. Example G – Thicket (Table 7) 

The polygon shown in Table 7 illustrates the only area in the study region which is described 

in the Van Rooyen map extract as representative of the Baphia massaiensis shrub/small tree 

(from the class Thicket in a Sandveld community).  Without the availability of additional 

information like the Van Rooyen data, a researcher will not be able to identify the possible 

occurrence of this community, as the image classification results could not distinguish this 

from other BL/OB areas. 
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Table 7: Comparison of historic data with the classified product: Example area G 

Classified results & Van 
Rooyen delineation August false colour image 

  

 

8. Example H – Open Tree savanna (Table 8) 

In this example both the areas 19 and 20 falls within the Colophospernum Mopane 

community and are both classified as Open tree savanna in the Van Rooyen map, but there is 

a difference in the additional main specie descriptions. Area 19 are referred to as typical of 

Combretum Apiculatum  trees which apparently occurs on sandy or rocky soils and are 

typically between 4 and 10 m tall (Venter and Venter, 1996, Grant et al., 2001). The Van 

Rooyen text also refers to the presence of palatable grass species like Digitaria Eriantha. 

Similarly, according to the Van Rooyen map, the rest of this area (20) may be typical of areas 

associated with the Commiphora Glandulosa tree species with heights of 6-8 m and perennial 

herbaceous cover like Seddera Capensis. 

Table 8: Comparison of historic data with the classified product: Example area H 

Classified results & 
Van Rooyen delineation August false colour 
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9. Example I – Shrub Savanna (Table 9) 

This example refers to one of the few areas in the study area which corresponds with the 

reference to Shrub Savanna in the Van Rooyen map.  Although still grouped within the 

Colophospernum Mopane plant community, the typical presence of Mustard trees (Salvadora 

Angustifolia) are mentioned. This is a multi-stemmed shrub-like tree with a pale colour which 

may be heavily browsed during the dry season (Grant et al., 2001). The image classification 

result indicates sparse vegetation cover in this area which is also evident from the August 

false colour illustration. The area is located in the floodplain between the Limpopo and 

Luvuvhu rivers and is surrounded by Open Tree Savanna, Tree savanna and Grassland areas 

(van Rooyen map) with associated palatable grasses. Animal pressures may therefore have 

resulted in the degradation of the vegetation in this and the surrounding areas. The image 

classification results depict these surrounding areas as OW and BL to the south and OB and 

even BS to the north. 

Table 9: Comparison of historic data with the classified product: Example area I 

Classified results & Van 
Rooyen delineation August false colour 

  

 

10. Example J – Shrub or Tree Savanna, Open Tree Savanna and Ironwood forests (Table 

10)  

In this area on the van Rooyen map, two Colophospernum Mopane communities occurs, a 

Shrub or Tree Savanna area (21) and an Open Tree Savanna area (22). The structural 

differentiation between OW, BL and OB in the classified results may help to delineate 

between the Shrub (BL) and Open Tree (OW and OB) in the area.  The Van Rooyen map 

description indicates that a hardened grass species (Enneapogon Schoparius) is common in 

area 21. This species is not known as preferred by grazers, but it may of value to ecologists to 
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be aware of its presence as it may be an important soil preserving plant in this undulating area 

(Van Oudtshoorn, 2002). Additionally several groupings of Lebombo Ironwood trees 

(Androstachys Johnsonii) are delineated (23) in the van Rooyen map. These areas are also 

depicted in the classified result by WL demarcations surrounded by sparser occurrences 

depicted as OW.  

Table 10: Comparison of historic data with the classified product: Example area J 

Classified results & Van 
Rooyen delineation August false colour 
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