
Analysing network motifs in a complex network of
freight movements

by

Sumarie Meintjes
28408129

Submitted in partial fulfillment of the requirements
for the degree

Masters of

Industrial Engineering

in the

Faculty of Engineering, Built
Environment

and Information Technology

University of Pretoria

October 2015

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Acknowledgements

The financial assistance of the National Research Foundation (NRF) towards this research is
hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author
and are not necessarily to be attributed to the NRF.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Executive summary

Motifs are over-represented subgraphs in a complex network, and represent the building blocks
of the network. There is a lack of studies that apply complex network theory in a supply chain
context. In this dissertation 3-node motifs were identified and analysed in a complex network
representing direct freight trips between firms in the Nelson Mandela Bay Metropolitan, South
Africa. The G-Tries and ISMAGS algorithms were tested on small complex networks, and were
compared according to quantitative and qualitative properties. It was found that ISMAGS is
the most suitable for this dissertation. Freight activities were identified from raw GPS traces
of freight vehicles, and the activities were clustered into firms using a density-based clustering
algorithm. Multi-objective optimisation indicated that the clustering parameter configuration
γ = (20, 20) can be used to increase the visual accuracy of the firms, while maximising the
completeness of the complex network. The freight complex network was built by identifying
direct trips between firms. Using ISMAGS, it was found that three firms with two (X0X)
or three (XXX) reciprocal freight trips between them are statistically overrepresented in the
network. A brewery, shopping centres, distribution centres, and truck stops frequently appeared
in the motifs. Motifs that contain the brewery and one of the truck stops were identified as the
most central motifs based on the number of direct freight trips that occur in the motifs. Some
freight trips in XXX motifs occur frequently over long distances, increasing total transport costs
of the firms. Supply chain improvements can be applied to these identified firms. It was also
found that there is a relationship between ranking firms according to the number of motifs they
appear in and their degree centrality scores. This relationship can be studied more rigorously
in future work. Another avenue for future research is to study the supply chain structures of
firms in motifs, as well as the commodity flows between firms in motifs.

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Contents

1 Introduction 1
1.1 Complex networks . 2

1.1.1 Studying complex network structure . 3
1.1.2 The value of studying network motifs . 4

1.2 Research design . 4
1.3 Research methodology . 5

1.3.1 Identifying a motif discovery algorithm . 5
1.3.2 Building the complex network . 5
1.3.3 Identifying statistically significant motifs 6
1.3.4 Analysing statistically significant motifs 6

1.4 Document structure . 6

2 Literature review 7
2.1 Analysing complex networks . 7

2.1.1 Node-level properties of complex networks 7
2.1.2 Edge-level properties of complex networks 8
2.1.3 Network-level properties of complex networks 9

2.2 Concepts for motif discovery . 10
2.2.1 Random network generation . 10
2.2.2 Graph isomorphism . 12
2.2.3 Determining subgraph frequencies . 15

2.3 Motif discovery algorithms . 17
2.3.1 The G-Tries algorithm . 17
2.3.2 The ISMAGS algorithm . 22

2.4 Conclusion . 30

3 Identifying a suitable motif discovery algorithm 32
3.1 Quantitative comparison of ISMAGS and G-Tries 32

3.1.1 Pre-processing for G-Tries . 32
3.1.2 Pre-processing for ISMAGS . 33
3.1.3 Comparing by memory usage . 35
3.1.4 Comparing by run time . 35
3.1.5 Comparing by the number of subgraphs instances identified 36

3.2 Qualitative comparison of ISMAGS and G-Tries 38
3.3 Conclusion . 39

4 Building the complex network 40
4.1 Extracting activity chains . 40
4.2 Identifying the firms where activities were performed 40
4.3 Adapting activity locations . 41
4.4 Identifying the edges in the complex network . 41

i

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.5 Determining clustering parameters . 42
4.6 Preliminary analysis of the complex network . 43

4.6.1 Node-level analysis . 43
4.6.2 Edge-level analysis . 44
4.6.3 Network-level analysis . 44

4.7 Conclusion . 46

5 Identifying and analysing motifs in the complex network of freight movements 49
5.1 Identifying statistically significant motifs . 49

5.1.1 Determining subgraph counts . 49
5.1.2 Determining statistically significant motifs 50

5.2 Analysing statistically significant motifs . 51
5.2.1 Motif-level analysis . 51
5.2.2 Edge-level analysis . 56
5.2.3 Node-level analysis . 57

5.3 Conclusion . 60

6 Conclusion 61
6.1 Contribution . 61

6.1.1 Determining optimal clustering parameters 61
6.1.2 Algorithms . 61
6.1.3 Significance of results . 62

6.2 Future work . 63
6.2.1 Imposing edge weight criteria . 63
6.2.2 Studying the relationships between firm rankings and node centrality scores 63
6.2.3 Determining the industries to which firms belong 63
6.2.4 Determining commodity flow . 63
6.2.5 Comparing the supply chains of X0X and XXX firms 63

A Discovering three-node subgraphs 69

B Comparing G-Tries and ISMAGS quantitatively 71

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Figures

1.1 Multiple supply chains form a network. 1
1.4 Illustrating how subgraph instances are found in a network. 4
1.5 An activity chain. 5

2.1 Using a complex network to explain node centrality 7
2.2 Dense and sparse networks. 9
2.3 The switching algorithm. 11
2.4 The matching algorithm. 13
2.5 Isomorphic subgraphs and subgraph frequency. 14
2.6 Isomorphic graphs with different adjacency matrices. 14
2.7 Frequency definitions. 16
2.8 A prefix tree. 17
2.9 A g-trie. 18
2.10 Adding subgraphs to a g-trie. 20
2.11 Motif specifications. 23
2.12 ‘0’ edges in ISMAGS. 24
2.13 Automorphism subgraphs . 24
2.14 Permutations and partitions. 25
2.15 Orbit mapping . 25
2.16 A subgraph with symmetric nodes . 25
2.17 The initial orbit partition pair. 26
2.18 Orbit partitions created in the first iteration of symmetry detection. 26
2.19 A subgraph and network in which it must be found. 28
2.20 Determining the first subgraph instance. 30

3.1 Comparing the memory usage (in kilobytes) . 35
3.2 Comparing the run time (s) . 36
3.3 Comparing the number of subgraph instances identified 37
3.4 Using a third algorithm to validate the number of subgraph instances identified . 38

4.1 Clustering of activities . 47
4.2 Activity chains after modification. 48
4.3 Changing clustering parameters. 48
4.4 The efficient frontier. 48
4.5 Centrality scores. 48
4.6 Eigenvector versus betweenness centrality. 48
4.7 Edge weight and power distribution. 48

5.1 3-node subgraphs with their motif specifications 50
5.2 Statistically significant motifs. 51
5.3 Multiple activity chains forming motifs . 52
5.4 Comparing the importance of motifs using total edge weight. 52
5.5 Edge weight distribution. 53

iii

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.6 Geometric mean of motif edge weights . 54
5.7 Absolute differences in motif edge weight . 55
5.8 Motif absolute edge weight difference and minimum edge weight 56
5.9 Motif edge weights versus distances. 57
5.10 The number of motifs each firm appears in. 57
5.11 The number of motifs each firm appears in on a log-log scale. 58
5.12 Motif count and degree rank . 58
5.13 An XXX motif with edge weights included. 59

A.1 Identifying all i = 1 subgraph instances in a network. 69
A.2 Identifying all i = 2 subgraph instances in a network. 69
A.3 Identifying all i = 3 subgraph instances in a network. 69
A.4 Identifying all i = 4 subgraph instances in a network. 69
A.5 Identifying all i = 6 subgraph instances in a network. 70
A.6 Identifying all i = 7 subgraph instances in a network. 70

B.1 Comparing the memory usage on separate y-axes. 71
B.2 Comparing the run time on separate y-axes. 71
B.3 Comparing the number of subgraph instances identified on separate y-axes. . . . 71

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Tables

2.1 Network nodes with the same outgoing edges as subgraph nodes. 29
2.2 Candidate network nodes that can be mapped to subgraph nodes. 29

4.1 The three most central actors according to the different centrality scores. 44
4.2 Network properties of various complex networks. 45

5.1 Top 10 X0X and XXX motif instances according to total edge weight. 54
5.2 The firms that occur in the most X0X and XXX motif instances. 58
5.3 Facility rankings according to edge weights. 59

6.1 Algorithms implemented in Java for this dissertation. 62

v

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

List of Algorithms

1 The switching algorithm. 12
2 The matching algorithm. 12
3 Creating a custom canonical label for a graph. 19
4 Inserting a subgraph into a g-trie. 20
5 Performing subgraph census using g-tries. 22
6 Determining symmetry breaking conditions for a subgraph. 23
7 Analysing a subgraph. 26
8 Processing the ordered partition pair. 27
9 Initialising ISMAGS. 28
10 Mapping subgraph nodes to network nodes. 29
11 Generating motif specifications. 33
12 Splitting edges into one- and bi-directional edges. 34
13 Iteratively calling ISMAGS. 35
14 Filtering motif instances with ‘0’ edges. 37
15 Determining edge weights of motif instances. 53

vi

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1

Introduction

Traditionally, supply chains are studied as linear structures, with one firm as the focal point, and
its suppliers and customers organised in tier levels above and below the focal firm. An example
can be seen in Figure 1.1(a), with firms represented by squares, and supply relationships as
lines between firms. The focal firm is at the centre of the supply chain, and is shown as a black
square.

(a) A linear supply chain with a single
focal company.

(b) Each firm is focal in its own supply chain.

Figure 1.1: A supply chain has a simple linear structure. When multiple supply chains are
considered together, they form a web, or network, of supply chains.

Min and Zhou (2002) explain that the primary focus of traditional supply chain analysis
is on the movement of goods from the suppliers to the focal firm (inbound logistics) and the
physical distribution of goods from the focal firm to the customers (outbound logistics).

A supply chain perspective is limited to the biased view the focal firm has on its suppliers
and customers. In reality, each supplier and customer is the focal firm in its own supply chain,
as shown in Figure 1.1(b). If all the supply chains of all the firms are considered together, it is
not a simple linear structure, but a more complex one. This structure is referred to as a web by
Battini et al. (2007), while Galaskiewicz (2011) and Bellamy and Basole (2013) refer to it as a
network of firm relationships. This network view of supply chains is not biased to one firm, and
provides an objective view of how firms are connected by relationships.

The network view of supply chains is not a new concept. Choi et al. (2001) were the
first to consider a supply network not as a chain, but as a complex adaptive system. In a
subsequent paper, Choi and Hong (2002) map the supply networks of Honda Accord, Acura, and
DaimlerChrysler Grand Cherokee. They study the structure of the supply network structure in

1

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

terms of formalisation, centralisation, and complexity, and find that these dimensions continually
affect each other. Battini et al. (2007) compute the complexity of a supply network by applying
network analysis paradigms and ecological indicators to it. More recently, Mari et al. (2015)
develop resilience metrics for supply networks based on complex network theory. Authors such
as Choi and Hong (2002) and Battini et al. (2007) refer to these networks as supply (chain)
networks, while others, such as Joubert and Axhausen (2013) and Bellamy and Basole (2013),
call it a complex network. This dissertation will use the phrase complex network.

The relationships in a complex network do not form haphazardly. Firms make conscious
decisions about their suppliers, and will likely make the same decisions over and over again.
This reinforces the relationships between firms, and over time, these decisions will manifest as
patterns in the complex network. In this study the these patterns are identified, as well as the
key players in these patterns.

1.1 Complex networks

To study these complex network patterns, a notation is needed that can accurately represent the
firms and the relationships between them. Graph theory provides a vocabulary that can be used
to describe relationships between actors, and its mathematical operations are suitable to study
and quantify these relations. Using the vocabulary and mathematical operations, theorems
about graphs can be proved, and therefore it can also be proved for the relations upon which
the graph is based. Therefore graph theory provides a useful model of a complex network that
contains a set of actors with connections between them, as explained by Wasserman and Faust
(1994).

Boccaletti et al. (2006) explain that graph notation can be used to represent a directed and
weighted network as a directed and weighted graph, GW = (VVV ,EEE,WWW), consisting of three sets,
namely the set of nodes (or vertices), VVV = {v1, v2, . . . , vN}, the set of edges (or connections,
dyads or links) between the nodes, EEE = {e1, e2, . . . , eK}, and the set of weights associated with
each edge, WWW = {w1, w2, . . . , wK}. There are N elements in set VVV and K elements in sets EEE and
WWW . Ribeiro and Silva (2010) state that each edge has a pair of nodes, (u, v), associated with it,
where u is the origin node and v the destination node.

Network analysis is extremely versatile, and Borgatti and Li (2009) explain that the nodes
and edges of a complex network can be defined as any set of actors and relations between
them. All edges can be grouped into four categories, and Borgatti and Li (2009) explain what
they are. Similarities between actors can be indicated using edges, such as when two actors
belong to the same organisation. Edges can also represent relations between actors, such as
friends or colleagues. Interactions between actors, such as meetings or negotiations, can also
be represented using edges. The last edge category is that of flows, and an example is the
delivery of goods from one actor to another, or the exchange of information between actors.
Flows are the most difficult to measure due to a lack of data and the difficulty of capturing
the data. Flows are therefore assumed from interactions or social relationships. The four edge
categories (similarities, relations, interactions, and flows) can be further grouped into continuous
ties (similarities and relations) and discrete ties (interactions and flows). This categorisation is
based on the duration of the connection between actors: continuous ties exist indefinitely, while
discrete ties are based on discrete events which can be counted up over time.

Borgatti and Li (2009) explain that multiplexity occurs when any, or all, types of ties exist
simultaneously for any given set of actors. Using the concept of multiplexity, separate networks
can be built using the same actors, each with a different type of edge between them. For example,
the edges of one network can represent the negotiation of prices (interactions), and the edges of
another network can represent the payment of money by one firm to another (flows). Studying
these two networks simultaneously may provide more insight than when only studying one of
these in isolation.

2

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Edge direction indicates the direction of the relation between two actors. Ribeiro and Silva
(2010) explain that edge existence and direction can be captured using an adjacency matrix, A,
with its size equal to |VVV | (the number of nodes). A ‘0’ in position aij indicates that there does
not exist an edge between nodes i and j, while a ‘1’ indicates that an edge exists between these
two nodes. Undirected networks have symmetrical adjacency matrices, since aij and aji have the
same value, but a directed network could have different values in these positions, since Borgatti
and Li (2009) explain that a directed edge between i and j does not indicate the existence of a
directed edge in the opposite direction.

Edge weight indicates the frequency, or the strength, of the connection between the two
nodes. Boccaletti et al. (2006) note that it is especially useful when the network consists of
connections that vary greatly in capacity and intensity, for example, when there are long-term
delivery agreements and once-off deliveries in the same network.

In this dissertation, nodes are defined as the firms where freight vehicles stop to perform
activities. Direct freight movements between two firms are represented as directed and weighted
edges between nodes.

1.1.1 Studying complex network structure

Studying complex networks in its entirety can be daunting. Rather, a network is often reduced
to its sub-components, also referred to as subgraphs. These structures are of particular interest
in this dissertation. Milo et al. (2002) find that by identifying statistically significant subgraphs
in a complex network, it can provide insight into the building blocks of that network.

In the seminal work by Milo et al. (2002), a motif is defined as a recurring, significant pattern
of interconnection. Finding motifs in a network has developed as a science in its own right, and
Tran et al. (2015) define the motif discovery problem as the searching for induced isomorphic
subgraphs that occur significantly more in a target network than in an ensemble of random
networks.

Again, graph notation can be used to concisely describe subgraphs. A subgraph instance,
Gk, is a graph of size k found in the larger graph G. The subgraph instance nodes are a subset
of G’s nodes, therefore VVV (Gk) ⊆ VVV , and the subgraph instance edges are a subset of G’s edges,
EEE(Gk) ⊆ EEE. A subgraph is induced for any pair of nodes (u, v) ∈ EEE(Gk) if, and only if, (u, v) ∈ EEE
(Ribeiro and Silva, 2010). Given two graphs, G(VVV ,EEE) and H(V ′V ′V ′,E′E′E′), G and H are isomorphic
if there exists a bijective function, f , between VVV and VVV ′ such that for each edge (u, v) ∈ EEE there
exists an edge (f(u), f(v)) ∈ E′E′E′ (Tran et al., 2015). A bijective function provides a one-to-one
mapping of all elements in two sets. Isomorphic graphs are therefore mathematically identical,
even though they may appear different.

To explain the concept of motif discovery, consider the network shown in Figure 1.2.

Figure 1.2: A network in which 3-node subgraphs must be found.

Figure 1.3 shows all possible directed edge configurations for subgraphs with three nodes.
To easily refer to each subgraph, a set III is created, containing all possible 3-node subgraphs.

The number of occurrences of each 3-node subgraph in the network can be counted, shown as
black nodes and edges in Figures 1.4(a)–1.4(f). One i = 1 instance is identified in Figure 1.4(a).

3

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 1.3: The 13 directed 3-node subgraphs.

Figure 1.4(b) shows where an i = 2 instance can be found, while 1.4(c) shows one i = 3 instance
in the network. Figures 1.4(d)–1.4(f) indicate where one subgraph instance of i = 4, i = 6, and
i = 7 can be found respectively. This is not an exhaustive list of all possible subgraphs, but
gives an idea of how subgraphs can be identified in a network. All possible 3-node subgraph
instances that can be identified in this network are listed in Appendix A.

(a) One i = 1 subgraph
instance.

(b) One i = 2 subgraph
instance.

(c) One i = 3 subgraph
instance.

(d) One i = 4 subgraph
instance.

(e) One i = 6 subgraph
instance.

(f) One i = 7 subgraph
instance.

Figure 1.4: Illustrating how subgraph instances are found in a network.

To determine which of these subgraphs are statistically significant, random networks are

4

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

generated, and all subgraph instances in these are counted. If the subgraph count in the original
network exceeds the mean subgraph count in the random networks, that subgraph is generally
accepted as being a statistically significant motif (Milo et al., 2002; Wong et al., 2012; Kavurucu,
2015).

1.1.2 The value of studying network motifs

Discovering network motifs has been applied in a number of different fields. Wu et al. (2012)
classify Wikipedia articles (based on the quality of editing) by using motif counts and ratios.
In the music industry, Liu (2011) construct tonal and rhythmic complex networks, and subse-
quently identify network motifs which represent basic groups of chronologically ordered notes.
These network motifs are used to artificially compose music. Network motifs are also used
extensively in biological networks in the medical field. Tran et al. (2015) use it to better under-
stand functional roles of genes in gene regulation; Iturria-Medina (2013) identify abnormal brain
states by studying motifs found in brain networks; and Chen et al. (2013) accurately identify
breast cancer patients by finding 3-node network motifs in human signaling networks. Therefore
identifying and analysing network motifs have proved to be a valuable network analytic tool in
a number of fields.

1.2 Research design

Wasserman and Faust (1994) state that when firm behaviour is repeated over time, it mani-
fests as patterns or groups of nodes with specific structural properties in the complex network.
Recurring structural patterns, such as motifs, can be identified in a complex network of firms.
Bellamy and Basole (2013) show that there has been some translation of network properties
in a supply chain context, and Borgatti and Li (2009) discuss how it can benefit supply chain
researchers. In addition to these findings, Bellamy and Basole (2013) state that there are still
many opportunities to identify and translate the structural properties of supply chain complex
networks into a supply chain context. Therefore the following research questions are formulated
in this dissertation:

1. Can statistically significant motifs be identified in a complex network of freight
movements?

2. Which firms frequent these patterns of interconnections?

1.3 Research methodology

The context of this research is an empirical complex network of direct freight vehicle trips
between firms. The methodology followed in this dissertation is made up of four steps.

1.3.1 Identifying a motif discovery algorithm

After reviewing available algorithms to discover statistically significant motifs, the Index-Based
Subgraph Matching Algorithm with General Symmetries (ISMAGS) (Houbraken et al., 2013)
and the Graph Retrieval algorithm (G-Tries) (Ribeiro and Silva, 2010) are analysed and discussed
in detail. The algorithms are compared based on quantitative and qualitative properties. The
former include run time, memory usage, and the number of subgraphs identified, while the latter
include considerations such as the ease of extendability of the algorithm.

Based on the quantitative and qualitative comparison of algorithms, ISMAGS is chosen to
identify statistically significant motifs in the complex network of freight movements.

5

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1.3.2 Building the complex network

Digicore Fleet Management provided GPS data of over 40,000 freight vehicles travelling in South
Africa over a six-month period, from which Joubert and Axhausen (2011) extract activity chains.
The activity chains capture the duration and location of the activities, and describe the sequence
in which activities are performed.

To extract activity chains from raw GPS traces, Joubert and Axhausen (2011) use ignition
on- and off-signals to identify freight activities. When a freight vehicle switched off its engine for
more than five hours, it is assumed to be a depot-like activity, which is called a major activity.
These signal the start and end of an activity chain. Any activity lasting less than five hours is
called a minor activity, and make up the remainder of the chain.

Figure 1.5 shows three activity chains of a freight vehicle, which are represented using the
XML data structure. XML format creates a human-readable format to structure data. Each
freight vehicle is identified by a unique identified caller a digicoreVehicle ID. This identifier
signifies the start of the data associated with this vehicle. Since one freight vehicle may have
more than one activity chain, the start and end of chains must be indicated with <chain>
and < /chain> respectively. The activity type variable indicates whether it is a major or
minor activity, and each activity has start and end times and coordinates associated with it.
The Albers projection, which is a projected coordinate reference system, is used to indicate the
location of activities. By using the Albers projection, the Euclidean distance between two points
can be calculated, which is valuable for later analyses.

Figure 1.5: A freight vehicle’s activity chain represented in XML format.

In analysing the connectivity between firms caused by freight vehicles, Joubert and Axhausen
(2013) extract a complex network from the activity chains. When two consecutive activities in an
activity chain both contain facility IDs, a direct freight trip occurred between two interesting
firms, and this trip is included in the complex network as a directed edge. One example is
indicated in Figure 1.5, where a direct freight trip occurred from firm 501 to firm 291, therefore
a directed edge is created between these two nodes in the complex network.

This dissertation forms part of a research project funded by the National Research Foun-
dation’s Competitive Program for Rated Researchers (Grant 87749). The study area of the
research project, and therefore also this dissertation, is the Nelson Mandela Bay Metropolitan,
which is situated in the Eastern Cape province, South Africa. Only intra-area commercial traffic
is considered in this dissertation, which are defined as vehicles that perform at least 60% of their

6

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

activities in the study area (Joubert and Axhausen, 2011).

1.3.3 Identifying statistically significant motifs

To limit the scope of this dissertation, only 3-node motifs are identified in the complex network.
This is done by implementing ISMAGS with a number of algorithms so that it is properly
customised for this dissertation.

1.3.4 Analysing statistically significant motifs

The analyses are performed at three levels of detail. At a motif-level, it is illustrated how different
activity chains of different freight vehicles cause motif instances to occur. Motifs are also ranked
according to their total edge weight, and it is found that total edge weight for each motif is
biased towards the edges with the highest weights. It is determined whether the relationships
in each motif instance are of equal strength, or whether they have differing strengths.

At an edge-level, edge weights are compared to edge distances (the Euclidean distance be-
tween two firms of an edge) to determine if firms with more freight movements between them
are located close to each other. Why is this interesting? The opportunity to decrease transport
costs can be explored, since firms with high edge weights between them should intuitively be
located close to each other.

At a node-level, firms are ranked based on two aspects. Firms are ranked according to the
number of motifs that they appear in, after which it is determined whether considering edge
weights in this ranking changes the importance of firms. It is found that these rankings are
closely related to the degree centrality scores of the firms.

1.4 Document structure

Chapter 2 deals with the literature surrounding motif discovery algorithms, and two are studied
in detail: ISMAGS (Houbraken et al., 2013) and G-Tries (Ribeiro and Silva, 2010). The two
motif discovery algorithms are implemented in Chapter 3 by running them on smaller complex
networks. The algorithms are compared based on quantitative and qualitative properties, and
the chapter concludes by recommending ISMAGS to be implemented on a large-scale complex
network of freight movements. The process of extracting a large-scale complex network of freight
vehicle movement is explained in Chapter 4, where some summary statistics of the network are
reported on. In Chapter 5, ISMAGS is used to identify statistically significant 3-node motifs
in the large-scale freight complex network. A number of analyses are performed on these motif
instances in this chapter to gain insight into the behaviour of the firms in the complex network.
This dissertation is concluded in Chapter 6, where some recommendations for future work are
made.

7

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 2

Literature review

This chapter starts with a discussion on different ways that complex networks can be analysed.
Methods to generate random networks with prescribed degree sequences are then reviewed.
When determining subgraph frequencies, isomorphic graphs and frequency definitions have to
be considered, therefore these topics are also discussed. The chapter ends with a detailed
discussion of two algorithms that can be used to perform motif discovery, namely ISMAGS and
G-Tries.

2.1 Analysing complex networks

Bellamy and Basole (2013) identify three levels of interest in studying complex network structure
in a supply chain context, namely node-, edge-, and network-level properties.

2.1.1 Node-level properties of complex networks

Boccaletti et al. (2006) state that the importance of an actor in a network can be quantified
using node centrality. Centrality scores are relative metrics, therefore evaluating each node’s
score in isolation will not prove useful; they must be evaluated relative to each other. Borgatti
and Li (2009), Bellamy and Basole (2013) and Joubert and Axhausen (2013) mention that it is a
critical node-level property. Borgatti and Li (2009) and Joubert and Axhausen (2013) agree that
nodes with high centrality scores are structurally important in the network, and Bellamy and
Basole (2013) state that they have more power and control over other nodes in the network. The
importance of a node can be measured in a number of ways, therefore different node centrality
metrics exist. The complex network in Figure 2.1 will be used to explain different centrality
scores.

Figure 2.1: A complex network with directed edges.

8

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Degree centrality is the number of nodes a node is connected to (Boccaletti et al., 2006;
Borgatti and Li, 2009). Wasserman and Faust (1994) and Newman (2003) explain that in
directed networks, degree centrality can be divided into in-degree centrality (the number
of incoming edges), and out-degree centrality (the number of outgoing edges). Since the
network in Figure 2.1 is directed, the degree centrality can also be divided into in-degree
and out-degree. Node b is connected to two other nodes, with both an in- and out-degree
of 1. Node e has a higher degree centrality than node b. Node e has an in-degree of 3 and
out-degree of 2, which indicates that node e has access to more information than node b.

Betweenness centrality is the number of shortest paths between other nodes a node appears
on. Node e has a betweenness centrality of 6, because it occurs on the shortest paths
between six node pairs: c-e-d, c-e-f, g-e-d, g-e-f, h-e-f, and h-e-d. Node m has a lower
betweenness centrality than node e, as it lies on the shortest paths of only three node pairs:
n-m-i, n-m-j, and n-m-k. Nodes with high betweenness centrality scores are important to
the health of the entire network because they can control and possibly filter flows between
other nodes. They can also potentially become bottlenecks that slow down the network.

Eigenvector centrality is described by Newman (2008) to be a function of the number and
quality of the connections of a node, and Borgatti and Li (2009) state that it measures
whether a node is connected to well-connected nodes. Node e is central in the complex
network because it scores high on all other centrality scores. Therefore any node that is
directly connected to node e is considered to be “central by association”, such as nodes
c, d, f , g and h. Both nodes a and d have a degree centrality of 1, however, node d has
a higher eigenvector centrality relative to node a, since node d is connected to node e,
a central node. Node a, on the other hand, is only connected to node b, with a degree
centrality of 2. Therefore node d is more central than node a in terms of eigenvector
centrality.

Kim et al. (2011) use node centrality scores to determine the most central firms in three
automotive supply networks, namely Honda Accord, Acura, and DaimlerChrysler Grand Chero-
kee. Only suppliers are considered in the study, excluding customers from the analysis. Multiple
firms are identified as central, indicating that more than one firm can be considered central in
the same network. The centrality scores are also used to determine which firm is most critical to
the network’s health. In other words, if this firm is removed from the network, it would disrupt
all other firms in the network.

Other node-level properties include structural equivalence and clustering coefficients. Sup-
pose nodes e and i are distribution centres, delivering goods to supermarkets f and l. Nodes e
and i can be thought of as structurally equivalent, with similar edges connected to similar nodes.
Borgatti and Li (2009) hypothesise that structurally equivalent nodes react to their environment
in a similar manner and develop similar characteristics.

Nodes g and i are both connected to node l, and the clustering coefficient of these two nodes
will measure the probability that nodes g and i are also connected to each other, as defined
by Strogatz (2001). It is called a node’s transitivity or clustering by authors such as Barabási
(2007) and Newman (2003). Schilling and Phelps (2007) explain that the average clustering
coefficient of the network is the average of this metric across all actors in the network.

Wen et al. (2013) use simulated data of suppliers, firms, and customers, to calculate the
clustering coefficients of nodes in a complex network, and compare it to the degree centralities
of the nodes. They find that the average clustering coefficient of the complex network follows a
power law distribution.

In another study by Schilling and Phelps (2007), an inter-firm collaboration network is built
using 1,106 firms in 11 industry-level alliance networks. A hypothesis is tested to determine
whether highly clustered alliance networks that include a wide range of firms will have higher
firm innovation than networks that do not possess these qualities. The hypothesis is found to

9

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

be true, since being highly clustered enables a network to easily spread information within these
highly clustered groups. Having a large range of firms involved in the network diversifies the
information that is spread throughout the network, which ultimately leads to more innovation
at firms.

2.1.2 Edge-level properties of complex networks

Edge-level properties include edge type, edge direction, and edge weight. In the automotive
supply network study by Kim et al. (2011), six complex networks are studied using the concept
of multiplexity: for each automotive supply network two complex networks are built, one where
the edges represented material flow (flows), and another where the edges represented contractual
relationships (relations).

Wen et al. (2013) define the operational relations (the movement of goods) between firms
as directed edges in their complex network, while Kim et al. (2011) also use directed edges
to indicate the direction of flows and interactions between firms in their automotive supply
networks. When both edge weight and edge direction can be used simultaneously in a complex
network, the strength and direction of relationships between two actors can be determined.

2.1.3 Network-level properties of complex networks

Edges (m, n) and (n, m) in Figure 2.1 are reciprocal, and can also be called bi-directional.
Network reciprocity is defined by Wasserman and Faust (1994) as the probability of edges being
reciprocal. Since there is only one bi-directional edge in the complex network in Figure 2.1, this
network will have a low reciprocity. A high reciprocity will indicate that edges in one direction
will have a high likelihood of being reciprocated.

Wasserman and Faust (1994) also provide a definition for the network diameter, which is the
longest of all shortest paths between two nodes in a network. All edges in a complex network
are potential message-carriers, and information can spread faster when a network has a low
diameter.

Bellamy and Basole (2013) define network density as the proportion of edges to the maximum
number of possible edges in the network. The maximum number of possible edges in the networks
shown in Figure 2.2 is 15, with the dense network (shown in Figure 2.2(a)) having 13 edges,
and the sparse network (shown in Figure 2.2(b)) having only 5 edges. The density for the dense
network can be calculated as shown in Equation (2.1).

(a) (b)

Figure 2.2: Illustrating the difference between a dense and a sparse network.

Density =
Number of edges in the network

Maximum possible edges in the network
=

13

15
= 0.867. (2.1)

The density of the sparse network is much lower than that of the dense network, as shown
in Equation (2.2).

10

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Density =
Number of edges in the network

Maximum possible edges in the network
=

5

15
= 0.333. (2.2)

Wasserman and Faust (1994) state that dense networks indicate tightly bounded networks,
and Bellamy and Basole (2013) mention that it may place additional burden on actors to main-
tain and coordinate all their connections. The density of all six complex networks in the auto-
motive study by Kim et al. (2011) are determined and one of the supply networks (Honda) have
a comparatively higher density than the other two supply networks. This is attributed to the
fact that Honda prefers to directly source raw materials from second- and third-tier suppliers,
increasing the number of edges in their complex network.

The distribution of power in a network can be determined by plotting the total centrality
score for each node. Bellamy and Basole (2013) explain that it measures the extent to which
some actors are more central than others. Newman (2003) and Boccaletti et al. (2006) state
that the distribution of power in a complex network is often expected to follow a power law
distribution. However, Clauset et al. (2009) show that many distributions that are thought to
follow a power law distribution, actually cannot be fitted to this distribution. They propose
a goodness-of-fit test, where the null hypothesis is that the distribution follows a power law.
For p-values > 0.1, the null hypothesis is accepted. When the power in a network follows a
power law distribution, it means that few actors in the complex network possess high centrality
scores (power), and many actors possess low centrality scores. Wen et al. (2013) determine
that the power in their complex network is distributed according to a power law function, while
Joubert and Axhausen (2013) determine that the power in their complex network is distributed
according to a truncated power law function.

The above-mentioned complex network properties will be applied on the freight complex
network to gain insight into the connectivity of firms. In the remainder of the chapter, concepts
and algorithms for motif discovery are discussed.

2.2 Concepts for motif discovery

Generally speaking, there are four steps to discover statistically significant motifs:

1. Generate random networks.

2. Determine subgraph frequency in the original network.

3. Determine subgraph frequencies in the random networks.

4. Determine statistical significant motifs using metrics and thresholds.

In Section 2.2.1 two algorithms that can be used to generate random networks with prescribed
degree sequences are discussed. Thereafter, graph isomorphism is described in Section 2.2.2.
This is an important concept in motif discovery since it has an impact on the frequencies of
subgraphs, which are discussed in Section 2.2.3.

2.2.1 Random network generation

Castro and Azevedo (2012) state that the null hypothesis in motif discovery is that the subgraph
instances have no statistical significance, and that the actual subgraph count is similar to the
expected one. Therefore when the subgraph count exceeds the expected count, the subgraphs
are significant and the null hypothesis can be rejected in favour of the alternative hypothesis
(that the subgraph count is greater than the expected count).

To determine the expected subgraph counts, random networks are generated. The random
networks are known as null models, and have the same degree distribution as the original net-
work, as shown in the seminal work by Milo et al. (2002). The frequency of subgraphs are

11

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

determined in each random network, and the average subgraph count is taken as the expected
subgraph count. Tran et al. (2015) explain that this can be used as a baseline for comparison
against the actual subgraph count in the original network.

For random networks to have the same degree sequence as the original network, it must have
the same number of nodes, and each node must have the same in- and out-degree. In addition,
the random networks cannot have any duplicate edges or self-edges (edges with the same origin
and destination node). There are a number of algorithms to generate random networks, but for
purposes of this dissertation, the switching and the matching algorithms as described by Milo
et al. (2014), are discussed.

The switching algorithm

Milo et al. (2014) describe the switching algorithm as the random switching of edge ends. Con-
sider the following example along with Algorithm 1. Suppose a random network has to be
generated, and must have the same degree sequence as the network shown in Figure 2.3(a). The
algorithm starts by randomly selecting two edges, say (1, 2) and (4, 5) (lines 6–7). It then
switches the ends of the edges to create two new edges (1, 5) and (4, 2). If no self-edges or
duplicate edges are created using this switch (line 8), the algorithm accepts the two new edges
(line 9), resulting in the altered network shown in Figure 2.4(b). When the algorithm tries to
switch the ends of the edges (2, 3) and (3, 4), a duplicate (2, 4) and self-edge (3, 3) will be cre-
ated, shown in Figure 2.3(c). Therefore the algorithm does not accept this switch and randomly
chooses two new edges to switch, say (2, 3) and (1, 5). Again, the ends of the edges are switched
to create the altered network shown in Figure 2.3(d). The algorithm continues in this fashion
for QE times, where Q is chosen large enough to ensure proper randomisation (Kavurucu (2015)
suggests a value of 100), and E is the number of edges in the original network.

(a) The original network to be randomised. (b) Switching edges (1, 2) and (4, 5).

(c) Switching edges (2, 3) and (3, 4) results in
a duplicate edge (2, 4) and a self-edge (3, 3).

(d) The new random network.

Figure 2.3: Generating a random network using the switching algorithm.

The matching algorithm

Suppose the matching algorithm has to be used to generate a random network with the same
degree distribution as the network shown in Figure 2.4(a). Algorithm 2 describes the steps

12

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Algorithm 1 The switching algorithm.

Input: Edge list EEE
Output: Random edge list R

1: function switchingAlgorithm(edge list EEE)
2: Q← 100
3: E ← number of edges in EEE
4: copy all edges from EEE to R
5: for all i ∈ 1 : QE do
6: (o1, d1)← first random edge
7: (o2, d2)← second random edge
8: if o1 6= d2 ∧ o2 6= d1 ∧R does not contain (o1, d2) or (o2, d1) then
9: switch ends to create (o1, d2) and (o2, d1)

10: end if
11: end for
12: return new random network R
13: end function

followed. Milo et al. (2014) explain that the matching algorithm starts by splitting all edges
into incoming and outgoing edge stubs, as shown in Figure 2.4(b) (line 2–7). This will ensure
that each node in the random network has the same degree as it had in the original network. In
line 5 the algorithm randomly matches incoming and outgoing stubs (shown in Figure 2.4(c))
to create a random network. Sometimes self-edges or duplicate edges can be created during this
step, and this is checked in line 7. The algorithm can either discard the entire network and
reassign edge stubs, or simply reassign the problematic edge stubs. The former solution can
result in unnecessary computations, therefore the latter method is preferred (line 11). After
all the self-edges and duplicate edges have been resolved, the random network shown in Figure
2.4(d) is created.

(a) The original network. (b) Assigning incoming and outgoing edge stubs to
each node.

(c) Matching incoming and outgoing stubs with each
other.

(d) The new random
network.

Figure 2.4: Generating a random network using the matching algorithm.

13

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Algorithm 2 The matching algorithm.

Input: Edge list EEE
Output: Random edge list R

1: function matching(edge list EEE)
2: list of nodes O ← all origin nodes
3: list of nodes D ← all destination nodes
4: for all origin nodes o ∈ O do
5: d← randomly chosen destination node from D
6: create possible edge ← (o, d)
7: if o 6= d ∧R does not contain (o, d) then
8: new edge is not duplicate edge or self-loop
9: add (o, d) to R

10: else
11: randomly choose new d
12: end if
13: end for
14: return new random network R
15: end function

2.2.2 Graph isomorphism

Motif discovery depends on the subgraph frequencies in the original and random networks. If
the subgraph frequencies are incorrect, then the wrong subgraphs will be identified as motifs.
But how can subgraph frequencies be incorrect? Consider subgraph A in Figure 2.5(a). It is
isomorphic (mathematically identical) to subgraph B in Figure 2.5(b), even though they appear
as two different subgraphs. These subgraphs are isomorphic because there exists a one-to-one
mapping of the nodes of subgraph A (NA) to the nodes in subgraph B (NB): NA → NB =
{(1 → 1), (2 → 2), (3 → 3), (4 → 4)}. Therefore both subgraphs have the same adjacency
matrix, shown in Figure 2.5(c).

(a) Subgraph A. (b) Subgraph B.

1 2 3 4
1 0 1 0 0
2 0 0 0 1
3 1 0 0 0
4 0 0 1 0

(c) Adjacency matrix of
subgraph A and B.

(d) Network in which sub-
graph A must be found.

Figure 2.5: Illustrating how isomorphic subgraphs influence subgraph frequencies.

Suppose the frequency of subgraph A has to be determined in the network shown in Figure
2.5(d). If you do not consider the isomorphic subgraph B, only one subgraph instance (2, 3, 6,
5) will be identified. But when the subgraph B is also searched for in the network, the subgraph
instance (1, 5, 4, 2) is also be identified, increasing the frequency of subgraph A to 2.

Fortin (1996) explains that there are two methods for determining whether two graphs are
isomorphic. The first is to directly find isomorphisms by matching nodes to each other, the
second is by using canonical labels. The canonical label of a graph is a string (or code) of
values describing the connectivity in the graph. The canonical representation is usually taken
as the concatenation of the rows or columns of a graph’s adjacency matrix. For example, by
concatenating the rows of the adjacency matrix in Figure 2.5(c), the canonical label ‘0 1 0 0 0

14

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

0 0 1 1 0 0 0 0 0 1 0’ can be generated. When two graphs have the same canonical label, they
are considered isomorphic.

Using canonical labeling is not always a fail-safe method of determining isomorphic sub-
graphs. Consider subgraph C in Figure 2.6(a) and subgraph D in Figure 2.6(c). These sub-
graphs are isomorphic because there exists a one-to-one mapping between the nodes of the two
subgraphs: NC → ND = {(1 → 3), (2 → 2), (3 → 4), (4 → 1)}. Due to the different labelling
of the nodes of each subgraph, the adjacency matrices differ, as shown in Figures 2.6(b) and
2.6(d). Therefore each subgraph will have a unique canonical label and will not be identified
as isomorphic subgraphs. To overcome this, Fortin (1996) suggests relabelling the nodes to
generate either the lexicographically smaller or larger adjacency matrices.

(a) Subgraph C.

1 2 3 4
1 0 1 0 0
2 0 0 0 1
3 1 1 0 0
4 1 0 1 0

(b) Adjacency matrix of
subgraph C.

(c) Subgraph D.

1 2 3 4
1 0 0 1 1
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0

(d) Adjacency matrix of
subgraph D.

Figure 2.6: Two isomorphic graphs and their adjacency matrices.

Lexicographical order can be compared to alphabetical order: it determines how strings
should be ranked according to some predefined order. To rank two strings, ABC and ABD,
lexicographical order can be used. The first character in the strings that differs is in position 3:
C in string 1 and D in string 2. Since C < D in the alphabet, string 1 is lexicographically smaller
than string 2, and the inverse is also true (string 2 is lexicographically larger than string 1).
Similarly canonical labels can be compared according to lexicographical order. When comparing
two canonical labels, ‘0 1 1 0’ and ‘0 1 1 1’, both labels have the same numbers in positions 1–3
(‘0 1 1’). The first number that differs between the two labels is in position 4 (label 1 has ‘0’
and label 2 has ‘1’ in this position). Since 0 < 1, label 1 is lexicographically smaller than label
2.

Motif discovery algorithms always consider subgraph isomorphism when determining sub-
graph frequencies, which are discussed in the next section.

2.2.3 Determining subgraph frequencies

According to Kavurucu (2015), determining subgraph frequencies requires solving the computa-
tionally complex graph isomorphism problem, which is discussed in the previous section. Other
concepts to consider when determining subgraph frequencies are frequency definitions and sco-
ring thresholds and metrics.

Frequency definitions

Frequencies of subgraphs can either be determined using estimation algorithms such as that of
Kashtan et al. (2004) and Slota and Madduri (2014), or by exact counting. Tran et al. (2015)
explain that exact counting is usually performed when looking for smaller subgraphs with six
nodes or less, while estimation is performed on larger subgraphs. This dissertation focuses on
the exact counting of motifs.

Determining statistically significant motifs is heavily dependent on the frequency of sub-
graphs, therefore Schreiber and Schwöbbermeyer (2005) defined three types of frequency:

1. F1, edges and nodes may be shared by different subgraph instances.

15

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

2. F2, only nodes may be shared between different subgraph instances.

3. F3, neither edges nor nodes may be shared by different subgraph instances.

The frequency definition depends on the algorithm and its application field. In some biologi-
cal networks, for example, F3 must be used because the edges represent an action that removes
a node from the network. However, most algorithms implement the F1 frequency definition.

Using the different frequency definitions can result in different frequencies of a particular
subgraph. Suppose the number of occurrences of the subgraph shown in Figure 2.7(a) must be
found. According to this definition, five subgraph instances are identified in Figure 2.7(b) ((1,
5, 4), (4, 9, 5), (5, 10, 9), (5, 10, 6) and (6, 7, 10)). When using F2 to determine subgraph
frequency, only node overlap is allowed and three subgraph instances can be identified ((1, 5,
4), (5, 10, 9), and (6, 7, 10)), as shown in Figure 2.7(c). Figure 2.7(d) shows the two instances
((1, 5, 4) and (6, 7, 10)) that can be identified when F3 is used. Notice that the term subgraph
refers to the configuration of edges that have to found in a network, and the subgraph instance
refers to the actual network nodes that have the same edge configuration.

(a) The subgraph to look
for.

(b) Using F1 to identify subgraph instances.

(c) Using F2 to identify subgraph instances. (d) Using F3 to identify subgraph instances.

Figure 2.7: Illustrating the effect that different frequency definitions have on frequency values.

After subgraph frequencies are determined in both the original and random networks, sta-
tistically significant motifs must be identified. For this purpose, different thresholds and metrics
have been developed, which are discussed next.

Thresholds and metrics

Different thresholds and metrics may result in identifying different sets of statistically significant
motifs, therefore using more than one method is desirable. In this way, the results can be
compared and a decision can be made over which set of motifs to choose. Thresholds are based
on the minimum number of occurrences of a motif (set by the user) for it to be considered
statistically significant, and metrics are standard measurements of significance.

16

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A frequency threshold requires that a motif appears at least f times in the original network
for it to be considered a motif. Usually, f is the mean frequency of the subgraph in the random
networks, f̄rand. The uniqueness threshold requires that a subgraph has at least u occurrences
more in the original network than on average in the random network ensemble to be considered
a motif.

Wong et al. (2012) list a number of metrics to determine statistical significance, such as the
z -score, significance profiles, abundance and concentration. Threshold and metric calculations
make use of a set III, which contains all possible subgraphs of a particular size.

The z -score is calculated as

zi =
fi,in − f̄i,rand√

σ2i,rand

, (2.3)

where zi is the z -score for subgraph i ∈ III, fi,in is the number of subgraph i ∈ III instances
in the original network, f̄i,rand is the mean frequency of subgraph i ∈ III instances in the set of

random networks, and
√
σ2i,rand is the standard deviation of subgraph i ∈ III instances in the

random networks (Milo et al., 2002; Tran et al., 2015). Milo et al. (2002) explain that subgraphs
in large networks will have higher z -scores, since the frequencies of subgraphs will be higher in
these networks. They suggest that a z -score greater than 2.0 indicates a statistically significant
motif, however z -scores can be normalised to 1 for easier comparison.

Milo et al. (2002) describe the significance profile as the relative significance of motifs, since
it is based on normalised z -scores. This is in contrast to the absolute significance calculated by
the z -scores. The significant profile for a subgraph is calculated to be

spi =
zi√
n∑

i=1
z2i

, (2.4)

where spi is the significance profile value for subgraph i ∈ III, zi is the z -score for subgraph
i ∈ III, and n is the number of subgraphs in the set III. Subgraphs that have an spi value greater
than 0 is considered to be a statistically significant motif.

(Kashtan et al., 2004) mentioned that the abundance (4i) of subgraph i ∈ III is similar to
the z -score, and is calculated as follows:

4i =
fi,in − f̄rand

fin + f̄i,rand + ε
, (2.5)

where ε is a small positive integer ensuring that the abundance value does not approach
infinity (Wong et al., 2012). Abundance values range from -1 to 1, where the former indicates
that the subgraph is under-represented, and the latter indicates that the subgraph is over-
represented and therefore statistically significant.

The concentration (Ci) of a subgraph i ∈ III compares the frequency of a subgraph to the
frequencies of other subgraphs of the same size. The concentration of n-node subgraph of type
i is calculated as

Ci =
Ni
n∑

i=1
Ni

, (2.6)

where Ni is the number of occurrences of subgraph i ∈ III. Therefore the concentration of
subgraphs of a particular size is the ratio between the number of occurrences of that subgraph
and the total number of subgraphs of the same size in the original network (Kashtan et al.,
2004).

17

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

This section dealt with core concepts for motif discovery, namely the generation of random
networks, subgraph isomorphism, and methods of identifying statistically significant motifs.
In the next section, the application of these concepts are explained by two motif discovery
algorithms.

2.3 Motif discovery algorithms

Two algorithms are considered for implementation in this study, namely the G-Tries algorithm
(Ribeiro and Silva, 2010) and the IMSAGS algorithm (Houbraken et al., 2013).

2.3.1 The G-Tries algorithm

This section explains key aspects of the G-Tries algorithm, which is developed in the PhD thesis
of Ribeiro (2011) and published by Ribeiro and Silva (2010).

The g-tries (Graph Retrieval) data structure is similar to a prefix tree, which exploits common
substructures. Figure 2.8 shows how three words (ball, bale, and bake) can be represented as a
prefix tree. All descendants of a node have the same prefix, and each path down the prefix tree
represents a unique word. This makes it an efficient data structure, since common prefixes are
only stored once.

This prefix tree can be used to efficiently search for these three words in a paragraph. To
identify all occurrences of these words, all words starting with a b are identified. The first node
of the tree is matched to the first letter in the identified words, b. Using the identified words,
those that have an a as the second letter are identified, and the second tree node is matched to
these letters. These words are all possible matches to the words ball, bale, and bake. When there
are no more descendant nodes and letters to match, a word in the prefix tree has been found.

Figure 2.8: A prefix tree containing three words with similar substructures.

Similar to words with common prefixes, graphs can share common subgraphs, hence the
development of the G-Tries algorithm. When referring to the algorithm, the term G-Tries is
used, and when referring to the data structure(s), the term g-trie(s) is used. Each g-trie node
represents a subgraph node, which is characterised by its ancestor nodes. The six undirected
subgraphs (with their adjacency matrices) shown in Figure 2.9(a) can be represented as the
g-trie shown in Figure 2.9(b). With each new g-trie node added to the g-trie, another graph
node is added to the subgraph. The added node is shown as a black node, while the ancestors
of that node are shown as white nodes. With each new graph node added, its connections to
other nodes are known, and its partial adjacency matrix can therefore be determined (shown
to the right of each g-trie node). Note that while the following examples explain G-Tries with
undirected subgraphs, the same principles can be applied to directed subgraphs, which are used
in this dissertation.

18

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(a) Six undirected subgraphs with their
corresponding adjacency matrices.

(b) The g-trie data structure representing the six undirected sub-
graphs.

Figure 2.9: A g-trie data structure representing six undirected subgraphs.

In the next subsection a custom canonical form to deal with isomorphic graphs is explained.
Then, the iterative addition of subgraphs into a g-trie is discussed, after which the subgraph
census using a constructed g-trie is explained.

Custom canonical labelling of graphs

Isomorphic graphs can produce different adjacency matrices, even though they essentially re-
present the same graph. G-Tries creates a g-trie from a graph’s adjacency matrix, therefore
isomorphic graphs should produce one single path down the same g-trie. However, some iso-
morphic graphs may have different adjacency matrices, and therefore result in two paths down
a g-trie, making the g-trie an inefficient data structure. Therefore G-Tries implements cus-
tom canonical labels to ensure that isomorphic graphs will always be represented by the same
adjacency matrix.

When comparing the g-trie size for a lexicographically larger and smaller canonical label,
the former creates a smaller g-trie than the latter. The smaller g-trie is preferred, but these
canonical labels do not ensure that each new subgraph node added to the g-trie has as many
as possible edges to its ancestor nodes. This is a requirement set by Ribeiro (2011), and to
overcome this, the custom canonical form is implemented.

The steps to create a custom canonical label of a graph is depicted in Algorithm 3. The
algorithm starts in line 2 by getting any canonical label of the input graph. The popular nauty
algorithm, which is the fastest known algorithm for detecting isomorphic graphs (McKay, 1981),
is used in this instance. Iterating through all nodes in the graph (lines 3–6), tables containing
node degrees are created. The core steps of the algorithm are depicted in lines 7–20. The
algorithm iteratively searches for the node with the least possible edges (lines 10–14), ensuring
that this node is not an articulation point that splits the graph in two (line 8). The chosen
node, umin is then labeled in line 17. Before proceeding to the next iteration, tables are updated
in lines 18 and 19. When the algorithm has labeled all nodes in the graph, it returns the new
custom canonical label of the graph, c (line 21).

Constructing a g-trie

Algorithm 4 depicts the steps to construct a g-trie, t, from a given subgraph, s. The algorithm
starts by determining the custom canonical adjacency matrix of the subgraph by calling the

19

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Algorithm 3 Creating a custom canonical label for a graph.

Input: Graph, g
Output: Canonical string of g, c

1: function getCanon(graph g)
2: c← nauty(g)
3: for all nodes i ∈ V (g) do
4: currentDegree[i]← total number edges connected to i
5: globalDegree[i]← previousDegree[i]← currentDegree[i]
6: end for
7: for all position p ∈ |VVV | : 1 do
8: if node VVV [p] is not labelled and not an articulation point then
9: umin ← VVV [p]

10: else if node V(g)[p] has minimum currentDegree then
11: umin ← VVV [p]
12: else if there exists a tie then
13: umin ←node with minimum previousDegree
14: else if a new tie then
15: umin ←node with minimum globalDegree
16: end if
17: c[umin]← p
18: previousDegree[]← currentDegree[]
19: remove edges of umin from currentDegree[]
20: end for
21: return canonical label c
22: end function

getCanon function (line 2). The function insertRecursive then recursively traverses the
g-trie, inserting new children nodes when necessary.

Suppose subgraph 1 in Figure 2.9(a) must be added to an empty g-trie. Figure 2.10(a) shows
the completed g-trie representing only this subgraph.

(a) Adding subgraph 1
to an empty g-trie.

(b) Adding subgraph 2 to the
existing g-trie.

(c) Adding subgraph 3 to the existing g-trie.

Figure 2.10: Adding subgraphs 1–3 (Figure 2.9(a)) to an initially empty g-trie.

The first subgraph node of subgraph 1 is added to the g-trie (k = 0 in Figure 2.10(a)).
Its partial adjacency matrix is the first k + 1 values in the kth row of the adjacency matrix.
Subgraph 1 has ‘0’ in the [0, 0] position, which is added to the first g-trie node. Note that the

20

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Algorithm 4 Inserting a subgraph into a g-trie.

Input: Subgraph s, g-trie t
Output: g-trie t

1: procedure insertGtrie(subgraph s, g-trie t)
2: m← getCanon(g)
3: insertRecursive(m, t, 0)
4: end procedure
5: function insertRecursive(matrix m, g-trie t, index k)
6: if k = number of rows of m then
7: c.isGraph ← true
8: else
9: for all children c of t do

10: if (c.out = m[0 : k + 1, k]) and (c.in = m[k, 0 : k + 1]) then
11: insertRecursive(m, c, k + 1)
12: return t
13: else
14: nc← new g-trie node
15: nc.in ← m[k, 0 : k + 1]
16: nc.out ← m[0 : k + 1, k]
17: nc.isGraph ← false
18: t.insertChild(nc)
19: insertRecursive(m, nc, k + 1)
20: end if
21: end for
22: end if
23: end function

indices in the adjacency matrices start at 0, while the nodes are numbered from 1.
The second, third, and fourth subgraph nodes are added recursively in lines 14–19 using

k = 1, k = 2, and k = 3, resulting in the complete g-trie shown in Figure 2.10(a). The partial
adjacency matrices of each new g-trie node are calculated as the first k + 1 values in the kth

row of subgraph 1’s adjacency matrix, which are determined to be ‘1 0’, ‘1 1 0’, and ‘1 1 1
0’. The subgraph is now complete, and the last g-trie node’s isGraph value is set to true in
line 7. isGraph is a boolean variable indicating whether this g-trie node represents a completed
subgraph.

When adding subgraph 2 in Figure 2.9(a) to the existing g-trie in Figure 2.10(a), the algo-
rithm starts again with k = 0. The adjacency matrices of subgraph 1 and subgraph 2 have the
same value in position [0, 0] = 0, therefore line 10 will return a true value. The in and out
values of each graph node corresponds to the first k + 1 values in the kth row (in) and the first
k + 1 values in the kth column of m (out), where m is the adjacency matrix for this subgraph.
For undirected subgraphs, the adjacency matrix is symmetrical, resulting in the same values for
in and out. For directed subgraphs, these values differ. No new g-trie nodes are added, and k
is incremented by one. The next partial adjacency matrix corresponds to the position [0:1, 1]
when k = 1, and again, subgraph 1 and subgraph 2 have the same values in this position (‘1 0’).
k is incremented, and the algorithm determines that the adjacency matrices of subgraph 1 and
subgraph 2 have the same values in position [0:2, 2]. Again, the algorithm continues without
adding a g-trie node.

When k = 3, line 10 will return a false value, because c.in (and c.out) = ‘1 1 1 0’, and [0:3,
3] = ‘1 0 0 0’. Therefore a new g-trie node is added for the latter partial adjacency matrix. The
g-trie in Figure 2.10(b) now contains both subgraph 1 and 2. In a similar way, subgraph 3 can
be added to this g-trie, resulting in the altered g-trie shown in Figure 2.10(c). When k = 2, a

21

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

new g-trie node is created, creating the third path down the g-trie.

Using the constructed g-trie to count all subgraph instances in a network

Algorithm 5 shows the steps followed to find all subgraph instances in a g-trie in a graph.
The algorithm starts in line 3 by calling the recursive procedure match for all children of a

g-trie node. At this point, VVV used is an empty set, denoted by ∅. VVV used is a collection of nodes
that is a partial match of graph nodes to a g-trie path. The procedure match then creates a set
of nodes (VVV) that matches the current g-trie node (line 7). In lines 8–15 the algorithm traverses
the set VVV and recursively tries to expand it through all possible g-trie paths (lines 12–13). If a
full subgraph can be matched to a g-trie node, then line 9 returns a true value and the algorithm
has found a complete instance of the subgraph.

The matchingVertices function (line 17) generates a set of matching nodes. A set of
candidate nodes (VVV cand) is created in line 19, and all graph nodes are viable candidates if the
current node is a root child (line 18). If the current node is not a root child, the selection is made
in line 21 from the set of nodes connected to the new node (that has already been matched).
From this set, the node with the smallest neighbourhood is selected in line 22, therefore reducing
the possible candidates to the unused neighbours (line 23).

The set of candidates is then traversed in lines 26–30 to check whether the candidate respects
all connections to ancestors (line 27). If it does, the node is added to the set of matching nodes,
called V erticesV erticesV ertices.

After all matches have been found, the algorithm terminates and returns the set of subgraph
instances, V erticesV erticesV ertices (line 31).

Symmetry breaking

Katebi et al. (2012) define a symmetry as a permutation of the nodes of the graph that preserves
the edge relations. A symmetry is also called an automorphism of the graph, and the group
of symmetries of a graph is called the automorphism group or the symmetry group, denoted by
Aut(G). If a symmetry in an automorphism group is found, it means that all other symmetries
in that group has also been found, therefore the search can be terminated.

Algorithm 6 explains the steps G-Tries follows to break symmetries in subgraphs. It starts
in line 2 with an empty set of symmetry breaking conditions, and the automorphisms of the
subgraph are calculated in line 3. Lines 4 – 10 iteratively adds constraints to the set CCC. In
line 5, it finds the minimum index m corresponding to a node that has at least one equivalent
node. The condition (that the node in position m should have an index lower than every other
equivalent position) is added to CCC in line 7. Therefore m is fixed in its position. Line 9 removes
automorphisms from a that do not respect the newly added condition. When only the identity
automorphism is left in a, the set of symmetry breaking conditions is returned in line 11

As G-Tries matches g-tries to network nodes in order to find subgraph instances, it always
ensures that the symmetry breaking conditions are adhered to. Therefore the subgraph instances
found by G-Tries do not contain any symmetric subgraphs.

G-Tries is able to generate random networks with prescribed degree sequences, and use z-
scores to determine which subgraphs are statistically significant motifs. This intelligence does
not form part of the ISMAGS algorithm, which is described in the next section.

2.3.2 The ISMAGS algorithm

The Index-Based Subgraph Matching Algorithm with General Symmetries (ISMAGS) is a gene-
ral subgraph matching algorithm developed by Houbraken et al. (2013). It only determines the
frequency of a subgraph and does not determine whether it is a motif or not. The Java source
code is freely available on Maarten Houbraken’s GitHub account (Houbraken, 2015). It can be

22

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Algorithm 5 Performing subgraph census using g-tries.

Input: Graph g, g-trie t
Output: all occurrences of subgraphs in t

1: procedure gtrieMatch(graph g, gtrie t)
2: for all children c of t.root do
3: match(c, ∅)
4: end for
5: end procedure
6: procedure match(gtrie t, vertices Vused)
7: V ← matchingVertices(t, VVV used)
8: for all node v of VVV do
9: if T.isGraph then

10: foundMatch(VVV used∪{v})
11: end if
12: for all children c of t do
13: match(c, VVV used∪{v})
14: end for
15: end for
16: end procedure
17: function matchingVertices(t, VVV used)
18: if VVV used = ∅ then
19: VVV cand ← VVV (G)
20: else
21: VVV conn ← {v : v ∈ N(VVV used)})
22: m← m ∈ VVV conn : ∀v ∈ VVV , |N(m)| ≤ |N(v)|
23: VVV cand ← {v ∈ N(m): v 6∈ VVV used})
24: end if
25: V erticesV erticesV ertices← ∅
26: for all v ∈ VVV cand do
27: if ∀i ∈ [1 . . . |VVV used] : T.in[i]← Gadj[VVV used[i]][v] ∧ T.out[i]← Gadj[v][VVV used[i]] then
28: V erticesV erticesV ertices← V erticesV erticesV ertices ∪ {v}
29: end if
30: end for
31: return V erticesV erticesV ertices
32: end function

used in isolation to perform subgraph enumeration, or it can be used in conjunction with other
algorithms to perform motif discovery. It was developed to be used in biological networks that
have multiple edge types, such as the physical, genetic, and signalling interactions between ki-
nases and phosphatases in yeast, studied by Breitkreutz et al. (2010). ISMAGS can also identify
subgraphs with directed edges, but it was not designed to be able to identify subgraphs with
bi-directional edges. A workaround to this shortcoming is available, which is explained next.

Motif specifications

A concept called motif specifications is used in ISMAGS to describe a subgraph, instead of the
traditional method of using adjacency matrices (this term is somewhat misleading, since this
algorithm only counts and identifies subgraph instances, and not statistically significant motifs).

For example, subgraph node 1 in Figure 2.11(a) has an outgoing edge of type C, but subgraph
node 3 has an outgoing edge of type c. This is because an edge is always referred to as outgoing
from a node, even if the direction of the edge is actually towards the node. If the edge direction

23

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Algorithm 6 Determining symmetry breaking conditions for a subgraph.

Input: Subgraph s
Output: symmetry breaking conditions CCC

1: function gtrieConditions(subgraph s)
2: conditions CCC ← ∅
3: automorphisms a← setAutomorphisms(s)
4: while —a— ≥ 1 do
5: m← minimum v : ∃map ∈ a,map[v] 6= v
6: for all v 6= m : ∃map ∈ a,map[m] = v do
7: add m ≤ v to c
8: end for
9: a← {map ∈ a : map[m] = m}

10: end while
11: return CCC
12: end function

is towards the node in question, its outgoing edge is referred to as the lowercase letter of the
edge type.

To handle subgraphs with bi-directional edges, these have to be defined as a new edge type,
such as edge type D in Figure 2.11(a). Undirected and bi-directional edges are always referred
to by using their uppercase letters. Therefore both subgraph node 3 and 4 have an outgoing
edge of type A, and subgraph nodes 2 and 4 have an outgoing edge of type D.

(a) A subgraph with four edge
types.

1 2 3 4
1 b C 0
2 0 D
3 A
4

(b) Determining the mo-
tif specification.

Figure 2.11: Determining the motif specification for a 4-node subgraph with different edge types.

To determine the motif specification, an empty matrix with the same number of columns and
rows as the subgraph size is created. Only the upper half of the matrix will be filled. Since there
are no self-edges allowed, all positions [i, j] where i = j are empty. Note that the indices of the
motif specification matrix are labelled according to the node labels, which start at 1. Position
[1, 2] represents the edge type from node 1 to 2. It is an edge of type B, but the direction is
towards node 1, therefore it is denoted with a lowercase b. Position [1, 3] is filled with a C, since
there is an edge of type C from node 1 to node 3. There are no edges between nodes 1 and 4, nor
between 2 and 3, therefore positions [1, 4] and [2, 3] are filled with zeros. Position [2, 4] is filled
with a D and [3, 4] with an A. The motif specification is then determined by concatenating all
edge types in the matrix, starting with all values in the first column, then all the values in the
second column, and so forth. Thus the motif specification for the subgraph in Figure 2.11(a) is
‘bC00DA’. Bigger subgraphs will have longer motif specifications.

Note that the presence of a ‘0’ in the motif specification actually denotes what Houbraken
et al. (2013) refer to as a “don’t care link”. This means that there may or may not be an
edge between these two nodes; its presence or absence is unimportant. This property of the
algorithm was especially designed with biological networks in mind. This has implications for

24

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

this dissertation, since a ‘0’ edge must indicate the absence of an edge.
Suppose a 3-node subgraph has two edge types: A denotes a one-directional edge and X

denotes a bi-directional edge. The motif specification AA0 should only represent the subgraph
shown in Figure 2.12(a), which has two type A edges from node 1 to 2 and 3, and no edge
between node 2 and 3. However, if a ‘0’ in the motif specification represents a “don’t care link”,
AA0 can also refer to the subgraphs shown in Figures 2.12(b)–2.12(d). Therefore the subgraph
count for subgraph AA0 will be inflated, as it includes the subgraphs in Figures 2.12(b)–2.12(d).
For purposes of this dissertation, the subgraphs with edges between node 2 and 3 will be removed
from the results. This is done using Algorithm 14, which is explained in detail in Chapter 3.

(a) AA0. (b) AAA. (c) AAa. (d) AAX.

Figure 2.12: ISMAGS considers Figures 2.12(b)–2.12(d) as AA0 subgraphs, but they are actually
AAA, AAa, and AAX subgraphs.

Symmetry detection

Before ISMAGS determines subgraph counts, it identifies automorphisms of the subgraph. Au-
tomorphisms can be determined by looking for symmetric nodes in the subgraph, which have the
same number and type of edge. Consider the following example explaining symmetry detection.

Subgraph 1 in Figure 2.13(a) has four nodes and two edge types. Node 1 and 3 both have
an outgoing edge of type X and a. Similarly, node 2 and 4 have the same number and type
of outgoing edges (X and A). Therefore node 1 and 3 are symmetric to each other, as are
node 2 and 4. Since subgraph 2 in Figure 2.13(b) has the same node and edge relations, it is an
automorphism of subgraph 1 in Figure 2.13(a). If ISMAGS finds subgraph 1 in a larger network,
would be unnecessary for it to find subgraph 2, since these are automorphism of each other.

(a) Subgraph 1. (b) Subgraph 2.

Figure 2.13: Two automorphisms of the same subgraph.

The nodes of subgraph 1 and 2 are permutations of each other, and the subgraph nodes can
be mapped to each other as shown in Figure 2.14(a). This mapping can be represented as a
partition, shown in Figure 2.14(b). This notation maps nodes in the top row of the partition
to nodes in the bottom row of the partition. Since nodes 1 and 3 and 2 and 4 are symmetric
to each other, each of these pairs are placed in their own cell, denoted by |, as shown in Figure
2.14(c)

25

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

1→ 3
2→ 4
3→ 1
4→ 2

(a) A string and one of
its permutations.

{
1 2 3 4
3 4 1 2

}
(b) Representing the
string and its permu-
tation in a partition.

{
1 2 3 4
3 4 1 2

}
(c) Splitting the per-
mutation into cells
to indicate symmetric
numbers.

Figure 2.14: A permutation represented with a partition.

Starting with the first number in the top row of the partition, 1 is symmetric to 3. But 3
(the third number in the top row of the partition) is symmetric to 1. Therefore the symmetry
has come ‘full circle’, and a circle is exactly what is used to represent it. This is called an
orbit, and is shown in Figure 2.15(a). This orbit maps 1 to 3, and 3 to 1, and is written as
{13}. The second orbit, shown in Figure 2.15(b) maps 2 to 4, and 4 to 2. This is written as
{24}. Combining these two orbits results in an orbit partition containing two orbit partition
cells, O = {13}{24}.

(a) The first orbit. (b) The second or-
bit.

Figure 2.15: Representing the symmetric numbers as orbits.

These partitions and orbits are used by Houbraken et al. (2013) to identify all symmetries of
a subgraph. Whenever a permutation of subgraph nodes is found, and all nodes are symmetric
to each other, it means that an automorphism is found. To explain symmetry detection and
breaking, the same example used by Houbraken et al. (2013) shown in Figure 2.16, is used to
explain these concepts. Symmetry breaking and detection occur simultaneously in ISMAGS,
but for illustration purposes are explained separately.

Figure 2.16: The subgraph for which symmetric nodes must be determined.

On inspection of this subgraph, it can be determined that all nodes are symmetric to each
other, because they all have two outgoing edges of type Z. Algorithm 7 is used to analyse a
subgraph for symmetric nodes, and it calls Algorithm 8 to determine which nodes are symmetric.
This algorithm iteratively tries to find nodes in the top of the partition that are symmetrical to
nodes in the bottom partition.

Line 8 in Algorithm 9 creates the initial orbit partition for the subgraph by grouping all nodes
of the subgraph into one cell, resulting in the partition shown in Figure 2.17. This partition is
called an ordered partition pair (or OPP), denoted by Π, containing the top part of the partition,
πt, and the bottom part of the partition, πb.

26

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Algorithm 7 Analysing a subgraph.

Input: Subgraph s
Output: List of constraints c

1: function analyseSubgraph(subgraph s)
2: empty list of permutations p
3: empty list of constraints c
4: empty list of orbits o
5: for all subgraph node n in s do
6: add set {n} to o
7: end for
8: Partition π ← create initial partition of subgraph s
9: OPP opp← create initial OPP from π

10: processOPP(opp, p, c, o)
11: return c
12: end function

Π =

{
πt
πb

}
=

{
1234
1234

}

Figure 2.17: The initial orbit partition pair.

The ordered partition pair, and empty sets of permutations p, constraints c, and orbits o
are passed to Algorithm 8. The algorithm starts in line 2 by checking whether all symmetric
nodes have been identified. Since the ordered partition pair in Figure 2.17 does not contain four
cells, all symmetric nodes have not been identified, and the algorithm continues in line 6. It
identifies the node ni in πt with the smallest node ID, which is node 1 in this example. The cell
containing ni is assigned to the variable T , and the cell in the bottom partition corresponding
to T , is assigned to B (lines 7–8). At this moment, both T and B are equal to {1234}. All
nodes in B are ordered in ascending order in line 9.

Lines 10–14 iteratively maps nodes in T to all possible nodes in B. Starting with the node
in B with the smallest node ID, 1 is coupled to 1. This creates a new cell in the partition, as
shown in Figure 2.18(a).

{
πt
πb

}
=

{
1 2 3 4
1 2 3 4

}
(a) The first coupling operation re-
sults in the partition being split
into two cells.

{
πt
πb

}
=

{
1 2 3 4
1 2 3 4

}
(b) The partition now contains
three cells after performing refine-
ment.

Figure 2.18: Coupling node 1 in πt to node 1 in πb and performing refinement on the ordered
partition pair.

Line 12 refines the ordered partition pair by ensuring that all nodes in the second cell in T
(2, 3, 4) have incoming edges from the node in the first cell in T (1). Refinement is necessary
to ensure that all edge relations and node degrees are preserved, as explained by Katebi et al.
(2012). Nodes 2 and 3 have an edge from node 1, and these nodes are placed in the second cell,
as shown in Figure 2.18(b). Since node 4 does not have an incoming edge from node 1, it is
placed in its own cell.

The processOPP algorithm is then called recursively until all symmetric nodes have been
identified.

27

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Algorithm 8 Processing the ordered partition pair.

Input: Ordered partition pair opp, permutations p, constraints c, orbit o
1: procedure processOPP(ordered partition pair opp, permutations p, constraints c, orbit
o)

2: if all nodes are mapped then
3: add current mapping to p
4: update o
5: else
6: ni ← subgraph node with lowest ID among unmapped nodes
7: T ← cell in top partition which contains ni
8: B ← cell in bottom partition corresponding to T
9: Sort B by increasing ID: [I1, I2, I3, . . . , IB]

10: for all j = 1 . . . b do
11: couple ni to Ij
12: oppnew ← refine opp
13: processOPP(oppnew, p, c, o)
14: end for
15: if opp maps nk ← nk∀k ≤ i then
16: Ci ← orbit of ni
17: for all ni ∈ Ci, i 6= t do
18: add IDi ≤ IDt to c
19: end for
20: end if
21: end if
22: end procedure

Symmetry breaking

The set of permutations generated in the symmetry detection phase can be applied to a valid
subgraph instance to identify another subgraph instance that is symmetric to it. To avoid
exporting these symmetric instances, the symmetry of a subgraph instance must be broken,
hence the term symmetry breaking. By breaking symmetries, ISMAGS returns the minimal set
of subgraph instances, since a subgraph instance will only be exported once and its symmetric
subgraphs will not be exported.

For subgraph ‘XX00XX ’ in Figure 2.16, many permutations of the subgraph nodes exist,
collectively referred to as G. A stabiliser of node 1 is a permutation that maps node 1 to
itself, for example, P = (1)(2)(34). But there exists more permutations that maps node 1 to
itself, and the collection of these stabilisers is called the stabiliser chain of node 1, written as
G1 = {(1)(2)(3)(4), (1)(23)(4), (1)(24)(3), (1)(234), (1)(2)(34)}.

To get the stabiliser chain for node 2, all permutations in G1 that map node 2 to itself are
extracted, therefore G2 = {(1)(2)(3)(4), (1)(2)(34)}. Therefore G2 is a subset of G1 and contains
permutations that map node 1 and 2 to itself. Again, the next stabiliser chain, G3, is determined
to be the permutation(s) in G2 that maps node 3 to itself, therefore G3 = {(1)(2)(3)(4)}.

Based on the permutations in G1, node 2 can be mapped to itself, to node 3, and to node
4. These are called the coset representatives of node 2, denoted by C2 = {2, 3, 4}. The coset
representatives are used to generate the symmetry breaking constraints for each node. The
symmetry breaking constraint for subgraph node 2 uses the nodes in its coset representative,
C2 = {2, 3}. The constraint forces the ID of the graph node mapped to subgraph node 3 to
be higher that the ID of the graph node mapped to subgraph node 2. Determining symmetry
breaking constraints is done in Algorithm 8 in lines 15–20. The mapping of graph nodes to
subgraph nodes is explained in detail in the next section.

28

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Algorithm 9 Initialising ISMAGS.

Input: Graph g, subgraph s
1: constraints c← analyseSubgraph(sg)
2: for all subgraph node n in s do
3: for all edge e leaving/arriving in n do
4: t← type of edge
5: S ← list of graph nodes in g that have edge type t
6: SnSnSn ← S +SnSnSn
7: end for
8: end for
9: subgraph node n← subgraph node with smallest start list S

10: node list CnCnCn ← calculate candidate node list of n
11: mapNodes(n,CnCnCn, c)

Subgraph enumeration

The searching of subgraph instances is explained by means of the example found in Demeyer
et al. (2013). Suppose the subgraph in Figure 2.19(a) must be searched for in the network shown
in Figure 2.19(b). The subgraph contains three different edge types, A, B, and C.

(a) The subgraph to look for. (b) The network in which the subgraph
must be found.

Figure 2.19: The subgraph and network used to explain subgraph enumeration ISMAGS algo-
rithm.

Finding subgraph instances is based on a mapping principle. Network node x can be mapped
to subgraph node y if it has the same type of incoming and outgoing edges. Once all subgraph
nodes have a network node mapped to it, a subgraph instance is complete and can be exported.
The algorithm then continues to find the remaining subgraph instances.

ISMAGS is initialised in Algorithm 9. It starts by determining a set of constraints based on
the symmetric properties of the subgraph to be found. This part of the algorithm sets it apart
from its predecessor, the Index-Based Subgraph Matching Algorithm (ISMA) (Demeyer et al.,
2013). Generating these constraints has been discussed in the previous sections.

In lines 2–8 it determines, for each subgraph node, all network nodes that have the same
type of outgoing edges. Starting with subgraph node 1 and edge A, network nodes 1, 2, and 5
are identified as having A as an outgoing edge. Therefore these nodes are added to the start set
of subgraph node 1, S1S1S1. Subgraph node 1 has another edge of type B, so again it is determined
which network nodes have this as an outgoing edge. Therefore network nodes 1, 2, 4, and 5
are added to S1S1S1. This results in duplicate network nodes in S1S1S1, which will be extracted in the
next part of the algorithm to start mapping network nodes to subgraph nodes. The algorithm
continues with these steps until all start sets have been determined, resulting in the start sets
shown in Table 2.1.

The subgraph node with the smallest start set, determined by its set cardinality, (in this
example, S1S1S1) is selected (line 9). In line 10, the candidate list for subgraph node is calculated

29

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 2.1: Network nodes with the same outgoing edges as subgraph nodes.

Subgraph node Symbol Start set Set cardinality

1 S1S1S1 {1, 2, 5, 1, 2, 4, 5} 7
2 S2S2S2 {1, 5, 6, 2, 3, 4, 5, 6} 8
3 S3S3S3 {2, 3, 4, 2, 3, 4, 5, 6} 8

Algorithm 10 Mapping subgraph nodes to network nodes.

Input: Subgraph node n, candidate node list CnCnCn, constraints c
1: procedure mapNodes(subgraph node n, candidate node list CnCnCn, constraints c)
2: for all Node u in CnCnCn do
3: map u to n
4: if subgraph instance complete then
5: export instance
6: else
7: for all Edge e arriving/leaving n do
8: t← type of e
9: q ← origin/destination of e

10: ne ← neighbours of n by type t
11: addNeighbourList(CnCnCn[q], ne)
12: end for
13: next subgraph node to map nn ← determineNextSubgraphNode(CnCnCn, c)
14: mapNodes(nn,CnCnCn, c)
15: end if
16: unmap u from n
17: end for
18: end procedure

to be all duplicate nodes in S1S1S1, resulting in C1C1C1 = {1, 2, 5}. All network nodes in the candidate
set of a subgraph node can be mapped to that subgraph node because it has the same type of
outgoing edges. All candidate sets can be seen in Table 2.2.

Table 2.2: Candidate network nodes that can be mapped to subgraph nodes.

Subgraph node Symbol Candidate set Set cardinality

1 C1C1C1 {1, 2, 5} 3
2 C2C2C2 {5, 6} 2
3 C3C3C3 {2, 3, 4} 3

In line 11, the subgraph node (1), candidate set (C1C1C1), and set of constraints for this subgraph
node are passed to a function called mapNodes. This function is detailed in Algorithm 10.

Algorithm 10 starts by comparing the candidate list to the constraints of that subgraph
node. From this, a new candidate set is determined, which lists all network nodes that can be
mapped to this subgraph node, while complying with the symmetry constraints of the subgraph
node.

Suppose the new candidate set for subgraph node 1 remains unchanged after considering
the constraints. The first network node in this set (1) is mapped to subgraph node 1 in line 3,
resulting in the partially mapped subgraph instance shown in Figure 2.20(a). Subgraph nodes
are labelled on nodes, with mapped network nodes shown on the outside of the subgraph.

All possible neighbours of network node 1 must then be determined (lines 7–12). The possible

30

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(a) Mapping the first net-
work node to a subgraph
node.

(b) Mapping the second net-
work node to a subgraph
node.

(c) Mapping the third network
node to a subgraph node. The
subgraph instance is now com-
plete and can be exported.

Figure 2.20: Mapping network nodes iteratively to subgraph nodes to determine the first sub-
graph instance.

neighbouring nodes are those that are connected to network node 1 with the same edge types
that are found between subgraph node 1 and its neighbours (therefore, edges A and B).

For each edge connected to subgraph node 1, its edge type (A and B) is determined and is
assigned to a new variable, t (line 8). The subgraph node connected to subgraph node 1 via
this edge type is assigned to a variable q in line 9. In the network, all neighbours of subgraph
node 1 connected by edge type t are searched for. So, for edge type A, the neighbouring set is
N1,AN1,AN1,A = {5}. The neighbouring set for edge type B is N1,BN1,BN1,B = {4}.

All possible neighbours for the already mapped network node is determined, and the next
node to map is determined from these node in line 13. Suppose this is chosen to be subgraph
node 2. Therefore network node 5 is mapped to subgraph node 2 resulting in the incomplete
subgraph instance shown in Figure 2.20(b). Lines 7 - 12 are repeated for subgraph node 2, and
the completed subgraph instance shown in Figure 2.20(c) is identified as a result. The subgraph
instance is exported as a list of network node IDs: (1, 5, 4). The algorithm continues in this
fashion until all subgraph instances have been identified.

2.4 Conclusion

Many factors have to be considered when performing motif discovery, such as how to generate
random networks, and which motif discovery algorithm to use. The latter of these considerations
is discussed in the next chapter by comparing the performance of G-Tries and ISMAGS on a
number of small complex networks.

31

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 3

Identifying a suitable motif discovery
algorithm

Since computational complexity is an issue in motif discovery algorithms, the two chosen motif
discovery algorithms are tested on networks that are smaller than the proposed freight complex
network. The Barabási-Albert algorithm by Barabási and Albert (1999) is used to generate
sample random networks that follow a power law distribution. The sample random networks
are generated in R (R Development Core Team, 2008) using the barabasi.game function of the
igraph package, which was developed by Csardi and Nepusz (2006).

Four network sizes, relative to the size of the proposed freight complex network, are used.
The sizes range from 15% to 60% relative to the size of the freight network, which has 2,594
nodes. Therefore the size of the first network is 15% × 2, 594 = 390; the size of the second
network is 30% × 2, 594 = 779; the size of the third network is 45% × 2, 594 = 1, 168; and the
size of the last network is 60%× 2, 594 = 1, 557. For each network size, 10 random networks are
generated, resulting in 40 sample random networks.

For each network, each algorithm, and each subgraph size, a distribution of memory, run
time, and the number of subgraphs identified are obtained. The experiments are performed on
a Dell PowerEdge R910 with 4x Intel Xeon E7540 Processors (2.00 GHz) and 128 GB Memory
(8 × 16GB) running Linux Ubuntu version 14.04.3 LTS (Long term support) operating system.
All results are shown as a panel plot, each panel representing the results for the subgraphs
of that particular size. The first panel shows the results when the algorithms searched for 3-
node subgraphs; the second panel shows the results when the algorithms searched for 4-node
subgraphs; and the third panel shows the results when the algorithms searched for subgraphs of
size 5. In this chapter, the same y-scale is used in each panel to illustrate how the distributions
increase as the subgraph size increases. Appendix B contains panel plots on separate y-axes.

3.1 Quantitative comparison of ISMAGS and G-Tries

ISMAGS and G-Tries are compared quantitatively according to run time, memory usage, and
the number of subgraph instances identified. In these experiments the focus is only on subgraph
enumeration and not on motif discovery (determining which subgraphs are statistically signifi-
cant). Therefore in this chapter only subgraph instances are referred to and not motif instances.
Before the experiments can be performed, some pre-processing must be done.

3.1.1 Pre-processing for G-Tries

To run the G-Tries algorithm, the executable gtrieScanner application is used, the source files
of which are freely available online (Ribeiro, 2015). It was written in C++ for Linux operating
systems, therefore requires a C++ compiler, such as the GNU Compiler Collection (gcc) (Free

32

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Software Foundation, 2015), as well as the GNU make utility (Free Software Foundation, 2015),
which generates executable applications from binary files. After downloading and unzipping the
source files, running make compiles the executable files.

The gtrieScanner is then able to perform various functions, such as generating g-tries from
adjacency matrices, performing subgraph enumeration, and determining statistically significant
motifs. For this experiment, three g-tries are required, each representing all directed subgraphs
of size 3, 4, and 5. The subgraph lists for directed 3-, 4-, and 5-node subgraphs, found on
the gtrieScanner website (Ribeiro, 2015), are used to generate the respective g-tries for these
experiments.

3.1.2 Pre-processing for ISMAGS

Before performing the experiments using ISMAGS, two steps are required. First the motif
specifications have to be generated for all directed 3-, 4-, and 5-node subgraphs. Secondly, the
edge lists must be split into one- and bi-directional edge lists.

Generating motif specifications requires defining the edge types and converting adjacency
matrices to motif specifications. One-directional edges are denoted by an A and a (when edge
type A is incoming to the node), and bi-directional edges are denoted by an X. When no edge
exists between two nodes, it is denoted by a ‘0’. Using these newly defined edge type definitions,
Algorithm 11 is implemented in Java to generate the motif specifications for all directed 3-, 4-,
and 5-node subgraphs.

Algorithm 11 Generating motif specifications.

Input: Adjacency matrix a
Output: Motif specification s

1: function getMotifSpecification(adjacency matrix a)
2: m, n← number of nodes in a
3: Create empty matrix [n,m]← motif specification matrix m
4: for all positions [i, j] in a where i = [0 : n) and j = [i : m) do
5: value v ← value in position [i, j]
6: inverse value v′ ← value in inverse position [j, i]
7: if v = 0 ∧ v′ = 0 then
8: place 0 in position [i, j] in m
9: else if v = 1 ∧ v′ = 0 then

10: place A in position [i, j] in m
11: else if v = 0 ∧ v′ = 1 then
12: place a in position [i, j] in m
13: else if v = 1 ∧ v′ = 1 then
14: place X in position [i, j] in m
15: end if
16: end for
17: s← concatenate the values in all columns in m
18: return s
19: end function

The algorithm starts in line 3 by creating an empty motif specification matrix which is the
same size as the adjacency matrix of the subgraph. The algorithm then iterates through all
positions in the upper half of the adjacency matrix (lines 4–16). For each position [i, j] where
i = (0, n] and j = (i,m], it determines the value in this position (line 5), as well as the value in
the inverse position, namely [j, i] (line 6). Four possibilities exist. If both positions [i, j] and
[j, i] contain a ‘0’, no edge exists between nodes i and j, therefore position [i, j] in the motif
specification matrix is filled with a ‘0’ (line 8). If position [i, j] is filled with a ‘1’, while position

33

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

[j, i] is filled with a ‘0’, an edge A exists from node i to node j, and the motif specification matrix
is filled with an A in position [i, j] in line 10. If position [i, j] is filled with a ‘0’ and [j, i] with
a ‘1’, an edge of type A exists from node j to node i. Position [i, j] in the motif specification
matrix must therefore be filled with an a (line 12), since an edge of type A is incoming to node
i. If positions [i, j] and [j, i] both contain a ‘1’, [i, j] in the motif specification matrix is filled
with an X (line 14). When all values in the upper half of the adjacency matrix have been
iterated over, the algorithm concatenates the columns of the motif specification matrix in line
17 to create the motif specification of the subgraph.

The input of ISMAGS requires separate edge lists, one for each type of edge. Algorithm
12 is implemented in Java and run on all 40 sample random networks to split the edges into
one-directional and bi-directional edges.

Algorithm 12 Splitting edges into one- and bi-directional edges.

Input: Edge list EEE
Output: One-directional edge list OOO, bi-directional edge list BBB

1: function splitEdges(edge list EEE)
2: create empty one-directional edge list OOO
3: create empty bi-directional edge list BBB
4: copy all edges in EEE to OOO
5: for all edges e ∈ EEE do
6: origin o← origin node of e
7: destination d← destination node of e
8: inverse edge i← (d, o)
9: for all edges e′ in EEE 6= e do

10: origin o′ ← origin node of e′

11: destination d′ ← destination node of e′

12: if o′ = d ∧ d′ = o then
13: bi-directional edge found
14: remove e from OOO
15: remove e′ from OOO
16: add e to BBB
17: end if
18: end for
19: end for
20: return OOO and BBB
21: end function

The algorithm creates empty one-and bi-directional edge lists, OOO and BBB, in lines 2–3. The
network’s edge list is copied to the one-directional edge list in line 4. All edges in EEE are iterated
over in lines 5–19. The inverse i of edge e is determined by switching the origin and destination
nodes in line 8. All edges (except e) in EEE are again iterated over (lines 9–18) to determine if
the inverse edge exists. If it does, a bi-directional edge has been found (line 13). Edge e and
its inverse e′ are removed from one-directional edge list OOO, and e is added to bi-directional edge
list BBB. Note that the inverse edge e′ can also be added to BBB instead of e, since a bi-directional
edge from node x to node y is equivalent to a bi-directional edge from node y to node x.

Algorithm 13 is implemented in Java to iteratively call ISMAGS for all 40 sample random
networks and all motif specifications generated by Algorithm 11. The input to the algorithm is
three lists. OOO is a list of the one-directional edges of a sample random network, BBB is a list of
bi-directional edges in that sample random network, and SSS is a list of all motif specifications to
look for. The algorithm calls ISMAGS in line 4 for each sample random network (line 2) and
each motif specification (line 3). ISMAGS then identifies all instances of this motif specification
s in this sample random network, and returns the list III of subgraph instances in line 21.

34

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Algorithm 13 Iteratively calling ISMAGS.

Input: One-directional edge list OOO, bi-directional edge list BBB, list of motif specifications SSS
Output: List of subgraph instances III

1: procedure callISMAGS(list OOO, list BBB, list SSS)
2: for all one-directional edge list o ∈ OOO∧ bi-directional edge list b ∈ BBB do
3: for all motif specification s ∈ SSS do
4: function ISMAGS(o, b, s)
5: return III, list of all subgraph instances of type s
6: end function
7: end for
8: end for
9: end procedure

It should be noted that, for each iteration (motif specification), ISMAGS reads the network
into memory. This results in the network being read multiple times, whereas G-Tries only reads
the network in once. This bias is acknowledged, but it is argued that the time it takes to
read a network into memory is negligible when compared to the time it takes to search for the
subgraphs.

3.1.3 Comparing by memory usage

To capture data on memory usage, a tool called Valgrind (Nethercote and Seward, 2007) is used.
Valgrind is used to debug and profile programs in Linux operating systems, and was released
under the GNU GPL license.

The gtrieScanner and ISMAGS are run with the prefix valgrind --tool=massif, which
calls the massif method of Valgrind. After the run is complete, Valgrind outputs a file detailing
the memory usage of the program at different intervals. It also specifies the interval in which
the peak memory usage was obtained, and these peak values are reported on in this dissertation.
Valgrind uses bytes as the unit for measuring memory, but the results are converted to kilobytes
using the conversion of 1 kilobyte = 1,024 bytes.

It is expected that G-Tries will have a higher memory usage that ISMAGS, because Ribeiro
and Silva (2010) mention that G-Tries sacrifices memory to significantly decrease run time. This
sacrifice in memory is not evident when comparing the distribution of memory usage of G-Tries
and ISMAGS. Figure 3.1 shows that G-Tries performs better than ISMAGS in terms of memory
usage. G-Tries uses an increasing amount of memory as the size of network increases, while
the memory usage of ISMAGS remains relatively similar for differing sizes of subgraphs and
networks. ISMAGS uses, on average, 150 kilobytes to search for subgraph instances. While this
is significantly higher than the memory usage of G-Tries, it is negligible if measured against
hardware standards that are currently available.

3.1.4 Comparing by run time

The run time is taken as the total run time, including reading in the network, performing the
subgraph search, and writing the output file(s). Any pre- and post-processing performed is
not included in these results. Since using Valgrind increases the run time of the program, all
experiments were rerun to obtain run times. The gtrieScanner automatically outputs the time
elapsed, and ISMAGS is programmed to return the total run time. These values are captured for
each algorithm, each subgraph, and each network, and the distribution of run time (in seconds)
is shown in Figure 3.2.

It is expected that G-Tries will have a shorter run time than ISMAGS, since the former is
implemented in C++ and the latter in Java. While run time greatly depends on the program-

35

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3−node subgraphs 4−node subgraphs 5−node subgraphs

●
●●

●●

●

●
●●

●●

●

●

●

●●

●

●

●
●●

●●

●

●●

●

0

50

100

150

15% 30% 45% 60% 15% 30% 45% 60% 15% 30% 45% 60%

Relative network size

M
em

or
y

(m
eg

ab
yt

es
)

Algorithm
G−Tries
ISMAGS

Figure 3.1: The memory usage (in kilobytes) of ISMAGS and G-Tries while searching for sub-
graphs of increasing size.

3−node subgraphs 4−node subgraphs 5−node subgraphs

●● ●
●● ●

●
●

●●

●

●

●

●

●

0

50

100

15% 30% 45% 60% 15% 30% 45% 60% 15% 30% 45% 60%

Relative network size

R
un

 ti
m

e
(s

)

Algorithm
G−Tries
ISMAGS

Figure 3.2: Comparing the run time (s) of ISMAGS and G-Tries as the subgraph size increases
from 3 to 5 nodes.

mer’s ability to optimise the code, there is a general understanding in online communities that
C++ programs run faster than Java programs. This may be attributed to the fact that C++ is
written in objective code, which can be directly read by the computer. Java, on the other hand,
is written in byte code, which needs to be translated by a Java Virtual Machine into objective

36

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

code for the computer to run it.
As expected, the run time increases as the network size increases, but also as the size of the

subgraph increases (since there exists more 5-node subgraphs than 3-node subgraphs). There is
greater variability in the run time when looking for subgraphs of size 5, and ISMAGS generally
has a slightly longer run time than G-Tries. While ISMAGS performs worse than G-Tries,
its longest run time is only 140 seconds when identifying 5-node subgraphs in a network. In
comparing ISMAGS to a number of algorithms in terms of run time, Houbraken et al. (2013)
also find that G-Tries has, on average, a shorter run time than ISMAGS.

3.1.5 Comparing by the number of subgraphs instances identified

This analysis compares the number of subgraph instances identified by each algorithm. As the
size of the subgraph increases, so does the number of subgraphs, because by increasing the
number of nodes in a subgraph, the possible edge configurations are also increased. Kashtan
et al. (2004) note that there exists 13 directed 3-node subgraphs, 199 directed 4-node subgraphs,
and 9364 directed 5-node subgraphs. This analysis is important since the maximum number of
motif instances must be identified in the freight complex network. Analyses will be performed
on the firms in the statistically significant motifs, and if some motif instances are not identified
by the chosen algorithm, the results may not be realistic.

Recall from Chapter 2 that ISMAGS considers a ‘0’ in a motif specification as a “don’t
care link”, which means that there may be an edge in the ‘0’ position. For purposes of this
dissertation, a ‘0’ in the motif specification must indicate that the edge does not exist. Therefore
Algorithm 14 is implemented in Java to remove subgraph instances that contain an edge where
there should not be one. It should be noted that the run time of Algorithm 14 is not included
in the run times reported on in Section 3.1.4, since any pre- and post-processing performed does
not form part of the quantitative results of these experiments.

Suppose X0X is identified as a motif specification to filter (line 2). Line 5 identifies the
‘0’ in the motif specification representing the edge between subgraph node 1 and 3 as a “don’t
care link”: there may or may not be an edge between these two nodes. Take, for example, the
X0X subgraph instance (23, 5, 10). Network node 23 is mapped to subgraph node 1, network
node 5 is mapped to subgraph node 2, and network node 10 is mapped to subgraph node 3
(lines 11–12). Therefore a check must be performed to ensure that there does not exist an edge
between network nodes 23 and 10 (line 14). The edges of the network are iterated over in lines
13–18 to determine if any edge (one- or bi-directional) exists between these two nodes. If the
edge exists, it is removed from the list of motif instances in line 17, and the resulting list of
motif instances is returned in line 21.

Figure 3.3 shows that, for all subgraph sizes, ISMAGS identifies more instances than G-
Tries. One would expect that the same number of subgraph instances would be identified by
both algorithms, and the fact that they differ either indicates that ISMAGS identifies subgraph
instances that actually do not exist, or that G-Tries does not identify all possible subgraph
instances.

To validate the number of subgraph instances identified, a third motif discovery algorithm is
used. Fanmod is a software tool with a graphical user interface for fast network motif detection
(Wernicke and Rasche, 2006). It is used to identify all 3- and 4-node subgraphs in all 40
sample random networks. It is unable to identify the 5-node subgraphs in the sample random
randoms since the amount of memory the program uses increases exponentially and causes the
program to freeze. Figure 3.4 shows the number of subgraph instances identified by all three
algorithms (G-Tries, ISMAGS, and Fanmod) for subgraphs of size 3 (Figure 3.4(a)) and 4 (Figure
3.4(b)). The figures illustrate that ISMAGS and Fanmod identifies exactly the same number of
3-node subgraph instances, and that of 4-node subgraph instances varies slightly. Therefore in
both cases, G-Tries does not identify all the subgraph instances present in the sample random
networks.

37

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Algorithm 14 Filtering motif instances with ‘0’ edges.

Input: Lists of motif instances III, list of motif specifications SSS, network edge list EEE
Output: List of filtered motif instances LLL

1: function filterMotifInstances(list III, list SSS, list EEE)
2: zeroMotifs z ← motif specifications in SSS that contain a ‘0’
3: for all motif specification in z do
4: m← this motif specification
5: edge e← ‘0’ edge in m
6: node o← origin node of e
7: node d← destination node of e
8: LLL← list of all m type motif instances in LLL
9: for all motif instances i ∈ L do

10: motif instance i← this motif instance
11: origin network node oN ← node o of i
12: destination network node dN ← node d of i
13: get edges (o, d) and (d, o) from EEE
14: if edges (o, d) or (d, o) does not exist then
15: continue
16: else if edge (o, d) and/or (d, o) exist then
17: remove i from LLL
18: end if
19: end for
20: end for
21: return LLL
22: end function

3−node subgraphs 4−node subgraphs 5−node subgraphs

● ● ●
●

●●
●

●

●

●

●

●

●

●

0e+00

1e+07

2e+07

3e+07

15% 30% 45% 60% 15% 30% 45% 60% 15% 30% 45% 60%

Relative network size

N
um

be
r

of
 s

ub
gr

ap
hs

 id
en

tif
ie

d

Algorithm
G−Tries
ISMAGS

Figure 3.3: The number of subgraph instances identified by ISMAGS and G-Tries.

One possible explanation is that G-Tries does not generate g-tries that represent all directed
subgraphs. The g-tries used in the experiments are generated from subgraph lists found on the

38

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

● ●

1e+04

2e+04

15% 30% 45% 60%

Relative network size

N
um

be
r

of
 s

ub
gr

ap
hs

 id
en

tif
ie

d

Algorithm
G−Tries
ISMAGS
Fanmod

(a) The number of 3-node subgraph instances iden-
tified.

●

●

●

●

●

●

●

●

●

0.0e+00

2.5e+05

5.0e+05

7.5e+05

15% 30% 45% 60%

Relative network size

N
um

be
r

of
 s

ub
gr

ap
hs

 id
en

tif
ie

d

Algorithm
G−Tries
ISMAGS
Fanmod

(b) The number of 4-node subgraph instances iden-
tified.

Figure 3.4: Using a third algorithm (Fanmod) to validate the number of subgraph instances
identified by ISMAGS and G-Tries.

gtrieScanner website (Ribeiro, 2015). The subgraph lists contain exactly the correct number of
adjacency matrices for 3-, 4-, and 5-node subgraphs (13, 199, and 9364 respectively). Therefore
the problem does not lie with the subgraph lists. The g-trie data files generated by the gtrieS-
canner are not in a human readable format (it contains lists of symbols and numbers), and there
is no explanation of what these symbols and numbers in the g-trie data files mean. Therefore
one of two conclusions can be made about G-Tries. The first is that the g-tries generated by the
gtrieScanner does not accurately represent all subgraphs given as input when generating the
g-tries. The second is that, even though the g-tries correctly represent all subgraph instances to
find, the algorithm is unable to identify all of the subgraph instances.

3.2 Qualitative comparison of ISMAGS and G-Tries

While the quantitative comparisons provide insight into the performance of the algorithms, the
qualitative comparisons are deemed more important. This study will be used as a building
block for future work, and therefore extendability of the motif discovery algorithm is extremely
important.

G-Tries is able to perform motif discovery by performing subgraph enumeration on the
original network, generating the specified number of random networks, enumerating subgraphs
in the random network, and identifying statistically significant motifs. It is not limited to
subgraph enumeration, as is the case with ISMAGS. However, as mentioned by Houbraken
et al. (2013), it is possible to integrate your own code with ISMAGS to discover all statistically
significant motifs in a network.

While Ribeiro and Silva (2010) state that node labels can start at 0, an error occurs when this
algorithm is run on a network that has node labels starting at 0. The freight complex network
has node labels that are labelled from 0, therefore if G-Tries was to be used on this large-scale
network, all node labels would have to be incremented by one to prevent errors. Before analysing
all subgraph instances identified, the node labels would have to be decremented by one to ensure
that the analyses are performed on the correct nodes. ISMAGS is able to read networks with
nodes that start at 0.

39

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

G-Tries writes all subgraph instances to one output file. Each line in the file contains the
adjacency matrix of a subgraph, followed by the nodes that occur in that subgraph instance.
Using this output file requires that it be split into separate files for each unique group of subgraph
instances.

While ISMAGS only looks for one subgraph at a time (specified by the user), it can be
programmed to iteratively be called for all subgraphs that the user is interested in identifying.
For every subgraph looked for, ISMAGS writes all subgraph instances found to separate output
files. The ISMAGS output, however, indicates the edge types in each subgraph instance. Since
edge types are not of particular interest in this dissertation, these letters have to be removed
from the output files before analysing the instances.

3.3 Conclusion

The quantitative comparisons provide insight into the relative performance of the two algorithms,
and G-Tries performs better than ISMAGS in terms of memory and run time. Since the hardware
available for this dissertation is not a constraint, the performance of the algorithms does not
have to be the deciding factor. Rather, the qualitative comparisons are used to make a decision
about which algorithm to use to identify motifs in the freight complex network.

This chapter illustrates that ISMAGS can easily be integrated with custom written Java
classes, since three different algorithms (11, 12 and 14) are implemented to ensure ISMAGS is
customised to suit the needs of these experiments. Therefore it is decided to use ISMAGS to
identify statistically significant motifs in the freight complex network, which is built in the next
chapter.

40

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 4

Building the complex network

To build a complex network from raw GPS data requires a number of steps. Activity chains
are extracted from raw GPS data traces, which are used to identify frequently visited firm
locations. Activities are associated with firms where they were performed, and if two consecutive
activities in the activity chains were performed at an identified firm, the freight trip is included
in the complex network as two nodes (firms), with a directed edge (direct freight trip) between
them. These steps are based on the methodology of Joubert and Axhausen (2011), Joubert and
Axhausen (2013) and Joubert and Meintjes (2015a).

4.1 Extracting activity chains

The GPS traces of over 40,000 freight vehicles travelling in South Africa over a six-month
period were provided by Digicore Fleet Management. From these data, Joubert and Axhausen
(2011) extract activity chains, which describe the location, duration, and sequence of activities
performed by freight vehicles. Ignition off- and on-signals are used to indicate the start and end
of activities performed by freight vehicles. If a freight vehicle’s engine is switched off for more
than five hours, it is assumed to be a depot-like activity. These are called major activities and
represent the start and end of the activity chain. Minor activities are those that last less than
five hours, and make up the rest of the activity chain.

4.2 Identifying the firms where activities were performed

GPS data are noisy and can be inaccurate: when two freight vehicles stop at the same firm
to perform an activity, each will have a unique GPS location. A high density of activities will
therefore occur at or near firms where activities are frequently performed. The focus is on
the more frequented firm locations, because these have a greater logistics impact (Joubert and
Axhausen, 2013).

It is argued that a firm does not have to be confined to the four walls of a business: businesses
can be grouped into firms based on function or location. For example, all freight activities at
a small shopping centre can be grouped into one firm. Individually, the small shops at such a
shopping centre do not have a large logistics impact because they receive/make deliveries once
every few weeks. However, by aggregating the freight activities of all these shops, the shopping
centre itself becomes an interesting firm. This is an example of grouping businesses into a firm by
location. Facilities may also form based on function: a large retailer may receive deliveries from
large suppliers through their back door, while smaller suppliers may deliver goods through the
front door. These two types of deliveries will often differ from each other, representing suppliers
of different sizes and deliveries of different volumes. Therefore the front- and back-door can
be modelled as two separate firms. Another example is a manufacturing plant where there are
dedicated shipping and receiving bays. These are often separate in manufacturing plants, and

41

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

high densities of shipping and receiving activities will be performed at the respective bays. Even
though all shipping and receiving activities are performed at the same plant, the bays can be
modelled as separate firms, each with their own function.

Joubert and Axhausen (2013) use a density-based clustering algorithm, namely the DJ-
Cluster approach, developed by Zhou et al. (2004), which groups the GPS points (activities) into
clusters. Two input clustering parameters, which determine the minimum number of activities
that need to be performed within a given radius from each other to be considered a cluster,
control which activities are included in clusters. Different combinations of clustering parameters
can result in clusters of different shapes and sizes. To understand the DJ-Cluster approach,
consider the following explanation along with the clustering example in Figure 4.1.

(a) Activities are superimposed on an aerial im-
age (source: South African National Geospa-
tial Institute (NGI) imagery available on Open-
StreetMap at location 26.114435 S, 27.894554
E).

(b) Of the six neighbourhoods that are being
calculated, five are identified as clusters, each
denoted by C.

(c) Four clusters are identified, and each clus-
ter’s centroid represents the location of the firm.

(d) A concave hull is generated for each cluster.
The polygon encloses all the points that form
part of the cluster.

Figure 4.1: The clustering of activities using the DJ-Cluster approach proposed by Zhou et al.
(2004).

Figure 4.1(a) shows freight activities that have been superimposed on an aerial image of five
firms where freight activities are performed. The DJ-Cluster approach is applied to six activities
in Figure 4.1(b). The neighbourhood, N , of each activity, p, is calculated as all the activities
that lie within a specified radius, ε, from activity p. If an activity’s neighbourhood contains a
minimum number of points, pmin, it is considered to be a cluster, C. The clustering parameters
in this example are chosen to be ε = 4.8 units and pmin = 10 points. Changing the clustering
parameters results in different clusters being identified.

If no cluster exists around an activity, the activity and its neighbourhood are ignored because
they do not create a big enough logistics impact (Joubert and Axhausen, 2013). If two clusters
contain one or more of the same activities, the clusters are merged into a new cluster.

Each cluster represents an interesting firm, and the activities that form part of the cluster

42

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

were performed at that firm. The centroids of all identified clusters are calculated in Figure
4.1(c), which is assumed to be the location of the firm. A unique identifier, the facility ID,
is assigned to each centroid and keeps track of all interesting firms.

4.3 Adapting activity locations

Millions of points are considered during the clustering step, and it is a computational burden to
keep record of every single point that forms part of a cluster. Therefore Joubert and Meintjes
(2015a) generate a concave hull polygon for each cluster, as shown in Figure 4.1(d). The imple-
mentation of the concave hull algorithm forms part of a mini-dissertation for an undergraduate
study (Meintjes, 2013). It is easy to determine whether an activity is performed at an interes-
ting firm: simply verify whether it is covered by a concave hull. If it is, the facility ID of
the concave hull is assigned to the activity, and the activity’s location is adapted to that of the
centroid.

Executing this step results in adapted activity chains, where some of the activities have new
locations and facility IDs allocated to them. Figure 4.2 shows three of the adapted activity
chains of digicoreVehicle 169893.

Figure 4.2: Vehicle activity chains after modification, indicating with a unique facility ID

whether an activity was performed at a clustered firm.

4.4 Identifying the edges in the complex network

During the final step, only direct freight trips made between two interesting clustered firms are
included as edges in the complex network. To identify these trips, consecutive activities in the
adapted activity chains are considered.

The first activity chain in Figure 4.2 has two major and five minor activities. The first pair
of activities in this activity chain will not be included in the complex network because only one
of them has a facility ID. The same applies to the next two pairs of activities.

The fourth activity’s facility ID is 501 and the fifth activity’s facility ID is 291. This
direct freight trip must be included in the complex network. Two new nodes, labelled as 501

and 291 respectively, are added to the complex network, and a directed edge is created from
the former to the latter. If another trip occurs from 501 to 291, the weight of the edge will

43

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Figure 4.3: Changing the clustering parameters results in a fifth cluster being identified.

be incremented by one, because this edge already exists in the complex network. If a reverse
movement occurs between these two firms (291 to 501), a bi-directional edge will be created
between these two nodes.

The next freight trip in the activity chain starts and ends at the same facility, 291. The origin
and destination of this trip is the same, which often happens when freight vehicles have to wait
in a queue to deliver their goods. These queues may take hours to dissipate, therefore freight
vehicles switch off their engines while waiting. This trip is included in the complex network by
a self-edge starting and ending at node 291. The building of the complex network continues in
this way until all activity chains of all vehicles have been considered.

4.5 Determining clustering parameters

The shape, size and the number of clusters generated are determined by the two clustering
parameters, pmin and ε, which must be set by the user. Figure 4.3 illustrates this fact, since
an additional cluster is identified by simply decreasing pmin to 5 points. Therefore more, or
fewer, clusters can be identified by changing the configuration of clustering parameter values.
The choice of clustering parameters are extremely important for subsequent analyses: complex
network theory provides a vast number of metrics that can be used to study the connectivity of
actors (firms) in the network. Nodes should be identified as accurately as possible so that later
analyses will prove useful for firms that are visited by the freight vehicles.

Joubert and Axhausen (2013) choose the clustering parameters by testing a variety of clus-
tering parameter values on 10 sample areas in the Gauteng province in South Africa. Based
on the underlying land-use and visual inspection, they calculate a penalty score for each con-
figuration of clustering parameters in all 10 study areas: the lower the score, the more visually
accurate the clusters appear. The penalty scores are a metric for visual accuracy, measuring
how well the clusters compare to what experts define as a gold standard. Visual accuracy of
clusters are therefore subject to the opinion of the experts analysing the clusters. While this
may be subjective, the gold standard approach is found to be repeatable and reproducible by
Joubert and Meintjes (2015b). This means that similar results are obtained when different ex-
perts evaluate the clusters, as well as when the same expert evaluates the same clusters more
than once. Visually accurate clusters intuitively make sense to the human eye: it does not group
the activities at two firms on opposite sides of a road, but may possibly group the activities
at neighbouring shops at a shopping centre. Based on Joubert and Axhausen’s expert opinion,
clustering parameter configuration, γ = (ε, pmin) = (30, 15), is identified as the combination that
results in visually accurate clusters. This means that, for a group of points to be included in the
complex network as a facility (node), a minimum of 15 activities have to be performed withing
a 30 metre radius of each other.

Joubert and Meintjes (2015a) argue that the visual accuracy of the clusters should not be
the only deciding factor when choosing clustering parameters. Network completeness (the per-
centage of activities that are included in the complex network as nodes) and the computational

44

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

complexity of building the complex network both need to be considered when choosing the
clustering parameters. They perform multi-objective optimisation and determine that a much
different clustering parameter configuration, γ = (ε, pmin) = (1, 2), maximises the completeness
and minimises the computational complexity of the complex network.

The configuration (30, 15) often merges multiple firms into single large clusters (firms), while
the combination (1, 2) splits single firms into many smaller clusters. These two extremes have
to be reconciled, therefore another iteration of multi-objective optimisation is done, this time
trading off completeness with visual accuracy.

To collect visual accuracy data for this round of optimisation, the gold standard approach,
used by Joubert and Axhausen (2013), is followed. Ten new study areas are identified in
the Nelson Mandela Bay Metropolitan area. For each study area, all clustering configura-
tions containing radii ε ∈ EEE = {1, 5, 10, 15, 20, 25, 30, 35, 40} and minimum point thresholds
pmin ∈ PPP = {1, 5, 10, 15, 20, 25}, the penalty scores are calculated. This results in 6×9×10 = 540
penalty scores, 10 scores for each configuration. This is aggregated into one score per configura-
tion by taking the average weighted sum of scores for each configuration, resulting in 54 penalty
scores.

The completeness data are collected by determining, for each clustering parameter configu-
ration, the percentage of activities that are (1) associated with a cluster, and (2) the percentage
of these included in the complex network. The percentage completeness is determined for each
configuration of clustering parameters, resulting in 6× 9 = 54 completeness values.

The efficient frontier for visual accuracy and completeness is shown in Figure 4.4. Two
points, (10, 10) and (20, 20), lie on the efficient frontier. When using either of these clustering
parameter combinations, the resulting complex network will contain activities that are accurately
associated with firms.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●
●

●

●

●

●
●
●

●
●

●●
●●

●●

(10, 10)

(20, 20)

0.25

0.50

0.75

1.00

0 1 2 3 4

Average weighted sum of penalty scores

C
om

pl
et

en
es

s

Figure 4.4: The efficient frontier when visual accuracy of the clusters and completeness of the
complex network are traded off against each other. The efficient frontier is limited to two points.

Following the above-mentioned steps, a complex network is built with the clustering pa-
rameter configuration (20, 20) using activity chains that have at least 60% of their activities
performed in the Nelson Mandela Bay Metropolitan.

45

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

4.6 Preliminary analysis of the complex network

The freight complex network is analysed according to the standard network analytic techniques
discussed in Chapter 2. This provides initial insights into the connectivity of the network, who
the central firms are according to centrality scores, and where these central firms are located.

4.6.1 Node-level analysis

Three centrality scores are determined for the nodes in the complex network, namely between-
ness, eigenvector, and degree centrality. The 200 nodes with the highest centrality scores are
identified and plotted on a population density map of the Nelson Mandela Bay Metropolitan,
as shown in Figure 4.5. Each centrality score is located at the location of the firm, and bigger
circles indicate higher centrality scores.

●

Population

235484
91449
32054
20558
0

(a) Betweenness centrality.

●

Population

235484
91449
32054
20558
0

(b) Eigenvector centrality.

●

Population

235484
91449
32054
20558
0

(c) Weighted degree centrality.

Figure 4.5: Mapping centrality scores on a population density map of Nelson Mandela Bay
Metropolitan.

While the distribution of central actors differ between the different centrality scores, most
central actors are located in the areas with higher density. This is similar to the results of
Joubert and Axhausen (2013) and Joubert and Meintjes (2015a). Joubert and Axhausen (2013)
note that this finding differs to developed countries, where the most central actors are located
on the periphery of cities, due to the unique socioeconomic and spatial context of South Africa.

The three most central actors according to each centrality score is shown in Table 4.1. Firm
2314, a brewery, is the most central actor according to betweenness and degree centrality scores.
Firm 1351 (a group of distribution centres) and firm 1309 (a truck stop) both have an outgoing
edge to firm 2314, which makes them central by association and therefore the most and second
most central actors according to eigenvector centrality. The second most central actor according
to betweenness centrality is firm 899, which is a fuel station and truck stop. Firm 1309 is
the second most and third most central actor according to degree and betweenness centrality
respectively. Lastly, the third most central actor according to eigenvector centrality is firm 630,
which has outgoing edges to both firm 899 and 1309.

While truck stops may not intuitively be considered as important firms in terms of supply
chain management, the nodes with the highest centrality scores reveal that they play a big role
in the movement of freight vehicles. There is an incredible amount of movement to and from
truck stops, and this finding can be exploited by decision makers. Suppose a new weigh bridge
must be installed. It would make sense to install it at a location that is frequently visited by
freight vehicles, therefore the central truck stops can be considered as possible locations. Another
example is the implementation of new freight vehicle regulations. By frequently visiting central
truck stops, the degree of compliance to the new regulations can be determined.

46

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 4.1: The three most central actors according to the different centrality scores.

Ranking Betweenness
centrality

Eigenvector
centrality

Degree
centrality

1 2314 1351 2314

2 899 1309 1309

3 1309 630 1351

An alternative to studying centrality scores in isolation is to study combinations of cen-
trality scores. By comparing eigenvector and betweenness centralities, Conway (2015) explains
that gatekeepers and actors with unique access can be identified. Gatekeepers control the flow
between other nodes, while nodes with unique access have exactly that: unique access to nodes
that cannot easily be reached through other nodes in the network. Figure 4.6 shows the relation-
ship between these two centrality scores. Eigenvector centrality and betweenness centrality are
expected to have a linear relationship, and should therefore produce a linear distribution. The
residual values for all data points are calculated to determine how far the point deviates from
the expected linear relationship, and the residual values are indicated with different grades of
transparency. Darker points indicate higher residual values, and are therefore outliers. The top
three firms with the highest residual values are firms 899, 2314, and 1309 and are labelled in
the figure. These three firms are gatekeepers since their betweenness centrality scores are higher
than their eigenvector centrality scores. When decision makers must ensure that information
should (or should not) reach other firms, firms 899, 2314, and 1309 can be targeted to ensure
(or prevent) the spread of information.

899
2314

1309

10−5

10−4

10−3

10−2

10−1

100

100 102 104 106

Betweenness centrality

E
ig

en
ve

ct
or

 c
en

tr
al

ity

Figure 4.6: Mapping the eigenvector centrality against the betweenness centrality scores of firms.

4.6.2 Edge-level analysis

All edges in the complex network represent the same type of relation: direct freight vehicle trips
between firms. Each edge has a weight associated with it, and can be used as a proxy of the
strength of the relationship between two firms. The distribution of edge weights plotted on a
log-log scale can be seen in Figure 4.7(a). Even though this distribution appears to follow a
power law distribution, a goodness-of-fit test results in a p-value of 0, indicating that it does not

47

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

follow a power law.

●

●
●

● ●

●
● ●●

●●●●
●●●●●●●●●●

●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●
●●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●
●●●
●●

●●
●●●

●●●
●●●

●●●101

101.5

102

102.5

103

100 101 102 103

Edge

E
dg

e
w

ei
gh

t

(a) Edge weight distribution on a log-log scale.

● ● ●

●
●

● ● ● ●●●
●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●
●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●●●●●●●
●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●
●●●
●●●●●●●●●●●
●●●●
●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●
●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●
●
●●●●
●●
●
●●●●●●●●●
●●
●●●●●
●●●●●●●
●
●
●
●●
●
●
●●●●●●
●●●●●
●
●●●
●
●●
●
●

●●●●●●●●
●
●●●●
●●●●●●●
●●●●●
●●●●●
●●●●
●
●●●●
●
●
●
●●
●●●
●●●●
●●●●●●●●●●●●●●●
●●
●●
●●●●●
●
●●●●●●●●●●●●
●●●
●●●●●
●
●●●
●●●
●
●●
●
●●
●
●●●●
●
●
●

●

●
●

●●●●●●●
●
●

●●

●
●●
●●
●
●●●
●●●
●●●●●●●●
●
●
●
●
●●
●
●
●
●
●●●●
●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●●●●
●●
●●●●
●●●●●●●
●●●●●●●●
●
●●
●●●●
●

●
●
●
●●
●●
●

●

●●●
●●
●
●●

●

●
●●
●
●
●●
●
●
●●●
●
●

●
●

●
●●●●●●●●
●●●●●●●●
●●
●
●
●
●
●
●●
●●
●
●
●●●
●

●

●
●

●●

●

●
●

●
●
●●●
●
●●●
●

●●

●
●

●

●

●

●
●●
●
●●●●●
●●
●
●●●

●

●
●

●
●●
●
●●●
●
●●
●●●
●●●
●
●●

●
●
●
●

●

●

●

●

●

●

●
●●
●
●
●●

●

●
●
●
●

●

●●●

●

●●
●
●●
●
●
●
●●
●
●

●

●

●
●

●●

●

●●
●●●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●
●

●

●
●
●

●

●
●●

●
●
●

●

●

●
●
●
●
●
●
●
●
●

●●●

●

●
●

●●●

●

●●

●
●●

●

●

●

●●●
●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●
●

●
101

102

103

104

105

100 101 102 103

Node
To

ta
l p

ow
er

(b) The distribution of power on a log-log scale.

Figure 4.7: The distribution edge weight and power of the complex network.

4.6.3 Network-level analysis

The distribution of power in the freight network is shown in Figure 4.7(b). The centrality scores
are added to get the total power of each node, and by performing the goodness-of-fit test, a
p-value of 1 is obtained, indicating that it follows a power law distribution.

The remaining network-level properties are compared to three other complex networks from
different fields of study, namely air traffic and animal behaviour. Data for these complex net-
works are obtained on the website of the Koblenz Network Collection project collected by the
Institute of Web Science and Technologies at the University of Koblenz-Landau, Germany (Uni-
versity of Koblenz-Landau, 2015).

Table 4.2 summarises key network properties of four complex networks, including the freight
complex network used in this dissertation. The airport network reports on airplane movements
(directed and weighted edges) between American airports (nodes) in 2010. The monkey network
reports on the grooming habits of free roaming Rhesus monkeys during a two month study
conducted in 1963. A directed edge from one monkey to another shows that the former groomed
the latter, and a bi-directional edge indicates that the grooming was reciprocated. The bison
network represents the display of dominance between male bison in 1972 on the National Bison
Range in Montana, USA. A directed edge from one bison to another indicates that the former
exhibited dominant behaviour toward the latter, while edge weights indicate the number of times
this behaviour was observed.

The freight complex network contains 2,594 nodes and 77,989 edges, making it sparse with
a network density of only 1.122%. The airport network has approximately half the number of
nodes and edges as the freight complex network, and has a similar network density (0.0114)
because the relationship between number of nodes and edges is similar to that of the freight
network. The monkey network has a very high density (0.4625), because it has many edges in
relation to the number of nodes. Similar to this, the bison network has a density of 0.483.

All nodes are connected to each other by paths (combinations of nodes and edges). The
shortest path between two nodes is the path with the least number of edges between the two

48

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 4.2: Network properties of various complex networks.

Network
property

Freight Airport Monkey Bison

Number nodes 2,954 1,574 16 26
Number edges 77,989 28,236 111 314
Density 0.01122 0.0114 0.4625 0.4830
Diameter 6 9 4 4
Average clustering
coefficient

0.1775 0.3841 0.6706 0.7887

Reciprocity 0.4927 0.7806 0.7568 0.3877

nodes. The diameter is the longest shortest path in a network, and gives an indication of how
easily nodes can interact with one another. The freight network has a diameter of 6, which is
slightly smaller than the diameter of the airport network (9). The monkey and bison networks
have the smallest diameter of all four networks (4).

The average clustering coefficient in the freight network is 0.1775, which means that if two
nodes are connected to a third mutual actor, there is a 17% chance that they are also connected
to each other. Mutually connected nodes in the airport and monkey networks have a much
higher probability of being connected to each other, while the bison network’s average clustering
coefficient indicates that there is a 78% chance of two bison, who have been dominated by a
third bison, exhibit the same dominating behaviour on each other.

The reciprocity of the freight network, which is a measure of the number of edges with
reciprocal relationships, is 0.4927. Therefore approximately half of the relationships in the
network are reciprocal. If there was a truck trip from a to b, there is almost a 50% chance that
another truck trip will occur from b to a. It may be that, after a truck has travelled from a to b,
it completely unloads its load and returns to a with an empty truck. Therefore the reciprocated
movement occured as a result of the first movement. Alternatively, one truck can travel from
a to b, and at another time, independent of the first trip, another truck travels from b to a.
Therefore the two trips are independent of each other. While the reason of the truck trips are
unknown, the complex network proves that there exists a reciprocal relationship between facility
a and b.

The airport network has the highest reciprocity (0.7806), which makes sense since there are
usually numerous flights in both directions between two airports. The monkey network also has
a high reciprocity (0.7568), which indicates that the Rhesus monkeys are a tightly knit group.
The bison network has the lowest reciprocity (0.3877), which makes sense since the animal that
exhibits dominant behaviour is often stronger than those who are being dominated, therefore
the weaker bison will not reciprocate the behaviour.

4.7 Conclusion

Node centrality scores indicate that 2314, 1351, 899, 1309 and 630 are the most central firms
in the network. Decision makers can target these firms when policies or information must be
disseminated quickly through the network. The firms in the statistically significant motifs can
also be considered central in the complex network, because they form part of the building blocks
of the network. These firms are identified in the next chapter.

49

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 5

Identifying and analysing motifs in
the complex network of freight
movements

In this chapter the two research questions are addressed. To answer the first research question,
ISMAGS is used to determine whether there are statistically significant motifs in the freight
complex network built in the previous chapter. The second research question, identifying firms
that frequently appear in motif instances, is answered by performing various analyses on the
motif instances.

5.1 Identifying statistically significant motifs

The original freight complex network refers to the empirical complex network built from real
GPS traces of freight vehicles travelling in the Nelson Mandela Bay Metropolitan. The random
networks refer to the randomly generated networks that have the same degree distribution as
the original network. Two methods are used to identify statistically significant motifs, namely
comparing the original subgraph frequency to the mean subgraph frequency of the random
networks, and using the significance profile. These two methods may result in two unique sets
of statistically significant motifs, and the intersection of these sets will be chosen for further
analysis.

5.1.1 Determining subgraph counts

A number of steps are performed to determine the subgraph counts in the original freight network
and the random networks. These steps are described as follows:

1. Determining motif specifications of all directed 3-node subgraphs. This is done in
Chapter 3 for subgraphs of size 3, 4 and 5. All 13 directed 3-node subgraphs, along
with their motif specifications, are shown in Figure 5.1.

2. Generating random networks by implementing the matching algorithm in Java (Algo-
rithm 2). To determine the number of random networks to generate, similar work by
other authors are considered. Kavurucu (2015) simply states that a sufficient number of
random networks should be generated. Ribeiro and Silva (2010) only generate five ran-
dom networks, and Wernicke (2006) suggests that at least a thousand random networks be
generated. In the seminal work done by Milo et al. (2002), 100 random networks are gen-
erated. Following the example of this seminal work, 100 random networks are generated
in this dissertation.

50

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

3. Splitting the edge lists into one- and bi-directional edges is required by ISMAGS. There-
fore Algorithm 12 in Chapter 3 is run on the freight complex network, as well as all on
100 random networks.

4. Running ISMAGS by using Algorithm 13 on the original freight complex network, as well
as on all 100 random networks. This results in 13 subgraph instance lists for each network.

5. Filtering subgraph instances is required to ensure that the number of subgraph instances
with a ‘0’ in their motif specification is not inflated. As in Chapter 3, Algorithm 14 is run
on the original freight network as well as on all 100 random networks.

6. Determining subgraph counts for each network by counting the number of lines in each
output file (since each line contains one subgraph instance).

Figure 5.1: The 13 directed 3-node subgraphs with their motif specifications.

5.1.2 Determining statistically significant motifs

The original frequency and random frequencies for the 3-node subgraphs can be seen in Figure
5.2(a). The data for the random networks are plotted as boxplots. The random frequencies have
very thin boxes due to the small variation, with little to no outlier points. For subgraphs X0A,
XAA, X0a, aAX, AAX and XAX there are no occurrences in either the original or random
networks. Subgraphs 0AA, a0A, A0A, aAa, and aAA occur, on average, less frequently in
the original network than in the random networks. The fact that these subgraphs are under-
represented in the original network is in itself significant, and these subgraphs are called anti-
motifs. While the term is introduced by Milo et al. (2004) and is subsequently mentioned by a
number of authors (Frankenstein et al., 2006; Jackups et al., 2006; Berka, 2012), no literature
discussing the expected behaviour of anti-motifs could be found. The only two statistically
significant motifs are X0X and XXX, since the original frequency is greater than the random
frequencies. Motif X0X occurs approximately 16 times more in the original network than in the
random networks, and XXX occurs approximately 57 times more in the original network than
in the random networks.

51

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

●

●

Original
Random

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

a0
A

A0A X0A 0A
A

aA
A

XAA
X0a

X0X aA
a

aA
X

AAX
XAX

XXX

Motif

F
re

qu
en

cy

(a) Comparing the frequency of subgraphs in the ori-
ginal network to the distribution of frequencies of
subgraphs in the random networks.

●
●

●

●

●

● ●

●

●

● ● ●

●

0.00

0.25

0.50

0.75

1.00

a0
A

A0A X0A 0A
A

aA
A

XAA
X0a

X0X aA
a

aA
X

AAX
XAX

XXX

Motif

N
or

m
al

is
ed

 z
−

sc
or

e

(b) The significance profile representing the nor-
malised z -scores of each subgraph.

Figure 5.2: Determining statistically significant motifs. In both figures, subgraphs X0X and
XXX are statistically significant motifs.

The significance profile represents the normalised z-scores of each 3-node subgraph, shown in
Figure 5.2(b). Each normalised z-score is plotted as a circle, with a solid vertical line connecting
it to a dashed line. The dashed line is plotted at 0, which is the threshold for determining
statistical significance. Subgraphs that have a normalised z-score of 0 lie on the dashed line,
and this indicates that there are none of these occurrences in either the original or the random
networks. This is the case for subgraphs X0A, XAA, X0a, aAX, AAX and XAX. Subgraphs
0AA, a0A, A0A, aAa, and aAA have z-scores less than 0 because they occur less frequently in
the original network than on average in the random networks, and therefore are not statistically
significant. Subgraphs that have normalised z-scores greater that 0 are statistically significant
motifs, because they occur more in the original network than on average in the random networks.
Subgraphs X0X and XXX are therefore statistically significant motifs. XXX is more significant
than X0X due to its high normalised z-score.

Therefore both methods result in the same set of statistically significant motifs: X0X and
XXX. This means that when three firms have two or three reciprocal relationships between them,
these patterns of relationships occur significantly more in the freight complex network than any
other pattern of firm relationships. The analyses are continued on all instances of these X0X
and XXX motifs.

5.2 Analysing statistically significant motifs

In this dissertation, a motif instance is made up of relationships (edges), and each relationship
exists between two firms (nodes). Following this hierarchical structure, analyses are performed
on the motif instances at a motif-level, then at an edge-level (relationships), and finally at a
node-level (firms).

5.2.1 Motif-level analysis

The 40,000 freight vehicles in the Digicore data set travelled thousands of kilometres over the
six-month period that the data were collected. Each freight vehicle has their own agenda: one

52

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

may be delivering spare parts and another may be a courier. While freight vehicles make direct
trips between firms to perform their freight-related activities, they unknowingly create significant
patterns in the freight complex network. Figure 5.3 shows how the activity chains of different
freight vehicles, represented by different line types, can create motifs. In Figure 5.3(a) an X0X
motif is highlighted with two thick transparent grey lines, while Figure 5.3(b) highlights an XXX
motif in a similar way.

(a) An X0X motif. (b) An XXX motif.

Figure 5.3: Multiple activity chains, represented by different line types, forming motifs.

Ranking motifs by total freight trips

The relative importance of nodes in a complex network can be determined by calculating node
centrality scores. Can the principle of central actors in a network be extended to central motifs
in a network? Are some motif instances more important than others?

One way to quantify a motif’s importance is by considering the number of direct freight
trips that occur between the firms in the motif instance. Consider, for example, the two XXX
motif instances shown in Figure 5.4. Each edge in the motif has an edge weight associated
with it, which represents the number of direct freight trips between the two firms. A total of
11 + 10 + 1 + 4 + 1 + 3 = 30 direct freight trips occurred between firm A, B, and C in the motif in
Figure 5.4(a). More direct freight trips occurred between firm D, E, and F in the motif in Figure
5.4(b), since it has a total edge weight of 14 + 12 + 1 + 2 + 20 + 2 = 51. Therefore, if a motif’s
importance is quantified by total edge weight, firms D, E, and F form the more important firm
relationships.

(a) An XXX motif (A,
B, C) with a total edge
weight of 30.

(b) An XXX motif (D,
E, F) with a total edge
weight of 51.

Figure 5.4: Comparing the importance of motifs using total edge weight.

To rank the motif instances of the freight complex network, the total edge weight of each
motif instance is determined. This is done by implementing Algorithm 15 in Java. The algorithm

53

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

requires a list of motif instances and a weighted network edge list, which is a list of network
edges along with their edge weights. The algorithm iterates through all motif instances in lines
2–11, and determines the weight of each edge in the motif instance (line 4). There are four edges
to iterate over in X0X motif instances, and six in XXX motif instances. The total edge weight
thus far is calculated in line 8, and after all edges in the motif instance have been iterated over,
the motif instance and its total edge weight are added to the weighted motif list in line 10.

Algorithm 15 Determining edge weights of motif instances.

Input: List of motif instances III, Weighted network edge list EWEWEW

Output: List of weighted motif instances IWIWIW
1: procedure determineTotalMotifEdgeWeight(list III, list EWEWEW)
2: for all motif instances i ∈ III do
3: total weight w ← 0
4: for all edges e ∈ i do
5: o← origin node of e
6: d← destination node of e
7: w1 ← weight of (o, d) in EWEWEW

8: w ← w + w1

9: end for
10: add i and w to IWIWIW
11: end for
12: return list of weighted motif instances IWIWIW
13: end procedure

It is expected that there will be a few motif instances with a large number of direct freight
trips between all three firms in the motif instance, therefore all edges in the motif will have a
high edge weight. These motif instances can then be deemed more important than the other
instances because all three firms contribute relatively equally to the strong relationships in
the motif instance. However, the results reveal that only one extremely strong relationship is
required in a motif instance for it to be considered important.

The weighted motif instance list generated by Algorithm 15 is sorted in descending order
according to total edge weight. The 10 X0X and XXX motif instances with the highest total
edge weights are shown in Table 5.1. The highlighted cells show repeating edges between firm
1716 and 2314. The top 10 X0X and XXX motif instances contain these two edges because of
their high edge weights. The edge weight distribution is shown in Figure 5.5, with edge (2314,
1716) labelled as the edge with the highest edge weight (1,157) in the entire network, and edge
(1716, 2314) labelled as the edge with the fourth highest edge weight (619) in the entire network.

The first X0X motif instance in Table 5.1, (2314, 1716, 1294), is the most important in
terms of total freight trips. But this motif instance is important because of two extremely
strong relationships between firm 2314 and 1716, not because of the relationships with firm
1294. Only 98 and 13 direct freight trips were made to and from firm 1294, as labelled on
Figure 5.5, resulting in weak relationships with firm 1294 in comparison to the rest of the
relationships in the motif instance. Yet, firm 1294 is part of the most important X0X motif
instance. Therefore a firm does not need to have extremely strong relationships in order for it
to be considered part of an important motif instance. Instead, it can form part of an important
motif instance by having relatively weak relationships with firms that have extremely strong
relationships with other firms. Therefore firm 1294 is important by association. This principle
is similar to eigenvector centrality, where a node is central merely by being associated with a
central node.

For both X0X and XXX, the most central motifs are those that contain direct freight trips
between a brewery (firm 2314) and a truck stop (firm 1716). There exists a bi-directional

54

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Table 5.1: Top 10 X0X and XXX motif instances according to total edge weight.

Ranking X0X motifs XXX motifs

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

1 2314 1716 1294 1768 1794 1764

2 1716 2314 863 899 2314 1716

3 1716 2314 2026 1351 2314 1716

4 1716 2314 2412 2314 1716 1320

5 2314 1716 1593 2314 1716 1747

6 1716 2314 2342 2314 1716 2459

7 1478 1716 2314 2314 1716 729

8 1716 2314 1142 1309 2314 1716

9 1716 2314 2388 1616 92 1416

10 1716 2314 2438 2314 2265 1716

●

●

●

●
●

●

●●●

●●●
●
●
●●●●●●●●●
●●
●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●

(2314, 1716)

(1294, 1716)

(1716, 2314)

(1716, 1294)

0

300

600

900

1200

0 1000 2000 3000 4000 5000

Edge rank

E
dg

e
w

ei
gh

t

Figure 5.5: The edge weight distribution of the freight complex network. Only the 5,000 highest
edge weights are shown.

edge between these two firms, therefore freight trips occur in both directions. It makes sense
that direct freight trips occur from the truck stop to the brewery: a long haul freight vehicle
travelling to the brewery could arrive late at night, make an overnight stop at the truck stop,
and deliver the goods in the morning. Or perhaps the brewery has dedicated delivery hours
and the freight vehicle arrives ahead of its scheduled delivery. But why would so many direct
freight trips occur from the brewery to the truck stop? There is a fuel station on the premises
of the truck stop, and it would make sense if the brewery’s freight vehicles always fill up before
making their deliveries. The ranking of motif instances according to total freight trips therefore
provides interesting insights into the brewery’s supply chain and firm behaviour, but a lot more
insight can be gained by conducting more detailed studies with the cooperation of the brewery.

Internal variation of edge weights

The previous analysis has shown that some of the motif instances have a dominating relationship
with a very large edge weight. Calculating the arithmetic mean of the edge weights therefore
skews the average towards the dominating edge, not giving any indication of the edge weights

55

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

of the remaining edges. Therefore this analysis looks at the internal edge weight difference by
using the geometric mean of edge weights. In this way, the central tendency of edge weights for
both X0X and XXX motif instances can be determined. Figure 5.6 illustrates the histogram
of the geometric mean of edge weights for X0X and XXX motif instances respectively. Both
histograms have a bin width of 10, with the same x- and y-scale.

0.00

0.02

0.04

0.06

0 100 200 300

Geometric mean

D
en

si
ty

(a) X0X motifs.

0.00

0.02

0.04

0.06

0 100 200 300

Geometric mean

D
en

si
ty

(b) XXX motifs.

Figure 5.6: Geometric mean of motif edge weights.

The results indicate that there are more XXX motif instances with smaller internal edge
weight differences.

Difference in strength of motif relationships

Similar to Joubert and Axhausen (2013), the assumption is made in this dissertation that a
direct freight trip between two firms indicates the existence of a relationship between them.
Therefore the higher the number of direct freight trips between two firms, the stronger the
relationship between them. In all X0X motif instances, there are four relationships, and in
XXX motif instances, there are six relationships. As seen in the previous analysis, edge weights
can differ greatly in a single motif instance. The question is, do all motif instances follow this
behaviour? Or do some motif instances have relationships that are of similar strength?

To answer this question, the absolute difference between the edge weights in all motif in-
stances is considered. The minimum edge weight in each motif instance is subtracted from the
maximum edge weight in that motif instance. There may be some bias in this analysis in that
XXX motif instances have two more edges than X0X motif instances, and therefore the absolute
difference may be inherently larger. Therefore, for X0X motifs, the absolute difference is divided
by four, and for XXX motifs, the absolute difference is divided by six. The absolute differences
in edges weights are shown as histograms in Figure 5.7. Both histograms have a bin width of
10.

The X0X and XXX motif instances with the highest difference in edge weight are those that
have an edge from firm 2314 to 1716, since this edge has the highest edge weight in the entire
network. The previous analysis has already shown that motif instances with these two firms
have a large difference in edge weights. The purpose of this analysis is to focus on the absolute
edge weight differences in the remaining motif instances. Therefore the x-axis limits in Figure

56

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

5.7 only continue to 100. Both Figures 5.7(a) and 5.7(b) are plotted on the same y-scale for
easier comparison.

0.000

0.025

0.050

0.075

0.100

0 25 50 75 100

Absolute edge weight difference

D
en

si
ty

(a) X0X motifs.

0.000

0.025

0.050

0.075

0.100

0 25 50 75 100

Absolute edge weight difference

D
en

si
ty

(b) XXX motifs.

Figure 5.7: Absolute differences in motif edge weight.

The results indicate that X0X and XXX motif instances have similar absolute edge weight
differences. Approximately 9% of all X0X and XXX motif instances have an absolute edge
weight difference between 1 and 10. Therefore the majority of X0X and XXX motif instances
have relationships of similar strength. This could indicate that firms in XXX and X0X motif
instances have similar functions in their supply chains. This can possibly be investigated further
in future work.

Relationship between absolute difference and minimum edge weights

When a motif instance has an absolute edge weight difference between 1 and 10, it gives no
indication of the value of the minimum edge weight: the minimum may be 1 or it may be 1,000.
It may be that the smaller the absolute edge weight difference, the lower the minimum edge
weight of the motif instance. There may also be an inverse relationship, or none at all.

The purpose of this analysis is to determine the relationship between the absolute difference
in edge weight and the minimum edge weight of motif instances. For each motif instance, its
absolute difference in edge weight is plotted against its minimum edge weight on a log-log scale
in Figure 5.8. For both X0X motif instances (Figure 5.8(a)) and XXX motif instances (Figure
5.8(b)), there exist many instances with low minimum edge weights with various absolute edge
weight differences. As the minimum edge weight of X0X motif instances increases, it seems that
most of the motif instances have an absolute edge weight difference between 10 and 100. As
the minimum edge weight of the XXX motif instances increase, most of the motifs gravitate
towards a larger absolute edge weight difference.

There would be no motif instances identified in the freight complex network if there were
no relationships and freight movements between the firms in the network. Therefore the firm
relationships play an important role in motif formation, and these relationships are studied next.

57

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(a) X0X motifs. (b) XXX motifs.

Figure 5.8: Motif absolute edge weight difference and minimum edge weight on a log-log scale.

5.2.2 Edge-level analysis

Transport cost is one of the major expenditures when it comes to supply chain management.
There are many ways to decrease transport costs, such as load consolidation or milk runs.
Another way, albeit more extreme, is to decrease the distance that freight vehicles have to travel
by moving closer to important suppliers or customers or by using intermediary storage facilities.

Freight trip frequency and distance

When two firms have strong relationships with each other, there will be a lot of freight traffic
between them, increasing the transport costs. Therefore it would make sense for these firms to
be located close to each other. Firms with weaker relationships will not have as much freight
traffic between them, and can therefore afford to travel longer distances. Therefore the stronger
the relationship between firms, the more crucial the distance between them.

This edge-level analysis determines the relationship between the number of direct freight
trips and the distance travelled by freight vehicles. For each edge in an X0X or XXX instance,
its weight and distance are determined. Edge distance is calculated as the Euclidean distance
between the firms of that edge. The edge weights and edge distances are plotted in Figures
5.9(a) and 5.9(b). The x-axes are plotted on log scales to improve the readability of the graphs,
and each data point is shown as a slightly transparent circle, therefore darker circles indicate
that multiple edges have similar edge weights and distances.

For X0X motif instances, most edge weights lie between 10 and 1,000, with most of the
distances less than 10 kilometres. This translates to between one direct freight trip every second
day, and 15 direct freight trips per day. 15 direct freight trips per day is an incredible amount
of freight movement, adding up to at least 1,500 kilometres travelled per day (if return trips are
not taken into account).

For XXX motif instances, there are many edges with low edge weights (less than 10, which
is approximately one direct freight trip every 10 days). Since the number of freight trips are
very low, it is not crucial for the distance travelled to be low. For the rest of the edges, the
distances seem to decrease slightly as the edge weight increases.

Trend lines are fitted to Figures 5.9(a) and 5.9(b). The X0X edge weights increase slightly

58

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

as edge distances increase, increasing transport costs. Firms in XXX motif instances are located
closer to each other when there are more freight trips between them. Therefore firms in XXX
motif instances apply the concept of decreasing the distance travelled when there is a lot of
freight movement between them, reducing the total transport cost. There are, however, some
XXX motif instances that are outliers: they have high edge weights and long edge distances.
The highest edge weight is 1,157 with an edge distance of 25.9 kilometres. Travelling this far so
frequently indicates areas for improvements. These outlier firms can be used by research teams
that wish to study firms who’s freight vehicles often travel long distances, or when implementing
policies regarding excessive freight trips.

(a) X0X motifs. (b) XXX motifs.

Figure 5.9: Motif instance edge weights versus distances.

The edges studied in these analyses have two firms connected to their endpoints. To gain
more detailed insight into the motif instances, the next analyses will focus on these firms as
individuals.

5.2.3 Node-level analysis

In this dissertation degree centrality measures the number of relationships a firm has with other
firms. If a firm has many suppliers and customers, it can be considered important, because it
can interact with many firms. This concept can be extended to motif instances: if a firm appears
in many motif instances, it can be considered important because it forms part of multiple tightly
bounded groups of firms. It is postulated that a firm with a high degree centrality will also occur
in many motif instances, because the more connections a firm has, the more motif instances it
can appear in.

Ranking firms by motif counts

One way to quantify the importance of a firm is by counting the number of motif instances it
appears in, referred to as its motif count. The motif counts are determined for each firm and
are ranked from highest to lowest. The distribution of X0X motif counts are shown in Figure
5.10(a), and that of XXX are shown in Figure 5.10(b). The six most important firms are labelled
in each figure. The highest motif count for X0X is almost 125,000 for a brewery, while that of

59

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

XXX is approximately 5,000 for a group of consolidation and distribution centres. The top 10
firms, along with their motif counts, are listed in Table 5.2.

●

●

●

●

●
●

●

●

●

●●
●●●●●●●●●
●●●
●●

Brewery (2314)

Truck stop 1 (1309)

Consolidation & distribution (1351)

Shopping centre 1 (630)

Truck stop 2 (899)

Consolidation & manufacturing (1478)

0

25000

50000

75000

100000

125000

0 500 1000 1500 2000 2500

Facility rank

M
ot

if
co

un
t

(a) X0X motifs.

●

●

●

●

●

●

●
●
●●●●●

●
●●
●

●●
●
●●
●
●●

●●●●●●●●●●●
●●●●●●●●
●●●
●

●●●●●●
●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●

Consolidation & distribution (1351)
Truck stop 1 (1309)
Shopping centre 1 (630)

Consolidation & manufacturing (1478)

Shopping centre 2 (62)

Truck stop 2 (899)

0

1000

2000

3000

4000

5000

0 500 1000 1500 2000

Facility rank

M
ot

if
co

un
t

(b) XXX motifs.

Figure 5.10: The number of motifs each firm appears in.

Table 5.2: The firms that occur in the most X0X and XXX motif instances.

Ranking X0X motifs XXX motifs

Firm Motif
count

Degree
ranking

Firm Motif
count

Degree
ranking

1 2314 122,785 2 1351 5,045 3
2 1309 93,149 1 1309 4,796 1
3 1351 56,324 3 630 4,574 4
4 630 47,567 4 1478 3,857 7
5 899 38,650 5 62 3,735 8
6 1478 37,581 7 899 3,417 5
7 1636 32,625 6 269 3,020 19
8 62 29,304 8 2141 2,969 9
9 1645 26,777 12 1636 2,926 6

10 1695 24,071 10 2314 2,891 2

One intuitively knows that firms such as shopping centres, truck stops, and consolidation
centres will attract a lot of freight movement. The results indicate these type of firms are
important to the network as a whole, since they occur in the most number of motifs. If something
were to happen to one of these firms, thousands of other firms will be impacted.

It is interesting to see that five of the top six firms are the same for both X0X and XXX
motif instances. These are two truck stops (1309 and 899), a shopping centre (630), a group
of consolidation and distribution centres (1351), as well as a group of consolidation centres and
manufacturing plants (1478). Therefore if a firm appears in a lot of X0X motif instances, it will
likely also appear in a lot of XXX motif instances.

The motif count distributions are shown on log-log scales in Figure 5.11. The null hypothesis
is that these distributions follow a power law (with few firms that have very high motif counts,

60

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

and many firms that have less motif counts). The goodness-of-fit method proposed by Clauset
et al. (2009) is used to test this hypothesis. When a distribution’s p-value is greater than 0.1 it
is considered to follow a power law. The goodness-of-fit test is performed on both distributions,
and it is found that pX0X = 0.16 and pXXX = 0. Therefore only the X0X distribution in Figure
5.11(a) follows a power law. The dashed line indicates that xmin = 1, 744, which is the value
above which the X0X motif counts follow a power law.

●

●

●
●

● ●
●

●
●

●●
●●●
●●●
●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●

●●●●●●

●●●●●●●●●●100

101

102

103

104

105

100 101 102 103

Facility

M
ot

if
co

un
t

(a) X0X motifs.

● ● ●

● ●
●

● ● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●
●●●
●●

●●●

●●●

●●●

●●

●●●100

101

102

103

100 101 102 103

Facility

M
ot

if
co

un
t

(b) XXX motifs.

Figure 5.11: The number of motifs each firm appears in on a log-log scale.

Similar to node centrality, which determines the importance of nodes in terms of their con-
nectivity to other nodes, the node-level analysis determines the importance of firms in the motif
instances. If a firm appears in many motif instances, it has many tightly bounded relationships
with groups of firms and can be considered a central firm. If something happens to a central
firm, many firms will be impacted, therefore it is important to determine who the central firms
are.

Relating degree centrality to motif count

The ranking of firms according to degree centrality is listed in Table 5.2, and it indicates that
ranking firm importance by motif counts and degree centrality gives the same results. Figure
5.12 shows the motif count ranking of each firm plotted against its ranking according to its
degree centrality on a log-log scale. For both X0X and XXX, the degree centrality of firms is
related to the number of motifs they appear in: the higher the degree centrality, the higher the
motif count of a firm. There is a direct relationship between degree centrality and motif counts.
Therefore motif counts do not have to be calculated to determine firm importance; calculating
degree centrality scores will suffice.

Firm rankings according to number of freight trips

The number of direct freight trips to and from firms are also used to weigh the importance of
firms in motif instances. When a firm receives or makes many deliveries, it is considered to
have a big logistics impact, and is therefore an important actor in the network. This analysis
determines whether considering the different frequencies of freight movements to and from a
firm influences the importance of the firm.

61

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(a) X0X motifs. (b) XXX motifs.

Figure 5.12: The relationship between ranking firms using motif counts and degree centrality
scores.

The importance of firms can also be studied by ranking them according to the minimum,
maximum, and total direct freight trips to and from the firm. Therefore firms are weighed
according to their minimum, maximum, and total edge weight. The purpose of this analysis is
to determine whether the number of freight trips to and from a firm have an influence on the
firm rankings. This may be useful for future studies where edge weights are not available or are
difficult to determine.

Consider the XXX motif with weighted edges in Figure 5.13. Each firm receives freight
trips from two different firms, and makes freight trips towards these two firms. There are a
different number of freight trips made to and from each firm, and therefore each edge is weighted
differently. Each firm in the motif is iterated over and the following is determined:

1. The minimum edge weight connected to this firm in this motif instance.

2. The maximum edge weight connected to this firm in this motif instance.

3. The total edge weight connected to this firm in this motif instance.

Figure 5.13: An XXX motif with edge weights included.

For example, firm A has a minimum score of 1, a maximum score of 11, and a total score of
26, while firm B has a minimum score of 1, a maximum score of 11, and a total score of 16. This
is repeated for all motif instances and each firm score is incremented according to the minimum,
maximum, and total edge weight values.

62

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

It is expected that the minimum, maximum, and total edge weight rankings will not differ
for X0X firms, since these motifs have relatively similar edge weights. However, the absolute
difference in XXX motif edge weights differ a lot, therefore the rankings according to minimum,
maximum, and total edge weights would probably differ. These suppositions are confirmed in
the results shown in Table 5.3. The unweighted rankings (column ‘Unw.’) is the ranking of
firms according to motif counts, shown previously in Table 5.2.

Table 5.3: Facility rankings according to edge weights.

Ranking X0X motifs XXX motifs

Min. Max. Tot. Unw. Min. Max. Tot. Unw.

1 1309 2314 2314 2314 1351 1351 1351 1351

2 2314 1309 1309 1309 1309 1309 1309 1309

3 1351 1351 1351 1351 1478 899 899 630

4 1478 1478 1478 630 899 1716 1716 1478

5 899 899 899 899 1716 1478 1478 62

6 1716 1716 1716 1478 1695 2314 2314 899

7 630 630 630 1636 630 630 630 269

8 1636 1636 1636 62 2314 1695 1695 2141

9 1645 1645 1645 1645 62 62 62 1636

10 1695 1695 1695 1695 738 286 286 2314

For X0X motifs, using minimum, maximum, and total edge weights to rank firms has little
effect on the order of the top 10 firms. The order of the unweighted ranking is very similar to
that of the weighted rankings. Therefore the same rankings will be obtained by both methods.

The minimum, maximum, and total weighted rankings for XXX motifs contain the same
top nine firms in a slightly different order. The maximum and total rankings are exactly the
same, with the minimum ranking differing slightly. When comparing the weighted rankings to
the unweighted rankings, only seven of the top ten weighted firms appear in the unweighted
ranking. Therefore the two different methods of ranking XXX firms result in slightly different
rankings.

For X0X both XXX motif instances, it does not matter which method of ranking firms is
used: whether firms are weighed according to the freight trips to and from them, or whether
they are weighed according to the number of motifs they occur in, the rankings remain very
similar.

5.3 Conclusion

Some motif instances are much more important that others as a result of the large amount
of freight traffic that occur in them. The more freight trips that occur in a motif instance,
the stronger the relationships between the firms. The strength of relationships in X0X motif
instances are very similar, and all firms in X0X motif instances contribute relatively equally to
the amount of freight traffic between them. XXX motif instances, on the other hand, have large
differences in relationship strengths. Therefore XXX motif instances usually have two dominant
firms (between which the strong relationship exists), and the remaining weaker firm. As the
relationship strength increases in XXX motif instances, the distance between the firms decrease,
but the same cannot be said for X0X motif instances.

The ranking of firms can be done in a number of different ways: by counting the number
of motif instances a firm appears in, by weighing the importance of a firm according to the
number of freight trips to and from the firm, or by simply using degree centrality. These three
methods result in very similar firm rankings, since motif counts are shown to be directly related

63

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

to motif counts. The contribution of these results are discussed in the next chapter, along with
recommendations for future work.

64

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 6

Conclusion

In this dissertation the presence of 3-node motifs in a complex network of freight movements
was investigated. A motif is a subgraph that occurs significantly more in the original network
than it does on average in random networks with the same degree distribution. The research
questions posed in this dissertations were as follows:

1. Can statistically significant motifs be identified in a complex network of freight
movements?

2. Which firms frequent these patterns of interconnections?

This dissertations showed that it is possible to identify statistically significant motifs in a
complex network of freight movements. The most significant relationships that occur between
three firms are two and three reciprocal relationships. The firms that often frequent these
significant patterns were also identified, and a brewery and truck stop frequently appeared in
the results. This has implications for future work, which is discussed in Section 6.2.

6.1 Contribution

To address the research questions, the optimal clustering parameter configuration was deter-
mined, and this is the first contribution of this dissertation. The second contribution is the
implementation of a number of algorithms in order to use ISMAGS to identify motifs in the
freight complex network. These Java classes can be used in future work where ISMAGS is used
to identify motifs. A number of insights were gained through the results and indicated different
avenues of future research. These contributions are discussed further in the following sections.

6.1.1 Determining optimal clustering parameters

The clustering parameters have an impact on how firms are identified as nodes in the complex
network, therefore it is crucial to use clustering parameters that are visually accurate, but also
result in a complete complex network. Therefore the multi-objective optimisation performed in
this dissertation is of critical importance. From this analysis, it was determined that using either
clustering parameter configuration γ = (10, 10) or γ = (20, 20) results in an optimal complex
network. Therefore either of these clustering parameter configurations can be used in future
work.

6.1.2 Algorithms

A number of algorithms, listed in Table 6.1, were implemented in Java to use ISMAGS in this
dissertation. The matching algorithm was implemented in Algorithm 2 to generate random
networks with the same degree sequence as the freight complex network. The edge lists of the

65

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

freight complex network and all random networks were split into one- and bi-directional edges by
implementing Algorithm 12. The motif specifications, where an A represents a one-directional
edge, and an X represents a bi-directional edge, were generated from adjacency matrices using
Algorithm 11.

When ISMAGS is called, it only takes one subgraph as input, and can only look for this
subgraph in the run. Therefore Algorithm 13 was implemented so that ISMAGS could be called
iteratively for a list of subgraphs.

Before subgraph counts were determined, some of the motif instances had to be filtered.
ISMAGS handles a ‘0’ edge in a motif specification as an edge that may or may not exist, but
in this dissertation a ‘0’ edge must indicate the absence of an edge. Therefore Algorithm 14 was
implemented to ensure that all subgraph instances with a ‘0’ edge in their motif specification
did not contain an edge in the ‘0’ position.

Table 6.1: Algorithms implemented in Java for this dissertation.

Algorithm Purpose

Algorithm 2 Generate random networks using the matching algorithm
(used in Chapter 5).

Algorithm 11 Generate custom motif specifications from adjacency matri-
ces.

Algorithm 12 Split network edges into one- and bi-directional edges and
write to separate files.

Algorithm 13 Iteratively call ISMAGS for different motif specifications and
different networks.

Algorithm 14 Ensure that motif instances containing a ‘0’ in their motif
specifications do not have an edge in the ‘0’ position.

Algorithm 15 Assign edge weights to all motif instances.

6.1.3 Significance of results

It was determined that three firms with two (X0X) or three (XXX) reciprocal relationships be-
tween them occur significantly more in the freight complex network than on average in the ran-
dom networks. There are more one-directional than bi-directional edges in the freight complex
network, but despite this fact, the bi-directional edges form the significant patterns. Therefore
these relationships should be focused on when studying firm relationships in the freight complex
network.

If a research study must be conducted on groups of firms that have similar relationship
strengths between them, firms in X0X motif instances should be studied. On the other hand, if
the research must focus on groups of firms with one dominant relationship, firms in XXX motif
instances should be studied.

X0X firms that have strong relationships with each other, but are located far from each
other, can be identified from the results of this dissertation. These firms incur a lot of transport
costs which may be avoided if dedicated supply chain improvements are implemented.

The central firms that were identified using motif counts are extremely important to the
health of the entire complex network. If new policies or regulations are being considered, these
firms should be included in the discussions, because they will be impacted greatly by any major
decisions. The central firms have immense power in the network, and can get the remaining
firms on board regarding the policies or regulations. The central firms can also be included in
the decision-making process when it comes to new policies and regulations. They can represent
the interests of the firms in the network, and bring a different perspective to discussions.

66

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Central firms in the network can disseminate information fast through the network since they
are connected to many other firms. It was found that central firms also form part of central
motifs. These relationships can be exploited by disseminating new information through these
central firms, who will spread the information through their relationships with other firms.

6.2 Future work

The results in this dissertation are by no means the silver bullet when it comes to analysing
motifs in a supply chain context. It has revealed further areas of interest that can prove useful
for supply chain researchers.

6.2.1 Imposing edge weight criteria

According to the definition of the freight complex network, an edge is created when a direct
freight trip occurs between two firms. Since the purpose of the freight trip is unknown, some of
the infrequent trips may have occurred without an actual relationship existing between the two
firms. Also, if the edge weight in one direction is 500, and the reciprocal edge only has an edge
weight of 10, should this edge really be considered as bi-directional? Future work can therefore
address the effect that different definitions of bi-directional edges have on the resulting network.
For example, bi-directional edges must have a minimum absolute difference of 10, otherwise it
is considered one-directional.

6.2.2 Studying the relationships between firm rankings and node centrality
scores

The results show that there is a relationship between motif counts and degree centrality scores of
firms. In the proposed future work, this relationship can be studied rigorously and systematically.
There may also be relationships with other centrality scores which can also be investigated. This
may have a big impact on how network analyses are performed in a supply chain context in
subsequent studies.

6.2.3 Determining the industries to which firms belong

Firms in motif instance can be grouped into different industry classes. If these industries are
determined, the X0X and XXX motif instances can be grouped further according to the indus-
tries they form part of, and analyses can be performed to see if some motif instances behave
differently when they form part of different industries.

6.2.4 Determining commodity flow

The reciprocal relationships between firms in motifs can be studied in much greater detail. The
commodity flow between firms can be determined when relationships are reciprocated. One
would expect a large number of empty returning freight trips, and this could indicate areas of
improvement in supply chains, since empty truck trips are a wasteful expenditure. It is also
possible that there is commodity flow in both directions between firms in motifs, and that these
commodities could differ greatly from each other. The data collected on commodity flow can
then be used in freight models, contributing significantly to the literature surrounding freight
modeling.

6.2.5 Comparing the supply chains of X0X and XXX firms

The supply chain structure of firms in similar motifs can be studied to determine if there is any
overlap. For example, do firms in X0X motifs use third party logistics companies to transport

67

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

their goods, while firms in XXX motifs use their own fleets? Or do firms in X0X use larger
freight vehicles, while firms in XXX use smaller freight vehicles? To answer these question will
require a great deal of surveying, since there are thousands of firms that form part of the X0X
and XXX motif instances. To limit the scope of this study, the most central X0X and XXX
firms, as identified by the results of this dissertation, can be used as subjects for this proposed
study.

68

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Bibliography

Barabási, A.-L. (2007). The architecture of complexity. Control Systems, IEEE, 27(4):33–42.

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science,
286(5439):509–512.

Battini, D., Persona, A., and Allesina, S. (2007). Towards a use of network analysis: quantifying
the complexity of Supply Chain Networks. International Journal of Electronic Customer
Relationship Management, 1(1):75–90.

Bellamy, M. and Basole, R. (2013). Network analysis of supply chain systems: A systematic
review and future research. Systems Engineering, 16(2):235–249.

Berka, T. (2012). The Generalized Feed-forward Loop Motif: Definition, Detection and Sta-
tistical Significance. In Proceedings of the 3rd International Conference on Computational
Systems-Biology and Bioinformatics, volume 11 of Procedia Computer Science, pages 75 – 87.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U. (2006). Complex networks:
Structure and dynamics. Physics Reports, 424(4–5):175–308.

Borgatti, S. P. and Li, X. (2009). On social network analysis in a supply chain context. Journal
of Supply Chain Management, 45(2):5–22.

Breitkreutz, A., Choi, H., Sharom, J. R., Boucher, L., Neduva, V., Larsen, B., Lin, Z.-Y.,
Breitkreutz, B.-J., Stark, C., Liu, G., et al. (2010). A global protein kinase and phosphatase
interaction network in yeast. Science, 328(5981):1043–1046.

Castro, N. C. and Azevedo, P. J. (2012). Significant motifs in time series. Statistical Analysis
and Data Mining: The ASA Data Science Journal, 5(1):35–53.

Chen, L., Qu, X., Cao, M., Zhou, Y., Li, W., Liang, B., Li, W., He, W., Feng, C., Jia, X.,
and He, Y. (2013). Identification of breast cancer patients based on human signaling network
motifs. Scientific reports, 3:3368. doi: 10.1038/srep03368.

Choi, T. Y., Dooley, K. J., and Rungtusanatham, M. (2001). Supply networks and complex
adaptive systems: Control versus emergence. Journal of Operations Management, 19:351–
366.

Choi, T. Y. and Hong, Y. (2002). Unveiling the structure of supply networks: Case studies in
Honda, Acura, and DaimlerChrysler. Journal of Operations Management, 20:469–493.

Clauset, A., Shalizi, C. R., and Newman, M. E. (2009). Power-law distributions in empirical
data. SIAM review, 51(4):661–703.

Conway, D. (2015). Social network analysis in R. New York City R User Group Meetup
Presentation. Supporting code available online at https://github.com/drewconway/ZIA/

tree/master/R/SNA%20in%20R%20Talk%20-%20Supporting%20Code. (Accessed 8 August).

69

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

https://github.com/drewconway/ZIA/tree/master/R/SNA%20in%20R%20Talk%20-%20Supporting%20Code
https://github.com/drewconway/ZIA/tree/master/R/SNA%20in%20R%20Talk%20-%20Supporting%20Code

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems:1695. Available online at http://igraph.org. (Accessed 20
May 2015).

Demeyer, S., Michoel, T., Fostier, J., Audenaert, P., Pickavet, M., and Demeester, P. (2013). The
Index-Based Subgraph Matching Algorithm (ISMA): Fast Subgraph Enumeration in Large
Networks Using Optimized Search Trees. PloS one, 8(4):e61183.

Fortin, S. (1996). The graph isomorphism problem. Technical Report 96-20, University of
Alberta, Edomonton, Alberta, Canada.

Frankenstein, Z., Alon, U., Cohen, I. R., et al. (2006). The immune-body cytokine network
defines a social architecture of cell interactions. Biology Direct, 1(32):1–15. Available online
at http://www.biology-direct.com/content/1/1/32. (Accessed 30 August 2015).

Free Software Foundation (2015). GCC, the GNU Compiler Collection. Available online at
https://gcc.gnu.org/. (Accessed 1 June).

Free Software Foundation (2015). The GNU Make Manual, 0.73 edition. Available online at
https://www.gnu.org/software/make/manual/. (Accessed 10 August).

Galaskiewicz, J. (2011). Studying supply chains from a social network perspective. Journal of
Supply Chain Management, 47(1):4–8.

Houbraken, M. (2015). ISMAGS. GitHub repository. Available online at https://github.com/
mhoubraken/ISMAGS. (Accessed 20 February).

Houbraken, M., Demeyer, S., Michoel, T., Audenaert, P., Colle, D., and Pickavet, M. (2013). The
Index-Based Subgraph Matching Algorithm with General Symmetries (ISMAGS): Exploiting
symmetry for faster subgraph enumeration. PloS one, 9(5):e97896.

Iturria-Medina, Y. (2013). Anatomical brain networks on the prediction of abnormal brain
states. Brain Connectivity, 3(1):1–21.

Jackups, R., Cheng, S., and Liang, J. (2006). Sequence Motifs and Antimotifs in β-Barrel
Membrane Proteins from a Genome-Wide Analysis: The Ala-Tyr Dichotomy and Chaperone
Binding Motifs. Journal of Molecular Biology, 363(2):611–623.

Joubert, J. W. and Axhausen, K. W. (2011). Inferring commercial vehicle activities in Gauteng,
South Africa. Journal of Transport Geography, 19:115–124.

Joubert, J. W. and Axhausen, K. W. (2013). A complex network approach to understand
commercial vehicle movement. Transportation, 40(3):729–750.

Joubert, J. W. and Meintjes, S. (2015a). Computational considerations in building inter-firm
networks. Transportation, 42(5):857–878.

Joubert, J. W. and Meintjes, S. (2015b). Repeatability & reproducibility: Implications of using
GPS data for freight activity chains. Transportation Research Part B: Methodological, 76:81–
92.

Kashtan, N., Itzkovitz, S., Milo, R., and Alon, U. (2004). Efficient sampling algorithm for esti-
mating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11):1746–
1758.

Katebi, H., Sakallah, K. A., and Markov, I. L. (2012). Graph Symmetry Detection and Canonical
Labeling: Differences and Synergies. In Voronkov, A., editor, Turing-100. The Alan Turing
Centenary, volume 10 of EPIC, pages 181–195, Manchester, UK.

70

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://igraph.org
http://www.biology-direct.com/content/1/1/32
https://gcc.gnu.org/
https://www.gnu.org/software/make/manual/
https://github.com/mhoubraken/ISMAGS
https://github.com/mhoubraken/ISMAGS

Kavurucu, Y. (2015). A comparative study on network motif discovery algorithms. International
Journal of Data Mining and Bioinformatics, 11(2):180–204.

Kim, Y., Choi, T. Y., Yan, T., and Dooley, K. (2011). Structural investigation of supply
networks: A social network analysis approach. Journal of Operations Management, 29(3):194–
211.

Liu, X. (2011). Applications of complex network science. PhD thesis, The Hong Kong Polytechnic
University. Available online from http://hdl.handle.net/10397/5704. (Accessed 3 July
2015).

Mari, S. I., Lee, Y. H., and Memon, M. S. (2015). Complex network theory-based approach
for designing resilient supply chain networks. International Journal of Logistics Systems and
Management, 21(3):365–384.

McKay, B. D. (1981). Practical graph isomorphism. Congressus Numerantium, 30:45–87.

Meintjes, S. (2013). Multi-objective optimisation of a commercial vehicle complex network.
Mini-Dissertation (BEng), University of Pretoria, South Africa. Available online at http:

//hdl.handle.net/2263/33499. (Accessed 15 August).

Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., and
Alon, U. (2004). Superfamilies of evolved and designed networks. Science, 303(5663):1538–
1542.

Milo, R., Kashtan, N., Itzkovitz, S., Newman, M., and Alon, U. (2014). On the uniform
generation of random graphs with prescribed degree sequences. Available online at http:

//0-arxiv.org.innopac.up.ac.za/pdf/cond-mat/0312028.pdf. (Accessed 6 June 2015).

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002). Network
motifs: Simple building blocks of complex networks. Science, 298(5594):824–827.

Min, H. and Zhou, G. (2002). Supply chain modeling: Past, present and future. Computers &
Industrial Engineering, 43(1):231–249.

Nethercote, N. and Seward, J. (2007). Valgrind : A framework for heavyweight dynamic binary
instrumentation. In ACM Sigplan notices, volume 42, pages 89–100. ACM.

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review,
45:167–256.

Newman, M. E. J. (2008). The mathematics of networks. The New Palgrave Encyclopedia of
Economics, 2:1–12.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Ribeiro, P. (2011). Efficient and scalable algorithms for network motifs discovery. PhD the-
sis, Universidade do Porto. Available online at http://www.dcc.fc.up.pt/~pribeiro/

publications/pribeiro-phd-2011.pdf. (Accessed 22 April 2015).

Ribeiro, P. (2015.). gtrieScanner - Quick Discovery of Network Motifs. Available online at
http://www.dcc.fc.up.pt/gtries/. (Accessed 5 March).

Ribeiro, P. and Silva, F. (2010). G-tries: An efficient data structure for discovering network
motifs. In Proceedings of the 2010 ACM Symposium on Applied Computing, pages 1559–1566.
ACM.

71

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://hdl.handle.net/10397/5704
http://hdl.handle.net/2263/33499
http://hdl.handle.net/2263/33499
http://0-arxiv.org.innopac.up.ac.za/pdf/cond-mat/0312028.pdf
http://0-arxiv.org.innopac.up.ac.za/pdf/cond-mat/0312028.pdf
http://www.dcc.fc.up.pt/~pribeiro/publications/pribeiro-phd-2011.pdf
http://www.dcc.fc.up.pt/~pribeiro/publications/pribeiro-phd-2011.pdf
http://www.dcc.fc.up.pt/gtries/

Schilling, M. A. and Phelps, C. C. (2007). Interfirm collaboration networks: The impact of
large-scale network structure on firm innovation. Management Science, 53(7):1113–1126.

Schreiber, F. and Schwöbbermeyer, H. (2005). Frequency concepts and pattern detection for
the analysis of motifs in networks. In Transactions on Computational Systems Biology III,
volume 3737 of Lecture Notes in Computer Science, pages 89–104. Springer Berlin Heidelberg.

Slota, G. M. and Madduri, K. (2014). Complex network analysis using parallel approximate motif
counting. In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International,
pages 405–414. IEEE.

Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825):268–276.

Tran, N., Mohan, S., Xu, Z., and Huang, C.-H. (2015). Current innovations and future challenges
of network motif detection. Briefings in Bioinformatics, 16(3):497–525.

University of Koblenz-Landau (2015). The Koblenz Network Collection. Available online at
http://konect.uni-koblenz.de/. (Accessed 12 August).

Wasserman, S. and Faust, K. (1994). Social network analysis: Methods and applications, vo-
lume 8. Cambridge University Press.

Wen, L., Shi, Y., and Wang, L. (2013). The modeling and simulation of supply chain based on
directed complex network. Journal of Information & Computational Science, 10(18):6085–
6092.

Wernicke, S. (2006). Efficient detection of network motifs. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics (TCBB), 3(4):347–359.

Wernicke, S. and Rasche, F. (2006). Fanmod : a tool for fast network motif detection. Bioinfor-
matics, 22(9):1152–1153.

Wong, E., Baur, B., Quader, S., and Huang, C.-H. (2012). Biological network motif detection:
Principles and practice. Briefings in Bioinformatics, 13(2):202–215.

Wu, G., Harrigan, M., and Cunningham, P. (2012). Classifying Wikipedia articles using network
motif counts and ratios. In Proceedings of the 8th Annual International Symposium on Wikis
and Open Collaboration, page 12, Linz, Austria. ACM.

Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., and Terveen, L. (2004). Discovering Personal
Gazetteers: An Interactive Clustering Approach. In Proceedings of the 12th Annual ACM
International Workshop on Geographic Information Systems, pages 266–273. ACM.

72

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

http://konect.uni-koblenz.de/

Appendix A

Discovering three-node subgraphs

Motif discovery is illustrated in Chapter 1 using a network and three-node subgraphs. This
appendix illustrates all possible subgraph instances that can be found in the network in Figure
1.2.

Figure A.1 shows all possible i = 1 subgraph instances. The six i = 2 subgraph instances
are shown in Figure A.2. There are seven i = 3 subgraph instances, which are shown in Figure
A.3. The two i = 4 subgraph instances are shown in Figure A.4. There are no i = 5 subgraph
instances in this network, but two i = 6 subgraphs are shown in Figure A.5. The last two
subgraph instances are that of i = 7, and are shown in Figure A.6. There are no other subgraph
instances that can be identified in this network.

(a) (b)

(c) (d) (e)

Figure A.1: Identifying all i = 1 subgraph instances in a network.

73

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(a) (b) (c)

(d) (e) (f)

Figure A.2: Identifying all i = 2 subgraph instances in a network.

(a) (b) (c)

(d) (e) (f) (g)

Figure A.3: Identifying all i = 3 subgraph instances in a network.

(a) (b)

Figure A.4: Identifying all i = 4 subgraph instances in a network.

74

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

(a) (b)

Figure A.5: Identifying all i = 6 subgraph instances in a network.

(a) (b)

Figure A.6: Identifying all i = 7 subgraph instances in a network.

75

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Appendix B

Comparing G-Tries and ISMAGS
quantitatively

The following figures show the results from Chapter 3 on separate y-axes. Figure B.1 shows that
each algorithm follows the same trend, irrespective of the size of the subgraphs. The memory of
ISMAGS remains relatively similar as the size of the networks increase, while the memory usage
for G-Tries increases as the size of the networks increases. Figure B.2 shows that the run times
for ISMAGS when 3- and 4-node subgraphs are identified is much higher than the run time of
G-Tries. The run time of ISMAGS is much closer to that of G-Tries when it searches for 5-node
subgraphs. The number of subgraph instances are identified in Figure B.3, and both ISMAGS
and G-Tries has an upward trend as the size of the network increases.

●
●●

●●

●

●
●●

●●

●

●

●

●●

●

●

●
●●

●●

●

●●

●

3−node subgraphs 4−node subgraphs 5−node subgraphs

0.0e+00

5.0e+04

1.0e+05

1.5e+05

0.0e+00

5.0e+04

1.0e+05

1.5e+05

0.0e+00

4.0e+04

8.0e+04

1.2e+05

1.6e+05

15% 30% 45% 60% 15% 30% 45% 60% 15% 30% 45% 60%

Relative network size

M
em

or
y

(k
ilo

by
te

s)

Algorithm
G−Tries
ISMAGS

Figure B.1: Comparing the memory usage on separate y-axes.

76

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

3−node subgraphs 4−node subgraphs 5−node subgraphs

0.00e+00

2.50e−01

5.00e−01

7.50e−01

1.00e+00

1.25e+00

0e+00

1e+00

2e+00

3e+00

0e+00

5e+01

1e+02

15% 30% 45% 60% 15% 30% 45% 60% 15% 30% 45% 60%

Relative network size

R
un

 ti
m

e
(s

)

Algorithm
G−Tries
ISMAGS

Figure B.2: Comparing the run time on separate y-axes.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3−node subgraphs 4−node subgraphs 5−node subgraphs

1e+04

2e+04

0.0e+00

2.5e+05

5.0e+05

7.5e+05

0e+00

1e+07

2e+07

3e+07

15% 30% 45% 60% 15% 30% 45% 60% 15% 30% 45% 60%

Relative network size

N
um

be
r

of
 s

ub
gr

ap
hs

 id
en

tif
ie

d

Algorithm
G−Tries
ISMAGS

Figure B.3: Comparing the number of subgraph instances identified on separate y-axes.

77

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

	Introduction
	Complex networks
	Studying complex network structure
	The value of studying network motifs

	Research design
	Research methodology
	Identifying a motif discovery algorithm
	Building the complex network
	Identifying statistically significant motifs
	Analysing statistically significant motifs

	Document structure

	Literature review
	Analysing complex networks
	Node-level properties of complex networks
	Edge-level properties of complex networks
	Network-level properties of complex networks

	Concepts for motif discovery
	Random network generation
	Graph isomorphism
	Determining subgraph frequencies

	Motif discovery algorithms
	The G-Tries algorithm
	The ISMAGS algorithm

	Conclusion

	Identifying a suitable motif discovery algorithm
	Quantitative comparison of ISMAGS and G-Tries
	Pre-processing for G-Tries
	Pre-processing for ISMAGS
	Comparing by memory usage
	Comparing by run time
	Comparing by the number of subgraphs instances identified

	Qualitative comparison of ISMAGS and G-Tries
	Conclusion

	Building the complex network
	Extracting activity chains
	Identifying the firms where activities were performed
	Adapting activity locations
	Identifying the edges in the complex network
	Determining clustering parameters
	Preliminary analysis of the complex network
	Node-level analysis
	Edge-level analysis
	Network-level analysis

	Conclusion

	Identifying and analysing motifs in the complex network of freight movements
	Identifying statistically significant motifs
	Determining subgraph counts
	Determining statistically significant motifs

	Analysing statistically significant motifs
	Motif-level analysis
	Edge-level analysis
	Node-level analysis

	Conclusion

	Conclusion
	Contribution
	Determining optimal clustering parameters
	Algorithms
	Significance of results

	Future work
	Imposing edge weight criteria
	Studying the relationships between firm rankings and node centrality scores
	Determining the industries to which firms belong
	Determining commodity flow
	Comparing the supply chains of X0X and XXX firms

	Discovering three-node subgraphs
	Comparing G-Tries and ISMAGS quantitatively

