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Abstract 

Ab-initio investigation of the antimony-vacancy complex and related defects in germanium. 

Submitted in partial fulfilment of the degree MSc (Physics) in the Faculty of Natural & Agricultural 
Sciences, University of Pretoria 

 
Supervisor: Prof. W.E. Meyer 

Co- Supervisor: Dr. R. Andrew 

 

Recent advances in computational technology and algorithms have made it feasible to accurately 

model the electronic structures of solids by means of density functional theory. The development of 

hybrid functionals have improved the accuracy of band gap calculations and made it possible to 

make qualitative predictions regarding the charge transition energy levels of defects in 

semiconductors.  

The Sb-V defect (also known as the E-center) in germanium is a well-known defect, which have 

been the subject of many experimental and some theoretical studies. It has been found to have 

interesting annealing properties and the aim of this study is to investigate the electronic properties of 

the Sb-V defect theoretically. The vacancy defect in germanium (VGe), the antimony substitutional 

(SbGe) defect in germanium and the defect complex (Sb-V) arising from the combination of these 

two defects is explored in great detail and how they interact in proximity to one another is presented 

here. In addition, this work can be seen as a test for the effectiveness of the technique to model 

defects in semiconductors correctly. 

The E-center defect was investigated using the HSE06 hybrid functional as implemented in the 

VASP code. A positive binding energy of 1.5 eV, 1.02 eV and 0.88 eV was found for the first, 

second and third nearest neighbor configurations respectively, between the Sb and the vacancy was 

predicted. No metastability was detected and the nearest-neighbor configuration had the lowest 

energy for all charge states. Four transition levels in the band gap were predicted, with energy level 

relative to the valence band maximum, lying at 0.52 eV (-2/-1), 0.40 eV (-1/0), 0.44 eV (0/+1) and 

0.02 eV (+1/+2). The two mid-gap levels (-1/0) and (0/+1) had negative-U ordering with U= -0.04 

eV. 
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These findings were consistent with the current experimental model of the Sb-V complex in 

germanium whereby no metastability has been observed experimentally. The energy level of the  

(-2/-1) corresponded well with the experimental DLTS level in n-type material at 0.37 eV, though 

the correspondence for the other levels was not as good. Experimentally, no negative-U behavior 

was observed, but the predicted negative-U behavior was rather small and no deliberate experiments 

have been performed to investigate the presence of negative-U behavior in the Sb-V complex. 
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Prelude 

Semiconductors have changed the world. They have single handedly been the driving force behind 

the digital revolution. One could argue that, in building the information society, they have been as 

important as the invention of structural steel, poured concrete and the steam engine for the 

industrial revolution. The history of semiconductors and the reasons why they have been researched 

so deeply in our lifetimes is a far longer topic than this dissertation could ever be. Since the effect of 

semi conductivity was first observed in 1822 by Michael Faraday, who noticed a decrease of 

resistance with temperature in silver sulphide, the world has changed more than anyone could have 

predicted. Fast forward 120 years of study and research and the first germanium transistor was built 

in 1947 by John Bardeen and Walter Brattain and so the transistor was born in the first p-n junction. 

The development of the bi-polar transistor and tunnel diodes, integrated circuits to eventually the 

advent of lasers have followed from that point in 1947 providing an almost endless supply of new 

avenues to pursue in the scientific community. Most notable is that 28 of 108 Nobel prizes awarded 

in history have been awarded in the field of condensed matter. The field of semiconductor research 

has been a hotbed of innovation and cutting edge science for nearly 200 years. 

Since the first germanium transistor, germanium slowly gave way to the vastly more popular 

semiconductor: silicon. Silicon, being readily available, cheap and having very appropriate electrical 

and chemical properties rose to become the substance to change the world. Germanium on the 

other hand fell into the chapters of history only in recent years to be re-awakened by a new group of 

researchers to re-examine how best this material can be used to pioneer the 21st century in the use of 

more sensitive devices making use of the much smaller band gap that germanium has. 

In October 2000 J. Fage-Pedersen and A. Nylandsted Larsen published an article examining the 

irradiation-induced defects in germanium by methods of transient spectroscopy (Fage-Pedersen & 

Nylandsted Larsen, 2000). This paper studied n-type germanium doped with antimony and 

characterized several majority-carrier traps and one minority carrier trap. They characterized the 

antimony-vacancy defect complex (E-center) E0.37 but it was found to anneal in a way which was 

deemed fundamentally different to that in silicon. The interesting point was that the effect was 

observed in p-type doped silicon and in n-type doped germanium. This type of common similarity in 

annealing properties was not yet seen in materials which differed so largely in composition. This 
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puzzled the authors at the time and has remained to this day an unexplored property of germanium. 

 

In 2005 N.R. Zangenberg and A. Nylandsted Larsen continued the research publishing 

investigations of vacancy related defects in low-temperature electron irradiated, boron-doped silicon 

(Zangenberg & Nylandsted Larsen, 2005) and it was found that there existed a low temperature peak 

corresponding to a shallow trap at EV+ 0.105 eV. Zangenberg et al. observed charged state 

controlled metastability in the B-V center and this lead to speculation that a similar form of 

metastability could exist in the antimony doped germanium. This odd annealing trend became the 

key factor used to make the link between the existence of metastability and this unexplained 

annealing trend. Recently by making use of modern DFT techniques, the B-V complex in silicon has 

been successfully modelled showing charge state controlled metastability (Ouma & Meyer, currently 

under review).  

In an investigative study the technique that was used to successfully characterize the B-V complex in 

silicon is used in an attempt to prove the existence of metastability of the Sb-V defect complex in 

germanium. It was applied in an attempt to explain the strange annealing patterns observed by 

Larsen and subsequent studies relating to this E-center defect (Coelho, et al., 2013) (Nyamhere, et 

al., 2011) (Petersen & Nylandsted Larsen, 2010) (Auret, et al., 2008). However unlike the B-V 

complex in Silicon, to the best of our knowledge little evidence is reported in modern published 

work of the existence of metastability in the Sb-V complex or related defects. These annealing 

characteristics and the result of charge-state controlled metastability in the B-V complex in silicon 

however warranted investigation and in this work the focus is set on the Sb-V complex as the goal 

to determine the existence of, or possible explanation of, metastability. The Sb substitutional defect 

and the vacancy defect in germanium are analyzed using the same techniques to create a more 

complete understanding of the process under which these defects are allowed to form and exist.  

This dissertation is divided into a theoretical background of the DFT technique, a brief overview of 

semiconductor physics, metastability of semiconductors, the computational methodology of the 

technique used in this dissertation and the results and conclusions of the study
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Chapter 1  

Ab-initio techniques 

1.1 The many-body Hamiltonian 

In order to understand the properties of matter the first step to begin with is to understand the 

interactions of electrons and their nuclei. Using only the most basic of particle properties such as the 

relative charge, the atomic number Z, and mass m, the properties of materials can be determined by 

solving the Many-particle, time-independent Schrödinger equation. (Griffiths, 2005), (Patterson & 

Bailey, 2010), (Springborg, 2000): 

[−∑
1

2𝑚𝑖
∇𝑟𝑖
2𝑁

𝑖=1 +∑
𝑍𝑖𝑍𝑗

|𝑟𝑖−𝑟𝑗|

𝑁
𝑖>𝑗 ]𝛹(𝑹) = 𝐸𝛹(𝑹) = 𝐻̂𝛹(𝑹)[𝑇̂ + 𝑉̂]𝛹(𝑹)   (1.1) 

This is a 3N-dimensional eigen-problem, where R is the collective co-ordinate for all N 

particles 𝑟1, … , 𝑟𝑁. 𝛹(𝑹) is the wave function of all particles, required to be anti-symmetric under 

the exchange of two electrons and obeying the Pauli exclusion principle. This equation is formulated 

in atomic units(𝑒 = 𝑚𝑒 = ħ = 4𝜋𝜀0 = 1) and 𝑇̂ and  𝑉̂ are the kinetic and Coulomb potential 

energy respectively. 

The Coulomb potential term causes the differential equation (1.1) to be inseparable for more than a 

two particle problem and thus the simplest technique of separation of variables is excluded. This 

implies that the form of the wave function is no longer a simple product of one-electron orbitals 

when extended to beyond a two body problem. 

Yet all materials of interest contain a large number of interacting particles, which means 

approximations must be made in order to reduce the complexity of the resulting Schrödinger 

equation (SE), since once the eigen-states of the system are known, many properties may be 

calculated.  However these approximations may significantly affect the accuracy of the predictions of 

the system under investigation. 
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The following sections discuss the principal approaches to approximating the solution of the SE for 

real materials. Starting off with orbital based methods which approximate 𝛹(𝑹) as a Slater 

determinant of single particle orbitals (Hartree-Fock theory (HF)) and followed by an introduction 

to density functional theory (DFT), which is based fundamentally on the charge density of the 

system rather than a wave function. 

 

1.2 The Born-Oppenheimer approximation 

One of the first approximations made to simplify the description of the interactions of particles and 

is used in almost all of the methods discussed within this dissertation is the Born-Oppenheimer 

approximation (BOA) (Patterson & Bailey, 2010); (Springborg, 2000); (Born & Oppenheimer, 1927). 

In this approximation, the nuclei are held in fixed positions in order to separate the nuclear and 

electronic co-ordinates from one another. This approximation is made on the basis that the mass of 

the nuclei is much larger than that of the electrons. Thus the BOA posits that since the nuclear 

velocities are much slower compared to those of the electrons, the nuclei are assumed to be 

stationary. The Hamiltonian of the system thus can be written as: 

𝐻̂ = [−∑
1

2
∇𝑟𝑖
2𝑁

𝑖=1 + ∑ ∑
𝑍𝑎

|𝑟𝑖−𝑅𝑎|
𝐾
𝑎

𝑁
𝑖 + ∑

1

|𝑟𝑖−𝑟𝑗|

𝑁
𝑖>𝑗 +

1

2
∑

𝑍𝑎𝑍𝑏

|𝑅𝑎−𝑅𝑏|
𝐾
𝑎>𝑏 ]          (1.2) 

where the nuclear motion and electron motion have been decoupled. This BOA Hamiltonian is still 

hard to solve with no analytic solution existing for more than one electron. 

 

1.3 Mean-field ab-initio methods 

The evolution of the approach of considering the interactions of each electron with every other 

electron was the development of the mean-field approach, which replaces the effect of all other 

electrons with a mean field. This allows the many body Schrödinger equation to be decoupled into a 

number of single particle Schrödinger equations. In the following sections two approaches are 

considered. 
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1.3.1 The Hartree approximation: no exchange, averaged correlation 

The Hartree approximation (HA) is a common ab-initio approach for solving the many-body SE. 

The main idea is to separate the many-electron SE into many simpler one-electron equations 

(Patterson & Bailey, 2010) (Springborg, 2000) (Hichliffe, 2000). The justification for this is that the 

behavior of each electron is described within the net field of all other electrons, that is the electron 

experiences a mean-field potential, 

𝑉𝑒𝑙(𝒓) = −𝑒 ∫
1

|𝒓−𝒓′|
𝜌(𝒓′)𝑑𝒓      (1.3) 

where each one-electron equation will yield a single-electron wave function, ψi, called an orbital and 

a corresponding orbital energy. The total electronic charge density is given by, 

𝜌(𝒓) = −𝑒∑ |𝜓𝑖(𝒓)|
2𝑁𝑒

𝑖                 (1.4) 

where the sum is over all occupied levels, with the ion potential as 

𝑉𝑖𝑜𝑛(𝒓) = −∑
𝑍

𝒓−𝑹

𝑁𝑖
𝑹      (1.5) 

where R is the nuclear position and the potential of the system is given simply as V = Vion + Vel. 

Since the electrons are assumed to be independent (non-interacting), the N-electron wave function 

is written as a product of one-electron wave functions: 

Ψ(r1, r2,…,rN) = ψ1 (r1)ψ2 (r2)…ψN (rN)     (1.6) 

Making use of the variational principle and minimizing the expectation value of the Hamiltonian 

with respect to the wave function variations produces a set of one-electron equations, called the 

Hartree equations: 

−
1

2
∇2𝜓𝑖(𝐫) + 𝑉

𝑖𝑜𝑛(𝒓)𝜓𝑖(𝐫) + [𝑒
2∑ ∫

1

|𝒓−𝒓′|
𝑑𝒓′|𝜓𝑗(𝒓

′)|
2

𝑗 ]𝜓𝑖(𝐫) = 𝜀𝑖𝜓𝑖(𝐫)         (1.7) 
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The self-interaction error of the Hartree method 

A subtle yet very important note to be made about the Hartree method is that the electron potential 

term Equation (1.3) includes a non-physical repulsive interaction between each electron and itself as 

the electron interacts with the mean potential field which is calculated from|𝜓𝑖(𝒓)|
2, which includes 

the average effect of itself. The error in the energy is called the self-interaction error. This error is an 

important source of error within the approximation of functionals. 

1.3.2 The Hartree-Fock approximation, explicit exchange, averaged correlation 

The Hartree equations were a step forward in the first attempt at solving the many-body SE, this 

was only possible due to the Hartree approximations. Yet the Hartree approximation inadequately 

describes important properties of electrons, such as quantum indistinguishability and explicit 

averaged Coulomb correlation. Quantum mechanics requires the wave function to be indiscriminant 

as to which electron is in which state as all electrons are seen to be identical. This gives rise to the 

two types of quantum particles: Fermions and Bosons. Electrons fall into the class of Fermions, 

who by definition of the Pauli exclusion principle, exhibit anti-symmetric wave function behavior 

under the exchange of two particles. The requirement of the Pauli exclusion principle leads to the 

exchange energy of electrons, which can be thought of as another means of minimizing the 

Coulomb energy. The correlation energy refers specifically to the electron-electron interaction and 

mean-field calculation methods approximate this as an average effect of the Coulomb repulsion. 

The Hartree-Fock approximation (Dal-Pino, 1993) builds on the Hartree approximation to include 

the indistinguishability and exchange properties of electrons, but still keeps the same mean-field 

approach to the electron correlation in order to use the one-electron equations. The correlation term 

is often defined based on the amount of correlation Hartree-Fock overlooks: 

𝐸𝑐𝑜𝑟𝑟 = 𝐸𝑒𝑥𝑎𝑐𝑡,𝑛𝑜𝑛−𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑖𝑠𝑡𝑖𝑐 − 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒−𝐹𝑜𝑐𝑘   (1.8) 

The Pauli exclusion principle requires that the wave function now be anti-symmetric under 

exchange, such that anytime two electrons are interchanged it results in the wave function changing 

sign: 

Ψ(r1, r2,…, ri, rj ,…,rN) = -Ψ(r1, r2,…, ri, rj ,…,rN)    (1.9) 
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In the Hartree-Fock method, the indistinguishability and exchange properties of electrons are very 

elegantly included within the mathematics by representing the wave function as a Slater-determinant 

of one-electron wave functions instead of a simple product of wave functions as in the Hartree-

method. The determinant quite conveniently results as an anti-symmetric function of all 

permutations of one-electron wave functions: 

Ψ(𝐫𝟏, 𝐫𝟐, … , 𝐫𝑵) =
1

√𝑁!
[

𝜓1(𝐫𝟏) 𝜓1(𝐫𝟏)

𝜓1(𝐫𝟐) 𝜓2(𝐫𝟐)
⋯
𝜓1(𝐫𝟏)

𝜓𝑁(𝐫𝟐)
⋮ ⋱ ⋮

𝜓1(𝐫𝑵) 𝜓2(𝐫𝑵) ⋯ 𝜓𝑁(𝐫𝑵)

]   (1.10) 

The quantum spin variables have been left out for clarity, yet are easily included alongside the 

position dependences.  

As with the Hartree method, minimizing the expectation value of 𝐻̂ with respect to the one-electron 

wave functions results in the one-electron, Hartree-Fock equations: 

−
1

2
𝛻2𝜓𝑖(𝒓) + 𝑉

𝑖𝑜𝑛(𝒓)𝜓𝑖(𝒓) + 𝑉
𝑒𝑙(𝒓)𝜓𝑖(𝒓) 

−∑ 𝛿𝑠𝑖𝛿𝑠𝑗𝑗 ∫
1

|𝒓−𝒓′|
𝑑𝒓′𝜓𝑗(𝒓

′)𝜓𝑖
∗(𝒓′)𝜓𝑗

∗(𝒓′) = 𝜀𝑖𝜓𝑖(𝒓)  (1.11) 

where si represents the spin states. The 4th term on the left is new, when compared to the Hartree 

equations, Equations (1.7) and known as the exchange term. The exchange term is only non-zero 

when considering like-spins and the result is that like-spin electrons appear to avoid each other. This 

exchange term adds considerable complexity to the one-electron equations, making the Hartree-

Fock equations difficult to solve outside of special cases.  

The self-interaction error exactly cancels in Hartree-Fock method 

The Hartree-Fock equations have a Hartree potential (classical Coulomb) term that includes the 

physically incorrect self-interaction in the mean-field approximation. However, in the Hartree-Fock 

equations, the self-interactions energy is exactly cancelled by the exchange term. 
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1.4 Density functional theory (DFT) 

The section which follows includes theory belonging to the Hohenberg-Kohn theorems and the 

Kohn-Sham equations. The theory now shown follows the formalism laid out in (Martin, 2004) 

closely as it was found to be one of the best descriptions in literature. 

DFT is currently one of the most successful methods available for calculating the properties of real 

solids from first principles. By calculating the Hamiltonian by means of mathematical operations, 

called functionals, performed on the electron densities instead of on the wave functions of 

individual electrons, DFT allows for great simplification to be made to the process of solving the 

many body SE. The framework of DFT is often seen as an extended form of the mean-field theory 

and consists of 2 major parts. In principle, this technique is exact, but the functionals are 

approximate. 

The first part is two theorems developed by Hohenberg and Kohn (Hohenberg & Kohn, 1964a), 

(Perdew & Wang, 1986) the first of which states that the total energy,𝐸𝑡𝑜𝑡 of a system in its ground 

state is, except for a constant, a unique functional of the electron density, 𝒏(𝒓). Furthermore, the 

functional  𝐸𝑡𝑜𝑡|𝑛(𝒓)| is minimized for the ground state electron density 𝒏𝐺𝑆(𝒓). This property 

allows the ability to calculate electronic properties based on the electron density (3 spatial variables), 

instead of the 3N-variable many-body wave function. 

The second part of the theory was developed by (Hohenberg & Kohn, 1964a) and it states that the 

effective potential Veff is uniquely determined (up to a constant) for a given ground state charge 

density. 

Firstly we write the total energy functional as: 

𝐸𝑇𝑜𝑡|𝑛(𝒓)| = 𝑇|𝑛(𝒓)| + 𝐸𝐻𝑎𝑟𝑡|𝑛(𝒓)| + 𝐸𝑥𝑐|𝑛(𝒓)| + ∫𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓)𝑑𝒓  (1.12) 

Where T is the kinetic energy of a non-interacting system, EHart is the Hartree energy, Exc is the 

exchange-correlation energy and Vext represents an external potential, including the ions. By 

minimization of the total energy functional with respect to variations in the electron density, with 

the constraint that the number of electrons remains fixed, one can show for a one-particle equation 

that: 
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{−
ħ2

2𝑚
∇2 + 𝑉𝑒𝑓𝑓|𝑛(𝒓)|}𝜓𝑖(𝒓) = 𝜀𝑖𝜓𝑖(𝒓),                 (1.13) 

where the effective potential Veff  is given by: 

𝑉𝑒𝑓𝑓|𝑛(𝒓)| = 𝑉𝑒𝑥𝑡|𝑛(𝒓)| + 𝑉𝐻𝑎𝑟𝑡|𝑛(𝒓)| + 𝑉𝑥𝑐|𝑛(𝒓)|   (1.14) 

and VHart is the Hartree potential, 

𝑉𝐻𝑎𝑟𝑡|𝑛(𝒓)| = −𝑒 ∫
𝑛(𝒓)

|𝒓−𝒓′|
𝑑𝒓′       (1.15) 

and  

𝑉𝑥𝑐|𝑛(𝒓)| =  
𝛿𝐸𝑥𝑐|𝑛(𝒓)|

𝛿|𝑛(𝒓)|
     (1.16) 

Equations (1.13) and (1.14) are known as the Kohn-Sham equations. The quantities ψi and εi are 

quantities used in the calculation of the electron density and total energy and should not be confused 

with the wave function and energy of the real electrons. 

An exact formulation for the exchange-correlation energy (Perdew & Schmidt, 2001),𝐸𝑥𝑐|𝑛(𝒓)| is 

given by  

𝐸𝑥𝑐|𝑛(𝒓)| =
1

2
∫𝑑𝒓 ∫𝑑𝒓′𝑛(𝒓)

𝑛(𝒓,𝒓′)

|𝒓−𝒓′|
.    (1.17) 

If we introduce a coupling constant α which varies from 0 to 1, which relates to the real interacting 

systems and to Kohn-Sham non-interacting systems respectively, then 

𝑛𝑥𝑐(𝒓, 𝒓
′) =  ∫ 𝑑𝛼𝑛𝑥𝑐

𝛼 (𝒓, 𝒓′)
1

0
= 𝑛𝑥(𝒓, 𝒓

′) + 𝑛𝑒(𝒓, 𝒓
′)  (1.18) 

is the average over the coupling constant α of the density at r’ of the exchange-correlation hole 

about an electron at r: 

𝑛𝑥𝑐
𝛼 (𝒓, 𝒓′) =

⟨𝜓𝛼|𝑛̂(𝒓)𝑛̂(𝒓′)|𝜓𝛼⟩

𝑛(𝒓)
− 𝛿(𝒓 − 𝒓′)   (1.19) 

and 𝑛𝑥𝑐
𝛼=0(𝒓, 𝒓′) = 𝑛𝑥(𝒓, 𝒓

′) is the exchange hole. Here,  𝜓𝛼is the correlated ground state wave 

function for a system with equivalent spin densities as compared to the real system, yet with the 

electron-electron interaction reduced by a factor α.  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



8 
 

Due to the Pauli exclusion principle and Coulomb repulsion, an exchange-correlation hole forms 

leading to a confirmation of the sum rule 

∫𝑑𝑟′𝑛𝑥𝑐
𝛼 (𝒓, 𝒓′) = −1     (1.20) 

Yet the main flaw in DFT is that even though the theory is exact in principle, the form of the 

correlation potential term is never known. Even for the simplest of systems in computational 

procedures approximations are made for the exchange-correlation potential. Due to this process, 

approximations may have to be made in order to arrive at some form of consistent solution.  

In order to solve the Kohn-Sham equations one starts by assuming some charge density 𝑛(𝒓) and 

from this calculate 𝑉𝑥𝑐|𝑛(𝒓)| from which Equation (1.13) is solved for the wave functions of the 

system 𝜓𝑖(r), from the new wave functions obtained a new charge density can be calculated 

𝑛(𝒓) =  ∑ |𝜓𝑖(𝒓)|𝑖
2
     (1.21) 

Thus this process continues until convergence in the charge density is achieved within some 

predefined region. 

The self-interaction error in DFT 

As in the Hartree-Fock theory, DFT contains the Hartree potential with the self-interaction error. In 

the formal DFT theory, an exact exchange-correlation functional potential cancels the self-

interaction term, just as in the Hartree-Fock derivation. However, for all practical purposes in DFT 

one approximates the exchange and correlation terms with an approximate exchange-correlation 

functional. This approximate functional does not likely cancel the self-interaction error in the 

Hartree term, which introduces the self-interaction error. 

1.4.1 The Hohenberg-Kohn theorems, a formal derivation 

The Hohenberg and Kohn theorems were formulated as an approach to describe density functional 

theory as an exact theory of many-particle systems. It specifically applies to all systems of interacting 

particles which are placed in an externally applied potential, denoted as 𝑉𝑒𝑥𝑡(𝒓). 

This includes problems related to any system of interacting electrons and nuclei whereby the 

Hamiltonian of such a system can be written as follows: 
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𝐻̂ = −
ħ2

2𝑚𝑒
∑ ∇𝑖
2

𝑖 + ∑ 𝑉𝑒𝑥𝑡(𝒓𝒊) +
1

2
∑

𝑒2

|𝒓𝑖−𝒓𝑗|
𝑖≠𝑗𝑖     (1.22) 

This section formulates the theorems and proofs first shown by Hohenberg and Kohn in 

(Hohenberg & Kohn, 1964a) (Hohenberg & Kohn, 1964b). 

 

 

 

 

 

 

Figure 1.1:  A representation of the Hohenberg-Kohn theorem. 

 

The diagram above represents the use of the Hohenberg-Kohn theorem. It can be seen that if the 

potential 𝑉𝑒𝑥𝑡(𝒓) is known then all states of the system, 𝛹𝑖({𝒓}) including the ground state, 𝛹0({𝒓}) 

can be determined. From the ground state of the system the ground state energy density  𝑛0(𝒓) can 

also be found. 

The formal Hohenberg-Kohn theorems and corollaries state: 

Theorem I: Consider some external potential 𝑉𝑒𝑥𝑡(𝒓) which is acting on a system of interacting 

particles. That potential 𝑉𝑒𝑥𝑡(𝒓) can be determined from the particle density  𝑛0(𝒓) of the system in 

its ground state. Furthermore, this potential is unique, except for a constant. 

Corollary I of Theorem I: From Theorem I, it follows that the Hamiltonian of the interacting 

system may be calculated from the particle density 𝑛0(𝒓) alone, except for the value of the unknown 

constant shift to the total energy. From this fact, the many-body wave functions for both the ground 

state and all excited states of the system can be fully determined.  

Thus in conclusion it is shown that all properties of an interacting system of particles can be 

uniquely determined as long as only the ground state particle density 𝑛0(𝒓) is known. 
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Theorem II: It is possible to define a functional in terms of the particle density 𝑛(𝒓) of a system of 

interacting particles for the energy of that system given as 𝐸[𝒏]. This functional will be applicable 

for all external potentials 𝑉𝑒𝑥𝑡(𝒓). The exact ground state energy  𝑛0(𝒓) is the global minimum value 

of this functional, for that particular 𝑉𝑒𝑥𝑡(𝒓) over all particle densities 𝑛(𝒓). The ground state 

particle density 𝑛0(𝒓) is the particle density which is found to minimize the functional. 

 

Corollary II of theorem II:  All that is required to determine the precise ground state and particle 

density is the functional 𝐸[𝒏]. It is only valid for the ground state and all excited states of the 

particles in question must be determined by some other process. 

The proofs of the two Hohenberg-Kohn theorems are now shown:  

Proof of Theorem 1: density as a basic variable: 

Suppose that there are two different external potentials 𝑉𝑒𝑥𝑡
(1)(𝒓) and  𝑉𝑒𝑥𝑡

(2)(𝒓) which are different by 

more than some constant and which will result in two different Hamiltonians, 𝐻̂
(1)

 and 𝐻̂
(2)

, which 

both have different ground state wave functions, 𝜓(1)and𝜓(2), which we hypothesize to have an 

equivalent ground state density 𝑛0(𝒓). Since  𝜓(2) is not the ground state of 𝐻̂
(1)

 it follows that: 

𝐸(1) = ⟨ 𝜓(1)| 𝐻̂
(1)
| 𝜓(1)⟩ < ⟨𝜓(2)| 𝐻̂

(1)
|𝜓(2)⟩    (1.23) 

The strict inequality follows if the ground state is non-degenerate.  

Since: 

⟨𝜓
(2)
| 𝐻̂
(1)
| 𝜓
(2)
⟩ = ⟨ 𝜓

(2)
| 𝐻̂
(2)
| 𝜓
(2)
⟩+ ⟨𝜓

(2)
| 𝐻̂
(1)
− 𝐻̂
(2)
|𝜓
(2)
⟩   (1.24) 

                                   =  𝐸(2) + ∫𝑑3𝑟[𝑉𝑒𝑥𝑡
(1)(𝒓)−𝑉𝑒𝑥𝑡

(2)(𝒓)] 𝑛0(𝒓)    (1.25) 

                           𝐸(1) < 𝐸(2) + ∫𝑑
3𝑟 [𝑉𝑒𝑥𝑡

(1)(𝒓)−𝑉𝑒𝑥𝑡
(2)(𝒓)]𝑛0(𝒓)    (1.26) 

And if we consider 𝐸(2) in exactly the same way, we find the same situation arises 
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⟨𝜓
(1)
| 𝐻̂
(2)
| 𝜓
(1)
⟩ = ⟨ 𝜓

(1)
| 𝐻̂
(1)
| 𝜓
(1)
⟩+ ⟨𝜓

(1)
| 𝐻̂
(2)
− 𝐻̂
(1)
|𝜓
(1)
⟩    

                                   =  𝐸(1) + ∫𝑑3𝑟[𝑉𝑒𝑥𝑡
(2)(𝒓)−𝑉𝑒𝑥𝑡

(1)(𝒓)] 𝑛0(𝒓)     

                           𝐸(2) < 𝐸(1) + ∫𝑑
3𝑟 [𝑉𝑒𝑥𝑡

(2)(𝒓)−𝑉𝑒𝑥𝑡
(1)(𝒓)]𝑛0(𝒓)    (1.27) 

Now adding the two results together we arrive at the contradiction, that is: 

𝐸(1) + 𝐸(2) < 𝐸(1) + 𝐸(2) and from this we arrive at the desired result: there cannot be two 

different external potentials, which are identical except for the value of a constant that will yield the 

same non-degenerate ground state charge density. The particle density therefore uniquely determines 

the external potential, with the exception of some constant value. 

The corollary of theorem II follows from the above proof by implication that if the Hamiltonian is 

determined, with the exception of some constant, by the ground state particle density, then by 

solving the Schrödinger equation by making use of this Hamiltonian, one can determine the wave 

function of any required state. Within the set of all solutions which are applicable to the particle 

density used, the solution with the lowest energy is simply the unique ground state of the system. 

 

Even though this result is indeed profound, it holds no indication as to how to determine the 

external potential as all that was shown was that 𝑛0(𝒓) uniquely determines𝑉𝑒𝑥𝑡(𝒓).  

Proof of Theorem 2: Existence of a universal functional for the energy E[n] in terms 

of the density n(r) 

Theorem II is specifically targeted at particle densities, 𝒏(𝒓), which are acted upon by an external 

potential,  𝑽𝒆𝒙𝒕(𝒓) and forms part of the electron Hamiltonian defined set of ground state densities. 

This set of particle densities forms a basis within which the functionals of the particle density can be 

written. From theorem I we know that if the particle density 𝒏(𝒓) is known, all other properties of 

the system can be determined and thus the total energy functional can be described in terms of these 

properties. 

𝐸𝐻𝐾[𝑛] = 𝑇[𝑛]+𝐸𝑖𝑛𝑡[𝑛]+ ∫𝑑
3 𝑟 𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓)+𝐸𝐼𝐼       

≡  𝐹𝐻𝐾[𝑛] + ∫𝑑
3 𝑟 𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓) + 𝐸𝐼𝐼     (1.28) 
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where 𝐸𝐼𝐼 is the interaction energy between the ionized nuclei of the system. 𝐹𝐻𝐾[𝑛]  is the 

functional created to encompass all internal energies of the system, namely the kinetic and potential 

energies; this functional is by construction applicable in all respective cases: 

𝐹𝐻𝐾[𝑛] = 𝑇[𝑛]+𝐸𝑖𝑛𝑡[𝑛].     (1.29) 

Assuming there exists some system with a ground state particle density of 𝑛0
(1)(𝒓), which also has 

naturally an attributed externally acting potential  𝑉𝑒𝑥𝑡
(1)
(𝒓). The resulting expectation value of the 

Hamiltonian which describes this system, in its ground state with an associated wave function 

denoted by 𝜓(1), is equal to the Hohenberg-Kohn functional. 

𝐸(1) = 𝐸𝐻𝐾[ 𝑛
(1)] = ⟨ 𝜓(1)| 𝐻̂

(1)
| 𝜓(1)⟩    (1.30) 

Now assume there is some second particle density, 𝑛(2)(𝒓) which by construction has its own 

attributed wave function,𝜓(2). The total energy of the second state must therefore be greater than 

that of the first state since: 

𝐸(1) = ⟨ 𝜓(1)| 𝐻̂
(1)
| 𝜓(1)⟩ < ⟨𝜓(2)| 𝐻̂

(1)
|𝜓(2)⟩ = 𝐸(2)   (1.31) 

The resulting energy found by the use of Equation (1.28) which was calculated for the ground state 

particle density 𝑛0(𝒓) is found to be lower than that of the value of Equation (1.31) for any other 

particle density 𝑛(𝒓) as expected. 

Thus the implication of this is that if the functional 𝐹𝐻𝐾[𝑛] was known, the exact ground state 

particle density and energy can be found by minimizing the total energy of the system with respect 

to the density function 𝑛(𝒓). 

1.4.2 The Kohn-Sham auxiliary system 

DFT is the most widely used method today for electronic structure calculations due to the approach 

of Kohn and Sham in 1965. The idea is to replace the original many body problem by an auxiliary 

independent-particle problem. This principle in effect leads to exact calculations of properties of 

many body systems, using the independent particle methods. In practice it has made possible 

approximate formulations that have proved to be remarkably successful. 
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As a self-consistent method, the Kohn-Sham approach, involves independent particles but an 

interacting charge density. The idea that follows is the process and formulation of the Kohn-Sham 

(KS) approach and the exchange-correlation functional 𝐸𝑥𝑐[𝑛].   

The approach of the Kohn Sham method is to assume that the ground state density of the original 

interacting system is equal to that of some chosen non-interacting system. This results in a set of 

independent particle equations for a non-interacting system and all of the many-body terms 

incorporated into an exchange-correlation functional of the density. By solving the equations one 

finds the ground state density and energy of the original interacting system with the accuracy limited 

only by the approximation in the exchange-correlation functional. 

The K-S construction of the auxiliary system is firmly based upon 2 assumptions: 

1. Assuming we have some secondary system of non-interacting particles in their own ground state, 

the exact ground state of our system in question can be calculated in terms of the secondary system. 

2. The secondary non-interacting system has an attributed Hamiltonian which is chosen to have the 

standard kinetic energy term and a potential  𝑉𝑒𝑓𝑓
𝜎 (𝒓). This potential which acts upon the electron is 

dependent of the spin orientation σ of that electron and it is dependent on the  distance r from the particle. 

 

 

Figure 1.2:  A representation of the Kohn-Sham theorem. Showing how a solution to the independent-
particle Kohn-Sham system determines all the properties of the fully interacting system. 
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The calculations for the Kohn-Sham auxiliary system are applied to the independent non-interacting 

particle system defined by that systems own Hamiltonian: 

𝐻̂𝑎𝑢𝑥
𝜎
= −

1

2
∇2 + 𝑉𝜎(𝒓)      (1.32) 

The potential, 𝑉𝜎(𝒓) so far is not specified and the expressions must therefore apply for all 𝑉𝜎(𝒓) in 

some range, in order to define functionals for a range of densities. 

For a system containing  𝑁 = 𝑁↑ + 𝑁↓ independent electrons, where 𝑁↑is the number of electrons in 

the spin up configuration and 𝑁↓ the number of electrons in the spin down configuration, obeying this 

Hamiltonian, the ground state of this system has one electron in each of the  𝑁𝜎 orbitals  𝜓𝑖
𝜎(𝒓) 

with the lowest eigenvalues 𝜖𝑖
𝜎 of the Hamiltonian Equation (1.22). The electron density of the 

auxiliary system can now be represented as a probability density of the orbitals 

𝑛(𝒓) = ∑ 𝑛(𝒓, 𝜎)𝜎 = ∑ ∑ | 𝜓𝑖
𝜎(𝒓)|2𝑁𝜎

𝑖=1𝜎 = 2∑ | 𝜓𝑖
𝜎(𝒓)|2𝑁𝜎

𝑖=1    (1.33) 

The independent non-interacting particle kinetic energy 𝑇𝑠 is given by: 

𝑇𝑠 = −
1

2
∑ ∑ ⟨ 𝜓𝑖

𝜎
|∇2| 𝜓𝑖

𝜎
⟩𝑁𝜎

𝑖=1𝜎 = −
1

2
∑ ∑ ∫𝑑

3𝑟𝑁𝜎

𝑖=1𝜎 |∇ 𝜓𝑖
𝜎(𝒓)|

2
 .  (1.34) 

The classical Coulomb interaction energy of the electron density, interacting with itself is defined as: 

 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛] =
1

2
∫𝑑
3𝑟𝑑3𝑟′

𝑛(𝒓)𝑛(𝒓′)

|𝑟−𝑟′|
    (1.35) 

The Kohn-Sham approach to the full interacting many body problem is to re-write the Hohenberg-

Kohn expression for the ground state energy functional Equation (1.28) in the form: 

𝐸𝐾𝑆 = 𝑇𝑠[𝑛]+ ∫𝑑𝒓 𝑉𝑒𝑥𝑡(𝒓)𝑛(𝒓)+𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛]+𝐸𝐼𝐼 +𝐸𝑥𝑐[𝑛]  (1.36) 

Here the external potential 𝑉𝑒𝑥𝑡(𝒓) is due to the nuclei and all other external fields (assuming no 

dependence on spin) and 𝐸𝐼𝐼 is the interaction between the nuclei. The sum of the terms involving, 

 𝐸𝐼𝐼 , 𝑉𝑒𝑥𝑡 and 𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒 forms the neutral grouping that is well defined. The independent particle 

energy 𝑇𝑠 is given explicitly as a function of the orbitals. Yet by application of the Hohenberg-Kohn 

theory,𝑇𝑠 for each spin σ must be a unique functional of the density𝑛(𝒓, 𝜎). 
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All many-body effects of exchange and correlation are grouped into 𝐸𝑥𝑐 and now from Equation 

(1.36) the Kohn-Sham expressions for the total energy shows that 𝐸𝑥𝑐 can be written in terms of the 

Hohenberg-Kohn functional equation (1.29) as: 

𝐸𝑥𝑐[𝑛] = 𝐹𝐻𝐾[𝑛]− (𝑇𝑠[𝑛]+𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛])    [1.37] 

Or alternatively: 

𝐸𝑥𝑐[𝑛] = 〈𝑇̂〉− 𝑇𝑠[𝑛]+ 〈𝑉̂𝑖𝑛𝑡〉−𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛]    (1.38) 

Here [n] denotes a functional of the density 𝑛(𝒓, 𝜎) which is dependent on both position and spin. 

From this we can see 𝐸𝑥𝑐[𝑛] must be a functional since the right-hand sides of the equations are 

functionals. The latter equation shows explicitly that the difference of the kinetic and the internal 

interaction energies of the true interacting many-body system, from those of the alternative 

independent-particle system with electron-electron interactions are replaced by the Hartree energy. 

If the functional  𝐸𝑥𝑐[𝑛] defined in Equation (1.38) were to be known then the exact ground state 

energy and density of the many-body electron problem could be found by solving the Kohn-Sham 

equations for independent particles. 

Thus to the extent that as an approximate form for the energy 𝐸𝑥𝑐[𝑛] describes the true exchange-

correlation energy, the Kohn-Sham method provides a fairly accurate approach to calculating the 

ground state properties of the many body system. 

1.4.3 The Kohn-Sham variational equations 

The solution to the Kohn-Sham auxiliary system in its ground state can be seen as the minimization 

of either the particle density 𝑛(𝒓, 𝜎) of the system  or the minimization of the systems’ effective 

potential 𝑉𝑒𝑓𝑓
𝜎 (𝒓). Since the independent particle kinetic energy, 𝑇𝑠, is explicitly expressed as a 

functional of the orbitals and all other terms present are considered to be functionals of the density, 

the wave functions can be allowed to vary and by applying of the chain rule applied to equation 

(1.36), one can derive the variational equation: 

𝛿𝐸𝐾𝑆
 𝛿𝜓𝑖
𝜎∗(𝒓)
=
𝛿𝑇𝑠
 𝛿𝜓𝑖
𝜎∗(𝒓)
+ [
𝛿𝐸𝑒𝑥𝑡
𝛿𝑛(𝒓,𝜎)
+
𝛿𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒
𝛿𝑛(𝒓,𝜎)

+
𝛿𝐸𝑥𝑐
𝛿𝑛(𝒓,𝜎)
]
𝛿𝑛(𝒓,𝜎)

 𝛿𝜓𝑖
𝜎∗(𝒓)
= 0   (1.39) 

Subject to the orthonormalization constraints: 
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⟨𝛿𝜓𝑖
𝜎
| 𝛿𝜓𝑗
𝜎′
⟩ = 𝛿𝑖,𝑗𝛿𝜎,𝜎′     (1.40) 

Now in order to proceed further, the  𝑉𝐾𝑆(𝒓) potential must be obtained for a given density 𝑛(𝒓). 

To do this, the variation of the energy functional 𝐸[𝑛(𝒓)] must vanish with respect to the variation 

of the one electron orbitals𝜓𝑖(𝒓), which is constrained by the orthonormality constraint Equation 

(1.40). Thus let’s consider the constrained functional, 

𝐸′𝐾𝑆 = 𝐸𝐾𝑆 − ∑ 𝜆𝑖𝑗 (∫  𝜓𝑖
∗(𝒓)𝜓𝑗(𝒓)𝑑

3𝒓 − 𝛿𝑖,𝑗)𝑖,𝑗    (1.41) 

Where λij are Lagrangian multipliers, its functional derivatives must vanish, thus: 

𝛿𝐸′𝐾𝑆
 𝛿𝜓𝑖
∗(𝒓)
=
𝛿𝐸′𝐾𝑆
𝛿𝜓𝑖(𝒓)
= 0     (1.42) 

Now using the definition of a functional derivative and expression (1.33) and (1.34) for 𝑛(𝒓, 𝜎)and 

𝑇𝑠 which gives: 

𝛿𝑇𝑠
 𝛿𝜓𝑖
𝜎∗(𝒓)
= −

1

2
∇2𝜓𝑖
𝜎(𝒓);    

𝛿𝑛𝜎(𝒓,𝜎)

 𝛿𝜓𝑖
𝜎∗(𝒓)
=  𝜓𝑖

𝜎(𝒓)     (1.43) 

And expression (1.35) with respect to  𝜓𝑖
𝜎∗(𝒓) yields the result: 

𝛿𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛]

 𝛿𝜓𝑖
𝜎∗(𝒓)
=
1

2
∫𝑑
3𝒓′
𝑛(𝒓′)

|𝑟−𝑟′|
 𝜓𝑖
𝜎(𝒓)     (1.44) 

Then finally using (1.41-42) and (1.43-1.44) applied into equation (1.39) yield the equation: 

(−
1

2
∇
2
+𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝒓,𝜎)+𝑉𝑥𝑐[𝑛(𝒓, 𝜎)]+𝑉𝑒𝑥𝑡(𝒓, 𝜎))  𝜓𝑖

𝜎(𝒓) = ∑ 𝜆𝑖𝑗 𝜓𝑖
𝜎(𝒓)𝑗    (1.45) 

Where the Hartree and exchange-correlation potentials are defined as: 

𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝒓) = ∫𝑑
3𝒓′
𝑛(𝒓′)

|𝑟−𝑟′|
    ;   𝑉𝑥𝑐[𝑛(𝒓, 𝜎)] =

𝛿𝐸𝑥𝑐
𝛿𝑛(𝒓,𝜎)

   (1.46) 

Now multiplying both sides of equation (1.45) by  𝜓𝑘
𝜎(𝒓) and integrating, one can obtain the 

Lagrangian multipliers. This leads to the Kohn-Sham equations: 

(𝐻𝐾𝑆
𝜎 − 𝜀𝑖

𝜎) 𝜓𝑖
𝜎(𝒓) = 0     (1.47) 
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Where the 𝛿𝑖𝑗𝜀𝑖
𝜎 = 𝜆𝑖𝑗 are the eigenvalues and 𝐻𝐾𝑆

𝜎
 is the effective Hamiltonian (in Hartree atomic 

units) 

𝐻𝐾𝑆
𝜎 = (−

1

2
∇
2

+
𝛿𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒
𝛿𝑛(𝒓, 𝜎)

+
𝛿𝐸𝑥𝑐
𝛿𝑛(𝒓, 𝜎)

+𝑉𝑒𝑥𝑡(𝒓,𝜎)) 

𝐻𝐾𝑆
𝜎 = (−

1

2
∇
2
+𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝒓,𝜎)+𝑉𝑥𝑐[𝑛(𝒓, 𝜎)]+𝑉𝑒𝑥𝑡(𝒓, 𝜎)) = −

1

2
∇
2
+𝑉𝐾𝑆
𝜎

   (1.48) 

The Kohn-Sham eigenvalues have no physical meaning except for the highest occupied eigenvalue 

which is the negative of the ionization energy. The Kohn-Sham Hamiltonian is related to the 

functional derivative of the energy by the expression: 

𝛿𝐸𝐾𝑆
 𝛿𝜓𝑖
𝜎(𝒓)
= 𝐻𝐾𝑆
𝜎  𝜓𝑖
𝜎(𝒓)     (1.49) 

1.4.4 Solving the Kohn-Sham equation: The self-consistent Kohn-Sham equations 

 

The Kohn-Sham equations can be seen as a set of independent-particle equations which must be 

solved subject to the condition that the effective potential  𝑉𝑒𝑓𝑓
𝜎 (𝒓) and the density 𝑛(𝒓, 𝜎) are 

consistent. From now on the explicit reference to spin shall be dropped and the notation 𝑉𝑒𝑓𝑓 and 𝑛 

will be assumed to designate both spatial and spin dependencies. The actual calculation procedure 

utilizes a numerical procedure which successively changes 𝑉𝑒𝑓𝑓  and 𝑛 to approach the self-

consistent solution. 

Figure 1.3 outlines the steps to solve the KS equations. The computationally intensive process 

begins at “Solve KS equations” for a given potential 𝑉𝑒𝑓𝑓. In this step for some 𝑉𝑖𝑛 the KS 

equations are solved uniquely for exactly one 𝑛𝑜𝑢𝑡. Conversely, for a given form of the exchange 

functional, any density 𝑛 determines a unique potential 𝑉𝑒𝑓𝑓  as can be seen in the second box. The 

problem lies however that, unless for the exact solution, the input and output densities will not 

agree, thus to arrive at the solution we define a new operational potential  𝑛𝑜𝑢𝑡 →  𝑉𝑛𝑒𝑤 and so the 

cycle begins again and repeats iteratively with each new choice of operational potential converging 

until self-consistency within the results is obtained. 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



18 
 

 

 

Figure 1.3: Schematic representation of the self-consistent loop for the solution of the Kohn-Sham equations. 

 

 

Calculate electron density 

𝑛𝜎(𝒓) = 𝑓𝑖
𝜎|𝜓𝑖

𝜎(𝒓)|

𝑖

 

Initial Guess 

Electron density 𝑛↑(𝒓), 𝑛↓(𝒓) 

Output quantities 

Energy, force, stresses, eigenvalues… 

Calculate effective potential 

𝑉𝑒𝑓𝑓
𝜎 (𝒓) = 𝑉𝑒𝑥𝑡(𝒓)+ 𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒[𝑛]+ 𝑉𝑥𝑐

𝜎 [𝑛↑(𝒓), 𝑛↓(𝒓)] 

Solve KS equations 

[−
1

2
∇2 + 𝑉𝑒𝑓𝑓

𝜎 (𝒓)]𝜓𝑖
𝜎(𝒓) =  𝜀𝑖

𝜎𝜓𝑖
𝜎(𝒓) 

Self-consistent? 
No 

Yes 
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In order to solve the KS equations we must define a basis set. The Kohn-Sham equations are 

expressed in terms of reciprocal lattice vectors G and a Bloch vector k in the Brillouin Zone. The 

basis set is defined as follows: 

⟨𝒓|𝒌 + 𝑮⟩ =
1

√𝑉
𝑒𝑖(𝒌+𝑮)∙𝒓 

𝑖

2
|𝒌 + 𝑮|2 ≤ 𝐸𝑐𝑢𝑡                                                      (1.50) 

Where V is the total volume of the system and 𝐸𝑐𝑢𝑡 is the kinetic energy cut-off of the plane-waves. 

These plane-waves do not accurately produce localized functions, this is problematic when 

considering the core electrons in the calculations, as the high energies required for producing 

accurate results do not exist in the core electrons due to their lower kinetic energies and thus these 

higher energies that are needed are only found in the valence shell electrons. Yet since most 

applications of DFT focus on small energy variations due to changes in the distribution of the 

valence electrons, the core of each atom can be replaced by a pseudo-atom representation which 

closely mimics the tightly bound core electrons. 

In order to solve the problem of the rapidly varying charge density about each core of the system in 

question, the pseudopotentials are used which also contain the core electrons. In which case the 

problem is re-expressed as a smooth function and an auxiliary localized function. This method keeps 

the full electron wave function but all integrals are solved as a combination of integrals of smooth 

functions which extend throughout space and localized contributions. 

If the projection operators are evaluated in reciprocal space, the number of calculations performed 

increases with the size of the basis set of plane-waves. If however it is done in real space, the 

projection operators are confined to a sphere around each atom and the number of calculations 

performed does not increase with the size of the system. (Martin, 2004) 

The Charge density 𝑛(𝒓, 𝜎) in a periodic system is found by a summation over an infinite number of 

these k-points: 

𝑛(𝒓, 𝜎) =  ∑ ∑ |𝜓𝜎
𝒌,𝑖
(𝒓, 𝜎)|

2

𝑖𝒌                                               (1.56) 

where the 𝑖 index is for the occupied bands. In a system where the number of unit cells tends to 

infinity, the discrete sum over k becomes an integral. However this integral can be approximated 
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well by the choice of a discrete sum over a small number of k-points for semiconductors and 

insulators 

The most efficient way to determine the charge density is to determine the Bloch states on the k-

points in real space. From this the charge density can be solved from the square of the wave 

function. To solve this, a method of Fast Fourier transform (FFT) is used to transform from 

reciprocal space to real space.   

 

Figure 1.4: Calculation of the density using Fourier transforms and grids. The notation {G} and {R} denotes 
the sets of N G vectors and N grid points R (Martin, 2004). 

 

Accumulate over 𝑖, 𝒌 

𝑛{𝑅} =   ∆𝑛𝑖,𝒌{𝑅}

𝑖,𝒌

 

Change of basis: 𝑹 → 𝑮 

𝑛{𝐺} = [𝐹𝐹𝑇]−1𝑛{𝑅} 

Change of basis: 𝑮 → 𝑹 

𝑢𝑖,𝒌{𝑅} = [𝐹𝐹𝑇] ∙ 𝑢𝑖,𝒌{𝐺} 

Square wave function 

∆𝑛𝑖,𝒌{𝑅} =  𝑢𝑖,𝒌{𝑅} ∙ 𝑢𝑖,𝒌{𝑅} ∙ 

Wave function –band I, wave vector k 

 𝑢𝑖,𝒌{𝐺} ≡
1

 Ωcell
  𝑐𝑖,{𝐺}(𝒌) 
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1.5 DFT functionals 

Density Functional theory (DFT) is currently the standard model for computing material properties 

and has been for many past studies in the field of solid state physics. As described in the previous 

section DFT is an exact theory, which states that ground-state properties of a material can be 

obtained from the functionals of the charged density alone. However in computational practice, 

exchange-correlation functionals describing the many-body electron interactions must be 

approximated. Common choices for these are the local density approximation (LDA) and the 

generalized gradient approximations (GGA) and most recently hybrid functionals. All of which 

cannot accurately describe material properties of interest. This is what leads to the shortcomings of 

DFT. 

DFT functionals produce a variety of non-conforming or non-uniform results for reasons often left 

unclear or due to very subtle physics related factors. DFT is often thought to only have problems 

with highly correlated materials exhibiting complex electronic structures. However DFT has been 

largely infamous for its failure to compute band gaps accurately for any material. (Yakovin & 

Dowben, 2007) 

The crucial quantity in the Kohn-Sham approach is the exchange-correlation energy which is 

expressed as a functional of the density  𝐸𝑥𝑐[n]. Several choices for this exchange-correlation energy 

are used, ranging from energies based on rigorous physical principles, to deriving the energy from 

empirical data.  

Density functional approximations for the exchange correlation energy, Exc are described below for 

the exchange-correlation energy as a function of the electron density: 

𝐸𝑥𝑐[𝑛↑, 𝑛↓] = ∫𝑑𝒓𝜀𝑥𝑐([𝑛↑, 𝑛↓]; 𝒓)    (1.51) 

where the integrand 𝑛𝜀𝑥𝑐 is an exchange-correlation energy density and 𝜀𝑥𝑐 is the exchange 

correlation energy per electron.  
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1.5.1 The LSDA approximation 

Kohn and Sham pointed out that solids can often be considered as close to the limit of the 

homogeneous electron gas. In that limit, it is known that the effects of exchange and correlation are 

local in character and from this they proposed making the Local Density Approximation (LDA), in 

which the exchange-correlation energy is simply an integral over all space with the exchange-

correlation energy density at each point assumed to be the same as in a homogeneous electron gas 

with that density 

𝐸𝑥𝑐
𝐿𝐷𝐴
[𝑛↑, 𝑛↓] = ∫𝑑

3𝑟𝑛(𝒓)𝜖𝑥𝑐
ℎ𝑜𝑚(𝑛↑(𝒓), 𝑛↓(𝒓))        (1.52) 

= ∫𝑑3𝑟𝑛(𝒓)[𝜖𝑥
ℎ𝑜𝑚(𝑛↑(𝒓), 𝑛(𝒓)↓) + 𝜖𝑐

ℎ𝑜𝑚(𝑛↑(𝒓), 𝑛(𝒓)↓)]  

The LSDA can be formulated in terms of either two spin densities 𝑛↑(𝒓) and 𝑛↓(𝒓), or the total 

density 𝑛(𝒓)and the fractional spin polarization 𝜁(𝒓) defined as: 

𝜁(𝒓) =
𝑛↑(𝒓)−𝑛(𝒓)↓

𝑛(𝒓)
                                                              (1.53) 

For un-polarized systems the LDA is found simply by setting 𝑛↓(𝒓) = 𝑛↑(𝒓) = 𝑛(𝒓)/2  

Now application of the definition of the functional to Equation (1.51): 

𝛿𝐸𝑥𝑐
𝛿𝑛(𝒓)
≡ 𝜇𝑥𝑐(𝑛

↑(𝒓), 𝑛(𝒓)↓) = (𝜖𝑥𝑐
𝐿𝐷𝐴(𝑛)− 𝑛

𝑑𝜖𝑥𝑐(𝑛)

𝑑𝑛
)
𝑛=𝑛(𝑟)

 .                         (1.54) 

The 𝜖𝑥𝑐
𝐿𝐷𝐴(𝑛(𝒓)) is chosen to be the exchange-correlation energy per electron of a homogeneous 

electron gas. The exchange part is given by Equation (1.52) where the density of the homogeneous 

electron gas is known analytically (Dirac, 1930), 

𝜖𝑥
𝐿𝐷𝐴(𝑛(𝒓)) = − (

3

4
) (
6

𝜋
𝑛(𝒓))

1

3
                                             (1.55) 

The correlation part has various ways of being found, yet most commonly is a highly accurate QMC 

fit of the electron gas and is the preferred method as analytic expressions for the correlation energy 

are not known except in the high- and low- density limits (Parr & Yang, 1994). 

The LDA approach has proven to be largely successful, however it overestimates bond strengths 

and cohesive energies, on the order of 20% and this has a follow on effect of underestimations of 
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the bond lengths as compared to experimental results. To correct this, other methods have been 

introduced such as the GGA group of functionals. In the GGA approach the exchange-correlation 

functional is written in terms of both, the local charge density and the local gradient of the charge 

density. This inclusion of the local gradient term greatly improved the accuracy of the results 

obtained. 

1.5.2 Generalized gradient approximation (GGA) 

The generalized gradient approximation (GGA): 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛↑, 𝑛↓] = ∫𝑑𝒓𝑛(𝒓)𝜀𝑥𝑐

𝐿𝐷𝐴([𝑛↑, 𝑛↓, ∇𝑛↑, ∇𝑛↓]; 𝒓)   (1.56) 

Initially was seen as a huge improvement over LDA for atomization energies and became a standard 

method in many fields. The leading gradient correction for exchange and correlation is second order, 

for slowly varying densities. Initially the Perdew-Wang exchange and correlation functional (PW91) 

(Perdew & Wang, 1986) used analytic expansions to second order yet it was found to violate exact 

properties of the exchange-correlation holes. This violation forced the development of a numerically 

parameterized GGA functional to satisfy exact hole constraints, called Perdew-Burke-Erzenhoff 

PBE (Perdew & Enzerhof, 1996). GGA is a semi-local functional of density since it requires the 

density in an infinitesimal neighborhood around r. 

In 2007 Perdew  et al.(Perdew, 2008) released an expanded version of the GGA-PBE functional 

which was intended to rectify the overestimation issues in the PBE functional. Accurate results with 

respect to atomic exchange energies however required violating the gradient expansion for slowly 

varying densities. The violation is an important point to make for solids. Thus the PBEsol model 

was introduced which restored the gradient expansion for exchange but at the same time violated 

the gradient expansion for correlation, by fitting a parameter in the correlation functional for the 

jellium exchange-correlation (XC) surface energy. This second violation was corrected in later work 

by Zhao (Zhao & Truhlar, 2008) whereby a complete restoration of the gradient expansion for the 

exchange and correlation was derived. 

1.5.3 Hybrid functionals 

A Hybrid functional is a functional which explicitly and implicitly depends upon the electron 

density. A hybrid functional is a linear combination of an orbital dependent Hartree-Fock exchange 
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potential and any number of explicit density dependent exchange functionals. The first hybrid 

functional was developed by Becke (Becke, 1988), the “Becke, three-parameter, Lee-Yang-Parr” 

(B3LYP) (Becke, 1988) (Zhang & Yang, 2000) and was of the form: 

𝐸𝑋𝐶
𝐵𝑒𝑐𝑘𝑒 = 𝐸𝑋𝐶

𝐿𝐷𝐴 + 𝛼0(𝐸𝑋
𝑒𝑥𝑎𝑐𝑡 − 𝐸𝑋

𝐿𝐷𝐴) + 𝑎𝑋∆𝑋
𝐵88 + 𝑎𝐶∆𝐶

𝑃𝑊91                       (1.56) 

where 𝛼0, 𝑎𝑋 , 𝑎𝐶 are semi-empirical coefficients that are determined by and approximated for the 

experimental data, 𝐸𝑋
𝑒𝑥𝑎𝑐𝑡 is the exact exchange energy, ∆𝑋

𝐵88 is the Becke 1988 gradient correction 

to LDA for the exchange term (Perdew, et al., 1982) and ∆𝐶
𝑃𝑊91 is the Perdew and Wang gradient 

correction for correlation (Stowasser & Hoffman, 1999). The main conditions in choosing how to 

implement hybrid functionals are the selection of coefficients. This is mainly because the coefficients 

that determine the mixing ratio cannot be obtained by ab-initio techniques. 

Another hybrid functional currently in use is known as the screened hybrid of Heyd-Scuseria- 

Ernserhof (HSE) functional (Heyd, et al., 2003). This functional uses a screened, short-range HF 

exact exchange instead of the full exact exchange. The screened terms in this functional are found 

from the splitting of the Coulomb operator into short and long-range terms as shown below. 

1

𝑟
=
𝑒𝑟𝑓𝑐(𝜔𝑟)

𝑟
+
erf (𝜔𝑟)

𝑟
                                                   (1.57) 

where the first and second terms are the short and long range terms respectively. The 

complimentary error functions 𝑒𝑟𝑓𝑐(𝜔𝑟) = 1 − 𝑒𝑟𝑓 (𝜔𝑟) and 𝜔 determines the range. The long-

range term is zero and the short range term is equivalent to the full Coulomb operator when𝜔 = 0. 

For 𝜔 → ∞ the opposite is true. The HSE exchange-correlation energy is given by, 

𝐸𝑋𝐶
𝐻𝑆𝐸 = 𝑎𝐸𝑋

𝐻𝐹,𝑆𝑅(𝜔) + (1 − 𝑎)𝐸𝑋
𝜔𝑃𝐵𝐸,𝑆𝑅(𝜔) + 𝐸𝑋

𝜔𝑃𝐵𝐸,𝐿𝑅(𝜔) + 𝐸𝐶
𝑃𝐵𝐸            (1.58) 

where 𝐸𝑋
𝐻𝐹,𝑆𝑅

 is the hybrid functional short range exchange term, 𝐸𝑋
𝜔𝑃𝐵𝐸,𝐿𝑅

 and 𝐸𝑋
𝜔𝑃𝐵𝐸,𝑆𝑅

 are the 

long range and short range components of the PBE exchange functional, 𝜔 is the splitting 

parameter and 𝑎 = 0.25 is the mixing coefficient. The form of this functional can be seen as an 

adiabatic connection functional only for the short-range portion of exchange; the long-range 

exchange and correlation are treated at the PBE generalized-gradient approximation GGA level 

(Savin, et al., 1998) 
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Using sufficient terms and optimizing the fitting parameters, hybrid functionals are capable of 

obtaining accurate results for a large variety of systems. However due to the empirical nature and 

lack of physical insight, these functionals are not transferable and thus become application specific. 

1.6 Basis sets 

The wave function required to find the solution of the many-body Schrodinger equation has to be 

expanded in terms of a set of known basis functions.  

Accordingly a single electron wave function can be written as, 

𝜓𝑖(𝐫) = ∑ 𝑐𝑗𝜑𝑗(𝒓)
∞ 
𝑗=1      (1.59) 

where 𝜑𝑗 belongs to a complete set of functions. In practice solving for an infinite number of basis 

functions is impractical thus only a finite number of functions are used. The basis functions have the 

same characteristics as the real wave function. 

1.6.1 The plane-wave basis set 

In any periodic system, the potential of that system follows the following relationship 

𝑉(𝒓 + 𝑹) = 𝑉(𝒓)     (1.60) 

where R is some arbitrary lattice vector. The ions in a perfect crystal are arranged in a regular 

periodic way at 0K, from this the external potential felt by the electron will also be periodic, where 

this periodicity will have the same length as a unit cell, 1, thus the external potential experienced by 

an electron at r can be expressed as  

𝑉(𝒓) = 𝑉(𝒓 + 1)     (1.61) 

From this we can make use of Bloch’s theorem (Patterson & Bailey, 2010). Bloch’s Theorem makes 

it possible to express the wave function of the crystal in terms of wave functions at reciprocal space 

vectors of a Bravais Lattice. This method reduces the infinite number of one-electron wave 

functions to be calculated to simply the number of electrons in the unit cell of the crystal lattice. 

The wave function is written as the product of the periodic part and the wavelike part: 

𝜓𝑖(𝐫) = 𝑒
𝑖𝒌∙𝒓𝑓𝑖(𝒓)     (1.62) 
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The first part of the equation relates to the wavelike part of the wave function; the second part 

relates to the periodic part. The periodic part however can be further expanded by re-writing it as a 

finite number of plane-waves whose wave vectors are reciprocal lattice vectors of the crystal. 

𝑓𝑖(𝒓) = ∑ 𝑐𝑖,𝑮𝑒
𝑖𝑮∙𝒓

𝑮      (1.63) 

Where now G are the reciprocal lattice vectors. Thus the electronic wave function is written as a 

sum of plane-waves 

𝜓𝑖(𝐫) = ∑ 𝑐𝑖,𝒌+𝑮𝑒
𝑖(𝒌+𝑮)∙𝒓

𝑮     (1.64) 

Thus the problem of the infinite number of electrons has now been mapped onto the problem of 

expressing the wave function in terms of an infinite number of reciprocal space vectors within the 

first Brillouin zone of the periodic cell, k. This problem is solved by a method known as Brillouin 

zone sampling which forms the basis of the next section. 

The electronic wave functions at each point are now expressed in terms of a discrete plane-wave 

basis set. In principal this Fourier series is infinite, however introduction of a plane-wave energy cut-

off reduces the basis set to a finite size. The coefficients for the plane-waves 𝑐𝑖,𝒌+𝑮 each have an 

associated kinetic energy(ħ2/2𝑚)|𝒌 + 𝑮|2. The plane-waves with a smaller kinetic energy typically 

have a more important role than those with a very high kinetic energy. 

By implementing the plane-wave basis set on the Kohn-Sham equations gives 

{ 
ħ2

2𝑚
|𝒌 + 𝑮|2𝛿𝑮𝑮′ + 𝑉𝐻𝑎𝑟𝑡(𝑮 − 𝑮′) + 𝑉𝑒𝑥𝑡(𝑮 − 𝑮′) + 𝑉𝑋𝐶(𝑮 − 𝑮′)

𝐺′

} × 𝑐𝑖,𝒌+𝑮′ = 𝑐𝑖,𝒌+𝑮′𝜀𝑖 

 (1.65) 

From this it can be seen that the reciprocal space representation of the kinetic energy is diagonal and 

the various potentials appear in terms of their corresponding Fourier components. From this the 

plane-wave expansion of the Kohn-Sham equations is solved by diagonalization of the Hamiltonian 

matrix whose elements are shown above in (1.65). The size of the Hamiltonian matrix is 

proportional to the energy cut-off. 
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1.7 Brillouin zone sampling 

For periodic systems the calculations used to solve for the total energy are always performed on a 

single unit cell with periodic boundary conditions. From Bloch’s theorem, the electronic structure 

calculation can be changed from one of trying to calculate an infinite number of states to one of 

calculating finite number of bands at an infinite number of k points within the Brillouin zone (Paier, 

et al., 2006) (Heyd, et al., 2003). A k-point is a reciprocal lattice vector which is used to label an 

eigenstate. From equation (1.62) 𝑓(𝒓) can be expressed as 

𝑓(𝒓) =
Ω𝑐𝑒𝑙𝑙

(2𝜋)3
∫ 𝑭(𝒌)𝑑𝒌 = ∑ 𝑤𝑗𝑭(𝒌𝒋)𝒋𝐵𝑍

   (1.66) 

Where, Ω𝑐𝑒𝑙𝑙 is the cell volume, 𝑭(𝒌) is the Fourier transforms of 𝑓(𝒓) and  𝑤𝑗 are the weighting 

factors. The volume of the Brillouin zoneΩ𝐵𝑍, is related to the volume of the supercell Ω𝑐𝑒𝑙𝑙 by 

 Ω𝐵𝑍 =
(2𝜋)3

Ω𝑐𝑒𝑙𝑙
      (1.67) 

For larger supercells such as the cells used for semiconductor defect ab-initio calculations the 

Brillouin Zone becomes very small and so fewer k-points can be used to sample the Brillouin Zone.  

1.8 Pseudopotentials 

Pseudopotentials replace the effects and interactions of the core electrons, (non-valence electrons), 

of an atom and its nucleus with an effective replacement potential. This replacement potential 

contains the modified effective potential terms, including the effect of the core electrons and 

smoothing the wave function, thus having less nodal points and leading to the requirement of fewer 

Fourier components. This effective potential replaces the Coulombic potential in the Schrodinger 

equation. 

In order to construct the effective potential the region close to the atomic nucleus needs to be 

closely looked at since firstly due to the Pauli exclusion principal, the valence electron wave function 

must be orthogonal to the core electron wave functions. Thus the frequency of oscillations of the 

valence electron wave functions within the core region will be very high. Secondly the electron 

potential varies in inverse proportion to the distance from the center of the nucleus and thus it 

diverges as that radius tends toward zero. 
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In order to describe these wave functions, a large basis set of plane-waves is required, as well as a 

large number of plane-waves being required to describe the tightly bound core states. 

This is where a pseudopotential approximation can be used effectively. The approximation uses the 

fact that most physical properties are determined by the valence structure of the atom; the strong 

Coulomb potential and the core electrons are replaced with an effective potential that is weaker, the 

pseudopotential. Within the core region the valence wave functions are replaced by smooth nodeless 

pseudo-wave functions that are identical to the real wave function outside the core region. 

 

 

 

 

 

 

  

 

 

Figure 1.5: Comparison of a wave function in the Coulomb potential of the nucleus (dotted) to the 
pseudopotential (solid), the real and the pseudo wave function and potentials match above a certain cut-off 

radius. (Alpha, 2006) 

This process lowers the complexity of the problem in three fundamental ways: firstly, the number of 

wave functions needed for the calculation is drastically reduced since the core electrons are not 

considered. Secondly, the potential no longer diverges upon approaching the core of the nucleus and 

finally the valence wave functions are smooth within the core region. The pseudopotential method 

however has one specific requirement; the pseudo-wave function must be identical to the all-

electron wave function outside the core, to produce the same energy difference (Louie, 1982).
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Chapter 2 

The Science of semiconductors 

2.1 Introduction 

A semiconductor is a material which has the electrical properties between those of conductors and 

insulators. The most desirable properties of semiconductor materials is how the electrical 

conductivity can be changed by applying variations to the environmental conditions by either 

varying temperature, applied external fields or by the creation of defects within the semiconductor. 

2.2 Doping of semiconductors 

Intrinsic semiconductors are semiconductors that have no impurities within their atomic structure 

(or at least so few that they do not influence the free carrier density). The free carriers in this case are 

generated by the process of electron-hole pair generation. In intrinsic semiconductors, the number 

of holes will always be the same as the number of electrons. 

Extrinsic semiconductors are semiconductors in which the carrier density is determined by impurity 

atoms in the host lattice. These impurity atoms can be introduced in various ways and are used to 

alter the properties of the semiconductor. The process of introduction of impurities onto a 

semiconductor is called “doping”. In general doping produces two groups of semiconductors. If the  

impurity has more valence electrons than the host atoms, this leads to an excess of electrons with 

positively charged impurity atoms (called donors) and the material is called n-type. Similarly, in p-

type material, an impurity with less valence electrons will lead to positively charged holes forming in 

the valence band, as electrons are captured by the impurity atoms called acceptors, which become 

negatively charged. 

A donor is classified as an impurity defect within a semiconductor which contributes (donates) free 

electrons to the semiconductor. In a semiconductor such as germanium (Ge) donors include group 

V elements (e.g. phosphorus (P), arsenide (As) and antimony (Sb)) acting as substitutional defects in 
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the lattice. The process by which donors donate electrons to the semiconductor is well understood. 

The group V elements have an extra valence electron when compared to the lattice atoms (the case 

of Ge comprise of Group IV atoms). This extra electron is not tightly bound to the donor and can 

easily be ionized thermally. Much in the same way as Group V atoms donate 1 electron per defect 

and Group VI impurities donate 2 electrons. These impurity atoms are known as double donors. 

 

 

 

 

 

 

 

 

Figure 2. 1: Schematic representation of a semiconductor doped with a donor. A free electron is now present. 

 

Acceptors are defect impurities which contribute to holes in the semiconductor. Acceptor doped 

semiconductors are referred to as p-type semiconductors. In germanium examples of acceptor 

impurities are the Group III elements (boron (B), aluminum (Al), gallium (Ga)). These elements 

have one less electron in the valence shell when compared to germanium. This causes a vacant state 

close to the valence band, which, by thermal excitation, can be filled by an electron from the valence 

band leaving a hole. The hole is not tightly bound to the impurity atom and thus can be ionized at 

temperatures above 0 K. Group II atoms add 2 holes in the system and hence are referred to as 

double acceptors. 
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Figure 2. 2: Schematic representation of a semiconductor doped with an acceptor. A free hole is now present. 

 

 

2.3 Structural properties of semiconductor defects 

As already stated defects in semiconductors are structures which can have positive or detrimental 

effects on the properties of the semiconductor. These defects need to be classified in their structural 

properties to better understand the nature of the benefits or hindrances they offer. Defects can 

occur as either point defects or as part of larger defect complexes. Point defects are lattice 

imperfections caused by missing atoms (vacancies), an interstitial atom or impurity atom. While 

defect complexes are a combination of two or more point defects that occur (relatively) close to 

each other such as: interstitial-vacancy pairs, impurity-vacancy pairs, substitutional-vacancy pairs and 

divacancies, are to name but a few. 

2.3.1 Primary and secondary defects 

Primary defects are defects which are initially formed in semiconductors as a result of irradiation. 

These defects are mainly point defects. Secondary defects are mainly defect complexes which are 

formed when point defects combine into larger more complex structures, e.g. vacancies and 
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interstitials. These tend to be highly mobile in the semiconductor lattice and interact with other 

defects in the lattice. 

 

 

 

 

 

 

 

 

Figure 2. 3: Point defects in semiconductor lattice. 
 

Secondary defects are defect complexes formed when point defects e.g. vacancies and interstitials, 

which are highly mobile within the lattice, interact with other defects in the lattice forming defect 

complexes 

 

 

 

 

 

 

 

 

Figure 2. 4: Secondary defect complexes in the semiconductor lattice. 
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2.4 Electronic properties of semiconductor defects 

Defects in semiconductors have been studied for many years and have been found to have notable 

effects on the electronic properties of the device with whom they are attributed. Two factors which 

determine the properties of a defect are namely the local factors: such as the chemical makeup and 

size of the defect. Defects lead to changes in the translational symmetry of the semiconductor. Host 

factors: these factors involve the properties of the host atomic makeup, whether the makeup be 

either n-type or p-type material. 

In semiconductors there may exist the following two types of electronically active defects: 

1. Shallow level defects 

2. Deep level defects 

This distinction is based on the position energy level of the defect in the band gap with respect to 

the conduction or valence band. Deep level defects are classified to have highly localized wave 

functions whereas shallow level defects wave functions are considered as the far-reaching Coulomb 

potential. Antimony (Sb) is classified as a shallow level donor impurity in germanium. 

Shallow level defects 

Doping can affect the state of the intrinsic point defect in crystals. The dislocation behavior and 

associated impurities can eventually result in new possibilities of controlling the properties of a 

semiconductor material and of the structures built on it. Thus doping with shallow-level impurities 

controls the conduction type and the charge carrier concentration in a semiconductor. 

A shallow-level defect has features similar to that of the hydrogen atom where we have a positive 

nucleus binding to a valence electron. There however are two differences to the hydrogen model 

which come about 

1. Renormalizing of the mass of the electron due to its interactions with the lattice, thus we get 

a smaller effective mass than that of the free electron. 

2. The crystal reduces the binding potential due to its associated dielectric constant. 

These effects reduce the known ionization energy (ground state binding energy) of the donor 

atom/s so that they require little energy for ionization, energy that is available even at room 
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temperature. The system still displays other hydrogenic atom qualities however, such as, a series of 

bound excited states and the ionization into the energy continuum, i.e. the conduction band in the 

case of the donor.  

Deep level defects 

The second types of defects in semiconductors are those centers whose electronic structures are 

affected significantly by a short-range (central cell) potential. They generate the bound state with 

well-localized wave functions. These defects are called deep or localized defects. They can act as 

recombination-centers or deep level-traps or localized levels. They limit the lifetime of the carriers 

and may compensate for the shallow donors or acceptors or they may induce an effect known as 

Fermi level pinning (the center of the band gap becomes pinned to the Fermi level). Their energy 

levels lie “deep” within the forbidden energy band and are much more difficult to understand than 

the shallow-level counterparts (Pantelides, 1992). Impurity atoms which are improperly placed in the 

lattice distort the lattice extensively such that the binding energy greatly exceeds that of the shallow 

hydrogenic defects. Many atoms around the distorting defect must be considered when a first-

principles calculation is attempted; the defect wave function extends over many lattice constants. 

The carriers interact strongly with the lattice. The effects of deep level defects are to drastically 

reduce minority carrier lifetimes and to act as traps for charge carriers. 

 

2.5 Charge distribution in semiconductors 

When studying a semiconductor’s electrical properties or any defect’s electrical properties it is 

important to know the Fermi level 𝐸𝐹 position with respect to either that of the valence 𝐸𝑉  or 

conduction 𝐸𝐶  band. The reasons for this are many but depending of the semiconductor type, 

either n- or p-type and the applied bias, differing outcomes will present themselves, as the Fermi 

level will shift either towards the valence band or the conduction band. Application of a bias across 

a Schottky barrier changes the difference between the position of the Fermi level of the 

semiconductor and the metal in the depletion region. 
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2.5.1 Schottky barriers 

 

The concept of a rectifying Schottky barrier is based on which the barrier being large enough that 

there is a depletion region or a insulating layer with the conductive semiconductor material where 

the mobile charge carriers have diffused away or been forcibly moved by application of an external 

field, near the interface layer of the semiconductor. This barrier is a layer of high resistance when a 

small voltage is applied but under larger applied voltage, the electric current is governed by the laws 

of thermionic emission. Depending on the direction of the applied bias as well as the type or 

rectifying junction it is applied to, the electric current may be allowed to pass the barrier and not be 

allowed to flow in reverse. One must note that there is a point at which the barrier can be overcome 

and this process results at high enough applied bias’s that can cause breakdown of the depletion 

region and loss of rectification properties. 

Fabrication of a Schottky barrier is a science all to its own, but occurs when a metal or in some cases 

dielectric contact is evaporated by processes such as E-beam deposition, resistive evaporation or 

metallic sputtering. A potential barrier is formed at the metal-semiconductor interface (Streetman & 

Banjeree, 2000). Since the metal and semiconductor have different work functions, charge transfer 

will continue until the Fermi level of the metal 𝐸𝐹𝑀 aligns with that of the semiconductor𝐸𝐹𝑆. This 

alignment is referred too simply as the equilibrium. In n-type semiconductors, the work function of 

the metal is higher than that of the semiconductor and thus 𝐸𝐹𝑆 is shown to be higher than that of 

𝐸𝐹𝑀before the contact is made. 
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Figure 2. 5: Schematic representation of an n-type (left) and p-type (right) Schottky barrier at equilibrium  
EFS =EFM =EF. 

 

n-Type semiconductors 

Under zero applied bias conditions, the electrons from both the metal and semiconductor junction 

require the same energy to move over the barrier height 𝑞𝛷𝐵relative to the Fermi energy, for no net 

flow of electrons in either direction. Application of a bias however results in variations to the width 

of the depletion region and also the amount of band bending experienced. The Fermi level therefore 

can be moved within the band gap by variations to the applied conditions. 

 

 

 

 

 

 

 

 

 

Figure 2. 6: Representation of a Schottky barrier under forward (a) and reverse (b) bias for an n-type 
semiconductor. 
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Under reverse bias conditions 𝐸𝐹𝑆 is lowered relative to 𝐸𝐹𝑀. This results in band bending and an 

increase in the width of the depletion region. 

p-Type semiconductors 

For p-type semiconductors, there exist differences from their n-type counterparts. The Fermi level 

of the p-type semiconductor is close to the valence band edge and as a result, occupied defect states 

in the band gap emit electrons since holes are the majority charge carriers. By fabrication of a 

Schottky diode and formation of a depletion region, bands close to the interface bend upward since 

an electric field exists within the depletion region. Band bending is increased by application of a 

reverse bias, shifting the defect level to above that of𝐸𝐹𝑀. Defects within the band gap capture 

electrons and emit “holes” and thus for a large part of the depletion region, the semiconductor band 

gap lies above the  𝐸𝐹𝑀 and below the Fermi level of the metal. 

 

 

 

 

 

 

 

 

Figure 2. 7: Representation of a Schottky barrier under forward (a) and reverse (b) bias for a p-type 
semiconductor. Adapted from (Van Zeghbroeck, 2011). 
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2.6 Electrical characterization of semiconductor defects 

Experimental techniques have evolved and adapted over time to measure and quantify the 

properties of semiconductor defects. Tools such as Capacitance Voltage (C-V) and Current Voltage 

(I-V) setups are common place in today’s semiconductor laboratories worldwide. More complex 

techniques such as Deep Level Transient Spectroscopy (DLTS) (1974) as well as Laplace DLTS 

(1994) were developed years after the semiconductor became of interest to the scientific world. 

The details for the following methods can be further explored with reference to Schroder et al. 

(Schroder, 2006) yet will not be explored in great detail as they form part of the experimental 

reference to this work only. 

2.6.1 Capacitance–voltage technique (C-V) 

This technique makes use of a p-n junction or Schottky barrier diode to create a depletion region, a 

region devoid of conducting holes and electrons. The depletion region may however contain ionized 

donors and electrically active defects or traps. This depletion region thus acts like a capacitor and for 

this reason we can measure its electrical properties by applying a varying voltage across it and the 

capacitance can be measured as a function of voltage. By varying the applied voltage we vary the 

width of the depletion region, this provides information on the electrical properties, such as the 

doping profile and any electrically active defect densities. (Diebold, 2001) 

The capacitance per unit area A of a Schottky barrier diode to an n-type substrate is given as 

𝐶

𝐴
= [

𝑞𝑁𝐷𝜖𝑠

2(𝑉𝑏𝑖−𝑉−
𝑘𝑇

𝑞
)
]

1

2

     [2.1] 

This can be re-arranged to 

1

𝐶2
=
2(𝑉𝑏𝑖−𝑉−

𝑘𝑇

𝑞
)

𝐴2𝑞𝑁𝐷𝜖𝑠
      [2.2] 
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Where 𝑉𝑏𝑖, V, k, T, q, ND, NA and 𝜖𝑠are the built-in voltage, applied voltage, Boltzmann constant, 

temperature in K, electron charge, majority carrier concentration, minority carrier concentration and 

the static dielectric constant of a semiconductor respectively. This assumes ND> NA. (Coelho, 2014) 

2.6.2 Current–voltage technique 

The simplest form of the current voltage relation is that of a resistor which according to Ohms law 

results in a linear relation between the applied voltage and the electric current measured. However 

for electronic devices that makes use of a p-n junction this relation is a bit more complex. A number 

of mechanisms exist within a semiconductor to capture slow-moving electrons of low energy and 

low voltage. Thus under larger applied currents these smaller effects are saturated and not 

observable, yet when one applies a lower current these capture methods end up representing an 

increasing percentage of the total throughput. Thus a method was developed to study 

semiconductors near to this insulation effect and to characterize the electrical properties depending 

on the type of p-n junction in question. 

2.6.3 Deep level transient spectroscopy 

Deep level transient spectroscopy (DLTS) is one of the most versatile tools for studying electrically 

active semiconductor defects. Based on the work of David Lang in 1974 (Lang, 1974). Only the 

basic principles of DLTS will be discussed here, a review of more advanced techniques can be found 

in the work of L. Dobaczewski (Dobaczewski, et al., 1994).  

The basic DLTS method requires the construction of either by either direct fabrication or formation 

of a Schottky diode or a p-n junction. This method investigated defects in a depletion region of a 

semiconductor junction. In the measuring process the steady state diode’s reverse polarization 

voltage is disturbed by a voltage pulse. This pulse causes a reduction in the electric field in the space 

charge region (depletion region) and this allows free charge carriers from the semiconductor bulk to 

leech into this area and recharge, causing them to take on a non-equilibrium charge state. 

After the pulse, the defects emit the trapped charge carriers due to thermal emission. This is where 

the method of DLTS observes the device’s space charge region capacitance where the defect charge 

state recovery causes the capacitance transient. The voltage pulse followed by the defect charge 

emission is cycled, allowing different signal processing methods to probe the recharging process. 
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2.7 Thermodynamic properties of defects 

2.7.1 Formation energy 

The formation energy of a defect is defined as the difference between the total energy of the 

supercell with the defect and the supercell without the defect, i.e. the perfect crystal. It reflects the 

cost in energy due to the lattice stress caused by the presence of the defect in the semiconductor. 

Introduction of defects results in an increase of entropy as the system now can have multiple 

microstates unlike the pristine system. The concentration of defects 𝑐𝑖 must adhere to the following 

relation: 

𝑐𝑖 ∝ 𝑒𝑥𝑝 [−
𝛥𝐺𝑓
𝑖

𝑘𝐵𝑇
]     (2.3) 

Where i is the defect in question and 𝛥𝐺𝑓
𝑖  is the Gibb’s free energy of formation of the defect Also 

refferd to as the defect formation energy. The expression,𝑘𝐵𝑇 has the usual meaning. (Van de Walle, 

2004) 

2.7.2 Activation energy of defect migration  

Defect migration deals with the concept of the motion of point defects and defect complexes within 

semiconductors. The mobility of such defects depends on many aspects of the defect in question, 

namely; the size of the defect; the makeup of the complex and the interatomic spacing within the 

lattice among other aspects. By considering the point defect, the simplest being that of a vacancy 

within the lattice; the ability of the vacancy to move from site A to site B within the lattice requires 

energy. This energy can come from latent thermal energy or applied energy. The process however 

will start at the minimized energy for the defect in Site A and it must progress through the saddle 

point energy at its maximum, and to the corresponding Site B and returns to a minimum. The 

activation energy for the defect migration is equal to the difference between the maximum of the 

saddle point and the minimum of the equilibrium state. (Matsushita, et al., 2007) 
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Figure 2. 8 Visual representation of the migration activation energy of a point defect in a lattice. Adapted 
from (Matsushita, et al., 2007). 

2.7.3 Binding energy of defect complexes 

Defects in semiconductors do not only exist as point defects. Electronically active defects often exist 

as defect complexes which are made up of more than one defect. The binding energy of a defected 

complex is the energy required to dissociate the defect into its constituent parts. 

𝐸𝐵 = 𝐸
𝑓(𝐴) + 𝐸𝑓(𝐵) − 𝐸𝑓(𝐴𝐵)    (2.4) 

The binding energy of defect AB is thus equal to the formation energy of the point defect A and the 

point defect B minus the formation energy of the defect complex AB. 

2.8 Annealing properties 

Annealing or heat treatment of defects is a process by which defects can be removed from a 

semiconductor. To be effective the defect concentration is required to be high compared to that of 

the thermodynamic equilibrium concentration. Annealing is always characterized by activation 

energies. This process occurs due to various factors; these factors include mobile defect migration 

and recombination with their counterparts as well as the dissociation of defects into their constituent 

parts and finally, defects diffusing deeper into the bulk or towards the surface. For any given 

temperature Tα, defect annealing corresponds to a decrease in defect concentration as a function of 

time. 
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2.9 The Poole-Frenkel effect 

When an external electric or magnetic field is applied to an electron trapped in a potential well, the 

electron is subjected to the sum of properties of both fields. This process causes the shape of the 

potential well to be distorted by increasing the height of the barrier on the one side of the defect and 

lowering it on the other. This method known as the Poole-Frenkel effect is the simplest way to 

enhance the emission of an electron from a potential well. 

Frenkel developed the original version of the theory in 1938 (Frenkel, 1938) which only dealt with 

the 1 dimensional case. 

According to that model, the ionization energy of a Coulombic well subjected to an externally 

applied electric field F, is lowered by:  

∆𝐸𝑇 =
1

𝑘𝑇
√
𝑞𝐹

𝜋𝜀
 .     (2.5) 

The emission rate of the defect can then be expressed as: 

𝑒(𝐹) = 𝑒(0)𝑒𝑥𝑝 (
1

𝑘𝑇
√
𝑞𝐹

𝜋𝜀
)     (2.6) 

Where e(0) is the emission rate at a zero electric field strength, k the Boltzmann constant and T is 

the absolute temperature. 

The emission enhancement due to the Poole-Frenkel effect is frequently used by experimentalists to 

estimate the range of the defect potential. A potential with a longer range would show a far stronger 

Poole-Frenkel enhancement than a shorter one. 

The dependence of the emission rate e on the electric field strength F has been used as experimental 

evidence to differentiate between donor and acceptor defects. The linearity of the log of the 

emission rate on the square root of the field is characteristic of a charge leaving a center of opposite 

sign. In n-type semiconductors this would imply a donor type defect and in p-type semiconductors it 

would imply an acceptor type defect (Meyer, 2007).
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Chapter 3 

Defect metastability 

3.1 Introduction 

Defects can either be classified as being stable or metastable. Stable defects exist where the defect 

can be characterized with one minimum-energy atomic configuration at a particular charge state, but   

whose characteristics are still dependent on extrinsic or applied properties (i.e. applied fields, bias’s 

and/or annealing properties). 

Defects have more than one minimum energy atomic configuration depending on the experimental 

conditions applied to them. The property of metastability in defects is often not noticed or goes 

unreported. Metastable defects have levels which are easily removed or introduced by applications in 

experimental conditions and thus can be manipulated extensively by applied fields and biases as well 

as pre and post fabrication annealing. 

Applications of metastability have recently come to the forefront of semiconductor research with 

the effect claiming larger amounts of responsibility in breakthroughs in the field of higher 

conductivity in existing semi conductors such as gallium doped ZnO (Zakutayev, 2013).  

Ab-initio defect studies have in the past mainly focused on well understood and simple defect 

complexes and stable defects. Yet as the science progresses further, more work is now being 

conducted in the field of modeling possible metastability of known defect structures, in the hope of 

mapping the results once thought to have been understood, to provide both the experimental and 

theoretical results. 
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3.2 Bistability and Multistable defects 

The definition of metastability states that the defects will have more than one stable configuration 

state in at least one of its charged states. Figure 3.1 left (a) and (b) shows a configuration co-ordinate 

diagram of stable defects whereby the position of the energy minima does not depend on the charge 

state of the defect. Stable defects have a unique stable atomic configuration, with respective lattice 

relaxations for some charge state. Large lattice relaxations can lead to significant changes in 

configuration with charge state variations, yet there is still only one minimum configuration energy 

in the observed charge state. 

 

 

 

Figure 3. 1: Left: configuration diagrams from usual semiconductor defects. Right: potential configuration 
diagrams for charge state dependent metastability. 

 

Defects can be classified as configurationally bistable if, there exists two possible fixed atomic 

configurations for one particular charge state. The lowest energy configuration is referred to as the 

stable configuration whilst the higher configuration is referred to as the metastable configuration. 

The two configurations must be separated by a finite barrier such that only through a thermally 

activated process, can the metastable configuration decay into the stable state over time. 
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3.3 Charge-state-controlled metastability 

A defect which has two (or more) different minimum energy atomic configurations for the neutral 

and two charged states is referred to as a charge state controlled metastable defect. In order for 

charge-state controlled metastability to occur, the defect will have two or more stable atomic 

configurations for the neutral state with each of the two defect charge states considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2: A configuration co-ordinate diagram showing charge state controlled metastability in two 
configurations namely A and B. Blue and red curves are for the neutral and ionized states respectively adapted 

from (Meyer, 2007). 

 

The mechanism of charge state controlled metastability can be explained with the aid of  figure 3.2. 

The neutral state denoted as configuration A is the stable minimum energy while in the ionized state 

denoted as configuration B is the minimum energy configuration. 
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To illustrate further, assuming the barriers of 𝐸𝑎(0) and 𝐸𝑎(+) are easily overcome at 300 K and 

the defect is frozen in its current state at 100 K, the defect can change between the two shown 

configuration states, namely configuration A and B by changing the charge state of the defect from 

one of its charged states to a neutral state or vice versa. This process of changing the charge state of 

a defect can be done with the application of a suitable forward or reverse bias to the Schottky 

contact. 

Depending on whether the semiconductor is n- or p-type, we can influence its charge state with the 

application of a forward or reverse bias. For the n-type semiconductor, application of a forward bias 

leads to the filling of a defect level with an electron leaving the defect in its neutral state and 

consequently configuration A is more energetically favorable in its neutral state than an unionized 

state. Most defects will therefore favor configuration A. Similarly application of a reverse bias allows 

the defect to emit an electron, thus leaving the defect in its ionized state. In this state configuration 

B is more energetically favorable, hence these defects will be found more often in this configuration. 

By cooling the semiconductor down to 100 K while keeping the applied bias conditions constant, it 

will allow for the stable configuration to be frozen in. If, at this low temperature, the carrier 

emission and capture rate of the defect is much higher than the transformation rate, the charge state 

can be changed without affecting the defects’ configuration by changing the applied bias. 

 

3.4 Negative-U defects 

A negative-U defect is capable of trapping two electrons (or holes), with the second trapped charge 

carrier bound more strongly than the first. Negative-U ordering of defect levels leads to interesting 

metastability phenomena. 

By making use of a hypothetical argument consider a defect which can exist in three charge states 

namely the +1, 0, -1 state. If the defect is fully ionized, i.e. in the +1 state, it can capture two 

electrons, the first of which corresponds to a donor level, which is positive when above the Fermi 

level and neutral when below and the second level corresponds to an acceptor level. The energy 

difference between the conduction band minimum and the donor level is the binding energy of the 

first electron and the energy difference between the conduction band edge and the acceptor level is 

the binding energy of the second electron. U is defined as the difference between the binding 
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energies (binding energy of first electron minus binding energy of the second electron) and is also 

called the interaction-energy between the electrons. Coulomb interaction between the two captured 

electrons would naturally result in the second electron being more loosely bound than the first and 

thus the acceptor level would lie above the donor level in the band gap. Since the Coulomb 

interaction is repulsive the expectation is that U should always be positive. However experimental 

observations have seen these defect levels are inverted, thus a negative-U system exists, which 

implies that the second electron is more tightly bound than the first, as if an attractive potential 

existed between the electrons. (Meyer, 2007). 

3.4.1 Mechanisms leading to negative-U behavior 

Negative-U properties of chalcogenide glasses was first explained by (Anderson, 1975) with a model 

showing that in addition to the restoring force that acts between atoms, the level of a state depends 

linearly on the displacement x between the two atoms. This model was expanded upon by (Street & 

Mott, 1975) and applied to point defects in amorphous glassy semiconductors. 

The Anderson model described the potential energy of an atom in the following form: 

𝑉 = −𝜆𝑥(𝑛↑ + 𝑛↓) +
1

2
𝑐𝑥2     (3.1) 

where 𝑛↑ and 𝑛↓ are the occupancies for spin-up or spin-down bond orbitals and x  is representative 

of position but can be generalized to a configuration co-ordinate. By setting the derivative of the 

potential energy 𝛿𝑉/𝛿𝑥 = 0 and substituting this back into Equation (3.1) it was found that the 

potential energy is lowered by −𝜆2/2𝑐 for single occupancy and −2𝜆2/𝑐 for double occupancy. 

The net effective correlation energy, which is defined as the difference between two singly occupied 

bonds and the disproportionated state (one empty and one doubly occupied) becomes: 

𝑈𝑒𝑓𝑓 = 𝑈 −
𝜆2

𝑐
      (3.2) 

where U is the normal Hubbard correlation energy that would be used if no lattice relaxation were 

present. It therefore follows that if the lowering of the single occupancy potential energy is large 

enough, the correlation energy would become negative and the disproportionate state will become 

energetically more favorable than the two singly occupied states (Meyer, 2007). 
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3.4.2 Properties of negative-U defects 

The neutral state of a negative-U defect is no longer thermodynamically stable. If two isolated 

neutral defects diffuse into contact with each other (via the conduction band), they can lower their 

respective energies by ionizing and releasing the energy U 

2𝐷0 → 𝐷+ + 𝐷− + |𝑈|.    (3.3) 

Thus, in the ground state, a negative-U defect will always exist in a particular charge state, this 

implies that the ground state is either the negatively ionized or the positively ionized charged state 

and the neutral state then becomes defined as an excited state of the defect (Meyer, 2007). 
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Chapter 4 

Modern techniques applied to 

computational defect studies 

 

4.1 Ab-initio techniques applied to bulk properties 

Defects within semiconductors can be found at any position within the bulk and even at the surface 

layers. The properties of semiconductors relating to both physical and electrical properties can be 

predicted extremely well using DFT yet there is strong evidence that these predictions are not always 

precisely accurate and this inaccuracy has been linked to approximations made in the exchange-

correlation energy function as it relies on the unknown form of the functional required to complete 

the calculation. Properties which are predicted with minor inaccuracy are related to lattice constants, 

bulk moduli and internal stress and strain of the structure in question, so this must be kept in mind 

when reviewing results. The exchange-correlation functional choice will determine whether a 

property is over or underestimated. Functionals such as the LDA functional underestimates lattice 

constants (Van de Walle & Ceder, 1999) which in turn overestimates the bulk modulus. While 

functional classes such as the GGA collection of functionals, generally overestimate lattice constants 

and underestimate the bulk moduli (Haas, et al., 2009). Even with these inaccuracies in place DFT 

has proven to be one of the most accurate methods for theoretically determining properties of 

semiconductors in recent history. 
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4.2 Ab-initio techniques applied to electronic properties 

All modern standard approximations to the exchange-correlation functional within DFT are known 

to underestimate the band gap of semiconductors by about 40% (Perdew & Levy, 1983). In order to 

correct for this error a class of functionals known as the hybrid functionals was developed to more 

accurately predict the properties of semiconductors and a more accurate calculation of the band gap 

was a result of this development. 

4.2.1 Errors related to prediction of the band gap and correction methods  

The band gap is defined as the difference in energy between the bottom of the conduction band and 

the top of the valence band of the semiconductor. There are two ways in which we can calculate the 

band gap by using ab-initio techniques. Firstly by using the Kohn-Sham energy levels 𝐸𝐾𝑆 and 

secondly by the quasi-particle method 𝐸𝑄𝑃. By using the Kohn-Sham levels the band gap can be 

obtained from: 𝐸𝐾𝑆 = 𝐸𝐶 − 𝐸𝑉  where 𝐸𝑉 and 𝐸𝐶 are the values for the highest occupied Kohn-

Sham level (HOMO) and the lowest unoccupied Kohn-Sham level (LUMO) (Lany & Zunger, 2008). 

The band gap energy can also be defined as the difference between the first ionization energy and 

the electron affinity. For large supercells, comprising structures of 32 – 256 atoms and larger, the 

ionization potential (IP) and electron affinity (EA) are defined as follows: 

𝐼𝑃 = 𝐸𝐻(−) − 𝐸𝐻(0)      (4.1) 

𝐸𝐴 = 𝐸𝐻(+) − 𝐸𝐻(0)     (4.2) 

Where 𝐸𝐻(0) is the energy of the homogeneous host with no defect present, with reference for the 

charge state of the host. This method is referred to as the “so-called” quasi-particle (QP) band gap 

energy (Lany & Zunger, 2008) and is given by: 

𝐸𝑄𝑃 = 𝐸𝐴 − 𝐼𝑃      (4.3) 

 The exchange-correlation (XC) functional 

Inaccuracies associated to LDA and GGA are due to incorrect assumptions and the self-interaction 

errors discussed in chapter 1.5 (Perdew, et al., 1982) (Perdew & Levy, 1983) (Sham & Schluter, 

1983). One of the well-known problems with both LDA and GGA XC functionals is the inability to 
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correctly predict the band gap in semiconductor materials. An example of this is the case where 

germanium is predicted to have no band gap at all and is modelled to be metallic rather than a 

semiconductor. This error however is not attributed to one XC functional and is a general problem 

that all XC functionals share (Batista, et al., 2006). 

 

Hybrid functional methods 

The Hybrid functional is a mixture of the non-local Hartree-Fock exchange potential and the semi-

local or local DFT exchange-correlation functional and the weighting of the mixture as a percentage 

leads to better correlation to experimental results. It has been reported that the use of hybrid 

functionals when applied to semiconductors as well as insulators results in a much improved 

accuracy in the prediction of the band gap (Heyd, et al., 2003) (Heyd, et al., 2005). From section 

1.5.3 equation 1.56 the choice of the mixing ratio α is the key to the accuracy of the results that the 

hybrid functional technique will return.  

A more direct reference to the applicability of the success of the HSE06 functional to predict the 

band gap of semiconductors is the ability to correctly predict the band gap of germanium (Heyd, et 

al., 2005). Hybrid functionals have become increasingly more popular as their accuracy is on par 

with the like of quantum Monte Carlo (QMC) techniques (Batista, et al., 2006) but not as 

computationally expensive thus calculations can be completed in far shorter periods. 

Application of hybrid functionals to defect studies is of great importance in correctly characterizing 

the defect structures and optimization of the defect complexes. Correctness of these defect 

calculations depends on whether the original formation energy was computed using LDA or GGA 

methods. It has already been mentioned that LDA functionals as well as GGA functionals 

underestimate the band gap of semiconductors (Xiao, et al., 2011) which cause large uncertainties in 

the calculation of defect levels in the band gap. Application of appropriate corrections outlined by 

Komsa (Komsa, et al., 2010), (Komsa & Pasquarello, 2011) and Deák (Deák, et al., 2010) results in a 

far more accurate description of the defect properties when theoretical results are compared to 

experimental ones. These methods, however, show there is still a shift which exists between the 

calculated levels and accepted levels as the gap approaches the experimental value and requires that 
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the defect level to be aligned for the best accuracy. The average shifts of the defect levels are usually 

at most 0.2 eV irrespective of material. 

 

4.3 Defect properties 

From this point the conceptual ideas of how the theory applies to achieving accurate results are put 

behind us and more emphasis is placed on the topics which are more meaningful to the overall 

accuracy of the calculations that were chosen for this investigation. 

4.3.1 Formation energy 

The formation energy of a defect within otherwise homogeneous semiconductor bulk is defined as 

the difference in the total bulk energy before and after the formation of the defect. It represents the 

energy required to break existing atomic bonds and distort lattice stresses imposed as a result of the 

presence of the defect. The energy required to add or remove atoms or electrons from the system 

also is a contributing factor to the total formation energy. Opposing this energy penalty is the 

increase in entropy, because a crystal containing a defect has more possible microstates than the 

pristine state. The formation of a defect in some charge state q can be obtained by ab-initio 

techniques and can be represented as follows according to Zhang and Northrup (Zhang & 

Northrup, 1991): 

𝛺𝐷,𝑞 = 𝐸𝐷,𝑞 − 𝐸𝐻 − ∑ 𝑛𝑖𝜇𝑖 + 𝑞(𝐸𝑉𝐵𝑀 + ∆𝐸𝐹 + 𝛥𝑉𝑝𝑎)𝑖 + 𝐸𝑀𝑃  (4.4) 

Where 𝐸𝐻 , 𝐸𝐷,𝑞are the total energies of the pristine host state and the host state containing the 

defect respectively, 𝑛𝑖 is the number of atoms of type i that have been added to  (𝑛𝑖 > 0) or 

removed from (𝑛𝑖 < 0) the pristine host state to create the defect. 𝜇𝑖 are the corresponding 

chemical potentials for the respective atom species. ∆𝐸𝐹 is the position of the Fermi level energy of 

the semiconductor in question calculated as shown in section 4.2.1. and will vary from a value of 0 

to the conduction band minimum of the semiconductor. 

𝐸𝑉𝐵𝑀 denotes the energy of the valence band maximum of the supercell, calculated as follows: 

𝐸𝑉𝐵𝑀 = lim𝑁→∞[𝐸𝐻(𝑁) − 𝐸𝐻(𝑁 − 1)]    (4.5) 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



53 
 

This is the difference in total energy between a pristine supercell with N valence electrons and a +1 

positively charge identical supercell and determines a reference energy of the electron reservoir of 

the system (Lany & Zunger, 2009). 

In order to obtain an accurate formation energy, one needs to account for the relative position of 

the average potential in the defect calculations as well as that of the pristine host. Thus the 𝛥𝑉𝑝𝑎 

term is required to correct for this change in electrostatic potential due to the addition or removal of 

electrons from the system. For practical calculations a reference potential is chosen at an atomic site, 

which is far enough removed from the defect, in order to keep potential energy variations due to the 

defect presence at a minimum, which aims to serve as a “potential marker”. The potential alignment 

term is found as follows: 

∆𝑉𝑝𝑎 = 𝑉𝐷− 𝑉𝐻     (4.6) 

Which is the average difference of the reference potential in the defect supercell 𝑉𝐷 and the pristine 

supercell 𝑉𝐻. As 𝛥𝑉𝑝𝑎 is a function of electron interaction with the bulk, naturally it scales with the 

magnitude of added or removed electrons (Lany & Zunger, 2009). 

𝐸𝑀𝑃 (eq. 4.4) is the Makov-Payne correction term, it is defined as a 3rd order correction term which 

accounts for the interaction of the delocalized part of the defect-induced charge state. However not 

much consensus has been reached in the academic community regarding the applicability of this 3rd 

order term until recently, when supercells of 1728 atoms were used by (Lany & Zunger, 2009) 

whereby a very accurate convergence could only be found by inclusion of the Makov-Payne 

correction term. 

The defect formation energy is one of the fundamental properties of a defect in a semiconductor 

that may be determined by ab-initio techniques. It is used to determine configurational defect 

stability of the defect and is used to obtain ionization levels to characterize the electrical nature of 

the defect. 

4.3.1.1 Setting of boundary conditions 

In order to study defects by making use of DFT a selection of boundary conditions must be made in 

order to compromise between accuracy of the result and computational time. These conditions 
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attempt to model the defect in an environment as close to as possible of the infinite host lattice. 

There exist here two main techniques namely the cluster approach and the supercell approach. 

Cluster approach 

A cluster is defined as a finite section of a semiconductor lattice whereby the surface is passivated to 

eliminate the possibility of bonding with foreign atomic species. Due to the proximity to the surface 

there exist strong defect-surface interactions. These interactions can be minimized using large 

clusters but this leads to far longer computational times and limitations for defect configuration 

studies (Jones & Mitchell, 1992). 

Supercell approach 

A supercell attempts to recreate the semiconductor crystal lattice in theory. It consists of a 

predefined volume or unit cell which is then repeated in 3D-space built from these unit cells. In the 

natural world a defect is then introduced into the lattice by some external means, at some part of the 

lattice while the remaining bulk is left in the pristine condition. But in the supercell technique, the 

defect is placed in the unit cell and then repeated in all periodic images of the unit cell. Emphasis is 

placed on ensuring that no interaction between defects in neighboring supercells takes place. The 

major benefit of this technique is that direct comparison between the state containing the defect and 

the pristine state can be made with ease (Van de Walle, 2004). However to get the best 

representation of the natural world, a supercell large enough needs to be chosen to correctly mirror 

the defect densities found in modern semiconductors. Even though 1 defect per 64 atom supercells 

are often used for this technique, this is far short from reality where defect concentrations are often 

measured in parts per million (ppm). However surprisingly accurate results can still be achieved. It is 

important to ensure the cell is large enough to minimize inter-defect interaction between the 

supercells periodic nature (Van de Walle, 2004). 
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Figure 4. 1: A representation of the pristine germanium 64-atom unit cell. From this initial structure changes 
will be made and defects added to create the secondary defected structures used for comparative analysis. 

 

4.3.1.2 Brillouin zone sampling 

Two main methods exist for increasing the accuracy of calculated results by ab-initio techniques. 

These are a) increase the number of atoms of the unit cell, or b) increase the number of k-points 

used to sample the Brillouin zone (Puska, et al., 1998). Computationally it is more efficient to 

achieve greater accuracy by increasing the number of k-points rather than the number of atoms of 

the unit cell, yet the study of defects often still requires large cell sizes to ensure that there is no 

interaction between defects with neighboring cells. Thus a trade off is often used whereby k-point 

sampling and cell size are chosen to yield the best accuracy in an acceptable calculation time. 
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Γ-point sampling 

Special k-point selection schemes are used to determine how the Brillouin zone is sampled. This 

technique allows both for faster more efficient calculations as well as more accurate ones. The k-

space of the lattice needs to be represented by the correct choice of k-points used to sample the 

Brillouin zone and the simplest way of doing this is to center around the Γ-point. Γ-point sampling 

saves computational time since the wave functions are calculated in real rather than reciprocal space. 

However since one (1) k-point is used it often fails to take factors into account such as charge 

densities and delocalized states. Thus it becomes ineffective for more complicated defect analysis 

and often it is necessary for more k-points to be used for more complex studies (Makov & Payne, 

1995). 

 

 

 

Figure 4. 2: Schematic representation of the 
Wigner Sietz Brillouin zone, the location of the 

Γ-point and the various other points. 
Depending on the structure under investigation 
more or less points should be used to sample 

the BZ (Freed & Moore, 2013). 

 

 

 

 

4.3.1.3 Charged defect states 

Defect formation energy is charge state dependent as shown in equation (4.4). For some chosen 

Fermi level, the stable charge state will be the one with the lowest formation energy. The Fermi level 

𝐸𝐹 for equation (4.4) will span the entire band gap calculated for the semiconductor such that 

𝐸𝑉 < 𝐸𝐹 < 𝐸𝐶  where 𝐸𝑉 (energy of the valence band) and 𝐸𝐶 (energy of the conduction band) have 
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their usual meanings and 𝐸𝐹 (energy of the Fermi level)  refers to the top of the valence band; 

i.e.:𝐸𝑉 = 0. Since defects are known to be electrically active, they often affect the band structure of 

the semiconductor. The valence band maximum energy found from the supercell with the defect 

present, must relate in such a way that the effect that the defect has on the pure host band structure 

is taken into account. The effect the defect has can be corrected for by calculation of the valence 

band energy of the pure semiconductor and aligning the electrostatic potentials of the supercell with 

the defect and that of the pure host supercell. This effect arises due to the nature of the long-range 

Coulomb potential and the periodic boundary conditions imposed with the supercell approach (Van 

de Walle, 2004). This alignment factor and correction is represented by ∆𝑉𝑝𝑎 in equation (4.4). 

4.3.1.4 Spin orbit coupling - spin polarization 

In this method the angular momentum of the spin component of an electron is combined with the 

angular momentum of its orbit. An electron’s spin interactions with its neighboring electrons can 

cause shifts in the electrons atomic energy levels due to electromagnetic interaction. This interaction 

with nearest neighbors will affect the total entropy of a system and will result in the accuracy of the 

total energy resulting from our DFT model being affected. Inclusion of spin orbit coupling will 

allow for a better defined band structure, when modelling semiconductor’s using DFT and this 

becomes more prevalent in situations whereby semiconductors such as germanium are known to be 

difficult to model due to a very small band gap (Heyd, et al., 2005). 

4.3.2 Thermodynamic transition levels 

A thermodynamic transition level is the position of the Fermi level where the formation energies of 

the same defect in differing charge states are equal.  

The energy of the transition level may be calculated as: 

𝜀(𝑞/𝑞′) =
𝛺𝐷,𝑞−𝛺𝐷,𝑞′

𝑞−𝑞′
     (4.7) 

The thermodynamic charge transition level is related to the activation enthalpy as determined from 

the experimental process of DLTS. 
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4.3.3 Optical transition levels 

An optical transition level can be defined by calculating the energy of the final state q’ based on the 

atomic configuration of the initial state q. The final state is not relaxed to equilibrium since the 

Frank-Condon principal is taken into account which states that electronic charge states can switch at 

far faster rates than ions can be relaxed. 

4.3.4 Defect diffusion and propagation 

Defect diffusion and propagation within any bulk material is largely a research field all to its own. 

But defect diffusion can be modeled and predicted using ab-initio techniques such as exposing a 

potential energy surface (PES) to a transition state search (TSS). The PES method can give 

information on all the stable and metastable defect configurations and the location of the saddle 

points, migration barriers migration path or minimum energy paths can be determined. TSS on the 

other hand looks more specifically at a predetermined path that can be studied in detail by first 

creating a set of extrapolated images between an initial and final configuration of a defect. These 

images are then subjected to the standard minimization techniques to relax the structure at each 

stage of the transition. From this an energy profile and transition map can be built to analyze the 

path of the diffusing. From this, local energy minima can be located as well as the exact diffusion 

path for interstitial or substitutive defects. 
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Chapter 5 

Computational conditions for this study 

5.1 Summary of calculations and boundary conditions. 

The criteria in this chapter were used for the DFT calculation of the germanium antimony-vacancy 

(Sb-V). Similar conditions were used in the calculation for all other defects considered in this study. 

The Vienna Ab-initio Simulation Package (VASP) has been used to study the defect complexes of 

interest. VASP has been used extensively around the world in the field of ab-initio DFT calculations 

(Kresse & Furthmuller, 1996a) (Kresse & Furthmuller, 1996b) (Kresse & Joubert, 1999). VASP is a 

package designed for preforming ab-initio electronic structure calculations by making use of 

Vanderbilt pseudopotentials or the projector augmented wave method and a plane-wave basis set. 

The basic process makes use of density functional theory (DFT) calculating an approximate solution 

to the many-body Schrödinger equation using the solution of the Kohn-Sham equations yet post 

DFT corrections such at the latest hybrid functionals, mixing DFT and Hartree-Fock exchange 

(Paier, et al., 2006).Many body perturbation theory and dynamical electronic correlations are also 

implemented in VASP. 

VASP was pioneered by Mike Payne of MIT pre-1989 and since been under continuous 

development by a team under the leadership of Georg Kresse at the University of Vienna with the 

cooperation of Jürgen Furth Müller to be notably mentioned. 

5.2 Convergence criteria 

The size of the supercell which is chosen as well as that of the k-point sampling scheme influences 

the results of the energy calculations when making use of ab-initio techniques. The effect of these 

parameters on the total energy results requires investigation to select the optimum choice of 

parameters. A compromise often needs to be made between the accuracy of the computation and 

the time which it will take to complete the calculation. 
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5.2.1 Unit cell  

The unit cell is optimized from the point of view that the k-point spacing, cut-off energy and lattice 

constants are chosen to yield a chosen accuracy of convergence for the energy of the system. For 

this study the electronic energy convergence criteria was chosen to be 10-6 eV for the HSE06 

calculation as well as for the LDA/GGA in the standard DFT mode of calculation. This criterion is 

much less than the typical energy difference involved with deep-level defects in semiconductors, 

which are in the order of 10-3 eV. Similar convergence criteria were used previously (Ouma & Meyer, 

currently under review). Structure optimization was kept at a base standard of 0.02 eV/Å for all 

calculations. 

5.2.2 Supercell size 

All supercells of 64 atoms used in this study were built from the optimized unit cell. Before the size 

of supercell can be determined in any calculation, consideration must be given to prevent close 

defect-defect interactions. Usually one standard unit cell of unaffected bulk its used in-between the 

defect and the edge of the supercell. 

The appropriate supercell size can be determined, from a scalable set of calculations which compare 

the minimized formation energy of the system and the size of the supercell. Since defect calculations 

are computationally expensive the choice of supercell should yield acceptable results without 

compromising on the accuracy of the result. 

 

 

 

Figure 5. 1: Diagram of formation energy per atom as 
the size of the homogeneous germanium supercell 
increases. From a choice of 32 atoms onwards the 

formation energy difference between structures becomes 
small relative to the energy differences considered in the 

calculation. 
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5.2.3  Plane-wave cut-off energy 

The energy cut-off parameter applies to the completeness of the plane-wave basis set. At each k-

point only the plane-waves which satisfy the equation are included. 

1

2
|𝑮 + 𝒌|2 < 𝐸𝑐𝑢𝑡𝑜𝑓𝑓     (5.1) 

However using a higher cut-off energy will always yield more accurate results. The length of applied 

computational time will exponentially increase. In the case of this parameter a trade off in 

calculation time to acceptable accuracy must be made. 

 

 

 

 

 

 

 

 

 

 

Figure 5. 2: The formation energy of an 8 atom homogeneous germanium cell as a function of the plane-wave 
cut-off energy. The difference in formation energy was deemed negligible after 300 eV and a plane-wave cut-

off of 400 eV was chosen for all further calculations. 
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5.2.4 Brillouin zone sampling 

The sampling of the Brillouin zone, also known as k-point sampling, influences defect formation 

energy when calculated by means of ab-initio techniques. From the results below, making use of a 

2x2x2 Monkhorst-Pack k-point mesh is shown to be just as effective at achieving acceptable results, 

as using a 3x3x3 or 4x4x4 mesh with a significant reduction in expended computational time. Figure 

5.3 shows that the difference in formation energy per atom for the k-point mesh of 2x2x2 or larger 

becomes less than 1 meV this was chosen to be acceptable as the trade off in computational time 

deteriorates very rapidly beyond this range. 

 

 

 

 

 

 

  

Figure 5. 3: The energy convergence of a 64 atom homogeneous germanium supercell with cut-off energy of 
400 eV with regards to the k-point mesh chosen 

 

5.3 Using DFT to predict metastability 

The process on how defect metastability can be investigated using ab-initio techniques needs to be 

outlined. Noteworthy at this point is that defects are classified as metastable if and only if the defect 

has more than one minimum atomic energy configuration depending on experimentally imposed 

conditions. Such conditions for example would be an applied directional bias, or an applied external 

electric field. 
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5.3.1 The minimum energy configuration 

Since metastable defects are stable in more than one configuration, all such configurations need to 

be identified. Finding the minimum energy of formation is a general problem in DFT simulations 

and with multiple minima, as in the situation of a metastable defect, this problem becomes more 

difficult as the ability to discern global minima from local minima is not a trivial task. The 

configurations of a defect complex can be obtained by experimentally proposed configurations 

(Markevich, et al., 2004), (Fage-Pedersen & Nylandsted Larsen, 2000) or from ab-initio atomic 

configurations, whereby a configuration is theoretically assumed, by virtue of local minima in 

formation energy calculations (Jones & Briddon, 1998), (Latham, et al., 1999).  

This study takes on the exploratory role to investigate the possible presence of metastability of the 

Sb-V complex in germanium. If metastability is found, various results would have to be uncovered 

for a definitive conclusion as will now be explained in the remainder of this chapter. For charge state 

controlled metastability, the minimum energy configuration would have to depend on the charge 

state of the defect complex. This can be determined by calculating the formation energy for the 

defect configuration in each charge state and comparing the results. 

 

Table 5.1: An example of HSE06 calculated formations energies (eV) of two different defect states. The 
minimum energy is shown in bold in each case. 

        

Configuration -1 0 1 

S1  5.1 4.9 4.85 

S2 5.7 5.1 4.5 

 

From this example assume we have to configurations of a defect which are given as configuration S1 

and S2, assume that S1 and S2 are some hypothetical orientation of the defect for now. The S1 

configuration is the minimum energy configuration for both the -1 and neutral charge states. Yet the 

S2 configuration becomes the minimum energy configuration for the +1 charge state. From this 

result there is theoretical evidence that charge state controlled metastability exists. This result can be 

confirmed experimentally by examination of applied field dependence of the defect emission rate 

(Nielsen, 2005), as well as by observing  the defect behavior by DLTS, after applied bias annealing 

cycles. 
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5.3.2 Formation energy difference and occupation 

For the occupation of two defect configurations of the same defect in the same charge state to differ 

significantly, the difference in the respective formation energies should be approximately 𝑘𝐵𝑇. With 

a difference of approximately 3𝑘𝐵𝑇 or larger, the ratio of occupation would be 1:10 or greater as 

long as no degeneracy is present. This implies that the configuration with the lowest energy will be 

occupied and be more prevalent over the other and thus only the minimum energy configuration is 

likely to be experimentally observable. If the formation energy of the defects differs by much less 

than 3𝑘𝐵𝑇 then both configurations will be observable simultaneously. 

5.3.3 Application of electrical bias and relation to charge state controlled 

metastability 

As mentioned in Section 3.4 the position of the Fermi level is a critical factor to note in describing 

the properties of both stable and metastable defects. The application of an external bias may change 

the Fermi level position in the region below a Schottky diode. The behavior of the Fermi level under 

applied bias is dependent on whether the semiconductor is p- or n-type. 

In the case of the Sb-V complex which usually implies an n-type semiconductor, the Fermi level 𝐸𝐹 

in the bulk lies close to the conduction band edge  𝐸𝐶 thus 𝐸𝐹 ≈ 𝐸𝐶 this phenomenon causes any 

occupied defect states in the band gap to fill with electrons (i.e. to emit holes). When a Schottky 

diode is fabricated a depletion region is formed. The bands close to the interface bend upwards due 

to the electric field in the depletion region. Application of a forward bias to the Schottky diode 

decreases band bending, shifting the conduction band to below the bulk Fermi level thus we have 

𝐸𝐶 ≈ 𝐸𝑉 this results in defects in the depletion region with levels within the band gap; emitting 

electrons. 

In a theoretical framework, to understand the process of a changing Fermi level on the charge state 

of a defect, the formation energies at each charge state are calculated for varying values of the Fermi 

level. Thus we examine the region of 𝐸𝑉 < 𝐸𝐹 < 𝐸𝐶 . For example: 
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Figure 5. 4: Formation energy as a function of Fermi level for varying charge states of the boron-vacancy 
complex in p-type silicon. (Ouma & Meyer, currently under review).  

 

C1, C2, C3 and C4 are the configuration designators used by (Ouma & Meyer, currently under 

review) to denote the configuration of the silicon-boron vacancy cluster.  

As 𝐸𝐹 → 𝐸𝑉 the C2 configuration in the q = +1 charge state is the minimum energy configuration. 

As 𝐸𝐹 → 𝐸𝐶 the C1 configuration in the q = −1 charge state is the minimum energy configuration. 

If the energy difference criteria from 5.3.2 are met whereby the respective difference in formation 

energy of the two defects is in the region of  𝑘𝐵𝑇 or less and ratio of occupation is approximately 

1:1 then both C1 and C2 configurations will be observed experimentally. The minimum energy 

configuration will be dominant if and only if the 3𝑘𝐵𝑇 condition is met. Since the formation energy 

of C3 and C4 is high compared to the energies of C1 and C2 these will not be observed 

experimentally. 
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Chapter 6 

The antimony-vacancy (Sb-V) complex, 

the E-center defect in germanium 

 

6.1 The experimental results of Fage-Pederson and Larsen 

Fage-Pederson and Larsen (Fage-Pedersen & Nylandsted Larsen, 2000) initially studied the 

irradiation-induced defects in n-type germanium in the year 2000 and several majority-carrier traps 

and one minority-carrier trap was characterized using DLTS. The antimony-vacancy complex (Sb-V) 

defect was found to anneal in a way which was different to that observed in silicon as the annealing 

profile in germanium was distinctly different under reverse bias, when compared to the same 

conditions applied to the silicon sample. Differences in the carrier concentration between the silicon 

and the germanium sample where measured and found to vary in the region of an order of 

magnitude. 

 

6.1.1 Experimental details and results of the paper 

Two types of material were used in the study and named as Sb1 and Sb2 with impurity concentration 

of 3.5 × 1014 and 1.4 × 1015 cm-3 respectively. Schottky diodes were fabricated onto the substrates 

by e-beam or resistive evaporation and defects were characterized by DLTS. An overview of the 

results by Larsen is shown in Table 6.2. The main result of interest in the work will be that of the E-

center (𝐸0.37). 
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Table 6.1: The properties of relevant electron and hole traps observed by Larsen in the irradiation study. 

Label Ena (eV) σna (cm2) Annealing (°C) Identification Occurrence 

E0.37 0.37 1.1×10-14 ↓150 E-center Sb1, Sb2 

E0.23 0.23 2.0×10-15 ↑RT, ↓110 Sb and I related Sb1, Sb2 

E0.19 0.19 1.5×10-14 ↑RT, ↓RT Sb and I related Sb1, Sb2 

E0.13 0.13 3.2×10-15 ↑RT, ↓RT Sb and I related Sb1, Sb2 

E0.21 0.21 7.1×10-14 ↑90, ↓180 Sb related? Sb1, Sb2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 1: DLTS spectra recorded on Sb1 and Sb2 three days after 4×1013 cm-2 electron irradiation. (Fage-
Pedersen & Nylandsted Larsen, 2000). 
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Figure 6. 2: DLTS signatures of all observed electron traps in Sb1 and Sb2 (Fage-Pedersen & Nylandsted 
Larsen, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 3: DLTS spectra from Sb2 as a comparison of electron and proton irradiation and annealed at 
110°C for 15 minutes (Fage-Pedersen & Nylandsted Larsen, 2000). Defect E0.29 is visible only after annealing. 
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Figure 6.1 and 6.2 are included here in this work as an indication of the properties required 

to better understand the E-center complex. Defects had been introduced into the samples by 

irradiation of the diodes by either 2-MeV electrons or 2-MeV protons. Sb1 was only irradiated with 

electrons, Sb2 was irradiated with electrons and followed by a measurement process and then a 

secondary irradiation with protons. The beam intensity was ≈100 nAcm-2 for the electrons and ≈0.5 

nAcm-2 for the protons. The interesting characteristics are that the concentration of the E-center 

defect is stable and does not vary greatly with regards to irradiation exposure time. However a 

lowering of concentration is observed after proton irradiation in Sb2. 

 

6.1.2 The E0.37 defect  

The E-center was present in both materials Sb1 and Sb2. The E-center was found to be the only 

observed defect in the sample, directly after electron irradiation. All other defects observed are 

secondary and the respective concentration growth of these other defects is proportional to time. 

Upon annealing at RT, a fraction of the E0.37 defects disappear, yet annealing of the defect is still 

observable in the region of 150 °C. It was stated by Larsen that thermally activated dissociation or 

diffusion would not proceed over such a wide temperature span. 

Larsen et al. explained in his work that the E-center peak is not a combination of contributions from 

other defects. There exists some mobile defect that consumes E-centers and it must be released at 

RT from some unstable source that is created during irradiation. The Ge self-interstitial becomes 

active at a much lower temperature and was ruled out as a candidate. Larsen speculates that the most 

likely cause is that interstitial groups are created during irradiation and a transient release of self-

interstitials takes place at RT. It is seen that the E-center has a very small, temperature dependent 

capture cross section and this implies that the E-center has a repulsive potential. Thus E0.37 is 

assumed to be a double acceptor level (–/=) of the Sb E-center. 
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Figure 6. 4: E center depth profiles in two diodes on Sb2, which were annealed with either a 4V reverse bias 
or with no bias. The depletion layer width W at 4 V is shown. Diodes were irradiated with different doses. 
Profiles were measured 15 days post irradiation (□), three months post 77 °C/5min annealing (○) and after 

120 °C/10min anneal (●).Results were obtained at 205 K with a DLTS double-pulse technique with a 
constant reverse bias of 20V with a pulse difference ΔV = 1.00 V. Inserted are the annealing curves with (▲) 

and without (Δ) bias, as observed by DLTS using -4 V to 0 V applied reverse bias. 
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Table 6.2: Ge was doped with either the indicated elements and irradiated with the indicated proton or 
electron source. Each entry contains the name, apparent enthalpy (eV), apparent capture cross section (cm2) 

at T = ∞ and annealing behaviour (°C). 

 

Ref A: (Bourgoin, et al., 1980) 

Ref B: (Fakuoka & Saito, 1982) 

Ref C: (Fukuoka, et al., 1983) 

Ref D: (Nagesh & Farmer, 1988) 

Ref E: (Marie, et al., 1993) 

Ref F: (Fukuoka & Saito, 1981) 

Ref G: (Mooney, et al., 1983) 

Ref H: (Zistl, 1997) 

Ref I: (Poulin & Bourgion, 1982) 

Ref J: (Fage-Pedersen & Nylandsted Larsen, 2000) 

 

 

              

 
Larsen et al. Bourgion and co-workers Fukuoka and co-workers Marie Nagesh Zistl 

 

Ref J: Ref A, Ref G, Ref I Ref B, Ref C, Ref F Ref E Ref D Ref H 

 
Sb, O Sb, group V Sb, O Sb Sb, O, P Sb 

  H, e e e Pb, Ne η, γ e 

E-center E0.37 E2 E(0.40) ET5 E4 ET5 

 
0.37 0.53 0.4 0.46-0.47 0.35 0.34-0.39 

 
1.1×10

-14
 4×10

-11
 

 
0.4-1.1×10

-12
 

    ↓150 ↓150 ↓97(hs) ↓150 ↓125 ↓150 

Sb and I E0.23 E1 E(0.23) ET3 E2 ET3 

related 0.23 0.23 0.23 0.29 0.17 0.22-0.23 

 
2.0×10

-15
 1×10

-13
 

 
2.2×10

-14
 

    ↑RT, ↓110 ↓110 ↑70, ↓110 ↓90 ↑RT, ↓100 ↑RT, ↓110 

Sb related? E0.21 
  

ET2 E6 (?) 
 

 
0.21 

  
0.27-0.28 0.15 

 

 
7.1×10

-14
 

  
2.0-8.2×10

-12
 

    ↑90, ↓180     ↑80, ↓160 ↑80, ↓170   
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Possible evidence of this idea is seen in annealing experiments. From the E-center profiles in Figure 

6.4 the application of a 4 V reverse bias in the inserted graph was shown to impede annealing of the 

E-center in Ge, as the concentration of the defect remained noticeably higher than the scenario 

when there was no applied bias. This impediment was also observed in the E-center annealing of 

silicon. 

It was found from the slope of the profile in Figure 6.4 that a number of vacancies from the 

irradiation-generated Frenkel pairs had diffused to the surface before they were trapped by Sb 

atoms. Comparison of the application of the reverse bias shows the reduction of the role of the 

surface as a sink for E-center annealing. At an annealing temperature of 120 °C the Fermi level is 

0.08 eV below the E-center. 

Two possible scenarios were proposed by the authors to explain the observed depth profiles of the 

E-center compatible with the idea that the E-center is a double acceptor (–/=). 

Firstly it is proposed that the E-center anneals by diffusion. Migration of E-centers toward the 

surface will at some point, result in the defect being driven back into the bulk as a result of 

strengthening electric fields closer to the surface. Thus only very close to the surface is the E-center 

concentration expected to decrease.  

Secondly they proposed that the E-center anneals by dissociation and the vacancy defect is then lost 

to the surface. Dissociation rates should therefore be low when a reverse bias is applied, meaning 

that the (–) state would be more stable than (=). This stabilization should be stronger than the 

opposite tendency to separate the positive Sb+ component from the negative vacancy component. 

By extension the mobility of the vacancy could be reduced within the depletion region. 

Experimentally, charge states of defects can be indicated by analysis of the DLTS capture cross 

section, the true capture cross section as well as the capture barrier height and dependence of the 

emission rate on the electric field. 

Field effect emission measurements can also give details on the charge state of defects. The Poole-

Frenkel effect is applicable in this circumstance. 
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6.1.3 Summary of findings of Larsen 

Irradiation-induced impurity point defect complexes were investigated in antimony doped n-type 

germanium crystals with characterization of the majority-carrier traps by means of deep-level 

transient spectroscopy (DLTS). An annealing study into the E-center (E0.37) defect had found that 

the way in which this defect annealed was fundamentally different from that in silicon since it shows 

unexpected behavior when under reverse bias. It was speculated in conclusion that E0.37 is the 

double-acceptor level of the E-center. 

Due to the unusual annealing properties  and the metastable properties of the structurally similar B-

V center in Si (Fage-Pedersen & Nylandsted Larsen, 2000), it was decided to study the E-center in 

Ge theoretically. 

6.2 The modelling results  

Modelling of the E-center defect was done by using the methods outlined in Chapter 5. Firstly the 

formation energies of the vacancy defect (VGe) were calculated in the charge states -2 to +2. 

Secondly, the formation energies of the antimony substitutional defect (SbGe) which is known to be a 

shallow level donor in germanium were calculated. When these two defects interact they form the 

Sb-V complex. The results for the Sb-V complex defect are presented at the end of this chapter.  

In all cases the atomic positions were relaxed but the volume of the supercell was not allowed to 

vary from that of the pristine cell to best model the conditions of a cell present in a bulk lattice. The 

reason for this choice is because in a bulk lattice the supercell cannot change its volume much, since 

it is embedded in a rigid host lattice. Thus, the cell’s shape and volume were kept fixed. Finally, the 

defect formation energy as a function of the Fermi level, at various charge states for each defect, is 

shown at the end of each sub-section. 

6.2.1 The VGe defect  

Here the formation energies of the germanium vacancy defect are presented as obtained for each 

charge state, by making use of the HSE06 hybrid functional and are compared to that of known 

published results. 
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Table 6.3: Calculated standard energies of formation (eV) with the Fermi level at the VBM of the germanium 
vacancy defect in each of the explored charge states obtained by use of the HSE06 functional.  

              

 
  Charge states 

 
  +2 +1 0 -1 -2 

This work 
  

3.16 3.02 3.03 3.16 3.62 

Normalized 
relative to lowest 

energy state 
 

 
0.14 0 0.01 0.14 0.6 

(Spiewak, et al., 
2011) 

  4.03 3.38 2.87 3.34 3.98 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 5: Formation energy as a function of the Fermi level (eV) for various charge states for the vacancy 
defect in bulk germanium. 
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Table 6.4: Thermodynamic charge state transition levels (eV) relative to the valence band maximum (VBM) 
using HSE06 functionals for the vacancy defect in germanium.  

          

Transition level -2/-1 -1/0 0/+1 +1/+2 

Present work 
 

0.45 
 

0.14 
 

0.01 
 

-0.14 
(not in 

bandgap) 

(Weber, et al., 2013) 0.38 0.16 0.15 0.14 

Experimental 
(Mesli, et al., 2008) 

0.44 From 
CBM 

Only one level 
measured 

Only one level 
measured 

Only one level 
measured 

 

The result obtained for the germanium vacancy defect is discussed in section 6.3.1. 

 

6.2.2 The Sb-substitutional defect  

Here the formation energies of the antimony substitutional defect in germanium are presented for 

each charge state by making use of the HSE06 hybrid functional.  

 

Table 6.5: Calculated formation energies (eV) of the SbGe defect in germanium relative to the pristine bulk 
system of germanium in each of the explored charge states obtained by use of the HSE06 functional.  

 

 

 

Formation energy   Charge state 

Charge state   2 1 0 -1 -2 

Normalized 
(relative to lowest 

energy state) 
  0 0.21 1.47 2.83 3.97 
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Figure 6. 6: Standard energy of formation as a function of the Fermi Level (eV) for the Sb substitutional 
defect in various charge states (The red line indicating the level of the CBM). Most transition levels lie with 

the conduction band and not within the band gap. 

 

Table 6.6: Thermodynamic charge state transition levels (eV) relative to the valence band maximum (VBM) 
using HSE06 functionals for the antimony substitutional defect in germanium.  

          

Transition level -2/-1 -1/0 0/+1 +1/+2 

Present work 
1.62 

(outside 
bandgap) 

1.36 
(outside 
bandgap) 

1.26 
(outside 
bandgap) 

0.22 

 

The result obtained for the antimony substitutional defect is discussed in section 6.3.2. 
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6.2.3 The Sb-V complex 

In order to model the Sb-V complex, a number of configurations were investigated to better 

understand how the two constituent defects may interact. These configurations will be named C1, 

C2 and C3, whereby the constituent defects are at 1st, 2nd and 3rd nearest neighbour positions. 

 

 

 

 

 

 

 

 

 

 

Figure 6. 7: Figure showing the defect configurations investigated for the V-Sb defect in germanium 

 

The formation energies for the C1 through C3 configurations (defects) were calculated as outlined in 

sections 4.3.1 whereby the defect complex in a particular charge state q was calculated by application 

to the following formula: 

𝛺𝐷,𝑞 = 𝐸𝐷,𝑞 − 𝐸𝐻 − ∑ 𝑛𝑖𝜇𝑖 + 𝑞(𝐸𝑉𝐵𝑀 + ∆𝐸𝐹 + 𝛥𝑉𝑝𝑎)𝑖 + 𝐸𝑀𝑃  (6.1) 

All terms have the respective meanings as outlined in section 4.3.1 with EMP being the Makov-Payne 

correction, which takes into account the electrostatic interactions resulting from the periodicity of 

the defect lattice. 
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Table 6.7: Calculated formation energies (eV) of the Sb-Vcomplex in germanium in each of the explored 
charge states obtained by use of the HSE06 functional, with respect to the configuration of the defect. The 

energy state have been normalized relative to the lowest energy state for each charge state. 

            

Formation energy Charge states 

Configuration -2 -1 0 1 2 

C1 0 0 0 0 0 

C2 0.58 0.51 0.48 0.61 0.53 

C3 0.71 0.65 0.62 0.74 0.65 

 

 

The binding energy of a defect complex is defined as the energy needed to dissociate the defect 

complex into its constituent parts. The binding energy of the Sb-V complex was found using the 

following formulation: 

𝐸𝐵 = 𝛺𝑆𝑏 + 𝛺𝑉 − 𝛺𝑆𝑏𝑉     (6.2) 

Where 𝛺𝑆𝑏 , 𝛺𝑉 and 𝛺𝑆𝑏𝑉 are the respective formation energies of the antimony substitutional 

defect, the vacancy defect and the Sb-V complex in germanium. 

 

Table 6.8: The binding energies as calculated by making use of eq (6.2) for the Sb-V complex in germanium.  

    

Configuration Binding energy (eV) 

C1 1.5 

C2 1.02 

C3 0.88 

 

As seen in Table 6.8 the binding energies of the defect complex in all configurations and charge 

states are positive, indicating that the defect complex forms from its constituent point defects. From 

this we can determine that the complex forms spontaneously and is a stable bound defect complex. 

Also, the binding energy increases as the vacancy moves closer to the antimony. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



79 
 

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8

F
o

rm
at

io
n

 E
n

er
gy

 (
eV

) 

Fermi Level (eV) 

C1

C2

C3

Table 6.9: Thermodynamic charge state transition levels (eV) relative to the valence band maximum (VBM) 
using HSE06 functionals for the Sb-V complex.  

 

Configuration -2/-1 -1/0 0/+1 1/2 

C1 0.52 0.4* 0.44* 0.02 

C2 0.59 0.45 0.31 0.1 

C3 0.58 0.43 0.31 0.1 

*Negative-U: -1/+2 U =-0.04 eV 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 8: Formation energy of the Sb-V complex as a function of the Fermi Level (eV) at various charge 
states for the three defined configurations. 
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6.3 Discussion of the Sb-V complex in germanium 

6.3.1 The vacancy defect 

The structure of the vacancy defect can be viewed in a different way to the traditional understanding 

of an empty void in the lattice. It can be also seen as a collection of strongly interacting dangling 

bonds which give rise to a single symmetric deep state and several degenerate states in the band gap 

(Weber, et al., 2013). The occupancy of these states will affect the formation energy of the vacancy 

and thus the interaction forces can be influenced due to the charge state of the defect. 

 

Figure 6.9: Comparison of the defect level found in different studies of the germanium vacancy. Dashed lines 
represent the level of the CBM in the respective calculations 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



81 
 

Whereas Fazzio et al. (2000), used LDA with modifications to the germanium pseudopotential in 

order to correct the band gap calculated, this work used hybrid functionals with spin-polarization. 

 Spiewak et al. (2008) used the LDA+U approach to correct the band gap yet even with corrections 

the band gap remained underestimated. Similar positions are found for the (0/-1) and the (-1/-2) 

transitions in the Spiewak and Weber works and this is attributed to the interorbital repulsion and by 

making use of spin-polarized calculations.  

Tahini et al. (2011) made use of a GGA+U functional that almost perfectly modelled the bandgap of 

germanium, yet their calculation lacked spin-polarization and failed to locate the transition of the 

(+2/+1) and the (+1/0) states in the band gap. Weber et al. (2013) makes several points as to the 

validity of the choices of the magnitude U, yet no real consensus is reached in his work on this 

point. It appears vital that more than merely accurately predicting the value of the bandgap is 

required to correctly determine the transition levels. 

The most direct comparison from these results can be made with the work of Weber et al. (2013) 

since both made use of the HSE06 hybrid pseudopotential as well as spin-polarization. The 

correspondence between the results is, however, not as good as might be expected. 

Weber et al. (2013) made use of a 216 atom supercell, whereas this study used only a 64 atom 

supercell. An issue could arise in the non-uniformity of defect to defect interactions whereby the 216 

atom cell is 1x2x2 rectangular cell and the defect to defect interaction in the vertical plane can be 

different to the interaction in the horizontal plane as the model is being calculated, which can lead to 

some unintended consequences. On the other hand, the defect is not symmetrical either, so the 

asymmetry of the supercell might not be that much of a problem. The consequences of this have yet 

to be fully determined as the symmetry of the unit cell was not considered in the preliminary 

convergence studies as a possible limiting factor.  

A second difference is that Weber et al. (2013) made use of Γ-point sampling rather than a k-point 

mesh.  Γ-point sampling has been found to be insufficient to represent the whole Brillouin zone and 

the total energy of formation is significantly different form that calculated using different meshes 

(Shim, et al., 2005). However the method offers additional savings on computational resources as 

the wave functions used are purely real. The method is still used in many calculations based on the 

thinking that systematic errors in formation energies will tend to cancel out if the supercell sizes are 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



82 
 

the same. But this is not always the case, as the errors do not always cancel. An example of such a 

case is when Γ-point sampling used to calculate the silicon vacancy and interstitial defects when 

taking the energy difference between the pristine bulk lattice and the supercell containing the defect 

(Puska, et al., 1998). 

Having said this, the transition for the (0/-1) state is identical to that of Weber et al. and the only 

considerable differences is that our method results in a much lower position  of the (+1/0) 

transition and the falling away of the (+2/+1) state. In comparison, all referenced works aside from 

Fazzio et al. have failed to determine this transition to lie within the band gap as well. It is 

determined by Weber et al. that the behaviour of the (+2/+1) and the (+1/0) transition levels has 

more to do with the repulsive and attractive forces created by the dangling bonds within the vacancy 

and thus are seen to be charge state transitions. 

The formation energies of the vacancy defect were calculated and compared to later work of 

Spiewak et al. shown in Table 6.3 using hybrid functionals. The results obtained here agree with the 

results shown by Spiewak et al. Noteworthy however, Spiewak et al. did not include spin-orbit 

coupling and used a reduced plane-wave cut-off of 260 eV as apposed to the 400 eV used in this 

work. The size of the supercell and the k-point mesh used in both studies was the same. The lack of 

agreement in the results can be seen more clearly in the charge states of the defect and this is an 

indication that the spin orbit coupling does indeed play a significant role in the final result in each 

case.  

6.3.2 The substitutional antimony defect 

The results presented here are now based on the technique established by the comparison of the 

results of the vacancy defect to that of other published work. To our knowledge, there exists no 

LDA or GGA functional research applied to the SbGe defect and even less in the way of hybrid 

functional studies into the matter. From this point on it is important to note that spin-orbit coupling 

was no longer included in the results as it became too computationally expensive for reasonable 

computational times.  

The normalized formation energies of the antimony substitutional defect are summarised in Table 

6.5. The results presented in Table 6.6 indicate that all but one transition level, namely the (+2/+1) 

lie outside of the band gap within the conduction band. The results do, however, correctly predict 
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that the +1 charge state should be the most stable state when the Fermi level is in the upper half of 

the band gap. The main effect influencing the results is that the supercell used is too small to 

accurately model the defect. 

Antimony is a shallow level donor, which is typically modelled not by DFT but rather using the 

hydrogenic model, where the electron mass and vacuum permittivity in the Bohr model is replaced 

by the effective mass of the charges in the semiconductor and the semiconductor permittivity 

respectively. This leads to a large Bohr radius of several hundred angstrom and shallow energy 

levels. The large Bohr radius implies that the electron wave function is spread out over many unit 

cells and that modelling such a system in a small supercell will lead to large errors due to interaction 

between the donor and the periodic images. 

It is therefore expected that the formation energy of the charge states is significantly over-estimated 

and that, as the supercell size increases, the energy due to the +1 charge state should drop. 

The absence of electron spin could also have lead to additional errors. The results obtained were 

difficult to conclude as little comparison exists. Apart from our initial computational conditions it 

was seen that spin orbit coupling is required to ensure better accuracy. A clarification into the value 

of the chemical potential of antimony under these conditions is also required for accurate calculation 

of the formation energy term of substituted atomic species. This section specifically is now a topic 

of further work. 

6.3.3 The Sb-V complex 

The formation energies of the Sb-V complex are shown in Table 6.7 for the neutral state and four 

charge states. The binding energies were calculated according to Equation (6.2) and are shown in 

Table 6.8 and finally, the charge state transition levels are shown for each configuration of the defect 

in Table 6.9. 

The binding energy of the defect complex is the energy required to dissociate the defect complex 

into its constituent point defect. The binding energy of the antimony-vacancy complex was found to 

be positive for all configurations. This result shows that the complex has formed its constituent 

parts and is defined as a stable bound defect which implies that once formed, it requires externally 

applied energy to dissociate it. The formation energies and charge state transition levels were found 

to be dependent on the position of the vacancy relative to the antimony substitutional defect, thus 
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configurationally dependent. The C1 configuration was found to be the lowest energy configuration 

in all charge states, followed by the C2 configuration and finally the C3 configuration as the highest 

energy configuration. The evidence from the formation energies shows that configuration C1 will 

form spontaneously from configuration C2 and C3. It can be seen from this result that charge state 

controlled metastability is not evident from these results obtained, as the evidence of apparent 

charge state controlled metastability depicted and explained in section 5.3.1 and 5.3.3 is not shown 

here. 

In experimental terms, for the occupation of two distinct defect configurations in the same charge 

state to differ significantly, there is required to be a difference in the formations energies of both 

configurations of approximately kT. When this difference in formation energy is in the order of 3kT 

(≈0.06 eV at 215 K) or larger the occupation ratio between the two configurations would be in the 

region of 1:10 or larger. Thus implying one configuration dominates. 

By making use of Figure 6.8 we can observe the energy of the defect complex in various 

configurations as a function of the Fermi level. The minimum energy configuration when the defect 

is under zero bias (EF = EV) is C1 and this remains to be the minimum energy configuration 

throughout the band gap. At no point does configuration C2 or C3 become the minimum energy 

configuration as we move through the band gap. As explained in section 3.4.1, the defect in 

configuration C1 shows some negative-U behaviour for the +/0 and 0/– transition levels. This 

effect is small, however still detectable which has been in the past linked to metastable behaviour in 

defects. The total value of the negative-U effect was found to be -0.04 eV.  

Under zero applied bias conditions, the difference in formation energy between configurations C1 

and C2 is 0.53 eV, which is far greater that 3kT at 215 K. This implies that the majority of defects 

will be in configuration C1. This is in agreement with Larsen et al. (Fage-Pedersen & Nylandsted 

Larsen, 2000). 

The same scenario is observed under reverse bias conditions whereby the difference in configuration 

C1 and C2 at the conduction band is 0.58 eV which is again significantly larger than 3kT. This 

implies an even larger concentration of defects in the C1 configuration. The transitions would now 

appear to be deeper in the band gap (closer to the VBM) than that of the previous applied 

conditions. The (+2/+1) transition is now lying 0.02 eV from the VBM when under reverse applied 
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bias and thus is not likely to be observable by DLTS. Yet the three defects will still be detectable 

with E0.37 having the largest concentration which is in agreement with Larsen. 

As mentioned earlier, the E0.37 had a DLTS signature of E = 0.37 eV and based on its small capture 

cross section the level was assumed to correspond to the -1/-2 transition. However the capture 

cross sections observed by others, vary widely, so this assignment may be incorrect. Futher 

measurements by Auret et al. (to be published) seem to confirm the small capture cross section and 

also indicate the presence of a capture barrier. 

It was found by Markevich et al. 2004) in an experimental DLTS study into the Sb-V complex, that 

the complex has 4 charge states, namely; 1) the doubly negative 2) the single negative 3) neutral and 

4) positive state, with three corresponding energy levels in the gap. Thus three transitions would be 

found within the band gap. In comparison 4 transitions were found by use of DFT but the fourth 

transition, the E (0/+1) level, lies just within the band gap. This can be attributed to a number of 

considerations already discussed as to the deviations from known experimental theory. The E (=/–) 

was confirmed to be an electron trap at 0.37 eV and the E (–/0) and E (0/+) levels hole traps with 

energies 0.307 eV and 0.30 eV by Markevich. For the electron trap the position of the double 

acceptor was found to be temperature dependent but at 0 K and was calculated to be 0.386 eV from 

the conduction band minimum. The position predicted for the double acceptor level in this study 

was found to be 0.26 eV from the conduction band minimum. Under equilibrium conditions half 

occupancy of the double acceptor level occurred in the range of Ec – (0.19– 0.21) eV according to 

Markevich, whilst it was determined by this study that this level theoretically would be placed in the 

range of Ec – (0.26– 0.38) eV. 
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Chapter 7 

Conclusions 

We have investigated the properties of the Sb-V complex in germanium, from the formation 

energies of the constituent parts to their binding energies in various configurations, using the Heyd-

Scuseria-Ernzerhof (HSE06) hybrid functional within DFT and compared the results where possible 

to both theoretically and experimentally published work. 

With respect to the results for vacancy in germanium defect, it was shown that even though 

differences were obtained to the work of Weber et al. (Weber, et al., 2013) these differences were 

accounted for in the choices of initial computational conditions. The results obtained did agree well 

with the work of Weber et al. in the (-2/-1) and the (-1/0) charge states. The (0/+1) state was found 

in this study to be positioned much deeper in the band gap than that found by Weber et al. and the 

(+1/+2) transition was found to lie outside the band gap, inside the valence band by this study. The 

formation energies of the vacancy defect were found to match very well with that of more recent 

work by Spiewak et al. (Spiewak, et al., 2011) whereby hybrid functionals were used to determine the 

formation energy of the vacancy in germanium. 

With respect to the antimony substitutional defect germanium defect, the nature of the defect being 

a shallow level donor implies that DFT is going to struggle to yield accurate results unless very large 

supercells are used. The +1 charge state was predicted to be the most stable configuration when the 

Fermi level lies closer to the CBM.  

With respect to the antimony-vacancy complex (E-center) defect in germanium, the possible 

existence of metastability was explored by making use of the highly accurate hybrid functional 

technique within the VASP code. Experimental results hinted at possible metastability, yet no 

theoretical grounds for the metastability was found. These findings were consistent with the current 

experimental model of the Sb-V complex in germanium whereby no metastability has been observed 

experimentally. Yet consistencies were observed with the experimental results of Larsen and the 
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concentrations of the Sb- related defects in germanium detected by DLTS processes confirm the 

validity of our results. 

However, the negative-U behavior of the C1 configuration suggests that further theoretical and 

experimental work should be done. 

Suggested future work to expand upon this study: 

1. Further investigation into the negative-U behavior of the C1 configuration. 

2. Extending the modelling of germanium to include the interactions of its ten 3d orbital valence 

electrons, from the standard 4 valence electrons in the 4s and 4p orbitals shells, coupled with spin 

orbit coupling applied to the Sb-V complex will further increase the accuracy of the DFT process. 

Yet this increase from 4 valence electrons to 14 valence electrons has in trials done so far increased 

the computational time from several days to several months per calculation and to date had yet to 

yield reportable results. 

3. Performing transition state searches (TSS) on the C1 to C2 and C2 to C3 configurations to 

accurately determine the dissociation and migration energies of the defect. 

The results for all further purposes eliminate the E-center as a source of clearly observable charge 

state controlled metastability, yet the existence of the negative-U behavior implies further work is 

required. It allows us to also consider turning the search towards interstitials and interstitial clusters, 

which will form part of future a future study..  
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