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Abstract Mitochondrial diseases are a heterogeneous

group of disorders characterised by impaired mitochondrial

oxidative phosphorylation system. Most often for mito-

chondrial disease, where no metabolic diagnostic bio-

markers exist, a deficiency is diagnosed after analysing the

respiratory chain enzymes (complexes I-IV) in affected

tissues or by identifying one of an ever expanding number

of DNA mutations. This presents a great challenge to

identify cases to undergo the invasive diagnostic proce-

dures required. An untargeted liquid chromatography mass

spectrometry metabolomics approach was used to search

for a metabolic biosignature that can distinguish respiratory

chain deficient (RCD) patients from clinical controls (CC).

A cohort of 37 ethnically diverse cases was used. Sample

preparation, liquid chromatography time-of-flight mass

spectrometry methods and data processing methods were

standardised. Furthermore the developed methodology

used reverse phase chromatography in conjunction with

positive electrospray ionisation and hydrophilic interaction

chromatography with negative electrospray ionisation.

Urine samples of 37 patients representing two different

experimental groups were analysed. The two experimental

groups comprised of patients with confirmed RCDs and

CC. After a variety of data mining steps and statistical

analyses a list of 12 features were compiled with the ability

to distinguish between patients with RCDs and CC.

Although the features of the biosignature needs to be

identified and the biosignature validated, this study dem-

onstrates the value of untargeted metabolomics to identify

a metabolic biosignature to possibly be applied in the

selection criteria for RCDs.
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1 Introduction

Mitochondrial diseases have a minimum prevalence of 1 in

5,000 live births (Schaefer et al. 2004) and are now con-

sidered the most prevalent group of inherited metabolic

diseases in humans. This group of disorders are charac-

terised by an impaired oxidative phosphorylation (OX-

PHOS) system. The OXPHOS system is primarily

responsible for ATP generation and consists of five enzyme

complexes (complex I–V), of which the first four form the

respiratory chain (RC). Theoretically, respiratory chain

deficiencies (RCDs), a subgroup of mitochondrial diseases,

can give rise to any symptom, in any organ or tissue at any

age, due to a range of nuclear-and mitochondrial DNA

mutations (Munnich et al. 2011). Diagnosing a suspected

mitochondrial disease is a multidisciplinary approach

which generally refers to three levels of investigation

which include: (1) clinical investigations; (2) biochemical

and/or histochemical investigations and (3) molecular

investigations (Rodenburg 2011).
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Enzyme analyses on tissue samples (most often mus-

cle) remain the gold standard to confirm the presence of

an RCD. One of the major diagnostic challenges at hand

is the selection of cases to undergo tissue biopsies. Dif-

ferent criteria has been published to guide clinicians in

the diagnostic process of selecting patients with potential

RCDs to undergo a muscle biopsy (Bernier et al. 2002;

Wolf and Smeitink 2002; Phoenix et al. 2006; Schaefer

et al. 2006). Apart from the hospitalization, anaesthetics

and trauma associated with this procedure, logistic prob-

lems of patients living in remote areas also tend to

complicate the process (Smuts et al. 2010). An adapted

mitochondrial disease criteria (MDC) score was used to

guide in the selection of patients qualifying for a muscle

biopsy. It is important to note that the patients might have

been underscored, because no muscle histology was

available, but the intention was not to use the MDC as a

diagnostic criteria. Biopsies were taken from patients if

the MDC score was C6 or if the clinical phenotype was

highly suggestive of a mitochondrial disease (e.g. two or

more unrelated systems involved without any other

identifiable aetiology). However, it was found that the

sensitivity for the MDC C6 as screening tool was only

60 %, the specificity 66 %, the positive predictive value

74 % and the negative predictive value 51 % under these

specific circumstances (unpublished data). It was realised

that a non-invasive selection criteria should be developed

to identify patients who should undergo a muscle biopsy

to confirm a potential RCD and limit the number of

patients that may have a negative enzyme results from

undergoing a biopsy.

In a study conducted by Smuts et al. (2013) a putative

urinary biosignature for RCD was proposed that consists of

six amino acids (alanine, glycine, glutamic acid, serine,

tyrosine and a-aminoadipic acid), six organic acids

(3-hydroxy-3-methylglutaric acid, 3-hydroxyisovaleric

acid, 3-hydroxyisobutyric acid, 2-hydroxyglutaric acid,

succinic acid and lactic acid) and creatine. However, the

control group used in this and related studies (Reinecke

et al. 2012) consisted of clinically healthy patients. This

signature can therefore not be applied to limit the inclusion

of false positive patients (i.e. patients with clinical features

compatible with a mitochondrial disease, but who will

eventually have a negative enzyme result on the muscle

biopsy) for enzyme analysis. For this reason, the aim of this

study was to use an untargeted LC–MS metabolomics

approach to investigate RCDs and generate a putative

biosignature to use as secondary filter in the selection

process of clinically suspected RCD patients to undergo

muscle biopsy. This metabolic signature should thus be

able to differentiate between patients with a positive

enzyme result in muscle (true positive) and patients with

normal enzyme results in muscle (true negative).

2 Materials and methods

2.1 Ethics statement

The study complied with all applicable institutional

guidelines and terms of the Declaration of Helsinki of 1975

(as revised in 2008) for investigation of human participants

and was approved by the relevant Ethics Committee of the

University of Pretoria (No. 91/98 and amendments).

Informed consent was obtained from the parents of the

patients for the use of urine and muscle samples for

research purposes.

2.2 Sample selection and experimental groups

All samples were obtained from patients referred to the

Paediatric Neurology Unit at the Steve Biko Academic

Hospital, Pretoria, South Africa. The collected urine

samples were stored at -80 �C prior to metabolomic

analyses. Enzyme analyses were performed on muscle

biopsies from the Vastus lateralis muscle of all the

patients who had a MDC score C6 or a clinical phenotype

suggestive of one of the syndromic mitochondrial disor-

ders to confirm the presence or absence of a RCD (Smuts

et al. 2010).

Two different experimental groups formed part of this

metabolomics investigation. The first group consisted of

patients with RCDs which were confirmed on enzyme

level. The second group consisted of clinical controls (CC)

i.e. patients where a RCD was clinically suspected but had

an RC enzyme activity within the reference range. Briefly,

the clinical evaluation comprised of a detailed medical

history, clinical examinations and baseline investigations

including ammonia, creatine kinase, pyruvate and lactate

assessments. Patient specific investigations e.g. chest

X-ray, an electrocardiogram and cardiac sonography were

performed only if it was clinical suspected. When hearing

and visual impairments surfaced, brainstem auditory-

evoked responses and visual evoked potentials were

requested. Nerve conduction studies and electromyogram

was requested if a neuropathy or myopathy was expected.

In cases of suspected central nervous system involvement

computed tomography scan or magnetic resonance imaging

of the brain was performed. Ultimately an MDC score was

calculated for all of the patients to guide if a muscle biopsy

should be taken to confirm a possible RCD (Smuts et al.

2010).

Mitochondrial RC enzymes (CI–IV; EC 1.6.5.3, EC

1.3.5.1, EC 1.10.2.2, EC 1.9.3.1, respectively), pyruvate

dehydrogenase complex (PDHc, EC 1.2.4.1), and citrate

synthase (CS, EC 2.3.3.1) activities were measured in

muscle (Smuts et al. 2010). Patients with confirmed

enzyme deficiencies using the criteria similar to those
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Table 1 Clinical data on the 37 patients included in this study

RC enzyme

deficiency(ies)a
Group Ethnicity Gender Age (years) Clinical profileb MDC scorec

CI RCD A F 4 DD, Dys, M 4

CIII RCD A F 7 DR, CNS, Eye, End 6

CIII RCD A F 1 M, CNS, Eye, L, DR 7

CIII RCD A M 7 M, AID 4

CIII RCD A F 1 DD, Dr, CNS, Eye, M 8

CIII RCD A F 6 CNS, E 4

CIV RCD C M 43 M 4

CI, CII?III RCD A M 2 DD, Eye, PNS, M 7

CI, CIII RCD C M 1 M, CNS, Eye, R, DD, E 8

CI, CIII RCD C F 2 M, End, ENT, G, DD 8

CI, CIII, CII?III, CIV RCD A M 5 DD, DR, Be, CNS, M, G, End 8

CI, CIII, CIV RCD A F 2 M, CNS, Eye, ENT, S, DD 5

CI, CIII, CIV RCD A M 5 DD, DR, Dys, Be, CNS, E, M, End, L, S 5

CI, CIV, CII?III RCD A M 23 DR, CNS, Eye, M, R, Car 8

CII?III RCD A M 8 M 3

CII?III RCD C F 8 DR, CNS, E, M 6

CII?III RCD C F 1 M, CNS, Eye, Skin, DD, DR, E 8

CII?III, CIII RCD A F 1 M, CNS, DD 3

CII?III, CIV RCD C F 17 DR, Be, CNS, M, G 7

CIII, CII?III RCD A M 1 DR, CNS, M 6

CIII, CIV RCD A F 6 M, CNS, End, S, DD, E 8

CIII, CIV RCD C M 6 M, CNS, L, DD, E 6

CIII, CIV RCD C F 7 M, G, Car, DD 4

CIII, CIV RCD A F 6 CNS, Eye, S, DD, DR, Be 6

– Clinical control C M 5 DD, M 4

– Clinical control I M 1 DD, CNS, E, Eye 5

– Clinical control A M 3 DD, CNS, Eye, M 6

– Clinical control C F 2 DD, CNS 2

– Clinical control A M 1 DD, Dys, Eye, M, End 5

– Clinical control A F 4 DD, Be, CNS 5

– Clinical control C F 3 DD, Be, CNS, E, Eye 4

– Clinical control A F 1 DD, CNS, End 6

– Clinical control A F 9 M 4

– Clinical control A F 8 DD, DR, CNS, E, G 6

– Clinical control A F 9 G, E 2

– Clinical control C M 1 DD, CNS, E, End, Eye 6

– Clinical control A F 11 DD, CNS, Eye, PNS, M 4

a An RC enzyme deficiency is defined as a combination of at least two values expressed against different markers (CS, CII and CIV) with at least

one of them equal or lower than the 5th percentile and the second at least equal or lower than the lowest control value provided that the enzyme

activity of the marker is normal. One of these two values must be CS. Any deficient marker (CII or CIV) was excluded for interpretation and if

both CII and CIV were deficient, only CS was used for identification
b Clinical profile includes: Aid auto-immune disorder, BE behavior and emotional abnormalities, Car cardiac involvement, CNS central nervous

system involvement, DD developmental delay, DR developmental regression, Dys dysmorphism (minor and major), E epilepsy, End endocrine

abnormalities, ENT sensori-neural deafness, Eye vision involvement, G gastro-intestinal tract involvement, L liver involvement, M muscle

involvement, PNS peripheral neuropathy, R renal involvement, S skeletal involvement, Skin Skin involvement
c MDC score Mitochondrial Disease Score (Wolf and Smeitink 2002)
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described before (Smuts et al. 2010, Reinecke et al. 2012)

were included in the RCD group and the patients with

clinical features of a RCD but RC enzyme levels within the

reference range were categorised to the CC group. Table 1

summarizes the characteristics of the selected experimental

groups.

2.3 Sample preparation and quality control

Aliquots of the stored urine samples were used for creati-

nine determination. Urine samples were normalised for

creatinine values so that each sample had a final creatinine

content of 0.25 lmol. Briefly, a predetermined volume of

urine (containing 0.25 lmol creatinine) was put in a

microcentrifuge tube along with 10 ll of internal standard

solution (containing 1 mg/ml nor-leucine, 2-acetamido-

phenol and caffeine for positive ESI analysis and nor-leu-

cine, 2-acetamidophenol and 3-phenylbutyric acid for

negative ESI analysis). Twenty microliters acetonitrile was

added, the samples frozen overnight in -80 �C and then

freeze dried. The dried samples were re-dissolved in 100 ll

water for reverse phase LC or 50 ll acetonitrile with 50 ll

water for HILIC separation by incubating them for 30 min

(hydration step) and vortexing for 10 s. Thereafter the

samples were centrifuged 25,0559g for 10 min at 4 �C and

the supernatant transferred to vials fitted with pointed

inserts.

All samples were analysed within a week to limit week-

to-week variation. The samples were randomised and

divided into daily batches so that each batch contained

more or less the same number of patient and control

samples. Quality control (QC) samples (from pooled urine)

were analysed after every 5th sample within each batch. A

secondary QC was incorporated in all batches (after every

tenth sample) which would be used to validate within- or

between batch corrections (if needed). The secondary QC

is identical to the first and was used as a test set that does

not participate in ‘‘modelling’’ of a batch effect (like the

training set).

2.4 Instrumentation and analysis

The samples were analysed using an Agilent 1290 series

LC system coupled to a 6540 Q-TOF mass analyser (Ag-

ilent Technologies, Santa Clara, CA, USA) consisting of a

Micro Vacuum Degasser (G1379B); Binary pump SL

(G1312B); Preparative Autosampler HiP-ALS SL

(G1367C); Thermostat ALS (G1330B) and Thermostatted

Column Compartment SL (G1316B). The auto sampler’s

temperature was set to 4 �C. An injection volume of 5 ll

was used for both reverse phase and HILIC

chromatography.

2.4.1 Reverse phase (C18)

Reverse phase chromatography was performed with a

ZORBAX SB-Aq column (3.5 lm, 2.1 9 150 mm) from

Agilent. The chromatographic gradient started at 100 %

solvent A (water with 0.1 % formic acid) and maintained

for 5 min, before the gradient was increased to 35 % sol-

vent B (acetonitrile with 0.1 % formic acid) over a period

of 25 min. Next the gradient was increased to 70 % solvent

B at 35 min and 100 % at 36 min. The gradient was kept at

100 % solvent B for 3 min and then decreased to 0 %

within 3 min. A post run of 8 min was allowed to ensure

equilibration of the column to give a total run time of

50 min (42 min gradient and 8 min post run) per sample.

The dual ESI source was setup for positive ionisation. The

drying gas temperature was set at 280 �C with a drying gas

flow of 8 l/min and nebuliser pressure of 30 psi. The

Q-TOF was set to scan from 50 to 1,000 m/z. Both centroid

and profile data were stored and the instrument set to

extended dynamic range (2 GHz). A reference solution

containing masses 121.050873 [M?H]? and 922.009798

[M?H]? were constantly infused as accurate mass

reference.

2.4.2 HILIC

HILIC chromatography was performed with a ZORBAX

RRHD HILIC plus column (1.8 lm, 2.1 9 150 mm) from

Agilent. The chromatographic gradient started at 10 %

solvent A (water with 5 mM acetic acid) and maintained

for 2.5 min. After 2.5 min, the gradient was decreased to

50 % solvent B (acetonitrile with 5 mM acetic acid) over

10 min. The gradient was maintained at 50 % solvent B for

5 min and returned to 90 % at 20 min. The gradient was

kept at 90 % for 5 min with a 10 min post run to give a

total run time of 35 min (25 min gradient and 10 min post

run) per sample. The dual ESI source was setup for nega-

tive ionisation. The drying gas temperature was set at

280 �C, the drying gas flow at 8 l/min and the nebuliser

pressure at 30 psi. The Q-TOF was set to scan from 50 to

1,000 m/z. Both centroid and profile data were stored. The

instrument mode was set to extended dynamic range

(2 GHz). A reference solution containing masses 119.036320

[M-H]- and 980.016375 [M?CH3COO]- were constantly

infused as accurate mass reference.

2.5 Data extraction, pre-processing and normalisation

The data was extracted using Agilent’s Mass Hunter

Qualitative software (Version B.05.00) and Mass Profiler

Professional software (Version B.02.02). The molecular

feature extraction and find by ion algorithm were used

according to Agilent’s specifications. Feature annotation or
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identification was not performed during data extraction as

this step was performed only on the list of statistically

important features. Zero filtering was implemented to

eliminate features with extensive missing values, like

compounds linked to diet or medication, which was seen in

only a few urine samples but not in the rest. If a feature was

detected in all but one sample in any experimental group,

the feature remained in the data matrix for further analysis.

Samples were normalised using the mass spectra total

useful signal (MSTUS) normalization method described by

Warrack et al. (2009) as this method corrects for difference

in urine concentration or osmolality without using the

creatinine concentration. It is debatable whether creatinine

values in energy-related diseases (like RCDs) can be used

to express a patient’s urine concentration. Missing values

were replaced after normalisation with half the detection

limit, i.e. 50 % of the minimum value found in the dataset

(Xia et al. 2009; Hrydziuszko and Viant 2012).

A QC coefficient of variation (CV) filter was applied to

the dataset in order to remove compounds that were

unstable during analysis or unreliably measured. The CV of

all the features in the QCs was determined and all features

with a CV [50 % was removed. Variables with low vari-

ance were further filtered using effect size as guidance. For

features to be included in the data matrix, a specific (log

transformed) feature needed to have an effect size (Ellis

and Steyn 2003) d value of 0.3 or more. After the datasets

from the positive and negative ESI were evaluated for any

within- or between batch effects, the datasets was com-

bined before any statistical analysis.

2.6 Data pre-treatment and statistical analysis

Statistical analyses were performed in three phases as

indicated in Fig. 1. In the first phase principal component

analyses (PCA) and support vector machine (SVM) mul-

tivariate ROC modelling were performed on the entire data

matrix before feature selection in order to get an overview

of the data. A scatter plot with a 90 % confidence ellipse

was created to show sample grouping. In the second phase,

various univariate and multivariate statistical tests were

used for feature selection—to identify only a handful of

important features that would allow for best discrimination

between the RCD and CC group.

The three univariate tests used for feature selection were

Student t test, effect size and area under (AU) the receiver

operator characteristic curve (ROC). All features that dif-

fered significantly between the RCD and CC group with

P \ 0.05 or d [ 0.8 or AUC [ 0.7 were considered

important. The three multivariate tests used for feature

selection were partial least square discriminant analysis

(PLS-DA), random forest (RF) and bivariate AU-ROC.

Features with a PLS-DA variable important in projection

(VIP) value (1st coeff) [1 were considered important. For

RF, a combination of 10 features in each node was selected

and a 1,000 trees grown. RF ranks the features according to

their selection in the classification trees that gave good

discrimination. Since this is merely a ranking and not

values with common cut-off thresholds, the top 50 was

considered important. With bivariate ROC, all binary fea-

ture pairs that gave an AU-ROC [0.7 were considered

important.

Fig. 1 Data pre-processing and statistical analysis workflow. The

two data matrices obtained was separately cleaned before all the data

was combined to form a single data matrix. In the first phase of

statistical analyses an overview of the data was used to visualise any

natural separation of the two experimental groups. In the second

phase various statistical tests were used for feature selection that

would allow for best discrimination between the RCD and clinical

control groups. In the third phase, the discrimination power of the

proposed biosignature was tested
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All the important features identified with the above

mentioned tests were listed and the average rank of each

feature across all the tests determined. The top features that

performed best overall based on a ranking plot were then

selected as the potential biosignature that can discriminate

between RCD and CC patients. It should be mentioned that

it is often common practise to use Venn diagrams for final

feature selection when multiple tests are performed.

However, since many of the selected tests complement

each other instead of ‘‘correcting’’ each other, the use of

this average ranking method was preferred. For this reason,

a feature that might have a high P value and do not differ

significantly between the groups, but performed well in two

of the multivariate tests could be included in the signature.

In the third phase of statistical analysis, the discrimi-

nation power of the selected biosignature was tested. PCA

was performed to evaluate grouping of the samples based

solely on the selected features. The performance of the

biosignature was further evaluated with SVM and PLS-DA

multivariate ROC modelling and associated prediction

accuracy, cross-validation and permutation tests. Metabo-

Analyst (Xia et al. 2009; www.metaboanalyst.ca), ROC-

CET web service (Xia et al. 2009; www.roccet.ca) and

Microsoft Excel were used for all statistical analyses. The

data was pre-treated with a generalised logarithm (glog) or

log 2 transformation before any statistical analysis.

2.7 Compound identification

METLIN (http://metlin.scripps.edu) and Human metabolome

database (www.hmdb.ca) were used to identify the features of

the biosignature using the accurate mass, isotope ratios and

salt adduct patterns. Since the selected ionization conditions

for untargeted analysis are not optimal for all compounds

analysed, some fragmentation could occur and these frag-

ments was used to confirm the identification where possible.

Lower mass features that co-eluted with the target features

were checked in the mentioned databases to identify possible

fragments that could confirm the identity of the important

feature. Furthermore, the target features were also regarded as

possible fragments (instead of intact molecular ions) and used

in the fragment search options of these databases. When the

mass of the feature was linked as a fragment of a specific

compound, other co-eluting masses were inspected for sec-

ondary fragments for confirmation as mentioned above.

3 Results and discussion

3.1 Data quality evaluation

The quality of the data was first evaluated before statistical

analysis was performed. Batch effects and time drifts are

one of the main concerns in such studies and were visually

checked by using PCA score plots and univariate scatter-

plots of all the features after data normalization. The data

matrices of the reverse phase-positive ionization analysis

and HILIC-negative ionisation analysis were evaluated

separately. The PCA score plots indicated that all QC

samples, from all the batches, grouped close together

which suggest no batch effect or time-related drifts (results

not shown). Moreover, scatterplots of the feature intensities

sorted by run-order were also clear of pertinent batch

effects. Since the quality of the data was sufficient for

further analysis, no batch- or time-drift corrections were

made to the data. The QC samples were removed and the

data from the positive- and negative ESI assays combined

to yield a single data matrix for statistics (illustrated in

Fig. 1). This was done to exploit potential covariance in

metabolites detected by either method.

3.2 Overview of data before feature selection

The features that remained in the matrix after data clean-up

were analysed to visualise any natural separation regarding

the two relevant experimental groups. The PCA score plot

displayed in Fig. 2a gives an overview of all the features

found in the data matrix before any feature selection. The

smaller cluster of samples represents the CC group. The

RCD group is displayed by the scores that are spread out

across the plot. It is expected that the RCD patient group

would not cluster together tightly due to the diversity found

between patients and because RCDs are a heterogeneous

group of disorders—with any of the four complexes or

combination thereof defective. Even though clear separa-

tion between the experimental groups is not prominent in

this case, the tendency of the groups to cluster separate is

clear. The inclusion of a few RCD samples in the CC

cluster suggests that some of the RCD patients and CC

have a very similar metabolite profile which could be

expected since these controls showed clinical symptoms

usually associated with RCDs.

From a clinical point of view, a ‘‘rule-in’’ approach is

preferred for the development of a biosignature (Pewsner

et al. 2004). This means that the developed signature must

have a 0 % false negative rate but can have a certain per-

centage false positive rate. With this approach, the false

positives (clinical referred controls in this study) with a

good probability of having a RCD would be referred for a

biopsy and enzyme analyses even if it turns out that they do

not have RCDs. As mentioned in the introduction, the aim

of this study was to find a biosignature that would lower the

number of false positive patients being referred for a

muscle biopsy.

Another prerequisite of the biosignature is that it must

be the smallest set of metabolites that have the best
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discrimination power between the groups of interest.

More often than not, diagnosis of other inborn errors of

metabolism is based on this principle where the clinician

monitors only a few metabolites mostly related to the

defective pathway (Xia et al. 2013). However, RCDs do

not result in unique metabolites and influences the

metabolism in a more global manner as the mitochon-

drion can be considered as the hub of metabolism. It is

thus all the small changes collectively that result into the

separation of the experimental groups (Fig. 2a). This was

also confirmed when supervised statistical methods pre-

ferred to use [100 features in discrimination signatures or

models (Fig. 2b). The discrimination power of the eval-

uated signatures by the supervised multivariate statistical

test is shown in ROC curve format in Fig. 2b. The six

curves displayed in Fig. 2b show the discriminant power

of the six models tested by the supervised statistical test.

The closer the ROC moves to the upper left corner, the

higher the overall accuracy of the discrimination model

(and the larger the AUC). Here the results indicate that

the more features the signature contains, the better the

modelling became.

Considering the practical implication of measuring

[100 features to best discriminate patients, a shortlist of

about 2–10 features would be more practical for clinical

testing (Xia et al. 2013). In order to find the smallest bio-

signature that can discriminate between the groups, feature

selection was performed using several univariate and

multivariate tests.

3.3 Univariate and multivariate feature selection

One of the most crucial steps in a metabolomics study is

the accurate selection of biomarker candidates, since it

determines the outcome of the discovery-phase study as

well as the course of validation studies (Christin et al.

2013). The Venn diagrams in Fig. 3 indicate the number of

features that were identified as important by univariate and

multivariate tests, respectively. Univariate tests identified

37 significant features and multivariate tests indicated 110

features of worth. In total, 111 important features were

found with both approaches. The goal was not to use the

Venn diagrams to identify the common features found

between the different tests, but merely to give an illustra-

tion of the amount of features found with the various

methods. Many metabolomics studies consider the features

found in the centre of a Venn diagram as most important.

With this approach, one assumes that the selected tests is

‘‘correcting each other’’ by eliminating false positive fea-

tures. Our approach differed from this common trend as we

assume that the univariate and multivariate tests comple-

ment each other. Next all the features were ranked

according to their importance in the tests. The average rank

of each feature was determined, sorted accordingly and a

graph was constructed (Fig. S1, online supplementary

material) to identify the most suitable features for a

biosignature.

As there is no measure to determine the number of

features in the biosignature, the graph in Fig S1 was used as

Fig. 2 Overview PCA score plot (a) and multivariate ROC (b) before

feature selection. Sample grouping are shown in the PCA with 90 %

confidence ellipses. For ROC, the performance of the top number of

features (#Var) according to SVM with their AUC and confidence

interval (CI) indicated. The discriminant model performed better the

more features it contained
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a guideline. By plotting the average ranking of all the

features, a visible gap between the first 12 features and rest

were found and used as preliminary cut-off. The list of the

top 12 selected features is given in Table 2. The feature’s

annotated name, mass, retention time, separation method,

effect size d value, t test P value, PLS-DA VIP value and

AUC are included in the table. It should be noted that it

was not possible to identify all the features and thus only

putative identifications were given to some of the features.

It can be mentioned that N-succinyl-L-2,6-diaminopimelate

and a tetrapeptide (consisting of Asn, Ser, Ser and His, in

any sequence) were annotated with a high degree of

probability since both databases used for the identification

only returned this match. However, AMP, N-acetylaspar-

tate and oxoglutaric acid were annotated with less confi-

dence since another match from the database was also

possible. In these cases the more commonly detected and

known name was then used in Table 2. The M = 222.1615

feature appears to be a fragment of tetradecanedioic acid

(M = 258.1831). These two mass features were simulta-

neously detected in the mass analyser, along with another

fragment (M = 240.1721) and therefore the software group

them as originating from one compound. After manual

inspection, all three masses were found to be related to

tetradecanedioic acid on the Metlin Spectral database.

However, it was not within the scope of this study to

interpret the origin or reason for the biological variance

between the experimental groups. In such a study, all

compounds that differed significantly should be included in

pathway analysis for a better understanding of the biolog-

ical responses. Furthermore, in order to give a clear bio-

logical interpretation of this feature list, validation of the

compound identities are necessary. Possible validation

steps will be discussed in the concluding section.

3.4 Evaluating the signature’s discrimination power

To verify if this proposed signature of 12 features can be

used to distinguish RCD patients and CC from each other,

PCA and multivariate ROC curves were used. Fig. 4a

shows the PCA score plot of the RCD patients and CC

group when using only the new biosignature. The smaller

clustered group represents the CC group while the larger

cluster represents the RCD patient group. With the use of a

90 % confidence ellipse, four of the CC samples are

included within the RCD patient group classification while

nine were not. As discussed previously, complete separa-

tion of the groups is not essential. The inclusion of these

four patients for muscle biopsies and enzyme analyses is

considerably more effective compared to sending all these

CC for a biopsy.

The discrimination power of the biosignature using

multivariate ROC is shown in Fig. 4b. The AUC of 0.991

with 95 % confidence interval that range between 0.92 and

1 indicates that this signature is both very specific and

sensitive. It can also be noted that this proposed signature

has 98 % sensitivity at 80 % specificity, making this a

statistically valid method for biomarker performance.

Hence, with the ‘‘rule-in’’ clinical approach, this test will

basically include only 20 % false positive cases for biopsy

and enzymatic analysis with basically 100 % of the true

positive cases (similar to what the PCA score plot indi-

cated). The average predicted class probability of each

sample across 100 cross validations are shown in Fig. 4c.

The Monte-Carlo cross validation algorithm used a bal-

anced sub-sampling approach with the classification

boundary at the centre (0.5). Ranging from 0 to 1, a

probability score is calculated. If \0.5, the sample is

classified as CC and[0.5, it is classified as part of the RCD

Fig. 3 Venn diagrams of

important features found by

univariate (a) and multivariate

tests (b), respectively.

Univariate tests identified 37

features of significance while

110 features were found by

multivariate statistics

8



Table 2 The biosignature metabolite markers identified using an LC–MS metabolomics approach

Annotated name Mass RT

(min)

Separation

method

Effect size

(d value)

t test

(P value)

PLS-DA

(VIP)

AUC

1 AMP 347.0616 2.30 RP 0.7450 0.0081 2.0351 0.8782

2 C9H19NO 157.1464 30.3 RP 0.5857 0.0102 2.0162 0.8750

3 C23HNO8S4 546.856 12.7 RP 0.6145 0.0194 1.8464 0.8653

4 N-Acetyl asparagine 174.0641 8.7 HILIC 0.9597 0.0031 2.4327 0.9070

5 Unknown 1 1043.4677 11.97 RP 0.6062 0.0243 1.6806 0.8429

6 N-succinyl-L-L2.6

diaminopimelate

290.1126 26.9 RP 0.6152 0.0473 1.4432 0.7307

7 C16H26O4S 314.1547 24.9 RP 0.4790 0.1097 \1 \0.7

8 Unknown 2 136.1248 27.9 RP 0.7145 0.0034 2.2290 0.8814

9 Fragment of

tetradecanedioic

acid

222.1615 24.7 RP 0.7012 0.0066 2.0527 0.8814

10 C14H24O2S 256.1491 27.67 RP 0.4921 0.0588 \1 \0.7

11 Tetrapeptide 443.1786 21.7 RP 0.7352 0.0143 1.9285 0.8717

12 Oxoglutaric acid 146.0215 2.35 HILIC 0.7882 0.0213 1.7953 0.8589

Fig. 4 PCA score plot (a), multivariate ROC (b) and average

predicted class probability (c) of the proposed signature. Sample

grouping are shown in the PCA with 90 % confidence ellipses. The

ROC performance of the biosignature according to SVM with AUC

and confidence interval (CI) indicated. Near 100 % predicted class

probability of RCDs and clinical referred controls over 100 cross

validations using the 12 features are shown
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group. This result indicates that the biosignature was able

to classify the samples *100 % accurately (on average) in

the 100 cross validation sub-samples of the original data.

The formula for calculating the accuracy are given else-

where (Xia et al. 2013).

Permutation testing was also used to validate the pro-

posed signature performance as another form of cross-

validation. This technique is based on the hypothesis that

this proposed set of biomarkers could have been found

again if every patient or control sample had been randomly

assigned to a different group (Xia et al. 2013). To prove or

disapprove this hypothesis, 1,000 models were permuted,

by randomly assigning each sample to an experimental

group and then using the proposed signature for the clas-

sification of the dummy groups. As a result a reference

distribution (of the null hypothesis) is given to be com-

pared to the correctly assigned model, which leads to a

P value. With a P value \0.05 a randomly permuted out-

come variable has less than 5 % chance to produce a model

of similar performance to the correctly assigned model

(Xia et al. 2013). The proposed signature resulted in a

permutation test value of P \ 0.01, thus by using random

guessing there is\1 % chance to produce the same model

indicating the specificity of the biosignature. The multi-

variate ROC and associated cross validation tests were

performed using SVM as the underlying multivariate

algorithm. To ensure that this test did not have any bias

toward the specific data, PLS-DA was also tested in the

multivariate ROC modelling. The use of PLS-DA produced

the same results.

4 Conclusion

An untargeted LC–MS metabolomics approach was used to

produce a putative urinary biosignature to identify patients

that will most likely have an identifiable RCD deficiency in

muscle. The use of both reverse phase and HILIC chro-

matography (respectively) ensured that hydrophobic and

small hydrophilic compounds (such as organic acids) were

included in the screening and created the opportunity

where covariance in seemingly unlinked metabolites could

be exploited. Although RCD can be classified as an inborn

error of metabolism, it is different in the sense that elec-

trons (found in the ETC) built-up and not metabolites.

Electron carriers such as NADH and FADH accumulate

which leads to numerous other metabolic reactions being

halted or slowed by the lack of sufficient NAD and FAD.

In contrast to previously published papers, this study

focused on metabolic differences between true and false

positive RCD patients instead of comparing true positives

against healthy controls. The challenge was to develop a

non-invasive method to distinguish between patients with

suspected RCD that will eventually have the diagnosis

confirmed on enzyme analysis in muscle and those that will

not have a confirmed RCD. A 12 feature biosignature was

identified that was able to sufficiently distinguish between

these patients groups. Thanks to the high-throughput nature

of web statistical services like MetaboAnalyst, several

complementary univariate and multivariate statistical tests

were used to identify this signature. Follow-up studies are

needed to identify these features (via structural elucidation

and/or standards) after which the validity of these features

as biosignature should be validated in the same sample set

using targeted methods (such as LC-tandem MS). In the

final phase, the biosignature should be validated on a new

sample set and the practical use of the signature explored

with the use of a user-friendly algorithm (for example

logistic regression) where a numeric value would indicate

whether a patient is likely to be diagnosed with a muscle

RCD. However, this study clearly demonstrates the value

of untargeted metabolomics to identify a metabolic bio-

signature to assist in the conformation process of a RCD.
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Supplementary material 

 

 

 

Fig S-1: Scatter plot showing the average ranking of each feature. The gap between the first 12 top ranked 

features and rest were used as (preliminary) cut-off. 
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