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Communicated by David Blecher

Abstract. We study ergodic theorems for disjoint C*- and W*-dynamical

systems, where disjointness here is a noncommutative version of the concept

introduced by Furstenberg for classical dynamical systems. We also consider

specific examples of disjoint W*-dynamical systems. Lastly we use unique

ergodicity and unique ergodicity relative to the fixed point algebra to give

examples of disjoint C*-dynamical systems.

1. Introduction

In [11, 13, 14] we studied joinings of W*-dynamical systems, generalizing as-

pects of the classical case [20, 21]. In particular disjointness and some of its

implications were studied. This included the relative case of disjointness over a

common subsystem of the W*-dynamical systems. Here we continue studying

disjointness and its consequences, in the context of C*-dynamical systems pos-

sessing an invariant state. In the process we illustrate how joining techniques can

be applied to C*- and W*-dynamical systems.

In particular we obtain an ergodic theorem for two disjoint C*-dynamical sys-

tems, and apply it to W*-dynamical systems. A number of results on ergodic

theorems for C*- and W*-dynamical systems have appeared recently (see for ex-

ample [23], [12], [6], [3] and [15, Section 4]), and the ergodic theorems we obtain

here for pairs of disjoint C*- and W*-dynamical systems, fit into this broader

research effort, providing evidence that joinings are useful in this field.
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A number of examples of disjoint systems illustrating these results, including

for the relative case, are constructed using Z-actions on group von Neumann

algebras, as well as R and R2 actions on quantum tori and tensor products of

quantum tori.

A concept closely related to disjointness is unique ergodicity relative to the

fixed point algebra of a C*-dynamical system. Abadie and Dykema introduced

the latter notion for Z-actions in [1] as a generalization of unique ergodicity.

Aspects of unique ergodicity of C*-dynamical systems have already been explored

by Avitzour [4, 5] and Longo and Peligrad [22] for general group actions. Here we

use unique ergodicity relative to the fixed point algebra for actions of σ-compact

locally compact amenable groups to obtain examples of disjoint C*-dynamical

systems.

The main discussion of disjointness and its implications appear in Section 3.

Unique ergodicity and unique ergodicity relative to the fixed point algebra, and

their connection to disjointness, are studied in Sections 4 and 5 respectively.

2. Basic definitions and tools

Here we discuss some of the definitions and an example that we will use in the

rest of the paper.

First we define the dynamical systems that we will be working with.

Definition 2.1. A C*-dynamical system (A,α) consists of a unital C*-algebra

A and an action α of a group G on A as ∗-automorphisms. We use the notation

αg for an element of the group action. If B is an α-invariant C*-subalgebra of A

containing the unit of A, in other words αg(B) = B for all g ∈ G, we can define

βg := αg|B to obtain a C*-dynamical system (B, β) called a subsystem of A,α).

The fixed point algebra of a C*-dynamical system (A,α) is defined as

Aα := {a ∈ A : αg(a) = a for all g ∈ G} .

Note that this gives an example of a subsystem of (A,α), namely (Aα, id) where

id is the identity map.

Subsystems here correspond to factors in classical topological dynamics, but

we use the term subsystem in the noncommutative case to avoid confusion.

In any situation in the rest of the paper involving more than one C*-dynamical

system, all the systems will be assumed to make use of actions of the same group

G. A simple but important construction in our work is the tensor product of

two C*-dynamical systems (A,α) and (B, β), namely the C*-dynamical system
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(A⊗m B,α⊗m β) where A⊗m B is the maximal C*-algebraic tensor product of

A and B, and (α⊗m β)g := αg ⊗m βg for all g ∈ G.

We will in fact focus on a specific type of C*-dynamical system defined as

follows:

Definition 2.2. A C*-dynamical system (A,α) is called amenable if G is an

amenable σ-compact locally compact group and the function G→ A : g 7→ αg(a)

is continuous for every a ∈ A.

Remember that an amenable σ-compact locally compact group G has a right

Følner sequence (Λn) consisting of compact subsets of G with strictly positive

right Haar measure. This means that

(2.3) lim
n→∞

|Λn 4 (Λng)|
|Λn|

= 0

for every g ∈ G, where | · | denotes the right Haar measure on G. If in (2.3)

we were to replace Λng by gΛn and we work in terms of the left Haar measure,

then (Λn) is rather called a left Følner sequence. One can even choose each Λn
to be symmetric, i.e. Λ−1

n = Λn. Note that this implies that when the group is

unimodular (i.e. when the right Haar measure is also a left Haar measure) we

always have a right Følner sequence which is also a left Følner sequence, namely

any Følner sequence consisting of symmetric sets. Of course a Følner sequence

need not be symmetric in order to be both a right and left Følner sequence,

for example the sequence Λn = {1, ..., n} for the group Z. All these facts (and

more) regarding Følner sequences can be found in [17, Theorems 1 and 2] and

[16, Theorem 4], and will be used in this paper.

In the rest of the paper the notation (Λn) will refer to a right Følner sequence

consisting of compact subsets, each with strictly positive right Haar measure,

of the relevant group G. Furthermore, we will write dg when integrating with

respect to the right Haar measure.

A central notion in our work will be that of an invariant state:

Definition 2.3. Given a C*-dynamical system (A,α), a state µ on A is called an

invariant state of (A,α), or alternatively an α-invariant state, if µ◦αg = µ for all

g ∈ G. In this case we say that A = (A,α, µ) is a state preserving C*-dynamical

system.

We end this section with a basic and standard example that we will use a

number of times in the paper, namely the quantum torus.

Example 2.4. Our discussion is based on the exposition of the quantum torus in

[27, Section 5.5], although our notation and conventions are somewhat different.
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We consider the classical torus T2 = R2/Z2 and the Hilbert space H := L2(T2)

with respect to the normalized Haar measure on T2. With every θ ∈ R we

associate a C*-algebraic quantum torus Aθ which is the C*-subalgebra of B(H)

generated by the set of operators {u, v} ⊂ B(H) defined by

(uf)(x, y) := e2πixf(x, y + θ/2)

and

(vf)(x, y) := e2πiyf(x− θ/2, y)

for all f ∈ H and (x, y) ∈ T2. We will also consider the von Neumann algebraic

quantum torus Mθ = A′′θ . We note that uv = e2πiθvu so in general Aθ and Mθ

are not abelian. We can set Ω := 1 ∈ H which is then a cyclic vector for Aθ and

Mθ, and it can be verified using harmonic analysis on T2 that it is also separating

for Aθ and Mθ. Hence we can define a faithful trace Tr on both Aθ and Mθ by

Tr(a) := 〈Ω, aΩ〉

for all a ∈Mθ. Of course, Tr is normal on Mθ. We call Tr the canonical trace of

the quantum torus.

A very simple R2 action can be defined on both Aθ and Mθ as follows: Set

Ts,t(x, y) := (x+ s, y + t) ∈ T2

for all (x, y) ∈ T2 and then define

Us,t : H → H : f 7→ f ◦ Ts,t

for all (s, t) ∈ R2. One can then check that this leads to a well defined action τ

of R2 as ∗-automorphisms on both Aθ and Mθ defined by

τs,t(a) := Us,taU
∗
s,t

for all a in Aθ or Mθ, and all (s, t) ∈ R2. Furthermore, Tr is an invariant state of

this dynamics in both the C*-algebraic and von Neumann algebraic cases. It can

be shown that

R2 → Aθ : (s, t) 7→ τs,t(a)

is norm continuous for every a ∈ Aθ. So (Aθ, τ,Tr) is an amenable state preserving

C*-dynamical system. A useful fact is that

(2.4) τs,t(u) = e2πisu and τs,t(v) = e2πitv

for all (s, t) ∈ R2. We will also consider variations on this dynamics in the rest of

the paper. The C*-algebraic case will appear in Sections 4 and 5, while the von

Neumann algebraic case will appear in Section 3.
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We note that at least in the case where θ is irrational, Aθ is nuclear. This

follows for example from the fact that Aθ can be written as a crossed product of

the abelian (and therefore nuclear) C*-algebra C(T) by an action of the amenable

group Z as explained in [8, Theorem VI.1.4 and Example VIII.1.1], combined with

the fact that such crossed products are nuclear [24, Proposition 2.1.2]. Nuclearity

of Aθ will be useful for us when discussing certain examples in Section 5.

3. Disjointness

Disjointness of C*-dynamical systems was first considered by Avitzour in [5],

extending the concept of disjointness in topological dynamical systems [20, Part

II]. In this section however our approach is from the ergodic theory point of view,

in that we define disjointness of a pair of state preserving C*-dynamical systems

in terms of invariant states on a tensor product of the pair, similar to [11, 13, 14].

It is based on the idea of disjointness in classical ergodic theory, also originating

in Furstenberg’s paper [20], and treated extensively in [21].

Definition 3.1. Let A = (A,α, µ) and B = (B, β, ν) be state preserving C*-

dynamical systems. A joining of A and B is an invariant state ω of (A ⊗m
B,α⊗m β) such that ω(a⊗1) = µ(a) and ω(1⊗b) = ν(b) for all a ∈ A and b ∈ B.

The set of all joinings of A and B is denoted by J(A,B). If J(A,B) = {µ⊗m ν},
then A and B are called disjoint. More generally we can consider a subsystem

(R, ρ) of (A⊗mB,α⊗m β), and a ρ-invariant state ψ on R which has at least one

extension to a joining of A and B. So we obtain a state preserving C*-dynamical

system R = (R, ρ, ψ). Denote by JR(A,B) the subset of elements ω of J(A,B)

such that ω|R = ψ. If JR(A,B) contains exactly one element, then we say that

A and B are disjoint with respect to R.

In this definition one can equivalently define a joining of A and B in terms of

the algebraic tensor product (A�B,α� β) instead of (A⊗m B,α⊗m β), since a

state on the algebraic tensor product can be extended to a state on the maximal

C*-algebraic tensor product; see for example [13, Proposition 4.1]. This fact is

used later on. In the rest of this section, the notation A, B and R will refer to

triples as in Definition 3.1, and we also use the notation F for the triple (F,ϕ, λ),

with the symbol G for the group always implied.

We also need the following weaker concept:

Definition 3.2. Let A and B be unital C*-algebras with states µ and ν respec-

tively. A coupling of the pairs (A,µ) and (B, ν) is a state κ on A⊗mB such that

κ(a ⊗ 1) = µ(a) and κ(1 ⊗ b) = ν(b) for all a ∈ A and b ∈ B. If furthermore ψ
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is a state on a C*-subalgebra R of A ⊗m B such that κ|R = ψ, then we call κ a

coupling of (A,µ) and (B, ν) with respect to (R,ψ).

Our first result is the following simple ergodic theorem, which can be viewed as

a generalization of [13, Proposition 2.3], and indeed its proof is a straightforward

adaptation of that in [13].

Theorem 3.3. Let A and B be state preserving amenable C*-dynamical systems

which are disjoint with respect to R. Let (κn) be a sequence of couplings of (A,µ)

and (B, ν) with respect to (R,ψ). Then

(3.1) lim
n→∞

1

|Λn|

∫
Λn

κn ◦ (αg ⊗m βg)(c)dg = ω(c)

for all c ∈ A ⊗m B, where ω is the unique element of JR(A,B). Alternatively,

instead of assuming that g 7→ αg(a) and g 7→ βg(b) are continuous for all a ∈ A
and b ∈ B, we can simply assume that for every n the function g 7→ κn ◦ (αg ⊗m
βg)(a⊗ b) is Borel measurable on G for all a ∈ A and b ∈ B, and then the result

still holds.

Proof. Since g 7→ αg(a) and g 7→ βg(b) are both continuous, so is g 7→
αg(a) ⊗ βg(b). Hence g 7→ κn(αg(a) ⊗ βg(b)) is continuous on G, or more

generally measurable if we use the alternative assumption in the theorem. Ei-

ther way, from Lebesgue’s dominated convergence theorem it then follows that

g 7→ κn ◦ (αg ⊗m βg)(c) is measurable on Λn for all c ∈ A ⊗m B, which means

that the integrals in (3.1) indeed exist.

We define a sequence of states (ωn) on A⊗m B by

ωn(c) :=
1

|Λn|

∫
Λn

κn ◦ (αg ⊗m βg)(c)dg

which then has a cluster point ω′ in the weak* topology in the set of all states

on A⊗m B. By an argument similar to that in the proof of [13, Proposition 2.3],

it follows from eq. (2.3) that ω′ ∈ J(A,B). It is also easy to check, using the ρ-

invariance of ψ, that ωn|R = ψ, hence ω′|R = ψ. So by the assumed disjointness,

ω′ = ω. Therefore ω is the unique cluster point of (ωn) in the weak* topology,

from which we conclude that (ωn) converges to ω in the weak* topology, proving

the theorem. �

This theorem is quite abstract, but has a number of interesting consequences

as we will see. To begin to understand its meaning, and for later reference, we

state the following special case explicitly.
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Corollary 3.4. Let A and B be disjoint state preserving amenable C*-dynamical

systems, and (κn) a sequence of couplings of (A,µ) and (B, ν). Then

lim
n→∞

1

|Λn|

∫
Λn

κn ◦ (αg ⊗ βg)(c)dg = µ⊗m ν(c)

for all c ∈ A⊗m B. Again we can also use the alternative measurability assump-

tions given in Theorem 3.3

Remark 3.5. This theorem and its corollary in fact continues to hold if we use

a Følner net instead of a Følner sequence, and a net of couplings with the same

directed set as the Følner net. This allows one to use for example the form

limT→∞
1
T

∫ T
−T in the case where T ∈ G = R.

The corollary is the one extreme of Theorem 3.3, namely when R = C1. The

other extreme is when R = A⊗m B, in which case Theorem 3.3 becomes trivial,

since κn = ψ = ω is then α⊗m β-invariant. Broadly the idea is therefore to apply

Theorem 3.3 to situations where R is a proper subalgebra of A⊗m B.

In the remainder of this section we apply Theorem 3.3 to W*-dynamical sys-

tems, using results and ideas on joinings from [11, 13, 14]. In subsequent sections

we will illustrate the C*-algebraic case itself, by way of examples.

Definition 3.6. A W*-dynamical system is a state preserving C*-dynamical

system A = (A,α, µ) where µ is a faithful normal state on a (necessarily σ-finite)

von Neumann algebra A.

We now also use Definitions 3.1 and 3.2 for W*-dynamical systems, since

W*-dynamical systems are state preserving C*-dynamical systems. However, in

[11, 13, 14] joinings were expressed in terms of algebraic tensor products, so as

mentioned above, it is important to keep in mind that any state on the algebraic

tensor product of two C*-algebras, and in particular two von Neumann algebras,

can be extended to a state on the maximal C*-algebraic tensor product of the two

algebras, as explained in [13, Section 4]. So even though we are working on the

maximal C*-algebraic tensor product, we will still be able to apply results from

[11, 13, 14].

We need some additional background and notation regarding a W*-dynamical

system A before we proceed (a more general setup and more details can be found

in [11, 13, 14]): The cyclic representation of A obtained from µ by the GNS

construction will be denoted by (H,π,Ω). The associated modular conjugation

will be denoted by J and we set

j : B(H)→ B(H) : a 7→ Ja∗J.
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Note that j−1 = j. Then α can be represented by a unitary group U on H defined

by extending

Ugπ(a)Ω := π(αg(a))Ω.

It satisfies

Ugπ(a)U∗g = π(αg(a))

for all a ∈ A and g ∈ G; also see [7, Corollary 2.3.17]. We are particularly

interested in the case where we have a second W*-dynamical system B with

(B, ν) = (A,µ), in other words we want to consider two dynamics on the same

von Neumann algebra and state. Exactly as for U above, we obtain a unitary

representation V of β.

Following the plan in [11, Construction 3.4] the “commutant” B̃ of B can be

defined as follows: Set B̃ := π(B)′ and then carry the state and dynamics of B

over to B̃ in a natural way using j, by defining a state ν̃ and ∗-automorphism β̃g
on B̃ by ν̃(b) := ν ◦ π−1 ◦ j(b) and β̃g(b) := j ◦ π ◦ βg ◦ π−1 ◦ j(b) for all g ∈ G.

From Tomita-Takesaki theory one has that VgJ = JVg (see [11, Construction

3.4]). Then

ν̃(b) = 〈Ω, bΩ〉
and

β̃g(b) = VgbV
∗
g

for all b ∈ B̃ and g ∈ G. This tells us that the unitary representation of β̃ is the

same as that of β, namely V .

A subsystem of A is a W*-dynamical system F =(F,ϕ, λ) such that (F,ϕ)

is a subsystem of (A,α) as in Definition 2.1, but with F now a von Neumann

subalgebra of A, and λ = µ|F . In [11, 13, 14] a more general situation was

considered, but this definition of a subsystem will do in this paper. We say that

F is a modular subsystem of A if F is invariant under the modular group σ

associated to (A,µ), i.e. σt(F ) = F for all t ∈ R. Assuming that F is also a

modular subsystem of B above, and writing

F̃ := j ◦ π(F )

we obtain a modular subsystem F̃ = (F̃ , ϕ̃, λ̃) of B̃. One can then define a

diagonal state ∆λ on the algebraic tensor product F � F̃ by extending

δ(a⊗ b) := π(a)b

to a unital ∗-homomorphism δ : F � F̃ → B(H) and setting

∆λ(c) := 〈Ω, δ(c)Ω〉
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for all c ∈ F � F̃ . Since F is a modular subsystem, it turns out that there is at

least one joining of A and B̃ extending the state ∆λ, as explained in [14, Section

3].

Definition 3.7. Let A and B be W*-dynamical systems with (A,µ) = (B, ν),

and assume both have F as a modular subsystem. If ∆λ has a unique extension

to a joining of A and B̃, then we call A and B̃ disjoint over F.

Clearly this definition is closely related to Definition 3.1, and the connection

will be further clarified in the proof of Theorem 3.8 below.

Using Theorem 3.3 we can now prove the main result of this section, where the

notation idF refers to the identity map F → F .

Theorem 3.8. Let A and B be W*-dynamical systems with (A,µ) = (B, ν) and

with G amenable, σ-compact and locally compact. Let F be a modular subsystem

of both A and B, and assume that A and B̃ are disjoint over F. Let ηn : A→ A

be any sequence of ∗-automorphisms with ηn|F = idF and µ◦ηn = µ, and assume

that G→ C : g 7→ µ(ηn(αg(a))βg(b)) is Borel measurable for all a, b ∈ A. Then

lim
n→∞

1

|Λn|

∫
Λn

µ(ηn(αg(a))βg(b))dg = µ(D(a)D(b))

for all a, b ∈ A, where D : A→ F is the unique conditional expectation such that

µ ◦D = µ.

In particular, if A and B̃ are disjoint (that is, F = C), then

lim
n→∞

1

|Λn|

∫
Λn

µ(ηn(αg(a))βg(b))dg = µ(a)µ(b)

for all a, b ∈ A.

Proof. The existence and uniqueness of D follow from a result of Takesaki [26]

and the fact that F is a modular subsystem of A. Similarly we have a unique

conditional expectation D̃ : Ã → F̃ such that µ̃ ◦ D̃ = µ̃. Note that if P is the

projection of H onto π(F )Ω, in terms of the notation above, then π(D(a)) =

Pπ(a)P and D̃(b) = PbP for all a ∈ A and b ∈ B̃, as discussed for example in

[25, Subsection 10.2].

Let R be the closure of F � F̃ in A⊗m B. Note that in terms of the notation

above, ∆λ has at least one extension to a state on A � B̃, namely the relatively

independent joining µ�λ ν̃ = ∆λ ◦ (D� D̃) [14, Section 3], which can in turn be

uniquely extended to a state, say µ ⊗λ ν̃, on A ⊗m B̃ [13, Proposition 4.1], and

therefore in particular ∆λ can be extended to a (necessarily unique) state on R.

Since A and B̃ are in fact disjoint over F, µ⊗λ ν̃ is the unique joining extending
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∆λ. In the sense of Definition 3.1, A and B̃ are therefore disjoint with respect to

R = (R, ρ,∆λ) where ρg := αg ⊗m β̃g|R.

We define a coupling µ4 of (A,µ) and (B̃, ν̃) by µ4(c) := 〈Ω, δ(c)Ω〉 where the

unital ∗-homomorphism δ : A ⊗m B̃ → B(H) is obtained from δ(a ⊗ b) := π(a)b

for all a ∈ A and b ∈ B̃, extending δ appearing above. This type of coupling has

also been used in [18]. From this we then define the sequence of couplings

κn := µ4 ◦ (ηn ⊗m idB̃).

It is easily verified using elementary tensors, that each κn is a coupling with

respect to (R,∆λ) in the sense of Definition 3.2. Let Wn be the unitary rep-

resentation of ηn in the cyclic representation obtained form µ, and note that

µ(ηn(αg(a))βg(b)) =
〈
π(a∗)Ω, U∗gW

∗
nVgπ(b)Ω

〉
for all a, b ∈ A, so from Lebesgue’s

dominated convergence theorem and the fact that π(A)Ω is dense in H it follows

that g 7→
〈
x, U∗gW

∗
nVgy

〉
is measurable on compact subsets of G for all x, y ∈ H.

This in turn implies that g 7→ κn ◦ (αg ⊗m β̃g)(a⊗ b) =
〈
π(a∗)Ω, U∗gW

∗
nVgbΩ

〉
is

measurable on compact subsets of G for all a ∈ A and b ∈ B̃. Applying Theorem

3.3, it follows that

lim
n→∞

1

|Λn|

∫
Λn

〈
π(a)Ω, U∗gW

∗
nVgbΩ

〉
dg

= lim
n→∞

1

|Λn|

∫
Λn

κn ◦ (αg ⊗m β̃g)(a
∗ ⊗ b)dg

= µ⊗λ ν̃(a∗ ⊗ b)

=
〈
π(D(a))Ω, D̃(b)Ω

〉
= 〈Pπ(a)Ω, P bΩ〉

and therefore, since B̃Ω is also dense in H,

lim
n→∞

1

|Λn|

∫
Λn

〈
x, U∗gW

∗
nVgy

〉
= 〈Px, Py〉
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for all x, y ∈ H. Finally we can apply this to our current problem, namely for all

a, b ∈ A we have

lim
n→∞

1

|Λn|

∫
Λn

µ(ηn(αg(a))βg(b))dg

= lim
n→∞

1

|Λn|

∫
Λn

〈
π(a∗)Ω, U∗gW

∗
nVgπ(b)Ω

〉
dg

= 〈Pπ(a∗)Ω, Pπ(b)Ω〉
= 〈π(D(a∗))Ω, π(D(b))Ω〉
= 〈Ω, π(D(a)D(b))Ω〉
= µ(D(a)D(b))

as required.

In particular, when A and B̃ are disjoint, we have D = µ, so µ(a)µ(b). Alterna-

tively we can follow the above proof, but using Corollary 3.4 instead of Theorem

3.3, to obtain this special case. �

We are therefore interested in pairs of disjoint W*-dynamical systems. An

archetypal example is weak mixing versus compactness; see [23, 13, 14] for an

extended discussion and definitions. In particular we recall from [23, Section 4]

and its extension to more general groups in [14, Section 5], that a W*-dynamical

system with G abelian, has a biggest compact subsystem, which we denote by

AK = (AK , αK , µK), and this subsystem is necessarily modular.

Corollary 3.9. Let A and B be W*-dynamical systems with (A,µ) = (B, ν).

Assume that G is abelian, amenable, σ-compact and locally compact, and that

G → C : g 7→ µ(αg(a)βg(b)) is Borel measurable for all a, b ∈ A. Assume

furthermore that B is compact and that AK is a subsystem of B. Then

lim
n→∞

1

|Λn|

∫
Λn

µ(αg(a)βg(b))dg = µ(D(a)D(b))

for all a, b ∈ A, where D : A → AK is the unique conditional expectation such

that µ ◦D = µ.

In particular, if A is weakly mixing (in which case AK is trivial, that is,

AK = C1), then

(3.2) lim
n→∞

1

|Λn|

∫
Λn

µ(αg(a)βg(b))dg = µ(a)µ(b)

for all a, b ∈ A.
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Proof. Since ν = µ, while AK is a modular subsystem of A, it follows that AK

is also a modular subsystem of B. Therefore A and B̃ are disjoint over AK by

[14, Theorem 5.6], and the result follows from Theorem 3.8. When A is weakly

mixing, then AK = C1 by [14, Corollary 5.5], therefore D = µ, and the special

case follows. �

Remark 3.10. Using [13, Theorem 2.8], we can obtain a variation on the spe-

cial case in the result above, namely assuming that B is ergodic with discrete

spectrum, instead of compact, but relaxing the assumption that G be abelian, eq.

(3.2) still holds.

Remark 3.11. Following a similar proof, using [14, Theorem 4.3] instead of [14,

Theorem 5.6], one finds that Corollary 3.9 also holds when A is any W*-dynamical

system, B is an identity system (i.e. βg = idB), and AK is replaced by the fixed

point subsystem Aα = (Aα, id, µ|Aα) of A, without G having to be abelian.

Note that the fixed point algebra indeed gives a modular subsystem Aα of A

[14, Proposition 4.2]. The special case eq. (3.2) now holds for ergodic A, which

means that Aα = C1, and is then a standard characterization of ergodicity (see

also Section 4). This version of Corollary 3.9 however also follows directly from

the mean ergodic theorem and the representation of the conditional expectations

in terms of Hilbert space projections, so does not require joining techniques for

its proof.

We end this section with a discussion of examples to illustrate the W*-

dynamical results above. Simple examples of weakly mixing (in fact strongly

mixing) and compact W*-dynamical systems on the same algebra and state, for

Z-actions, are provided by group von Neumann algebras; see [13, Theorems 3.4

and 3.6]. We now firstly look at the relative case of this example as well, namely

where AK is not trivial.

We use the same basic setting as in [13, Section 3], namely we consider an

automorphism T of an arbitrary group Γ to which we assign the discrete topology.

This leads to a dual system A = (A,α, µ) with G = Z, where A is the group von

Neumann algebra of Γ, µ is its canonical trace, and α(a) := UaU∗ for all a ∈ A,

with the unitary operator U : H → H defined by

Uf := f ◦ T−1

where H := `2(Γ). For any g ∈ Γ we define δg ∈ H by δg(g) = 1 and δg(h) = 0 for

h 6= g. Note that Uδg = δTg. Setting Ω := δ1 where 1 here refers to the identity

element of Γ, it is then easily seen that (H, idA,Ω) is the cyclic representation

of (A,µ) and that UΩ = Ω, so U is the unitary representation of α in the cyclic
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representation. We can define the finite orbit subsystem F of A by defining F to

be the von Neumann subalgebra of A generated by the subgroup of elements of

Γ which have finite orbits under T . Then we have the following fact.

Proposition 3.12. For a dual system A as described above, the finite orbit sub-

system is exactly AK .

Proof. Let F denote the finite orbit subsystem of A, then we simply have to

prove that F = AK . Since F is compact [13, Theorem 3.5], it follows that F ⊂ AK .

So let’s look at the converse. The proof uses a similar idea as in the proof of [13,

Theorem 3.4].

Let l be the left regular representation of Γ on H, i.e. [l(g)f ] (h) = f(g−1h) for

all g, h ∈ Γ and f ∈ H. So A is generated by {l(g) : g ∈ Γ} and F is generated by

{l(g) : g ∈ E}, where E :=
{
g ∈ Γ : TZ(g) is finite

}
. Setting HF := FΩ, we see

that since l(g)Ω = δg, the space H⊥F is spanned by the orthonormal set of vectors

{δg : g ∈ G\E}. Since the elements of G\E have infinite orbits under T , we have

〈Unδg, δh〉 = 0 for n large enough, for all g, h ∈ G\E. It follows that

lim
n→∞

〈Unx, y〉 = 0

for all x, y ∈ H⊥F . However, HF is invariant under U , so it follows that

lim
n→∞

〈Unx, y〉 = 0

for any x ∈ H and y ∈ H⊥F .

Now, let H0 be the subspace of H spanned by eigenvectors of U . Since F ⊂ AK ,

it follows from [14, Theorem 5.4] that HF ⊂ AKΩ = H0. Suppose there is an

eigenvector v of U which is not in HF , and let the corresponding eigenvalue be

denoted by c. (Since U is unitary, |c| = 1.) Then there is a y ∈ H⊥F such that

〈v, y〉 6= 0, hence the limit limn→∞ 〈Unv, y〉 = (limn→∞ cn) 〈v, y〉 is not zero (and

does not even necessarily exist), contradicting what we found above. It follows

that such a v does not exist, therefore HF = H0.

Next we need to carry this result over to the algebras themselves. What we

have shown is that FΩ = AKΩ, but F is invariant under the modular group of

(AK , µK), since µK = µ|AK is tracial and its modular group therefore trivial. We

have a resulting conditional expectation D : AK → F which is implemented by

the projection of H0 onto HF , which means that D is the identity mapping. So

F = AK . �

Example 3.13. Consider in particular the case where Γ is the free group on

any infinite set of symbols S. Partition S into two sets S1 and S2, with at least
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S2 infinite. Define the automorphism T : Γ → Γ by extending any bijection

T : S → S satisfying T (S1) = S1 and T (S2) = S2, and with the orbits of T on

all elements of S1 being finite, but infinite on all elements of S2. In this way we

obtain a dual system A as discussed above, and because of Proposition 3.12, AK

is given by the von Neumann subalgebra of A generated by the subgroup of Γ

generated by S1. In the same way we also consider another dual system B with

(B, ν) = (A,µ), given by a bijection E : S → S, again satisfying E(S1) = S1

and E(S2) = S2, and such that E|S1
= T |S1

while all the orbits of E on S2

are finite. Note that B is compact [13, Theorem 3.5]. Furthermore, AK is a

subsystem of the compact system B, and it is necessarily a modular subsystem,

since µ is tracial and it modular group therefore trivial. This example satisfies all

the requirements of Corollary 3.9. It particular it provides examples where AK

is not trivial, and not even an identity system, namely when S1 has more than

one element and T |S1
is not the identity map. Note that the dynamics of AK

can in fact be fairly complicated. As an illustration, consider the countable set

of symbols S1 = {s1, s2, s3, ...}, and let T |S1
be given by the cycles of increasing

length (s1, s2), (s3, s4, s5), (s6, s7, s8, s9), and so on. So, for example, T (s6) = s7

and T (s9) = s6. Then there are elements of AKΩ that do not have finite orbits

under U , for example
∑∞
n=1 δsn/n, so we don’t have periodic dynamics.

Next we exhibit a pair of disjoint compact systems by considering G = R2

actions on quantum tori.

Example 3.14. Refer to Example 2.4, however consider θ1, θ2 ∈ R. Let A := Mθ1

and B := Mθ2 , and let µ and ν be their respective canonical traces. Furthermore,

set

αs,t := τps,qt and βs,t := τcs,dt

for all (s, t) ∈ R2, where p, q, c, d ∈ R\ {0} are fixed. Then A = (A,α, µ) and

B = (B, β, ν) are W*-dynamical systems.

Setting χg,h(s, t) := e2πi(gs+ht) for all (g, h), (s, t) ∈ R2, one can use harmonic

analysis on T2 to show that H is spanned by the eigenvectors of the unitary group

U and of the unitary group V , namely

Us,tχm,n = χmp,nq(s, t)χm,n

and

Vs,tχm,n = χmc,nd(s, t)χm,n

for all (s, t) ∈ R2 and (m,n) ∈ Z2. Therefore A and B̃ are compact W*-dynamical

systems [13, Definition 2.5 and Proposition 2.6], and their point spectra are

σA =
{
χmp,nq : (m,n) ∈ Z2

}
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and

σB̃ =
{
χmc,nd : (m,n) ∈ Z2

}
respectively. Since p, q, c, d 6= 0, one simultaneously sees that A and B̃ are also

ergodic, since the fixed point spaces of U and V are one dimensional (they are

spanned by the eigenvector χ0,0 = 1 = Ω). Now, if either p/c or q/d, or both, are

irrational, we see that

σA ∩ σB̃ = {1}

and therefore by [13, Theorem 2.8] A and B̃ are disjoint. A C*-algebraic version

of this disjointness (though requiring both p/c and q/d to be irrational) will be

considered in Section 4.

When θ1 = θ2, so (B, ν) = (A,µ), one can use harmonic analysis on T2 and the

Lebesgue dominated convergence theorem, to show that for any ∗-automorphism

η : A→ A with µ ◦ η = µ the function

R2 → C : (s, t) 7→ µ(η(αs,t(a))βs,t(b))

is continuous for all a, b ∈ A, and therefore Theorem 3.8 applies.

We are not aware of pairs of disjoint weakly mixing W*- (or state preserving

C*-) dynamical systems on the same algebra and state.

4. Unique ergodicity

We consider a simple connection between disjointness and unique ergodicity,

and discuss examples of uniquely ergodic C*-dynamical systems. This is used to

obtain a C*-algebraic (rather than W*-algebraic) example satisfying the assump-

tions of Corollary 3.4. We start with the definition of unique ergodicity (also see

[4, Definition 4.5]).

Definition 4.1. A C*-dynamical system is uniquely ergodic if it has a unique

invariant state.

Using an argument similar to the one in the proof of Theorem 3.3, one can show

that an amenable C*-dynamical system has at least one invariant state by starting

with an arbitrary state and considering its sequence of averages over (Λn), and

furthermore that an amenable C*-dynamical system is uniquely ergodic if and

only if the limit

lim
n→∞

1

|Λn|

∫
Λn

αg(a)dg
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exists in the norm topology and is a scalar multiple of the identity for every a ∈ A,

where the integral used here is the Bochner integral (see for example [10, Chapter

II] for an exposition).

From properties of the Bochner integral (see [10, Theorem II.2.6]) it also follows

that unique ergodicity implies ergodicity in the sense that in the GNS represen-

tation obtained from the unique invariant state, the unitary representation of the

dynamics has a one dimensional fixed point space, or equivalently

lim
n→∞

1

|Λn|

∫
Λn

µ(αg(a)b)dg = µ(a)µ(b)

for all a, b ∈ A. See for example [9] for the relevant general background regarding

ergodicity.

The converse is not true however. For example, consider the shift ∗-
automorphism on a countably infinite tensor product A of a C*-algebra C with

itself. Any state on C then gives a shift invariant state on A, leading to an ergodic

(and in fact strongly mixing) state preserving dynamical system. Since any state

on C will do, the shift is not uniquely ergodic though.

An example of unique ergodicity is provided by the quantum torus which illus-

trates that one should indeed consider unique ergodicity for group actions other

than Z:

Proposition 4.2. The C*-dynamical system (Aθ, τ) given by Example 2.4 is

uniquely ergodic.

Proof. We know that the canonical trace Tr is invariant. Let µ be any invariant

state of (Aθ, τ). Let B be the ∗-subalgebra of Aθ generated by {u, v}, so B consists

of finite linear combinations of elements of the form umvn, with m,n ∈ Z. By

(2.4) we have

µ(umvn) = µ(τs,t(u
mvn)) = e2πi(ms+nt)µ(umvn)

which means that m = n = 0 or µ(umvn) = 0. However Tr satisfies these

conditions as well, so µ|B = Tr|B and since B is dense in Aθ, we have µ = Tr. �

This example is of course very simple in the sense that it is periodic in each of

the two real parameters of its action; in effect R2 acts on T2 which in turn acts on

Aθ. A slightly more complicated example is given by the following proposition.

Proposition 4.3. Let θ1, θ2 ∈ R and in terms of Example 2.4 set A := Aθ1
and B := Aθ2 . Furthermore, set αs,t := τps,qt and βs,t := τcs,dt for all (s, t) ∈
R2, where p, q, c, d ∈ R\ {0} are fixed. Also assume that p/c and q/d are both

irrational. Then the C*-dynamical system (A⊗m B,α⊗m β) is uniquely ergodic.
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Proof. Let u and v be the generators of A as in Example 2.4, and let w and z

correspondingly be the generators of B. Using the notation u̇ = u⊗ 1, v̇ = v⊗ 1,

ẇ = 1 ⊗ w and ż = 1 ⊗ z, we see that the C*-algebra A ⊗m B is generated by

{u̇, v̇, ẇ, ż}. Therefore the ∗-algebra C consisting of all finite linear combinations

of elements of the form u̇j v̇kẇlżm, where j, k, l,m ∈ Z, is dense in A⊗m B. If ω

is any invariant state of (A⊗m B,α⊗m β), then we as in Proposition 4.2’s proof

ω(u̇j v̇kẇlżm) = e2πi[(jp+lc)s+(kq+md)t]ω(u̇j v̇kẇlżm)

for all (s, t) ∈ R2, therefore ω(u̇j v̇kẇlżm) = 0 or jp + lc = kq + md = 0. Since

p/c and q/d are irrational, the latter implies j = k = l = m = 0, and in this case

ω(u̇j v̇kẇlżm) = ω(1 ⊗ 1) = 1 = Tr⊗mTr(u̇j v̇kẇlżm). When at least one of j, k,

l or m is not zero, Tr⊗mTr(u̇j v̇kẇlżm) = Tr(ujvk)Tr(wlzm) = 0. Therefore ω =

Tr⊗mTr. �

Note that if ps, cs ∈ Z\ {0} then p/c is rational, and similarly for q/d. So

the product system in Proposition 4.3 is not periodic in either of the two real

parameters; consider for example the orbit of u̇+ ẇ.

Remark 4.4. In general, for two C*-dynamical systems (A,µ) and (B, ν) with

G a topological group and g 7→ αg(a) and g 7→ βg(b) both continuous, it is fairly

straightforward to show that g 7→ αg ⊗m βg(c) is continuous for all c ∈ A⊗m B.

Hence, if furthermore (A,µ) and (B, ν) are also amenable, so is their product

system. In particular the dynamics of the product system in Proposition 4.3

is continuous in the sense just described, and the product system is therefore

amenable.

Clearly Proposition 4.3 is similar to the disjointness result in Example 3.14,

although now we are in the C*-algebra context. Let us formalize this connection:

Two uniquely ergodic C*-dynamical systems (A,α) and (B, β) are called disjoint

if the corresponding state preserving C*-dynamical systems are disjoint. Clearly

this is the case if and only if the product system (A ⊗m B,α ⊗m β) is uniquely

ergodic, since any invariant state of this product system is a joining because it

restricts to invariant states of (A,α) and (B, β), which are unique. In particular

we have the following corollary which tells us that examples of disjointness are

not restricted to W*-dynamical systems:

Corollary 4.5. The C*-dynamical systems (A,α) and (B, β) described in Propo-

sition 4.3 are disjoint.
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In Section 3 we considered consequences of Theorem 3.3 for W*-dynamical

systems. We now consider an example satisfying all the requirements of Theorem

3.3 (specifically those of Corollary 3.4) in the C*-algebraic context.

Example 4.6. Still consider the situation in Proposition 4.3, and let µ and ν be

the canonical traces of A and B respectively. Let u, v and w, z be the generators

of A and B respectively, as in the proof of Proposition 4.3. It is easily verified

that vz = zv, so the C*-subalgebras C∗(v) and C∗(z) of B(H) generated by v

and z respectively, are mutually commuting. We can therefore use a similar idea

as in Section 3 to construct a coupling of (A,µ) and (B, ν). Let

δ : C∗(v)� C∗(z)→ B(H)

be the ∗-homomorphism obtained by extending δ(a⊗ b) = ab. We can construct

a conditional expectation D1 : A → C∗(v) such that D1(umvn) = 0 for nonzero

m ∈ Z, and D1(vn) = vn for all n ∈ Z. Since µ(umvn) is 1 when m = n = 0, and

0 otherwise, it follows that µ ◦D1 = µ. Similarly we obtain D2 : B → C∗(z) with

ν ◦D2 = ν. We then define a state κ on A⊗m B by continuously extending the

following:

κ(c) := 〈Ω, δ ◦ (D1 �D2)(c)Ω〉
for all c ∈ A�B. It is now easy to verify that κ is a coupling of (A,µ) and (B, ν).

It is indeed a nontrivial coupling, that is, κ 6= µ ⊗m ν, since κ(v ⊗ z−1) = 1

while µ ⊗m ν(v ⊗ z−1) = 0. We therefore have all the ingredients required in

Theorem 3.3, or more specifically, Corollary 3.4. Note that as opposed to the

W*-dynamical applications considered in Section 3, this gives a case of Theorem

3.3 for two different algebras. Explicitly, Corollary 3.4 and Corollary 4.5 say that

lim
n→∞

1

|Λn|

∫
Λn

κ(αg(a)⊗ βg(b))dg = µ(a)ν(b)

for all a ∈ A and b ∈ B, where (Λn) is any Følner sequence in G = R2.

In particular, when θ1 = θ2 (so A = B), and if we write D = D1 = D2, we

have

lim
n→∞

1

|Λn|

∫
Λn

µ(D(αg(a))D(βg(b)))dg = µ(a)µ(b)

for all a, b ∈ A.

5. Relative unique ergodicity

In this section we consider a relative version of unique ergodicity and its con-

nections with disjointness. In particular we use these results to obtain an example
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of (relative) disjointness in the C*-algebraic context, and use it to illustrate Theo-

rem 3.3. To do this, we first formulate [1, Theorem 3.2] for actions of more general

groups than Z, followed by examples for actions of the group R using quantum

tori. Note that [1, Theorem 3.2] has already lead to further work, in particular

[19] and [2], but only for actions of the group Z.

Definition 5.1. We call the C*-dynamical system (A,α) uniquely ergodic relative

to its fixed point algebra if every state on Aα has a unique extension to an invariant

state of (A,α).

From the remarks following Definition 4.1, the fixed point algebra of a uniquely

ergodic amenable C*-dynamical system is Aα = C1.

The proof of the next result follows the basic plan of [1]’s proof, with fairly

straightforward modifications and refinements. We therefore omit the proof here.

Note that if we say that a conditional expectation E : A→ Aα is α-invariant, we

mean that E◦αg = E for all g ∈ G, and similarly for linear functionals. Existence

of limits, closures etc. are all in terms of the norm topology on A. The integrals

are Bochner integrals.

Theorem 5.2. Let (A,α) be an amenable C*-dynamical system with G unimod-

ular, and let (Λn) be both a right and left Følner sequence. Then statements (i)

to (v) below are equivalent.

(i) The system (A,α) is uniquely ergodic relative to its fixed point algebra.

(ii) The limit

lim
n→∞

1

|Λn|

∫
Λn

αg(a)dg

exists for every a ∈ A.

(iii) The subspace Aα+ span{a− αg(a) : g ∈ G, a ∈ A} is dense in A.

(iv) The equality A = Aα + span {a− αg(a) : g ∈ G, a ∈ A} holds.

(v) Every bounded linear functional on Aα has a unique bounded α-invariant

extension to A with the same norm.

Furthermore, statements (i) to (v) imply the following statements:

(vi) There exists a unique α-invariant conditional expectation E from A onto

Aα.

(vii) The conditional expectation E in (vi) is given by

E(a) = lim
n→∞

1

|Λn|

∫
Λn

αg(a)dg

for all a ∈ A.
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Remark 5.3. Note that if G is abelian, or if more generally we restrict ourselves

to Følner sequences that are both right and left Følner sequences, then the value

of the ergodic average in (ii) is independent of the Følner sequence because of (vi)

and (vii).

The equivalence of conditions (i) and (ii) is what we are most interested in

now, since it is useful in showing relative unique ergodicity in the examples below.

These examples are simple variations on Propositions 4.2 and 4.3.

Proposition 5.4. Consider the situation in Example 2.4, write A = Aθ and set

αs := τs,0 for all s ∈ R. Then (A,α) is an example of a C*-dynamical system for

an action of R which is uniquely ergodic relative to its fixed point algebra.

Proof. Take any Følner sequence (Λn) in R, for example Λn = [0, n]. Let

a = ujvk for any j, k ∈ Z. Then

lim
n→∞

1

|Λn|

∫
Λn

αs(a)ds = lim
n→∞

1

|Λn|

∫
Λn

e2πijsads

= a lim
n→∞

1

|Λn|

∫
Λn

e2πijsds

=

{
a if j = 0

0 otherwise.

Therefore limn→∞
1
|Λn|

∫
Λn
αs(a)ds exists for all a in the dense ∗-subalgebra of

A generated by {u, v}. Then it is easily verified that it exists for all a ∈ A.

According to Theorem 5.2(i) and (ii) this means that (A,α) is indeed uniquely

ergodic relative to its fixed point algebra. �

Remark 5.5. With some more work one can show that the fixed point algebra of

the C*-dynamical system in Proposition 5.4 is the C*-subalgebra of A generated

by v, as one would expect. One way of doing this is to use the conditional expec-

tation D1 (for θ1 = θ) mentioned in Example 4.6; this is exactly the conditional

expectation also given by Theorem 5.2(vi) for the system in Proposition 5.4.

Proposition 5.6. Consider the situation in Proposition 4.3 except that p/c and

q/d need not be irrational. Write αs ≡ αs,0 and βs ≡ βs,0 for all s ∈ R, to define

actions α and β of R on A and B respectively. Then (A ⊗m B,α ⊗m β) is an

example of a C*-dynamical system for an action of R which is uniquely ergodic

relative to its fixed point algebra.



DISJOINTNESS OF C*-DYNAMICAL SYSTEMS 243

Proof. Using the notation in the proof of Proposition 4.3 and setting a =

u̇j v̇kẇlżm for any j, k, l,m ∈ Z, we have

lim
n→∞

1

|Λn|

∫
Λn

(α⊗m β)s(a)ds = lim
n→∞

1

|Λn|

∫
Λn

e2πi(jp+lc)sads

=

{
a if jp+ lc = 0

0 otherwise

and proceeding as in Proposition 5.4’s proof, the result follows. �

As in Section 4, in the case where p/c is irrational, the C*-dynamical system

(A⊗m B,α⊗m β) in Proposition 5.6 is not periodic.

Using higher dimensional quantum tori one should similarly be able to con-

struct C*-dynamical systems for actions of Rn which are uniquely ergodic relative

to their fixed point algebras.

Finally we return to disjointness. In Section 3 we focussed on state preserving

C*-dynamical systems, that is to say, we considered a specific invariant state.

Now however we in principle allow many states, so let us consider an appropriate

version of disjointness for relatively uniquely ergodic systems. In line with relative

unique ergodicity, the focus here will be on fixed point algebras, rather than more

general subsystems as in the W*-dynamical case in Section 3.

Note that if (A,α) and (B, β) are C*-dynamical systems which are uniquely

ergodic relative to their respective fixed point algebras, then any state ψ on the

algebraic tensor product Aα�Bβ induces a unique pair of invariant states µ and

ν of (A,α) and (B, β) respectively through the following process: ψ|Aα�1 gives a

state on Aα, which has a unique extension to an invariant state µ of (A,α), and

similarly for ν.

Definition 5.7. Let the C*-dynamical systems (A,α) and (B, β) be uniquely

ergodic relative to their respective fixed point algebras. Let R be the closure of

Aα�Bβ in A⊗mB. We call (A,α) and (B, β) disjoint relative to their fixed point

algebras if every state ψ on R has a unique extension to a joining of (A,α, µ) and

(B, β, ν), where µ and ν are the states induced by ψ on A and B respectively.

The disjointness defined in Definition 5.7 implies that for any state ψ on R, the

induced state preserving C*-dynamical systems (A,α, µ) and (B, β, ν) are disjoint

with respect to (R, id, ψ) as in Definition 3.1.

As in Section 4, the connection with relative unique ergodicity we want to ex-

ploit is quite simple: Let the C*-dynamical systems (A,α) and (B, β) be uniquely

ergodic relative to their respective fixed point algebras. Since Aα � Bβ is in the

fixed point algebra of (A⊗mB,α⊗m β), so is R. If (A⊗mB,α⊗m β) is uniquely
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ergodic relative to R (so in particular R is equal to the fixed point algebra of

(A⊗mB,α⊗mβ)), then (A,α) and (B, β) are disjoint relative to their fixed point

algebras. This is the case, since any state ψ on R has a unique extension to an

invariant state of (A ⊗m B,α ⊗m β), which by the relative unique ergodicity of

(A,α) and (B, β) is then necessarily the unique joining of (A,α, µ) and (B, β, ν)

as in Definition 5.7. In general though, R will not be the fixed point algebra, so

this is something we need to check.

Corollary 5.8. Consider the situation in Proposition 5.6, and assume further-

more that p/c is irrational, and that θ1 or θ2 are irrational. Then (A,α) and

(B, β) are disjoint relative to their fixed point algebras.

Proof. The irrationality of θ1 or θ2 ensures that either A or B are nuclear, so

A⊗m B = A⊗B is the spatial tensor product, which allows us to use the spatial

representation as will be seen below. The key technical point is to show that

the fixed point algebra of (A ⊗ B,α ⊗ β), is indeed Aα ⊗ Bβ . We again use the

notation in the proof of Proposition 4.3, and H = L2(T2).

Denote the unitary group representing α ⊗ β on H ⊗H by V . So Vsf = f ◦
(Tps,0×Tcs,0) in terms of Example 2.4. Using harmonic analysis on T2 and the fact

that p/c is irrational, one can show that the fixed point space (H⊗H)V of V is the

Hilbert subspace of H⊗H spanned by {e0,k ⊗ e0,m : k,m ∈ Z}, where ej,k denote

the functions in the total orthonormal set of H given by ej,k(s, t) := e2πijse2πikt.

Furthermore, taking the spatial tensor product of the conditional expectations

D1 and D2 described in Example 4.6, we obtain the conditional expectation E :

A ⊗ B → C∗(v) ⊗ C∗(z). One can then show that [(1− E)(A⊗B)] (Ω ⊗ Ω) is

orthogonal to (H ⊗ H)V . Since Ω ⊗ Ω is separating for A ⊗ B on H ⊗ H, it

follows that the only fixed point of (1 − E)(A ⊗ B) under α ⊗ β is 0. For any

a ∈ (A ⊗ B)α⊗β we then have a = (α ⊗ β)g(a) = (α ⊗ β)g(Ea + (1 − E)a) =

Ea+(α⊗β)g((1−E)a), since C∗(v)⊗C∗(z) ⊂ (A⊗B)α⊗β . So (1−E)a is a fixed

point of α⊗β, which means that (1−E)a = 0. Therefore a = Ea ∈ C∗(v)⊗C∗(z),
so (A⊗B)α⊗β = C∗(v)⊗ C∗(z).

As mentioned above, C∗(v) and C∗(z) are the respective fixed point algebras

of (A,α) and (B, β). By Proposition 5.6 we now know that (A,α) and (B, β) are

disjoint relative to their fixed point algebras. �

In order to illustrate Theorem 3.3 by an example satisfying all its assumptions,

we however also need a nontrivial coupling. In the next example we consider a

case of Corollary 5.8 where we are able to construct such a coupling.
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Example 5.9. Again we use ideas from Section 3 and the notation in Example

2.4. Write A = Aθ, but with θ irrational to ensure A is nuclear, and let µ be

its canonical trace. From the modular conjugation J of (A′′, µ), we obtain an

idempotent map j as in Section 3. Setting ũ := j(u) and ṽ := j(v), we define Ã

to be the C*-subalgebra of B(H) generated by {ũ, ṽ}, and we naturally carry µ to

the state µ̃ on Ã given by µ̃ := µ ◦ j, which turns out to be exactly µ̃ = 〈Ω, (·)Ω〉.
So A and Ã are mutually commuting, allowing us as in Section 3 to define a unital

∗-homomorphism δ : A⊗ Ã→ B(H) by extending δ(a⊗ b) := ab, which gives the

coupling κ of (A,µ) and (Ã, µ̃) defined by

κ(a) := 〈Ω, δ(a)Ω〉

for all a ∈ A⊗ Ã.

This abstract approach actually has a simple concrete meaning. It is easily

verified that J is just complex conjugation on H = L2(T2), and that ũ and ṽ are

the generators of A−θ, so they are given by precisely the same formulas as u and

v respectively in Example 2.4, but with θ replaced by −θ.
So we simply apply Corollary 5.8 to the case θ1 = θ = −θ2 to obtain disjoint

(A,α) and (B, β), assuming p/c is irrational. In terms of the notation in Corollary

5.8’s proof, we can define a state ω on A⊗B by

ω(a) := 〈Ω, δ ◦ E(a)Ω〉

for all a ∈ A ⊗ B. Setting R := C∗(v) ⊗ C∗(z) and ψ := ω|R, we have κ|R = ψ,

and by the above mentioned disjointness, ω is easily checked to be the unique

joining of (A,α, µ) and (B, β, ν) extending ψ, where µ and ν are the canonical

traces of A and B as usual.

Keeping in mind Remark 4.4, we therefore satisfy all the assumptions in The-

orem 3.3 in a nontrivial way, since κ 6= ω, for example κ(u ⊗ ũ−1) = 1 while

ω(u⊗ ũ−1) = 0.
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