
Coal contributes 25% of the world’s primary
energy needs, after fuel oil, which contributes
35%. The world energy demand, estimated
over the period 1990 to 2030, is expanding at
a cumulative annual growth rate (CAGR) of
1.7% (Schernikau, 2010, p. 14). This
emphasizes the need for enhancing the
production of existing mines, as well as
opening new mines in order to increase the
supply of coal. 

According to the 2011 International
Energy Agency report, coal demand is
projected to increase at a rate of 2.8% from
2010 to 2016. The demand will be driven
primarily by countries outside of the
Organisation for Economic Co-operation and
Development (OECD, led by China and India,
whose economies are growing rapidly. For
example, China’s demand for coal for power
stations is projected to grow at a CAGR of
5.2%.

Mines are the only source of coal. Coal can
be mined either by surface or underground
mining methods the choice of which depends
on both technical and economic evaluation
results. Generally, a near-surface coal deposit
is mined using surface mining methods, and a
deep deposit by underground methods.

Mining of coal begins once the mineable
coal reserve is determined; depending on the
chosen method, coal reserve is an input to the
mine operations, and the output incudes coal
which is stockpiled at the mine then supplied
to the power station. For surface mines in
particular, the other outputs include waste
rock that deposited in waste dumps or in the
mined-out areas. Coal for export undergoes
cleaning in a washing plant to remove the
organic matter and other impurities that may
affect its quality in order to upgrade it to the
requirement of the market. The entire
operation can be presented in a simplified
process as indicated in Figure 1. 

New surface coal mines can consider
supplying coal to three types of markets, viz.
local markets, export markets, or a
combination of both local and export markets.
Costs have to be estimated for a new mine to
evaluate its competitive position compared
with existing producers. Cost estimation has to
be done using available information.

Cost estimation practices affect the
decisions made regarding new mine projects,
and underestimating or overestimating costs
can result in poor decision-making that may
lead to considerable financial losses through,
e.g., overcapitalization of the project, adverse
effects on the share price, lower than expected
return on investment, non-delivery on project
expectations, capital items purchased affecting
outputs, and high operating costs delaying
positive cash flow. 
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Cost estimation involves prediction of the capital and
operating costs. Capital cost estimates in mining include, for
example, estimating equipment costs, pre-production
stripping costs, and working capital and other fixed costs.
The operating cost estimates involve costs that will be spent
in production. These include costs of drilling, blasting,
excavation, hauling, administration, and beneficiation. Cost
estimates are used, for example, in mine planning for
determining the optimal pit size with the highest net present
value (Leinart and Schumacher, 2010). When this optimal pit
is mined, it should generate a profit.

Cost estimation is a challenging practice that is affected
by project uncertainties which, if poorly considered, could
result in a wrong project evaluation. Such uncertainties
include stripping ratio, seams with complex metallurgical
characteristics, mines located in isolated regions, lack of
access roads, electricity and water supplies, unfavourable
climate, and the challenges of mountain topography (Shafiee,
Nehring, and Topal, 2009; Shafiee and Topal, 2012). To use
but one example, any significant change in the stripping ratio
affects the cost of stripping (Jaeger, 2006). The
aforementioned are but some of the issues affecting the
competitiveness of new mine investments.

Investing in projects or resource companies, given the
volatility of commodity prices, calls for consideration of the
project’s position on the cost curve (Rudenno, 2009, p. 135).
The cost curve is a plot of costs versus the cumulative
production rates of mines in production. The curve is used by
existing mines to determine their competitive position relative
to other mines producing the same commodity. 

To illustrate the application of a cost curve to determine
mine competitiveness, Figure 2 shows an example of two
mines, A and B. Mine A is at the lower point of the cost curve
and mine B is at the higher position. Needless to say, mine A,
operating at low level on the cost curve, has a better chance
of economic survival during times of low commodity prices
than the high-cost producers. 

New mine operators desire to be on the low portion of the
cost curve. A new mining project’s competitiveness in the
market depends on both monetary and non-monetary factors.
New mines are faced with problems of combining technical
design and economic parameters to generate value for the
stakeholders (Mohnot, Singh, and Dube, 2001). When the
operation begins, most mine management teams are focused
on minimizing costs instead of being efficient and planning
effectively in order for them to be competitive.

There is no unique method for cost estimation in mining
projects. Mining companies are thus searching
comprehensively for a method that will increase accuracy in
the estimation and evaluation of mining projects (Shafiee and

Topal, 2012). The available cost estimation approaches are
limited to investigating one or a few variables, while ignoring
other independent variables that might affect the cost
estimates.

Hager (2012) suggests that a simplistic investment model
is required to help determine the costs and competitive
position of a new mine among existing producers. The model
should consider unique project-specific variables and
challenges, such as, for instance, the remoteness of the mine
and the business environment in which it will operate.
Dehghani and Ataee-pour (2012) state that mining
companies do not know, with absolute certainty, how much
they will be able to spend tomorrow, let alone next month or
next year. Costs should thus be estimated using a method
that will incorporate the effect of deposit-specific variables
(such as quality and geography) as well as other external
variables (such as policy and inflation) affecting costs during
operation.

It is the aim of this paper to develop and propose an
approach using data envelopment analysis (DEA) to develop
models that can be used to create a frontier for efficient
performing mines, then use the efficient mines to develop
models for predicting productivity and effective costs for new
mines, assuring competitiveness. The models should also
assist investors in carrying out comparative analyses and
making sound investment decisions in the present
competitive business environment.

A new mine can operate only once the economic feasibility
study indicates that the project will be profitable. These
mines require their costs to be estimated using the available
information, and a decision is then made, based on the costs
and other factors affecting profitability, on whether or not to
proceed with development. 

Some authors have discussed variables affecting costs in
surface coal mines. Gordon (1976) asserted that: physical
conditions, costs of the labour, capital resources, regulations,
technical progress, and price changes all produce shifts in the
costs of mining over time, regardless of the specific mining
conditions themselves.

Schneider and Torries (1991) state that the cost of
producing clean coal of a specific quality depends on a
combination of geological conditions, that is, the quality of
the unprocessed coal and the cost of beneficiating the coal.
Haftendorn, Holz, and Hirschhausen (2012) also suggest
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Figure 1—A simplified surface coal mine structure and operations
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Figure 2—Illustration of the position of two mines on a cost curve



that the main factors affecting mining production costs are
geological. These factors include the seam thickness,
inclination, and the nature of the rock hosting the seam. 

On the other hand, Smith (2012) highlights one aspect in
creating sustainable value in a mineral and metal company as
being knowledge of the fixed physical nature of the mineral
asset, such as the type and nature of mineralization, depth
below the surface, shape, extent and dip, and surface
topography. This makes for optimal efficiency and technical
solutions for mining and recovery, and hence maximizes 
cash flow.

The International Energy Agency report on the world
energy outlook (IEA, 2011 p. 52) indicates that the future
costs of coal production will depend on inputs such as fuel
and steel prices, exchange rates, the geological conditions of
the coal deposit, as well as environmental and land
legislation in coal exporting countries. These are also factors
that cause variations of costs from one country to another. In
addition, the lack of affordable labour and emission penalties
also affect the economic viability of mining.

Supply costs of coal for the international market depend
on a combination of mining costs, domestic transport costs,
and port handling costs, also known as free-on-board (FOB).
These costs measure the mining company’s competitive
position for export relative to other producers and suppliers
of coal. Looking at the supply costs in particular, it is
therefore imperative to understand how the deposit’s unique
characteristics, economic variables, and environmental
regulation influence the cost estimates for new projects,
whether producing coal for export, domestic consumption, or
both markets.

Most approaches to cost estimation require that a production
rate be estimated first. The production rate used in some cost
estimation approaches was proposed by Taylor in 1977, and
is known as Taylor’s Rule. This method is presented in
Equation [1]: 

Tons per day = 0.014 x (Expected tons)0.75 [1]

which can be rewritten in general form (Long, 2009) as:

C = bT a [2]

where C is the capacity in metric tons per (the production
rate), a and b are coefficients to be estimated, and T is the
reserve tonnage.

Long (2009), in his review of Taylor’s Rule using 1195
mines as a data-set, obtained different model coefficients,
that is, the elasticity of capacity denoted by a was found to be
less than the 0.75 originally suggested by Taylor. Two
criticisms were also raised during the re-evaluation of this
model, namely the fact that it is an inhomogeneous model
because it was developed from mines producing different
commodities, and also it is not deposit-specific. The
relationship between the reserve and capacity is inelastic in
nature, as opposed to the original assumption of elasticity.
The possibility of changes in technology was also not
assessed in this model. For example, certain deposits may
require specialized technology in order to be extracted and
processed, and this can, in turn, affect the estimates of the
production rate. 

Another method for production rate determination is that
of multiple economic analyses. This involves a series of
production rate iterations and computing the cost of each.
The production rate that results in the maximum net present
value (NPV) is hence chosen for the mine. This technique
requires the iteration of each scenario of production rates in
order to determine the one generating the maximum NPV
(Leinart and Schumacher, 2010).

The available approaches for surface mining cost
estimation can be grouped into the following categories:
statistical approaches, online methods, and comparative and
itemized methodologies. The approaches range from
estimating the cost of an individual piece of equipment to the
average and total costs of mining.

Capital and operating cost estimation approaches in this
category include O’Hara models; multiple regressions based
on principal component analysis; an econometric model; and
the use of single-variable regression models included in
mining cost estimation handbooks. Examples of these
handbooks include: CAPCOSTS, for mining and mineral
processing equipment costs and capital expenditures;
CANMET, for estimation of pre-production and operating
costs of small underground deposits; and a cost estimation
handbook for the Australian mining industry (Sayadi,
Lashgari, and Paraszczak, 2012). 

O’Hara methods can be represented as a set of equations.
Equation [3] shows the main equations estimated by O’Hara
in 1980 (Shafiee and Topal, 2012).

Capital cost (US$ m) = $400 000 
(tons mined and milled daily)0.6

Stripping cost (US$ m) = $800 
(millions of tons of overburden soil)0.5

Stripping cost (US$ m) = $8500 
(millions of tons of overburden rock)0.5

Equipment cost (US$ m) = $6000 
(tons of deposit and waste mined daily)0.7

+$5000 (tons of deposit and waste mined daily)0.5

Maintenance cost (US$ m) = $150 000 
(tons of deposit and waste mined daily)0.3 [3]

Labour cost (US$) = $58.563
(tons of deposit and waste mined daily‐0.5

+$3.59 (tons of deposit and waste mined dail)‐0.3

Supplies cost (US$) = $13.40 
(tons of deposit and waste mined daily)‐0.5

+$41.24 (tons of deposit and waste mined daily)‐0.3

+$0.90 (tons of deposit and waste mined daily)‐0.2

The equations express cost as a dependent variable, and
production rate as an independent variable. These models
were prepared in the 1980s, and therefore should be updated
to accommodate the escalation of costs using cost indices that
have been computed based on general inflation in the US
economy. The index updates mining costs such as mine and
mill labour, machinery, and heavy equipment (Shafiee and
Topal, 2012).
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Conversely, O`Hara models, when applied to estimate, for
example, the costs of mining two deposits of equal reserve
size with different geological conditions, obtain the same
answer for the two deposits. This is unrealistic since factors
affecting mining costs, like intrinsic characteristics of the
deposit such as depth, dip, and quality, are not taken into
consideration. Shafiee et al. (2009) also highlighted another
shortcoming of O’Hara models with regard to the expansion
of the equations according to the lifespan of the mine.

As mentioned above, CAPCOSTS, developed by Mullar
and Poullin in 1998, CES, prepared by US Bureau of Mines
(USBM), and the cost estimation handbook for the Australian
mining industry are some of the available handbooks for cost
estimation in mines. They are based on single-variable
regression models. The general equation used in each of the
aforementioned can be written in the form indicated in
Equation [4].

Y = A(X)B [4]

where Y is the cost to be estimated, A and B are coefficients
to be estimated, and X is an independent variable such as
capacity or horsepower.

Leinart and Schumacher, (2010) and Sayadi et al. (2012)
argue that most of these cost estimation models use single
regression to estimate mineral industry costs. The other
significant variables are overlooked, making these models
obsolete, and updating them may result in substantial errors. 

Long (2011) conducted a study for estimating costs for
porphyry deposits. The author found that capital cost
depended on the mineral processing rate, stripping ratio, and
the distance from the nearest railroad. These factors should
therefore be considered before commencing mining
construction. In terms of the operating cost, the stripping
ratio was the only variable affecting the cost, which best
explains the stripping account for up to 40% of operating
costs. Long (2011) also suggests that the next step is to test
the relationship of the variables and costs for other types of
deposits that use different mining and mineral processing
methods.

Multiple linear regression, based on the principal
component analysis method, has been used in estimating
capital and operating costs for individual types of equipment
such as backshoes, loaders, and shovels (Oraee, Lashgari,
and Sayadi, 2012; Sayadi et al., 2012). According to this
method, cost is estimated by considering bucket size, digging
depth, dump height, machine weight, and horsepower. The
estimation procedure first omits the correlation between
independent variables, which can influence the final cost
estimates, by using principal component analysis, and then
estimates the capital and operating costs of the equipment.

Shafiee et al. (2009) and Shafiee and Topal (2012)
proposed a model for estimating total operating costs. The
Shafiee et al. model is indicated in Equation [5]. 

EOC = 8.744955 + 0.041556 DAT + 
1.658269 SR ‐ 0.000459 CC ‐ 0.041408 PR [5]
—2

R = 95%
F = 60.7

where EOC is the estimated operating cost (cost per tonne),
DAT is the deposit thickness (in metres), CC is capital cost
(million dollars in 2008 terms), PR is the daily production
rate (kt), and SR is the stripping ratio. The model has ±20%
accuracy as compared to real data used and has  significance.

The model uses a few of the many variables identified by
scholars such as Gordon (1976) and Schneider and Torries
(1991) that affect the operating costs of coal mines. The
inclusion of more variables identified will improve accuracy
of cost estimates.

Another cost estimation approach is the Australian Coal
Cost Guide, an internally generated cost guide providing a
standard for coal cost estimation in Australia. It applies to the
Australian environment, and was developed based on
Australian coal mines. If this guide is used by other
countries, cost variations will need adjustment (Shafiee and
Topal, 2012).

Cost estimation in coal mines has also been highlighted
by Chan (2008), who discusses Coalval, a tool that was
developed by the US Geological Survey (USGS) for the
valuation of coal properties. Chan (2008) argues that the tool
does not consider characteristics such as the geology of the
seam, which is one of the variables affecting mining costs.

This approach includes the Mine and Mill Cost Calculator and
Mine Cost. The Mine and Mill Cost Calculator utilizes an
InfoMine equipment cost database which tabulates equipment
costs in the USA. This database can be used to calculate the
predicated cost of equipment for the specific project. Mine
Cost is a second online method that consists of spreadsheets
and curves for capital and operating costs. Online methods
simply estimate the total mining cost of a specific mine, but it
is not clear how the costs are obtained. These methods
simply generate the final total cost estimates (Shafiee et al.,
2009; Shafiee and Topal, 2012).

This involves the study of an existing mine with similar
characteristics and operational conditions to the mine whose
cost is to be estimated. The average operating cost is
modified. There is no clear guideline for the cost adjustment
reflecting the condition of the mine under evaluation. It is
also termed an analogous method of cost estimation,
suggesting a comparison between similar operations, but care
must be exercised since accounting practices also vary
(Hustrulid and Kuchta, 2006).

According to Darling (2011), three major steps are
considered in the itemized method of cost assessment.
Firstly, a conceptual mine plan should be developed using the
available information, covering pit outlines, haul routes,
depth of waste dump, and process plant location. Secondly,
parameters of materials involving capital should be
estimated. And thirdly, the itemized method requires the
estimator to apply known unit costs for labour, equipment
operation, and other facilities in order to finalize the cost
estimates.

The above approach can, however, lead to inaccurate
estimates because some costs (for example, the operating
costs for equipment for a new project) require quotes from
the original equipment manufacturer (OEM). The equipment
cost is affected by the conditions in which the machine is to
operate (Hoskins and Green, 1977, p. 79). Using the OEM
can thus be a source of error in estimation. Adjusting cost to
local condition is very optimistic and has not been
standardized as yet.
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Forecasts have progressively deviated from actual costs and
productivity in existing operations. Studies and examples on
cost and budget estimates have indicated overruns or
underruns in mining companies for decades.

Bullock (2011) analysed cost variation of eight different
studies, the smallest study involved 16 projects and largest
one involved of 60 projects covering period 1965–2002. The
author found that the average minimum overrun of 22% and
the highest of 35% for all studies.  The study that involved
60 projects showed, 58% of the projects had overrun ranging
between 15% to 100%.

Van Aswegen and Koster (2008) conducted a qualitative
study of the South African mining industry. Questionnaires
were sent to 144 middle and senior managers and directors
of leading mining and consulting companies; 49% responded.
It was found that there was a gap between feasibility study
estimates and actual figures during project execution, with
cost deviation, schedule deviation, number of project scope
changes, and accuracy of prediction of operational
performance as contributing factors. Cost deviation
contributed significantly to this gap at 98.5% followed by
schedule deviation (97.1%), number of project scope changes
(92.8%) and accuracy of prediction of operational
performance (89.9%). 

In mine planning, forecasts have not been met and
returns on investment are lower than predicted. The majority
of projects (80–90%) will exceed the budget cost and will not
deliver the expected benefits (Lumley and Beckman, 2009).
More often, the planned production rate has not been
achieved due to technical deficiencies in the planning process,
planner’s optimism, and ‘strategic misrepresentation’
(deliberate deception). 

Considering case studies carried out by Lumley (2011),
many mines assume mining production rates that are higher
than the best practice. For example, in Australia, a shovel
underperformed by 7% in 2008, resulting in under-recovery
of coal by 996 000 tons. Lumwana Copper Mine in Zambia is
another example of a mine exhibiting poor performance. The
mine expected to achieve full production from 2009, but did
not meet this deadline. This failure is attributed to the fact
that there was an overestimation of equipment hours
(Lumley and Beckman, 2009).

Cost overrun examples can be observed when the final
project capital cost is related to capital cost estimate in the
feasibility study. For example, 60 mining projects studied for
the period 1980–2001 had an average cost overrun of 22%,
with half exhibiting over 20% overrun. The reason for these
results was established as being largely due to optimism and
poor cost estimation (Noort and Adams, 2006). Other
examples of mining cost overruns have been summarized by
Noort and Adams (2006), as indicated in Table I.

Approximate of 70% of mining megaproject overspent by
more than 25% relative other projects with similar scope
(competitiveness), besides cost overruns, schedule overruns,
and operational problems, within two years of start-up
(Merrow, 2011; PWC, 2012).

The examples discussed indicate how mining projects,
both new and operational, are failing to meet target
production rates and reveal cost estimation problems. The

reasons for this have been identified as poor estimation
techniques, optimism, and technical problems. A new
methodology – which takes into account the deposit
characteristics, mine operation location, as well as the
influence of legislation and economic factors – is thus of
paramount importance. This methodology will enable the
estimator to improve cost and competitiveness before the
project moves into production. 

The competitive advantage of a new mine depends on its
being both technically efficient and cost-effective. Measuring
the relative efficiency of each mine helps to understand the
best-performing mines. New mines will not survive in the
current business environment unless they are competitive.

Data envelopment analysis (DEA) is proposed for
determining the efficiency of surface coal mines. Thereafter,
the application of a parametric method is proposed to develop
models predicting the productivity efficiency and effective
production costs for new mines. The method will be used to
determine the frontier of efficient mines among the operating
mines in a given coal production region. 

DEA is a nonparametric method for measuring the
efficiency of an operation, and was introduced by Charnes,
Cooper, and Rhodes in 1978 (Cooper et al., 2007). DEA
involves multiple inputs and outputs of decision-making
units (DMUs) that use similar inputs and generate similar
outputs in the construction of an efficient frontier, which is
an envelope determined by the Pareto-efficient DMUs
(Joubert, 2010). For example, a DMU can be a mine among
mines producing a specific commodity; these mines should
have similar inputs such as number of employees, size of
equipment, and operating hours per shift; and the output can
be tons of ore produced. In DEA methodology, the quantity of
inputs used and outputs generated may vary from one DMU
to another.

DEA uses a linear programming technique to determine
the piecewise frontier of efficient DMUs. DEA does not need 
a pre-defined function when determining efficiency, but
instead uses the data of each DMU to determine the relative
efficiency. 

A proposed approach for modelling competitiveness of new surface coal mines
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Table I

Cost overruns (Noort and Adams, 2006)

Project Company Feasibility Actual/
forecast overrun

Ravensthorpe/Yabilu BHP Billiton A$1.4 billion 30%
Expansion

Spence (Chile) BHP Billiton US$990 million 10%

Telfer Newcrest A$1.19 billion 17.50%

Stanwell Magnesium AMC A$1.3 billion 30%

Boddington Newmont A$866 million 100%

Goro (Indonesia) Inco US$ 1.45 billion 15%

Prominent Hill Oxiana A$350 million 51%



A proposed approach for modelling competitiveness of new surface coal mines

DEA has been successfully applied since its inception. For
example, it has been used in evaluating the performance of
various operations, including production planning, airport
performance, agricultural economics, bank performance,
research and development performance, and other
applications (Li et al., 2012). Selective examples on the
application of DEA in coal mine investment efficiency
evaluation have been identified by Fang et al. (2009) and
Reddy et al. (2013), and these are presented in Table II. 

The studies indicate successful application of the DEA in
the coal mining industry. However, most of the applications
have ignored inputs of non-discretionary variables such as
the influence of inflation, exchange rate, inclement weather,
and labour issues. For competitiveness, the efficiency score
should include the influence of these variables and the set-up
of the market structure, which includes the supply of coal to
domestic power plants. In addition, both domestic and export
markets should be investigated. 

According to Farrel (1957), ’When one talks about the
efficiency of a firm one usually means its success in
producing as large as possible an output from a given set of
inputs. Provided all inputs and outputs were correctly
measured, this usage would probably be accepted.’ Efficiency
therefore refers to the use of inputs to produce maximum
outputs. Efficiency can be illustrated by Figure 3, which
shows an example of the decision-making unit consuming
two inputs to generate two outputs. 

According to Talluri (2000), efficiency can be expressed
by Equation [6].

Weighted sum outputs [6]Efficiency = 
Weighted sum inputs

For illustration purposes, consider A, B, C, D, E, and F as
an envelope of efficiently operating mines referred to as
decision-making units (DMUs) in Figure 4. This envelope is
also known as a envelope. The efficient DMUs are A, B, C,
and D. DMUs E and F are weakly efficient because they use
excess inputs which can be reduced to the level of B and D
respectively while still producing the same outputs. A is
technically an inefficient DMU. 

Consider a set of n DMUs using similar type of inputs to
generate similar type of outputs, for each DMUj,  j = (1...n)
using m inputs xij and generating s outputs yrj. The input-
oriented envelopment model for determining the efficient
DMUs under the assumption that same amount of change in
inputs results to same amount of change in outputs, also
known as constant return to scale (CRS), is computed using
the generic envelopment model in Equation [7].

min [7]
subject to
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Table II

Selected DEA applications in coal mining investment efficiency evaluation (Fang et al., 2009; Reddy et al., 2013)

Study Data Inputs variables Outputs variables

Kulshreshtha and Opencast and underground coal  Opencast mining: mining machinery, Opencast mining:
Parikh (2002) mining firms in India in 1985–1997 cranes, dumpers, man-shifts Overburden removal

Underground mining: mining machinery, Underground mining: coal.
rope haulage, man-shifts

Wei and Wang 10 listed Chinese coal companies in 2003 Total assets per share Earnings per share
(2005) Net assets per share Operating profit per share.

Operating costs per share

Ran and Hui  16 listed Chinese coal companies in 2005 Total capital Net profit
(2006) Number of employees Operating profit.

Operating cost

Reddy et al. Benchmarking of coal mines Wage costs (wages paid to employees) Production (coal).
(2013) (opencast mines) Store costs (explosives, spares and other maintenance items)

Other costs (capital equipment, depreciation)
OBR cost (overburden removal).

Figure 3—The input-output relationship for a DMU (after Emmanuel,
2011)
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Figure 4—Efficiency frontier for an input-oriented DEA model
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In the above: is the efficiency score, xio is the amount of
inputs of the DMUs under evaluation, yro is the total outputs
of DMUs under evaluation, I is the vector of inputs, R is the
vector of outputs, and J is the vector of number of DMUs.
Equation [7] is solved n times equal to the number of DMUs.
If variable return to scale is considered the condition     = 1
is added in Equation [7]

The methodology for modelling involves the use of identified
variables from different sources in the literature. These
variables will be categorized as external, resource
characteristic variables, and production variables. These will
form the inputs and outputs in the stage of DEA
formulations. Figure 5 summarizes the development of the
DEA models formulation, productivity, and effective cost
models for competitiveness of new coal mines. Data will be
collected from coal-producing regions; the sources of data
include available mine databases, publically available annual
reports, and technical papers published about coal mine costs
and performance. The efficient frontier will be computed by
applying the models developed and the use of the coal mines
data-sets collected. Each surface coal mine will be regarded
as a DMU in this research. The models for predicting
production and effective costs of a new mine will be
developed from the envelope of efficient mines. The scenario
evaluation of a new mine will be conducted considering a
new mine. 

The increasing demand for energy drives the supply of
energy sources. Coal is one of most important sources of fuel.
It is therefore expected that new mines will be established in
order to increase the supply of coal and thus meet the
demand. However, new mines will not be opened unless the
economic evaluation is done accurately and the projects are
proved to be profitable. Cost estimation is a critical
component of the economic evaluation of mines, and
underestimation or overestimation can result in the project
being terminated. 

Available methods do not fully capture the project
characteristics and all the variables affecting cost, hence cost
estimates at present do not adequately reflect project-specific
variables.

This study describes and proposes the use of data
envelopment analysis in the evaluation of efficiency and the
development of benchmarks of efficient surface coal mines,

based on a mine project's controllable and non-controllable
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Figure 5—Methodology for the development of a competitiveness model for a new surface coal mine
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