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Abstract

The aim of this research is to develop a method for expanding the Jost func-

tions as a Taylor-type power series on the complex angular momentum plane.

From this method in conjunction with the Watson transformation, we were

able to express the scattering amplitude as a sum of the background and pole

terms, furthermore, this method propose a way of evaluating, numerically,

the pole term. To demonstrate how this method may be applied, we con-

sidered the Born approximation. We found out that the developed method

improved the Born approximation at large scattering angles. Therefore, this

method is useful when the differential cross section of the background term

fails to converge to that of the exact differential cross section at large scat-

tering angles.
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Chapter 1

Introduction

”Much of our understanding about the structure of matter is extracted from

the scattering of particles. Had it not been for scattering, the structure of

the microphysical world would have remained inaccessible to humans. It is

through scattering experiments that important building blocks of matter,

such as the atomic nucleus, the nucleons, and the various quarks, have been

discovered.” ∼ Nouredine Zettili [1].

As a motivation to this quote, Basdevant and Dalibard [2] gave the following

applications of scattering; Rutherford’s experiment, which was based on the

scattering of α particles by gold atoms, proved the existence of a nucleus

with a positive charge and a size of 105 times smaller than the atomic radius.

Modern laser spectroscopy, which provides information on the structure of

atoms and molecules, may be considered as a photon scattering process. The

scattering of conduction electrons by impurities in the crystal, provides us

with the information to understand quantitatively the electric conductivity

of a metal. And they further wrote, Particles that are incident at very large

energies, by modern accelerators, allow us to examine matter thoroughly at

short distances (≤ 10−18m), therefore, particle physics is based on the anal-

1
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ysis of scattering processes.

The cross section measures how much of the incident particles would be

scattered by the potential into a solid angle, is an observable quantity, mean-

ing it can be obtained experimentally. In classical scattering, we have an

incident particle with energy E and impact parameter b, that is deflected by

the potential and emerges at an angle θ, that is known as a scattering angle.

��
��
��
��

��
��

6

?

v - θ

b
6

R
?

E

r

Figure 1.1: Classical view of scattering-Particle with energy E and impact b
incident towards a potential with range R and scattering angle θ

The scattering angle θ is the angle between the incoming and outgoing

trajectory. This scattering angle depends on the incident energy, E, as well

as the impact parameter,b. For example, for fixed energies and b < R(b > R),

where R is the range of the potential, the scattering angle will be large(small).

For high energies and fixed b, the particle will spent less time around the

potential as a result θ would be small. Therefore for a spherical symmetric

potentials, the differential cross section is expressed as

dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ . (1.1)
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Thus we can calculate the differential cross sectional (1.1) if, for a given

energy, we know the impact parameter b. According to [3], Eq. (1.1) holds

only if the de Brogile wavelength of the incident particle is smaller than the

dimensions of the scattering region. As the de Brogile wavelength increases,

quantum uncertainty starts to restrict us from knowing simultaneously both

the momentum and position (which can be related to impact parameter) of

the beam. As a consequence, we now move from the classical regime to a

quantum one. For the latter regime, calculations are made by considering

the wave characteristics of the particle.

-�
�
�
�
�
�
��

-

θ

eikx

r x

Figure 1.2: Quantum scattering- A plane wave with momentum k that is
scattered spherical outwards and an angle θ

In quantum scattering, instead of beam of particles, we have a plane wave

with energy E which moves towards the potential, after the wave-potential

interaction the plane wave is transformed into a spherical outgoing wave [4].

For quantum scattering, the differential cross-sectional area for symmetric

potentials is expressed as
dσ

dΩ
= |f(θ)|2 . (1.2)

We can calculate the cross section (1.2) if, for a given energy and scatter-

ing angle θ, we know the scattering amplitude f(θ) - which is calculated by

3
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solving the Schödinger equation [4]. The scattering amplitude represents the

probability of scattering in the direction of the angle θ.

There are numerous approaches dedicated for the calculation of the scat-

tering amplitude, as it can be seen in [5], amongst others, there is the Born

approximation [1], which is useful when the incident beam has high energies

or experiences weak scattering potentials. High energies implies that the

average interaction between the incident particle and the potential will be

small, as a result the scattering angle will also be small and thus the scat-

tered wave may be approximated to be the incident plane wave.

According to [5], the method of partial wave analysis expresses the scat-

tering amplitude as a series where the summation variable is the orbital

angular-momentum quantum number(`),

f(θ) =
∞∑
`=0

(2`+ 1)f`(E)P`(cos θ). (1.3)

This method is valid for low energies and finite range potentials - if the range

of the potential is R and k is the momentum (or wave number) of the particle,

then the partial waves that would contribute to scattering will be such that

` ≤ kR.

Last but not least, is the semi-classical method [5] which is valid when the

de Brogile wavelength of the incident particle is short compared to the range

of the potential. For a potential of range R and incident energy k, the semi-

classical condition is

kR� 1.

The scattering amplitude is expressed in terms of a series of partial waves

4
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(PW) with the variable being a non-negative integer, this series is slowly con-

vergent. The Complex Angular-Momentum approach (CAM), as the name

suggests, allows the angular momentum to assume complex values and when

it is coupled with the Watson transformation - which converts the infinite

partial wave series into a contour integral - PW series and thus the scattering

amplitude is represented as a sum of pole terms and a background integral,

which converges faster than the series.

T. Tamura and H.H Wolter [7], investigated the analytic continuation of

the S-matrix in the complex ` plane for the Woods-Saxon optical potential.

They studied exact behavior of the pole and background terms. They ob-

served that for elastic scattering, models that uses background-single-pole

reproduce the scattering amplitute accurately for sufficiently high energies

and the system treated was strongly absorptive.

The scattering amplitude is mostly, if not always, expressed as a partial

wave series for elastic collisions[6]-[8]. Furthermore, it is also expressed as a

sum of the background term and the pole sum. Connor [6], calculates the

Regge poles and residues using the semi-classical (WKB) approximation tech-

nique for diffraction scattering in atom-atom scattering and observed that for

diffraction scattering in atom-atom collisions, the differential cross-section of

the partial wave with the summation of several hundreds may be fully ex-

pressed as the sum of the background integral and a single pole, where the

error between the CAM approach and the experimental data was very small.

Moreover, observed that the CAM technique explains diffraction scattering

well if the absolute value of the residue have magnitudes of order unity i.e

less than 10.

The main idea of this thesis is to develop a method for expanding the Jost

5
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functions as a power series in the complex angular momentum plane. We

demostrate the application of this method by considering the Born approxi-

mation. We further found out that this method improved the Born approxi-

mation at large scattering angles.

This thesis is organised as follows.

� Chapter 2 we do the following:

– Section 2.1, starts by defining Jost functions and how they are

calculated.

– Section 2.2, we define Regge poles as well as Regge trajectories and

determine where these poles are located in the complex angular

momentum plane.

– Section 2.3, we prove that the Jost functions are analytic with

respect to the angular momentum parameter. Afterwards obtain

the power series expansion of the Jost functions for short range

potentials.

� Chapter 3, we define scattering amplitude and relate it to the differen-

tial cross section.

� Chapter 4, we demostrate with an example of how the developed method

may be used in applications.

� Chapter 5, we compare the results of the exact differential cross section

to that of the partial wave method as well as that of the complex

angular momentum method.

� Chapter 6 is the conclusion.

6
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Chapter 2

Theory

2.1 Jost function

The bound, scattering and resonance states are three physical problems that

are associated with the Schröndger equation. The difference between these

states is the boundary condition imposed on the wave function at large dis-

tances. The description of these states can be unified by using the Jost

function approach. Jost functions, which are purely mathematical entities,

have an extraordinary property, their zeros in the complex angular momen-

tum plane are exactly at those values of the momentum at which the system

has bound, scattering and resonance states. In essence, these functions offer

an exquisite way of solving physical problems by locating those zeros. In this

section, we will derive differential equations for calculating the Jost functions

and provide a definition of a power series.

7
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2.1.1 Calculations of the Jost functions

In order for us to find a way of calculating the Jost function, we start by

solving the the radial Schrödinger equation[
d2

dr2
+ k2 − l(l + 1)

r2

]
ul(E, r) = V (r)ul(E, r), (2.1)

by the variation parameter method (Appendix A), where ul(E, r) represents

the radial wave function,

ul(E, r) = h
(−)
l (kr)F

(in)
l (E, r) + h

(+)
l (kr)F

(out)
l (E, r). (2.2)

At large distances the potential energy vanishes and the wave function be-

haves like a linear combination of the Riccati-Hankel functions satisfying the

equation [
d2

dr2
+ k2 − l(l + 1)

r2

]
h
(±)
l (kr) = 0. (2.3)

In Eq. (2.2), the wave function ul(E, r) is expressed in terms of two unknown

functions F
(in)
l (E, r) and F

(out)
l (E, r) which are related to each other. We

can impose an arbitrary condition that describes the relationship between

F
(in)
l (E, r) and F

(out)
l (E, r). Let that relationship be

h
(−)
l (kr)∂rF

(in)
l (E, r) + h

(+)
l (kr)∂rF

(out)
l (E, r) = 0. (2.4)

The condition (2.4) is known as the Lagrange condition. When (2.2) is

substituted into (2.1), the first term becomes

d2

dr2
ul(E, r) =

d

dr

[
∂rh

(−)
l (kr)F

(in)
l (E, r) + h

(−)
l (kr)∂rF

(in)
l (E, r)

]
+

d

dr

[
∂rh

(+)
l (kr)F

(out)
l (E, r) + h

(+)
l (kr)∂rF

(out)
l (E, r)

]
,

(2.5)

8
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then applying (2.4) to Eq. (2.5),

d2

dr2
ul(E, r) =

d

dr

[
∂rh

(−)
l (kr)F

(in)
l (E, r) + h

(+)
l (kr)∂rF

(out)
l (E, r)

]
. (2.6)

Rewriting (2.1) in terms of (2.6):

[
d2

dr2
+ k2 − l(l + 1)

r2

] [
h
(−)
l (kr)F

(in)
l (E, r) + h

(+)
l (kr)F

(out)
l (E, r)

]
+ ∂rh

(−)
l (kr)∂rF

(in)
l (E, r) + h

(+)
l (kr)∂rF

(out)
l (E, r) = V (r)ul(E, r), (2.7)

substituting (2.3) into (2.7):

∂rh
(−)
l (kr)∂rF

(in)
l (E, r) + ∂rh

(+)
l (kr)∂rF

(out)
l (E, r) = V (r)ul(E, r), (2.8)

writing (2.4) as

h
(−)
l (kr)∂rF

(in)
l (E, r) = −∂rh(+)

l (kr)∂rF
(out)
l (E, r). (2.9)

Then (2.8) becomes

∂rh
(−)
l (kr)∂rF

(in)
l (E, r)− h

(−)
l (kr)

h
(+)
l (kr)

∂rh
(+)
l (kr)∂rF

(in)
l (E, r) = V (r)ul(E, r).

(2.10)

Thus

− 1

h
(+)
l (kr)

[
h
(−)
l (kr)∂rh

(−)
l (kr)− h(+)

l (kr)∂rh
(+)
l (kr)

]
∂rF

(in)
l (E, r)

= V (r)ul(E, r). (2.11)

9
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The Wronskian of the Riccati-Hankel function is known as

h
(−)
l (kr)∂rh

(+)
l (kr)− h(+)

l (kr)∂rh
(−)
l (kr) = 2ik. (2.12)

Then substituting (2.12) into (2.14), we obtain

− 1

h
(+)
l (kr)

(2ik) ∂rF
(in)
l (E, r) = V (r)ul(E, r), (2.13)

similarly, for ∂rF
(out)
l (E, r) we obtain

1

h
(−)
l (kr)

(2ik) ∂rF
(out)
l (E, r) = V (r)ul(E, r), (2.14)

where ul(E, r) was defined in (2.2). Therefore, the first-order coupled differ-

ential equations for the new unknown functions are as follows :

∂rF
(in)
l (E, r) = −h

(+)
l (kr)

2ik
V (r)

[
h
(−)
l (kr)F

(in)
l (E, r) + h

(+)
l (kr)F

(out)
l (E, r)

]
(2.15)

∂rF
(out)
l (E, r) =

h
(−)
l (kr)

2ik
V (r)

[
h
(−)
l (kr)F

(in)
l (E, r) + h

(+)
l (kr)F

(out)
l (E, r)

]
.

(2.16)

Equations (2.15) and (2.16) are equivalent to the radial Schrödinger equa-

tion (2.1). When the potential, V , vanishes at r > R, the right hand side

(RHS) of (2.15) and (2.16) becomes zero. As a result the unknown func-

tions F
(in)
l (E, r) and F

(out)
l (E, r) become constants. The form (2.2) ensures

that the solutions have correct asymptotic behaviour outside the interaction

region. h
(−)
l (kr) and h

(+)
l (kr) are singular at r = 0, but those singularities

cancel each other, if they are superimposed

h
(−)
l (z) + h

(−)
l (z) = 2jl(z). (2.17)

10
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This is achieved when both F
(in)
l (E, r) and F

(out)
l (E, r) have the same value

at r = 0, i.e

F
(in)
l (E, 0) = F

(out)
l (E, 0). (2.18)

Since we are not concerned with their normalization, then

F
(in/out)
l (E, 0) = 1. (2.19)

Comparing (2.2) with the corresponding asymptotic behaviour

ul(E, r) −→
r→∞

h
(−)
l (kr)f

(in)
l (E) + h

(+)
l (kr)f

(out)
l (E), (2.20)

it follows that

f
(in)
l (E) = lim

r→∞
F

(in)
l (E, r), (2.21)

and

f
(out)
l (E) = lim

r→∞
F

(out)
l (E, r). (2.22)

The superscripts in and out mean incoming and outgoing functions, respec-

tively. Eqs. (2.21)-(2.22) are the Jost functions and in order to calculate

them, we have to determine first the unknown functions F (in/out) from (2.15)-

(2.16) at large values of distance r.

2.1.2 Power series expansion

If a function f(z) is analytic(differentiable) at the point p, which is contained

in the domain of a complex plane D i.e p ∈ D, then the Taylor-type power

series about the point p is given by [9]

f(z) =
n∑
n=0

an(z − p)n, (2.23)

11
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where

an =
f (n)(p)

n!
, for n ≥ 0

are known as the expansion coefficients of the power series.

Therefore, to obtain a power series of the Jost functions for fixed energies and

arbitrary complex angular momenta, we have to choose an arbitrary point

in some domain D, in the complex angular momentum(CAM) plane and do

an expansion about that point.

2.2 Location of the Regge Poles

In this thesis we will be working only with scattering states. The energy

of this state is real and positive. For us to obtain a power series expansion

of the Jost functions in the complex angular momentum plane, we have to

determine in which quadrant the scattering states are located. Thus, this

will be the objective for this section.

For a fixed value of the energy, the poles of the S-matrix, which are such

that f
(in)
` (E) = 0, in the complex angular momentum plane are called the

Regge poles [5]. A Regge pole is a complex number

` = `r + i`I , (2.24)

where `r denotes the real part of ` and `I the imaginary part. A curve that

is traced out when the Regge pole moves, as a result of increasing energy,

in the complex `-plane is called the Regge trajectory. This trajectories play

an important role, since they determine where a resonance and bound state

occur in the CAM plane, i.e the former occur when E > 0 and `r is equal

to a non-negative integer and `I must be very small, whereas the latter also

12
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occur when `r is equal to a non-negative integer but E < 0 [5].

Regge trajectories may consist of both bound and resonance spectral points.

Thus, by obtaining this trajectory it would be possible to determine at which

energies and partial waves a bound or resonance state must exist [14]. The

radial wave function for a stationary scattering state at large distances is

given by

u(E, r) −→
r→∞

h
(−)
` (kr)f

(in)
` (E) + h

(+)
` (kr)f

(out)
` (E). (2.25)

For Regge poles f
(in)
` (E) = 0 must hold, hence (2.25) becomes

u`(E, r) −→
r→∞

h
(+)
` (kr)f

(out)
` (E)

−→
r→∞

[
−iei(kr−`

π
2
)
]
f
(out)
` (E)

−→
r→∞

exp
[
i(kr − π

2
(Re(`) + 1)) +

π

2
Im(`)

]
f
(out)
` (E),

(2.26)

in eq. (2.26) we used the fact that

−i = exp(−iπ/2).

The boundary condition of the wave function is given as

u`(E, 0) = 0. (2.27)

For complex values of `, the Schrödinger equation becomes[
d2

dr2
+ k2 − ` (`+ 1)

r2
− V (r)

]
u`(E, r) = 0, (2.28)
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where

`(`+ 1)

r2
=

Re(`(`+ 1)) + i Im(`(`+ 1))

r2

=
(Re`+ 1)Re`− (Im`)2

r2
+ i

(2Re`+ 1)Im`

r2
.

(2.29)

If k is real, then its complex conjugate is real and this implies that k2 will

be real too. Therefore[
d2

dr2
+ k2 − 1

r2
Re[`(`+ 1)] + i

1

r2
Im[`(`+ 1)]− V (r)

]
u`(E, r) = 0, (2.30)

[
d2

dr2
+ k2 − 1

r2
Re[`(`+ 1)]− i 1

r2
Im[`(`+ 1)]− V (r)

]
u∗`∗(E, r) = 0.

(2.31)

Eq. (2.31) was obtained by taking a the complex conjugate of Eq. (2.30).

u∗`∗(E, r) is the complex conjugate of u`(E, r).

Multiplying (2.30) and (2.31) by u∗`∗(E, r) and u`(E, r), respectively, and

then substract (2.31) from (2.30) results,

2 i Im[`(`+ 1)]
|u`(E, r)|2

r2
= u∗`∗u

′′
` − (u∗`∗)

′′
u`

=
d

dr

[
u∗`∗u

′
` − (u∗`∗)

′
u`

]
,

(2.32)

where u′ and u′′ are the first and second derivative with respect to r. Since

for scattering states the momentum k is real, then it follows that at large

distances Eq. (2.26) is pure oscillatory and thus it is bounded, i.e |u`(E, r)| <
M . As a result we have

0 <

∞∫
0

|u`(E, r)|2

r2
dr <∞, (2.33)
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u`(E, r) −→
r→∞

exp
[
i(kr − π

2
(Re(`) + 1)) +

π

2
Im(`)

]
f
(out)
` (E),

u∗`∗(E, r) −→
r→∞

exp
[
−i(kr − π

2
(Re(`) + 1)) +

π

2
Im(`)

]
f
(out)∗
`∗ (E),

(2.34)

u
′

`(E, r) −→
r→∞

ik exp
[
i(kr − π

2
(Re(`) + 1)) +

π

2
Im(`)

]
f
(out)
` (E), (2.35)

(u∗`∗(E, r))
′ −→

r→∞
−ik exp

[
−i(kr − π

2
(Re(`) + 1)) +

π

2
Im(`)

]
f
(out)∗
`∗ (E).

(2.36)

Integrating both sides of (2.32) and taking into account (2.27) as well as

substituting (2.34) - (2.36) into the RHS of (2.32) gives

Im [`(`+ 1)]

∞∫
0

|u`(E, r)|2

r2
dr = k|f (out)

` (E)|2eπIm `. (2.37)

All other factors in (2.37) are positive, therefore

Im [`(`+ 1)] > 0.

For spectral points, Re ` ≥ 0, we conclude that

Im ` > 0.
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Therefore, the Regge poles for scattering are located in the first quadrant of

the complex angular momentum plane.

2.3 Analyticity of the Jost function

In section 2.2, we have shown that the Regge poles for scattering are located

in the first quadrant of the CAM plane. The next step towards expressing

the Jost function as power series of ` is to show that the Jost functions are

analytic inside some arbitrary circle.

To obtain the power series expansion of the Jost functions, we start by

choosing an arbitrary point, `0, in the first quadrant of the complex an-

gular momentum plane. Then we do a power series expansion about that

point in the circle, γ, as shown in Fig. (2.1).

We now show that the solutions of the differential equations (2.15) and (2.16)

are analytic with respect to the parameter `. To prove analyticity, we use

the Poincarè theorem.

This theorem say that, at every fixed r a solution ϕ(ζ, r) of the differential

equation

d2

dr2
ϕ(ζ, r) + J(ζ, r)

d

dr
ϕ(ζ, r) +K(ζ, r)ϕ(ζ, r) = 0, (2.38)

where J(ζ, r) and K(ζ, r) are analytical functions of the parameter ζ, is an

entire function of this parameter if the boundary conditions ϕ(ζ, r0) and

∂rϕ(ζ, r0) at a regular point r0 are independent of ζ.

16
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Im`
6

- Re`

γ
��	

`0
r

Figure 2.1: An arbitrary point `0 inside the circle γ in the complex angular
momentum plane

From the boundary condition (2.19), we obtain

F
(in/out)
` (E, 0) = 1, (2.39)

where r = 0 is a regular point. Applying the Poincaré theorem on (2.39),

we conclude that the functions F
(in/out)
` (E, 0) are analytic with respect to

the parameter `. Now, we have to show that the coefficients, h
(±)
` (kr), are

analytic with respect to the parameter ` as well.

The Riccati-Hankel functions h
(±)
` (kr) are defined as

h
(±)
` (kr) = j`(kr)± in`(kr), (2.40)

where j`(kr) and n`(kr) are know as the Riccati-Bessel and Riccati-Neumann

functions, respectively. These two Riccati functions are linearly independent,

which means that

j`(kr) 6= cn`(kr),
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for any constant c.

The Riccati-Bessel and Riccati-Neumann functions are solutions of the ’free’

Schrödinger equation[
d2

dr2
+ k2 − ` (`+ 1)

r2

]
u`(E, r) = 0, (2.41)

where u`(E, r) = h
(±)
` (kr) = j`(kr)± in`(kr) and

j`(kr) =

(
π(kr)

2

) 1
2

J`+ 1
2
(kr), (2.42)

and

n`(kr) =

(
π(kr)

2

) 1
2

Y`+ 1
2
(kr). (2.43)

J`+ 1
2
(kr) and Y`+ 1

2
(kr) are respectively known as the Bessel and Neumann

functions, which are defined as

Jv(z) =

(
z
2

)v
π

1
2

π∫
0

cos(z cos(θ)) sin2v(θ) dθ, (2.44)

Yv(z) =
Jv(z) cos(πv)− J−v(z)

sin(πv)
, (2.45)

for non-integer values of v.

The boundary conditions for Eq. (2.41) are

j`(kr) −→
r→0

(kr)`+1∏̀
i=1

(2i+ 1)

, (2.46)
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and

n`(kr) −→
r→0

(kr)−`
∏̀
i=1

(2i− 1). (2.47)

The problem with equations (2.46) and (2.47) is, both of them depend on

` and as a result the Poincarè theorem can not be employed. In order to

circumvent this problem we re-normalize (2.46) and (2.47);

j̃`(kr) =

∏̀
i=1

(2i+ 1)

(kr)`
j`(kr) −→

r→0
kr (2.48)

ñ`(kr) =
(kr)`∏̀

i=1

(2i− 1)

n`(kr) −→
r→0

1 (2.49)

Note: the function j̃`(kr) has the same analytic properties as j`(kr), except

for the point k = 0, and also ñ`(kr) has the same properties as n`(kr).

Then

∂r j̃`(kr) −→
r→0

k, (2.50)

∂rñ`(kr) −→
r→0

0. (2.51)

The re-normalized equations (2.48)-(2.51) are independent of the parameter

`.

We rewrite (2.48) and (2.49) as;

j`(kr) =
(kr)`

c1
j̃`(kr), (2.52)
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and

n`(kr) = c2(kr)
−`ñ`(kr), (2.53)

where

c1 =
∏̀
i=1

(2i+ 1),

and

c2 =
∏̀
i=1

(2i− 1).

To show that j`(kr) and n`(kr) are analytic, we only need to show that the

product on the RHS of (2.52) and (2.53) are analytic functions of `.

(kr)` and (kr)−` are analytic, since they are differentiable with respect to

` at every point, except for r = 0 in the case of (2.53).

Then from (2.52):

∂rj`(kr) =
1

c1

(
`(kr)`

r
j̃`(kr) + (kr)`∂r j̃`(kr)

)
.

∂2r j`(kr) =
1

c1

(
(`2 − `) (kr)`

r2
j̃`(kr) + 2`

(kr)`

r
∂r j̃`(kr) + (kr)`∂2r j̃`(kr)

)
.

(2.54)

Substituting (2.54) into (2.41)

(kr)`

c1

(
−`(1− `)

r2
j̃`(kr) +

2`

r
∂r j̃`(kr) + ∂2r j̃`(kr)

)
+

(kr)`

c1

(
k2j̃`(kr)−

` (`+ 1)

r2
j̃`(kr)

)
= 0,

(2.55)

multiply (2.55) by
c1

(kr)`
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[
∂2r + k2 − ` (`+ 1)

r2

]
j̃`(kr) +

2`

r
∂r j̃`(kr)−

`(1− `)
r2

j̃`(kr) = 0

∂2r j̃`(kr) +

[
2`

kr
∂r + 1− 2`

(kr)2

]
j̃`(kr) = 0,

(2.56)

similarly from (2.53) we end up with

∂2r ñ`(kr) +

[
1− 2`

kr
∂r

]
ñ`(kr) = 0. (2.57)

The terms
2`

kr

and
2`

(kr)2

from (2.56) and (2.57) are analytic, therefore from the theorem we may con-

clude that j̃`(kr) and ñ`(kr) are analytic functions of the parameter `. As

a result j`(kr) and n`(kr) are analytical, because the product analytic func-

tions it is also analytic. As a consequence h
(±)
` (kr) is analytic, since a linear

combination of analytic functions it is also analytic.

Since the coefficients in Eqs. (2.15)-(2.16) are analytic functions of the pa-

rameter `, and the boundary conditions (2.19) do not depend on `, according

to the Poincarè theorem the functions F
(in/out)
` (E, r) are analytic in the `-

plane. Thus, the unknown functions, F
(in/out)
` (E, r), and the Riccati-Hankel

functions, h
(±)
` (kr), can be expressed as a power series:

h
(±)
` (kr) =

∞∑
n=0

(`− `0)nX(±)
n (k, r, `0), (2.58)
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F
(in/out)
` (E, r) =

∞∑
n=0

(`− `0)nϕ(in/out)
n (E, r), (2.59)

where ϕ
(in/out)
n (E, r) are unknown expansion coefficients and

X(±)
n (k, r, `0) =

1

n!
∂n` h

(±)
l (kr)|`=`0 , (2.60)

`0 is the center of expansion. The derivatives (2.60) cannot be found analyt-

ically. We therefore have to calculate them numerically. A stable procedure

that we will use for calculations is given in Appendix B.

From Eqs. (2.21)-(2.22), we conclude that the power series of the Jost func-

tions is given by

f
(in/out)
` (E) =

∞∑
n=0

(`− `0)n lim
r→∞

ϕ(in/out)
n (E, r, `0). (2.61)

2.4 Linear independence at the complex mo-

mentum

As discussed in section 2.1.1 on page 8, the solutions of the differential equa-

tion (2.41) must be linearly independent, but if

Re(`) = −1

2
,

and as r−→ 0:

j`(kr)−→(kr)`+1 = (kr)
1
2 (2.62)

n`(kr)−→(kr)−` = (kr)
1
2 (2.63)
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equations (2.62) and (2.63) become linearly dependent. Therefore we will

only consider angular momentum of the form

Re(`) > −1

2
. (2.64)

2.5 Power series of the Jost function

In section 2.1, we derivated a method for calculating the Jost functions as

well as defining a power series. And in section 2.2, we showed that the Regge

poles for scattering states are located in the first quadrant of the complex

`-plane. Finally, we have shown in section 2.3 that, if an arbitrary circle

with center `0 is chosen on the first quadrant of the complex `-plane, the

Jost functions will be analytic within that circle. Moreover, we have shown

that the power series expansion of the Jost functions within a circle is given

by (2.61). The only thing that is left, is to determine expansion coefficients.

Thus, this will be the main focus of this section.

In order for us to obtain the expansion coefficients of the power series (2.61),

we start but substituting the expansions (2.58)-(2.59) into (2.15) and obtain:

∞∑
n=0

(`− `0)n∂rϕ(in)
n = −V (r)

2ik

∞∑
α=0

(`− `0)αX(+)
α

[
∞∑
β=0

(`− `0)βX(−)
β

×
∞∑
γ=0

(`− `0)γϕ(in)
γ +

∞∑
β′=0

(`− `0)β
′
X

(+)
β′

∞∑
γ′=0

(`− `0)γ
′
ϕ
(out)
γ′

]
.

(2.65)

We now expand the LHS of (2.65)

∞∑
n=0

(`− `0)n∂rϕ(in)
n = ∂rϕ

(in)
0 + (`− `0)∂rϕ(in)

1 + (`− `0)2∂rϕ(in)
2 + ... (2.66)
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and the RHS, without the −V (r)/2ik term(
X

(+)
0 + (`− `0)X(+)

1 + (`− `0)2X(+)
2 + ...

) [
X

(−)
0 ϕ

(in)
0 +X

(+)
0 ϕ

(out)
0

(`− `0)
(
X

(−)
0 ϕ

(in)
1 +X

(−)
1 ϕ

(in)
0 +X

(+)
0 ϕ

(out)
1 +X

(+)
1 ϕ

(out)
0

)
+ (`− `0)2

(
X

(−)
0 ϕ

(in)
2 +X

(−)
1 ϕ

(in)
1 +X

(−)
2 ϕ

(in)
0 +X

(+)
0 ϕ

(out)
2 +X

(+)
1 ϕ

(out)
1

+X
(+)
2 ϕ

(out)
0

)
+ (`− `0)3

(
X

(−)
1 ϕ

(in)
2 +X

(−)
2 ϕ

(in)
1 +X

(−)
1 ϕ

(out)
2

+X
(+)
2 ϕ

(out)
1

)
+ ...

]
(2.67)

simplifying (2.67)

X
(+)
0

(
X

(−)
0 f

(in)
0 +X

(+)
0 f

(out)
0

)
+ (`− `0)

[
X

(+)
0

(
X

(−)
0 ϕ

(in)
1 +X

(+)
0 ϕ

(out)
1

)
+X

(+)
0

(
X

(−)
1 ϕ

(in)
0 +X

(+)
1 ϕ

(out)
0

)
+X

(+)
1

(
X

(−)
0 ϕ

(in)
0 +X

(+)
0 ϕ

(out)
0

)]
+ (`− `0)2

[
X

(+)
0

(
X

(−)
0 ϕ

(in)
2 +X

(+)
0 ϕ

(out)
2

)
+X

(+)
0

(
X

(−)
1 ϕ

(in)
1 +X

(+)
1 ϕ

(out)
1

)
+X

(+)
0

(
X

(−)
2 ϕ

(in)
0 +X

(+)
2 ϕ

(out)
0

)
+X

(+)
1

(
X

(−)
0 ϕ

(in)
1 +X

(+)
0 ϕ

(out)
1

)
+X

(+)
1

(
X

(−)
1 ϕ

(in)
0 +X

(+)
1 ϕ

(out)
0

)
+X

(+)
2

(
X

(−)
0 ϕ

(in)
0 +X

(+)
0 ϕ

(out)
0

)]
+ ...

(2.68)

The next step is to equate the coefficients of (`−`0) with the same exponent,

from (2.66) and (2.68), it follows that

(`− `0)0 :

∂rϕ
(in)
0 = − V

2ik
X

(+)
0

(
X

(−)
0 ϕ

(in)
0 +X

(+)
0 ϕ

(out)
0

)
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(`− `0)1 :

∂rϕ
(in)
1 = − V

2ik
X

(+)
0

(
X

(−)
0 ϕ

(in)
1 +X

(+)
0 ϕ

(out)
1

)
− V

2ik
X

(+)
0

(
X

(−)
1 ϕ

(in)
0 +X

(+)
1 ϕ

(out)
0

)
− V

2ik
X

(+)
1 (X

(−)
0 ϕ

(in)
0 +X

(+)
0 ϕ

(out)
0

)
,

(2.69)

(`− `0)2 :

∂rϕ
(in)
2 = − V

2ik
X

(+)
0

(
X

(−)
0 ϕ

(in)
2 +X

(+)
0 ϕ

(out)
2

)
− V

2ik
X

(+)
0

(
X

(−)
1 ϕ

(in)
1 +X

(+)
1 ϕ

(out)
1

)
− V

2ik
X

(+)
0

(
X

(−)
2 ϕ

(in)
0 +X

(+)
2 ϕ

(out)
0

)
− V

2ik
X

(+)
1

(
X

(−)
0 ϕ

(in)
1 +X

(+)
0 ϕ

(out)
1

)
− V

2ik
X

(+)
1

(
X

(−)
1 ϕ

(in)
0 +X

(+)
1 ϕ

(out)
0

)
− V

2ik
X

(+)
2

(
X

(−)
0 ϕ

(in)
0 +X

(+)
0 ϕ

(out)
0

)
.

(2.70)

Therefore the general expression for the expansion coefficients of Eq. (2.61)

becomes

∂rϕ
(in)
n = − V

2ik

∑
α+β+γ=n

X(+)
α

[
X

(−)
β ϕ(in)

γ +X
(+)
β ϕ(out)

γ

]
. (2.71)

Similiarly, we obtain

∂rϕ
(out)
n =

V

2ik

∑
α+β+γ=n

X(−)
α

[
X

(−)
β ϕ(in)

γ +X
(+)
β ϕ(out)

γ

]
, (2.72)

where the X
(±)
α/β are defined as in (2.60). The boundary condition that will
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be used to solve (2.71) and (2.72):

F
(in/out)
` (E, 0) =

∞∑
n=0

(`− `0)nϕ(in/out)
n (E, 0)

= ϕ
(in/out)
0 (E, 0) + (`− `0)ϕ(in/out)

1 (E, 0) + (`− `0)2ϕ(in/out)
2 (E, 0) + ...

(2.73)

According to Eq.(2.19) on page 11, the LHS of (2.73) is `-independent. This

implies that the RHS should have the same independence. Therefore all the

ϕ
(in/out)
i ’s whose coefficient depends on ` should be zero. It follows that

ϕ(in/out)
n (E, 0) = δn0. (2.74)

Eq. (2.74) is the boundary condition that will be used to solve the differential

equations (2.71)-(2.72).
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Chapter 3

Differential cross-sectional area

In chapter 2, we obtained a power series expansion of the Jost function in the

complex `-plane and also proposed a method for calculating the expansion

coefficients of the power series. In this chapter, we will define scattering am-

plitude and relate it with the power series of the Jost functions, moreover we

will make use of the Watson transformation to express the scattering ampli-

tude as a sum of the background and pole term. Furthermore, we demostrate

the application of this approach, by applying it to the Born approximation

and determine its effects.

3.1 Scattering amplitude

Quantum scattering is a transformation of the incoming wave into scattered

wave at real positive energies. The scattering cross section, which is a frac-

tion of the incident area that is scattered by a potential into a solid angle, is

obtained by squaring the scattering amplitude. The subsequent sections are

devoted to deriving an expression for calculating the scattering amplitude,

which will enable us to determine scattering cross section.
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The scattering wave function, as r →∞, is given by

ψk(r) =
1

(2π)2/3

[
ekr +

ekr

r
fk(r̂)

]
, r →∞. (3.1)

The first term in (3.1) represents the incident plane wave with momentum k

(in the direction of the incident plane), while the second term represents the

outgoing wave scattered spherically in all directions with the amplitude fk(r̂).

The differential scattering cross section is defined as

dσ

dΩ
= |fk(r̂)|2, (3.2)

in which the LHS of (3.2) represents the fraction of the incoming flux cross-

section, dσ, scattered into the solid angle, dΩ, in the r̂ direction. For spherical

symmetrical potentials, the scattering amplitude will be φ-independent, thus

can be expanded using Legendre polynomials

fk(r̂) =
∞∑
`=0

(2`+ 1)f`(E)P`(cos θ). (3.3)

The expression (3.3) is known as the partial wave expansion. As it was stated

in the introduction, it is most useful when the potential is of finite range and

only there is a small number of partial waves that contribute to the scattering

amplitude, in other words, the orbital angular momentum should at most be

Rk i.e

` ≤ kR,

where k and R are the momentum of the plane wave and range of the po-

tential, respectively. In Eq. (3.3), k is the incident momentum, θ the angle

between k and r̂ which is the scattering angle and P`(cos θ) is the Legendre
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polynomial of degree `. The partial wave amplitude is

f`(E) =
S`(E)− 1

2ik
=

1

2ik

[
f
(out)
` (E)

f
(in)
` (E)

− 1

]
=
eiδ`(E) sin δ`(E)

k
. (3.4)

The real function δ`(E) is called the phase shift.

3.1.1 Scattering amplitude at low energies

We now investigate the behavior of (3.3) when k → 0. We start by integrating

the LHS and RHS of equations (2.15) - (2.16) and impose the boundary

condition (2.19), we obtain

F
(in)
` (E, r) = 1− 1

2ik

r∫
0

h
(+)
` (kr′)V (r′)u`(E, r

′) dr′

F
(out)
` (E, r) = 1 +

1

2ik

r∫
0

h
(−)
` (kr′)V (r′)u`(E, r

′) dr′,

(3.5)

where

u`(E, r) = h
(−)
` (kr′)F

(in)
` (E, r′) + h

(+)
` (kr′)F

(out)
` (E, r′),

represents the radial wave function. We solve (3.5) for u`(E, r) by multiply-

ing F
(in)
` (E, r) and F

(out)
` (E, r) by h

(−)
` (kr) and h

(+)
` (kr), respectively, then

summing up the product together
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u`(E, r) = h
(−)
` (kr)F

(in)
` (E, r) + h

(+)
` (kr)F

(out)
` (E, r)

= h
(+)
` (kr) + h

(−)
` (kr) +

1

2ik

r∫
0

[
h
(+)
` (kr)h

(−)
` (kr′)− h(−)` (kr)h

(+)
` (kr′)

]
V (r′)u`(E, r

′) dr′

= 2j`(kr) +
1

ik

r∫
0

[
h
(+)
` (kr)j`(kr

′)− j`(kr)h(+)
` (kr′)

]
V (r′)u`(E, r

′) dr′

= 2j`(kr) +

r∫
0

g(r, r′, k)V (r′)u`(E, r
′)

∴ u`(E, r) = 2j`(kr) +

r∫
0

g(r, r′, k)V (r′)u`(E, r
′) dr′. (3.6)

With the Green’s function defined as

g(r, r′, k) =
1

ik

[
h
(+)
` (kr)j`(kr

′)− j`(kr)h(+)
` (kr′)

]
.

As k → 0,

j`(kr)h
(+)
` (kr′) −→

k→0

(kr)`+1

1 · 3 · 5 · · · (2`+ 1)
×
[
−i1 · 3 · 5 · · · (2`− 1)

(kr′)`

]
=
ik(2`− 1)r`+1

(2`+ 1)(r′)`

j`(kr
′)h

(+)
` (kr′) −→

k→0

ik(2`− 1)(r′)`+1

(2`+ 1)r`

∴ g(r, r′) −→
k→0

2`− 1

2`+ 1

[
(r′)`+1

r`
− r`+1

(r′)`

]
. (3.7)

Eq. (3.7) suggests that for low energies the Green’s function does not depend
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on the momentum. As a result, the radial wave function, u`(E, r) will have

the same k-dependence as j`(kr), which is k`+1. The integration equation for

the partial wave amplitude, for finite range potentials, is given by [10],

f`(k) = − 1

k2

r∫
0

j`(kr
′)U(r′)u`(E, r

′) dr′

−→
k→0
− 1

k2

r∫
0

(kr′)`+1

1 · 3 · 5 · · · (2`+ 1)
U(r′)

(kr′)`+1

1 · 3 · 5 · · · (2`+ 1)
dr′

= − 1

k2

r∫
0

U(r′)
(kr′)2`+2

(1 · 3 · 5 · · · (2`+ 1))2
dr′

=
k2`

(1 · 3 · 5 · · · (2`+ 1))2

r∫
0

(r′)2`+2U(r′) dr′.

Thus

f`(k)−→
k→0

k2`α`(r), (3.8)

where

α`(r) =

r∫
0

(r′)2`+2U(r′)

(1 · 3 · 5 · · · (2`+ 1))2
dr′.

Substituting (3.8) into (3.3):

fk(r̂) =
∞∑
`=0

(2`+ 1)f`(E)P`(cos θ)

= f0P0(1) + 3f1P1(1) + 5f2P2(1) + 7f3P3(1) + ...

−→
k→0
−α0 − 3α1k

2P1(1)− 5α2k
4P2(1)− ...

= −α0

(3.9)

In Eq. (3.9) we have showed that for low energies, k → 0, the scattering

31

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



amplitude converges to a single term , α0(r). But once the energy increases

more terms in the series will be required.

3.1.2 Properties of δ`(E)

For large angular momentum, ` → ∞, and fixed k, the centrifugal barrier

`(`+ 1)/r2 in the Schrödinger equation (2.1) on page 8 will dominate the po-

tential (finite range), as a result, the outgoing wave will be slightly distorted

and therefore δ`(E)→ 0. On the other hand, if we fix ` and allow momen-

tum to take large values, k → ∞, the momentum term in (2.1) will dominate

both the potential and potential barrier. This implies that the solution of

the Schröndger equation will be that of the ’free’ wave function, experiencing

no potential, therefore δ`(E) → 0. Hence, the phase shift approaches zero

when both ` and k goes to infinity.

We will use these properties in section 3.2 to prove that the scattering am-

plitude approaches zero as `→∞.

3.2 Watson transformation

As the energy increases more terms are required, as a result (3.3) will con-

verge slowly. This difficulty with convergence can be avoided by allowing

the variable ` to take on complex values. For complex values of angular

momentum `, the infinite sum in (3.3) can be converted to a convergent

integral using the Watson transformation. In order for us to perform this

transformation, let us consider the following contour integral

I =

∮
C

(2λ+ 1)fλ(E)Pλ(− cos θ)

sin(πλ)
dλ, (3.10)
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�

�

-

C

Re λ

Im λ

Figure 3.1: The integration contour C, used in eq (3.17), which encloses all
the non-negative integer values of λ.

where λ is a complex variable and the integration path, C, encloses all the

non-negative integer values of λ, in a counter-clockwise direction, as shown

in Fig. (3.1). Pλ(− cos θ) is no longer a Legendre polynomial rather its a

Legendre function of complex degree λ. The poles of the integrand are located

at

sin(πλ)|λ=` = 0 for ` = 0, 1, 2, 3... (3.11)

Eq. (3.11) shows that we have first ordered poles. From the residue theo-

rem [11], Eq. (3.10) may be written as

I = 2πi
∞∑
`=0

Res

[
(2λ+ 1)fλ(E)Pλ(− cos θ)

sin(πλ)
, `

]
. (3.12)

The expression Res[f(z), z0] stands for the residue of the function f(z) at

the point z0. Since the poles are of first order the residue term in (3.12) is

calculated as

Res

[
(2λ+ 1)fλ(E)Pλ(− cos θ)

sin(πλ)
, `

]
= lim

λ→`
(λ− `)

[
(2λ+ 1)fλ(E)Pλ(− cos θ)

sin(πλ)

]
= (2`+ 1)f`(E)P`(− cos θ) lim

λ→`

(
λ− `

sin(πλ)

)
.

(3.13)

limλ→`

(
λ−`

sin(πλ)

)
has the form 0

0
. This limit can be evaluated using the

l’Hôpital’s rule,

lim
λ→`

(
λ− `

sin(πλ)

)
= lim

λ→`

d
dλ

(λ− `)
d
dλ

(sin(πλ))
=

1

(−1)`π
. (3.14)
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Substituting (3.13)-(3.14) into (3.12) and equate the result to (3.10):

∮
(2λ+ 1)fλ(E)Pλ(− cos θ)

sin(πλ)
dλ = 2i

∞∑
`=0

(2`+ 1)f`(E)P`(− cos θ)

(−1)`
(3.15)

Using the identity P`(−x) = (−1)`P`(x), we end up with

∞∑
`=0

(2`+ 1)f`(E)P`(cos θ) =
1

2i

∮
C

(2λ+ 1)fλ(E)Pλ(− cos θ)

sin(πλ)
dλ. (3.16)

We have successfully converted the slow converging infinite sum on the left

hand side into an integral on the right hand side. Eq. (3.16) is known as the

Watson transformation. Comparing (3.3) with (3.16) we obtain

fk(r̂) =
1

2i

∮
C

(2λ+ 1)fλ(E)Pλ(− cos θ)

sin(πλ)
dλ. (3.17)

The RHS of (3.17) has two important properties:

1. The integrand is a meromorphic function of λ i.e it is analytic ev-

erywhere except at isolated poles. This means that the integration

contour, C, can be arbitrary deformed under the condition that it does

not cross any singularities (poles).

2. The amplitude, |f`(E)|, tends to zero when ` → ∞ on the complex

`-plane. This implies that we can ignore any parts of the deformed

contour that are at infinity.

Below will we provide a proof of statement 2, but before that we state an

important remark. If the projectile particle does not experience the scat-

tering potential i.e it moves freely, the scattering phase shift will be zero,

whereas, if a potential is present, the phase shift will not be zero. From this

we can conclude that, if the incident plane wave experiences weak potential,
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the phase shift will approach zero.

Reference [1], [10] and the properties of δ`(E) on page 32 suggest that as

`→∞, the centrifugal potential, `(`+1)/2mr2 - from the Schrödinger, tends

to repel the particles away from the actual potential, V (r), becomes more

repulsive. Since our potential is finite this implies that the probability that

the incident particle will experience the potential V (r) is small, hence the

scattering phase shift, δ`(E), will approach zero. Then it follows from (3.4)

that:

|f`(E)| = 1

p
|sin δ`(E)| ≤ 1

p
|δ`(E)| → 0. (3.18)

In (3.18) we have used the property that

| sinx| ≤ |x| for x→ 0.

We thus obtain

|f`(E)| −→
`→∞

0. (3.19)

Eq. (3.19) implies that only a finite number of terms will be required to

approximate the scattering amplitude (3.3). This supports the assertion

that was made on section 3.1 on page 28 that the maximum number of terms

that contributes to the scattering amplitude is

` ≤ kR.
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3.2.1 Properties of the S-matrix

According to Tamara and Holterner [7], The S-matrix, for finite range po-

tentials has the following asymptotic behaviour:

|Sλ(E)| −→
|λ|→∞

{
0, for Imλ ≥ 0

∞, for Imλ < 0
(3.20)

They further said that, the scattering amplitude may be represented as a sum

of the pole and background terms. The background integral must run from

positive infinity along the imaginary angular momentum axis and instead

of continuing towards negative infinity along the imaginary axis, it must be

bent such that Re `→∞, in order to satisfy (3.20).

As the contour C moves away from the Re λ axis towards positive Im λ

axis, it picks up a finite number of poles. Since the contour cannot pass

through the poles, it will form loops around each pole as shown in Fig. (3.2a).

The paths of b1 and b2 move in opposite directions, as the distance be-

tween them approaches zero, the two paths will cancel one another and hence

form Fig. (3.2b). This cancellation enables us to move from Fig. (3.2b) to

Fig. (3.2c). If we widen the contour in Fig.(3.2c) we obtain C2 in Fig.(3.2d).

The first property of the scattering amplitude on page 34 and (3.20) al-

lows us to deform the contour C into C1 and C2 as shown in Fig. (3.2), where

C1 runs down the imaginary axis from +i∞ curve’s around the pole λ = 0

on the negative real axis then goes to infinity - parallel to the Reλ axis.

C2 encloses all the Regge poles, in a clockwise direction and C1 forms the

background integral.
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Imλ

1 2 3

s s s

(a)
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Imλ

1 2 3
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(b)

s s s s s Reλ

Imλ

1 2 3

s s s

(c)

s s s s s Reλ

Imλ

1 2 3 4
C1

C2s s s

(d)

Figure 3.2: The steps to deform the integration contour shown in Fig. 3.
These steps replace the initial contour C with the two contours C1 and C2

.
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The scattering amplitude for the deformed contour C becomes

f~k(~̂r) = f
(bg)
~k

(~̂r) + f
(p)
~k

(~̂r). (3.21)

The superscripts (bg) and (p) represents the background and pole contribu-

tions, respectively, where

f
(bg)
~k

(~̂r) =
1

2i

∫
C1

(2λ+ 1)fλ(E)Pλ(− cos θ)

sin[π(λ− ε)]
dλ, (3.22)

and

f
(p)
~k

(~̂r) =
1

2i

∮
C2

(2λ+ 1)fλ(E)Pλ(− cos θ)

sin(πλ)
dλ

= −π
∑
n

2`n + 1

sin(π`n)
P`n(− cos(θ))Res[fλ(E), `n],

(3.23)

where `n is the nth Regge pole and the negative sign is due to the clockwise

motion of contour C2.

3.3 Evaluation of the pole term

For us to calculate the scattering amplitude in (3.21), we have to evaluate

the residue term in Eq. (3.23),

Res[f`(E), `n] = lim
`→`n

(`− `n)f`(E) =
1

2ik
lim
`→`n

(`− `n)

[
f
(out)
` (E)

f
(in)
` (E)

− 1

]

=
1

2ik
lim
`→`n

(`− `n)

[
f
(out)
` (E)

f
(in)
` (E)

]
,

(3.24)
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substituting (2.61) into (3.24)

Res[f`(E), `n] =
1

2ik
lim
`→`n

(`− `n)
ϕ
(out)
0 + (`− `n)ϕ

(out)
1 + ...

ϕ
(in)
0 + (`− `n)ϕ

(in)
1 + ...

. (3.25)

At each `n, there is a first-order pole of the S-matrix, which means that

ϕ
(in)
0 = 0. (3.26)

Then (3.25) becomes:

Res[f`(E), `n] =
1

2ik

ϕ
(out)
0 (E, `n)

ϕ
(in)
1 (E, `n)

. (3.27)

We evaluate (3.27) by solving the following systems of linear differential

equations for ϕ
(in)
1 and ϕ

(out)
0 :

ϕ
′(in)
0 (E, r, `n) = − V

2ik
X

(+)
0

(
X

(−)
0 ϕ

(in)
0 +X

(+)
0 ϕ

(out)
0

)
, (3.28)

ϕ
′(out)
0 (E, r, `n) =

V

2ik
X

(−)
0

(
X

(−)
0 ϕ

(in)
0 +X

(+)
0 ϕ

(out)
0

)
, (3.29)

ϕ
′(in)
1 (E, r, `n) = − V

2ik

(
X

(+)
0

(
X

(−)
0 ϕ

(in)
1 +X

(+)
0 ϕ

(out)
1 +X

(−)
1 ϕ

(in)
0

+X
(+)
1 ϕ

(out)
0 +X

(+)
1

(
X

(−)
0 ϕ

(in)
0 +X

(+)
0 ϕ

(out)
0

))
,

(3.30)

ϕ
′(out)
1 (E, r, `n) =

V

2ik

(
X

(−)
0

(
X

(−)
0 ϕ

(in)
1 +X

(+)
0 ϕ

(out)
1 +X

(−)
1 ϕ

(in)
0

+X
(+)
1 ϕ

(out)
0 +X

(−)
1

(
X

(−)
0 ϕ

(in)
0 +X

(+)
0 ϕ

(out)
0

))
.

(3.31)
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The Legendre function for complex λ is obtained by solving the differential

equation [12]

(1− z2) d
2Pλ(z)

dz2
− 2z

dPλ(z)

dz
+ λ (λ+ 1)Pλ(z) = 0, (3.32)

with boundary conditions[
dPλ(z)

dz

]
z=0

=
2√
π

sin

(
λπ

2

)
Γ (λ/2 + 1)

Γ(λ/2 + 1/2)
(3.33)

Pλ(0) = π−
1
2 cos

(
λπ

2

)
Γ (λ/2 + 1)

Γ(λ/2 + 1/2)
. (3.34)

We have shown that for us to calculate numerically the pole term (3.23),

we must calculate the expansion coefficients of the power series (2.61) by

numerically solving (2.71) and (2.72). Therefore, the pole term explicitly

depends on the expansion coefficients of the power series expansion of the

Jost functions.
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Chapter 4

Application

The method that we have developed thus far, expresses the scattering am-

plitude as a sum of the background term and pole term. Futhermore, this

method proposes a procedure that should be used for calculating the pole

term but it doesn’t tell us anyhting about the background term. To de-

mostrate how this method may be used in application, we will let the back-

ground term to be equal to the Born approximation. As a result, we will

now focus on deriving an expression for the Born approximation.

4.1 Born Approximation

For weak potentials, the incoming plane wave will be deflected only by a

small amount, i.e the scattering angle will be small. Moreover, small scatter-

ing angles are also a result of plane waves that are incident at high energies.

For this scenario, the scattered wave (outgoing wave) may be approximated

by the incident plane wave - this approximation is called the first Born Ap-

proximation, which we shall refer to as the Born approximation.
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The scattering amplitude for the Born approximation is expressed as [1]:

f(θ, φ) = − µ

2π~

∞∫
0

ei~q·~rV (~r) d3r, (4.1)

where ~q = ~k′ − ~k is the momentum transfer, ~k′ and ~k are the outgoing and

incoming momenta, respectively. We will only consider elastic scattering, i.e

momentum before equals momentum after. As a result, the magnitude of ~k′

is equal to that of ~k, given this, the momentum transfer is defined as:

q = |~k′ − ~k| =
√
k′2 − 2~k′ · ~k + k2 = k

√
2(1− cos θ), (4.2)

under the square root we have

2(1− cos θ) = 2(1− cos2(θ/2) + sin2(θ/2))

= 2(1− 1 + 2 sin2(θ/2))

= 4 sin2(θ/2).

Therefore (4.2)

q = 2k sin(θ/2). (4.3)
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For short-range spherical symmetric potentials, V (~r) = V (r), using spherical

coordinates in (4.1) we obtain

∞∫
0

ei~q·~rV (~r) d3r =

∞∫
0

r2V (r) dr

π∫
0

eiqr cos θ sin θ dθ

2π∫
0

dφ

= 2π

∞∫
0

r2V (r) dr

1∫
−1

eiqrx dx

we let x = cos θ ⇒ dx = sin θ dθ

and let eip = cos p+ i sin p

=
4π

q

∞∫
0

r2V (r) sin(qr) dr.

(4.4)

Substituting (4.4) and (4.3) into (4.1), we thus obtain

f(θ) = − 2µ

~2q

∞∫
0

rV (r) sin(qr) dr. (4.5)

Eq. (4.5) is the Born approximation for short range spherical symmetric po-

tentials.

As we have mentioned at the beginning of this section, as an example of a

possible application of the method we have developed, we will set the back-

ground term, f (bg) in (3.22), to be equal to the the Born approximation (4.5)

and study the corresponding effects.
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Chapter 5

Results and Discussions

5.1 Short-range potential

The potential that will be used throughout the calculations is given by [14]

V (r) = 7.5r2e−r, (5.1)

where the units of V (r) and r are in MeV and fm, respectively. Observing

Fig. (5.1), it can be seen that the potential dimishes exponentially and thus

becomes negligible at large r.

5.2 Jost function

The Jost functions which are given by Eqs. (2.21)-(2.22) are functions of two

variables i.e energy and angular momentum. However, by fixing the energy

these functions depend on a single parameter which is the angular momen-

tum. The Jost functions were calculated by, firstly, solving numerically the

differential equations (2.15)-(2.16) for the unknown functions F (in/out)(E, r)

using the Runge-Kutta-Fehlberg method (Appendix C) with the following
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E(MeV) `

5.0000000000000 1.1062512746676 + i0.3814023675897

4.6000000000000 0.83713208064778 + i0.22243700953498

4.2000000000000 0.54542142241316 + i0.10135133625993

3.8000000000000 0.25120839444728 + i0.032432053781362

3.4000000000000 −0.016997035815325 + i0.0072539908161906

3.0000000000000 −0.25112888414914 + i0.0012513400669567

2.6000000000000 −0.45931501169907 + i0.00017735937925323

Table 5.1: The Regge trajectory obtained from the potential V (r) in the
complex ` plane by varying the energy.

0

1

2

3

4

5

6

7

0 5 10 15 20 25

V (r)

r

Figure 5.1: Potential (5.1) as a function of the distance between itself and
the plane wave r

inputs:

� Tolerence = 10−13.
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k0(fm
−1) E0(MeV) Γ(MeV)

2.607681 + i2.594740× 10−9 3.400000 −1.353251

3.129041− i0.350533 4.956885 2.193667

3.398317− i0.990741 6.265062 6.733701

3.739319− i2.325793 9.695911 17.393763

3.592050− i1.657714 7.825422 11.909186

3.854762− i2.986489 11.889156 23.024415

Table 5.2: The Zeros k0 of the Jost functions in the complex k-plane and the
corresponding energies as well as resonance width, respectively

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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•••

Figure 5.2: Regge trajectory for energies of 2.6MeV to 5.0 MeV in increments
of 0.4 MeV

� rmin = 0.1× 10−3 fm and R = 25 fm.

� Intial conditions F (in/out)(E, 0) = 1.
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Figure 5.3: Resonance points on the complex k plane

� h = 2.5× 10−3.

� energy of E = 5 MeV.

Finally, when R = 25 fm, the unknown functions gave us the Jost functions.

The Regge trajectory is determined by tracing out the behavior of the com-

plex momenta when the energy is increased. Fig. (5.2), shows a Regge trajec-

tory that was calculated by starting with the energy 2.6 MeV and increasing

it to 5.0 MeV in increments of 0.4 MeV. Then Newton method (Appendix

D) with tolerance = 10−10 was used to locate the corresponding ` values at

which f
(in)
` (E) = 0, as shown in table (1). The values of the Regge poles

that didn’t satisfy the linear independence condition (2.64) were discarded.
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Scattering angle

E = 5
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Lmax = 0, 2, 5, 10
0

2
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Figure 5.4: The exact differential cross section and L = 0, 2, 5, 10 partial
waves against the scattering angle

As it can be seen from Fig. (5.2), as the energy increases the Regge poles

moves to the right, thus `(E) increases with energy. Furthermore, there are

no Regge poles that are lying strictly on the Re ` axis - the imaginary value

for the first two Regge poles are not zero, as it can been seen in table (1). As

a result, there are no bound states in this trajectory. As it was mentioned

on page 12, a resonance state occur when Im ` is very small and Re ` is equal

to a non-negative integer value. From this it follows that a resonance state

occurs at a point ` = (−0.016997035815325, 0.0072539908161906). This is

because Re ` is close to the non-negative integer value 0 and its imaginary

part its very small.

The Jost functions are analytic with respect to the parameters ` and E.
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Figure 5.5: The exact differential cross section and L =
15(red), 20(green), 25(blue) and 30(orange) partial waves against the
scattering angle.

We have showed in the preceding paragraph that a resonance state occur

when ` = (−0.016997035815325, 0.0072539908161906). By fixing ` at this

state, the incoming Jost function, f
(in)
` (E), becomes a function of a single

parameter k - momentum. The resonance points on the complex k-plane that

are given in table (2), were calculated by the Newton method. The equation

E =
~2k2

2m
, (5.2)

where
~2

2m
=

1

2
,
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Figure 5.6: The exact differential cross section and L = 35, 40, 45, 50 partial
waves against the scattering angle.

was used to move from momentum to energy. The resonace width Γ is given

by

Γ = 2 ImE.

And

E0 = |E|.

The duration of a resonace state is related to Γ in the following way

T 1
2

=
~ ln(2)

Γ
. (5.3)

Considering table (2), the resonance state that corresponds to Γ = 2.193667MeV

will occur longer as compared to that of Γ = 23.024415MeV. This means that
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Figure 5.7: The exact differential cross section and the Born approximation
against the scattering angle

small values of Γ implies that the incident plane wave will spend more time

in the vicinity of the potential. On the other hand, large values of Γ implies,

the plane wave will spend less time around the potential.

5.3 Partial-waves

As we have already mentioned in section 3.2 on page 32, the partial wave

expansion converges slowly for scattering energies, i.e E > 0. We provide an

illustration for the assertion that we made using the potential (5.1).

The partial waves of Lmax = 0, 2, 5, 10 were not enough to approximate

the exact differential cross section, as it may be seen in Fig. (5.4). When
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Figure 5.8: The exact differential cross section and Born approximation plus
1 Regge pole against the scattering angles

Lmax = 0, the graph is horizontal, moreover, when Lmax = 2 and Lmax = 5

their graphs have 2 and 5 oscillations, respectively. But when Lmax = 10, the

number of oscillations is 9, instead of 10. Therefore, we may conclude that

when Lmax < 10 there is a one-to-one correspondence between Lmax and the

number of oscillations.

When Lmax = 15, 20, 25 and 30, Fig. (5.5), the partial waves approaches

the exact differential cross section. When Lmax = 50 (51 terms), shown in

Fig. (5.6), the differential cross section of the partial wave series approxi-

mates the exact differential cross section. In section 3.1 on page 28, we have
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Figure 5.9: Exact differential cross section, Born approximation and 1 Regge
pole (blue) and Born approximation plus 2 Regge pole (orange) against the
scattering angle

established that the partial wave expansion would be useful only when

Lmax ≤ Rk = 5× 25 = 125,

and indeed its true. This corresponds with the theory [5].

5.4 Scattering amplitude

The method we have developed allows us to express the scattering amplitude

as a sum of the background and pole term (3.21). Furthermore, it proposes

a way to calculate the pole term. To demostrate how this method may be
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Figure 5.10: Exact differential cross section, 31 partial waves and 1 Regge
pole against the scattering angle

applied, we let the background term equal the Born approximation, as sug-

gested in Eq. (4.5) on page 43.

When the scattering amplitute was set to be the Born approximation, we ob-

tain Fig. (5.7) and from this figure, we observe that forward scattering which

occurs at θ = 0◦ (this does not mean that there is no scattering taking place,

since the differential cross section is non-zero) its differential cross section is

greater in the Born approximation as compared to the exact differential cross

section, moreover, in the range θ ∈ [0◦, 15◦], the Born approximation scatters

more of the incident plane wave as compared to the exact differential cross

section. When θ ∈ [15◦, 115◦] both the exact differential cross section as well

as the Born approximation cross section scatters less and less of the incom-
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ing wave and when θ ∈ (115◦, 180◦], exact differential cross section starts to

increase till it is 0.20 while Born approximation cross section continues to

decay to 0.002. Thus, when the scattering amplitude is modelled by the Born

approximation, it fails to approximate the exact differential cross section at

large scattering angles.

When a Regge pole of ` = (1.1062512746676, 0.38140236758979) with residue

(−6.13308562672633117×10−2, 2.88798346067276022×10−2) is added to the

Born approximation, we obtain Fig. (5.8), hence by adding this pole, the

tail of the Born approximation moves close to that of the exact differential

cross section, thus, this Regge pole improved the Born approximation which

initially failed to approximate the exact differential cross section at large

scattering angles.

Adding a second Regge pole ` = (0.83713208064778, 0.22243700953498) with

residue (−9.4922270662562105 × 10−2, 5.9714033987513508 × 10−2) to the

Born approximation, results in Fig. (5.9). When θ > 70◦, this graph goes

above that of the exact differential cross section, implying that, by adding

the second Regge pole to the Born approximation, more of the incoming wave

will be scattered into the solid angle dΩ as compared to exact differential

cross section. The residues as well as the first Regge pole were calculated

by using the energy E = 5 MeV, but the second Regge pole was calculated

using the energy E = 4.6 MeV, as it is shown in table (1).

At the very beginning, the scattering amplitude was expressed as a partial

wave series, with the summation variable ` taking only non-negative inte-

gers. When we consider 3-terms, i.e Lmax = 2, we observe from Fig. (5.4)

that this graph it is not a good approximation of the exact differential cross

section - since the Lmax = 2 curve behaves like a |cos θ| graph. It’s only
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when Lmax = 50 (51 terms) that the differential cross-sectional area of the

partial wave series converges to that of the exact differential cross section.

By allowing ` to take complex values, this enabled us to express the scat-

tering amplitude as a sum of two terms, namely, the Born approximation

term and the Regge pole term. Addition of a single Regge pole to the Born

approximation yielded results that are nearly equivalent to adding 31 partial

waves, Fig. (5.10), at large scattering angles, θ ≥ 130◦.

As it may be seen, Fig. (5.9), when θ ≤ 45◦ the graph of the Born ap-

proximation and a single Regge pole as well as Born approximation and two

Regge poles behaves in a similar way, thus the background integral term

dominates the pole term small angles. On the other hand, as more Regge

poles are added to the Born approximation, the part that is most affected

is when θ > 45◦. Therefore, the Regge pole term dominates the background

term for large scattering angles, which is a result that was also obtained by [7].

We have demostrated that when our method is applied to the Born approxi-

mation, it improves it’s behavior for large scattering angles. In essence, this

method may be applied generally if the background term fails to approximate

the cross section at large scattering angles.
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Chapter 6

Conclusions

The aim of this research was to develop a method for expanding the Jost

functions as a Taylor-type power series on the complex angular momentum

plane. We began by defining the radial wave function in terms of unknown

functions. Then transformed the Schrödinger equation of the radial wave

function into a first-order coupled differential equations for the unknown

functions. These functions at large distances converges to the Jost functions.

We proved that for scattering states, the Regge poles were located in the

first quadrant of the complex angular momentum plane. We further proved

that the Jost functions were analytic with respect to the parameter ` in that

quadrant. These two proves enabled us to obtain a power series expansion

of the Jost functions.

After expressing the Jost functions as a power series expansion the next

task was to relate them to the scattering amplitude. In order to do that,

we started by considering a scattering wave function that is defined at large

distances, this wave function is expressed as a sum of the incident plane

wave and the scattered wave. The scattering amplitude for spherical sym-
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metric short range potential was written as a partial wave series where the

summation variable ` took only non-negative integers(these integers were po-

sitioned on the Re `-axis), moreover, the partial wave amplitude dependent

on the Jost functions.

When the momentum was greater that zero, more terms of the partial wave

series would be considered and as a result, the series would converge slowly.

By allowing ` to take complex values, it was shown that for scattering pro-

cesses, ` was located in the first quadrant of the complex angular momentum

plane, then the series was converted into an integral by the Watson transfor-

mation. The properties of the S-matrix allowed us to express the scattering

amplitude as a sum of two terms, namely, the background and pole term.

The pole term was expressed in terms of the Regge poles and the residues.

Regge poles were located by the Newton’s method and residues were calcu-

lated by solving a system of first order linear differential equations for fixed

values of energy and Regge pole.

To demostrate how this developed method may be used in application, we

set the background term to be the Born approximation. The results of our

calculations showed that the differential cross section of the partial wave se-

ries converged to that of the exact differential cross section when 51 partial

waves were considered. The differential cross section of the Born approx-

imation failed to approximate the exact differential cross section for large

scattering angles. By adding a single Regge pole to the Born approxima-

tion, its differential cross section gave a better approximation of the exact

differential cross section at large scattering angles - which was equivalent to

adding 31 partial waves.

It was also seen that the background term dominated the pole term when
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the scattering angles were less than 45◦(small angles), while the pole term

dominated for large scattering angles (θ ≥ 130◦ ). This conclussion was also

obtained by [7]. For further studies, the developed method may be used if

the differential cross section of the background term fails to converge to the

exact differential cross section at large scattering angles.
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Chapter 7

Appendices

7.1 Appendix A

The method of variation of parameters

The following derivation was adopted from [11] and [18].

The method of variation of parameters is useful in determining a particular

solution for linear ordinary differential equations, with constant and variable

coefficients. But this method requires knowledge of the complementary so-

lution.

Suppose we want to find the solution of the nonhomogeneous differential

equation

a(x)
d2y

dx
+ b(x)

dy

dx
+ c(x)y(x) = f(x). (7.1)

This method will be useful when f(x), a(x), b(x) and c(x) are continuous

functions and a(x) 6= 0. We start by determining the complementary solution

of the following homogeneous ODE

a(x)
d2y

dx
+ b(x)

dy

dx
+ c(x)y(x) = 0, (7.2)
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which is given by

yc(x) = c1y1(x) + c2y2(x), (7.3)

where y1(x) and y2(x) are linearly independent solutions. Suppose that the

particular solution of (7.1) is given by

yp(x) = u1(x)y1(x) + u2(x)y2(x), (7.4)

where u1(x) and u2(x) are unknown functions to be determined. y1(x) and

y2(x) are the same as in Eq.(7.3).

In order to determine the unknown functions, we need to have two equa-

tions. One of which is given by Eq. (7.1) and the other is given by

y1u
′
1(x) + y2u

′
2(x) = 0, (7.5)

where the primes indicate derivatives with respect to x and yi ≡ yi(x). When

we substitude the particular solution (7.4) into (7.1) and using the fact that

ay′′1 + by′1 + cy1 = 0 and ay′′2 + by′2 + cy2 = 0,

we obtain

y1u
′
1 + y2u

′
2 =

f(x)

a(x)
.

Therefore, the particular solution must satisfy,

y1u
′
1(x) + y2u

′
2(x) = 0

y1u
′
1 + y2u

′
2 =

f(x)

a(x)
.

(7.6)

From (7.6), we can determine u′1 and u′2 as well as calculating the unknown

functions u1 and u2.

61

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



7.2 Appendix B

Numerical calculation of the nth derivative

Our next goal is to derive an expression of the nth derivative of h
(±)
` (kr),

from (2.60), and for that we will use the Cauchy integral theorem. This

theorem is stated as follows [11]; if f(z) is analytic in and on the closed

contour C and z0 is a point within C, then

f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz (7.7)

Eq. (7.7) tells us that the value of the analytic function at an arbitrary point

z0 ∈ C is determined by the value of the function at any point in the circle.

From (7.7) we have

f ′(z0) =
1

2πi

∮
C

f(z)

(z − z0)2
dz,

f ′′(z0) =
2

2πi

∮
C

f(z)

(z − z0)3
dz,

f ′′′(z0) =
6

2πi

∮
C

f(z)

(z − z0)4
dz,

thus the nth derivative

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz. (7.8)

Suppose γ is a circle centered at z0 with radius r, as illustrated by Fig. (7.1),

then any point z in γ can be expressed as

z = z0 + reiθ,
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Figure 7.1: Circle γ with center z0 with an arbitrary point z

and

dz = ireiθ dθ.

Therefore (7.7)and (7.8) respectively become

f(z0) =
1

2π

2π∫
0

f(z0 + reiθ) dθ, (7.9)

f (n)(z0) =
n!

2π

2π∫
0

f(z0 + reiθ)

(reiθ)n
dθ. (7.10)

To approximate the integral in (7.10) we use Gauss-Legendre quadrature,

which states as,
b∫

a

f(x) dx =
N∑
i=1

ωif(xi), (7.11)

where N is the number of integration points, ωi is the weight function defined

as

ωi =
2

(1− x2i )(P ′n(xi))2
.
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P ′n(x) is the derivative of the Legendre polynomial with respect to x and x

is such that Pn(x) = 0. Applying (7.11) on (7.10) we obtain

f (n)(z0) =
n!

2π

N∑
j=1

ωj
f(z0 + reiθ(j))

(reiθ(j))
n . (7.12)

Applying (7.10) on (2.40), we obtain

∂n` h
(±)
` (z0) = ∂n` j`(z0)± i∂n` n`(z0)

=
n!

2π

2π∫
0

(
j`(z0 + reiθ)

(reiθ)n
± in`(z0 + reiθ)

(reiθ)n

)
dθ.

(7.13)
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7.3 Appendix C

Runge-Kutta-Fehlberg method

For us to approximate the solution of the initial value problem

y′ = f(t, x), a ≤ t ≤ b, y(a) = α,

with local truncation error within a given tolerance. We use the Runge-

Kutta-Fehlberg method, where numbers a and b are boundaries of the interval

and α is the initial condition. This method has a local truncation error of

order five [16] and its given by

yi+1 = yi +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6, (7.14)

where the variable coefficients k′is are calculated as follows ([16] and [17]):

k1 = hf(ti, yi),

k2 = hf

(
ti +

h

4
, yi +

1

4
k1

)
,

k3 = hf

(
ti +

3h

8
, yi +

3

32
k1 +

9

32
k2

)
,

k4 = hf

(
ti +

12h

13
, yi +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3

)
,

k5 = hf

(
ti + h, yi +

439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4

)
,

k6 = hf

(
ti +

h

2
, yi −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5

)
.

Where h is the step size. According to [17], the method works in the follow-

ing way:

At each step, two approximations of the solutions are computed and com-
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pared. And if these approximations are in close agreement, the approxima-

tion is accepted, whereas, if the two approximations are not in agreement to

a specified accurately, the stepsize will be reduced. Finally, if the approxima-

tions agree to more significant digits than required, the size will be increased.

Furthermore, the optimum step size is obtained by multiplying the scalar

s =

(
tol h

2|yi+1 − zi+1|

)1/4

≈ 0.84

(
tol h

|yi+1 − zi+1|

)1/4

,

by the current step size h. Where [16]

zi+1 = yi +
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5.

7.4 Appendix D

Newton’s method

Newton method is used to determine the zeros of a function, i.e

{x : f(x) = 0}

given an initial approximation x0. The initial approximation x0 has the

following properties [16]

1. f ′(x0) 6= 0.

2. |x− x0| is very small.

Therefore, the Newton method is given by

xi+1 = xi −
f(xi)

f ′(xi)
(7.15)
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