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ABSTRACT: A technique for the reduced-cost modeling of microwave filters is presented. Our approach 
exploits variable-fidelity electromagnetic (EM) simulations, and Gaussian process regression (GPR) carried out in 
two stages. In the first stage of the modeling process, a mapping between EM simulation filter models of low and high 
fidelity is established. The mapping is subsequently used in the second stage, making it possible for the final surrogate 
model to be constructed from training data obtained using only a fraction of the number of high-fidelity simulations 
normally required. As demonstrated using three examples of microstrip filters, the proposed technique allows us to 
reduce substantially (by up to 80%) the central processing unit (CPU) cost of the filter model setup, as compared to 
conventional (single-stage) GPR—the benchmark modeling method in this study. This is achieved without degrading 
the model generalization capability. The reliability of the two-stage modeling method is demonstrated through the 
successful application of the surrogates to surrogate-based filter design optimization.
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1. Introduction
Full-wave electromagnetic (EM) analysis has become a

primary design tool of contemporary microwave engineer-

ing. High-fidelity EM simulation ensures accurate design

verification but it is normally computationally expensive.

This might present a bottleneck to carrying out EM

simulation-driven design tasks, such as parametric optimi-

zation, statistical analyses, and robust (e.g., tolerance-

aware) design that require numerous evaluations of the

structure of interest. This is particularly true not only for

conventional optimization techniques, both gradient-based

and derivative free [1, 2], but also for global optimization

sing metaheuristics (e.g., genetic algorithms [3, 4], and

particle swarm optimizers [5]) that usually require a large

number (thousands or more) of high-fidelity EM simula-

tions of the candidate geometries. Rapid development of

computational tools and the presence of massive comput-

ing resources alleviate this difficulty to some extent only.

This is because growing demand for accuracy (e.g., by

including multiphysics and using finer discretization), as

well as the necessity of accounting for various interactions

and couplings between the structure of interest and its

environment (e.g., antenna housing) tend to increase the

computational complexity of the simulation process.

For the reasons elaborated above, fast and yet accurate

models (also referred to as surrogates) become indispensa-

ble in microwave design. Perhaps the most popular way

of creating such models is response surface approxima-

tion, where the surrogate is identified using a (training)

set consisting of suitably selected input–output data sam-

ples. Properly trained response surface models exhibit

good generalization capability, that is, allow for reliable

prediction of the system/device response for the input

parameter vectors that were not used in the training stage.

One of the most powerful approaches for constructing

approximation-based surrogate models is Gaussian process
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regression (GPR) [6]. GPR has been shown to be a partic-

ularly effective modeling technique for performance char-

acteristics such as antenna reflection coefficient and filter

transmission coefficient responses against frequency

[7–9]. Other kernel-based machine learning methods that

have been used in this context include standard support

vector regression, for example, [10], and the more flexi-

ble, GPR-based Bayesian support vector regression [11].

A Gaussian process (GP) is a stochastic process that

generalizes the notion of Gaussian probability distribution

to functions. Due to the Gaussian nature of the distribu-

tion, the calculations necessary in the learning and infer-

ence processes become tractable. Under suitable

conditions, GPs can be considered equivalent to neural

networks, but GPs are generally easier to implement and

interpret—one reason is that training of far fewer parame-

ters (in the order of the dimension of the input vectors) is

required compared to the number of weights in a neural

network (e.g., multilayer perceptron).

A drawback shared by response surface modelling

techniques, including GPR (but also neural networks [12],

support vector regression [13], and radial basis function

interpolation [14]), is the usually large number of training

points necessary to ensure sufficient predictive power of

the model. In a typical setup, a few hundred to several

thousand points might be required, which results in con-

siderable computational overhead related to data acquisi-

tion, normally through massive EM simulations of the

respective microwave structure. In many situations, such

an overhead may be impractical or even prohibitive.

There have been various attempts to reduce the com-

putational cost of creating the surrogate model setup cost.

Adaptive sampling is perhaps the most popular approach,

where the number of training data samples required to

secure sufficient model accuracy is obtained in an itera-

tive process consisting of model identification and subse-

quent generation of new samples using a suitable strategy.

The strategies may be based on the actual modelling error

at the testing locations [15], or the predicted error [16].

The methods described in [15] and [16] are developed to

work as local ones, usually in an optimization context.

Our focus is on the development of global surrogates (to

be used as library models), where accurate prediction over

the entire design space is of concern. Such models can be

used in a wide range of applications, including parametric

optimization or statistical analysis. Another approach to

reduce the computational cost of surrogate model setup

was presented in [17], where only the support vectors of

an initial (global) Bayesian support vector regression

model trained on low-fidelity data were selected for finely

meshed simulation. A 31-to-48 percent reduction in model

setup costs could be achieved without adversely affecting

predictive ability.

In this work, we demonstrate that the central processing

unit (CPU) cost of surrogate model setup can be substan-

tially reduced by means of variable-fidelity EM simula-

tions in combination with GPR. In particular, we propose

a two-stage modeling scheme, where—in the first stage—

we generate by full-wave simulation a low-fidelity (coarse)

training dataset of n points, and naux< n points of the cor-

responding (computationally expensive) high-fidelity (fine)

training set. These naux high-fidelity points are used to

learn a model that maps low-fidelity training targets (either

of Re{S21}, Im{S21}, or |S21|) to the corresponding high-

fidelity ones. The mapping is subsequently used to predict

the remaining n 2 naux high-fidelity targets that were not

simulated. The naux simulated high-fidelity targets and the

n 2 naux predicted ones (together with the input vectors)

form the n-point “approximate” high-fidelity training set.

In the second stage, a final GPR model is constructed

using the latter training set. The proposed two-stage mod-

elling methodology exhibits substantial novelty with

respect to the conventional GPR approach. It not only

blends EM simulations of various level of fidelity into one

surrogate model, but also does it in a parameter-less fash-

ion (in contrast with, e.g., space mapping, SM [18–21]).

While it has recently been applied with good effect to the

modelling of antenna input characteristics [22], this study

shows that the method is general enough to hold for filter

responses too, which can be more challenging to model

due to the sharp transitions explicitly required between, for

example, passband and stopband portions of responses.

The article is organized as follows. In Section II we

provide a brief theoretical overview of GPR following [6],

and describe the two-stage modeling procedure. In Section

III our approach is illustrated using three examples of

microstrip filters. We demonstrate that exploitation of the

knowledge embedded in the low-fidelity model allows for

considerable (up to 80%) computational savings as com-

pared to conventional GPR modelling, and without com-

promising modelling accuracy. Section IV demonstrates

that the two-stage GPR surrogates are sufficiently accurate

to be used for filter optimization within a surrogate-based

optimization scheme involving output SM [19, 21]. Con-

clusions are presented in Section 5.

2. GPR modeling
A. Fundamentals of GPR
This section describes the statistics of GPR along the lines of

[6], and explains how these equations map to filter modeling.

At the heart of GPR lies the multivariate Gaussian

probability distribution. Consider n continuous random

variables f1,. . ., fn with joint probability p(f1,. . ., fn), or

equivalently p(f) with f 5 [f1 . . . fn]. We assume that these

variables are distributed according to the multivariate

Gaussian (normal) distribution [6]:

pðfjm;AÞ5ð2pÞ2n=2jAj21=2
exp 2

1

2
ðf2mÞTA21ðf2mÞ

� �

5Nðm;AÞ
(1)

where f is a multidimensional “point” under the distribu-

tion; m is the mean vector of length n; and A is the covar-

iance matrix of size n 3 n. The shape of the distribution

is determined by A (see, e.g., [23]).
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Consider now regression with GPs (i.e., standard

GPR). We are interested in learning a mapping between

filter geometry dimensions and frequency, and |S21| (or

possibly Re/Im{S21}; for conciseness, we will refer to

|S21| throughout). We start with a training dataset of n
input–output pairs, {(xi,yi) | i 5 1,. . ., n}. The input vec-

tors xi are of dimension P, whereas yi denote the scalar

target responses. Each input vector xi corresponds to a set

of filter geometry parameters and a frequency value

within the range of interest, and each output scalar yi to

the corresponding |S21| value. We also define a test dataset

of n* input–output pairs {(xi*,yi*) | i 5 1,. . ., n*}, that is,

input vectors xi* consisting of previously unseen

geometry-values-and-frequency for which we want to pre-

dict |S21|, and output scalars yi* that are the associated

values of |S21|. These |S21| values are usually not available,

but we generate them to test the model’s predictions.

Under GPR, we model the n training output scalars

(associated with the n input vectors xi) by random varia-

bles [f1 . . . fn]T 5 [f(x1) . . . f(xn)]T, and the n* test output

scalars by random variables [f1* . . . fn*]T 5 [f(x1*) . . .
f(xn*)]T, where f(x) is a GP. A GP is a stochastic process

that results from the generalization of the Gaussian proba-

bility distribution (1) to functions. This happens when the

mean vector m becomes infinitely long, that is, resulting

in a mean function m(x); and the two-dimensional covari-

ance matrix A becomes infinitely large, with entries given

by a covariance function k(x, x0). f(x), which corresponds

to an infinitely long vector, can be seen as a “point”

under this distribution. The mean function has a standard

statistical definition, namely

mðxÞ5E½f ðxÞ� (2)

and the covariance function, which gives the covariance

between outputs f(x) and f(x0) in terms of the associated

inputs x and x0, is defined as [6]

kðf ðxÞ; f ðx0 ÞÞ5kðx; x0 Þ5E½ðf ðxÞ2mðxÞÞðf ðx0 Þ2mðx0 ÞÞ�
(3)

where E(X) is the expected value of the random vari-

able X [note that the actual computation of covariance

functions takes place through (7) and (8), as will be

explained below]. Hence the GP f(x) is a set consisting

of an infinite number of random variables, of which

any finite subset (e.g., the training outputs f 5 [f1 . . .

fn]) has a jointly Gaussian distribution by virtue of the

general properties of the multivariate Gaussian distribu-

tion [6].

Predictions in the GP framework are carried out using

straightforward probability rules applied to Gaussian mul-

tivariate distributions, for example, [6, Appendix A]. A

jointly Gaussian distribution (1) with zero mean vector is

assumed over the n training outputs and the n* test out-

puts, therefore n 1 n* random variables in total. This is

termed the prior distribution, and can be expressed as

f

f*

" #
� N 0;

KðX;XÞ KðX;X�Þ

KðX�;XÞ KðX�;X�Þ

" #!
(4)

Equation (4) states that the random variables contained

in the vector [f f*]T have a multivariate jointly Gaussian

distribution with zero mean and covariance matrix [•]. In

(4), X is a matrix containing the training input vectors in

its columns and X* is a matrix containing the test input

vectors; and K(X, X*) is a n 3 n* submatrix of covarian-

ces evaluated between all possible pairs of n training and

n* test outputs—for example, K12 5 k(f(x1), f(x2*)) 5 k(x1,

x2*). Other submatrices in the covariance matrix in (4)

are similarly defined.

However, the training outputs y are known, that is,

y 5 [y1 . . . yn]). Hence the distribution of the test outputs

conditioned on the known training outputs y can be com-

puted—this is called the posterior distribution (again mul-

tivariate Gaussian), with mean vector p and covariance

matrix R [6]

p5KðX�;XÞKðX;XÞ21
y (5)

R5KðX�;X�Þ2KðX�;XÞKðX;XÞ21KðX;X�Þ (6)

The mean p of the posterior distribution contains the

|S21| predictions, that is, the most likely values of the test

outputs associated with the test input vectors in X*. In

other words, p 5 [|S21|1 |S21|2 . . . |S21|n*] where |S21|1 is the

prediction for test input vector x1*, |S21|2 is the prediction

for x2*, and so on. The diagonal of the covariance matrix

R determines the corresponding predictive variances,

which can be interpreted as the confidence of the model

in its predictions.

The only type of parameterization in the model is

through hyperparameters that determine the mean and

covariance functions. Since the covariance functions

determine the covariance matrices in the prior and poste-

rior probability distributions [cf. (4) and (6)], they are cru-

cial in determining the shapes of these distributions, and

hence the GPs that will be favored by them. This study

considers two covariance functions for calculating the

covariance between two outputs f(xi) and f(xj). The first is

the squared-exponential covariance function with auto-

matic relevance determination (ARD) [6],

kSEðxi; xjÞ5r2
f exp 2

1

2

XP

k51

ðxi:k2xj:kÞ2

s2
k

!
(7)

In (1), xi,k and xj,k are the kth components of input vec-

tors xi and xj, respectively (k 5 1,. . ., P); sk> 0 is the

length-scale parameter that corresponds to component k of

the two input vectors; and r2
f is the signal variance. The

length-scale parameters determine how quickly change

occurs along particular dimensions of the input space. The

second covariance function is the rational quadratic
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function with ARD, which can be considered a scaled

mixture of squared exponential functions with different

length scales [6]:

kRQðxi; xjÞ5r2
f 11

1

2a

XP

k51

ðxi:k2xj:kÞ2

s2
k

!2a

(8)

In (8), a> 0 is the shape parameter, with the remain-

ing symbols defined as for (1). Together, r2
f and the set

of sk in (7) and (8)—as well as a in the case of (8)—

constitute the hyperparameters of the covariance

function.

Training in GPR entails optimizing the hyperpara-

meters, which requires finding the set of hyperparameters

that minimizes the negative log marginal likelihood, usu-

ally by means of gradient-based search. The log marginal

likelihood is defined as [6]

log pðyjXÞ52
1

2
yTK21y2

1

2
log jKj2 n

2
log 2p (9)

Here, K refers to the n 3 n matrix K(X, X), with other

symbols as defined previously. After optimization, the

magnitude of hyperparameter sk will reflect the relative

importance of the kth component of the input vectors: for

example, large values of sk will ensure an insignificant

contribution of that component to the covariance. This

property is referred to as ARD.

The computational requirement for GPR is O(n3) due

to the required inversion of K(X, X) which is of dimension

n 3 n.

B. Two-Stage GPR Modeling
Our objective is to construct highly accurate GPR sur-

rogate models Rs that map geometry (design) variables

and frequency to either (a) the separate real and imag-

inary parts, that is, Re{S21} and Im{S21}) of S21 of the

filter of interest, or (b) |S21| directly. Exploratory

experiments revealed that Filters 1 and 2 (see Section

3) were best modeled using (a), while Filter 3 was

better handled by (b). For the sake of conciseness, we

will only refer to |S21| in the method description

below.

Let us assume that to ensure sufficient model accuracy,

an n-element set of high-fidelity training data (i.e., simu-

lated using a finely discretized mesh) is necessary:

Dfine5 ðxi; yfine;iÞji51; :::; n
� �

(10)

with P-dimensional input vectors

xi5½uT
i foi�T5½u1i u2i ::: uMi foi�T (11)

and scalar targets yfine,i 5 |S21|fine,i. The design vector ui5

½u1iu2i:::uMi�T consists of M adjustable geometry variables

of the filter of interest and foi is the ith frequency sample

in the frequency band of interest; consequently,

P 5 M 1 1.

The cost of generating Dfine, however, may be pro-

hibitively expensive. To address this problem, we adopt

a two-stage modeling approach. It aims at setting up a

final GPR model that is based on a fraction of the high-

fidelity simulations required to set up Dfine but is

almost as accurate as a GPR model trained on the

actual Dfine. The details of the two modeling stages are

as follows.

1. Two-Stage GPR: Stage One. The purpose of this

stage is to “approximate” the expensive fine training data-

set Dfine by a relatively inexpensive dataset Dfine,approx of

the same size; this is accomplished by means of a separate

auxiliary GPR model Raux.

As a first step, we simulate—cheaply—the n input

vectors of Dfine using a coarse discretization, yielding the

dataset

Dcoarse5 ðxi; ycoarse;iÞji51; :::; n
� �

(12)

with xi as before and ycoarse,i 5 |S21|coarse,i. In addition, we

simulate (at high fidelity) a (small) randomly selected

subset of Dfine consisting of naux< n points. Using this

subset of Dfine, we construct a training set Daux for Raux

as follows:

Daux5 ðxaux;k; yfine;kÞj k51; :::; naux

� �
(13)

where the (M 1 2)-dimensional training input vector

xaux;k5½u1k u2k ::: uMk fokjS21jcoarse;k�
T

(14)

is of the form (7) augmented by the associated coarse |S21|

target value from Dcoarse, and the target yfine,k 5 |S21|fine,k

is the corresponding |S21| value from the above subset of

Dfine (recall that Dcoarse and Dfine share the same set of

input vectors; the only difference lies in the meshing den-

sity with which the targets have been obtained). Hence,

we essentially learn a mapping between coarse and fine

|S21| simulations using training data that correspond to

naux specific instances of sets of design variables and fre-

quency (the first M 1 1 elements of the input vector

uaux,k serves to uniquely identify the |S21| values). The

aforementioned mapping represents the correlations

between the coarse and fine model responses. Due to the

fact that both models are physically related (as evaluated

using the same EM solver), the mapping learned for a

limited number of fine training points is likely to be pre-

served across the entire design space.

After training, we use Raux to predict, from their

coarsely simulated counterparts, the n 2 naux fine |S21| val-

ues that were not simulated; we refer to these predicted

targets as ypred,k 5 |S21|pred,k, k 5 (naux11),. . ., n. Taken

together, the naux full-wave simulated fine |S21| target
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values and the n 2 naux predicted ones yield—along with

input vectors consisting of geometry parameters and fre-

quency of the form (7)—an n-point “approximate” fine

training dataset for Rs,

Dfine;approx5
ðxk; yfine;kÞj k51; :::; naux

ðxk; ypred;kÞj k5ðnaux11Þ; :::; n

( )
(15)

Obtaining the targets ypred,k via model predictions (as

opposed to direct full-wave simulations) can result in sig-

nificant savings in computational costs, as will be outlined

below.

2. Two-Stage GPR: Stage Two. In the second stage, we

use Dfine,approx (instead of the full Dfine, which is not

available) as training set for Rs, the desired final surro-

gate that maps design variables and frequency to |S21|,

using the “conventional” GPR of Section II.A In Section

IV, we show that these surrogates are sufficiently accu-

rate to be used to good effect for optimization using

SM.

It is worth noting that the reduction in the number of

simulated high-fidelity training points without negatively

affecting model accuracy is possible because we exploit

the knowledge embedded in the low-fidelity model. In our

approach, the use of this knowledge is implemented

through the mapping learned in the first stage that identi-

fies correlations between the low- and high-fidelity simu-

lation data.

3. Verification examples
In this section, we present numerical verification of the

two-stage GPR modeling technique using three examples

of microstrip filters.

A. Capacitively Coupled Dual-Behavior Resonator Filter
(Filter 1)
Consider the second-order capacitively coupled dual-

behavior resonator (CCDBR) microstrip filter [24], see

Figure 1. The vector of design variables is u 5 [L1 L2

L3]T. Microstrip line widths were 0.25 and 0.5 mm, S
was 0.05 mm, the substrate parameters were:

h 5 0.254 mm, and er 5 9.9. The region of interest for

setting up the surrogate model was defined as [u0 2 d,

u
0 1 d] with u

0 5 [3 5 1.5]T mm, and d 5 [1 1 0.5]T

mm. The goal is to model |S21| for the frequency range

of 2–6 GHz. The rational quadratic covariance function

(8) was used during both stages of our two-stage

approach.

For this example, the training data input vectors for

creating our surrogate model Rs were allocated using

Latin hypercube sampling (LHS) [25]. For each training

geometry, 12 frequencies were (uniformly) randomly

sampled within the frequency range 2–6 GHz. As a

result, a different set of frequencies was effectively

assigned with each geometry. The total number of train-

ing vectors for Rs was n 5 600 3 12 5 7200; training

input vectors had the form {xi 5 [uT
i foi]

T | i 5 1,. . ., n}.

As before, foi were frequency values. The testing set

consisted of 50 separate geometries, also obtained

through LHS, however, using 81 frequencies per

geometry, distributed uniformly over the frequency

range of interest (n* 5 4050).

The (full) n-point high-fidelity training dataset Dfine

was obtained from simulations in FEKO [26], that is, the

high-fidelity model Rf. Hence Dfine consisted of n input–

output pairs, {(xi,yi) | i 5 1,. . ., n}, with xi 5 [uT
i

foi]
T 5 [L1 L2 L3 foi]

T, and yi 5 Re{S21}fine,i or Im{S21}fine,i.

Similarly, the training set Dcoarse was obtained from FEKO

simulations at a low mesh density (i.e., the low-fidelity

model Rc). Total mesh numbers for Rf and Rc were 614

(evaluation time 6 s per frequency) and 130 (evaluation

time 0.3 s per frequency), respectively. The test inputs

were only simulated at the fine mesh density, yielding

the test dataset Dtest used to evaluate the predictive capa-

bilities of Rs.

The first stage of the proposed modelling approach

(carried out separately for each of Re{S21} and

Im{S21}—for conciseness, we refer to only Re{S21})

involves construction of the training set Daux. This was

realized by randomly selecting naux data points from

the original set Dfine. The auxiliary surrogate Raux was

then set up as described in Section 2.2. In particular,

the training set Daux consisted of naux input–output

pairs {(xaux,k, yfine,k) | k 5 1,. . ., naux}, with xaux,k 5 [uT
k

fok Re{S21}coarse,k]
T 5 [L1 L2 L3 fok Re{S21}coarse,k]

T,

and yfine,k 5 Re{S21}fine,k. After training the model by

minimizing the negative of the log marginal likelihood

[cf. (9)], the model was used to estimate the rest of the

high-fidelity target values in Dfine by finding the mean

of the posterior distribution [cf. (5)]—that is, yielding

n—naux Re{S21}pred values. This was done for naux/n 3

100% �{40%, 30%, 20%}, and the predictive errors of

Raux (i.e., the root mean square values of the n - naux

residuals of Re{S21}pred and Re{S21}fine) are listed in

Table I for each case.

Next, we constructed “approximate” fine training data-

sets Dfine,approx [as described by (15)] corresponding to

naux/n 3 100% 2{40%, 30%, 20%}, and trained GPR

models Rs on each set (the second stage of our method).

The n-point “approximate” fine training set corresponding

to a specific naux value was

Figure 1 CCDBR filter: geometry [24].
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Dfine;approx

5

ð½L1k L2k L3k fok�; RefS21gfine;kÞj k51; :::; naux

ð½L1k L2k L3k fok�; RefS21gpred;kÞj k5ðnaux11Þ; :::; n

8<
:

9=
;

with n 5 7200 as noted above.

The predictive errors of these models on the test data-

set Dtest are listed in Table II. The test set, which was

independent of the training set, was given by

Dtest5f½L1j L2j L3j foj�T;RefS21gfine;jj j51; :::; n�g

with n* 5 4050.

For the sake of comparison, the predictive error for

the case where the full Dfine was used as training data,

that is, naux/n 3 100% 5 100% is also indicated. We

refer to this model as Rs,full. Predictive accuracies

appeared to be good given the relatively small propor-

tions of high-fidelity data present in the “approximate”

fine training datasets.

B. Second-Order Ring-Resonator Bandpass Filter (Filter 2)
Consider the second-order ring resonator bandpass filter

[27] shown in Figure 2. The design parameters were

u 5 [L1 L2 S1 W1 W2]T, while the substrate height and

dielectric constant were 1.52 mm and 4.32, respectively.

The design space was [u0 – d, u0 1 d] with u0 5 [20 22 0.2

0.8 1.7]T mm, and d 5 [2 2 0.1 0.1 0.1]T mm. The objec-

tive was to model |S21| for the frequency range of 1–

3 GHz.

The setup of models Raux and Rs was similar to that

used for Filter 1, with the exception that the squared-

exponential covariance function (7) was used throughout.

Tables I and II show the predictive errors for these mod-

els, confirming that both types of models had good pre-

dictive capabilities. As in the case of Filter 1, predictive

accuracies of in particular the final surrogate Rs appeared

to be good given the relatively small fractions of high-

fidelity data present in the “approximate” fine training

datasets.

For this example, training data consists of 400 geome-

tries allocated using LHS. Six randomly selected frequen-

cies per geometry were used, which results in the total

number of training points of n 5 2400. For the testing pur-

poses, we use 50 additional geometries (also LHS-allo-

cated), with 81 frequencies per geometry (uniformly

distributed). Both the high- and low-fidelity models were

simulated in FEKO [26]. Total mesh numbers for Rf and

Rc were 828 (evaluation time 8 s per frequency) and 64

(evaluation time about 0.1 s per frequency), respectively.

C. Fourth-Order Ring-Resonator Bandpass Filter (Filter 3)
The geometry of the filter [27] is shown in Figure 3. For

this example, the design parameters were u 5 [L1 L2 L3 S1

S2]T. The microstrip widths W1 and W2 were fixed to 1.2

and 0.8 mm, respectively. The substrate height and dielec-

tric constant were 1.52 mm and 4.32. The surrogate model

was set up over the interval [u0 – d, u0 1 d] with x0 5 [24

TABLE II Predictive Errors of Surrogate Filter Models
Rs on Fine Test Data

naux/n 3

100%

RMSE (%)

Filter 1 Filter 2
Filter 3

Re{S21} Im{S21} Re{S21} Im{S21} |S21|

100 (Rs.full)
a 3.11 3.22 2.56 2.93 3.92

40 3.14 3.31 3.12 3.37 4.12

30 3.18 3.38 2.99 3.33 4.22

20 3.24 3.36 3.54 3.53 4.39

a
Rs.full is the benchmark that we compare to, that is, standard

GPR using Dfine as training data (the fine training data obtained
in full via EM simulations).

Figure 2 Second-order ring resonator bandpass filter: geometry

[27].

Figure 3 Fourth-order ring resonator bandpass filter: geometry

[27].

TABLE I Predictive Errorsa of Auxiliary Filter Models
Raux on Remaining n 2 naux Fine Training Data Points

naux/n 3

100%

RMSE (%)

Filter 1 Filter 2 Filter 3

Re{S21} Im{S21} Re{S21} Im{S21} |S21|

40 1.45 1.47 1.79 2.03 3.17

30 1.77 1.63 1.73 1.98 3.43

20 1.87 1.97 2.74 2.23 3.75

aNormalized root mean square error (RMSE), expressed as a per-
centage of the target value range.
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20 26 0.1 0.1]T mm, and d 5 [4 4 4 0.05 0.05]T mm. The

objective was to model |S21| over the frequency band 1–

3 GHz.

For this last example, training data consisted of 600

LHS-allocated geometries. We used 16 frequencies per

geometry (randomly selected) so that the total number of

training points was n 5 9600. The test set contained 50 addi-

tional geometries; 81 equally spaced frequencies per geome-

try were used. Both filter models (high- and low-fidelity)

were simulated in FEKO [26]. Total mesh numbers for Rf

and Rc were 916 (evaluation time 1.0 s per frequency) and

174 (evaluation time 0.5 s per frequency), respectively.

The models Raux and Rs were setup in the same way

as before using the methodology of Section II.B [in both

instances the rational quadratic covariance function (8)

was used]. As was noted in Section 2.2, the magnitude of

S21 was modeled directly for this filter. Tables I and II

give the respective predictive errors, demonstrating as in

the case of Filters 1 and 2 that both types of models could

make good predictions.

D. Discussion
The results presented in the previous section indicate that

combining low- and high-fidelity EM simulation data

using the proposed modeling technique allows for very

significant reduction—compared to conventional GPR

modeling—of the computational overhead related to train-

ing data acquisition without compromising the predictive

power of the surrogate model.

It should be emphasized that modeling of filter charac-

teristics is a difficult task because of the high nonlinearity

of the responses. In practice, this can be effectively real-

ized only if the number of design variables is relatively

low, or the design space is small (in terms of the range of

variability of the geometry/material parameters). Thus, the

presented examples are quite representative of what can

be accomplished using approximation techniques such as

GPR. For the sake of illustration, we focused on modeling

the transmission characteristics of the filters. Modeling of

return loss would be actually much more challenging

mostly due to the nonlinearity issues.

4. Application examples: Filter optimization
As application examples, the three filter structures considered

in Section 3 were optimized using the final GPR surrogate

models Rs. This can be considered a practical way of validat-

ing the proposed modeling technique. It should be emphasized

that the GPR surrogates considered in this article are supposed

to be multiple-purpose library models. Filter optimization with

respect to various sets of design specifications is one example

of a typical application task. Another could be robust (yield-

driven) optimization or statistical analysis.

The design specifications and initial designs were the

following:

� CCDBR filter: |S21|�23 dB for 3.8–4.2 GHz and

|S21|�220 dB for 2–3.2 GHz and for 4.8–6 GHz; ini-

tial design: uinit 5 [3.5 4.5 1.5]T mm;

� Second-order ring resonator filter: |S21|�21 dB for

1.8–2.2 GHz and |S21|�220 dB for 1–1.55 GHz and

for 2.45–3 GHz; initial design uinit 5 [18.0 22.0 0.2 0.8

1.7]T mm;

� Fourth-order ring resonator filter: |S21|�21 dB for

1.75–2.25 GHz and |S21|�220 dB for 1–1.5 GHz

and for 2.5–3 GHz; initial design uinit 5 [25 20 25

0.1 0.1]T mm.

The first stage of the optimization process is to opti-

mize the surrogate model Rs. Due to nonzero modeling

error, an iterative design refinement procedure is used that

employs SM technology [19]

uði11Þ5arg min
x

UðRðiÞsu ðuÞÞ (16)

where RðiÞsu denotes a surrogate model, here, constructed

by means of an additive response correction (output

SM) [19]. The function U encoded the design specifi-

cations. Here, the design specifications are formulated

so that the problem is, in effect, a minimax optimiza-

tion one (i.e., one attempts to minimize the maximum

violation of the design specifications over the fre-

quency band(s) of interest). For simplicity, the symbol

Rco is used to denote either of Rs.full or Rs, which can

be considered the underlying “coarse” models in the

SM terms. The surrogate model is defined using the

response of the high-fidelity model Rf at u
(i) as

follows

RðiÞsu ðuÞ5RcoðuÞ1dðiÞ (17)

with

TABLE III Filter Optimization Results

Filter Model

Minimax

Specification

Error at Final

Designa (dB)

Optimization

Costb

1 Rs,full 22.4 3

Rs (40%)c 22.3 4

Rs (30%)c 22.2 3

Rs (20%)c 22.4 3

2 Rs,full 20.0 4

Rs (40%)c 20.1 4

Rs (30%)c 20.0 4

Rs (20%)c 20.1 4

3 Rs,full 20.2 4

Rs (40%)c 20.3 3

Rs (30%)c 20.4 2

Rs (20%)c 20.3 3

aMaximum violation of |S21| specifications at the frequency bands
of interest.
bNumber of evaluations of the high-fidelity model Rf, including
evaluation at the initial design.
c40% refers to the model trained on Dfine,approx using 40% data
points that are actually simulated at high fidelity (30 and 20%
accordingly).
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uðiÞ5RfðuðiÞÞ2RcoðuðiÞÞ (18)

The additive correction term d(i) is calculated to ensure

zero-order consistency (i.e., RðiÞsu (u(i)) 5 Rf(u
(i))) between

the surrogate and the high-fidelity model Rf [28] at the

current design x(i). The use of response correction is nec-

essary because of the presence of some residual inaccur-

acy (misalignment between the surrogate model and the

high-fidelity one). In practice, because of good initial

accuracy of the GPR surrogates, one or two iterations of

the algorithm (16) are usually sufficient to yield an opti-

mized design. It should be noted that each iteration (16)

requires only one evaluation of the high-fidelity model:

the cost of optimizing the surrogate model can be

neglected as compared to Rf evaluation.

The optimization results are presented in Table III, as

well as in Figures 4 and 5. Figure 4 shows, for Filters 1

through 3, the responses of models Rs,full and Rf (i.e.,

direct high-fidelity FEKO simulations) at the initial

designs, and the high-fidelity model response at the final

designs. Similarly, Figure 5 shows the GPR surrogate

model responses trained on the “approximate” high-

fidelity dataset Dfine,approx (here with naux/n 3 100% 5

20%) and the Rf model responses at x(0), and the response

of Rf at the final designs.

The numerical results are summarized in Table III. It

is worth noting that the differences between the design

quality and cost (the latter expressed in terms of number

of evaluations of the high-fidelity model Rf), are very

small for the GPR models obtained using the original and

approximate high-fidelity training datasets. The average

design cost is about three evaluations of the high-fidelity

model and it is similar in all cases, regardless of the

naux/n ratio

5. Conclusion
A method has been presented for the efficient modeling

of highly challenging nonlinear microwave filter

responses using variable-fidelity EM simulations and

GPR within a two-stage framework. The knowledge

embedded in the low-fidelity filter simulations is used in

Figure 4 Optimization results for the three filter structures:

responses of Rs,full (o) and Rf (- - -) at the initial design, and Rf

at the optimized design (—) for (a) Filter 1, (b) Filter 2, and (c)

Filter 3. Horizontal solid lines denote design specifications.

Figure 5 Optimization results for the three filter structures:

responses of Rs (o) and Rf (- - -) at the initial design, and Rf at

the optimized design (—) for (a) Filter 1, (b) Filter 2, and (c) Fil-

ter 3. Horizontal lines denote design specifications. The Rs mod-

els represented here were trained on Dfine,approx utilizing 20% data

points simulated at high fidelity.
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the first modeling stage, where the mapping between the

EM models of different fidelity is established. This leads

to substantial reduction of the number of high-fidelity

simulations necessary to construct—in the second

stage—the surrogate model of the filter of interest. These

computational savings are achieved without compromis-

ing the predictive power of the final surrogate. Our

approach has been verified using three examples of

microstrip filters with satisfactory results obtained even

for very limited high-fidelity simulations, corresponding

to only 20–40% of what is required in setting up high-

fidelity training sets for conventional GP modeling. The

two-stage surrogates have been also successfully used for

filter optimization, proving their usefulness in the design

context.
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