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Abstract 
 

Tshwane is one of the major metropolitan in Gauteng Province. This metropolitan continues 

to experience rapid urbanization as a result of population growth, leading to the conversion of 

natural lands into impervious surface area (ISA) i.e., constructed surfaces – sidewalks, roads 

rooftops, parkinglots covered by  impenetrable materials such as asphalt, concrete and stones 

which prevent water from infiltrating into the soil. Such landscapes influence the climate of 

the Metropolitan  as evidenced by the recent heat wave characterized by high temperature. 

Therefore, the consistent information about these changes will play an important role in city 

planning and environmental management. In this study, seven land use/cover types were 

delineated from the cloud free Landsat images using maximum likelihood (ML) and random 

forest (RF) classifiers to map the Tshwane metropolis. The overall accuracies for classifying 

the seven land cover types were 88.63% and 80.13% (Landsat 7 ETM+, 2003) and 88.82% 

and 82.03% (Landsat 8 LCDM) for both ML and RF, respectively. In addition, based on the 

pairwise comparison of error matrix the two algorithms were found to produce approximately 

identical classification errors. Furthermore, the remote sensing data was also used to assess 

the relationship between LULC changes and LST estimation. Mean near surface temperature 

from the weather stations was used as a point of reference to verify the accuracy of the final 

retrieved LST images.  From Landsat 7 ETM+ (2003), the mean pixel temperature for 

Pretoria Eendracht and Irene Wo weather station when compared the mean near surface 

temperature produced a LST retrieval error of 3.3OC and 1OC respectively. Similarly, Landsat 

8 LCDM data (2013) mean pixel temperature for Pretoria UNISA weather station and 

Pretoria National Botanical Institute when compared the mean near surface temperature 

produced a LST retrieval error of 0.38OC and 1.3OC for the two stations. Finally, the remote 

sensing data showed the quantitative effect of impervious surface area changes on mean 

LSTs, through the distribution of urban heat island within Tshwane metropolitan. 

Keywords:  Land use or cover (LULC),   

Land surface temperature(LST),  

Impervious surface area (ISA),  

Tshwane  Metropolitan   
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1 CHAPTER ONE: INTRODUCTION 
 

1.1 General introduction 
Globally, there has been an unprecedented increase in population concentration in cities 

which have led to rapid urban landscape changes. Recent studies have demonstrated that 50% 

of the global population lives in urban areas (Herold et al., 2003). As proposed by 

Montgomery and Hewett (2005) the highest rate of urbanization and associated land  use or 

cover changes have been observed in the developing countries. Likewise a recent projection 

by the United Nations as reported by Civco et al. (2005) shows that the urban population of 

the developing nations is now growing at the annual rate of 2.3%  and is predicted to double 

in 30 years, i.e., a rise from 1.94 billion in the year 2000 to 3.88 billion in 2030. Based on 

these predictions, it implies that cities in the developing countries will have to double their 

built up or impervious surface areas (ISA) to accommodate the increasing present population. 

Changes in land use or cover of the earth's surface emphasis on biophysical processes that 

result in global environmental change (Turner, 2006). Lambin and Geist (2008) defined land 

cover as an  attribute of the earth’s land surface and  the immediate subsurface (e.g. soil, 

topography, surface and ground water and built up), on the other hand, land use is the 

purpose for which land is used. Cassman et al. (2005) pointed out that land cover change is as 

a result of human activities that directly manipulates the earth's surface for individual or 

societal need (e.g., agricultural, built-up, etc.). For instance, Ferreira et al. (1999) reported 

that South Africa’s population grows with constant land use changes in urban areas (such as  

Pretoria, Johannesburg, Cape Town etc). Some of these land use practices, for instance, in the 

rural areas can be seen as  static i.e., changes in land cover character without changes in  

overall classification (Lambin et al., 2003). However, urban settlement where structures, 

population density and activity pattern are constantly changing, there is constant land cover 

conversion i.e., replacement of one cover type by another (Lambin and Geist, 2008). As with 

many developing countries, South Africa has experienced rapid development – urbanization 

and industrialization, which have given rise ‘to increase in impervious surface cover in major 

cities. Impervious surfaces are man-made features or surfaces that cannot allow the 

permeation of water from land surfaces into the underlying soil (Okeke, 2006). ISA are 

mainly associated with human activities such as constructed transportation infrastructure like 
1 

 



roads, sidewalk and parking lots all covered by impenetrable materials such as asphalt, 

concrete, brick and stones and building like rooftops (Slonecker et al., 2001). Arnold and 

Gibbons (1996) earlier reported that ISA could be seen as an indicator of the degree of 

urbanization and environmental quality. Understanding changes in ISAs is important for a 

wide range of environmental applications such as watershed impact assessment (Jennings and 

Jarnagin, 2000), rainfall run-off volume, duration and intensity (Lohani et al., 2002), ground 

water recharge and base flowstorm analysis, stormflow and flood frequency (Brun and Band, 

2000), urban land use or cover classification (Lu and Weng, 2006, Phinn et al., 2002) urban 

planning (Brabec et al., 2002). Therefore, timely and accurate mapping of the impervious 

surface distribution is of importance to a range of issues and themes associated to global 

environmental change. 

In spite of the significance of ISAs studies, the methods for estimating, mapping and 

applications of ISA data have not been sufficiently explored in Africa. Ground measurement 

and remote sensing data have been techniques applied in characterizing and quantifying 

impervious surface area (Weng, 2012). Previously, field survey with global positioning 

system (GPS) have been used to provide reliable information on ISA  but have also been seen 

to be time consuming and expensive. Manual digitizing from hard copy maps or aerial 

photographs were the earliest approaches for mapping impervious surface area. For example 

in North Africa, Noin (1970) determined the housing units in the rural areas by deriving rural 

population estimates of Morocco using aerial photographs and then applied household-size 

multiplier to dwellings to estimate the population. 

Slonecker et al. (2001) revealed that in the 1970’s and 1980’s, the use of remote sensing data 

started gaining recognition both in environmental and natural resources studies. It was used in 

the interpretive, spectral and modelling applications on impervious surfaces.  Four different 

previous approaches were also acknowledged by Brabec et al. (2002) which were:  

 Using planimeter to measure ISA on aerial photographs. 

 Counting the number of intersections on the overlain grid on aerial photographs. 

 Conducting image classification.  

 Estimating coverage through the percentage of urbanization. 
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Weng (2012), reported that remote sensing of ISAs gained more interest in the remote 

sensing community with the invention of  high resolution images and more sophisticated 

software and capable techniques in recent years. These remote sensing data have been widely 

used to analyse ISAs because of their advantage in converting a large geographical area and 

temporal frequency. These different types of satellite sensor data that has been used to map 

ISA both in the past and current study are categorized into two based on spatial resolution, 

namely: moderate or medium spatial resolution Landsat TM/ETM+, SPOT and ASTER 

imagery (Zha et al., 2003) and higher spatial resolution IKONOS and Quick Bird images (Lu 

and Weng, 2009). 

During the past few decades, commonly used modelling techniques for impervious surface 

detection includes multivariate regression (Bauer et al., 2005), spectral mixture analysis (De 

Voorde et al., 2007), contextual classification (Yuan et al., 2005), object based analysis 

(Jacquin et al., 2008) and machine learning based methods e.g. decision tree and neutral 

networks (Hu and Weng, 2009). Lee and Lathrop (2006) identified that many of these 

previous studies extracted impervious surfaces at the pixel level and percentage 

imperviousness at the sub-pixel level. Some of the few works in Africa that examined 

impervious surface areas at pixel level include;  

a)  Okeke (2006) mapped impervious surface changes in watersheds in the south 

eastern region of Nigeria using Landsat imagery. He computed percentage imperviousness 

using the impervious surface analysis tool (ISAT) which is an extension of Arcview 3.3 

developed by the National Oceanic and atmospheric Administration (NOAA) Coastal Service 

Center and the university of Connecticut non-point Education for Municipal official (Nemo) 

Program.   

b) Mertens  and Lambin (2000) previously carried out land cover change trajectories 

(Urban sprawl) in the southern Cameroon making use of Landsat MSS, SPOT XS, and 

topographical maps (for geometrical registration and further resampling the spatial resolution 

of the two Landsat images using nearest neighbor technique) spanning two decades for 

validation and projection of future deforestation.  

c) Weng (2007) also summarized other research related to the delineation of 

impervious cover and these studies highlighted what has been accomplishments and 

limitations in achieving accurate imperviousness estimation from remote sensing imagery. 
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Subsequently, the conversion of natural land to impervious surfaces has been reported by 

various studies as the main contributor to climate change and variability in different parts of 

the world (Brunsell, 2006). Zhang et al. (2009) also pointed out that urbanization and 

industrialization can result in alteration of the land surface and near surface atmospheric 

conditions which in turn could cause changes in the thermal properties of urban areas, 

making them more warmer than the surrounding rural areas (i.e. Urban heat island). 

d) Dousset and Gourmelon (2003) explained that urban heat island phenomenon is 

mainly caused by replacement of vegetated areas by impervious materials which influence 

the radiative fluxes near surface flow leading to higher levels of sensible heat fluxes in urban 

areas. Weng (2009) showed that urban surface physical properties such as colour, sky view 

factor, street geometry, traffic loads and various other anthropogenic activities are important 

factors that determine land surface temperature (LST) in urban areas. 

Many researchers have also correlated the land surface temperature of urban surfaces to land 

use or cover characteristics (Weng, 2009). In West Africa, Nigeria, Ifatimehin et al. (2009) 

evaluated the effect of land use or cover change in the surface temperature of Lokoja town.  

Previously, urban heat island phenomenon and physical processes have been monitored 

traditionally by conducting ground based observations from fixed thermometers at weather 

stations or by traversing an area with a thermometer attached to a vehicle (Voogt and Oke, 

2003). Weng (2009) also reported that the study of urban surface temperature has been 

carried out using numerical and physical models such as an energy balance model (Oke et al., 

1999), three-dimensional simulation (Saitoh et al., 1996), Gaussian models (Streutker, 2003) 

and laboratory models (Cendese and Monti, 2003). Bottyán and Unger (2003) revealed that 

among these models, statistical analysis has been the most used in associating surface 

characteristics to land surface temperature at geographical scale.  

Reviews by various authors has linked land surface temperature to biophysical and 

meteorological factors, for example, urban and street geometry, built-up or impervious 

surface area and height, vegetation, population distribution, intensity of human activities and 

land use or cover change (Xiao et al., 2008). Weng (2009) stated that a comprehensive 

literature describing the relationship between land surface temperature and various vegetation 

indices have been documented. For example, in the southwest Cape of South Africa, 

Sandham and Zietsman (1997) carried out surface temperature measurement using Landsat 
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TM and Transformed Normalized difference Vegetation  index (TNDVI) data to map 

summer surface temperature measurement. Most recently, in Nigeria, West Africa, Ifatimehin 

and Adeyemi (2008) also used normalized difference vegetation index (NDVI) when 

retrieving land surface temperature using Landsat TM images. 

Overall, remote sensing data, especially thermal bands are seen as a unique source of 

information for defining surface heat island (Weng, 2009). In-situ data from meteorological 

stations, though, has a high temporal resolution and offers long term coverage but lacks 

spatial information. Remote sensing data on the other hand, through previous researches 

proved to be effective in providing continuous and simultaneous views of the large study area 

(ranging from municipal to provincial level) and detailed investigation of urban surface. Rao 

(1972) was the first to demonstrate that urban areas could be identified from the analysis of 

thermal infrared remote sensing data. Since then, Jensen (2007) revealed that there has been a 

wide range of thermal infrared sensors have been used to study land surface temperature and 

urban heat island as a result of the improvement in data over the years.  

Streutker (2003) carried out studies for regional- scale urban temperature mapping using land 

surface temperature derived from NOAA-AVHRR data. Similarly, Pinheiro (2006) 

developed a daily long term record of NOAA-14 AVHRR land surface temperature over 

Africa. Several researchers around the world in recent years have also used both the Landsat 

TM and ETM+ on land surface temperature and urban heat island studies (Jeong, 2012). 

Additionally, the use of high resolution thermal infrared remote sensing and geographical 

information system by Lo et al. (1997) has been used to assess the urban heat island effect. 

Eventhough, there has been an increase in the availability of thermal remote sensing data 

(Table 1.1), studies on land surface temperature using thermal bands have been have been 

carried out more in the developed countries than in  developing nations (e.g. South Africa). 

Oke (1982) described that each component in the urban landscape (e.g. parking lot, building 

garden etc.) exhibits a unique radioactive, thermal, moisture and aerodynamic properties. 
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Table 1.1: Examples of thermal infrared sensor systems (adapted from Jensen (2007)). 

Sensor Spatial resolution Thermal band spectral 
resolution 

Television IR Operational (TIROS) 600 x 600m 10.5 - 12.6 µm 

NOAA Geostationary Operational 
environmental Satellite (GOES) 

8 x 8km 6.47 – 7.02 µm 

NOAA Advanced Very High 
Resolution Radiomater (AVHRR) 

1.1 x 1.1km 3.55 – 12.50 µm 

Landsat Thematic Mapper 4&5 120 x 120m 10.4 – 12.5 µm 

Landsat 7 Enhanced Thematic 
Mapper Plus   

60 x 60m 10.4 – 12.5 µm  

Landsat 8 Landsat Data Continuity 
Mission 

 

100 x100m 10.6 – 11.19 µm 

11.5 – 12.51 µm  

Advanced Spaceborne Thermal 
Emission and Reflection 
Radiometer (ASTER) 

90 x 90m 8.125 – 11.65 µm 

 

However, the thermal response of individual land cover within a city is very useful in 

understanding as radiative transfer over an urban landscape  due to diversity of land cover 

types and their physical properties (Renee et al., 2006). Finally, with increasing concern 

regarding global change, it will be of great importance to quantify ISA changes and analyse 

its relationship with surface temperature variability across Tshwane metropolitan. 

1.2 Problem statement 
Urban sprawl continues to increase based on the fact that  urban population continues to 

surpass the rural population (Weng, 2009). According to the UN (2008) more than 50%  of 

the world’s population now lives in urban areas and this number will continue to rise, 

particularly in developing or third world countries (e.g. Africa). Binns et al. (2003) reported  

that  the average annual urban growth rate within the sub-Saharan Africa was 4.8%  between  

1980 and 1993. This urban growth has now led to the introduction of megacities (>8million) 

around the globe (Bobrinskaya, 2012). Although 3% of the earth is occupied by urban areas, 

the impact of these anthropogenic activities on the natural environment has reached the 
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global concern (Griffiths et al., 2010). For example, land use or cover changes effect on 

various environmental processes (i.e., locally and regionally). These changes in land use or 

cover have also resulted in  alterations in the radiative, thermal, moisture, roughness and 

emission properties of the earth’s surface and the atmosphere above (Kalnay and Cai, 2003, 

Streutker, 2003). 

Furthermore, urban sprawl which has been observed as a sign of growth and prosperity,  has 

continuously brought about compacted infrastructure and expansion (i.e., industrialization 

and  emergence of more residential areas that makes an impervious surface or built-up areas 

ideal for use). These changes have brought about series of adverse impact on the environment 

(ecological and  hydrological disturbance) e.g., impact on watershed areas, water cycle, and 

water quality, erosion of construction sites, non-point source pollution, flooding, stream 

health,  reduction in ground water and wetlands, urban heat island and reduced sequestration 

of carbon from atmosphere (Lu and Weng, 2006, Yuan and Bauer, 2007). 

In recent years, Gauteng province has experienced tremendous increase both in population 

and land use or cover changes. This urban sprawl has resulted in temperature variation across 

the major municipalities within the province. Although several studies have been conducted 

demonstrating the impact of ISA chnages due to urbanization on land surface temperature 

using remote sensing data in different cities across the globe (e.g., Asia and America),  few of 

these studies have been done in Africa in spite of the availability of satellite imagery. This 

has been proved by a recent search for online scientific papers using various search engines 

like Google and Journal citations which showed that limited studies focused on cities in 

Africa. 

Although, the cost effectiveness of this research (i.e. land use or cover changes effect on 

surface temperature variability) has been a great challenge throughout the scientific world, 

filling the gap (performing this study in Africa) will be of an important contribution to the 

urban society and the world of science and technology. This study will further provide 

important impervious surface area changes information which will allow the dependable 

projection of future surface temperature modifications and support decision makers with 

information that will help in various sectors such as energy management, urban planning and 

environmental sustainability. 
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In this study, we will examine how the spatial and temporal pattern of impervious surface 

areas have affected urban land surface temperature across Tshwane metropolitan, Gauteng 

Province, South Africa using remote sensing data and other in-situ measurements. 

1.3 Research aims and objectives 

1.3.1 Aims 
The main aim of this study is to investigate the relationship of impervious surface area (urban 

land use, land cover) changes and land surface temperature using Landsat ETM+ and Landsat 

8 LDCM and other ancillary data (e.g.,temperature data from weather stations) obtained from  

Tshwane metropolitan, Gauteng Province, South Africa.  

1.3.2 Objectives 
 To detect LULC types within the Tshwane metropolitan using ML and RF classifier. 

 To examine the change pattern of the LULC categories between 2003 and 2013. 

 To derive LST  from Landsat thermal images. 

 To analyse the effect ISA changes on land surface temperature across Tshwane 

metropolitan, South Africa.  

1.4 Research hypothesis 
 Changes in impervious surface areas have decreased natural vegetated land cover 

types between 2003 and 2013 within Tshwane metropolitan. 

 Surface temperature changes may be related to changes in impervious surface areas. 
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2 CHAPTER TWO: LITERATURE REVIEW 

 

2.1 The urban microclimate 
According to IPCC (2001), climate is defined as the regular weather or the description of 

temperature, precipitation, and wind, over a period of time. Several levels of regional 

climates which are macroclimate and microclimate have also been desccribed. Macroclimate 

refers to the climate of broad area which ranges from tens to hundreds of kilometres and on a 

smaller scale its associated with mesoclimate (climate of a set of tens or hundreds of meters). 

Microclimate refers to a limited atmospheric zone where the climate varies from the 

surrounding area or climate of a specific environment in a small restricted space). 

Microclimate is also subdivided into different classes as reported by  Geiger (1951); 

 Urban microclimate which is affected by concrete or impervious surface areas, 

buildings, air pollution, compact inhabitation and so on. 

 Vegetation microclimate which focus on the complex nature of the air space occupied 

by vegetation and its effects upon the vegetation. 

 Microclimate of small spaces of houses, greenhouses, caves etc. 

Urban heat island is also one of the resultant effects of these urban climate changes. It is 

defined as the phenomenon where an urban or metropolitan area is significantly warmer than 

its surrounding rural areas (Streutker, 2003). Oke and Emery (1989) previously asserted that 

urban climate can also be influenced by urban forests and anthropogenic surfaces (e.g. 

impervious surfaces) which creates a spatial unevenness in local heat transfer flux known as 

urban microclimate. The urban heat island which is also known as mesoclimate climate at the 

urban boundary layer are created as a result of the accumulation of microclimate on urban 

canopy layer (Schmid and Oke, 1990). Due to this reason, it is very important to investigate 

the main factors associated with the formation of heat island and the interaction between 

these factors  (Shahmohamadi et al., 2010). 

Urbanization can be greatly influenced by climatic parameters (i.e., temperature, 

precipitation, humidity, wind, sunlight) and the design of a city in terms of its general 

structure, orientation, building forms, materials, can be greatly influenced by climate  

(Shahmohamadi et al., 2010). For instance, cities in hot arid areas have buildings that are 
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dense and compact in order to avoid penetration of sunlight. According to Bridgman et al. 

(1995), urban centers with higher density of built-up or impervious surface materials, have 

more influence on climate. Some of these impacts are; 

 The replacement of soil and vegetation by impervious surfaces such as concrete, glass 

and asphalt. 

 Emission of artificial heat from buildings, air conditioners, industry and automobiles. 

 Substituting the rounded, soft shapes of trees and bushes with blocky, angular 

buildings and towers; thereby changing the radiative fluxes e.g., glass buildings and 

windows reflect large amounts of solar radiation into the surrounding air. 

 Efficiently disposing of precipitation in drains, sewers and gutters, preventing surface 

infiltration. 

 Emitting contaminants from a wide range of sources, which, with resultant chemical 

reactions, can create an unpleasant urban atmosphere. 

Similarly, the increased pollutant sources, both stationary (industry) and non-stationary 

(vehicles) due to urbanization result in worsening atmospheric conditions (Roth, 2002). 

Furthermore, solar radiation is seriously shortened because of increased scattering and 

absorption. In particular, many cities in the tropics experience weak winds and limited 

circulation of air and this contibutes to pollutants accumulation (Roth, 2002). Previous works 

of (Oke, 1987) pointed out three different types of UHI  (Table 2.1) which can be classified 

as: 

 

Table 2.1: Types of urban heat island. 

Type of UHI Description 

Air Which comprise of urban canopy layer heat island  found in the air layer beneath 
the roof level and urban boundary layer heat island found in the air layer above 
roof-level. 

Surface This kind of UHI can be distinguished based on the temperatures of urban surfaces. 

sub-surface Found on the ground beneath the surface. 
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2.2 Factors influencing the formation of urban heat island 
According to Givoni (1998) thermal differences between the urban and the rural are affected 

by meteorological factors such as cloud cover, humidity, and wind speed and types of the 

urban structure (i.e., the size of cities, the compactness of the built-up areas, and the ratio of 

building heights to the distances between them). These differences may also influence the 

magnitude of the urban heat island. Shahmohamadi et al. (2010) pointed out that urban 

factors that contribute to heat island are generally population size, topography, wind speed, 

anthropogenic heat, water runoff and vegetation cover. Thus, urban heat island is mainly 

observed owing to physical factors described in the following; 

2.2.1 Meteorological parameters 
Meteorological parameters such as temperature, precipitation, humidity, wind and sunlight 

are associated with an urban heat island increase in cities. For instance, low wind speed leads 

to insufficient air exchange in street canyons which can decrease ground-level air quality and 

increase the rate of UHI formation over the city (WHO, 2004). 

2.2.2 Urbanization  
Urban sprawl and development of various industries has led to a degradation in the quality of 

urban environment (Shahmohamadi et al., 2010). Asimakopoulos et al. (2001) identified that 

increased numbers of buildings led to removal of vegetation which affect the urban climate 

i.e., through increased urban heat island intensity. Table 2.2 below gives a description of how 

urbanization can directly affect climatic parameters such as temperature, humidity, 

precipitation, wind and solar radiation. 

 

Table 2.2: Effect of urbanization on climatic parameters (adapted from Emmanuel, 2005). 

Climatic 
parameter 

Effect of urban sprawl 

Temperature Rise in daily minimum temperature: Some change in maximum temperature. 

Precipitation Large increases in summer (up to 21%) and smaller increases in winter (5-
8%). In the tropics, the increase are attributed more to air pollution than heat 
emission. 

Humidity Reduction in daytime humidity, but increase in night-time values. 

Wind  Increases in the number of calm periods observed. Up to 20 percent reduction 
in wind speeds are known. The effect is greater upon weaker winds. 
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Shahmohamadi et al. (2010) reported that places with high density of built-up can lead to 

higher temperature, precipitation, sunlight and decrease in wind speed and humidity which 

can give rise to the formation of urban heat island over the city. Furthermore,  the effect of 

urban structures on the microclimatology is affected by several influences such as; city 

locality, city extents and population, density of built-up area, urban geometry, thermal 

properties of materials, surface waterproofing, anthropogenic heat, air pollution, land use and 

wind speed. The migration of population from the suburbs to the urban areas are the main 

cause of rapid growth of cities. This growth are associated with  vehicular traffic, intensity of 

heating in the winter and air conditioning and industrial plants which contributes to the 

formation of UHIs (Shahmohamadi et al., 2010).   

Building density at different areas in a city can affect the local climate in each of the discrete 

urban areas. For instance, in Tshwane, accelerating urban sprawl has resulted in an increase 

in the built-up areas which are characterized by marked UHI and high temperature variability. 

Shahmohamadi et al. (2010) pointed out that buildings alters wind speed, radiant balance and 

temperature conditions near the ground level. As a result, the portion of land covered by 

buildings in a given area and distances between buildings along the axis upsetting the solar 

exposure of the buildings can affect urban climate. According to Emmanuel (2005),  

geometry of a city is described by a component called the urban canyon. Temperature 

distribution and air movement within urban canyons are important  in various related studies 

such as; energy consumption of buildings, pollutant dispersion studies, heat and mass 

exchange between the buildings and the canyon air (Asimakopoulos et al., 2001). Emmanuel 

(2005) described the urban canyon as the three-dimensional space bounded by a street and the 

buildings that border the street. Urban canyons limit the view of the sky dome (characterized 

by the sky view factor SVF), cause multiple reflection of solar radiation and  limit the free air 

movement (Shahmohamadi et al., 2010). The sky view factors (SFV), according to Oke 

(1981) is a geometrical theory that describes the fraction of the overlying hemisphere 

occupied by the sky. As the view of the sky is critical for long-wave radiation (as well as 

short-wave energy gain), it goes without saying that SVF is important in understanding 

increase in UHI intensity. For example, Tshwane metropolis, has complex urban geometry, 

particularly in Pretoria Central which increases friction created by a rough urban surface. 

Oke (1982) and Quattrochi et al. (2004) pointed out that materials such as stone, concrete, 

and asphalt tend to trap heat at the surface. These  impervious surface materials absorb and 
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hold solar radiation and heat which are released slowly at night. The albedo of a surface is 

responsible for the amount of solar radiation it absorbs. Taha (1997) identified that high 

albedo building surfaces (white surfaces) have been proven to cool down urban temperatures. 

In the Tshwane metropolis, most of urban materials are concrete and asphalt with low albedo 

and non-reflective surfaces which absorb solar energy which contibutes to  formation of UHI. 

The creation of evaporation  deficiency due to the absence of materials that are porous in 

urban surface, a high percentage of non-reflective, water-resistant surfaces and a low 

percentage of vegetated and moisture trapping surface within the city causes increase in the 

intensity of urban heat island. Vegetation, especially in the presence of high moisture levels, 

is very important in the control of surface temperatures according to earlier work of Goward 

et al. (1985). Within Tshwane metropolis, newly constructed buildings has lead to the 

removal of vegetation resulting to reduced  evapotraspiration and increased temperature. 

Taha (1997) pointed out that the heat from anthropogenic activities that goes into urban 

atmosphere contributes to the intensity of the UHI effect. Urban hubs tend to have higher 

energy demands than surrounding rural areas as a result of their high population density 

(Shahmohamadi et al., 2010). Nevertheless, Landsberg (1981) previously indicated that the 

heat island effect lessens the need for heating in the winter and  this is compensated by the 

increased demand for air-conditioning during the summer months. The pollution created by 

emissions from air conditioning and power generation increases absorption of radiation in the 

boundary layer  (Oke, 1982). For example the Tshwane metropolis has increased in number 

of buildings due to population increase, these have caused all the energy consumed by air 

conditioning to be released to the environment, thereby increasing  the urban temperature. 

Recent trends in the loss of prime agricultural land to urban area is as a result of many cities 

emerging near major agricultural or farmland areas. Although, this land use or cover change 

is not pronounced yet on a global scale, but very evident at local level in many countries. For 

example, Seto et al. (2002)  pointed out that China has lost nearly 1million ha of its cultivated 

land both in the rural and urban areas to expansion of infrastructure between 1988-1995. For 

developing countries including Africa, rough estimate indicates that 1 to 3 million ha of 

cropland may have been replaced  by paved areas every year to meet the land demands for 

urban sprawl (Döös and Shaw, 1999). Due to this reason, this research focus impervious 

surface area changes and impact on the climate of Tshwane metropolis which will further 

provide important information on projections of future changes. This information will also 
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support decision makers with information that could facilitate energy management, urban 

planning and environmental sustainability.  

2.3 Change detection 
According to  Singh (1989) can be defined as the process of identifying difference in the state 

of an object or phenomenon by observing it at different epochs.  These changes detected on 

earth surface gives a better understanding of the impacts of the relationship between man- 

made and natural activities which could provide basis for resource management (Lu et al., 

2011). According to Coppin et al. (2004) and Lunetta et al. (2006), land cover changes can be 

distinguished into two types, namely land conversion (conversion from one land cover class 

into another due to human activities such as deforestation or urban sprawl), and land cover 

modification (shows landscape adjustments within one class due to natural processes such as 

climate changes). Hirata et al. (2001) indicated that conventional methods such as field 

survey  for collecting environmental data  such as field survey are time consuming and 

ineffective in providing the required information in a cost and time effective manner. Hence, 

remote sensing data gives an advantage of large area coverage and repetitive data acquisition 

for change detection analysis. For example, remote sensing data such as Landsat TM and 

ETM+, SPOT, AVHRR, IKONOS with digital format appropriate for computer processing 

have become the major data sources for different change detection applications during the 

past decades (Lu et al., 2004). Given in Table 2.3 is a summary of recent publication on 

change detection types. 

Deer (1995) suggested three ways  change detection analysis techniques can be done namely: 

pixel based, feature based  and object based. Furthermore, Coppin et al. (2004) categorized 

the different change detection techniques based on the temporal characteristics into two 

classes which are bi-temporal change detection method (i.e., examines the changes between 

two fixed dates) and temporal trajectory analysis (i.e., a progressive change over a period). 

Lu et al. (2004) described seven types of change detection methods with fine spatial 

resolution such as Landsat, SPOT, or radar are: algebra, transformation, classification, 

advanced models, Geographical Information System (GIS) approaches and  visual analysis. 

Lu et al. (2004) concluded from their review that principal component analysis, image 

differencing and post classification comparison are the most commonly used methods and 

that spectral mixture analysis, artificial neural network, Geographical information systems 

(GIS) and remote sensing data are now important methods for change detection applications. 
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Table 2.3: Some change detection applications using a remote sensing data. 

Change Detection References 

Land-use or cover (LULC) change Al-Gaadi et al. (2011), Odindi et al. (2012) 

Environmental change  Armour et al. (1998) 

Deforestation, regeneration and selective logging Alves (2002) 

Detection of landslide areas Kimura and Yamaguchi (2000) 

Flood monitoring  Liu et al. (2002) 

Vegetation change Muzein (2006) 

Urban change Okeke (2006) 

Drought monitoring  Peters et al. (2002) 

Desertification Singh et al. (1990) 

Landscape change Taylor et al. (2000) 

Forest fire and fire affected area detection Tsela et al. (2014) 

 

Berberoglu and Akin (2009) used change detection algorithms based on suitable  threshold to 

determine the land use or cover change in the Mediterranean areas i.e. image differencing, 

image rationing, and image regression. Recently, from Northern Africa, El-kawy et al. (2011) 

concluded that the integrated visual interpretation and a supervised classification of satellite 

imagery is an effective technique to identify land use or cover changes in Egypt. 

Additionally, Coppin et al. (2004) earlier pointed out that time series analysis can resolve 

issues that can affect change detection results. Leverman (2013) observed that little attention 

is being paid to time series analysis (temporal trajectory analysis) especially on land cover 

monitoring on a continuous basis due lack of high temporal high resolution images. Although 

moderate resolution images such as  MODIS are available to create a time series analysis, the 

low spatial details makes auto-classification difficult  according to (Coppin et al., 2004, 

Jianya et al., 2008).  
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Furthermore, Lu et al. (2011) revealed the two classes change detection techniques which are: 

 Binary change or non-change detection which involves select appropriate thresholds 

in both tails of the histogram representing the changed areas (Yool et al., 1997). These 

selection of threshold is carried out either by manual trial-and-error method (i.e., 

modifying the thresholds and assessing the resulting image until satisfied) or 

statistical measures. Some examples of non-change detection technique are image 

differencing, image rationing, vegetation index differencing, and PCA. Also, Lu et al. 

(2004) pointed out the disadvantage of threshold method which includes, sensitivity to 

external influence and its subjective nature and scene dependent.   

 From-to change detection are mainly rely on the classification accuracy for each date 

being analysed i.e., the final change detection accuracy depends on classification 

errors from the analysed separately dated images (Jensen, 2005). Some examples are 

post classification comparison and hybrid change detection methods (Lu et al., 2004). 

Although many changes detection  studies  have been done using remote sensing data, there 

is still no conclusion  on the most effective techniques to use, according to Jianya et al. 

(2008). Therefore, choosing a perfect change detection algorithm is therefore of great 

importance and needs careful consideration (Coppin et al., 2004). 

2.4 Remote sensing of impervious surfaces  
Impervious surfaces are man-made features that do not allow water to infiltrate through. 

Examples of these impervious surfaces include roads, driveways, sidewalks, parking lots, 

rooftops, concrete, asphalt, stone etc. (Okeke, 2006, Weng, 2012). Impervious surfaces have 

a wide range of environmental implications (human-environmental interactions and 

environmental change or global warming) and therefore it has become  necessary to map and 

estimate changes in impervious surface areas (Weng, 2012). Literature reveals that various 

techniques has been used in the past to characterize and quantify impervious surfaces. These 

method are  can be  grouped into two, namely: Ground measurements or field survey  and use 

of manual digitizing from hard-copy maps or remote sensing data .Ground measurements or 

field survey with GPS are very costly and time consuming but provides a reliable information 

on impervious surfaces. The use of  manual digitizing from hard-copy maps or remote 

sensing data (especially aerial photographs) have also been used for mapping imperviousness. 

Due to technological advancement over the years, automated methods such as scanning, 
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machine learning and  feature extraction algorithms have also been used for extraction of 

impervious surface areas  (Weng, 2012). The development of satellite imagery in the 1970s - 

1980s also gained popularity in natural resources and environmental studies. Furthermore, 

(Brabec et al., 2002) reported on the four different methods which involved; Using a 

plainmeter to measure impervious surface on aerial photography, counting the number of 

intersections on the overlain grid on an aerial photograph, conducting image classification 

and assessing impervious surface coverage through the percentage of urbanization in a 

region. Brabec et al. (2002) and Slonecker et al. (2001) studies revealed that in the 1970s and 

1980s, aerial photography was the main source of remote sensing data for assessing and 

mapping impervious surfaces. Literature via Scopus, also revealed that the number of 

publications produced were limited in the 1990s due to the lack of remote sensing data 

suitable for identifying and assessing impervious surface types, limited digital image 

processing methods and computing power (Weng, 2012).  

 

During the 21st century, remote sensing of impervious surfaces speedily gained interest 

amongst the remote sensing community judging from the annual publications and citations. 

The average number of citations per article per year on remote sensing of impervious surfaces 

was 0.82 between 2001 and 2010, while the number of citations per year for the entire field 

of remote sensing was 0.55 for the same time frame (Figure 2.1). The evaluation showed that 

remote sensing of impervious surfaces has become one of the most dynamic fields in remote 

sensing (Weng, 2012). Furthermore, the advent of high-resolution imagery (less than 5 m 

resolution) together with more sophisticated image processing techniques improved the 

remote sensing of impervious surfaces. Parece and Campbell (2013) showed that many 

researchers admitted that high-resolution imagery also has the problem of heterogeneity 

(mixed pixel)  i.e., different spectral values of various end members within the pixel size. In 

spite of the spatial resolution of Landsat imagery (30m pixel size) for urban analysis, it still 

has an advantage of affordability, accessibility, multispectral coverage, sequential acquisition 

and spatial coverage of   urban studies (Parece and Campbell, 2013). 
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Figure 2.1: Yearly publications and citations from 1991 to 2010 indexed by Scopus (adapted 
from Weng (2012)). 

 

Recently, tabular representation showing selected literature on a variety of techniques in 

urban impervious surface areas in various places around the globe has been reported in Weng 

(2012) and Parece and Campbell (2013). Recently many government agencies and non-

government organizations have started to gather and map impervious surface data for various 

uses. Earlier researchers such as Radeloff et al. (2005) showed that housing density has been 

used as an indicator for urban expansion in the past. This housing density parameter is often 

derived from census data but  its application in urban sprawl studies has limitations. For 

instance, census blocks were often too coarse and not timely for monitoring purposes. This is 

because the census block is up-dated at decadal intervals which might complicate studies on 

urban expansion by introducing spatial mismatch between boundaries of different datasets 

(Hammer et al., 2004).  According to Sutton (2003), the nonlinear differences of the total 

population  are due to different scale of measurements. This complicates the identification of 

urban expansion in a uniform spatial context. In addition, many studies have shown that 

impervious surfaces are an indicator of urban expansion (Powell et al., 2008). Nevertheless it 

has also been revealed that impervious surface is man-made landscapes that can be identified 

and quantified using remote sensing technology. Many factors ought to be taken into 

consideration when using remote sensing technology according to Lu and Weng (2007). 

Some of which are  user's requirement, research objectives, remotely sensed data available, 

compatibility with previous work, availability of image processing algorithms and computer 

software, and time constraints. Since remote sensing data differ in spatial, geometric, 
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radiometric, spectral, and temporal resolutions,Weng (2012) indicated that the understanding 

of the strength and weakness of various remote sensing data is significant in selection of the 

type of  image processing methods to be used.  

 Bauer et al. (2007) used the inverse correlation between impervious surface and vegetation 

covers in urban as a potential approach for impervious surface extraction, i.e., through 

information on vegetation abundance. Likewise, Carlson and Ripley (1997) showed that the 

Normalized Difference Vegetation Index (NDVI) or greenness derived from tasselled cap 

transformation or principal component analysis can be used to represent vegetation. 

Impervious surfaces were then assessed by the complement of vegetation fraction or by 

regression models with vegetation indices. Most of these studies employed used coarse- and 

medium-resolution satellite imagery e.g., AVHRR imagery, MODIS, Landsat MSS and TM 

imagery which were taken in different seasons (e.g.  Leaf-on and leaf-off season) facilitating 

the underestimation of vegetation leading to the overestimation of impervious surface 

coverage (Weng, 2012). Furthermore, Bauer et al. (2007) established a regression modelling 

method correlating impervious surface area extracted from panchromatic digital orthophoto 

quadrangles to Landsat tasselled cap derived greenness. The aim of work reported in Bauer et 

al. (2007) was to assess and map the impervious surface in the state Minnesota. Chabaeva et 

al. (2004)  established a land use estimation model. Regression technique was extended by 

Yang et al. (2003) developing a classification and regression tree (CART) algorithm. The 

CART algorithm employed  the classification result of high resolution imagery  and use them 

as a training dataset to create a rule-based modelling for estimating of sub-pixel percent 

imperviousness for a study area. According to Weng (2012), the regression trees are created 

using a partitioning algorithm to build a tree by repetitive splitting of the training sample into 

smaller subsets to reduce the model's combined residual error for the subset. Xian (2007 ) 

stated that the advantage of the regression tree algorithm was to simplify complex non-linear 

relationship between predictive and target variables into a multivariate linear relation and to 

accommodate both continuous and discrete variables as input data for continuous variable 

prediction. Additionally, the application of regression method used for medium resolution 

imagery data has also been applied to coarse resolution image, e.g. MODIS derived NDVI 

(Lu et al., 2008) and DMSP/OLS (Elvidge et al., 2007). Similar approach, involving the use 

of finer resolution data was used for calibrating, authenticating, and projecting impervious 

surface area. The estimation of impervious surfaces using regression methods (multivariate 
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regression or CART) as reported by Weng (2012) also had limitations associated with model 

calibration, validation, and extrapolation of the models in other study areas.  

Linear spectral mixture analysis (LSMA) had been used for ISA extraction (i.e., quantitative 

sub-pixel information) due to its performance in handling the problem of spectral mixture 

(Roberts et al., 1998). The LSMA methodology has been widely employed in the assessment 

of impervious surfaces in recent years (Powell et al., 2007).  Various algorithms have also 

been developed for extracting impervious surface areas based on the LSMA model. Phinn et 

al. (2002) extracted impervious surfaces as one of the endmembers in the standard SMA 

model. The use of high-albedo and low-albedo fraction images together can also be used to 

evaluate impervious surface areas (Weng et al., 2009). Nevertheless, some of the limitations 

associated with LSMA technique reported in Weng (2012) are; (a) overestimation of ISA in 

the areas with small amounts of impervious surfaces (b) underestimation in the areas with 

large amounts of impervious surfaces and (c) spectral properties of  non-photosynthetic 

vegetation, soil, and several impervious surface materials makes it difficult to separate 

impervious from pervious materials. He also pointed out that, shadows caused by tall 

buildings and tree canopies in the urban landscape may lead to underestimation of impervious 

surface area with high-resolution imagery.  

Most urban landscapes consist of numerous impervious surfaces in terms of type, abundance 

and geometry. As a result, identifying one suitable end member to be a  representative of all  

the impervious surfaces is often difficult. Lu and Weng (2004) recommended that three 

possible methods could be used to solve these problems: Stratification, multiple end 

members, and hyper spectral imagery. The creation of multiple end member SMA (MESMA) 

method reported in  Powell et al. (2007) and Franke et al. (2009) uses a series of candidate 

two-end member models. Each model is then assessed based on the measures of fractional 

values, root mean square error, residual threshold and finally produces the fraction images 

with the lowest error according to the previous works of Roberts et al. (1998).  Another 

limitation of LSMA previously described in Foody et al. (1997) was the selection of end-

members related with within-class spectral variability. This was overcome by Wu (2004) who 

improved his technique of impervious surface assessment by normalizing spectral data (i.e., 

Normalized spectral mixture analysis, NSMA) before using LSMA. Also, Yang et al. (2010) 

point to that the  pre-screened and normalized multiple end member spectral mixture analysis 

(PNMESMA) method was better than previous methods (LSMA, NSMA, LSMA-LST, and 
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MESMA). This was because the estimated error or overall root mean square error was 

reduced to 5.2% and that there was no noticeable underestimation or overestimation of  

impervious surface areas. 

Even though image classification has been the most extensively used methods of extraction 

of ISA, results are often not adequate (Okeke, 2006). This is because heterogeneity of urban 

settlements  are difficult to estimate in a medium resolution imagery. For example, 

inconsistent selection of representative training areas due to the 30m resolution could affect 

the accuracy of image classification (Weng, 2012). Civco et al. (2002) reported that 

extraction and quantification of ISA could be done at the sub-pixel level together with ground 

truthing. Furthermore, Carlson and Arthur (2000) calculated the percent of impervious 

surface per pixel using fractional vegetation derived from scaled normalized difference 

vegetation index (NDVI). Yang et al. (2003) recommended the general classification and 

Regression Tree (CART) method using Landsat satellite data derived Tasselled Cap 

transformed data. Although, Ridd (1995) proposed the vegetation–impervious surface–soil 

(V–I–S) model to identify the biophysical composition of the urban landscape, but was 

improved by  Lu and Weng (2006) using four end-members i.e., High-albedo, low-albedo, 

together with soil and vegetation extracted from the image. Lu and Weng (2006) assumption 

was that land covers in urban landscapes are in a linear combination of three components, 

namely, vegetation, impervious surface, and soil. Nevertheless, the limitations of these 

methods were the confusion among classification of dry soils that are mixed with water, 

building shadows, vegetation shadows, and dark impervious surface materials which over-

estimated the magnitude of impervious surface (Lu and Weng, 2006). This was solved using 

expert rules developed from sample plots using high spatial resolution aerial photos. Weng 

and Lu (2009) recently adopted the new concept of merging the benefits of Vegetation- 

Impervious Surface-Soil (VIS) and Linear Spectral Mixture Analysis (LSMA) to better 

describe and estimate the spatial-temporal changes of the urban area. 

With the availability of fine spatial resolution data (<5 m) such as IKONOS and QuickBird, 

the mapping of ISA has improved due to the reduced mixed pixel problem, providing a 

greater improvement of  extracting  more detailed information on land cover types (Weng, 

2012). According to Lu and Weng (2009), high-resolution imagery has been used to separate 

dark impervious surface areas and shadowed from water and shaded areas created by tree 

crowns. Lu and Weng (2009) further established that a combination of techniques involving 
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decision tree classifier and unsupervised ISODATA classifier to extract impervious surfaces 

from IKONOS images. Maximum likelihood classifier, ISODATA, and a rule-based 

classification algorithm applied to digitized aerial photos and LIDAR data in Richland 

County, South Carolina were also compared by Hodgson et al. (2003). They found that 

maximum likelihood classifier produced the highest accuracy while the ISODATA the had 

the lowest. 

Even though large-scale impervious surface mapping have been executed using various 

methods, the techniques used for mapping are complex due to varying image quality and 

scales together with mixed pixel problems when assessing of a large geographical area. Thus, 

in this research, a both ML and RF classifiers were employed to extract the impervious 

surface areas over Tshwane metropolitan, Gauteng Province, South Africa. 

2.5 Land surface temperature responses to land use or cover changes  
The most significant environmental impact resulting from the modification of the physical 

properties of the land surface due to land conversion (i.e., transformation of land cover from 

one class to a completely different class) is the changes in land surface temperature (LST) 

and atmospheric temperature (Deng and Wu, 2013). Surface temperature are affected surface 

energy change, anthropogenic heat discharge, building energy consumption and atmospheric 

pollution. They can be detected at a large geographical scale (urban–rural surface temperature 

difference) which  is known as urban heat island (Lu and Weng, 2006). Deng and Wu (2013) 

appraised that the earlier method of assessing surface temperature variability involved the 

simulation of UHI phenomenon and its spatial pattern using governing equations for fluid 

mechanics such as an energy balance equation, etc.) together with in-situ measurements or 

laboratory experimental data. The main simulation models they pointed out were: energy 

balance models (Tong et al., 2005) and dynamic numerical simulation methods (Yuan et al., 

2008). Sun (2008) also mentioned the use of sheltered thermometer above a flat grassy and 

well ventilated surface to  estimating surface-air temperature. 

Rao (1972) reported the earliest urban surface temperature observations from satellite-based 

sensors. Since then, sensors at various platform (i.e., satellite, aircraft and ground based) have 

been used to observe of the surface temperature. Voogt and Oke (2003) also reviewed some 

studies that have applied thermal remote sensing to study urban climates in the past. Since 

remote sensing offers the chance to detect electromagnetic radiation (EMR), see Figure 2.2 
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by sensors on a remote sensing platform, it has been  beneficial in the analysis of spectral 

response of different objects (Tomlinson et al., 2011). According to (Lillesand et al., 2004), 

LST measurements are mainly carried out using the thermal infrared (TIR) region. Tomlinson 

et al. (2011) further explained that electromagnetic radiation (EMR) received at satellite 

thermal infrared sensors is measured  as  Top Of Atmosphere (TOA) radiances i.e. upwelling 

radiance (emitted from the ground and  atmosphere), and the downwelling radiance (emitted 

by the atmosphere and reflected from the ground). He further described that during the day 

there is both emission and reflection of EMR while at night sensed EMR is limited to only 

emission. 

 

Figure 2.2: The electromagnetic spectrum arranged by wavelength. Adapted from Lillesand 
et al. (2004). 

 

Additionally, Tomlinson et al. (2011) pointed out that LST is derived  from TOA radiance by 

modifying  three main effects which are absorption, reflection  and scattering due to water 

vapour and aerosols. These effect changes the EMR as it passes through the atmosphere 

resulting in variations in viewing angles and wavelength shifting which must be compensated 

for when estimating radiances  and spectral emissivity values at the surface (Dash et al., 

2002). In addition, emissivity is done by considering the ratio of energy emitted by a surface 

with respect to the energy emitted by a black body at the same temperature. Since most 

surfaces don’t behave like blackbody there is need for correction of calculated emissivity 

values as reported by Tomlinson et al. (2011). They further indicated that the correction is 

done using complex algorithms together with extensive validation and verification to produce 

a product  applied to the meteorologist. 
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Dominguez et al. (2011) also reported on some algorithm which has been used for LST 

retrieval from thermal bands such as split-window techniques and the radiative transfer 

equation (RTE) which  have been  described in  Dash et al. (2001) and (Weng, 2009). 

Tomlinson et al. (2011) applied split window  technique on the thermal bands of  AVHRR, 

MODIS and SEVIRI products and also used  adjacent channels with different properties to 

calculate atmospheric attenuation. Yu et al. (2008) reviewed nine different split window 

algorithms and concluded that accuracies are dependent on emissivity data acquired earlier. 

Tomlinson et al. (2011) also reported that it is difficult to assess large areas using remote 

sensing data except with the assumptions of average emissivity across a heterogeneous area. 

In addition, studies by Deng and Wu (2013) demonstrated that certain models have been used 

to examine the relationships between land surface temperature and spectral indicators created 

from remotely sensed data. Linear regression models have been widely used to explore the 

relationships between LST and biophysical and socio economic factors. Some of these 

biophysical and socio economic factors are; land use and land cover (LULC) type and change 

(Amiri et al., 2009), intensity of human activity (Elvidge et al., 1997), geometry of street 

canyon (Bottyán and Unger, 2003), population density and distribution (Xiao et al., 2008),  

and impervious surface area (Imhoff et al., 2010) etc. Although many spectral indices have 

been developed for analysing UHI by extracting LST from remotely sensed data, Weng et al. 

(2004) earlier showed that they are still insufficient to fully characterize urban landscape 

thermal characteristics and patterns. Deng and Wu (2013) also reported that non-linear 

statistical models have also been  employed to describe the intensity and magnitude of urban 

microclimate and UHI. Some of these examples are; association rule mining technique 

(Rajasekar and Weng, 2009), Gaussian model (Streutker, 2003) etc. Furthermore, vegetation 

cover pixels show significant differences in LSTs due to different background substrates (i.e., 

moist or dry soil have different thermal properties). Earlier works of Ridd (1995) also showed 

that though spectral metrics can be used in describing urban LST characteristics, it omit 

impacts of soil, which  is observed as one of the most essential land compositions. Hence, it 

is necessary to consider thermal properties of different urban land cover during LST 

estimation (Friedl, 2002).   

Aderoju et al. ( 2013) recently assessed the urban heat island in Akure, Nigeria, West Africa, 

using Radiative Transfer Method as an effective way of estimating LST using Landsat 7 

ETM+.  They concluded that the  most extensive UHI was distributed in the central part of 
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the Central Business District.  Jiménez-Muñoz et al. (2009) used the Landsat thermal-infrared 

(Band 6) to retrieve LST over Catalonia (north-east of the Iberian Peninsula, Spain)  using an 

extension of the generalized single-channel (SC) algorithm developed by Jime´nez-Munˇ oz 

and Sobrino (2003) which depends on concept of atmospheric functions which relies on 

atmospheric transmissivity and upwelling and downwelling atmospheric radiances. They 

tested the accuracy of their result  using a land surface temperature map obtained from one 

Landsat-5 image acquired over an agricultural area using inversion of the radiative transfer 

equation and the atmospheric profile measured in situ at the sensor overpass time. The  

comparison with this “ground-truth” map provided a root mean square error of 1.5 K.  

Tomlinson et al. (2011)  based on review on remote sensing LST  in Birmingham, UK also 

specified  the limitation of single channel algorithm on  Landsat TM/ETM+ products and 

considered them less accurate because of the influence of  atmospheric attenuation at the time 

of overpass. Similarly, Qin et al. (2001) detailed the mono window algorithm based on the 

thermal radiance transfer equation, putting into consideration three parameters (emissivity, 

transmittance and effective mean atmospheric temperature) to retrieve LST for the sand 

dunes across the Israel- Egypt border using Landsat TM data. They concluded that the mono 

window algorithm is able to provide an accurate land surface temperature retrieval from 

Landsat imagery.  Ifatimehin et al. (2009) also evaluated the effect of land use/cover change 

on the surface temperature of Lokoja town, Nigeria using Landsat TM and ETM+ employing 

the mono window algorithm. They reveal that there is a direct relationship between the land 

use/cover changes and the variations in the surface temperatures. Alipour et al. (2011) 

estimated the LST of Alashtar city, Iran  from thermal bands of Landsat sensors using both 

the mono window algorithm developed by Qin et al. (2001) and the single channel algorithm 

developed by Jime´nez-Munˇ oz and Sobrino (2003). They finally compared the LST 

measured in situ with the retrieved ones from the algorithm and the result revealed that mono 

window R2= 0.85 while the single channel  algorithm R2= 0.79. Subsequent studies on LST 

retrieval include comparing LST and air temperatures over large areas and multiple 

ecosystems in Africa (Vancutsem et al., 2010) using MODIS LST data to estimate the air 

temperature in China (Yan et al., 2009), using SURFRAD to Verify the NOAA Single-

Channel Land Surface Temperature Algorithm (Heidinger et al., 2014) and so on.  

Although,  differences between satellite derived LST and ground measured air temperature at 

various land extent (town, city, municipality, province and continental) is still subject to 

25 

 



ongoing work at various countries around the globe, very little is being  carried out in major 

cities in Africa despite the availability of  thermal satellite data. The next section presents the 

data and methodology employed in carrying out this research. 
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3 CHAPTER THREE: DATA AND METHODOLOGY 
 

3.1 Study area 
Tshwane Metropolitan is located between S25°19'17.78" E27°53'05.52" (top left) and 

S25°56'49.95" E28°26'45.7" (bottom right) northeast of Johannesburg city, Gauteng 

Province, South Africa (Figure 3.1). It is situated in a transitional belt between the plateau of 

the Highveld to the South and the lower-lying Bushveld to the North in South Africa. The 

city has a land area of  2,198 km2 and  altitude of about 1,350 m (4,500 ft) above sea level, in 

a warm, sheltered, fertile valley, surrounded by the hills of the Magaliesberg range. It is one 

of South Africa’s three capital cities representing the administration and de facto national 

capital alongside others which are Cape Town, (Legislative capital) and Bloemfontein 

(Judicial capital).  The Tshwane Metropolitan is divided into three sections which are Pretoria 

West, Pretoria East and Pretoria North (StatisticsSouthAfrica, 2011). Pretoria is located 

within the City of Tshwane Metropolitan Municipality (6,298 km2) as one of several 

constituent former administrations along with Centurion and Soshanguve. The geographical 

distributions of the major languages in Pretoria are Afrikaans, English, Ndebele, Zulu, 

Nothern Sotho, Tswana and Tsonga.  

Tshwane Metropolitan has various cultural influences and this is reflected in the architectural 

styles that can be found in the city e.g. British Colonial Architecture and other uniquely 

South African styles. Some of the notable structures in Pretoria include the Voortrekker 

Monument, Mahlamba Ndlopfu,  Union Buildings,  Reserve Bank of South Africa, the 

Telkom Lukas Rand Transmission Tower,  Loftus Versfeld Stadium,  The South 

African State Theatre, University of Pretoria, CSIR, Pretoria National Botanical Garden, the 

National Zoological Gardens of South Africa, Groenkloof Nature Reserve, Rietvlei Nature 

Reserve, Moreletaspruit Nature Reserve, Wonderboom  Nature Reserve, Church Square, 

Menlyn Park, Hatfield Square and so on.  Furthermore, the CBD (Central business district) of 

Pretoria is the traditional centre of government and commerce, with many corporate offices, 

small businesses, shops and government departments located in Pretoria's sprawling 

suburbs rather than the CBD. National Departments with their Head Office in the CBD 

include: Department of Health, Basic Education, Transport, Higher Education and Training, 

Sport and Recreation, Justice and Constitutional Development, the National Treasury and 

Water and Environmental Affairs.  
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Transportation within the city  are of different types namely: railways such as  Metrorail with 

routes originating from  the city centre, extending south to Germiston and Johannesburg, west 

to Atteridgeville, northwest to Ga-Rankuwa, north to Soshanguve and east to Mamelodi, the 

Gautrain which is a high speed railway line that runs from the eastern suburbs 

of Hatfield to Pretoria Station, Centurion, Sandton, and Oliver Tambo International 

Airport and Johannesburg, Rovos rail which  operates from the colonial-style railway station 

at Capital Park (Capital Park, 2008). Buses from companies both governmental and private 

companies are also a source of transportation e.g. Tshwane municipality buses, private taxis 

and so on. 

Tshwane has a high altitude of about 1350 metres coupled with a  moderately dry, humid 

subtropical climate  (i.e., hot and rainy summers and short cool and dry winters) with an 

average annual temperature of 18.7°C (Hansen et al., 2010).  This climatic condition might 

be due to the sheltered valley position, which traps the heat and cuts it off from cool southerly 

and southeasterly air masses for much of the year. Rain is predominantly in the summer 

months with an average 715 mm of precipitation annually and the driest month is June (6 

mm) while the wettest month is January (122 mm). Drought conditions usually occur during 

the winter months, when frosts may be sharp, but snowfall is an extremely rare event. 

Snowflakes were spotted in 1959, 1968 and 2012 in the city, but the city has never 

experienced an accumulation in its history (WeatherNetwork, 2012). During a nationwide 

heat wave in November 2011, it was observed that Tshwane Metropolitan temperatures rose 

up to 39°C, extremely unusual for that time of the year. Likewise extreme heat events also 

transpired in January 2013, when SAWS (2013) reported that Pretoria experienced 

temperatures above 37°C for several days which eventually resulted in all-time highest 

recorded temperature of 42°C on 25 January 2013. 

During the past decades, Tshwane metropolitan experienced a constant growth in population 

and expansion. The estimated population range according to the population census of 2001 

was 500,000 and after the 2011 annexation of the Metsweding District Municipality is now 

2.950 million (StatisticsSouthAfrica, 2011). This sprawl has generated various urban land use 

types that continuously necessitate the construction of new ISA replacing agricultural lands in 

the city. 
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Figure 3.1: Map showing the location of Tshwane Metropolitan, within the Gauteng Province 

in South Africa. 
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Due to the adverse effect of urban complex landscape (i.e., urban heat island), it has become 

necessary to have an up-to-date assessment of impervious surface area changes and 

investigate its contributions to land surface temperature variations across Tshwane 

Metropolitan. 

3.2 Data and methods 

3.2.1 Introduction 
This section gives a brief introduction of the data and methodology used in the study. In 

particular, both primary and secondary data sources were used. The primary datasets includes 

field observations and information acquired with the aid of a handheld GPS. (Geographical 

positioning system)  and the Analytical Spectral Device (ASD) on a 30m × 30m plot with a 

homogenous area of the land use or cover class across the City of Tshwane. The secondary 

data  for the study includes a series of cloud free Landsat images of the study area acquired 

from years 2003 and 2013. The primary goal of the research study is to use moderate 

resolution Landsat ETM+ and Landsat 8 LCDM to investigate the changes in impervious 

surface area and land surface temperature of Tshwane metropolis, Gauteng province, South 

Africa. Figure 3.2 illustrates the schematic flowchart of the methodology adopted.   
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Figure 3.2: Methodological framework showing the important phases used in this research. 

 

3.3 Data type and sources  

3.3.1 Landsat 7 ETM+ 
Landsat 7 ETM+ was launched on April 15, 1999 from Vandenburg Air Force Base, CA, into 

a sun-synchronous orbit. This is a three- axis stabilized platform carrying a single nadir-

pointing instrument with a revisit interval of 16 days (Jensen, 2007). Landsat 7 ETM+ is a 
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derivative of Landsat 4 and 5 TM sensors and it’s based on a scanning technology even 

though there has been linear array push broom technology, which has been made available 

since the launch of SPOT 1 in 1986 (Jensen, 2007). The ETM+ sensor is a multispectral 

scanner that has three on-board calibration devices for the reflective bands which are; the Full 

Aperture Solar Calibrator (FASC) which is a white painted diffuser panel, Partial Aperture 

Solar Calibrator (PASO) which is a set of optics that allows the ETM+ to image the Sun 

through small holes and IC which consists of two lamps, a black body, a shutter, and optics to 

transfer the energy from the calibration sources to the focal plane (Chander et al., 2009).  The 

sensor was calibrated using Earth targets (e.g. Railroad Valley) according to (Thome et al., 

2004) and cross-calibrated with multiple sensors according to Chander et al. (2008).  

Table 3.1 shows the spectral and spatial characteristics of the Landsat 7 ETM+ with band 1 

through 5 and 7 being identical to those found on Landsat 4 and 5 with a spatial resolution of 

30 m, thermal infrared band 6 has 60m and 15m panchromatic band (Chander et al. 2009). As 

reported by Jensen (2007), Landsat 7 ETM+ sensor at an altitude of 705km above the earth's 

surface and collects data in a swath width 185 km wide and cannot view off-nadir. The 

Landsat 7 ETM+ scene considered in the present study is path 170 and row 078 and defined 

by World Reference System-2 (WRS-2). The WRS-2 allows efficient search and retrieval of 

the requested imagery for fractional surface of the earth (http://landsat.usgs.gov). The 

Landsat 7 ETM+ data set used was acquired 31st of March, 2003 covering 95% of Gauteng 

province but with focus on City of Tshwane South Africa. The multispectral imagery was 

provided by Glovis.usgs.gov in tiff format processed to a level 1T (terrain and precision 

corrected).  

3.3.2 Landsat 8 LCDM 
The Landsat Data Continuity Mission known as Landsat 8 after on-orbit initialization and 

verification was launched from Vandenberg Air Force Base in California on February 11, 

2013 at the top of an Atlas V rocket. The U.S. Geological Survey (USGS) and National 

Aeronautics and Space Administration (NASA) continued mission to acquire high-quality 

data met both USGS and NASA scientific and operational requirements for earth 

observations e.g. Land use and land cover change (http://ldcm.nasa.gov/).  The Landsat 8 

spacecraft was built by Orbital Sciences Corporation with a 5-year mission design life; it 

shows enough fuel for 10 years of operation. The LCDM centrepiece of the observatory is the 

Operational Land Imager (OLI), which was designed and assembled by the Ball Aerospace 
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and Technologies Corporation (http://ldcm.nasa.gov/). By collecting land-surface data with 

spatial resolution and spectral band specifications consistent with historical Landsat data, the 

OLI instrument advances future measurement capabilities while ensuring compatibility with 

historical data (U.S. Geological Survey, 2013).  

 

Table 3.1: Spectral and spatial characteristics of the Landsat 7 ETM + multispectral scanner 

(adapted from http://landsat.usgs.gov). 

Landsat 7 ETM +  Sensor  

Band Name Bandwidth (µm) Resolution 

(m) 

Combinations Bands 

Band 1 Blue 0.45 – 0.52 30 Colour 

infrared 

4,3,2 

Band 2 Green 0.52 – 0.60 30 Natural colour 3,2,1 

Band 3 Red 0.63 – 0.69 30 False colour 5,4,3 

Band 4 NIR 0.77 – 0.90 30 False colour 7,5,3 

Band 5 SWIR 1 1.55 – 1.75 30 False colour 7,4,2 

Band 7 SWIR 2 2.09 – 2.35 30   

Band 8 Pan 0.52 – 0.90 15   

Band 6 TIR 10.40 – 12.50 30/60   

 

Landsat 8 LCDM uses as a push-broom sensor with a four-mirror telescope, higher signal-to-

noise performance and 12-bit quantization. The OLI collects data (Table 3.2) in the visible 

(Band 2, 3, 4), near infrared (band 5), and shortwave infrared wavelength regions (band 6 

SWIR 1 and band 6 SWIR 2), thermal infrared band (band 10 TIRS 1 and 11 TIRS 2) as well 

as a panchromatic band (band 8). In comparison to Landsat 7 ETM+, two new spectral bands 

have been added: a deep-blue band of coastal water and aerosol studies (band 1), and a band 

for cirrus cloud detection (band 9) (Figure 3.3), together with an assurance band to indicate 

the presence of terrain shadowing, data artefacts, and clouds.  Furthermore, the Thermal 

Infrared Sensor (TIRS) which are band 10 TIRS 1 and 11 TIRS 2, made by NASA Goddard 

Space Flight Center were to continue thermal imaging. This was to support evolving 

applications such as modelling evapotranspiration for monitoring water use consumption over 

irrigated lands, land surface temperature in climate change studies and so on. The TIRS 
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collects data has 100-meter spatial resolution registered for the OLI data to create 

radiometrically and geometrically calibrated, terrain-corrected 16-bit Level 1 data products 

(http://landsat.usgs.gov). 

The Landsat 8 LCDM data are processed using parameters consistent with all standard Land-

sat data products that are available in various open source websites, for example Earth 

Explorer (http://earthexplorer.usgs.gov), Glovis (http://glovis.usgs.gov), or the Landsat Look 

(http://landsatlook.usgs.gov). For this research, the Landsat 8 LCDM was identified using 

path 170 and row 078 and defined by World Reference System-2 (WRS-2). The Landsat 8 

data set used was acquired November, 13, 2013 covering 95% of Gauteng province, but with 

focus on City of Tshwane, South Africa and was provided by http://glovis.usgs.gov in tiff 

format processed to a level 1T (terrain and precision corrected).  

 

Table 3.2: Spectral and spatial characteristics of the Landsat 8 LCDM (adapted from 

http://landsatlook.usgs.gov). 

Landsat 8 LCDM sensor 

Band Name Bandwidth (µm) Resolution (m) Combinations Bands 

Band 1 Coastal 0.43 – 0.45 30 Colour infrared 5,4,3 

Band 2 Blue 0.45 – 0.51 30 Natural colour 4,3,2 

Band 3 Green 0.53 – 0.59 30 False colour 6,5,4 

Band 4 Red 0.64 – 0.67 30 False colour 7,6,4 

Band 5 NIR 0.85 – 0.88 30 False colour 7,5,3 

Band 6 SWIR 1 1.57 – 1.65 30   

Band 7 SWIR 2 2.11 – 2.29 30   

Band 8 Pan 0.50 – 0.68 15   

Band 9 Cirrus 1.36 – 1.38 30   

Band 10 TIRS 1 10.6 – 11.19 100   

Band 11 TIRS 2 11.5 – 12.51 100   
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Figure 3.3: Comparison between Landsat 7 ETM + and Landsat 8 LCDM bands (adapted 
from http://ldcm.nasa.gov/). 

3.4 Instrumentation and software 
To store, analyse and display the collected remote sensing data and maps, software for 

Machine Learning (Random Forest), ESRI (ArcGIS 10.1) and EXELIS (ENVI 5.0) were 

employed to extract urban land cover types (with much focus on impervious surface), land 

surface temperature. Furthermore, the Analytical Spectral Devices (ASD) FieldSpec was then 

used for spectral data acquisition i.e., used for the measurement of reflectance. The 

instrument has a spectral range of 350 nm to 2500 nm. Other essential software employed in 

this study includes, RS3, ViewSpec Pro Version 6.0 (apart from being used to receive and 

store the spectral data transmitted from ASD Spectroradiometer, it was also used for 

conversion process of spectra data and save them in .asd format which is later converted to 

ASCII files of .txt format). Microsoft Excel 2010 was used to interpret the output data 

achieved by a conversion process into a graph which were used to present, describe and 

analyse the outcomes of the study and write up of the research report. 

3.5 Reference data collection 
In this study, it was necessary to employ ancillary data such as image spectrometry for field 

data acquisition such as various land cover type spectral signatures based on random point 

selection generated from Google earth images. These points were then uploaded into a global 
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positioning system (GPS) and used to navigate to the field sites. Once the sample point was 

located in the field, a 30m × 30m plot was created to cover a homogenous area of the land use 

or cover class. The GPS reading and spectral signatures (using the ASD field spec) of these 

LULC (Figure 3.5 and Figure 3.5) was then taken. 

 

Figure 3.4: Photos showing the use of the ASD-field spec to collect spectral signatures of 
various LULC across Tshwane Metropolitan. 
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Figure 3.5: Map showing places the analytical spectral device-field spec and GPS were used 
across Tshwane Metropolitan. 

 

Before taking recordings, the ASD was first used to acquire two types of radiant spectrum, 

which are dark current and white reference. Thereafter, the spectral signature for each LULC 

were acquired. Temperature data for the same date as the two Landsat images used, were also 

acquired from the South African weather stations and Pretoria Botanical Institute. Landuse 

map with a scale of 1:10,000 and shape file (Projection: WGS_1984_UTM_ZONE_35S) of 

the Tshwane Metropolitan was also employed. The Land use map and shapefiles were 

produced by the City of Tshwane Municipality but acquired from the Unit for 

Geoinformation and Mapping (UGM), Department of Geography, Geoinformatics and 

Meteorology, University of Pretoria, South Africa. Google Earth was also used to verify the 

urban landscape pattern of Tshwane Metropolitan. In conclusion, these were the reference 

data used to clip out the study area in the Landsat raster imagery for training site selection 

and preparing the urban map. 
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3.6 Data pre-processing  
Data pre-processing is an important phase of satellite image processing and analysis, which 

has an impact on all other subsequent procedures and results. From the Figure 3.2 above  the 

first step was to open the bands for Landsat 7ETM+ and Landsat 8 LDCM in ENVI Classic 

5.0 ranging from visible bands (VIS) to short wave infrared (SWIR) and perform layer 

stacking of the bands before sub-setting via ROI using ENVI Classic 5.0. The ROI used in 

this case was the Tshwane Metropolitan vector file using the mask pixel outside of the ROI, 

selecting ‘YES’ and entering ZERO as mask background value. This was followed by 

assigning band centre wavelength to the stacked subset Landsat images.  The quantitative 

analysis of surface reflectance is a critical satellite image pre-processing step so as to remove 

atmospheric effects such as the amount of water vapor, distribution of aerosols, and scene 

visibility must be known (Lillesand and Kiefer, 1999). According to Chander et al. (2009), 

radiometric calibration is also an important part of data pre-processing because it has the 

ability to provides precise (calibrated) and consistent measurements of the earth's surface 

features through time. During radiometric calibration, pixel values (Q) from raw, unprocessed 

thermal bands for the Landsat images used were converted to spectral radiance using 32-bit 

floating-point calculations. The absolute radiance values in the Landsat data employed for 

this research are scaled to 8-bit for Landsat 7 ETM+, Qcalmax = 255, and 16-bit for Landsat 8 

LCDM, Qcalmax = 65535 numbers which represent Qcal before output to distribution media 

(http://landsat.usgs.gov). The conversion from Qcal back to at-sensor spectral radiance (Lλ) 

requires the following equations below: 

For Landsat 7 ETM +: 

( )
 

( ) cal calmin
calmax calmin

LMAX LL MIN Q Q
Q Q

LMINλ λ
λ λ

−
= − +

−      [1] 

Or 

*   rescale cal rescaleL G Q Bλ +=        [2] 

Where: 
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Q

λ λ
λ

−
= −

−     [4] 

Where:         

Qcal      = Quantized calibrated pixel value [DN] 

Qcalmin = Minimum quantized calibrated pixel value corresponding to LMINλ [DN] 

Qcalmax  = Maximum quantized calibrated pixel value corresponding to LMAXλ [DN] 

Lλ  = Spectral radiance at the sensor's aperture [W/ (m2srµm)] 

LMINλ   = Spectral at-sensor radiance that is scaled to Qcalmin [W/ (m2srµm)] 

LMAXλ  = Spectral at-sensor radiance that is scaled to Qcalmax [W/ (m2srµm)] 

Grescale = Band-specific rescaling gain factor [W/ (m2srµm))/DN] 

Brescale = Band-specific rescaling bias factor [W/ (m2srµm)]. 

For Landsat 8 LDCM: 

L cal LL M Q Aλ = +        [5] 

Where: 

Lλ = Spectral radiance at the sensor's aperture [W/ (m2srµm)] 

ML = Band-specific multiplicative rescaling factor RADIANCE_MULT_BAND_x, where x 

is the band number. 

AL = Band-specific additive rescaling factor RADIANCE_MULT_BAND_x, where x is the 

band number. 

Qcal = Quantized calibrated pixel value [DN]  
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The conversion from Lλ back to at-sensor spectral reflectance (Lλ) requires the following 

equation: 

For Landsat 7 ETM +: 

2.
 ESUN

.
.cos

L dλ
λ

λ

π
ρ

θ
=          [6] 

Where: 

ρλ = Planetary TOA reflectance [unitless] 

π = Mathematical constant approximately equal to 3.14159 [unitless] 

Lλ = Spectral radiance at the sensor's aperture [W/ (m2srµm)] 

d = Earth-Sun distance [astronomical units] 

ESUNλ = Mean exo-atmospheric solar irradiance [W/ (m2srµm)] 

For Landsat 8 LDCM: 

calM Q Aλ ρ ρρ = +         [7] 

Where 

ρλ  = Planetary TOA reflectance [unitless] 

Mρ = Band-specific multiplicative rescaling factor REFLECTANCE_MULT_BAND_x, 

where x is the band number. 

Aρ = Band-specific additive rescaling factor REFLECTANCE_MULT_BAND_x, where x is 

the band number. 

Qcal   = Quantized calibrated pixel value [DN]  

TOA reflectance with a correction for the sun angle is then: 

' '
cos( ) s n )  i ( SZ SE

λ λ
λ

ρ ρρ
θ θ

= =        [8] 
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Where: 

ρλ = Planetary TOA reflectance  

θSE = Local sun elevation angle.  

θSZ = Local solar zenith angle i.e.  θSZ = 900 - θSE 

Note: Most of the above parameters are found in the metadata file that accompanies each 

complete Landsat data. Hence, the radiometric calibration is an essential step for generating a 

high quality and consistent remote sensing data.  

The Atmospheric Correction Module (which ensures accurate estimation of  atmospheric 

effects) in ENVI classic offers two atmospheric correction modelling tools for retrieving 

spectral reflectance from multispectral  radiance images e.g. Quick Atmospheric Correction 

(QUAC) and FLAASH. For the purpose of this analysis, the Quick Atmospheric Correction 

(QUAC) using ENVI 5.1 classic was carried out on the Landsat images creating a surface 

reflectance image, scaled into two-byte signed integers using a reflectance scale factor of 

10,000. The procedure was also based on the condition that there are at least 10 diverse 

materials in a scene and also the presence of sufficient dark pixels in a scene to allow for a 

good estimation of the baseline spectrum (www.exelis.com/docs/quac.html). 

Geometric correction involves the removal of geometric distortions or re-projection of the 

satellite image to its  proper projection and coordinate system. The two Landsat images 

acquired for this project have been geometrically corrected using an image to image 

registration to ensure perfect co-registration between the Landsat 7 ETM+, 2003 and Landsat 

8 LCDM, 2013 (Tsela et al., 2014). This procedure ensures identical coordinate system and 

minimizes spurious reflectance changes (Roy et al., 2002). At least 20 ground control points 

(GCPs) (Figure 3.6 and Figure 3.7) were selected uniformly throughout both Landsat 7 

ETM+ and Landsat 8 LDCM images. Salient and distinctive features that  remain unchanged 

over a period of time for example a lake, road crossing, water stream and a building edge 

were selected. Image-to-image registration was carried out using ENVI 5.0 Classic by 

selecting 20 ground control points (GCPs) using the most recent image (Landsat 8) as the 

base image due to its level of correction (L1T) and the previous (Landsat ETM+)  as the warp 

image. Using the first order polynomial transformation technique, a total room mean square 

(RMS) error of 0.46 pixel associated with the GCPs was adopted. The RMSE obtained from 
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the geo-rectification process was considered sufficient as classes of interest from both images 

overlapped properly. 

 

 

Figure 3.6: Dual display using Landsat 7 ETM + (31 March 2003) and Landsat 8 (13 
November 2013) false colour images of Tshwane Metropolitan in ENVI software version 5.0 
which simplified GCP collection for image to image registration. 

 

Various studies on change detection as reported by Tsela et al. (2014), have proposed varying 

threshold values of acceptable root mean square (RMS) error for co-registration accuracy e.g. 

<0.5pixels (Jensen, 2005), <0.70 pixels (Wedderburn – Bishop, 2002), <0.5 pixels (Tsela et 

al., 2014) and so on. Generally, the total RMS error that is acceptable is <.0 pixel for all 

GCPs. 

42 

 



 

 

 

Figure 3.7: Illustration of the computed statistics in ENVI Classic for the 20 collected GCPs. 
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3.7 Image classification 
Image classification involves assigning a land use or cover class to each pixel of the 

continuous raster image based on its spectral characteristics according to (Lu and Weng, 

2007). This method is among the most useful methods of remote sensing image analysis, used 

for land use/cover mapping used for environmental and socio-economic applications. The 

main steps in image classification include: selection of an appropriate classification 

technique, finding proper training samples, selection of a class structure suitable for the 

current region and classification theme, post-classification together with accuracy assessment 

(Lu et al., 2011). There are two categories of classifiers namely the non-parametric and 

parametric classifiers. As a parametric classifier (e.g. maximum likelihood) it assumes that 

the statistical parameters generated from the training samples are representative samples as 

pointed out by Weng (2012). Nevertheless, the assumption of the normal spectral distribution 

is often violated, especially with complex urban landscapes. Lu and Weng (2007) also 

reported that non-representative or multimode distributed training data sets or regions of 

interest can further introduce uncertainty in the image classification process.   

Earlier researchers have been able to show that this method provides a better result than 

parametric classifiers in complex urban landscapes (Paola and Schowengerdt, 1995). Some of 

the most frequently used non parametric classifiers are artificial neural network, decision tree 

classifier, support vector machine and classification and regression tree (CART) (Weng, 

2012). Random Forests (RF) classifier is an ensemble algorithm developed in the field of 

machine learning that uses a similar but enhanced method of bagging (Walton, 2008). 

According to Loosvelt et al. (2012), RF classifier operates by creating a multiple 

classification and regression trees, each trained on a bootstrapped sample of the original 

training data.  In this technique, the diversity of tree is increased by making them develop 

from different training data subsets created through bagging (Breiman, 1996). Ndyamboti 

(2013) also reported that each tree created, contributes a unit class vote, with the final 

classification determined among the tree range. For each of the new training sets that are 

created, two thirds (2/3) are part of the calibration subset, while a third (1/3) of the samples 

are randomly left out are known as the out-of-bag (OOB) samples (Chan and Paelinckx, 

2008). Breiman (2001) pointed out that the proportion between the total number of OOB 

features and misclassifications contribute to unbiased assessment of generalization error (i.e., 

error converges as the number of trials increases). Compared to other non-parametric 
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classifiers, RF has a number of advantages which are: insensitive to noise as reported by 

Watts and Lawrence (2008), does not suffer from over-fitting or a long training time 

(Loosvelt et al., 2012), faster  computation and ability to determine variable importance 

(Rodriguez-Galiano et al., 2012) and can handle unbalanced data sets (Watts et al., 2009).  

RF classification involve  creating a class image from regions of interest (ROI) selected from 

the two Landsat images in ENVI 5.0 Classic. This is followed by the parameterization to 

build a RF model which was used to classify the Landsat images. The parameterization 

involved the number of trees to be grown (ntree) which was selected up to 9-fold cross 

validation. This is followed by defining the number of randomly selected feature (mtry) 

which were used as default and a user defined value based on the number of bands to 

compute the best result. Likewise, the impurity in a node is determined using Gini Index and 

defining the minimum number of samples (i.e. Default = 1) and minimum impurity (i.e. 

Default = 0) in a node (Breiman, 2001). Based on the Landsat image number of bands, the 

value of ntree (i.e., number of trees) used ranged between 500 and 4500 while mtry was 

tested from 2 to 3 (i.e., number of features to create the RF parameters). In this study, we 

employed, ML classifier  as a reference point for the RF classifiers.  

3.8 Accuracy assessment and statistical significance of the classification results 
Accuracy assessment is considered as an integral part of any image classification (Lillesand 

et al., 2008). It is a procedure used to indicate the quality of land use or cover (LULC) maps 

and their suitability for a particular purpose (Foody and Mathur, 2004). To determine the 

accuracy of the classification maps, a confusion matrix  as designed by Congalton (1991) was 

built for each map and the Overall Accuracy (OA), User’s Accuracy (UA), Producer’s 

Accuracy (PA) and kappa coefficient were computed. Petropoulos et al. (2012) described OA 

as the number of pixels from the validation data set that have been correctly classified over 

the total number of pixels used for the accurate assessment  expressed as a percentage. User’s 

accuracy (UA) refers to the probability that a pixel belongs to a certain LULC class and the 

algorithm has labelled the pixel correctly into the same LULC class, while Producer’s 

Accuracy (PA) shows the probability that the algorithm has properly allocated an image pixel 

(Petropoulos et al., 2012). The kappa variance as pointed out by Foody (2010) is the most 

commonly used measure of assessing the degree of agreement between the reference and 

validation data sets. Fan et al. (2007) asserted that kappa is a discrete multivariate technique 

45 

 



used in the accuracy assessment. The Kappa coefficient is calculated using the formula given 

by (Congalton, 1991): 
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Where, 

r = the number of rows in the error matrix 

Xii = the number of observations in row i column i(along the diagonal) 

Xi+ = is the marginal total of rowi(right of the matrix) 

X+i = the marginal total of column i (bottom of the matrix) 

N = the total number of observations included in the matrix. 

Kappa or KHAT values have also been categorized into three possible ranges (Congalton and 

Green, 2009): 

Values greater than 0.80 (i.e., >80%) signifies strong agreement; 

Values between 0.40 and 0.80 (i.e., 40-80) signifies moderate agreement; 

Values below 0.40 (i.e., <40%) signifies poor agreement. 

The sample variance of the kappa is computed using Delta method (Congalton and Green, 

2009): 
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Where, 

Var (σ2) = estimated variance 

The test statistic for testing significance of a two error matrix is expressed by: 
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Where, 

K1 = kappa statistics or coefficient for first error matrix  

K2 = kappa statistics or coefficient for second error matrix 

Var (σ2)1 = estimated variance of the derived coefficient 

Var (σ2)2 = estimated variance of the derived coefficient 

Congalton and Green (2009) reported that if there is no difference between the two 

algorithms i.e., in a two-tail test, the null hypothesis Ho: (K1 - K2 = 0) is accepted, and the 

alternative H1: (K1 - K2≠0) is rejected, if Z < 1.96 at 5% level of significance. In this study, 

the ENVI 5.0 Classic software was used to create a region of interest and ground truth region 

of interest (reference ROIs) for land use or cover classification using RF classifier EnMAP-

Box software and accuracy assessment. The software was also used to compute overall 

accuracy, producer accuracy, user’s accuracy and kappa coefficient based on the error matrix 

for each classified image. The 2-sample z-test was used to show the statistical significance 

between the two kappa coefficients of the two classification algorithms. 

3.9 Change detection analysis 
Change detection is the process of identifying changes in the state of a feature or 

phenomenon by evaluating it at different periods (Singh, 1989). There are two groups of 

changes namely: Change between classes (i.e., conversion of land cover from one class to a 

completely different class) and change within classes (i.e., alteration of the condition of the 

landcover type within the same class) (Lu and Weng, 2004). Digital change detection 

procedures depends on image processing and change detection algorithms such as perpixel, 

subpixel and several other methods (Lu et al., 2011). However, in this study the post 

classification method which requires independently produced spectral classification results 

from each image of  different years was used (Coppin et al., 2004, Ramoelo, 2007). The 

classified Landsat images of  2003 and 2013 were used for the post classification analysis. 

The class statistics algorithm in ENVI 5.1 Classic software was used to process the post 

classification. The proportion of each land cover change were  derived and reported based on 

the percentage change of the study area (i.e., in percentage of all image pixels). 
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3.10 Deriving land surface temperature 

3.10.1 Principles of Land Surface temperature extraction 
Generally, materials naturally emit electromagnetic waves with a certain energy and spectral 

distribution, as long as the temperature is more than zero (273.150K). In addition, the 

intensity and spectral signature (radiant energy) of a particular feature depends on the 

material type and temperature. As reported by Maimaitiyiming et al. (2014), thermal infrared 

remote sensing employs space borne (orbital) or airborne (sub-orbital) sensors to gather and 

record the thermal infrared information of land surface features, which belongs to two 

atmospheric windows (3-5µm and 8-14µm). This allows the identification of land cover 

features and collection of surface parameters such as temperature, humidity, thermal inertia, 

etc. Thus, the thermal infrared radiation characteristics of the surface depend on the sun and 

earth (Levin, 2012). 

Temperature variability across land features can be as a result of variations in their radiation 

energy budget. Therefore, we are allowed to use certain temperature to characterize and 

analyse the radiation energy of a particular type of land cover feature (Maimaitiyiming et al., 

2014). The two basic thermal radiation law of land features or objects are; Stephen (Stefen)- 

Boltzmann and Kirchhoff’s Law.  Kirchhoff’s law pointed that the ratio between the emitted 

energy (W) and the absorption rate (α) within per unit time and per unit area for numerous 

features at the same temperature is constant. The nature of the feature or object  is 

independent of the ratio which is  equal to the black body radiation energy WB of the same 

area under the same temperature condition. Mathematical expression: 

W/α=WB         [11] 

α = W/ WB         [12] 

ε=W/ WB,         [13] 

 Therefore ε=α   (i.e. absorption rate and emissivity of the feature or object is equal if it’s 

doesn’t absorb electromagnetic radiation). Stephen (Stefen)-Boltzmann law showed that the 

total radiant heat energy emitted from a surface is proportional to the fourth power of its 

absolute temperature. The law applies only to surfaces that absorb all incident heat radiation 

(blackbodies) and must be revised to be used for general objects. The thermal radiation 
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energy released by the feature or objects, according to Kirchhoff and Stephen (Stefen)- 

Boltzmann's law, equals to, 

W=ασT4         [14] 

Where α is the absorption rate 

OR 

W=εσT4         [15] 

Where ε is the emission rate or emissivity. 

From the above formula, the thermal radiation of features or objects generally are dependent 

on the fourth power of its absolute temperature and emission or absorption rate. A change in 

the feature or object temperature causes more change in its thermal radiation energy. Finally, 

the above explanation forms the theoretical basis for thermal infrared remote sensing.  

3.10.2 Estimation of LST with Landsat Thermal Infrared Band 
The thermal infrared (TIR) bands are generally useful for assessing the temperature 

difference between the city and its surrounding rural areas (i.e., UHI phenomenon). In 

previous works, there are several types of land surface temperature retrieval algorithms for 

Landsat TM/ETM+ images as summarized by Maimaitiyiming et al. (2014) i.e., these are 

radiation conduction equation method, mono-window algorithm and single-channel 

algorithm. The radiation, conduction equation method requires acquisition of data, such a 

real-time atmospheric profile which is rather difficult to acquire. On the other hand, 

parameters required for the mono-window algorithm are near surface temperature and 

atmospheric water content while atmospheric parameters required for single-channel 

algorithm is the moisture content of the atmosphere. For the purpose of this research, pre-

determined  land surface emissivity of the LULC types according to Mallick et al. (2008) 

were eventually used to derive the Land Surface Temperature (LST) image. This involves a 

number of steps in which some have been described in section 3.10.3 and 3.10.4 for 

converting the top of the atmosphere radiance of the thermal bands to brightness temperature 

and LST image. 
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3.10.3 Conversion to At-Satellite Brightness Temperature 
For Landsat thermal bands, the conversion of DN to At-Satellite Brightness Temperature is 

given by (https://landsat.usgs.gov/Landsat8_Using_Product.php): 

2

1ln(K / L ) 1
b

KT
λ

=
+         [12] 

Where, 

K1 = Band-specific thermal conversion constant (in watts/meter squared * ster * μm). 

K2 = Band-specific thermal conversion constant (in kelvin). 

Lλ is the Spectral Radiance at the sensor's aperture, measured in watts/(meter squared * ster * 

μm). 

 

Table 3.3: The K1 and K2 constant for Landsat sensors are provided in the image metadata 
file. 

Constants Landsat 7 ETM + Landsat 8 LCDM 

K1 (watts/meter squared * ster * μm) 666.09 774.89 

K2 (Kelvin) 1282.71 1321.08 

 

3.10.4 Conversion from brightness temperature to Land Surface Temperature (LST) 
After the image classification of the study area in Landsat 7 ETM+ and Landsat 8, the land 

surface emissivity values from literature of Mallick et al. (2008) were assigned  to the land 

cover classes. Thereafter, the emissivity raster images for the two years were generated and 

used in the conversion of brightness temperature image to Land Surface Temperature (LST) 

using the equations below; 

(KELVIN)
1 / )*ln(

b

b

TLST
Tλ ρ ε+ +

=       [13] 
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To convert the LST image to Celsius image using the equation [14] below; 

(CELSIUS) (KELVIN) 273.15LST LST −=       [14] 

Where, 

λ is wavelength of radiance emitted in Landsat 7 ETM + (11.5µm) and Landsat 8 LCDM 

(10.8 µm). ρ= h.c/σ, σ = Stefan Boltzmann’s constant (5.67x 10-8 Wm-2 k-4), h = planks 

constant (6.626 X 10-34 Jsec), C = velocity of light, 2.998 x 108m/s) ε = spectral emissivity 

coefficient.  

3.10.5 Surface Temperature Anomaly 
Surface temperature anomaly can be defined as when the temperature conditions depart from 

long-term average conditions or reference value for a particular place at a given time of 

year. Positive anomaly indicates places with warmer temperature than the reference value 

e.g., urban and industrial hotspot. Negative anomaly indicates that the observed temperature 

was cooler than the reference value. 

class
anomaly

mean

LSTLST
LST

=
      [15] 

Where, 

LSTclass = Individual mean LST for each land cover type. 

LSTmean = Average of all the mean LST for all the land cover types. 
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4 CHAPTER FOUR: RESULT AND DISCUSSION 
 

4.1 Introduction 
This chapter presents spectral signatures of some urban land cover types (e.g., Grassland 

(GL), Bare land (BL), Plantation (PL), ISA such as concrete parking lot, road, Clay roofing 

and water (WA)) acquired from a wide-ranging and labour intensive field observation with 

the ASD and on screen selection of ROI. Also included are the results of image classification, 

classification accuracy assessment, statistical significance of classification, change detection, 

surface temperature retrieval and discussion. 

4.2 Spectral signatures of some land cover types in Tshwane Metropolitan 
Before the classification process, ground truthing using the ASD and GPS was carried out to 

ascertain the type of urban materials for roofing, buildings, roads, bare land or soil, water and 

vegetation (e.g., Tree plantation, grassland and cultivated lands) in the study area. The Figure 

4.1(a-d) below shows the mean spectral reflectance of the land cover types collected at 

various places in the study area which can be broadly divided into impervious surfaces and 

non-impervious surface area. Note that the gaps in the graphs of each land cover type spectral 

signatures are noise such as shadow (SH) which were removed. 

The spectral reflectance of non-impervious surface areas within the study area are displayed 

in Figure 4.1(a-d) which are primarily vegetation, bare land or soil and water bodies. The 

graph for grassland (e.g., parks and football fields) indicated its mean reflectance which 

increased from  Red spectrum (743nm) to Near infrared (NIR) region (1001nm) while it starts 

to decrease in the (short wave infrared region) SWIR region due to the presence of ligno-

cellulose bands. The grass spectrum also showed a noticeable chlorophyll absorption at 409 

and 682nm with a green peak centre at 566nm and a vibrational water absorption was 

observed at 960, 1180, 1461 and 1972nm (Robert and Herold, 2004).  The mean spectral 

signature of plantation (e.g., Eucaliptus trees) in the study area indicates a minimum 

reflectance experienced at green spectrum (563nm) and chlorophyll absorption at 416 and 

677nm. The peak reflectance as expected was in the NIR region, which was at 894 and 

1072nm together with vibrational water absorption detected in 976, 1217, 1467 and 1968nm 

(Nasarudin and Shafri, 2011). However, in the SWIR infrared region the reflectance 

decreased  due  to  the  presence  of  ligno-cellulose. The vegetation spectrum shows a similar 
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Figure 4.1: Field spectral signatures of LULC types considered for this study. 
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spectral feature when compared to the work of Robert and Herold (2004). According to the 

observations of Nasarudin and Shafri (2011), emittance and reflectance of bare land or soils 

is greatly influenced by their biochemical and physical components. Therefore the mean 

spectral reflectance of the bare lands or soil within the study area showed an increase in the 

reflectance from the visible regions of the SWIR spectrum (2073nm). Nasarudin and Shafri 

(2011) further indicated generally that slight absorptions due to features that appear to be 

contaminants, hence bareland or soil occurred at 2180nm.  

The mean spectral characteristics of water bodies in the study area displays higher reflectance 

in the green spectrum (572nm) and a decrease at the SWIR region (1598nm) due to water 

absorption of light  as reported by Xu (2006). The above can also be used to support the work 

of Xu (2006) who modified the water index (i.e., Modified Normalized water index) by using 

SWIR or MIR and Green region of the electromagnectic spectrum. This is because water 

experience a higher reflectance in the visible regions and absorption towards the SWIR 

regions and so he was able to suppress and remove built up, vegetation and soil nails. 

Furthermore, Figure 4.1(e-i) illustrates the representation of man-made or impervious surface 

areas observed within Tshwane Metropolitan which comprise of  a building, road (asphalt 

and interlocking block areas) and roofing materials (clay and iron). The mean spectral 

reflectance of the buildings increased from the visible region in the SWIR region. Absorption 

at the visible bands  may be due to the mixture of the original material and algae, but increase 

the reflectance at a longer wavelength with a reflectance peak in the SWIR region (2098nm). 

The mean reflectance of clay rooftops showed the lowest reflectance due to absorption in the 

visible region (378nm) as a result of liquid water and hydroxyl absorption (Heiden et al., 

2001). The reflectance increases towards longer wavelengths with peak at SWIR (1663nm) 

due to loss of water in the production firing process according to the works of Nasarudin and 

Shafri (2011).  

Asphaltic road has a mean spectral signature showing an increase in reflectance at the longest 

wavelength and reflectance peak in the Red region (1214nm) with absorption in SWIR 

region. Herold et al. (2004) also pointed out that the spectral signature of asphaltic roads is a 

result of crushed stones and various chemical components such as coal tar or oil and 

hydrocarbons.  Similarly, concrete interlocking blocks has a reflectance peak in the SWIR 

region (2050nm) with a decrease in reflectance due to absorption at the  visible regions near 

550nm. According to the works of Robert and Herold (2004) the dust and dirt accumulating 
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on the concrete surfaces can decrease reflectance.  The mean spectral signature of iron 

roofing exhibited a low reflectance at NIR (918nm) and higher reflectance at the visible 

bands attributing to the condition of the material used as surface colour for the iron roofing 

sheet.  

4.3 Image classification 
After the selection of regions of interest (ROI) from the Landsat images for the two years, the 

z-spectrum profile of the selected ROI was plotted in order to show how the land cover types 

mean spectral reflectance values are separable (i.e., to see the gaps between them). It was also 

used to know how representative they are for each land cover type (Figure 4.2 and Figure 

4.3). 

 

Figure 4.2: Landsat 7 ETM+ image spectrum of the study area. 

 

Figure 4.3: Landsat 8  LDCM image spectrum of the study area. 
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Figure 4.2 and Figure 4.3 shows the mean spectral profile for the ROIs selected from the two 

Landsat images. Vegetation (e.g. plantation, cultivated lands and grasslands) have reflectance 

peak in the NIR region (825nm), bare land or soil and impervious surfaces in the SWIR 

region (1650nm) and water at the green region (565nm) of the Z-spectra profile for the two 

Landsat data used for this study. When compared with the spectral signatures generated from 

the field, we can see that the regions of interest selected from the two Landsat images are 

representative enough to be utilized for the image land use or cover classification. 

   

Figure 4.4: The 2-D Scatterplot of Red (x-axis) and NIR (y-axis) spectral space with the 
major LULC classes of Tshwane Metropolitan located at the three angle of the near-
triangular space for Landsat 7 ETM + and Landsat 8 LCDM respectively. 
 

The n-D Visualizer (i.e., feature space) was used to check the separability or degree of 

overlap of the land cover classes before using the region of interest (ROIs) as input into the 

supervised classification (Harmon, 2011). After the ROIs were exported to the n – D 

Visualizer together with the selected stacked Landsat images (VIS - SWIR), the Red and NIR 

bands were selected to observe the interaction of the classes in then D-space. After the above 

procedures, the Landsat 7 ETM + and Landsat 8 LDCM were classified using both the 

maximum likelihood (ML) classifiers and random forest (RF) classifiers with their map 

results shown in Figure 4.5 and Figure 4.6 respectively.                                    
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Figure 4.5: Classification maps generated by ML classifier using ENVI 5.0 image processing 
software of Landsat 7 ETM+ 2003-Mar-31 and Landsat 8 2013-Nov-13 respectively. 
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Figure 4.6: Classification maps generated by RF classifier using EnMap Box image RF 
software of Landsat 7 ETM+ 2003-Mar-31 and Landsat 8 2013-Nov-13 respectively. 

 

 

58 

 



 

Figure 4.7: Maps showing some areas with changes in land use or cover for the study area 
between  (i) 2003 and (ii) 2013. 
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4.4 Optimization of random forest parameters 
The success of the RF classifier depends on the optimization of key parameters (ntree and 

mtry). The grid search method was used to optimize the RF classifier using a 9-fold cross 

validation. The concept behind the grid search technique is that different pairs of parameters 

are evaluated and the one yielding the highest level of accuracy is selected according to the 

works of Kavzoglu and Colkesen (2009). The OOB estimate of error was then used as a 

measure of assessing the prediction performance of the different parameter combinations. In 

terms of optimizing the RF parameters, the best model yielded an OOB error (11.18% and 

17.97%) was produced by a combination of ntree and mtry values of 3500 and 2 respectively. 

The parameters were therefore selected to perform the final classification and generate the RF 

based classification map for 2003 and 2013 respectively.   

4.5 Classification Accuracy Assessment Results  
After the ground truth, ROIs were used to test MLC and RFC results from Landsat 7 ETM+ 

2003 and they produced an overall accuracy of 88.63% and 88.82% respectively (Table 4.1 

and Table 4.2). 
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Table 4.1: Confusion matrix of MLC parameters: Overall accuracy (OA), User accuracy 
(UA), Producer accuracy (PA) and Kappa Coefficient for Landsat 7 ETM + 2003-March-31. 

Classes PL CL GL BL ISA WA SH Row 
Total 

UA 
(%) 

PL 163 0 0 7 0 0 0 170 96 

CL 1 150 2 0 0 0 0 153 98 

GL 0 3 189 0 0 0 0 192 98 

BL 5 0 7 187 53 0 11 263 71 

ISA 1 0 1 21 214 0 4 241 88 

WA 0 0 0 0 0 93 4 97 95 

SH 11 0 0 0 1 9 109 130 83 

Column Total 181 153 199 215 268 102 128 1246  

PA (%) 90 98 95 87 80 91 85   

OA (%)                          88.63%                    

Kappa Coefficient         0.8661                   
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Table 4.2: Confusion matrix of RFC parameters: Overall accuracy (OA), User accuracy 
(UA), Producer accuracy (PA) and Kappa Coefficient for Landsat 7 ETM + 2003-March-31. 

Classes PL CL GL BL ISA WA SH Row 

Total 

UA 

(%) 

PL 170 0 0 5 1 0 5 181 82 

CL 1 152 0 0 0 0 0 153 99 

GL 1 1 189 5 3 0 0 199 100 

BL 23 0 0 148 43 0 1 215 79 

ISA 2 0 0 25 239 0 0 266 82 

WA 1 0 0 0 0 98 3 102 98 

SH 9 0 0 3 5 2 108 127 92 

Column Total 207 153 189 186 291 100 117 1243  

PA (%) 93 99 94 68 89 96 85   

OA (%)                    88.82 

Kappa Coefficient           0.87 
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Table 4.3: MLC and RFC  parameters: User accuracy (UA),Commission error (CE), Producer 
accuracy (PA) and Omission error (OE)  for Landsat 7 ETM + 2003-March-31. 

 MLC_UA

% 

RF_UA
% 

MLC_CE
% 

RF_CE

% 

MLC_PA

% 

RF_PA
% 

MLC_OE
% 

RF_OE

% 

PL 96 82 4 18 90 93 10 7 

CL 98 99 2 1 98 99 2 1 

GL 98 100 2 0 95 94 5 6 

BL 71 79 29 21 87 68 13 32 

ISA 89 82 11 18 80 89 20 11 

WA 96 98 4 2 91 96 9 4 

SH 84 92 16 8 85 85 15 15 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Comparison of CE in the MLC and RFC methods across the seven LULC classes 
derived for the 2003 Landsat 7 ETM+ data. 
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For the 2003 Landsat-derived LULC classes, both ML and RF classification exhibited the 

lowest CE (Table 4.3) i.e., below 5% in the CL, GL and WA relative to the other classes 

similar to the MLC method in the PL class (Figure 4.8). This suggests that the MLC showed 

good detection in the above mentioned classes in the 2003 data set. Also, both MLC and RFC 

had a highest CE particularly in the BL class (21-29%), ISA (12-18%) and SH (8-16%) 

whereas RFC showed a CE of 18% in PL.  Overall results shows that both ML and RF 

classifiers produced minimal false classification in CL, GL and WA classes (Figure 4.8). 

Though both classifiers showed a high CE% in BL, ISA and SH classes, a disagreement 

between the two classifiers was obervered in  PL class; the ML is the better classifier  (CE 

<5%) compared to RF classifier. In addition, the ground truth ROIs were also used to test 

MLC and RFC results from Landsat 8 LCDM 2013 and they produced an overall accuracy of 

80.13% and 82.03% respectively (Table 4.4 and Table 4.5). 

Table 4.4:Confusion matrix of MLC parameters: Overall accuracy (OA), User accuracy 
(UA), Producer accuracy (PA) and Kappa Coefficient for Landsat 8 LCDM 2013-Nov-13. 

Classes PL CL GL BL ISA WA SH Row 
Total 

UA 
(%) 

PL 156 10 1 2 0 0 9 178 88 

CL 2 79 12 12 0 0 0 105 75 

GL 0 43 149 1 0 0 1 194 76 

BL 11 47 10 255 23 0 0 346 74 

ISA 0 9 5 14 201 4 2 235 86 

WA 0 0 0 0 0 178 16 194 92 

SH 14 4 2 3 0 8 51 82 62 

Column 
Total 

183 192 179 287 224 190 79 1334  

PA (%) 85 41 83 89 90 94 65   

OA(%)                             80.13 

Kappa Coefficient          0.7638 
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Table 4.5: Confusion matrix of RFC parameters: Overall accuracy (OA), User accuracy 
(UA), Producer accuracy (PA) and Kappa Coefficient  for Landsat 8 LCDM 2013-Nov-13. 

Classes PL CL GL BL ISA WA SH Row 
Total 

UA 
(%) 

PL 175 0 0 5 0 0 3 183 72 

CL 30 97 11 41 13 0 0 192 70 

GL 3 1 158 13 4 0 0 179 92 

BL 10 37 1 231 5 0 0 284 75 

ISA 1 2 0 17 204 0 0 224 88 

WA 6 0 0 1 4 170 9 190 96 

SH 15 0 0 0 0 7 56 78 82 

Column 
Total 

240 137 170 308 230 177 68 1330  

PA (%) 95 50 88 81 91 89 71   

OA (%)                              82.03 

Kappa Coefficient              0.79 

 

Table 4.6: MLC and RFC parameters: User accuracy (UA),Commission error (CE), Producer 
accuracy (PA) and Omission error (OE) for Landsat 8 LCDM 2013-Nov-13. 

 MLC_UA

% 

RF_UA
% 

MLC_CE
% 

RF_CE

% 

MLC_PA

% 

RF_PA
% 

MLC_OE
% 

RF_OE

% 

PL 88 72 12 28 85 95 15 5 

CL 75 70 25 30 41 50 59 50 

GL 77 92 23 8 83 88 17 12 

BL 74 75 26 25 89 81 11 19 

ISA 86 88 14 12 90 91 10 9 

WA 92 96 8 4 94 89 6 11 

SH 62 82 38 18 65 71 35 29 
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Figure 4.9: Comparison of CE in the MLC and RFC methods across the seven LULC classes 
derived for the 2013 Landsat 8LCDM data. 

 

Further, for the 2013 Landsat-derived LULC classes, the CE by both methods was generally 

higher in contrast to the 2003 Landsat data classes (Table 4.6). In particular, the MLC 

algorithm had the highest CE of 26% and 38% corresponding to the BL and SH classes, 

followed by the RF method with CE of 28% and 30% corresponding to the PL and CL 

classes respectively (Figure 4.9). Nonetheless, the RF and ML algorithm had a better 

detection in the WA class with CE of 4% and 8% (i.e., CE <10%) and this is comparable to 

the RFC for the  GL class and a slightly low CE of 12-15% in ISA class.  In general, the 

results shown in Figure 4.9, demonstrates that both ML and RF classifiers produced minimal 

false classification in WA and ISA class in comparison to other classes. The disagreement 

between the two classifiers occurred in  GL class  with RF as the better classifier  (CE <10%)  

than ML classifier.  

66 

 



4.6 Statistical significance of classification results 
In this study, pairwise comparison of error matrix by use of the kappa coefficient was used to 

test for statistical significance and equality in the classification results of the two algorithms 

(Congalton and Green, 2009). The Landsat 7 ETM + 2003-March-31 image has an O.A. of 

88.63% and kappa coefficient of 0.866 based on the MLC. The confident interval for MLC  is 

0.8471 - 0.8849 with the kappa coefficient falling within the interval. The RF classifier has an 

O.A of 88.82% and kappa coefficient of 0.87. The confident interval for the RF is 0.8513 - 

0.8887 with the kappa coefficient falling within the interval. The 2-sample Z-test was used to 

compare the two errox matrices. The  Z-value of 0.3 and p-value of 0.7682  were estimated 

for the two-tailed comparison at 5% significant level. Since Z-value is less than Zα/2  (i.e., z-

value <1.96) and p-value >0.05, this implies that there is little evidence against the Null 

hypothesis Ho : (K1-K2 = 0) i.e., the Ho is not rejected. It can therefore be concluded that both  

classifiers produced similar classification errors across the CL,GL,BL,ISA, WA and SH 

classes. In contrast, the ML is a better classifier than RF classifier in the PL class.  

For Landsat 8 LCDM, 2013 image, an O.A. of 80.13% and kappa coefficient of 0.76 was 

obtained based on the MLC. The confident interval for the MLC is 0.731 - 0.783 with kappa 

coefficient falling within the interval. On the other hand,the RF classifier produced an O.A of 

82.03% and kappa coefficient of 0.79. The confidence interval for the RF classifier is 0.7681 

- 0.8119 with the kappa coefficient falling within the confidence interval. The 2-sample Z-

test was used to compare the two errox matrix. The  z-value of 1.90 and p-value of 0.063 

were estimated for the two-tailed comparisons at 5% significant level. The z-value is less 

than Zα/2  (i.e., z-vlaue <1.96) and p-value >0.05, suggesting that there is little evidence 

against the Null hypothesis Ho: (K1-K2 = 0) i.e., the Ho is not rejected. Therefore either of the 

classifiers can be selected to classify Landsat 8 LDCM, since they produce similar 

classification errors in PL, CL, BL, ISA, WA and SH except for the inherent difference of  

MLC and RFC results of the GL class. 

4.7 Post-Classification Change Detection 

The summary of the change between classes (i.e., conversion of land cover from one class to 

a completely different class) are given in Table 4.8 and Table 4.8. Results in Table 4.7 

indicate that LULC changes (i.e., “from-to” information) have occurred between 2003 and 

2013 when ML classifier is used. Almost half of PL (46%) was changed to BL class and one 

third (34%) of the pixel classified as PL in 2003 image do have the same class membership in 
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2013. For class CL, more than one fourth was assigned to PL, one third to BL and 11.58% of 

the pixels of CL did not change in 2013. About 13.04% of GL class was unchanged 2013 

while half of the class change to BL class (53.3%). Likewise, more than half of the pixels for 

BL class (69.73%), ISA class (96.46%) and WA class (79.64%) remained were unchanged in 

2013. For SH class, (30%) or one third of the pixel remained and almost half were attributed 

to PL class (42.7%). 

Table 4.7:Change detection Statistics for MLC Landsat 7 ETM+ 2003 and  Landsat 8 LCDM, 
2013 

Percentage change 
INITIAL STAGE 2003 

 
 
 
 

F 
I 
N 
A 
L  

 
S 
T 
A 
G 
E 

 
2 
0 
1 
3 

 Unclassified PL CL GL BL ISA WA SH row 
total 

Class 
total 

Unclassified 0 0 0 0 0 0 0 0 0 0 

PL 0 34.04 28.02 7.69 4.91 0.10 1.96 42.70 100 100 

CL 0 2.60 11.58 6.99 2.46 0.20 4.58 1.30 100 100 

GL 0 0.70 4.07 13.035 2.09 0.17 0.73 0.26 100 100 

BL 0 46.17 39.69 53.29 69.73 2.69 0.88 11.12 100 100 

ISA 0 7.40 5.43 12.25 16.25 96.46 1.78 8.77 100 100 

WA 0 0.13 0.29 0.03 0.02 0.01 79.64 5.70 100 100 

SH 0 8.96 10.92 6.71 4.55 0.36 10.43 30.14 100 100 

Class total 0 100 100 100 100 100 100 100   

Class change 0 65.69 88.42 86.96 30.27 3.54 20.36 69.86   

Image 
Difference 

0 -26.50 72.34 -66.26 -10.41 9.83 12.25 967.35   

  List: PL (Plantation), CL (Cultivated lands), GL (Grass land), BL (Bare land), ISA (impervious 
surface area), WA (water) and SH (Shadow). 
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Table 4.8:Change detection Statistics for RFC Landsat 7 ETM+ 2003 and  Landsat 8 LCDM, 
2013 

Percentage change 
INITIAL STAGE 2003 

 
 
 
 
 
F 
I 
N 
A 
L  
 
S 
T 
A 
G 
E 
2 
0 
1 
3 

 Unclassified PL CL GL BL ISA WA SH row 
total 

Class 
total 

Unclassified 0 0 0 0 0 0 0 0 0 0 

PL 0 26.95 35.36 9.36 5.52 5.90 0.06 49.87 100 100 

CL 0 1.83 13.95 8.30 2.56 1.46 0.01 0.94 100 100 

GL 0 0.70 4.66 21.35 1.671 1.06 0.00 0.43 100 100 

BL 0 53.90 39.24 43.69 73.11 23.061 0.10 18.56 100 100 

ISA 0 16.03 6.39 17.08 16.85 68.07 0.09 7.00 100 100 

WA 0 0.09 0.08 0.05 0.02 0.07 0.21 4.55 100 100 

SH 0 0.50 0.31 0.17 0.28 0.37 99.54 18.64 100 100 

Class total 100 100 100 100 100 100 100 100   

Class 
change 

0 73.05 86.04 78.65 26.89 31.93 99.79 81.35   

Image 
Difference 

0 -53.06 245.21 -41.03 14.82 23.69 -99.70 18577.5   

 List: PL (Plantation), CL (Cultivated lands), GL (Grass land), BL (Bare land), ISA (impervious 
surface area), WA (water) and SH (Shadow). 

 

Table 4.8 summarises the LULC changes (i.e., “from-to” information) have occurred between 

2003 and 2013 when random forest is used. Half of PL class (53.9%) were converted to BL 

while more than one fourth of PL class (26.95%) pixels remained in the same class 

membership in 2013. Even though 13.96% of CL class remained the same, more than one 

third of the class pixels were assigned to PL class (35.4%) and BL class (39.2%). Nearly half 

of GL class shifted to BL class (44%) with 21% of GL pixels remaining unchanged. For BL 

class, 73% of the pixels classified remained in the same class membership in 2013. Also, one 

fourth of ISA class transformed to BL class (23.1%) and 68.1% remained unchanged. The 

WA class (0.2%) had very minimal transformation while SH class experienced a large change 

with half of the (49.8%) pixels assigned to PL class and 18.8% remaining unchanged in 2013. 
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4.8 Maximum Likelihood and Random Forest Change Detection Comparison 
The quantification of the LULC change between the two years in terms of percentage were based on 

the use of ML and RF classifier. 

 

 
Figure 4.10: Land cover changes between 2003 - 2013 using MLC and RFC. 

. 

 

Based on results presented in Figure 4.10, it is clear that using the aforementioned 

classification methods, various LULC changes are observed. Figure 4.10 indicates an overall 

change of 66% (ML) and 73% (RF) in PL and 88% (ML) and 66% (RF) in CL. In addition, 

both the ML and RF classifications showed 87% and 79% for GL respectively. BL depicts an 

overall change of 30% (ML) and 26% (RF) which can be attributed to lots of open lands or 

soil. Due to urban sprawl (i.e., construction of more buildings and paved and asphaltic roads), 

ISA shows an overall change of 4% (ML) and 32% (RF). WA also experiences change of 

20% (ML) and 99% (RF) mainly due to seasonal variations or climate change within the ten 

years period. Shadow (SH) has changed by 70% (ML) and 81% (RF) due to increase in the 

tall building in the Central Business District (CBD). From Figure 4.10 it could be concluded 

that using the two classifiers similar change detection results are observed in PL, CL, GL and 

BL. RF classifier indicates a better change detection in ISA and WA as compared to the ML 
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classifier. Such improvements maybe attributed to the fact that the RF classifier is almost 

insensitivity to noise (Watts and Lawrence, 2008), does not suffer from over-fitting or a long 

training time (Loosvelt et al., 2012), and it has the ability to handle unbalanced data sets 

(Watts et al., 2009). 

 

4.9 Land surface temperature retrieval 
The thermal band of Landsat images also provides not only a measure of the magnitude of 

land surface temperature, but also gives the spatial extent of the UHI effect of the entire study 

area. Based on LULC classification results derived from Landsat ETM+ 2003 and Landsat 8 

LCDM 2013, corresponding emissivity images in Figure 4.11 were derived by assigning 

emissivity values to each LULC according to works of Mallick et al. (2008) using the 

reclassify algorithm in ArcGIS 10.1 (i.e., changing the values in the raster). The zonal 

statistics by table in ArcGIS 10.1 was used  to derive the LULC – LST map. In Figure 4.11,  

the thermal variance across the study area (Tshwane metropolitan) are shown.   

Both Landsat 7 ETM+ (2003) and Landsat 8 LCDM (2013) LST map Figure 4.12 had a 

surface temperature range of 21.21OC – 40.81OC and 22.98 – 40.92OC. The histogram in 

Figure 4.13 showed the pixel estimated mean surface temperature values across the different 

land use or cover classes used for this study for 2003 and 2013 Landsat images. As observed 

from Figure 4.13, Plantation (i.e., tree plantation) mean LST range from 24.91OC to 29.49OC. 

Also cultivated lands and grasslands showed a mean LST range for both years from 23.42OC 

to 30.31O C and 25.89O C to 30.42O C respectively. Increase in LST as expected was found for 

bare land and impervious surface areas with LST pixels ranging from 26.88OC to 30.87OC 

and 27.77OC to 31.91OC respectively. Water bodies (e.g., rivers) and shadow also exhibited 

mean LST pixel values ranging from 23.57OC to 24.25OC and 20.82OC to 21.98OC which 

were lower values when compared with that of other land cover types.  

Furthermore, the mean near surface temperature from the weather stations (South African 

Weather Stations, SAWS and Pretoria Botanical Institute) was used as a point of reference to 

verify the accuracy of the final retrieved LST images for 2003 and 2013. From Landsat 7 

ETM+, the mean pixel temperature for Pretoria Eendracht and Irene Wo weather stations 

were 26.28OC and 26.77OC while the mean near surface air temperature from SAWS is 

29.60OC and 27.80OC. Hence, the LST retrieval error was 3.3OC and 1OC respectively. 

Similarly, Landsat 8 LCDM data was also tested to know the accuracy of the retrieved LST. 
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In this case the mean pixel temperature for the Pretoria UNISA weather station and Pretoria 

National Botanical Institute of 27.218O C and 28.63O C was compared with the mean near 

surface temperature of 27.6OC and 29.91OC respectively. Thus, the LST retrieval error was 

0.38OC and 1.3OC for the two stations. Therefore, the thermal bands of Landsat 7 ETM + and 

Landsat 8 LCDM data employed for this study provided a good result and can be used for  

further temperature variability analysis. 

Figure 4.14 shows the LST anomaly between 2003 – 2013. Places that were warmer than 

average are red, near normal are yellow and those cooler than average are green. For the LST 

derived maps for 2003 and 2013 (see Equation 15), both bare lands and ISA which are hot 

spots showed a warmer LST anomaly of 1.070C to 1.080C and 1.110 C to 1.120 C respectively. 

Plantation (1.020C - 1.040C), cultivated lands (0.96 - 1.060C), grassland (1.060C - 1.070C), 

water (0.960C - 0.850C) and shadow (0.830C - 0.770C) indicated cooler anomaly. Based on 

the results from this study, it could be deduced that persistent warm anomaly over the years is 

due to ISA increase in area extent.  Thus, increase in ISA influences surface energy 

exchange, micro to meso scale climate and other environmental processes which can be used 

to determine the strength of UHI and monitor the global climate. 
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Figure 4.11: Land surface emissivity (LSE) image of the study area for Landsat 7 ETM+ 
2003-Mar-31 and Landsat 8 2013-Nov-13. 
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Figure 4.12: Land Surface Temperature map of the study area for Landsat 7 ETM+ 2003-
Mar-31 and Landsat 8 2013-Nov-13. 
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Figure 4.13: Histograms of mean LST for LULC classes for Landsat 7 ETM+ 2003-Mar-31 
and Landsat 8 2013-Nov-13. 
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Figure 4.14: LST anomaly derived from the mean LST for LULC classes for Landsat 7 
ETM+ 2003-Mar-31 and Landsat 8 2013-Nov-13. 
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5 CHAPTER FIVE: CONCLUSIONS AND FUTURE PROSPECTS 
 

5.1 Conclusion 
The main aim of this study is to investigate the relationship between ISA changes and LST 

using multispectral remote sensing data (Landsat) and other ancillary data (e.g., spectral 

signature from ASD, temperature data from weather stations) obtained across Tshwane 

metropolitan. Before the extraction of the various LULC from the Landsat images, ground 

observation was carried out with the use of analytical spectral device (ASD) and GPS. The  

acquired spectral signatures of some land cover types were used to aid image classification 

and validation thereof. Thereafter, the supervised classification using parametric and 

nonparametric classifiers was carried out to extract the seven LULC types within the study 

area. The moderate resolution Landsat 7 ETM+ and Landsat 8 LCDM indicated that LULC 

classes can be extracted using ML and RF algorithms. Pairwise comparison of error matrix 

by use of the kappa coefficient was then used to compare the error matrices. The goal of the 

comparison was to determine if the algorithms are significantly different or the same. For, 

Landsat 7 ETM + 2003-March-31 image, both ML and RF classifier produced an overall 

accuracy of 88.63% and 88.82%  together with Kappa coefficient of 0.866 and 0.87 

respectively. Also, Landsat 8 LCDM, 2013-November-13 image showed an overall accuracy 

of  80.13% and 82.03% and kappa coefficient of  0.76  and 0.79 respectively. The 2-sample 

Z-test was used to compare the two errox matrix generated from both images. At 5% 

significance level, the z-value estimated for the two-tailed comparisons for the two images is 

less than Zα/2 (i.e., z-value < 1.96) and p-value > 0.05.  This implies that after applying the 

two classifiers on both Landsat images, there was little evidence against the Null hypothesis 

Ho: (K1-K2 = 0) i.e., the Ho is not rejected. A non – rejection of the Null hypothesis implies 

that both  classifiers produced similar classification errors and either of the classifiers can be 

selected to classify Landsat 7 ETM+ and Landsat 8 LCDM. 

 Generally, the change pattern of the LULC classes observed in this study between the two 

years, revealed that there has been a high dynamic interchange of LULC that occurred (Table 

4.7 and Table 4.8). Based on the result presented in Figure 4.10, it can be observed that the 

classifiers were capable of mapping the changes that occurred within the study area. Figure 

4.10 illustrated an overall change of 66% (ML) and 73% (RF) in PL, 88% (ML) and 66% 

(RF) in CL and 87% (ML) and 79% (RF) for GL depending on the agricultural practises.   
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BL depicts an overall change of 30% (ML) and 26% (RF) while which can be attributed to 

lots of open lands or soil. Due to urban sprawl (i.e., newly or reconstructed tall buildings, 

cemented interlocking floors and roads within the central business district (CBD), 

commercial centres and residential areas),ISA shows an overall change of 4% (ML) and 32% 

(RF). WA also experiences change of 20% (ML) and 99% (RF) mainly due to seasonal 

variations or climate change within the ten years period. Shadow (SH) has changed by 70% 

(ML) and 81% (RF) due to increase in the tall building in the Central Business District 

(CBD). 

 Furthermore, the study showed that changes in plantation, grassland, bare land and ISA both 

in the central business district, CBD (e.g., Pretoria CBD) and outskirt area (e.g., Centurion, 

Mabopane, Gan Rankuwa, Soshanguve etc.) caused increase in their mean LST values. Areas 

occupied by agricultural or cultivated land had an increase in the mean LST due to the 

presence of open soil. Based on the results from this study, it could be deduced that persistent 

warm anomalies over the years could be associated to ISA increase in area  which impact on 

surface energy exchange, micro to meso scale climate and other environmental processes. 

5.2 Significance of the study 

In recent years, Gauteng province has experienced tremendous increase both in population 

and land use or cover changes. This urban sprawl has resulted in temperature variation across 

the major municipalities within the province. Although several studies investigating the 

impact of ISA changes due to urbanization on land surface temperature using remote sensing 

data in different cities across the globe (e.g., Asia and America) have been reported in 

literature, few of these studies have been done in South Africa in spite of the availability of 

satellite imagery. This has been proved by a recent search for online scientific papers using 

various search engines like Google and Journal citations which showed that limited studies 

focused on cities in Africa.  

The significance of study reported in this dissertation can be can be summaried as follows; 

 Firstly the study presented information on the types of LULC classes (i.e., plantation, 

cultivated land, grassland, bareland, ISA, water and shadow)  and their change pattern 

across Tshwane metropolitan between 2003 and 2013. 
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 From the result, ISA increase observed from the LULC change detection analysis was 

as a result of increase in buildings, new asphaltic roads and cemented interlocking 

floors. Most of the ISA increase were noticed in CBD , industrial areas and emerging 

residential areas. 

 The mean LST results also show the distribution of UHI across the Tshwane 

Metropolis. Base on the ISA increase, the LST map presents the intensified urban heat 

island effect within the CBD, industrial and open land areas (e.g., bare soil, rocks, 

mines etc.). Place with dispersed UHI distribution or small scale UHI effects were 

residential and rural areas with fewer ISA.   

 Decision makers can use the information presented in this study in various 

governmental and private sectors such as energy management, urban planning, 

environmental sustainability and other socio-economic applications.   

5.3 Limitations 
The research conducted involved field observations and various desktop analysis during 

which a number of shortcomings were noticed:  

 Several spectral signatures could not be obtained during the field observation because 

many private farm lands or cultivated lands and mines were restricted areas and it 

would have taken months to sort out the necessary documentation to gain access into 

this premise. Hence, we could not develop a comprehensive spectral library that could 

have been used for land use classification. 

 Similarly, only two satellite images were considered for the research. 

 Few ground control points (GCPs) were taken. 

 Surface temperature from few weather stations were used for accuracy assessment of 

the retrieved LST.   

 Limited time was allocated to the use of the ASD spectroradiometer for the field 

observation. 

5.4 Recommendations and future research  
Some recommendations are highlighted below: 
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 Further research work towards achieving a better and accurate LULC classification 

result can be done by employing the use of multispectral sensors with high spectral 

and spatial resolution. This will minimize the problem of mixed pixel associated with 

the moderate resolution images (Landsat), thereby providing more potential for the 

extraction of detailed land use or cover information i.e.,offers an advantage of 

detecting and distinguishing land features that occupy a small portion on earth 

surfaces.  

 Additional information can also be acquired by means of comprehensive field 

observations so as to address issues of mapping reliability of the various LULC 

classes. Direct measurement of thermal response and emissivity of different land 

cover types can also be of great advantage in understanding of UHI pattern and 

thermal properties of urban landscape.  

 Also policy makers must focus on strategies to modify urban geometry, for example, 

use of vegetation as a replacement for unnecessary impervious surface area can help 

minimize UHI effects. Also, urban planners can improve air quality in urban 

landscapes by including vegetation (e.g. trees, grasses).    
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Apppendix 1: Land cover types in South Africa according to land-cover legend 2012 
release Geoterraimage (GTI) land-cover data set. 
 

1 Buildings Permanent structures varying in height, but 
generally more than two storeys high. 

2 Building (Schools) Permanent structures associated with a pre-tertiary 
education facilities, and associated buildings within 
the school grounds. 

3 Building (Campuses) Permanent structures associated with a tertiary 
education campuses and associated infrastructure 

4 Sport Stadiums (Buildings) Large structures comprising both central sports 
field and surrounding viewing stand / seats used 
primarily or the hosting of large sporting events. 

5 School Grounds Open areas within the school boundary. Includes 
school sports fields and other associated open 
spaces. 

6 Sports & Recreation Areas, structures and spaces used exclusively for 
sport and recreational activities primarily outside 
of school boundaries, but excludes formal or 
informal urban parks. 

7 Golf Courses Irrigated planted grassland associated with golf 
courses. 

8 Industrial Medium-large buildings and structures associated 
with industrial activities such as manufacturing, 
production and storage. 

9 Heavy Industrial Large-extremely large buildings and facilities for 
large scale manufacturing and processing, includes 
all related and associated structures. 

10 Residential - Cluster Townhouses, clusters and multi-storey buildings 
and other high density residential dwellings. 

11 Residential Typical suburban residential dwellings and formal 
(planned) housing areas. 

12 Township Formal Some level of planning and formality exists in the 
settlement patterns of these areas of permanent and 
/or semi-permanent dwelling structures. 

13 Township Informal Areas where the majority of the housing structures 
is informal and the settlement patterns are often 
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erratic / of an unplanned appearance. 

14 Small Holdings Areas of low residential concentrations in the 
outskirts of towns and cities, other activities in 
these areas include small-scale agriculture and 
industrial. 

15 Village Low density residential areas usually associated 
with cultural settlement patterns. 

16 Roads National, regional, and major roads, streets and 
secondary roads are included in urbanized areas. 
Note, that the road network should not be 
considered a definitive indication of all 
communication networks, since content is 
influenced by image detail. 

17 Rail Main surface rail networks. 

18 Thicket, Bushland, Bush-
Clumps 

Bush and shrub dominated areas in a natural state, 
with 40% - 100% canopy closure (i.e. “bushveld”). 
This is a single cover of canopy density conditions 
from open to closed. 

20 Tree (Non-Natural / Planted) Tree dominated areas with 75 – 100 % canopy 
closure, composed primarily of non-indigenous 
species, in the form of planted forest plantations, 
woodlots, linear windbreaks and orchards. 

21 Shrubland & Low Fynbos Areas of near pristine, undisturbed low woody 
shrub cover, typically characteristic of low fynbos 
in the Cape regions. 

22 Planted & Natural Grassland Planted and natural grass dominated areas with 
little or no tree, bush or shrub cover. 

23 Wetlands Vegetated wetlands that may or may not be flooded 
(at the time of source image acquisition). Includes 
all wetland types in one category, i.e. pans and 
vleis. 

24 Wetlands, Mangrove Mangrove wetlands. 

25 Degraded Natural Vegetation Disturbed or transformed natural vegetation, 
represented by a reduction in local canopy cover 
(as visible on the imagery as a result of conditions 
at the time of image acquisition). 

26 Cultivated, Commercial, 
Irrigated 

Commercial, medium-large scale irrigated 
cultivation of annual crops. 
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27 Cultivated, Commercial, 
Dryland / rain-fed 

Commercial, medium-large scale dryland 
cultivation of annual crops. 

28 Cultivated, Commercial, 
Sugarcane 

Commercial, large scale sugarcane cultivation, 
including both irrigated and dryland crops. 

29 Mines & Quarries Combination of extraction pits, waste and storage 
dumps associated with mining. Includes quarries. 

30 Open Open areas with little or no vegetation cover. 
Parking lots, bare sand, etc. 

31 Water Areas of permanent or near permanent water 
(natural or man-made), flowing or static. Includes 
rivers, dams, pans and lakes. 

32 Sea Very large body of coastal water. 

33 Bare Rock & Soil (Natural 
Surfaces) 

Naturally occurring, non-vegetated rock, sand and 
soil exposures. 

34 New Development Areas where the vegetation has been removed 
preparation of new urban developments. 
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