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ABSTRACT 
 
This paper proposes an exponentially weighted moving average (EWMA) control 
chart that is capable of detecting changes in both process mean and standard 
deviation for autocorrelated data (referred to as the Maximum Exponentially 
Weighted Moving Average Chart for Autocorrelated Process, or MEWMAP chart). 
This chart is based on fitting a time series model to the data, and then calculating the 
residuals. The observations are represented as a first-order autoregressive process 
plus a random error term. The Average Run Lengths (ARLs) for fixed decision 
intervals and reference values (h, k) are calculated. The proposed chart is compared 
with the Max-CUSUM chart for autocorrelated data proposed by Thaga (2003). 
Comparisons are based on the out-of-control ARLs. The MEWMAP chart detects 
moderate to large shifts in the mean and/or standard deviation at both low and high 
levels of autocorrelations more quickly than the Max-CUSUM chart for 
autocorrelated processes. 
 

OPSOMMING 
 
Die navorsing stel voor dat 'n eksponensiaal geweegde bewegende gemiddelde 
kontrolekaart gebruik word om verandering van prosesgemiddelde en – 
standaardafwyking van outogekorreleerde data te bepaal.  Die kontrolekaart word 
gedryf deur passing van 'n tydreeks as datamodel met bepaling van residuwaardes.  
Met hierdie gegewens as vertrekpunt word gemiddelde looplengtes vir vaste 
besluitintervalle en verwysingwaardes (h, k) bereken.  Die kontrolekaart bepaal 
matige en groot verskuiwings van waardes vir hoë en lae outokorrelasiewaardes heel 
snel. 
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1.  INTRODUCTION 
 
Statistical process control (SPC) charts such as the Shewhart control chart (Shewhart 
[14]), the cumulative sum control chart (Page [10]), and the exponentially weighted 
moving average control chart (Roberts [12]), are used to monitor product quality and 
to detect special events that may be indicators of out-of-control situations. These 
charts are designed on the assumption that a process being monitored will produce 
measurements that are independent and identically distributed over time, when only 
the inherent sources of variability are present in the system. However, in some 
applications the dynamics of the process will produce correlations in observations 
that are closely spaced in time. If the sampling interval used for process monitoring 
in these applications is short enough for the process dynamics to produce significant 
correlation, then this correlation can have a very serious effect on the properties of 
standard control charts (VanBrackle & Reynolds [16], Lu & Reynolds [7] and [8], 
Runger & Willemain [13], Atienza, Tang & Ang [2]). 
 
Positive autocorrelation in observations can result in severe negative bias in 
traditional estimators of the standard deviation. This bias produces control limits that 
are much tighter than desired. This can result in a much higher average false alarm 
rate than expected. Furthermore, when observations are positively autocorrelated, 
when there is a shift in the process mean, only a fraction of the shift will be 
transferred to the residual mean, and the chart will not quickly detect this shift. It is 
therefore very important to take autocorrelation among observations into 
consideration when designing a process-monitoring scheme – in particular, control 
charts – in order to maximize full benefit from the control charts. 
 
Recently, new control charts have been proposed for dealing with autocorrelated 
data. Two approaches have been advocated for dealing with this phenomenon. The 
first approach uses standard control charts on original observations, but adjusts the 
control limits and methods of estimating parameters to account for the 
autocorrelation in the observations (VanBackle & Reynolds [16], Lu & Reynolds 
[7]). This approach is particularly applicable when the level of autocorrelation is not 
high. 
 
A second approach for dealing with autocorrelation fits a time series model to the 
process observations. The procedure forecasts observations from previous values and 
then computes the forecast errors or residuals. These residuals are then plotted on 
standard control charts, because – when the fitted time series model is the same as 
the true process model and the parameters are estimated without error – the residuals 
are independent and identically distributed normal random variables when the 
process is in control (Alwan & Roberts [1], Montgomery & Mastrangelo [9], Wadell, 
Moskowitz, & Plante [17], Lu & Reynolds [7], and Runger, Willemain & Prabhu 
[3]). Yashchin [19] recommends directly charting raw data when the level of 
autocorrelation is low; at a high level of autocorrelation he recommends some 
transformation procedures that create residuals. If a shift in the mean and/or standard 
deviation of the process occurs, this will cause a shift in the mean and/or standard 
deviation of the residuals. Control charts based on residuals seem to work best when 
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the level of correlation is high. When the level of correlation is low, forecasting is 
more difficult and residual charts are not very effective at detecting process changes. 
 
The studies mentioned above used several methods, such as simulation, asymptotic 
approximation, and direct calculation, to evaluate the properties of the control charts. 
A conclusion that can be drawn from these studies is that correlation between 
observations has a significant effect on the properties of the control charts. In 
particular, when the level of autocorrelation is high, control charts run for a long time 
before detecting shifts in the process parameters from in-control values. 
 
The objective of this paper is to investigate control charts for simultaneously 
monitoring the process mean and variation using a single chart in the presence of 
autocorrelation. We propose an exponentially weighted moving average (EWMA) 
control chart for autocorrelated data that can simultaneously monitor shifts in the 
mean and standard deviation using a single plotting variable. This investigation is 
done for the case of processes that can be modeled as a first order autoregressive 
AR(1) process plus an additional random error, which can correspond to sampling, or 
measurement error. This model allows relatively accurate numerical techniques to be 
used to evaluate the properties of the control charts. Lu & Reynolds [7] proposed a 
simultaneous EWMA control chart for autocorrelated processes, which runs two 
control charts concurrently. Chen, Cheng & Xie [5] developed a single EWMA chart 
on the assumption that the process produces measurements that are independent over 
time when the process is in control. 
 
Our proposed chart monitors the process by monitoring the residual means and 
standard deviations. The results show that by taking the autocorrelation structure of 
the process into consideration, the EWMA chart can effectively detect small shifts in 
the process mean and/or spread. 
 
2.  THE AR(1) PROCESS WITH AN ADDITIONAL RANDOM ERROR 
 
This model has been used previously in a number of contexts, and has the advantage 
that it will account for the correlation between observations that are close together in 
time, for variability in the process mean over time, and for additional variability due 
to sampling or measurement error. 
 
To model observations from an autocorrelated process, we use a model that has been 
discussed previously in quality control by authors such as Lu & Reynolds [7 and 8] 
and VanBackle & Reynolds [16]. For this model, Xt can be represented as 
 

.tttX εμ +=    t = 1, 2, K       (1) 
 
Where Xt represents an observation taken from the process at sampling time; t, tμ  is 

the random process mean at sampling time; t and ,
tε s are independent normal 

random errors with mean 0 and variance .2
εσ  This model accounts for a correlation 

between samples that are close together in time, for variability in the process mean 
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over time, and for additional variability due to sampling or measurement error. It is 
assumed that tμ  can be described as an AR(1) process, defined as 
 

tμ  = .)1( 1 tt αφμξφ ++− −   t = 1, 2, K      (2) 
 
Where ξ  is the overall process mean, ,

tα s are independent normal random variables 
with mean 0 and variance 2

ασ , and φ  is the autoregressive parameter satisfying |φ | 
<1 for a process to be stationary. We assume that the starting value 0μ  follows a 
normal distribution with mean ξ  and variance ).1/( 222 φσσ αμ −=  The distribution of 
Xt is therefore constant with mean ξ  and variance given by Var(Xt)  = Var( tμ ) + 
Var( tε ). This variance is given as 
 

2
Xσ  = 22

εμ σσ +  = .
1

2
2

2

ε
α σ
φ

σ
+

−
       (3) 

 
In this case 2

μσ  represents long-term variability, and 2
εσ  represents a combination of 

short-term variability and the variability associated with measurement error. When 
assessing processes following models (1) and (2), it is often convenient to consider 
the proportion of total process variability that is due to variation in tμ  and the 
proportion due to error variability. The proportion of the process variability due to 
variation in tμ  is defined as 
 

ψ  = .22

2

2

2

εμ

μμ

σσ
σ

σ
σ

+
=

X

        

 
The proportion of the variance due to tε  is then 1 - ψ . The covariance between two 
observations that are i units apart is 2

μσφ i , and the correlation between two adjacent 
observations is .φψρ =  
 
The AR(1) process with an additional random error is equivalent to a first order 
autoregressive moving average, ARMA(1,1) process (Box, Jenkins & Reinsel [3]), 
which can be written as 
 

tXB)1( φ−  = (1- .)1() tB γθξφ −+        (4) 
 
Where ,

tγ s are independent normal random variables with mean 0 and variance ,2
γσ  

θ  is the moving average parameter, φ  is the autoregressive parameter defined in 
equation (2), and B is a backshift operator such that BXt = Xt-1. If φ >0, Koons & 
Foutz [6] estimate θ  and 2

γσ  as 
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and 
 

θ
φσ

σ ε
γ

2
2 =           (6) 

 
The standard time series estimation techniques can be used to estimate the 
parameters in the ARMA(1,1) model. 
In some production processes, a large volume of items is produced in a single lot. In 
this situation, more than one observation is sampled each time. Let Xti be the ith 
observation at sampling time t. We assume that Xti can be represented as 
 
Xti = .tit εμ ′+           (7) 
 
Where the tiε ′ s are independent and identically distributed normal random variables 
with mean 0 and variance 2

εσ ′ , and tμ  follows model (2). Lu & Reynolds [7] 
indicated that the sample means from this process will follow models (1) and (2) 
with ./22 nεε σσ ′=  
 
In this article, we monitor the process mean and standard deviation by monitoring the 
residuals from a forecast. To do this, we first determine the distribution of the 
residuals when the process is in control. When the process is in control, the residual 
at observation t from the minimum mean square error forecast made at observation t-
1 is 
 

te  = .)( 1010 −− +−−− ttt eXX θξφξ        (8) 
 
Where φ  and θ  are parameters in the ARMA(1,1) model given in equation (4), and 

0ξ  is the in-control process mean – that is, the residual at time t is the difference 
between Xt and the prediction of Xt based on the previous data. 
 
If the fitted time series model is the same as the true process model and the 
parameters are estimated without error, then the residuals are independent and 
identically distributed normal random variables when the process is in control. We 
can then monitor the process by using standard control charts for independent 
observations using these residuals. If there is a step change in the process mean from 
the in-control value 0ξ to 1ξ  between time t  = 1−τ and t  = ,τ  the expectations of 
the residuals for various times are (Lu & Reynolds [7]): 
 
E(et) = 0,    τ<t   
E(et) =  ,01 ξξ −   τ=t   
and 
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E(et) = )(
1

)(1
01 ξξ

θ
θφφφ

−
−

−+− l
  ,lt += τ  K,2,1=l    (9) 

 
The asymptotic mean of these residuals is given as 
 

).(
1
1

01 ξξ
θ
φ

−
−
−                   (10) 

 
These residuals are independent and normally distributed with variance 2

γσ . The 
expectation of the residuals after the shift occurs is a decreasing function of time. 
Also, as φ  increases, a small fraction of shift in the process mean will be transferred 
to the mean of the residuals. As a result, the ability of the chart for residuals to detect 
the mean shift is reduced. On the other hand, the residuals chart is theoretically very 
appealing because it takes the serial correlation into account, and reduces the 
problem to the well-known case of a shift in the process mean for independent 
observations. 
 
A change in the process variance can be attributed to a change in the autoregressive 
parameter φ , the individual observation random shock variance 2

εσ , and/or change 
in variability of the random shocks associated with the mean .2

ασ  If between 

observations t-1 and t, 2
ασ  increases from its nominal value 2

0ασ  to 2
1ασ  and 2

εσ  

increases from its nominal value 2
0εσ  to ,2

1εσ  with φ  remaining unchanged, the 
model in equation (1) becomes 
 
Xt+l = ,*

ltltlt +++ ++ εεμ   l = 0,1, K              (11) 
 
Where K,, **

ltt +εε  is a sequence of independent normal random variables with a 

mean 0 and variance ,2
0

2
1 εε σσ −  independent of the .'slt−ε  The model in equation 

(2) for tμ  becomes  
 

lt+μ  = ,)1( *
1 ltltlt ++−+ +++− ααφμξφ    l = 0,1, K            (12) 

 
where K,, **

ltt +αα  is a sequence of independent normal random variables with 

mean 0 and variance ,2
0

2
1 αα σσ −  independent of the .'slt−α  We can write ,1+tμ  

,1+tX  1
ˆ
+tX  and 1+tε in terms of their corresponding in-control quantities, say  

0
1

0
1

0
1

ˆ,, +++ ttt XXμ  and 0
1+tε  respectively. Therefore, using the model in equation (1) 

and equations (8), (9) and (10), it can be shown by induction that 
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il
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where 0θ  is the in-control value of .θ  This shows that lte +  is a function of *

it+ε and 
*

it+α  for .li ≤  Therefore the effect of a shift in the variance is to induce correlation 
in the residuals (Lu & Reynolds [7]). 
 
Assuming that 2

0γσ  is the in-control value of ,2
γσ  then )( 0

lteVar +  = .2
0γσ  

Therefore the variance of the residuals after the shift is 
 
Var(et) = )()( 2

0
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l = 1,2, K  
 
The asymptotic variance of these residuals after the shift will increase to the limit 
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If ,1  0 =θ  the second term in equation (15) will vanish, and therefore we will use the 

variance of the residual as Var(et) = )()( 2
0

2
1

2
0

2
1

2
0 ααεεγ σσσσσ −+−+  
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The residuals after these shifts are correlated normal random variables with an 
asymptotic mean in equation (10) and asymptotic variance given in equation (15). 
From equation (15), we can see that changes in 2

ασ  and 2
εσ  have different impacts 

on the variability of the residuals. Given the parameters in the ARMA(1,1) model, 
for ,0>φ  2

ασ  and 2
εσ can be obtained from (Reynolds, Arnold & Baik [11]): 

 

φ
φθθφσ

σ γ
α

)1)((2 −−
=                (16) 

and 

φ
θσ

σ γ
ε

2
2 =                  (17) 

 
We can then fit the AR(1) plus random error model in equations (1) and (2), which is 
the model considered in this paper. We consider the case of positive autocorrelation, 
which is more prevalent than negative autocorrelation in control chart applications.  
 
3.  THE NEW CONTROL CHART 
 
We propose a new exponentially weighted moving average control chart for residuals 
in this section. Let Xi = Xi1, Xi2, K , Xin, i = 1, 2, K , denote a sequence of samples 
of size n taken on a quality characteristic X. It is assumed that, for each i, Xi1, Xi2, 
K , Xin follows a normal distribution and is autocorrelated and can be expressed as in 
equation (7). We monitor the process by first fitting the time series model into the 
process observations, and then computing the residuals. Let 0ξ and 0γσ be the 
nominal process mean and standard deviation of the residuals for this fitted model. 
Assume that the process residual parameters ξ and γσ can be expressed as ξ  = 

00 γσξ a+  and γσ  = b ,0γσ  where a = 0 and b = 1 when the process is in-control; 
otherwise, the process has changed due to some assignable causes. Then a represents 
the shift in the process mean and b represents the shift in the process standard 
deviation. 
Let  n

iiniii /)( 21 ξξξξ +++= K  and MSEi  = ni
n

j ij /)( 2
1

ξξ −∑ =
 be the mean and 

variance for the ith sample residuals respectively. These statistics are independently 
distributed, as are the sample residual values when the process is in-control. These 
two statistics follow different distributions. The EWMA charts for the mean and 
standard deviation are based on iξ  and MSEi  respectively. 
 
To develop an EWMA chart for the process mean and process standard deviation 
using residuals, we carry out the following transformations: 
 

0

0 )(

γσ
ξξ −

= i
i nZ                 (18) 
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               (19) 

 
Where ),()( zZPz ≤=Φ  for Z ~ N(0, 1), the standard normal distribution. )(1 ⋅Φ−  is 
the inverse function of ),(⋅Φ  the cumulative distribution function of N(0, 1) and 
H(w; p) = P(W≤w|p) for W ~ ,2

pχ  the chi-square distribution with p degrees of 
freedom. 
 
Zi and Yi are independent and when a = 0 and b = 1, they follow the standard normal 
distribution. The EWMA statistics based on Zi and Yi are defined as: 
 

iU  = ,)1( 1 ii ZU λλ +− −                  (20) 

iV  = ii YV λλ +− −1)1(                       (21) 
 
respectively, where U0 and V0 are starting values of the chart and .10 << λ  The 
parameter λ  is called the smoothing parameter of the EWMA chart. Because Zi and 
Yi follow the same distribution, a new statistic for a new single control chart is 
defined as 
 

iM  = max[|Ui|, |Vi|]                  (22) 
 
If the process is operating out of control, the Mi’s will be plotted outside the control 
limits, otherwise the Mi values are within the limits. Since Mi>0, we plot only the 
upper limit for this chart, and consider the process to be out of control if an Mi value 
is plotted above the upper control limit. 
 
In statistical process control (SPC), we often use the average run length (ARL) of the 
chart to assess the performance of the scheme. This is the expected number of 
samples (or observations, if we take a single observation each time) required by the 
chart to signal an out-of-control situation. For a change in variability, we consider the 
effects of changes in εσ  and ασ  separately to calculate the ARL. This is because 
the two parameters have different impacts on the level of variability of the process as 
shown in equation (11). The shifts in these parameters are considered for different 
values of .φ  
 
As shown previously, when the process is in control, the residuals are independent 
and identically distributed normal random variables with mean 00 =ξ  and standard 
deviation .0γσ  If there is a change in the mean and/or standard deviation, the 
residuals are correlated normal random variables with mean given in equation (10) 
and variance given in equation (15). In this article we consider a situation of an 
increase in the mean, standard deviation, or both mean and standard deviation of the 
process. 
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4.  DESIGN OF A MAX-EWMA CHART FOR AUTOCORRELATED    
     PROCESS (MEWMAP CHART) 
 
When the process is in control and U0 = V0 = 0, Ui and Vi can be written as: 
 
 iU  = 

ji

i

j

j Z −

−

=
∑ −

1

1
)1( λλ                  (23) 

iV  = 
ji

i

j

jY −

−

=
∑ −

1

1
)1( λλ                              (24) 

 
 It can be shown that 
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Where again λ  is called the smoothing parameter of the EWMA chart. 
 
Chen, Cheng & Xie [5] showed that the in-control cumulative distribution function 
of Mi is given as: 
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The corresponding probability density function of Mi is the derivative of 

);( iUyF σ , and is given by 
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Using cubic-spline numerical integration, Xie [18] computed the mean and variance 
of Mi   and obtained 
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E(Mi)  = ∫

∞
0 );( dyyyf iUσ  

 
 = 1.128379 iUσ                  (28) 
 
and 
 
Var(Mi)  =  dyyfy iU );(0

2∫
∞ σ     

 
  =  0.363381 2

iUσ                   (29) 
 
respectively. 
 
The upper control limit (UCL) is obtained as follows: 
 
UCL  = )()( ii MVarLME +  
 
= )363381.0128379.1( LiU +σ  
 

= )602810.0128379.1(
2

])1(1[ 2

L
i

+
−
−−
λ
λλ               (30) 

 
where L is the width of the control limits. As i gets large, )]1(1[ λ−−  in equation 
(30) approaches unity and the UCL approaches the steady-state value, given as: 
 

UCL  = )602810.0128379.1(
2

L+
− λ
λ                (31) 

 
We use the statistic Mi to construct a new control chart. Because Mi is the maximum 
of the two statistics, we call this new chart the Maximum Exponentially Weighted 
Moving Average for Autocorrelated Process chart (MEWMAP chart). 
 
To calculate the ARL of the new chart, we use the modified Markov chain procedure 
(VanBrackle & Reynolds [16]). For the AR(1) plus random error model investigated 
in this article for shifts in mean and/or standard deviation, we use the asymptotic 
mean and variance given in equation (10) and equation (15) respectively. For a given 
in-control ARL and a shift of the mean and/or standard deviation intended to be 
detected by the chart, we find the combination of the chart design parameters ),( Lλ  
that gives the desired in-control ARL and also minimizes the out-of-control ARL. 
This guideline takes into consideration the autocorrelation structure between the 
variables. 
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ARL0 = 250 
A 
B Parameter 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00 
1.00 L 

λ  
ARL ασ  
ARL εσ  

2.9163 
0.2801 
250.20 
250.20 

2.7981 
0.1487 
38.29 
38.29 

2.9881
0.3787
16.02 
16.02 

2.9986
0.8487
7.51 
7.51 

2.9989
0.9954
3.71 
3.71 

2.9998
0.9985
2.01 
2.01 

3.2539 
1.0000 
1.58 
1.58 

3.2539
1.0000
1.38 
1.38 

1.25 L 
λ   
ARL ασ  
ARL εσ  

2.8550 
0.3981 
22.41 
21.53 

2.9784 
0.2014 
15.32 
15.04 

2.9854
0.4814
7.22 
7.10 

2.9993
0.7735
5.42 
5.30 

2.9998
0.8735
2.92 
2.88 

3.2539
1.0000
2.10 
2.02 

3.2539 
1.0000 
1.55 
1.53 

3.2539
1.0000
1.33 
1.30 

1.50 L 
λ   
ARL ασ  
ARL εσ  

2.9276 
0.4536 
9.15 
8.60 

2.9531 
0.5454 
6.10 
6.05 

2.9854
0.4814
5.58 
5.45 

2.9897
0.9217
2.99 
2.92 

2.9914
0.9616
2.34 
2.30 

2.9996
0.9853
1.71 
1.68 

2.9996 
0.9853 
1.54 
1.54 

2.9999
0.9904
1.29 
1.29 

2.00 L 
λ   
ARL ασ  
ARL εσ  

2.9276 
0.4536 
4.75 
3.67 

2.9670 
0.5731 
2.90 
2.83 

2.9789
0.6519
2.78 
2.70 

2.9897
0.9217
2.16 
2.11 

2.9925
0.9643
1.87 
1.83 

2.9996
0.9853
1.52 
1.50 

2.9996 
0.9853 
1.45 
1.44 

2.9996
0.9853
1.27 
1.26 

2.50 L 
λ   
ARL ασ  
ARL εσ  

2.9276 
0.4536 
3.48 
3.31 

2.9670 
0.5731 
2.40 
2.34 

2.9789
0.6519
2.26 
2.19 

2.9897
0.9217
1.81 
1.77 

2.9925
0.9643
1.77 
1.73 

2.9996
0.9853
1.40 
1.38 

2.9996 
0.9853 
1.38 
1.30 

2.9996
0.9853
1.24 
1.22 

3.00 L 
λ   
ARL ασ  
ARL εσ  

2.9276 
0.4536 
2.75 
2.63 

2.9670 
0.5731 
2.09 
2.03 

2.9789
0.6519
1.96 
1.90 

2.9897
0.9217
1.61 
1.58 

2.9925
0.9643
1.58 
1.46 

2.9996
0.9853
1.36 
1.31 

2.9996 
0.9853 
1.28 
1.26 

2.9996
0.9853
1.24 
1.17 

4.00 L 
λ   
ARL ασ  
ARL εσ  

2.9276 
0.4536 
2.08 
2.00 

2.9670 
0.5731 
1.77 
1.69 

2.9789
0.6519
1.64 
1.60 

2.9897
0.9217
1.41 
1.39 

2.9925
0.9643
1.33 
1.33 

2.9996
0.9853
1.23 
1.21 

2.9996 
0.9853 
1.22 
1.20 

2.9996
0.9853
1.21 
1.20 

 
Table 1: ),( Lλ  combinations and the corresponding ARL for the  

MEWMAP chart, with 25.0=φ and 8.0=ψ . 
 
Table 1 gives the optimal combinations of λ  and L for an in-control ARL fixed at 
250 and the autoregressive parameter 25.0=φ  with 80% of process variability due 
to variation in ,tμ  and the correlation between adjacent observations .2.0=ρ  
Without loss of generality, we take .10 =γσ  We calculate the out-of-control ARL 

for the effect of changes in the standard deviation that is due to changes in εσ  and 
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ασ  respectively. The smallest value of an out-of-control ARL is calculated with 
respect to a pair of specified shifts in both mean and standard deviation, using the 
optimal in-control ARL EWMA chart parameters. We assume that the process starts 
in an in-control state, and thus the initial value of the EWMA statistic is set at zero. 
For example, if one wants to have an in-control ARL of 250 and to guard against a 

03 γσ  increase in mean and 02 γσ  increase in the process standard deviation with an 

increase in 0γσ  with ,25.0=φ  i.e., a = 3 and b = 2, the optimal in-control chart 

parameter values are λ  = 0.9853 and L = 2.9996. These shifts can be detected on the 
second sample inspection, i.e., the ARL is approximately two, as seen in Table 1. 
 
Table 2 gives the optimal combinations of λ  and L for an in-control ARL fixed at 
250 and the autoregressive parameter ,75.0=φ  with 80% of process variability due 
to variation in ,tμ and the correlation between adjacent observations equal to 0.6. 
We use the same procedure to calculate the ARL for this table as for Table 1.  
 
Comparing these tables, it can be seen that at a low level of autocorrelation, the 
charts detect small shifts in the parameters more quickly than at a high level of 
autocorrelation. The scheme is slightly more sensitive to shifts in the standard 
deviation due to shifts in εσ  than it is to shifts in the process standard deviation 
resulting from shifts in .ασ  This is due to the fact that an increase in ασ  increases 
the level of correlation between adjacent observations. This is because the variance 
of tμ  increases, and thus the proportion of total process variability due to variation 
in the autocorrelated mean increases. 
 
An increase in εσ  decreases the level of correlation between observations. This is 
particularly evident at higher levels of autocorrelations. This improves the 
performance of the MEWMAP chart. As would be expected, the chart detects small 
shifts with small values of λ , and large shifts are quickly detected when using large 
values of .λ  When ,1=λ  the EWMA chart is equivalent to the Shewhart chart, 
where all the weight is given to the current observation and L = 3.2359 which gives 
an UCL = 3.0899, which is the same as the UCL for the Shewhart-type Max-chart 
proposed by Chen & Cheng [3]. 
 
5.  COMPARISON WITH OTHER CHARTS 
 
In this section we compare the MEWMAP chart with a single CUSUM chart for 
autocorrelate processes (Thaga [15]). These charts’ parameters are adjusted so that 
their in-control ARLs are equal to 250. These charts are compared in Tables 3 and 4. 
We compare these charts for the autocorrelated processes when the values of φ  – the 
correlation between tμ  and 1−tμ  – are 0.25 and 0.75, with the proportion of 
variation in the process attributed to variation in tμ  fixed at 0.8. 
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ARL0 = 250 
A 
b Parameter 0.00 0.25 0.50 1.00 1.50 2.00 2.50 3.00 
1.00 L 

λ  
ARL ασ  
ARL εσ  

2.9127 
0.1024 
250.38 
250.38 

2.9241 
0.1265 
31.03 
31.03 

2.9657
0.2206
17.50 
17.50 

2.9883
0.6206
8.18 
8.18 

2.9984
0.9972
4.07 
4.07 

3.2539
1.0000
3.92 
3.92 

3.2539 
1.0000 
3.55 
3.55 

3.2539
1.0000
2.25 
2.25 

1.25 L 
λ   
ARL ασ  
ARL εσ  

2.9121 
0.1443 
49.60 
38.87 

2.9435 
0.1465 
22.79 
20.60 

2.9764
0.2456
11.04 
9.80 

2.9943
0.6673
8.87 
7.13 

2.9981
0.8854
3.76 
3.36 

2.9993
0.9997
2.69 
2.62 

3.2539 
1.0000 
2.05 
1.97 

3.2539
1.0000
1.60 
1.40 

1.50 L 
λ   
ARL ασ  
ARL εσ  

2.9432 
0.1462 
32.08 
22.67 

2.9432 
0.1462 
14.46 
11.92 

2.9552
0.2918
7.39 
6.39 

2.9764
0.5692
4.59 
3.88 

2.9981
0.8854
3.13 
2.64 

2.9993
0.9997
2.90 
2.43 

2.9998 
0.9999 
2.02 
1.90 

3.2539
1.0000
1.53 
1.41 

2.00 L 
λ   
ARL ασ  
ARL εσ  

2.9432 
0.1462 
18.99 
12.77 

2.9432 
0.1462 
10.92 
8.64 

2.9552
0.2918
5.94 
4.82 

2.9764
0.5692
3.56 
2.77 

2.9981
0.8854
2.44 
1.98 

2.9993
0.9997
2.25 
1.84 

2.9998 
0.9999 
1.93 
1.81 

3.2539
1.0000
1.54 
1.43 

2.50 L 
λ   
ARL ασ  
ARL εσ  

2.9432 
0.1462 
13.85 
12.07 

2.9432 
0.1462 
9.12 
8.22 

2.9552
0.2918
5.08 
3.97 

2.9764
0.5692
2.95 
2.54 

2.9981
0.8854
2.08 
1.82 

2.9993
0.9997
1.93 
1.75 

2.9998 
0.9999 
1.89 
1.66 

3.2539
1.0000
1.57 
1.38 

3.00 L 
λ   
ARL ασ  
ARL εσ  

2.9432 
0.1462 
11.11 
6.99 

2.9432 
0.1462 
8.02 
5.97 

2.9552
0.2918
4.45 
3.18 

2.9764
0.5692
2.54 
1.92 

2.9981
0.8854
1.86 
1.59 

2.9993
0.9997
1.74 
1.54 

2.9998 
0.9999 
1.60 
1.47 

2.9998
0.9999
1.56 
1.33 

4.00 L 
λ   
ARL ασ  
ARL εσ  

2.9432 
0.1462 
8.01 
4.73 

2.9432 
0.1462 
6.56 
4.41 

2.9552
0.2918
3.52 
2.42 

2.9764
0.5692
2.07 
1.60 

2.9981
0.8854
1.60 
1.34 

2.9993
0.9999
1.51 
1.30 

2.9998 
0.9999 
1.51 
1.30 

2.9998
0.9999
1.47 
1.30 

 

Table 2:  ),( Lλ  combinations and the corresponding ARL for the  
MEWMAP chart, with 75.0=φ and 8.0=ψ . 

 

The conclusion that can be made is that the Max-CUSUM chart performs better than 
the Max-EWMA chart for small shifts in the process mean and/or standard deviation 
at both low and high levels of autocorrelations, while the Max-EWMA outperforms 
the Max-CUSUM for moderate to large shifts in the process mean and/or standard 
deviation. Both schemes are more sensitive when change in process variability is due 
to change in εσ than they are to changes in process variability due to changes in 

.ασ  
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  A 
  0 0.5 1 2 
b Parameter MEWP MCAP MEWP MCAP MEWP MCAP MEWP MCAP
1.00 2

εσ  
2
ασ  

250.20 
250.20 

250.76
250.76

16.02 
16.02 

10.16 
10.16 

7.51 
7.51 

4.99 
4.99 

2.01 
2.01 

1.97 
1.97 

1.25 2
εσ  
2
ασ  

21.53 
22.41 

13.41 
13.70 

7.10 
7.22 

9.25 
9.29 

5.30 
5.42 

4.75 
4.76 

2.01 
2.01 

2.0 
2.1 

1.50 2
εσ  
2
ασ  

8.60 
9.15 

10.76 
11.12 

5.45 
5.58 

8.76 
8.84 

2.92 
2.99 

4.57 
4.60 

1.68 
1.71 

2.12 
2.12 

2.00 2
εσ  
2
ασ  

3.67 
4.75 

7.79 
8.11 

2.70 
2.78 

7.76 
7.90 

2.11 
2.16 

4.21 
4.26 

1.50 
1.52 

2.14 
2.14 

3.00 2
εσ  
2
ασ  

2.63 
2.75 

5.27 
5.48 

1.90 
1.96 

6.14 
6.32 

1.58 
1.61 

3.62 
3.68 

1.31 
1.36 

2.14 
2.14 

 
  MEWP: Max-EWMA Chart for Autocorrelated Processes. 
  MCAP: Max-CUSUM Charts for Autocorrelated Processes. 
 

Table 3:  Comparison of the MEWMAP chart with the MCAP chart with 
25.0=φ and .8.0=ψ  

 
  a 
  0 0.5 1 2 
b Parameter MEWP MCAP MEWP MCAP MEWP MCAP MEWP MCAP
1.00 2

εσ  
2
ασ  

250.38 
250.38 

250.14
250.14

17.50 
17.50 

14.65 
14.65 

8.18 
8.18 

6.57 
6.57 

3.92 
3.92 

2.78 
2.78 

1.25 2
εσ  
2
ασ  

38.87 
49.60 

25.36 
37.45 

9.80 
11.04 

12.84 
13.60 

7.13 
7.87 

6.08 
6.30 

2.62 
2.69 

2.74 
2.76 

1.50 2
εσ  
2
ασ  

22.67 
32.08 

16.36 
28.02 

6.38 
7.39 

11.58 
13.05 

3.88 
4.59 

5.68 
6.15 

2.43 
2.90 

2.69 
2.75 

2.00 2
εσ  
2
ασ  

12.77 
18.99 

9.62 
17.74 

4.82 
5.94 

9.45 
11.82 

2.77 
3.56 

4.95 
5.77 

1.84 
2.25 

2.60 
2.71 

3.00 2
εσ  
2
ασ  

6.99 
11.11 

5.63 
9.80 

3.18 
4.45 

6.75 
9.51 

1.92 
2.54 

3.97 
4.98 

1.54 
1.74 

2.45 
2.60 

 
  MEWP: Max-EWMA Chart for Autocorrelated Processes. 
  MCAP: Max-CUSUM Charts for Autocorrelated Processes. 
 

Table 4:  Comparison of the MEWMAP chart with the MCAP chart with 
75.0=φ and .8.0=ψ  
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6.  CHARTING PROCEDURES 
 
Since the residuals are independent normal random variables when the process is in 
control, the charting procedure for the Max-EWMA chart for Autocorrelated Process 
is similar to that of the Max-EWMA for independent observations (Chen, Cheng & 
Xie [5]). The successive EWMA values Mi are plotted against the sample numbers. 
If a point plots below the UCL, the process is said to be in control and the point is 
plotted as a dot. An out-of-control signal is given if any point plots above the UCL 
and is plotted as one of the characters defined below. 
 
The charting procedure for the MEWMAP chart is as follows: 
 
1. Fit the time series model into the data.  
 
2. Find the ),( Lλ combination for a given in-control ARL, 0ξ  and .0γσ  

3. If 0ξ  is not known, use the sample grand average ξ  to estimate it, where ξ  = 
./)( 21 mmξξξ +++ K  If 0γσ  is unknown, use ,/ 2dR  where R  = 

mRRR m /)( 21 +++ K  is the average of the sample ranges. We can also use 

4/ cS  to estimate 0γσ , where S  = mSSS m /)( 21 +++ K  is the average of the 

sample standard errors, ii MSES = , and d2 and c4 are statistically determined 
constants. 

 
4. For each sample, compute Zi and Yi. 
 
5. Compute Ui, Vi, Mi and the UCL. 
 
6. Denote the sample points with a dot and plot them against the sample number if 

Mi≤  UCL. 
 
7. If any of the Mis is greater than the UCL, the following plotting characters should 

be used to show the direction as well as the statistic that is plotting above the 
interval. 

 
(i) If UCLUi >|| and ,0>iU  plot C+. This shows an increase in the process 

mean. 
(ii) If UCLUi >|| and ,0<iU  plot C-. This shows a decrease in the process 

mean. 
(iii)  If UCLVi >||  and ,0>iV  plot S+. This shows an increase in the process 

standard deviation. 
(iv)  If UCLVi >||  and ,0<iV  plot S-. This shows a decrease in the process 

standard deviation.  
(v)  If  UCLUi >||  and ,|| UCLVi >  plot B++ if 0>iU  and .0>iV  This 

indicates an increase in both the mean and the standard deviation of the 
process.  



 

 147

(vi)  If  UCLUi >||  and ,|| UCLVi >  plot B+- if 0>iU  and .0<iV  This 
indicates an increase in the mean and a decrease in the standard deviation 
of the process. 

(vii) If  UCLUi >||  and ,|| UCLVi >  plot B-+ if 0<iU  and .0>iV  This 
indicates a decrease in the mean and an increase in the standard deviation 
of the process. 

(viii) If  UCLUi >||  and ,|| UCLVi >  plot B--if 0<iU  and .0<iV  This shows a 
decrease in both the mean and the standard deviation of the process. 

 
8. Once an out of control signal is given by the chart plotting outside the control 

limit, the process should be stopped, an investigation of the cause(s) of shift for 
each out-of-control point in the chart should be carried out, and remedial 
measure(s) needed to bring the process back into an in-control state should be 
implemented. 

 
7.   APPLICATION IN INDUSTRY 
 
Observations from processes in the chemical and pharmaceutical industries are 
frequently autocorrelated. The standard Shewhart chart, the cumulative sum chart, 
and the exponentially weighted moving average chart are effective in detecting shifts 
in the process when measurements are independent and identically distributed over 
time. The proposed chart is an improved version of the traditional EWMA chart. It 
has an added advantage of being able to detect shifts in the process when the 
measurements are not independent over time. 
 
The new chart can be used to monitor observations from processes in the chemical 
and pharmaceutical industries where observation comes in batches. In this case a 
special cause might produce an increase in within-batch variability, in between-batch 
variability, or in both. 
 
8.   AN EXAMPLE 
 
To provide a visual picture of how the MEWMAP chart responds to various kinds of 
process changes, a set of simulated data is used. Specific process changes are 
introduced into the data, and the chart is plotted to monitor these changes in the 
parameters. The data set was generated using the first order autoregressive models in 
equations (1) and (2).  
 
For a fixed sequence of ,

tα s and ,
tε s, a shift in ασ  can be simulated by multiplying 

tα  in equation (2) by a constant. A change in εσ  can be simulated by multiplying tε  
in equation (1) by a constant, and a change in the mean is simulated by adding a 
constant to the generated observations. This approach is discussed in the literature 
(Lu & Reynolds [7]). This procedure allows different types of process changes to be 
investigated on the same basic sequence of ,

tα s and ,
tε s. In this example, we 

assume the autoregressive parameter φ  remains constant. 
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We simulated 100 observations with the following parameters: ξ  = 0, φ  = 0.75, 

ασ = 0.59 and εσ  =0.5. This gives Xσ  = 1.02 and ψ  = 0.76. This implies that 76% 
of variability in the process is due to variation in tμ and that the correlation between 
the adjacent observations is ρ  = φ ψ  = 0.57. Using equations (5) and (6), the 
corresponding parameters in the ARMA(1,1) model in equation (4) are θ = 0.27 and 

γσ  = 0.83. 
 
The MEWMAP chart for these simulated observations is drawn in Figure 1. All 
points fall within the acceptance region; thus the simulated process is in control. The 
chart’s parameters ),( Lλ  are for an in-control ARL of 250 runs. The chart is 
designed to detect a σ1  increase in the process mean and σ2  increase in the process 
standard deviation. 

 
Figure 1:  The MEWMAP chart for the in-control simulated values 

 
Figure 2 shows the performance of this chart for a simultaneous shift in the process 
mean and standard deviation, with a shift in the standard deviation due to an increase 
in .ασ  The process mean is assumed to shift from 0 to 1, and ασ  increases from 
0.59 to 0.97. This increase in ασ  results in an increase in the process standard 
deviation Xσ  from 1.02 to 1.56. This corresponds to a 52% increase in the process 
standard deviation. This also leads to an increase in ψ  from 0.76 to 0.90, and an 
increase in the correlation between adjacent observations from 0.57 to 0.675. 
 
Therefore 90% of variation in the process is due to variation in .tμ  The increase in 

ασ  for the last 40 observations was accomplished by multiplying the last 40 values 
of tα  by the factor 0.97/0.59  = 1.644. Adding 1 to the last 40 observations of the 
new process observation Xt accomplishes the increase in the process mean for the 
last 40 observations. These shifts are signaled for the first time on the 67th 
observation. 
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Figure 2:  The MEWMAP chart for shift in the process mean and  

variability due to shift in .ασ  
 
An increase in both the mean and εσ  is shown in Figure 3. We consider an increase 
in mean from 0 to 1 and an increase in εσ from 0.5 to 1. Assume that due to some 
special causes, these shifts occur immediately after the 60th observation and remain 
in effect for the rest of the process. This increase in εσ  will result in an increase in 
the process standard deviation from 1.02 to 1.34, and this represents a 30% increase 
in the process standard deviation. Unlike the increase in ,ασ  the increase in εσ  
results in a decrease in the correlation between adjacent observations from 0.57 to 
0.33, and the value of the proportion of total process variability that is due to the 
variability in tμ also decreases from 56% to 44%. 
 
The increase in εσ  for the last 40 observations was accomplished by multiplying the 
last 40 observations of the simulated tε  values by 1/0.5 = 2.00, while the increase in 
the mean is accomplished by adding 1 to the last 40 observations of the new process 
value Xt. The chart signals a shift for the first time on the 62nd observation for an 
increase in both parameters. 
 
Comparing the results of the simulated shifts, we realize that this chart quickly 
detects a simultaneous shift in the process mean and standard deviation with a shift 
in the process standard deviation due to shift in .εσ  This is due to the fact that an 
increase in εσ  results in a decrease in the correlation between adjacent observations, 
while an increase in ασ  results in an increase in this correlation structure. 
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Figure 3:  The MEWMAP chart for shift in the process mean and  

variability due to shift in .εσ  
 
9.  CONCLUSIONS 
 
Although it is very difficult to draw general conclusions based on one set of data 
corresponding to one set of process parameters, the ARL results given in this article, 
together with charts plotted in Figures 2 and 3, allow some conclusions to be drawn. 
 
The results reported here have shown that correlation among observations from a 
process can have significant effect on the performance of a EWMA control chart. 
Computer simulation of individual data from a first order autoregressive plus a 
random error model was used to show a pictorial display of the MEWMAP chart. 
The monitoring problem in this model is very complicated, as it requires more 
parameters than is the case when the observations are independent. We have shown 
how a change in one of the two components of residual variances and the process 
mean impacts on the overall process performance. 
 
However, in many applications, a change in the process may be because of a 
combination of changes in these parameters. Therefore it becomes very difficult to 
diagnose the variance component that has caused the process variance to change. It 
might be necessary to estimate the residual variance at the point of the shift to see 
which component has shifted. 
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The MEWMAP chart that simultaneously monitors the process mean and standard 
deviation performs better than the Max-CUSUM chart for autocorrelated processes 
for moderate to large shifts in the process parameters. The MEWMAP chart is simple 
to construct: it uses the standard EWMA parameters because residuals are 
independent when the process is in-control. We therefore recommend this chart for 
autocorrelated data. The standard time series procedure discussed in Box, Jenkins & 
Reinsel [3] can be used to fit the model and calculate the residuals. 
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