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I. ABSTRACT 

Several well-known equations are available in literature that can be used to determine the heat 
transfer coefficients of smooth tubes in the turbulent flow regime. When comparing the results of 
these equations they vary over a considerable range. Although in many cases it is assumed that the 
Gnielinski equation is one of the most accurate as it is the most recently developed correlation, the 
uncertainty of this equation has not be quantified as yet. Many of the equations have been developed 
using the data that was obtained from experimental testing as far back as 80 years ago. As more 
accurate instrumentation is available, it should be possible to collect more accurate data during 
experimental testing. The purpose of this study was threefold: to take accurate heat transfer 
measurements and to quantify the uncertainties of the Nusselt numbers as a function of Reynolds 
number; to compare the measured data with existing correlations and  to develop an accurate Nusselt 
number correlation from the data. Experiments were conducted on two smooth circular tubes with a 
heat transfer length 3.75 m with inner tube diameters of 8.3 mm and 14.2 mm using water over a 
Reynolds number range of 10 000 to 220 000 and a Prandtl number range of 3.2 to 4. Surface 
roughness analysis was also performed to ensure the tubes can be considered as smooth tubes. 
Pressure drop measurements were also taken over tube lengths of 4.1 m as a function of Reynolds 
number. The experiments were conducted using a tube-in-tube heat exchanger with the hot water in 
the inner tube and the cold water in the annulus operating in a counter flow configuration. The 
friction factor values were determined from pressure drop measurements and the heat transfer 
coefficients were determined from the Wilson Plot method using temperature and mass flow rate 
measurements. The average uncertainties of the friction factors and Nusselt numbers were both less 
than 3%. The results were compared to the existing literature and it was found that at lower Reynolds 
numbers the Nusselt numbers deviated slightly to those of Gnielinski with the results comparing 
more closely with increasing Reynolds number. The friction factor results correlated well with that 
of Blasius. A new Nusselt number correlation, which is a function of Reynolds number, Prandtl 
number and friction factor, was developed. The equation predicted all the measured values within 
3%. The equation is, however, limited in not taking into consideration large variations in fluid 
properties.  
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1. INTRODUCTION 
 

1.1 Background 

In the modern world, there is a continuous drive towards an improvement with regards to 
energy efficiency and the reduced use of limited resources. As the earth’s population 
continues to grow, so do the requirements to live and therefore excessive demand is placed on 
the natural resources to meet these requirements. This includes the requirement to convert 
fossil fuels to energy to drive industries to manufacture products required for consumption by 
an ever increasing world population. In addition to the need for energy to enable these 
processes, another by-product of these processes are combustion products which negatively 
impact the environment and add to the devastating effect that global warming is having on 
our planet. It is due to these factors that research is ongoing to determine a more efficient way 
to produce energy and to minimise the damaging effects of the process of doing so.  

Heat transfer is a physical phenomenon that occurs whenever there is a temperature gradient 
between two mediums i.e. solids, liquids or gases. Heat transfer has the ability to work in a 
positive or negative manner whenever any physical process occurs. Positively, it allows for 
heat to be transferred enabling a reaction that requires heating i.e. saving energy by re-using 
existing energy/heat that is in an exhaust stream from a previous reaction. It impacts 
negatively when temperatures rise and heat needs to be exhausted at a higher rate but the 
physical limits do not allow for it i.e. heat produced by microchips in computing applications. 
It is due to this that continued research is conducted to determine the most optimal solution 
within the physical boundaries that exist in heat transfer.  

Many of the processes in industry operate in the turbulent flow regime to obtain higher heat 
transfer rates and therefore higher energy recovery rates. Turbulent heat transfer has been 
well researched and documented over the past 100 years. Many correlations have been 
developed and data has been recorded but there is still a considerably large discrepancy in the 
agreement of these studies and correlations to each other. Dittus and Boelter (1930) 
performed their experiments with the aim of producing a single equation to accurately predict 
the heat transfer in both heating and cooling applications using the data of McAdams and 
Frost (1922) and Morris and Whitman (1928). The resulting equation utilised an exponent to 
predict the heating and cooling separately which enabled good agreement to the previous data 
sets obtained. 

The first of these studies to make a marked improvement in the prediction of turbulent heat 
transfer is that of Colburn (1933). Colburn was the first study to make use of the 
dimensionless numbers such as Stanton, Prandtl and Nusselt to reduce the number of 
variables in the calculation of the heat transfer coefficients. In addition to this, Colburn 
recognised the effect that the wall temperature has on the properties of the fluid and that it 
cannot be assumed that the bulk temperature is sufficient to predict the properties at the tube 
wall. Sieder and Tate (1936) produced both their own data and used existing data sets to 
determine an equation which accurately accounts for the difference in temperature between 
the centre of the fluid stream and that at the tube wall.  

The next phase of heat transfer research resulted in more work being undertaken in the field 
where analytical methods were used to solve for the equations in an effort to predict the 
turbulent heat transfer behaviour more accurately. Petukhov (1970) performed a considerable 
amount of analysis using existing data sets as well as producing some data of his own to 
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determine an equation which also takes into account the effect that the friction factor has on 
the heat transfer in the system.  

The work completed by Gnielinski (1976) utilised that of Petukhov but included the work of 
Hausen (1959) to improve the ability of the correlation to predict heat transfer in both the 
transitional and turbulent flow regimes. Of all the studies conducted, Gnielinski produces the 
best accuracy with the results, lying within 20% of those previously recorded, when 
compared to existing data sets.  

1.2 Problem Statement 

In general it should be assumed that the Gnielinski and Petukhov equations are the most 
accurate as they were the most recently developed and the other older equations developed 
should be used less and should be phased out. However, a search (January 2015) on Scopus 
showed that the older equations are being actively used. The citations to these equations are 
Dittus and Boelter (1930) equation 117 times, the Colburn (1933) equation 262 times, the 
Chilton-Colburn (1934) equation 345 times, the Sieder and Tate (1936) equation 722 times, 
the Petukhov (1970) equation 479 times and the Gnielinski (1976) equation 87 times. It 
therefore seems as if the Sieder and Tate equation is the most utilised equation based on 
citations. Although it is assumed that the Gnielinski and Petukhov equations are the most 
accurate of the existing theory, many researchers still utilise the historical equations when 
verifying smooth tube experimental data, for example: Colburn (1933) and Sieder and Tate 
(1936). The citations accredited to Gnielinski and Petukhov are most probably not accurate as 
a large amount of their initial work was published in the German and Soviet literature and in 
textbooks. The work of Gnielinski (1976) for example, was published in 1976 in the journal 
of International Chemical Engineering with permission from the VDI-Verlag GmbH, 
however this paper is not on the Scopus database. Thus, there is no clear evidence from the 
literature (based on citations) which one of the many equations in general are the most 
accurate.  

In Figure 1, the Nusselt numbers are calculated at a Prandtl number of 7 using the 
correlations of Dittus and Boelter (1930), Sieder and Tate (1936), Petukhov (1970) and 
Gnielinski (1976). The coefficient used in the Dittus and Boelter equation is n = 0.3 for 
cooling applications. The Gnielinski and Petukhov correlations compare very well to each 
other and are within 5% of one another. However at a Reynolds number of 10 000, there is a 
maximum deviation of over 50% between the Sieder and Tate and Petukhov equations. At a 
Reynolds number of 200 000 there is a deviation of 40%. The reasons for these deviations are 
not clear.  

Furthermore, in the period of 1922 to 1936, when most of the physical experiments were 
conducted that formed the basis of the work of many scholars in terms of improvements and 
refinements, the execution of uncertainty analyses was not a requirement in scholarly journals. 
Therefore, the uncertainties of convective heat transfer equations in smooth tubes which are 
widely published in heat transfer textbooks that are used for verification and comparison 
studies are in general not readily available. With more accurate measuring instrumentation 
available today than almost a century ago, it should be possible to conduct more accurate 
experiments and derive a more accurate correlation with a quantified uncertainty. These 
results can also be used to evaluate the accuracy of existing equations.  
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Figure 1: Theoretical comparison of heat transfer correlations for turbulent flow over a Reynolds 
number range of 10 000 to 250 000 at a Prandtl number of 7. The coefficient used in the Dittus and 

Boelter equation is n = 0.3 for cooling applications. 

1.3 Purpose of Study 

The purpose of this study was threefold: to take accurate heat transfer measurements of a 
circular smooth tube and to quantify the uncertainties of the Nusselt numbers as a function of 
Reynolds number; to compare the measured data to existing correlations and to develop an 
accurate Nusselt Number correlation from the data.  

The focus was on the turbulent flow regime. The transitional flow regime (Meyer and Olivier 
2011) and lower end Reynolds number regimes (Gnielinski 2013) were excluded as work on 
these regimes was recently conducted.   

In terms of the time limitations for a master’s dissertation and available experimental 
facilities and equipment, the experiments were limited to two smooth circular tubes with flow 
in the horizontal flow direction. Experiments were conducted on two tube diameters and the 
testing fluid was water only. Experiments were conducted on a Reynolds number range of 10 
000 to 230 000 over a Prandtl number range of 3.2 to 4. The work was also limited to exclude 
the investigation of large variations in fluid properties. 

Although pressure drop as a research outcome was not the focus of this study, pressure drop 
measurements were also taken as several of the existing equations such as Gnielinski and 
Petukhov make use of the friction factor obtained from pressure drop measurements. 
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1.4 Organisation of this Dissertation 

This dissertation consists of a total of seven chapters. Chapter 2 gives an overview of the 
existing literature applicable to the study. In Chapter 3 the experimental set-up and test 
section construction is described and information on the testing process is presented. The data 
reduction methods used to evaluate the experimental data can also be found in Chapter 3. In 
Chapter 4 the uncertainty calculation on the experimental data and the results thereof are 
discussed. Chapter 5 details the results obtained from the experimental testing. In Chapter 6, 
the conclusions from the study are described and Chapter 7 contains the references used.  
Appendix A contains detailed information on how the uncertainty of the friction factor and 
Nusselt Number were calculated. Appendix B contains a sample of the data recorded during 
experimental testing. 
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2. LITERATURE STUDY 
 

2.1 Background 

The purpose of this chapter is to describe the existing heat transfer theory related to turbulent 
flow. The theory and properties related to the turbulent flow regime are described. The heat 
transfer and friction factor theories are addressed. Specific detail on the most important and 
widely used heat transfer correlations are described which include the studies of: Dittus and 
Boelter (1930), Colburn (1933), Sieder and Tate (1936), Petukhov (1970) and Gnielinski 
(1976). The most important experimental data sets that have been utilised in the development 
of heat transfer correlations are also mentioned. 

 

2.2 Turbulent Flow Regime 

The Reynolds number (Re) is a dimensionless number used to represent certain fluid flow 
characteristics. Developed in 1883, the Reynolds number represents the ratio of the inertial 
forces of a fluid to the viscous forces of a fluid.  This can be represented in equation (1) 
(White 2003) which relates the two fluid forces to each other. 

 �� = 
��
 = ���  (1)  

 

Laminar flow occurs for Reynolds numbers from 0 to approximately 2 300. The flow that 
occurs in this regime is characterised by smooth and steady flow patterns. Flow in the laminar 
region is also referred to as streamlined flow. 

Laminar flow is characterised by smooth boundary layers with little disturbance between 
these layers. When dealing with fluid dynamics, flow in the laminar region contains the 
following physical parameters:  

� high momentum diffusion 
� low convection heat transfer 
� velocity independent of time 
� pressure independent of time 

Transitional flow occurs as laminar flow becomes turbulent. The Reynolds number range is 
approximately 2 300 to 10 000 for the transitional flow regime. Transitional flow depends on 
many factors, these including the surface roughness, type of tube inlet, Reynolds number or 
fluctuations that may occur in the fluid inlet stream. While numerous data has been collected 
on the transitional flow regime, the theory required to better understand the behaviour of the 
fluid while in this regime remains limited.  

Turbulent flow occurs for Reynolds numbers in excess of approximately 10 000. Turbulent 
flow has fluctuating and agitated flow patterns. Initially flow will display occasional natural 
disturbances as the flow moves through the transition between the laminar and turbulent flow 
regimes. These fluctuations, which are found in the boundary layer, become more frequent as 
the flow gets closer to being fully turbulent.  At a sufficiently large Reynolds number, the 
flow fluctuates continuously with eddies and vortices forming. Important to note is that this 
disorder is not just chaotic motion, it has a definite spatial structure and can be described 
using the following characteristics (White 2006): 
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� Fluctuations in pressure, velocity and temperature. Velocity fluctuates in all 
three directions. 

� Eddies that intermingle and fill the shear layer. 
� Random fluid property variations. 
� Self-sustaining motion by producing new eddies which replace those lost by 

viscous dissipation. 
� Mixing that is much stronger than that found in laminar flow due to the eddies 

moving in three directions. The movement causes diffusion of mass, 
momentum and energy.  

Due to the consistent tripping and breaking of the boundary layers, considerable mixing 
occurs in the turbulent flow regime. It is due to this that the heat transfer is enhanced and as a 
result, the pressure drop over the flow length is also increased.  

The physical properties of the turbulent flow regime are: 

� low momentum diffusion 
� high convection heat transfer 
� velocity variations in space and time 
� pressure variations in space and time 

The turbulent and laminar flow regimes display two distinct variations in heat transfer and 
pressure drop trends. These trends are discussed in further detail in section 2.3 and 2.4. 

 

2.3 Pressure Drop and Friction Factors in the Turbulent Flow Regime 

The pressure drop that occurs during the flow of viscous fluids is usually referred to as an 
irreversible pressure loss, ∆P. This comes from the term head loss which is associated with 
fluid mechanics theory. The pressure loss (Cengel 2006) is described by equation (2): 

 ∆P = � �� 
�����2  (2)  

 

where the term 
�������  is the dynamic pressure of the system and f is the Darcy friction factor 

which is defined as: 

  � = 8��
�����  (3)  

 

The Blasius equation is used to determine the adiabatic friction factor for smooth tubes 
(White 2006). This is defined in equation (4) as: 

  ! = 0.0791��'(.�) (4)  
 

When using the friction factor definition, the equation transforms to: 

 � = 0.3164��'(.�) (5)  
 

The Petukhov equation (Petukhov 1970) for smooth tubes is described in equation (6). 
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 � = (1.82 log�� − 1.64)'� �34	3000 < �� < 5 × 109 (6)  
 

Equation (6) is used in conjunction with the Chilton-Colburn analogy to determine the 
Nusselt number (Nu). This is discussed in section 2.4.  

Another equation which was developed for the turbulent flow regime is the Colebrook 
correlation. This correlation is based mainly on experimental data and is applicable for flow 
with Reynolds numbers in excess of 4 000. This relation led to the development of the 
Moody chart which is used to determine the friction factor for pipe friction with smooth and 
rough walls. The chart can be used for various pipe geometries and for open channel flows.  
The study has proved very valuable in fluid mechanics applications and when calculating the 
pressure loss of a system.  

The Colebrook equation (Colebrook 1939) is an implicit equation as stated in equation (7): 

 
1:� = −2;3<=( >?/�A3.7 + 2.51��:�C (7)  

 

There is an alternative formula developed by Haaland (1983) which can be used but it is only 
found to vary by 2% from the Colebrook correlation. 

In Table 1, a summary of friction factors used in the turbulent flow regime can be found. 

Table 1: Friction Factors for Turbulent Flow 

CORRELATION 
 

EQUATION 

 
Blasius (1913) equation 
 

 � = 0.3164��'(.�) 

 
Petukhov (1970) equation  
 

 � = (1.82 log�� − 1.64)'� 

 
Colebrook (1939) equation 

 1:� = −2;3<=( >?/�A3.7 + 2.51��:�C 

 
Haaland (1983) equation 

 1:� = −1.8;3<=( >6.9�� + D?/�A3.7 E=.==C 

 
 

2.4 Heat Transfer in the Turbulent Flow Regime 

The Nusselt number is a dimensionless number which is used to describe the relationship 
between the convective heat transfer and the conductive heat transfer that takes place on the 
surface of an object. 

The Nusselt number is defined to be a function of the heat transfer coefficient (h), 
characteristic length (L) and thermal conductivity (k) of a fluid. 
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The equation used to describe the Nusselt number (Cengel 2006) is: FG =  3HI�JKLI�		M�NK		O4NHP��4 3HQGJKLI�		M�NK		O4NHP��4 

 FG = ℎ�S  (8)  

 

Many studies have been undertaken to describe the heat transfer that occurs as a result of the 
flow of a fluid, known as convective heat transfer. This would lead to the mass flow rate of a 
fluid being used in relation to the Nusselt number. The Reynolds number is used to 
characterise the flow of the fluid as it is a simple dimensionless number which takes into 
account the flow rate, density and viscosity of the fluid. The studies that have been 
undertaken have mostly been to describe the heat transfer that occurs in either the laminar or 
turbulent flow regimes.  

Another factor which needs to be considered in turbulent heat transfer is the effect that the 
Prandtl number has on heat transfer. The Prandtl number has little effect on heat transfer in 
the laminar flow regime but has a significant effect when in the turbulent flow regime. 

The Prandtl number is used to relate the molecular diffusivity of momentum to the molecular 
diffusivity of heat. For example, heat diffuses very quickly in liquid metals which have a 
Prandtl number of much less than one. In contrast, heat diffuses very slowly in fluids such as 
oil which has a Prandtl number of much larger than one. 

The Prandtl number is defined as (Cengel 2006): 

 T4 = �U = JV
S  (9)  

 

For turbulent flow, there are numerous correlations that can be used to calculate the heat 
transfer that occurs. Each of the correlations that will be investigated are widely recognised 
and employed when calculating heat transfer coefficients in the turbulent flow regime. It is 
found that there is a clear variance of results when comparing the heat transfer coefficients 
calculated by these correlations. This indicates a degree of inaccuracy in the development of 
these correlations and therefore a more accurate equation needs to be investigated to correctly 
predict these values and experimentally validate the existing theory.  

In Table 2, a summary of all the most important data sets that were produced and utilised in 
other studies can be found. Included in the table is: the testing fluid that was used, the heat 
transfer application and which of the important studies utilised these data sets for 
mathematical manipulation or comparisons to the authors own data set. This gives one a clear 
representation of what work was undertaken and which works can be compared to each other 
and where caution should be exercised when Prandtl number differences should be noted due 
to the varying fluids tested. 
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Table 2: Summary of Data Sets Employed in Heat Transfer Studies 

AUTHOR(S) TEST MEDIUM APPLICATION MAXIMUM 
REYNOLDS 
NUMBER 
TESTED 

PRANDTL 
NUMBER RANGE 

EMPLOYED BY 

McAdams and Frost (1922) 
 

Water  223 200  Dittus and Boelter (1930) 

Morris and Whitman (1928) Water 
Gas Oil 
Gas Oil 
Straw Oil 
Straw Oil 

Heating 
Heating 
Cooling 
Heating 
Cooling 

38 800 
30 000 
44 200 
12 700 
45 300 

 Colburn (1933) 
Dittus and Boelter (1930) 
Sieder and Tate (1936) 

Dittus and Boelter (1930) Oil 
Water 

 25 000 
20 000 

  

Sherwood and Petrie (1932) Water 
Acetone 
Benzene 
Kerosene 
n-Butyl Alcohol 

Heating 
Heating 
Heating 
Heating 
Heating 

113 000 
113 000 
86 700 
31 800 
32 500 

 Colburn (1933) 
Sieder and Tate (1936) 

Petukhov (1970) 
(Collection of data) 
 
Allen and Eckert (1964) 
Dipprey and Sabersky (1963) 
Yakovlev (1960) 
Malina and Sparrow (1964) 
Sterman and Petukhov (1965) 
Hamilton (1963) 

 
 
 
Water 
Water 
Water 
Water, Oil 
Monoisopropyldiphenyl 
Water and water solutions 
of Glycerine and Metaxyl 

 
 
 
- 
- 
- 
- 
- 
 
- 

 
 
 
110 000 
150 000 
140 000 
100 000 
260 000 
 
100 000 

 
 
 
8 
1.2 – 5.9 
2 – 12 
3, 48, 75 
12 – 35 
 
430 – 105 

Petukhov (1970) 
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Table 3: Summary of Heat Transfer Correlations 

CORRELATION EQUATION REYNOLDS NUMBER 
RANGE 

PRANDTL 
NUMBER RANGE 

EXPERIMENTAL DATA 
SOURCE 

Chilton-Colburn Analogy 
 
 
 
Colburn Equation (1933) 
 

FG = 0.125���T4WX 
where f  is the friction factor from the 

first Petukhov equation FG = 0.023��(.YT4WX 
 

3000 < �� < 5 × 109 
 
 
 �� > 10	000 

0.7 < Pr < 160 McAdams and Frost (1922) 

Morris and Whitman (1928) 

Dittus and Boelter 
Equation (1930) 

FG = 0.023��(.YT4\where 
n = 0.3 for cooling 
n = 0.4 for heating 

2500 < Re < 10) 0.7 < Pr < 120 McAdams and Frost (1922) 
Morris and Whitman (1928) 

Sieder and Tate (1936) FG = 0.027��(.YT4WX D 

_E(.=` 
 

�� > 10	000 0.7 < Pr < 17600 
 

Clapp and Fitzsimmons (1928) 
Keevil and McAdams (1929) 
Morris and Whitman (1928)  
Sherwood and Petrie (1932) 

Second Petukhov Equation 
(1970) FG = a!YbReT41.07 + 12.7 a!Yb(.) aT4�X − 1b 

10` < �� < 5 × 109 0.5 ≤ T4 ≤ 2000 Allen and Eckert (1964) 
Petukhov and Roison (1963) 
Sterman and Petukhov (1965) 
Yakovlev (1960) 

Gnielinski (1976) 

 

 

 

FG = adeb(fg'=((()hi=j=�.kadebl.m>hi�X'=C n1 + aopb�Xqr 

where   r = D T4T4�E(.== 

3 × 10s < �� < 5 × 109 0.5 ≤ T4 ≤ 2000 Clapp and Fitzsimmons (1928) 
Keevil (1930) 
Lawrence and Sherwood (1931) 
Morris and Whitman (1928) 
Sherwood and Petrie (1932) 
Sieder and Tate (1936) 
Hufschmidt (1966) 
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Important to note is the maximum Reynolds numbers that were tested in the studies. If one 
compares the Reynolds numbers ranges of the most commonly used heat transfer correlations in 
Table 2, one can see that most of the experimental data has never exceeded a Reynolds number 
of 260 000. It is to be noted that the highest Reynolds numbers were never tested using water. 
The highest Reynolds number tested using water was 230 000 by McAdams and Frost (1922). 
The correlations that were developed used mathematics and extrapolation to develop the limits 
of the correlations and therefore there is room for further experimental investigation into higher 
Reynolds number ranges. 

In Table 3, a summary of the most important heat transfer correlations can be found along with 
the Reynolds number and Prandtl number ranges that are applicable to the specific correlation. 
Included in the table are the data sets that have been utilised in the development of the 
correlations.  

Although there are many heat transfer correlations that have been developed over the past 
century, the ones mentioned in Table 3 are those which were proven to be pioneering for their 
time and those which made a significant difference to the development of heat transfer theory.  

2.4.1 The Dittus-Boelter Equation 

The first study to change the way heat transfer coefficients were calculated was completed by 
Dittus and Boelter (1930). The study was completed using a radiator to transfer heat from water 
to the atmosphere. The study introduced the “Overall Transfer Factor’’ which has becoming the 
Overall Heat Transfer Coefficient (U) that is used today. This is utilised when working with the 
method of representing the heat transfer that occurs in a system as resistance terms, similar to 
the theory used in electrical circuits. It was found that in turbulent flow, most of the heat is 
transferred from the liquid to the tube wall by forced convection, and that in the laminar flow 
regime heat is transferred mainly by conduction.  

Dittus and Boelter used the data from previous studies of McAdams and Frost (1922) and 
Morris and Whitman (1928) to compare their results to. From the results, it was found that 
previously, there were two separate groups of data points, one for heating of liquids and the 
other for cooling. It was attempted to plot the heat transfer factors as a function of the various 
thermal properties of the fluid, using the film temperature instead of the bulk temperature to 
obtain consensus between the two operating conditions. After doing this, it was found that no 
agreement was found between the studies when using a single representative equation. It was 
after this, that a suggestion was made to include a separate exponent for heating and another for 
cooling. When using this new method and comparing the heat transfer coefficients to Morris and 
Whitman’s (1928) published data, agreement was found between the studies.  

In addition to determining the coefficients for heat transfer, an entrance correction factor was 
proposed by Dittus to eliminate turbulence due to entrance and exit disturbances as little was 
understood regarding the effects of entrance conditions on heat transfer at that time. McAdams 
and Frost proposed to use an entrance correction factor to calculate their heat transfer results but 
this was rejected by Morris and Whitman (1928) on the basis that there was not sufficient data 
to determine a single accurate correction factor. 

The correlation developed by Dittus and Boelter is described by equation (10). 

 FG = 0.023��(.YT4\ (10)  
 

where n =0.4 for heating applications and n =0.3 for cooling applications. 



12 
 

2.4.2 The Colburn Correlation 

While there were many initial attempts to characterise heat transfer as a function of flow rate, 
few studies were found to make a meaningful contribution in predicting heat transfer 
coefficients. One of the first studies to contribute to heat transfer in the turbulent flow regime 
was by Colburn (1933). Colburn found that whilst there were many equations available 
at that time, every equation was dependent either on types of apparatus, flow conditions or 
the fluids used. Colburn determined that there was a need for a single equation that could 
describe heat transfer independently of all those factors. The purpose of Colburn’s paper was to 
simplify the forced convection field by providing a general method of correlating heat transfer 
data which could be used for the entire flow range, being from laminar to turbulent. 

Colburn was one of the first studies which could be noted for fully utilising the dimensionless 
numbers of Nusselt, Stanton, Reynolds and Prandtl. Colburn understood how utilising these 
numbers simplify the calculations involved in heat transfer by reducing the number of properties 
and variables, whilst still allowing for all effects to be represented in an equation.  

Colburn’s development of his correlation was based on the Reynolds analogy, which was 
developed to determine the value of Cf which is the shear stress at the wall. Colburn determined 
that a similar equation needed to be developed to determine heat transfer rates during forced 
convection. Derived from the non-dimensionalised momentum and energy equations, the 
Reynolds analogy states that the Stanton number is approximately one half the value of the 
friction coefficient. The Stanton number is defined as (Cengel 2006): 

 tK = ℎ
JV� = FG��T4 (11)  

 

This is, however, only valid for fluids with Pr ≈ 1 and therefore a more useful analogy was 
needed to predict heat transfer coefficients that could be applied to fluids with a wide range of 
Prandtl numbers. Therefore, Colburn added an extra Prandtl number factor and developed what 
is known as the j-factor. The Prandtl number is used as a correction for the differences between 
the temperature and velocity distributions in the fluid. The j-factor is defined in terms of either 
the overall temperature change of the system or as a heat transfer coefficient. This is represented 
by (Colburn 1933): 

 u = tKT4�X (12)  (0.6 < T4 < 60) 
The proposed method of presenting the data was helpful as the values of the heat transfer was 
shown to be a direct function of the temperature change in a heat exchanger and the effect of 
varying the velocity of the flow on the exit temperature was immediately indicated.   

The well-known Chilton-Colburn analogy uses the Petukhov friction factor described in 
equation (6) to determine the heat transfer using equation (13): 

 FG = 0.125���T4WX (13)  
 

The Colburn equation is a slight mathematical modification of equation (13) and includes the 
friction factor in the equation which is (Cengel 2006): 

 FG = 0.023��(.YT4WX (0.7 ≤ T4 ≤ 160,			�� > 10	000) (14)  
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It is important to note that all the system properties are evaluated at the bulk mean fluid 
temperature which is the average temperature between the inlet and outlet temperature of the 
fluid. This is represented by: 

 Ow = Ox\ + Oyz{2  (15)  

2.4.3 The Sieder and Tate Study 

The next of the heat transfer studies that were to shape modern theory was that conducted by 
Sieder and Tate (1936). In addition to developing an extremely accurate and useful correlation 
to predict heat transfer, the data that was measured has been used extensively by other authors to 
develop new heat transfer correlations with a considerable degree of accuracy.  

During the development of the correlation, two main contributions can be noted. Firstly, the 
correlation that is developed takes into account the viscosity gradient of the fluid in the tube by 
means of a viscosity ratio in the form (µb/µw) where µb is the viscosity at the bulk temperature 
and µw is the viscosity of the fluid at tube wall temperature. This observation is of considerable 
importance as it was the first study to investigate the temperature profile in the radial direction 
of the tube. Up until this particular study, the temperature profile in the axial direction of the 
tube was seen to dominate the effect of the profile on heat transfer. It was found that due to the 
magnitude of the radial temperature gradient, a large viscosity gradient is found in the radial 
direction and this is what leads to the difference in viscosity at the centre and wall of the tube. It 
is due to this that the effect of the viscosity gradient needs to be taken into account and therefore 
the correlation developed by Sieder and Tate (1936) resulted in a far greater accuracy than 
previous work in heat transfer theory. 

The previous correlations fell into two classes – one which used mainstream properties and the 
other using film properties with these being defined by the temperature which was used to 
determine the system properties. When using the film properties, one cannot use one correlation 
to predict heat transfer in heating and cooling applications. If one uses the main stream 
properties, the temperature difference between the tube wall and fluid are not sufficiently taken 
into account. Sieder and Tate recognised this and therefore sought to develop a solution to these 
two problems.  

Using their own experimental data and other data sets, from Morris and Whitman (1928) and 
Sherwood and Petrie (1932), a correlation was developed to predict the heat transfer in the 
turbulent flow regime for liquids. This equation is shown in (16): 

 FG = 0.027��(.YT4WX D 

�E(.=` (16)  (0.7 ≤ T4 ≤ 17600, �� ≥ 10	000)  

The results of the experimental data for testing with water have a deviation of 10% when 
compared to the theory examined.  

2.4.4 The Petukhov Correlation 

More complex equations such as the second Petukhov (1970) equation or the Gnielinski (1976) 
correlation aimed to improve the accuracy of the previous heat transfer studies. It was realised 
that fluid physical properties greatly depended on temperature. It was due to this phenomenon, 
that heat transfer was so poorly predicted in previous studies as this was not fully taken into 
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account. It was therefore necessary to perform an analysis of the flow and heat transfer with the 
dependence of physical properties on temperature taken into account.  

Due to the transient nature of turbulent flow, properties change continuously with time. It is 
these fluctuations that make turbulent flow so difficult to predict. The difficulty in predicting 
heat transfer in turbulent flow comes from the inability to determine expressions for the 
turbulent diffusivities of heat and momentum for variable physical properties.  

The Petukhov study uses numerical methods of predicting the heat transfer by using time 
averaged velocities, densities, enthalpies, temperatures and pressures. Using the energy, 
momentum and continuity equations, these values can be determined. The solution of turbulent 
flow is to use expressions for turbulent diffusivities coupled with the analysis of averaged 
equations for temperature, density and pressure fields. Petukhov restricted his analysis to heat 
transfer and fluid flow analysis in circular pipes devoid of entrance effects. Petukhov 
determined that when dealing with large Prandtl numbers, the main temperature change occurs 
in the vicinity of the tube wall and therefore it is very important to take this phenomenon into 
account.  

To determine the heat transfer with constant physical properties, Petukhov considers a solution 
for fully developed flow in a circular tube with constant heat flux at the tube wall. The heat 
transfer coefficient was calculated for Reynolds numbers ranging from 104 to 5 x 106.  

The corresponding solution is found in equation (17), which predicts the heat transfer for fully 
developed flow (Petukhov 1970).  

 FG = a!Yb��T41.07 + 12.7 a!Yb(.) aT4�X − 1b (17)  

 (0.5 ≤ T4 ≤ 2000, 	10` < �� < 5 × 109) 
It was found by Petukhov (1970) that for the mentioned Reynolds number range, the calculated 
results had an accuracy of 5-6% when compared to chosen experimental data. Whilst this 
correlates well, the maximum Reynolds number that was experimentally tested to was 350 000 
and the testing fluid was air. The highest Reynolds number tested using water was 140 000. 
When considering this, it is thought that it would be beneficial to validate the heat transfer 
coefficients through experimental testing.  

2.4.5 The Gnielinski Study 

The most recent heat transfer study to significantly contribute to theory on turbulent heat 
transfer was conducted by Gnielinski (1976). The work that he evaluated was the most recent 
contribution to heat transfer at that time which was researched by Hausen (1959). Hausen used 
Sieder and Tate’s experimental data to develop a correlation to describe heat transfer in both the 
transitional and turbulent flow regime. The correlation is (Hausen 1959): 

 FG = 0.037(��(.k) − 180)T4(.`� n1 + DdLE�/sq D 

�E(.=` (18)  	(0.6 ≤ T4 ≤ 10s, 2300 < �� < 109) 
Gnielinski found that the work conducted by Hausen under predicted heat transfer coefficients 
at high Reynolds numbers. This was found when comparing the theoretical Nusselt numbers 
calculated using the Hausen equation to the experimental Nusselt numbers obtained by 
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Hufschmidt et al (1966). It was found however, that Hausen’s correlation correctly predicted the 
decrease in the heat transfer coefficient in the transition region between laminar and turbulent 
flow for Reynolds numbers lower than 10 000. Therefore, Gnielinski determined that to 
reproduce the experimental values from the existing literature, an equation needed to be 
developed that correctly described the decrease in heat transfer coefficients in the transitional 
flow regime and which, for large Reynolds numbers, could account for the dependence of the 
exponent of the Reynolds number on the Prandtl number.  

Gnielinski determined that to achieve this, a generally valid equation should be formulated from 
the basic form that was developed by Prandtl (1944). Petukhov, as previously mentioned, 
developed an equation which predicted heat transfer accurately at high Reynolds numbers. The 
Petukhov equation is based on the original assumptions and correlation of Prandtl (1944). This 
assumption is that due to the pressure drop, the exponent of the Reynolds number has a 
noticeable dependence on the Prandtl number. Petukhov takes into account the effect of the 
friction factor on heat transfer in fully developed turbulent flow in long pipes by using the 
equation given by Filonenko (1954). Using the Petukhov (1970) equation, it was found that in 
the region of large Reynolds numbers, the values correspond to the requirements i.e. providing 
higher Nusselt numbers than the Hausen equation irrespective of the Prandtl number.  

 FG = a!Yb (�� − 1000)T41 + 12.7 a!Yb(.) aT4�X − 1b (19)  

 

Gnielinski modified the equation by add the correction of 1 + aopb�X  as given by Hausen to 

account for the effect of the length of the tube for which the heat transfer coefficient is being 
calculated. The ratio of the Prandtl number of the average temperature and the Prandtl number at 
the wall was added to equation (19) to account for the variation in properties as a result of their 
temperature dependence, similar to the method of Sieder and Tate (1936) using the viscosity. 

The resulting equation is (Gnielinski 1976): 

 FG = a!Yb (�� − 1000)T41 + 12.7 a!Yb(.) aT4�X − 1b �1 + DQ�E�X� r (20)  

where 

r = D T4T4�E(.== 
The Gnielinski correlation was deemed to be considerably accurate as it was able to reproduce 
the experimental heat transfer values for transition and turbulent flow over a wide range of 
Prandtl numbers. In addition to that, nearly 90% of the approximately 800 experimental values 
taken from existing literature differed by less than ±20% from the theoretical values. However, 
the uncertainties of the experimental values were not known. Furthermore it is to be noted that 
the Reynolds number range for this correlation is determined from the validity of the Reynolds 
number range for the Petukhov equation. The experimental values that are plotted in the 
Gnielinski article do not exceed a Reynolds number of 640 000. Hufschmidt (1966) produced 
test results that were used by Gnielinski but his results covered a significant Prandtl number 
range.  
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2.5 Conclusion 

The calculation of heat transfer and the friction factor in the turbulent flow regime is governed 
by the use of experimental data due to the fluctuations and agitations found in the fluid stream. 
The experimental data sets form the basis of heat transfer correlation development. 

From the earliest development of correlations used to define turbulent heat transfer, the aim was 
to simplify the calculation of heat transfer. This led to the introduction of dimensionless 
numbers. After this development the difference in heat transfer calculation between heating and 
cooling applications was introduced. This development led to the discovery of the influence of 
temperature on the thermal properties of a fluid and this introduced the inclusion of the viscosity 
of a fluid into the calculation of heat transfer. It was discovered that the viscosity would take 
into account the temperature differences between the tube wall and fluid during experimental 
testing. After this development, the next discovery was that the friction factor had a considerable 
effect on the heat transfer and it was therefore included in the calculation of heat transfer in the 
turbulent flow regime.  

There are numerous studies that have been undertaken to quantify the heat transfer in the 
turbulent flow regime. Many of these studies make use of experimental data sets that were 
recorded in the early 1920’s due to the reliance of the heat transfer correlation development on 
experimental data. The maximum Reynolds Number that has been tested using water as the 
testing medium was 223 000. Due to the correlations being developed so many years ago, the 
accuracy of the correlations has not been required to be quantified by the calculation of the 
uncertainty of the correlation. 
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3. EXPERIMENTAL SETUP 
 

3.1 Introduction 

The purpose of this chapter is to describe the experimental setup that was used to conduct 
heat transfer and pressure drop experiments in a smooth horizontal tube over a range of mass 
flow rates. It also gives an overview of the components of the experimental setup, the test 
section, as well as the material, equipment and instrumentation used. The experimental 
procedure and data reduction methods used are also discussed. 

3.2 Experimental Setup 

The experimental setup was housed in the Thermofluids laboratory at the University of 
Pretoria and was constructed by myself and is shown schematically in Figure 2. The 
experimental setup consisted of a tube-in-tube heat exchanger operated using water in a 
counterflow configuration. It was serviced with two water streams: a hot and cold water fluid 
stream.  The inner tube of the heat exchanger was serviced with hot water and the annulus 
was serviced with cold water.  

The hot water in the system was provided using the municipal water supply and a heater 
element located in a reservoir. The water was heated using a 36 kW heating element which 
heated the water to a temperature of 58°C. The hot water was supplied to the system using 
two pumps due to the large range of flow rates that need to be tested. One positive 
displacement pump was used to provide a maximum flow rate of 2 700 l/hr. Another positive 
displacement pump was used to supply the system with a maximum flow rate of 13 200 l/hr. 
A summary of the equipment specifications of the two water streams is in Table 4. 

Table 4: Equipment specifications of the two water streams 

Hot Water Stream 
 
Pump 1: SP 4 

 
Positive displacement pump 

Power: 0.5 kW 
Maximum flow rate: 2 700 l/hr 
Maximum pressure rating: 600 kPa (at maximum flow rate) 
Maximum speed: 1 420 rpm 

 
Pump 2: CB 620 

 
Positive displacement pump 

Power: 11 kW 
Maximum flow rate: 13 200 l/hr 
Maximum pressure rating: 1 200 kPa (at maximum flow rate) 
Maximum speed: 1 460 rpm 

Cold Water Stream 
 
Pump: CB 410 

 
Positive displacement pump 

Power: 2.2 kW 
Maximum Flow Rate: 3 400 l/hr 
Maximum Pressure Rating: 600 kPa 
Maximum Speed: 1 300 rpm 
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The cold water supply had a similar configuration as the hot water supply loop. The water 
was stored in a 1 000 litre reservoir which was connected to a 36 kW chilling unit which 
chilled the water to a temperature of 20°C.  The cold water was supplied to the test section 
using a positive displacement pump which could provide 3 400 l/hr. 

1
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3

3
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4
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6

6
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7

1) Hot Water Reservoir

2) Positive Displacement Pump

3) Non-Return Valve

4) Accumulator

5) Filter

6) Ball Valve

7) Coriolis Flow Meter

8) Cold Water Reservoir

9) Chiller Unit

10) Data Acquisition System

11) Test Section

2 3 4 5 789

10

11

 

Figure 2: Experimental test setup showing both hot and cold fluid streams with all measuring 
instrumentation used during testing 

Once the water was pumped from the reservoir, it was fed through an accumulator which was 
used to dampen any pulsations that may have occurred in the system. This was used in an 
effort to obtain highly accurate flow rate readings and damp pressure fluctuations. Once 
passed through the accumulator, it was fed through a filter to remove impurities and was then 
directed to a flow meter. The hot system used two Coriolis flow meters in parallel to measure 
the extremely low and high flow rates which affects the resolution of the readings taken when 
a particular flow meter is not suitable for extreme flow rates. The decrease in resolution 
directly affects the quality of the readings and therefore the accuracy.  

Once the flow had been through the flow meter it entered the test section constructed as a 
heat exchanger. The detail of the design and construction of test section is given in section 
3.3. 
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The piping used for the hot water circuit was high density polyurethane piping (HDPE) as it 
has a high pressure rating. The connection fittings used were Plasson fittings which offered a 
pressure rating of 1.6 MPa. In addition to the pressure ratings, the fittings allowed for easy 
construction and changes that needed to be made to the circuit. The hot water supply lines 
had an outer diameter of 63 mm with a pressure rating of 1.2 MPa whereas the cold water 
supply lines had an outer diameter of 25 mm with a pressure rating of 600 kPa.  

Both the hot and cold water supply pumps were controlled using variable frequency drives 
that were operated through a computer system linked to the experimental setup. A data 
acquisition system was coupled to the computer to log the desired temperature, pressure and 
mass flow measurements. The data acquisition software also allowed the control of the flow 
rates of the pumps through the computer. As a result, testing could be performed remotely 
through the computer and data acquisition system.  

3.3 Test Section 

Each of the two test sections used to conduct experiments consisted of a tube-in-tube heat 
exchanger which was tested in the laboratory. A summary of the heat exchangers and their 
tube diameters can be found in Table 5. The diameters are specified in terms of inner 
diameter of the tube. In this manuscript reference will be made to the 8.3 mm and 14.2 mm 
tubes although their diameters are actually 8.29 mm and 14.22 mm respectively. 

Table 5: Heat Exchanger Tube Diameters 

Inner diameter of 
inner tube of the 
heat exchanger 

Inner tube wall 
thickness 

Inner diameter of 
annulus tube of the 

heat exchanger 

Annulus tube wall 
thickness 

Test Section 1    
8.29 mm 0.61 mm 17.63 mm 0.71 mm 

Test Section 2    
14.22 mm 0.81 mm 20.41 mm 0.91 mm 

 

Each of the two test sections consisted of two copper tubes. The heat transfer length of the 
inner tube was 3.75 m and the pressure drop length was 4.1 m. The inner tubes were made of 
hard drawn copper tubes and their surface roughness values were measured as 0.0987 µm. 
The relative surface roughness (ε/D) of the tubes was less than 6 x 10 -6 m and can therefore 
be considered as smooth tubes when compared to a Moody chart (Cengel, 2006). The heat 
exchanger test sections were covered in Armaflex insulation with a thermal conductivity of 
0.034 W/m.K. Due to the cold water running through the annulus and the hot water running 
through the inner tube, the heat loss to the ambient was minimised when choosing this 
particular flow configuration.  

The selection of the length of the inner tubes was the longest that was commercially available. 
The reasons for the selection of the long lengths were to assure that fully developed flow will 
occur in most parts of the tubes and that high of heat transfer rates and pressure drops values 
could be measured to ensure good energy balances and low uncertainties.  

As experiments were only conducted in the turbulent flow regime, no mixers needed to be 
installed at the inlet and outlet of the inner tubes. All measured wall temperatures on the 
outside of the tube are assumed be equal to the average temperature of the water in the tube 
(wall resistance was negligible as discussed in 3.6.4). To ensure that no inlet effects could 



20 
 

disturb the experimental results, a bell mouth inlet with a downstream tube length with the 
same diameter as the test section and a length of 500 mm was installed upstream of the inlet 
of the test section. 

3.4 Test Section Construction 

As explained in the design section of this chapter, the test sections were in the configuration 
of a tube-in-tube heat exchanger. The inner tube was divided into eight stations, which were 
used to facilitate the sealing of the annulus pieces over the inner tube when constructing the 
heat exchanger. Once concentricity was ensured, the outer tube was fitted over the inner tube. 
The annulus pieces were connected using hydraulic fittings to ensure that they remain intact 
when testing under high pressure conditions. 

An important aspect of the test section construction was the method of maintaining 
concentricity between the two tubes. The tubes were separated using small pieces of Acetal 
machined to fit in the annulus of the heat exchanger. Acetal is a plastic which was chosen as 
it has a high operating temperature, low moisture absorption, low thermal conductivity, good 
stiffness and is easy to machine. The pieces were attached onto the inner tube at each station 
to maintain concentricity.  

The inlets and outlets of both the annulus and inner tube made use of four T-type 
thermocouples to measure temperatures accurately. The thermocouples were located 90° 
from each other around the tube circumference. The average of the four thermocouples was 
used as a more accurate representation of the temperature at the inlet and outlets of both the 
inner and outer tubes of the test section. The thermocouples were attached to the tube by 
soldering the thermocouples onto the outer wall of the tube.  A small groove was drilled into 
the tube and when the groove was filled with solder, the thermocouple was inserted into the 
groove. The thermocouple configuration is shown in Figure 3. 

 

Figure 3: Heat Exchanger Test Section showing the hot and cold fluid flow directions and 
thermocouple measurement points with a bell mouth entrance 

It was important that a high quality bond was made between the thermocouple wire and the 
tube surface as the wires were handled extensively after the bonding process and there was a 
risk that the wire would become detached during the handling of the test section. Due to the 
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wall thickness being so small, the thermal resistance of the wall can be neglected in heat 
transfer calculations. 

Thermocouple calibration was performed using at PT-100 temperature probe which was used 
to measure a reference temperature over a defined constant temperature range. The accuracy 
of the PT-100 probe was calibrated to 0.1 °C. The calibration was completed between a 
minimum and maximum temperature as the difference between the reference temperature and 
that of the thermocouples was found to be linear. Once the temperatures were logged, 
calibration coefficients could be determined for each thermocouple to calculate a new 
temperature reading. This worked as a correction factor to counteract the inherent error in the 
thermocouple wire and ensure that accurate temperature readings were obtained. During 
calibration 100 samples were recorded at each temperature and the standard deviation of 
thermocouples never exceeded 0.1°C. 

The pressure drop readings over the length of the inner tube were measured using pressure 
taps situated at the inlet and outlet of the inner tube. The pressure was measured using three 
Validyne DP15 Pressure Transducers. Each of the transducers contained a diaphragm which 
was calibrated to a maximum pressure which could not be exceeded. Each diaphragm was 
accurate to 0.25% of the rated maximum pressure. The accuracy of each of the pressure 
ranges was used to calculate the uncertainty of the pressure measurements which is explained 
in Appendix A. Pressure calibration was completed off site as the pressure ranges that were 
required to measure experimental data were too high for the equipment in the laboratory. The 
pressure calibration accuracy is given in Table 6. 

Table 6: Pressure Diaphragm Ranges 

Diaphragm Number Pressure Range 
[kPa] 

Error 
[%] 

1 0 – 35 0.25 

2 35 – 140 1 

3 140 – 860 1.54 
 

Labview software was used to record the measurements during testing. Using the software, 
100 samples were recorded at a frequency of 100 Hz for each Reynolds number increment 
(∆Re = 10 000). The measurements that were recorded were:  

� the differential pressure of the inner tube flow stream 
� the inlet and outlet temperature measurements of both tube streams  
� the mass flow rates of both the inner and outer tube streams 

 
 

3.5 Testing Procedure 

To conduct accurate experiments, the system needed to reach steady state conditions before 
any measurements were taken. The hot water was circulated through the test section to enable 
the temperature to stabilise. Once the temperatures were at the desired values, the cold water 
was circulated through the annulus. Using this circulation process, any excess air in the 
system was pumped out of the piping and test section and back into the tank. Steady state 
conditions were determined by monitoring the temperature fluctuations in the system as well 
as the energy balance readings. The energy balance readings were monitored and once an 
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approximate reading of 1% was obtained with no temperature or pressure fluctuations, steady 
state conditions were assured and measurements were recorded. 

In Table 7, the maximum testing values can be found for each of the tube diameters.  

Table 7: Testing System Properties 

Maximum System Properties for Tube Diameters 8.3 mm 14.2 mm 

Reynolds number[-] 200 000 220 000 

Heat transfer rate [kW] 20 42 

Mass flow rate [kg/s] 0.684 1.24 

Pressure drop [kPa] 578 134 

 

Upon the start of the experimental system, the pressure transducer valves were closed and 
remained that way for approximately ten minutes. The pressure transducer valves that were 
used in the system were opened once the system had been circulating the hot and cold water 
through the test section for a considerable time. This was done in an effort to prevent the 
effects of any potential water hammer in the system at start up from damaging the 
diaphragms in the pressure transducers. Once the system had stabilised, the valves were 
opened and any excess air in the system was bled out through the pressure transducers. At the 
end of the testing procedure, the pumps were switched off and the system became static. 
Once this occurred, the static pressure was recorded. This was done in an attempt to counter 
any offset that might have occurred in the pressure transducers. This offset was then 
subtracted from the recorded experimental pressure values to obtain the true reading. 

 

3.6 Data Reduction 

To obtain the objectives set out for this study, friction factors, heat transfer coefficients and j-
factors were required for smooth tubes in the turbulent flow regime. The methods used to 
calculate these coefficients are described in this section.   

3.6.1 General System Variables 

The Reynolds number was calculated for the inner tube and annulus mass flow measurements 
as described in equation (21) and (22).  

 ��x = 4�� x��x
x (21)  

 

 ��y = 4�y��(�y − �x)
y (22)  

 

The Prandtl number for the inner tube and annulus flows were defined in equation (23) and 
(24). The viscosities were calculated using the bulk temperature which is defined in equation 
(25) and is an average of the inlet and outlet temperature of a fluid stream. 
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 T4x = 
x VxSx  (23)  

 

 T4y = 
y VySy  (24)  

 

 Ow = Ox + Oy2  (25)  

 

The surface area of the inner tube and annulus were calculated using equations (26) and (27). 
The heat transfer length was 3.75 m. 

 �x = ��x� (26)  
 

 �y = ��y� (27)  
 

 

3.6.2 Pressure Readings 

The pressure readings that were obtained were indicative of the pressure drop that occurred 
over the length of the inner tube of the heat exchanger. Using the pressure drop readings, the 
friction factor, f, was calculated using equation (28). The pressure drop length between the 
inlet and outlet pressure taps was 4.1 m. The density was calculated at the bulk temperature 
as defined in equation (25). � = 2∆T�
������  (28)  

    
The velocity was calculated from the mass flow rate readings that were recorded during 
testing as well as the cross sectional area of the inner tube. Using equation (29), the average 
velocity was obtained and using that, the friction factor was calculated.  

 ���� = ��
��_ (29)  

 

3.6.3 j-Factor Calculation 

When considering the heat transfer results, it was decided to establish what the effect of the 
Prandtl number would be on the Nusselt number results. As mentioned in chapter 2, Prandtl 
numbers exhibit a much higher influence on heat transfer results in the turbulent flow regime. 
It was therefore determined to be important to consider the effects that the Prandtl number 
has on the Nusselt number.  

Using the Colburn analogy of free convection heat transfer and the Stanton number, which is 
described in chapter 2, a correlation can be made between the j-factor and the Nusselt number 
which is determined experimentally.  
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The j-factor is described using equation (30). 

 u = tKT4�X (30) 
 

Replacing the Stanton number with the definition in equation (31), the j-factor takes on the 
form shown in equation (32): 

 tK = 	 FG��T4 (31) 

 

 u = FG��T4WX (32) 

 

3.6.4 Heat Transfer Coefficients 

The Wilson Plot (WP) method (Briggs and Young 1969) uses only the inlet and outlet 
temperatures and mass flow rates for both the inner tube and annulus to calculate a heat 
transfer coefficient. The WP method is traditionally used to calculate the annulus heat 
transfer coefficients, however, in this case it is used to predict an inner tube heat transfer 
coefficient using regression analysis. The Wilson Plot analysis utilises the logarithmic mean 
temperature difference (LMTD) method of calculating the overall heat transfer coefficients of 
the system. 

 
Figure 4: Representation of thermal resistance contributions of the inner, wall and annulus heat 

transfer 

The LMTD method uses an analogy that represents each heat transfer component of the 
experimental setup as a component of a thermal resistance network. A cross section of the 
heat exchanger is shown in Figure 4. The thermal resistance theory states that each part of the 
cross section contributes a resistance which can be related to the overall heat transfer 
coefficient (Uov).  

In this particular case the thermal resistance is equal to the sum of the inner tube, wall and 
outer tube thermal resistances. This is described by equation (33). 

 �y� = �x + �� + �y (33)  
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The overall heat transfer coefficient of this particular system is affected by the resistance 
terms of the fluid in inner tube, the inner tube wall and the fluid in the annulus as shown in 
equation (34). The first term on the right hand side of equation (34) represents the inner wall 
thermal resistance caused by convection on the inner surface of the inner tube. The term, Rw, 
represents the conduction through the copper tube wall and the last term represents the 
annulus side thermal resistance from convection on the outer surface of the inner tube.  

 
1�y�� = 1ℎL�L + �� + 1ℎy�y (34)  

 

The overall heat transfer coefficient was calculated by using the average heat transfer rate 
between the inner tube and the annulus which was determined using equations (35), (36) and 
(37).  

 ��x = �� x Vx�Ox,x\ − Ox,yz{� (35)  
   
 ��y = �� y Vy�Oy,yz{ − Oy,x\� (36)  
 

 ���� = �� x + ��y2  

 
(37)  

���� = �� x a Vx�Ox.x\ − Ox,yz{�b + �� y a Vy�Oy.yz{ − Oy,x\�b2  (38)  

 

Once the average heat transfer rate was calculated, it was used to calculate the overall heat 
transfer coefficient using equation (39) which utilises the log mean temperature difference 
(LMTD). 

�y� = �����y∆O�� 

 
(39)  

The log mean temperature was calculated as depicted in equation (40).  

 ∆O�� = �Ox,x\ − Oy,yz{� − �Ox,yz{ − Oy,x\�;H D���,��'��,�������,���'��,���E  (40)  

 

The thermal wall resistance term (Rw) was calculated using the conduction equation for heat 
transfer through the tube wall. This is described in equation (41).  

 �� = ;H	a����b2�S�� (41)  

 

where k is the thermal conductivity of the copper tube wall and L is the length of the tube.  
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To calculate the thermal conductivity of the copper tube wall, the correlation in equation (42) 
was used. This correlation calculates the thermal conductivity as a function of the bulk 
temperature (Tb) of the system (Abu-Eishah 2001), measured in Kelvin.  

 S� = NOw������ (42)  

 

With the constants a = 82.56648, b = 0.262301, c = -4.06701 x 10-4 and d =59.72934 for 
copper.  

Although the wall resistance was taken into consideration, the effect of the wall resistance on 
equation (34) was negligible due to the high thermal conductivity of the copper tube and the 
thin wall thickness of the tube.  

The Wilson Plot method requires the overall heat transfer coefficients of both the inner tube 
and annulus to be calculated so as to calculate the inner tube heat transfer coefficient. The 
inner and outer tube Nusselt numbers are solved for using equations (43) and (44). The 
equations have two coefficients, C and n, which are used to approximate the experimental 
data through regression analysis using Sieder and Tate (1936) type equations. 

 FGx =  x��x\�T4xWX D 
x
�E(.=` (43)  

   

 FGy =  y��y\�T4yWX D
y
�E(.=` (44)  

 

To calculate the heat transfer coefficient for the inner tube equation (45) was used which is a 
relation to equation (44) described by the Briggs and Young (1969) method. The thermal 
conductivity of the water was calculated at the bulk temperature (Tb) which is calculated as 
the average between the inlet and outlet temperatures of the inner tube. 

 ℎx = FGxSx�x =  x��x\�T4xWX D
x
�E(.=` Sx�x  (45)  

 

This theory can also be applied to the annular heat transfer coefficient as in equation (46).  

 ℎy = FGySy(�y − �x) =  y��y\�T4yWX D
y
�E(.=` Sy(�y − �x) (46)  

 

The inner tube heat transfer resistance is described using equation (47). The inclusion of ℎx∗  
is the variation of the inner tube heat transfer coefficient and  x is a correcting constant. 

 �x = 1ℎx�x = 1 xℎx∗�x (47)  

where  

 ℎx =  xℎx∗ (48)  
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The same principle is applied to the outer tube heat transfer resistance as shown in equation 
(49). 

 �y = 1ℎy�y = 1 yℎy∗�y (49)  

where  

 ℎy =  yℎy∗  (50)  
 

Using equation (47) and (49) in equation (34) the total heat transfer resistance takes on the 
form of equation (51). 

 �y� = 1 xℎx∗�x + �� + 1 yℎy∗�y (51)  

 

Rearranging the terms, the equation takes on the form of a straight line graph as shown in 
equation (53). 

 �y� − �� = 1 xℎx∗�x + 1 yℎy∗�y (52)  

 

 (�y� − ��)ℎy∗�y = 1 x ℎy∗�yℎx∗�x + 1 y (53)  

 

The form of equation (53) allows the y and x values to be determined as described in equation 
(54) and (55).  

 � = (�y� − ��)ℎy∗�y (54)  
 

 � = ℎy∗�yℎx∗�x  (55)  

 

When plotting the x and y values, the new coefficients for Ci and Co can be calculated by 
determining the gradient and intercept of equation (53). The gradient, a, determines the Ci 
value and the intercept, b, determines the Co value as shown in equations (56) and (57).  

 N = 1 x (56)  

 

 � = 1 y (57)  
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3.6.5 Wall Temperature Calculation using Wilson Plot  

The wall temperature is difficult to measure when conducting experiments using a tube-in-
tube heat exchanger test setup configuration due to the construction constraints. Therefore the 
wall temperature, according to the Wilson Plot, can be calculated and compared to the 
measured wall temperatures to determine whether there was a possible measurement error 
during experiments. This can be done using the overall heat transfer coefficient as well as the 
inner tube heat transfer coefficient calculated using the Wilson Plot. Due to the bulk 
temperature profile being undefined, it needs to be determined by derivation.  

The aim is to determine the inner tube wall temperature Tw along the length of the tube z. 

The bulk temperature difference, between the inner and outer tube fluids, at a point along the 
axial distance of the tube z is defined in equation (58) (Cengel 2006): 

 ∆Ow(�) = Ox(�) − Oy(�) 
 

(58)  

The energy balance for the inner and outer tube can be determined using equations (59) and 
(60). 

 ��� = −�� x VxQOx (59)  
 

 ��� = �� y VyQOy (60)  
 

Substituting equation (59) and (60) into (61) renders: 

 Q∆Ow = −���  ∗ (61)  
where the term C* is defined as: 

 
 ∗ = > 1�� x Vx + 1�� y VyC 

 
(62)  

Using the definition of the overall heat transfer coefficient, the heat transfer rate takes on the 
form of equation (63):  

 ��� = �y�∆Ow�xQ� 
 

(63)  

where the perimeter is defined as: 

 �x = ��x (64)  
 

Substituting equation (63) into equation (61) the equation is integrated from 0 to z*, which is 
an arbitrary position along the length of the tube, as in equation (65). 

 � 1∆Ow Q∆Ow =∆��(�∗)∆��(() −� �y��x ∗Q��∗
(  

 

(65)  

 ln�∆Ow(�∗)� − ;H�∆Ow(0)� = −�y��x ∗�∗ (66)  
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 ∴ ∆Ow(�∗) = ��'���V� ∗�∗j�\�∆��(()�¡ 
 

(67)  

From the inner tube energy balance between 0 and z* it can be obtained: 

 
��('�∗ = �� x Vx¢Ox(0) − Ox(�∗)£ 

 
(68)  

Integrating the incremental heat transfer rate from 0 to z* of the tube renders: 

 ��('�∗ = � Q���∗
( (�)Q� 

 
(69)  

Substituting equation (63) into (69): 

 ��('�∗ = � �y��x∆Ow�∗
( (�)Q� 

 
(70)  

And substituting equation (67) into (70) results in: 

 

��('�∗ = ¤ �y��x�∗( �'���V� ∗�∗j�\¢∆��(()£Q�= − ∆��(() ∗ ¢�'���V� ∗�∗ − 1£  

 

(71)  

Equating equation (71) into (70) results in an equation for the bulk fluid temperature for the 
inner tube at z*: 

 ∴ −∆Ow(0) ∗ ��'���V� ∗�∗ − 1¡ = �� x Vx�Ox(0) − Ox(�∗)� 
 

(72)  

 
Ox(�∗) = Ox(0) − ∆Ow(0) ∗�� x Vx �1 − �'���V� ∗�∗� 

 

(73)  

From the definition of the inner tube heat transfer coefficient: 

 ��� = ℎx�x¢Ox(�) − O�(�)£Q� 
 

(74)  

Equating equation (74) to (63) results in: 

 �y��x∆Ow(�)Q� = ℎx�x¢Ox(�) − O�(�)£Q� 
 

(75)  

The terms are rearranged to obtain Tw: 

 O�(�) = ¥y + ¥=�¦� 
 

(76)  

where the coefficients G0, G1 and β are defined as: 

 
¥( = nOx(0) − ∆Ow(0) ∗�� x Vxq 

 

(77)  
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¥= = ∆Ow(0) n 1 ∗�� x Vx −�y�ℎx q 

 

(78)  

 § = −�y��x ∗ (79)  

Normally it is not necessary to explicitly determine the wall temperatures when the WP 
method is used. The reason why it was done in this study was that the wall temperatures were 
required for the uncertainty analysis. 

3.6.6 Energy Balance 

The energy balance (EB) is calculated using the heat transfer rate of both the inner tube and 
annulus. The energy balance value is a good indication of the stability and accuracy of the 
system and measurements. To calculate the energy balance equation (80) is used. 

 ¨© =	�� x − ��yaª� �jª��� b × 100 (80)  

 

3.7 Conclusion 

Experimental data was obtained during tests conducted in the laboratory at the University of 
Pretoria. Two test sections were constructed in a counterflow arrangement where two 
different inner tube diameters were used for testing purposes. The inner tube diameters were 
8.3 mm and 14.2 mm and the heat transfer length was 3.75 m. Thermocouples were attached 
along the length of the wall of the tube as well as at the inlet and outlet of the inner tube and 
annulus. During experimental testing, the following measurements were recorded: 
temperatures, mass flow rates, pressure drop over the length of the test section. The 
maximum Reynolds number tested for the 8.3 mm and 14.2 mm tube was 200 000 and 220 
000 respectively over a Prandtl number range of 3.2 – 4.  

Using the recorded temperature and mass flow measurements, the heat transfer coefficients 
were determined using the Wilson Plot method. The mass flow rates were used to determine 
the Reynolds numbers and the friction factors were determined using the pressure drop 
measurements over the length of the tube. The wall temperature was derived using an energy 
balance between the inner tube and annulus flows. 
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4. UNCERTAINTY ANALYSIS 
 

The purpose of this chapter is to describe the method used to determine the uncertainty on all 
the measured and calculated variables that are used to calculate the heat transfer coefficient 
for the test section flow. The uncertainty of the system, wall temperature, Nusselt number and 
friction factor is quantified and the effects of the uncertainty on the experimental data is 
analysed. The results of the uncertainty analysis are discussed.  

4.1 Uncertainty Analysis 

During experimental testing, it is impossible to obtain the true value of a measurement due to 
errors within the equipment and recording of data. Therefore, uncertainty analysis is used as 
one of the most accurate methods to quantify this error in attempt to obtain the best 
approximation of the true value. By calculating the uncertainty of the data recorded during 
testing, the data can be evaluated in its quality and accuracy. One of the primary objectives of 
this chapter was to quantify the uncertainty on the temperature and pressure drop 
measurements that were recorded during testing. A full uncertainty analysis was therefore 
performed on all relevant measurements which were used to determine the Nusselt number 
and friction factor. 

The method of calculating the uncertainty was based on that of Moffat (1988) where the bias 
and precision values were used to calculate the uncertainty on the measurements recorded 
during testing. Bias errors are those which are recurring and can be accounted for during 
measurements. These errors can be attributed to phenomena such as calibration errors, errors 
during calculation, measurement equipment imperfections etc. Precision errors are those 
which occur randomly and can be caused by variations in measurement processes, changes in 
the equipment utilised for measurements etc.  

Each uncertainty on a measurement contributes towards a calculated uncertainty for a desired 
system characteristic such as a Nusselt number or friction factor. Therefore, the uncertainty in 
a certain system characteristic, for example u, can be determined by quantifying the standard 
deviation of a measurement and the contribution of the variables in a data reduction step. In 
equation (81), the standard uncertainty u, is calculated by using the partial derivative of the 
result, r, with respect to the contributing variable, v and the uncertainty of the contributing 
variable, u(v). 

 G(4) = «¬n ­4­I® G�I®�q�\
®¯=  (81)  

 

Using equation (81), the uncertainty of each variable was calculated and this was used in turn 
to calculate the next step of the data reduction process. As a result of this, the uncertainty of a 
certain variable propagates through the process and this information can be used to design 
systems to reduce the uncertainty of certain parameters. 

4.2 System Uncertainty 

Each measurement contains a degree of uncertainty and the values for these measurements 
can be found in Table 8. These uncertainties take into account possible errors during 
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calibration as well as measurement errors during experimental testing and these consist of 
bias (Bj) and precision errors (Pj) as shown in equation (82).  

 ­I® = °�©®�� + �T®��±W� 
 

(82)  

The resulting uncertainty measurements utilise a 95% confidence level that the actual error 
will not exceed the estimated error. A standard deviation was used in the root sum squared 
method to calculate the uncertainty of the measurement. A full description of this method can 
be found in Appendix A. 

Table 8: Summary of system uncertainty values 

Measurement Uncertainty 

 
Instrument Uncertainties: 
Temperature (T) 
Inlets, outlets and bulk temperatures 
(4 Thermocouples) 
Pressure drop (∆P) 
Mass flow rate (�� ) 
 

 
 

0.01 °C 
0.05 °C 

 
0.25% FS 

0.1% 
 

Tube Wall Thermal Conductivity: 3.2% 
  
Fluid Properties:   
Thermal conductivity (k) 2% 
Density (ρ) 0.003% 
Viscosity (µ) 1% 
Specific heat capacity (Cp) 0.06% 
 
Dimension Uncertainties: 
Tube length (L) 
Tube diameter (D) 

 
 

2 mm 
20 µm 

 

The thermocouple uncertainty value was calculated from the calibration of the thermocouples 
using the Pt-100 which had an uncertainty of 0.01°C.  

The uncertainties of the fluid properties are obtained from the formulations of Popiel and 
Wojtkowiak (1998). 

4.3 Friction Factor Uncertainty 

The friction factor uncertainty was based on equation (28) which determines the friction 
factor using the pressure drop measurements which were obtained experimentally. As a result, 
the friction factor uncertainty was determined using equation (83). The term of the equation 
with the most effect on the friction factor was the pressure drop measurement.  

 ∂� = nD ∂�∂∆T ∂∆TE� + D∂�∂
 ∂
E�+D ∂�∂�x ∂�xE� + D∂�∂� ∂�E�+D∂�∂�� ∂�� E�qW� 
 

(83)  
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4.4 Nusselt Number Uncertainty 

The Nusselt number was calculated using the Wilson Plot theory which is described in 
section 3.6.2 of Chapter 3. The Wilson Plot method uses the weighted linear least squares 
(WLS) regression analysis to determine the coefficients, Co and n, which enable the 
separation of the overall thermal resistance for the measured experimental data. Each 
measured variable has its own uncertainty and this propagates through each data reduction 
step used to determine the heat transfer coefficient. The uncertainty of the linear regression 
step of the Wilson Plot method also needs to be taken into consideration.  

The uncertainty of each of the measured variables is described in section 4.1 and these 
uncertainties are referred to as base variable uncertainties. The base variable uncertainties 
need to be determined as they are used in the calculation of the reduced variable uncertainties. 
The method proposed by Uhia et al. (2013) was used to calculate the uncertainty of the heat 
transfer coefficients when using the Wilson Plot data reduction method. The method 
proposed by Uhia et al. is based on the general uncertainty equation described by equation 
(82).  

By arranging the data reduction equations as described in Chapter 3, the uncertainty was be 
calculated on each of the reduction steps and the contribution of each step on the total 
uncertainty was taken into account. The uncertainty analysis was performed on equation (53) 
which arranged the Wilson Plot data reduction in the form of a straight line graph equation. 
The x and y axis values are stated in equation (54) and (55).  

 � = (�y� − ��)ℎy∗�y (54) 
 

 � = ℎy∗�yℎx∗�x  (55) 

 

By applying equation (81), the uncertainty in the y-axis values derived from the Wilson Plot 
was calculated using equation (84). 

 G(�) = ³´ ­�­�y� G(�y�)µ� + ´ ­�­ℎy∗ G(ℎy∗)µ� (84) 

 

Similarly, the uncertainty for the x axis values was calculated using equation (85).  

 G(�) = ³´ ­�­ℎy∗ G(ℎy∗ )µ� + n ­�­ℎx∗ G(ℎx∗)q� (85) 

 

The uncertainty of the coefficients used in the Wilson Plot method was determined from the 
uncertainty of the gradient, a, and intercept, b, of equation (53). This is shown in equations 
(86) and (87).  

 G( x) = ­ x­N G(N) (86) 
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 G( y) = ­ y­� G(�) (87) 

 

The uncertainty of the gradient and intercept was calculated as described in Appendix A. 
Using the uncertainty of the coefficients, the uncertainty of the heat transfer coefficients 
could be determined from the definition found in equations (48) and (50) and using equation 
(81). The inner tube heat transfer coefficient uncertainty was determined using equation (88). 

 G(ℎx) = ³n­ℎx­ℎx∗ G(ℎx∗)q� + ´­ℎx­ x G( x)µ� (88) 

 

The annulus heat transfer coefficient uncertainty was calculated using equation (89). 

 G(ℎy) = ³´­ℎy­ℎy∗ G(ℎy∗)µ� + ´­ℎy­ y G( y)µ� (89) 

 

A coverage factor was included by Uhia to increase the confidence level of the results to 95%. 
The recommended coverage factor is CF = 2 to obtain the 95% confidence level while 
assuming a normal distribution in the heat transfer coefficient results.  The final uncertainty 
of the heat transfer coefficients was calculated by equations (90) and (91) which includes the 
coverage factor. 

 �(ℎx) =  ¶G(ℎx) (90) 
 

 �(ℎy) =  ¶G(ℎy) (91) 
 

4.5 Wall Temperature Uncertainty 

Due to the wall temperature being difficult to measure during experiments, the wall 
temperature was calculated according to the Wilson Plot as described in section 3.6.5. As 
with the heat transfer coefficients, the general uncertainty equation can be applied to the data 
reduction steps used to determine the wall temperature. The uncertainty of the wall 
temperature is be described by equation (92). 

 

��· = ¸D ­O�­OL(0) �OL(0)E� + D ­O�­∆O�(0) �∆O�(0)E� + D­O�­ ∗ � ∗E�+ D­O�­�� L ��� LE� + >­O�­ �L � �LC� + D­O�­�3I��3IE�+ D­O�­ℎL �ℎLE� + >­O�­�L ��LC� + D­O�­� ��E�¹W� 
(92) 
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A detailed explanation of how the uncertainty terms are calculated can be found in Appendix 
A.  

4.6 Uncertainty Analysis Results 

4.6.1    Friction Factor Uncertainty 

The friction factor was determined by using the pressure drop readings that were 
experimentally recorded during testing. By evaluating the uncertainty of the components of 
equation (28) in Table 9, it can be seen that the two highest individual contributors to the 
uncertainty are the mass flow rate and the pressure drop readings. The pressure drop readings 
are considerably higher in contribution than that of the mass flow rate.  

Table 9: Factors Contributing to Friction Factor Uncertainty 

Property Minimum 
Uncertainty 

Maximum 
Uncertainty º� » 0.18% 1.5% ¼ 0.2% 1% ½¾ 0.38% 12% ¿ - 0.03% 

L 0.2% 1% 

 

The uncertainty values are shown plotted along with the friction factors for a data set for the 
8.3 mm tube in Figure 5.  From Figure 5, it can be seen that most of the friction factor values 
fell within the uncertainty values for the entire Reynolds number range. The uncertainty was 
highest at the lowest Reynolds number which decreases with increasing Reynolds number. 

The uncertainty was highest at two points which represent the lowest recorded values on a 
particular pressure diaphragm. The accuracy of the measurement was lowest at the low end of 
the diaphragm pressure range.  The switch from one pressure diaphragm to the next occurred 
at a Reynolds number of 110 000 as can be seen from the increase in uncertainty in Figure 5. 
The maximum uncertainty value of the friction factor for tube 8.3 mm was 11% and the 
minimum was 1.3%. This is shown in Table 10.  

As most of the experimental values lie within the calculated uncertainties it is determined that 
the measurement of the pressure drop and mass flow rates was accurate and credible. The 
friction factors for the 14.2 mm tube were plotted with the uncertainty on each of the values 
in Figure 6. Once again, the uncertainty was high at low Reynolds number and steadily 
decreased as the pressure drop values approached the full range pressure values of each 
diaphragm. 

Table 10: Friction factor uncertainties 

Friction Factor Uncertainty Minimum 
Uncertainty 

Maximum 
Uncertainty 

Average 
Uncertainty 

Tube diameter 8.3 mm 
Tube diameter 14.2 mm 

0.58% 
0.61% 

4.48% 
19.25% 

2.46% 
2.81% 
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Figure 5: Friction factor measurements with calculated uncertainties for a Reynolds number range 
of 10 000 to 200 000 for the 8.3 mm tube 

 

Figure 6: Friction factor measurements with calculated uncertainties for a Reynolds number range 
of 10 000 to 220 000 for the 14.2 mm tube
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It was observed that at a Reynolds number of 100 000, the uncertainty values increased again 
as a new diaphragm was used to measure the next pressure drop range and it also decreased 
as the Reynolds number increased.  All the friction factor data points were found to lie within 
the uncertainty band for the entire range of Reynolds numbers.  

Figure 7 displays the friction factor uncertainties for both tube diameters as a function of 
Reynolds number. All the uncertainty values lie below 20% while the average uncertainty of 
all the measurement points was less than 3%.  

 

Figure 7: Friction factor uncertainty results for both 8.3 and 14.2 mm tube diameters as a function 
of Reynolds number 

4.6.2    Nusselt Number Uncertainty 

The uncertainty analysis of the Nusselt number is described in detail in Appendix A. The 
method proposed by Uhia et al (2013) was used to determine the uncertainty of the Nusselt 
number which is calculated using the Wilson Plot method.   

The uncertainty was calculated for all the measurements obtained during experimental testing. 
These measurements were used to determine other system variables such as the Reynolds 
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4.6.2.1 Relative Uncertainty 

The first step was to determine the uncertainty of the measurements that were recorded 
during testing which are referred to as base variable uncertainties. The base variable 
measurements were used in a number of data reduction steps to obtain the heat transfer 
coefficients. Taking each of the individual variables from each equation, the uncertainty 
contribution of each one was calculated.  

The uncertainty was determined using the following steps:  

• Level 1 – Base Variables: Measured values during testing – mass flow rate, viscosity, 
thermal conductivity, diameter, inlet and outlet temperatures 

• Level 2: Reduction of Level 1 – calculation of Reynolds number, Prandtl number, area, 
thermal resistance of the tube, Log Mean Temperature Difference, heat transfer rate.  

• Level 3: Reduction of Level 2 – calculation of unscaled heat transfer coefficients, overall 
thermal resistance  

• Level 4: Reduction of Level 3 – calculation of heat transfer coefficients, Wilson Plot 
coefficients 

The relative uncertainty of a variable was calculated as a percentage of the total calculated 
value. The base variable relative uncertainty values were plotted as a function of the inner 
tube Reynolds number in Figure 8. From the plotted uncertainties, it can be see that the 
highest relative uncertainty belonged to that of the thermal conductivity of the water (k) in the 
annulus and the inner tube at a relative uncertainty of 2%. The second highest contributor of 
the base variable relative uncertainty was the scaling coefficient used in the regression 
analysis of the Wilson Plot (Ci) at a value of just under 1.5%. The uncertainty in the viscosity 
of the fluid also made a considerable contribution with a relative uncertainty of 
approximately 1%.   

The relative uncertainty values of the reduced system variables are shown in Figure 9. Each 
of the base variable uncertainties had an effect on the reduced uncertainties depicted in Figure 
9.  Each of the calculated values had their own measure of relative uncertainty which was 
plotted against the inner tube Reynolds number. The lowest uncertainty values belonged to 
the uncertainty of the calculated tube areas. This is due to the low uncertainty that existed 
when measuring the diameter and that being the only contributor to the uncertainty of the 
calculated length.  

The Reynolds number uncertainty was considerably low for both the inner and outer tube 
flows with the average uncertainty being relatively constant between 1-1.1%. A similar trend 
was seen for the Prandtl number with the average uncertainty being between 2.25-2.3% for 
the inner and outer tube Prandtl number. 

It was found that the inner tube heat transfer coefficient relative uncertainty stayed 
approximately constant at 2% over the Reynolds number range. The annulus tube heat 
transfer coefficient relative uncertainty stayed constant at a value of 2.35% over the Reynolds 
number range.  

4.6.2.2  Identification of Dominating Factors on Heat Transfer Coefficient Uncertainty 

The uncertainties of all the measurements taken during experimental testing contributed 
towards the uncertainty of the heat transfer coefficient. It was important to determine which 
of the system characteristic uncertainties displayed a dominating effect on the heat transfer.  
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To calculate the uncertainty propagation of a certain variable, the general expression in 
equation (93) was used. The value of xi represents a measured variable and F is a function of 
xi .  

 G(¶)� =¬ ´Q¶Q�x G(�x)µ�\x¯=  

 
(93) 

Dividing equation (93) by the term G(¶)� renders:  

 1 =¬ ´Q¶Q�x G(�x)/G(¶)µ�\x¯=  

 
(94) 

The fractional uncertainty component could then be calculated using equation (95). This 
represents the contribution of the variable to the total uncertainty found in the variable 
determined by the function F. 

 �z = ´Q¶Q�x G(�x)/G(¶)µ� 
 

(95) 

Using equation (95) it was determined which variable exhibits the dominating uncertainty on 
the function F. 

Figure 10 is a visual representation of the contribution in uncertainty of each variable to the 
function F. 

According to Figure 10, the main contributor to the uncertainty of the inner tube heat transfer 
coefficient, hi, was the unscaled heat transfer coefficient, hi

*, and the scaling factor Ci. The 
uncertainty in the scaling factor was caused by the regression analysis in the Wilson Plot 
method.  

The main contributor to the unscaled heat transfer coefficient, hi
*, was the thermal 

conductivity of the water in the inner tube (ki). The two other significant contributors were 
the inner tube Reynolds number and Prandtl number, where the uncertainty of the thermal 
conductivity contributed significantly to the latter. The main contributor of the uncertainty in 
the Reynolds number was the viscosity of the water in the inner tube (µi).  

Taking all these into account, it can be deduced that the main contributors to the uncertainty 
in the inner tube heat transfer coefficient were the Wilson Plot regression analysis, and the 
water’s thermal conductivity and viscosity measurements.  
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Figure 8: Relative uncertainty of the base variables measured during experimental testing as a function of Reynolds number   
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Figure 9: Relative uncertainty of the reduced variables calculated from the measured uncertainty for a Reynolds number range of 10 000 to 210 000 
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Figure 10: Relative uncertainty of the measured and calculated variables for 8.3 mm tube. The effect of each of the measured and calculated variables on 
the heat transfer coefficient is shown for the test Reynolds number range. 
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4.6.2.3 Wall Temperature Measurements 

The wall temperature was measured during experimental testing and this was compared to the 
wall temperature calculated using the Wilson Plot as described in Chapter 3.6.5. The inner 
tube wall temperature measurements were recorded along the axial length of the tube at 8 
different positions. This is depicted in Figure 11. Each of the positions were measurements 
were recorded were an equal distance of 0.45 m apart.  

 

Figure 11: Inner tube wall temperature schematic showing the temperature measurement positions 
along the length of test section 

The measured and calculated wall temperatures were plotted for the highest and lowest 
Reynolds number along the axial length of the tube as is shown in Figure 12.  

 

Figure 12: Comparison of the measured wall temperature to the calculated wall temperature using 
the Wilson Plot method along the length of the test section for the 8.3 mm tube  
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Figure 13: The difference between the measured and calculated wall temperature for a Reynolds 
number of 11 905 and 209 486 at a position of 0.3 m along the length of the 8.3 mm  

The Wilson plot does not only serve as a method to obtain the inner tube heat transfer 
coefficient. Once the Wilson Plot uncertainty was calculated on the inner tube heat transfer 
coefficient, the deduced Wilson plot wall temperature as derived in equation (76) could be 
used to validate a measured wall temperature. 

The measured wall temperature, if measured correctly, normally produces inner tube heat 
transfer coefficient values with lower uncertainty in comparison with that of the Wilson plot 
method. It, however, requires the correct design of the test section as well as the correct 
method of attaching a thermocouple to the tube wall. The correct design of the heat 
exchanger requires that the ratio of the overall-to-inner-tube heat transfer coefficient to be 
high enough in order to obtain a large enough value for Ox − O�  and consequently a low 

uncertainty on ℎx = ª�À��o�(��'�·). The latter issue requires that sufficient precautions are taken 

in the attachment of the thermocouple to the measured wall surface. This is in order to avoid 
measurement errors that sometimes occur if the temperature of a surface with a convective 
stream over it is measured. The measurement errors could be as a result of heat conducted 
away from the thermocouple junction and/or electrical error due to a large thermal gradient in 
the thermocouple wires. It could also be as a result of a thermocouple junction that is big 
enough to measure an average of a large range of temperatures occurring in the thermal 
boundary layer. In high Reynolds number turbulent flow, the temperature gradient in the 
thermal boundary layer can be very steep and the latter error large if not eliminated by design 
of the heat exchanger. 
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Figure 14: The Wilson Plot results of the inner and outer tube heat transfer coefficients for the 8.3 
mm test section over a Reynolds number range of 10 000 to 210 000  

 

Figure 15: The ratio of the overall heat transfer coefficient to the inner tube heat transfer 
coefficient for the 8.3 mm tube 

0 0.5 1 1.5 2 2.5

x 10
5

0

1

2

3

4

5

6

7
x 10

4

Rei [-]

H
ea

t 
tr

an
sf

er
 c

oe
ffi

ci
en

t 
[W

.m-2
.K

-1
]

 

 

hi

ho

0 0.5 1 1.5 2 2.5

x 10
5

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Re
i
 [-]

U
o

v/h
i [

-]



46 
 

If the uncertainty in the Wilson plot wall temperature was quantified correctly, the measured 
wall temperature, O�,�g�_, should not deviate from the Wilson plot temperature, O�,Áx�_y\, by 
more than 2��·,ÂÃ�Ä + 2��·,Å�ÆÄ��. The wall- and Wilson plot uncertainties were labelled as ��·,ÂÃ�Ä  and ��·,Å�ÆÄ��  respectively. The values of O�,�g�_ ± ��·,ÂÃ�Ä  and O�,Áx�_y\ ±��·,Å�ÆÄ�� were plotted in Figure 12 and Figure 13 at the lowest and highest values of	��x. 
The deviation between O�,Áx�_y\ and O�,�g�_ was always higher than about 5 °C, which was 
much higher than 2��·,ÂÃ�Ä + 2��·,Å�ÆÄ��. This indicated that the wall temperature was most 
likely measured incorrectly. 

 

Figure 16: The difference between the bulk inner tube temperature and the wall temperature 
calculated using the Wilson Plot method for a Reynolds number of 11 905 and 209 486 

The results in Figure 14, Figure 15 and Figure 16 can be used in order to determine if the 
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transfer coefficient. The ratio �y� ℎx⁄  has a direct influence on the wall temperature, as is 
shown in equation (76). By increasing the mass flow rate in the annulus or finning the outside 
of the inner tube this ratio could have been increased. The mass flow rate was, however, 
limited to the capability of the annulus pump. When considering Figure 16, Ox − O� 
according to the Wilson plot along the heat exchanger length, it can be seen that increasing 
values of ��x  had a substantial influence on Ox − O� . The lowest values of Ox − O�  were 
however still about 20 times higher than the measurement uncertainty of Ox − O�. The low �y� ℎx⁄  values obtained as a result of the heat exchanger design can therefore not explain the 
large difference between O�,�g�_ and O�,Áx�_y\. The large difference can be attributed to the 

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

z [m]

T i -
 T

w
 [° C

]

 

 
Ti - Tw (Wilson): Rei = 11905

Ti - Tw (Wilson): Rei = 209486



47 
 

method and location of attaching the wall temperature thermocouple. It was for this reason 
that the measured wall temperature data was excluded from this study. 

4.7 Conclusion 

The general uncertainty equation was used to determine the uncertainty of all the variables 
that were recorded during experimental testing and used in data reduction steps to obtain the 
friction factor, heat transfer coefficient and wall temperature of the inner tube. The 
uncertainty analysis is performed on all measured and reduced variables. The friction factor 
uncertainty was calculated using the method of Moffat and the results show a higher 
uncertainty measurement on the low range measurements of each diaphragm used to measure 
the pressure and reducing as approaching the full scale measurement.  

The heat transfer coefficient uncertainty was determined using the method proposed by Uhia 
et al. (2013) which produced a low average relative uncertainty over the Reynolds number 
range. It was determined that the main contributors of the uncertainty in the heat transfer 
coefficient were the result of the Wilson Plot regression analysis and the inner tube water 
thermal conductivity and viscosity.  

The Wilson Plot method was used to validate the wall temperature measurements that were 
recorded during experimental testing. When compared to one another, the wall temperature 
measurements were found to under predict the temperature of the tube wall. It was also found 
that the heat transfer coefficient in the inner tube was much higher than that of the annulus 
over the Reynolds number range. This is confirmed by evaluated the ratio of the overall heat 
transfer coefficient to the inner tube heat transfer coefficient. As a result, the measured wall 
temperature data was excluded from the results. 

  



48 
 

5. RESULTS 
 

5.1. Introduction 

The purpose of this chapter is to present the results of the experimental testing. The energy 
balance of the system is discussed. The friction factor and heat transfer coefficient results are 
presented. The effect of the j-factor on the heat transfer results is evaluated and a new 
correlation to predict the heat transfer based on the experimental data is determined.  

5.2. Energy Balance Results 

The energy balance of the system was calculated using the heat transfer rates of both the 
inner and outer fluid streams in the heat exchanger as shown in equation (80).  The energy 
balance is a good indication of whether the system is experiencing excessive heat losses at 
any point and whether the system is stable. The energy balance will stabilise once the inlet 
and outlet temperatures and mass flow rates have reached steady state conditions. It is 
important to have a stable system when recording experimental data.  

 

Figure 17: Energy balance results for 8.3 mm and 14.2 mm tube diameters over a Reynolds 
number range of 10 000 to 220 000 
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balance values were on average less than 0.7% for the 8.3 mm tube and less than 3% for the 
14.2 mm tube respectively.  

Table 11: Energy Balances for all Tube Diameters 

Tube Diameter 8.3 mm 14.2 mm 
Data Set 1 0.66% 2.86% 

Data Set 2 0.67% 2.98% 

Data Set 3 0.68% 2.79% 

Average  0.67% 2.88% 

 

5.3. Friction Factor Results 

The friction factors were compared to the Blasius (1913) and Petukhov (1970) equations as 
these are accurate and well utilised equations used to predict the friction factor in the 
turbulent flow regime. 

For the 8.3 mm tube, the friction factor graph shown in Figure 18 displays good agreement to 
both the Blasius and Petukhov correlations. At the lowest Reynolds numbers, the results lie 
slightly above the correlations but with increasing Reynolds number the results converged to 
the Blasius equation. The Petukhov and Blasius equations are not equal in parts but the 
results fell in between the two equations at a Reynolds number of 20 000 - 50 000. The same 
trend is seen from Reynolds numbers of 100 000 – 200 000.  

The results deviated slightly from a Reynolds number of 150 000 where a possible reason for 
this could be due to a change of the diaphragm used to measure the largest pressure range. 
Since the values are low compared to the full scale value of the transducer, which is 860 kPa, 
the uncertainty was the highest at this range of the pressure readings. The accuracy was 
expected to improve as the pressure values increased and approached the full scale value of 
the diaphragm.  The pressure readings for the 8.3 mm tube were the higher of the two test 
sections due to the diameter being the smaller of the two tubes.  During testing, this was the 
limiting factor on the maximum Reynolds number that could be achieved. 

The friction factor results for the 14.2 mm tube are shown in Figure 19. When considering the 
results for the 14.2 mm tube, it is once again seen that the values for the friction factor 
resembled those predicted using the Blasius equation. There was an outlier point at a 
Reynolds number of approximately 100 000, this is due to the same reason explained for the 
8.3 mm tube, that was the changing of the pressure diaphragm and being on the low range of 
the diaphragm.  

The friction factor deviation data for both of the tube diameters is found in Table 12. The 
deviation results were calculated as a comparison between the experimental data and the 
Blasius equation. The deviation percentage is the amount that the experimental data deviated 
from the Blasius correlation using equation (96). 
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Figure 18: Friction factor results for 8.3 mm tube compared to Blasius (1913) and Petukhov (1970) 

The maximum of this data set was taken and that is the value stated in Table 12 as the 
maximum deviation.  

 Pog�(%) = �w��_xz_ − �gÊVgix�g\{���gÊVgix�g\{�� × 100 (96) 

The relative mean deviation of the data, smean, is the average value of the deviation calculated 
using equation (96). The relative absolute deviation, sabs, is the absolute value of the relative 
mean deviation. The relative absolute deviation can be used to determine the average value of 
the deviation whether the data is over or under predicted in comparison to the theory. 

The standard deviation of the data in comparison to that predicted by Blasius was calculated 
using equation (97). The value of M represents the number of data points in the experimental 
data set. 
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Figure 19: Friction factor results for 14.2 mm tube compared to the Blasius (1913) and Petukhov 
(1970) correlations 

As shown in Table 12, the maximum deviation of the data of both tube diameters was less 
than 5% when compared to that predicted by Blasius.  The majority of the experimental data 
was over predicted when comparing to Blasius which results in negative values of the relative 
mean deviation. The relative absolute deviation shows the average deviation fell within a 
range of 0.5-3%.  The standard deviation of the data was low with most data falling below 
2% for both tube diameters. 
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5.4. Heat Transfer Coefficient Results 

The Nusselt number was calculated using the heat transfer coefficients which are solved for 
using regression analysis as described in Chapter 3.6.4. The result of the Wilson Plot 
calculation of the x and y values that are described by equations (54) and (55) can be found in 
Figure 20. 

The results for the 8.3 mm tube are displayed in Figure 21 for all three experimentally 
recorded data sets. The experimental data was compared to that of that of Dittus and Boelter 
(1930), Sieder and Tate (1936) and Gnielinski (1976). The Dittus and Boelter correlation was 
used with n = 0.3 for cooling applications when calculating the heat transfer coefficients for 
comparison. The study of Petukhov (1970) is a well utilised equation as those previously 
mentioned for comparison, but in this case has not been used as it compares very closely to 
that of Gnielinski (1976) with an average deviation of only 3%. Therefore it is omitted for 
comparison to the Nusselt number results.  It can be seen in Figure 21 that all three 
experimental data sets resembled the Nusselt number results predicted using the Gnielinski 
correlation in equation (19). This trend is seen throughout the higher Reynolds number range 
with a slight deviation at the lower Reynolds number range. At the lower Reynolds number 
range the results were found to correlate closely to that of Sieder and Tate. The Dittus and 
Boelter approximations were much lower than the others and this is thought to be due to the 
fact that the correlation does not account for viscosity effects at the wall as the other two 
equations do. 

 

Figure 20: Wilson Plot results plotted with uncertainties for 8.3 mm tube test section 

In Figure 22, an alternative representation of the data compared to that of Gnielinski’s is 
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representing the experimental data being equal to that of Gnielinski.  As shown in this form, 
the data correlated very closely to that of Gnielinski (average difference is 3%). Gnielinski 
states that his equation has an accuracy of 20%. The dashed lines are added at 10% higher 
and lower than Gnielinski’s values.  From the representation in Figure 22, it is observed that 
the data was very close to being equal to Gnielinski’s predictions, especially as the Reynolds 
number increased where errors were approximately 1%. The largest differences occurred at 
low Reynolds numbers with errors of up to 6.2%.  Throughout the Reynolds number range, it 
is shown that the experimental heat transfer coefficients fell within the 20% accuracy range 
that is applied to the Gnielinski correlation. 

 

Figure 21: Nusselt number results calculated using the Wilson Plot method for 8.3 mm tube 
compared to the Gnielinski (1976), Sieder and Tate (1936) and Dittus and Boelter (1930) 

correlation. The Prandtl number range is 3.2 to 3.9 over the Reynolds number range. 

As with the friction factor deviation data, a similar process was followed to calculate the 
Nusselt number deviation of the experimental data to that of Gnielinski. The maximum, 
relative mean, relative absolute and standard deviations are the same as defined in section 5.3 
and were calculated in the same way. 

The deviation of the experimental data to that predicted by Gnielinski was calculated using 
equation (98).  

 Pog�(%) = FGÏ\xg�x\_Ðx − FGgÊVgix�g\{��FGgÊVgix�g\{�� × 100 (98) 
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The maximum deviation is found to be 6.2% for the 8.3 mm tube when comparing the 
experimental results to those of Gnielinski. The maximum value of the standard deviation is 
found to be 2.1% which can be found in Table 13. 

 

Figure 22: Experimental data compared to the theoretical results predicted by the Gnielinski 
correlation for the 8.3 mm tube over a Reynolds number range of 10 000 to 200 000 

When using the corrected Gnielinski equation (20), there are two additional factors added. 
The first is the addition of by Hausen which takes into account the length of the tube and the 
second is the variation of the Prandtl number as a result of its dependence on temperature is 
taken into account in the form of the K-factor. The K-factor is a ratio of the Prandtl number at 
the average temperature and at temperature at the tube wall.  

The value of the dimensional factor proposed by Hausen of 1 + aopb�X is equal to 1.017 which 

remains constant for all the experimental data. As a result of the value being so close to 1, the 
effect of the dimensional factor is expected to be minimal. 

The K-factor is plotted against the Reynolds number for all three data sets of the 8.3 mm tube 
as seen in Figure 23. As can be seen from the results, the K-factor values lie between 0.986 
and 0.996.  
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Figure 23: Ratio of Prandtl number at the average tube temperature and wall temperature versus 
Reynolds number for the 8.3 mm tube. Prandtl number ranges from 3.2 – 3.9 over the Reynolds 

number range. 

The K-factor is calculated for both the minimum and maximum Reynolds numbers along the 
length of the tube as can be seen in Figure 24. It can be seen that the K-factor is still close to 
equal to one but that the variation in the fluid and wall temperature varies along the length of 
the tube. This is expected when considering the difference in the wall and fluid temperature 
as seen in Figure 16. 

The K-Factor is applied to the Gnielinski results that are calculated using equation (19) as 
well as the dimensional correction from Hausen to see what the effect thereof would be on 
the results. The Gnielinski values calculated using equation (19) are plotted in Figure 25 
along with those that have been corrected using equation (20). The values are plotted for both 
the minimum and maximum Reynolds numbers along the length of the tube wall. As can be 
seen in Figure 25, the difference between the two calculated Nusselt numbers is minimal. 
This can be attributed to the K-factor being close to equal to one as seen in Figure 23.  
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Figure 24: The K-factor which is representative of the Prandtl number at the average tube 
temperature and wall temperature at the mimimum and maximum Reynolds number over the 

length of the 8.3 mm tube. Prandtl number ranges from 3.2 – 3.9 over the Reynolds number range. 

 

Figure 25: Nusselt Number calculated using the Gnielinski equation (19) and the corrected 
equation (20) at the minimum and maximum Reynolds numbers along the length of the tube wall. 

Prandtl number ranges from 3.2 – 3.9 over the Reynolds number range. 
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The results for the 14.2 mm tube are found in Figure 26. It is shown that the data also 
deviated from that of Gnielinski at lower Reynolds numbers as seen with the 8.3 mm tube 
results. All three data sets correlated very well with one another as seen in Figure 26. As the 
Reynolds number increased, the data converged to that of Gnielinski with the deviation being 
the least at the maximum Reynolds number of 220 000. The experimental results tended to be 
lower than Gnielinski and Sieder and Tate at the beginning of the test but improved as the 
Reynolds number increased. Once again the results of Dittus and Boelter under predicted the 
heat transfer coefficients throughout the Reynolds number range. 

 

Figure 26: Nusselt number results calculated using the Wilson Plot method for the 14.2 mm tube 
compared to the correlations of Gnielinski (1976), Sieder and Tate (1936) and Dittus and Boelter (1930). 

The Prandtl number range is 3.3 to 4 over the Reynolds number range. 

When comparing the data to that of Gnielinski in Figure 27, it is observed how the data 
deviated at lower Reynolds numbers once again, but correlated very well as the Reynolds 
number increases. Throughout the range, the experimental data was found to lie within the 
20% limit that is applied to the Gnielinski correlation and therefore is considered to be a good 
estimate of the heat transfer coefficient in the turbulent flow regime. The maximum deviation 
for the 14.2 mm tube was found to be 8.3% at low Reynolds numbers when compared to 
Gnielinski. At high Reynolds numbers the minimum deviation was found to be 1%. The 
standard deviation was found to be 2.3%. 

To summarise, it was therefore found that the maximum deviation for the 8.3 mm and 14.2 
mm tube diameters lies below 10%. The relative mean deviation shows that the majority of 
the data for the two diameters lay below that of Gnielinski. The relative absolute deviation of 
both tube diameters was found to lie below 7% when compared to Gnielinski. This once 
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again fell within the 20% accuracy band of the Gnielinski correlation. The standard deviation 
of both tube diameters was found to lie below 3%.  

Table 13: Nusselt number deviation data 

Nusselt Number 
Deviation 

Maximum 
Deviation 

 
[%] 

Relative 
Mean 

Deviation 
 

[%] 

Relative 
Absolute 
Deviation 

[%] 

Standard 
Deviation 

 
[%] 

8.3 mm Tube: 
Data set 1 
Data set 2 
Data set 3 

 
6.2 
4.5 
4.3 

 
1.9 
0.6 
0.5 

 
1.9 
1.6 
1.6 

 
2.1 
2.0 
1.9 

14.2 mm Tube: 
Data set 1 
Data set 2 
Data set 3 

 
7.7 
6.8 
8.3 

 
3.2 
3.0 
5.0 

 
3.2 
3.0 
5.0 

 
2.3 
2.0 
1.7 

 

When considering the Gnielinski equation, the friction factor that was used to calculate the 
Nusselt number is the Petukhov friction factor. This was observed when equations (6) and 
(19) were used to calculate the Nusselt number. The Petukhov friction factor was used in 
conjunction with the Gnielinski correlation to obtain the heat transfer coefficient which was 
used for comparison to the experimental results.  

 

Figure 27: Experimental data compared to the theoretical results calculated using the Gnielinski (1976) 
correlation for the 14.2 mm tube test section 
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When comparing to the Blasius equation in Chapter 5.4, it is shown that there are minor 
variations in the experimental friction factor when comparing it to the existing theory on 
friction factors. Taking this into account, the experimental friction factor was used to predict 
the Nusselt number using the Gnielinski correlation to determine whether there is an effect of 
the friction factor on the heat transfer coefficients predicted by Gnielinski. This was 
performed for both tube diameters and compared to the original predictions by Gnielinski 
using the Petukhov friction factor using only one data set for each tube diameter.  

Slight deviations occurred at lower Reynolds numbers but these deviations are minimal being 
less than 2%. The deviations that occur at the highest Reynolds numbers are less than 3%. 
Taking these values into consideration, it can be deduced that the difference between the use 
of the theoretical or the experimental friction factor is minimal. The deviation was less than 
2% and therefore deemed acceptable when concluding that the difference between the 
theoretical and experimental friction factors in the use of the Gnielinski correlation is 
minimal.  

5.5. j-Factor Results 

As described in Chapter 2, the j-factor was developed by Colburn (1933) which was based on 
the Reynolds analogy. The Reynolds analogy combines the heat and momentum transfer in a 
fluid.  The Reynolds analogy uses the Stanton number which represents the relationship 
between the shear force at the wall and the total heat transfer at the wall. Colburn introduced 
the j-factor as a correlation using the Stanton number and the Prandtl number to represent the 
heat transfer in a fluid for a range of Prandtl numbers. This is shown in equations (31) and 
(32).  

A plot was generated of the friction factor and the j-factor as a function of the Reynolds 
number, as shown in Figure 28. From Figure 28, it can be concluded (take note that log scales 
are used) that both sets of coefficients decline in value at a similar gradient with increasing 
Reynolds number. The friction factor was divided by the j-factor to determine whether the 
relationship between the two coefficients could be predicted mathematically using the 
Reynolds analogy modified by Colburn.  

The result of this is shown in Figure 29. Both of the data sets plotted for each of the tube 
diameters follow a similar trend when plotted against the Reynolds number. A curve fit was 
performed using a power function and an equation is developed which can predict the ratio of 
f/j as a function of Reynolds number.  

Equation (99) presents a correlation coefficient (R2 value) of 98% using a power function fit 
to the data.  

 
�u = 22.59��'(.== (99) 

 

By using equation (31) and (32) the Reynolds-Colburn analogy can be applied to equation 
(99). As a result, a new equation is proposed to simply predict the Nusselt number using the 
Reynolds number, Prandtl number and friction factor, all of which can be determined 
experimentally. This simplifies the calculation of the Nusselt number considerably. 
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Figure 28: Plot of j-factor and friction factor as a function of Reynolds number for both test 
sections showing similar gradients over the Reynolds number range 

 

Figure 29: The calculated ratio between friction factor and j-factor as a function of Reynolds 
number for both test sections 
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The resulting correlation is described in equation (100). 

 FG = 0.0443���=.==T4WX (100) 
 

Since the friction factor in Equation (100) can be determined using the Blasius correlation as 
in Equation (5), it can be simplified to:  

 FG = 0.014017��(.Y9T4WX (101) 10	000 ≤ �� ≤ 220	000, 3.2 ≤ T4 ≤ 4 Q = 8.3	��	NHQ	14.2	�� 

The proposed equation is valid for the tested Reynolds and Prandtl number ranges as the 
experimentally recorded data form the basis for the equation. As only two tube diameters 
have been tested, further testing should be performed to determine an accurate diameter range 
for the validity of the proposed equation. The newly developed Nusselt number equation is 
compared to the measurements and the Gnielinski equation in Figure 30 for the 8.3 mm tube 
and in Figure 31 for the 14.2 mm tube. 

The work of Friend and Metzner (1958) demonstrates that on a large set of data, the exponent 
of the Prandtl number is not 1/3 but 0.42 in the turbulent flow regime. Equation (101) is 
amended to include the updated Prandtl number exponent as seen in equation (102). 

 FG = 0.014017��(.Y9T4(.`� (102) 
 

Figure 30 shows data plotted using equation (101) and equation (102) compared to the 
measurements recorded during testing and those calculated using the Gnielinski equation. 
The data plotted using equation (101) follows the trend of the experimental data very well. 
The average error is 2.2% and the maximum error occuring at a Reynolds number of 12 000 
was 5.7 %. When compared to the Gnielinski equation, equation (101) underpredicts the 
Nusselt number at the low Reynolds number range but converges very well at the high 
Reynolds number range. The plot of equation (102) shows the Nusselt number being higher 
than that of the experimental data, Gnielinski equation and equation (101) with an average 
deviation of 10% and a maximum deviation of 13% for the 8.3 mm tube. 

Similarly this is plotted for the 14.2 mm tube as can be seen in Figure 31. The data plotted 
using equation (101) follows the trend of the experimental data and Gnielinski very well. The 
maximum error is 5.6% at a Reynolds number of 20 000 and the average error over the full 
range is 2.6%. Once again it can be seen the low Reynolds number range shows a larger 
deviation from the Gnielinski and experimental data than at higher Reynolds numbers. The 
results converge as the Reynolds number increases. As seen with the results of the 8.3 mm 
tube, the plotted equation (102) predicts a higher Nusselt number than the other plots on 
Figure 28 with an average deviation of 11% and a maximum deviation of 14%.   
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Figure 30: Results of the 8.3 mm Tube using the Wilson Plot method, Gnielinski equation and data 
calculated using equation (101) and (102) using a Prandtl number range of 3.2 to 4 

 

Figure 31: Results of the 14.2 mm Tube using the Wilson Plot method, Gnielinski equation and 
data calculated using equation (101) and (102) using a Prandtl number range of 3.2 to 4 

20000 40000 70000 90000 120000 180000

100

150

250

400

600

700

Reynolds Number [-]

N
u
ss

el
t

N
u
m

b
er

[-
]

 

 
8.3 mm Wilson Plot Predicted
8.3 mm Gnielinski Equation (1976)
8.3 mm Equation (101)
8.3 mm Equation (102)

20000 40000 70000 90000 120000 180000

100

150

250

400

600

700

Reynolds Number [-]

N
u
ss

el
t

N
u
m

b
er

[-
]

 

 
14.2 mm Wilson Plot Method
14.2 mm Gnielinski Equation (1976)
14.2 mm Equation (101)
14.2 mm Equation (102)



63 
 

In Figure 32, the results are shown in the form of ratio when compared to the Gnielinski 
results. The results all fall within the 10% range of deviation to Gnielinski. The results 
deviate at the lower Reynolds number range and show convergence to the Gnielinski results 
as the Reynolds number increases. This is seen for both the 8.3 and 14.2 mm tube diameters. 

It can therefore be concluded that the newly developed equation produces results within an 
average of 2.5% of the Gnielinski equation.  

 

Figure 32:  Results of equation (101) for both test sections compared to Gnielinski which displays 
all results fall within 10% to that of Gnielinski 

With the experimental data that was obtained, the j-factor values and Nusselt numbers of 
each point were also compared to the j-factors calculated using equation (30) and the Nusselt 
numbers predicted using equation (101). For the calculations performed using equations (30) 
and (101), the Reynolds number, friction factors and Prandtl number values obtained using 
the experimental measurements were used. When the measured and calculated j-factor values 
were compared for the two tubes it was found that the j-factor errors and Nusselt number 
errors were the same, as they were expected to be. 

Figure 33 shows the error between the Nusselt number calculated using equation (101) and 
those determined using the data recorded during experimental testing. The error is displayed 
in the form of a ratio where the average deviation is 0.04% for the 8.5 mm tube and 0.4% for 
the 14.2 mm tube. 

It was found that the newly developed Nusselt number equation (101) could predict all 123 
measuring points of both the 8.3 and 14.2 mm tube within 1%. As the uncertainties of the 
measured Nusselt numbers were 3%, the accuracy claim of equation (101) would be within 
3% of measured data.  
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Although it has been shown that equation (101) is very accurate for the estimation of Nusselt 
numbers, the Prandtl number range of experiments was low and more experiments need to be 
conducted so that changes in fluid properties can be taken into consideration.  

 

Figure 33:  Comparison of Nusselt Number calculated using Equation (101) to the experimental 
Nusselt Numbers depicted as a ratio plotted against Reynolds Number.  

5.6. Conclusion 

The purpose of this chapter was to present the results of the experimental data that was 
recorded during testing. The testing method was followed as described in Chapter 3. For each 
tube diameter, a set of three data recordings were used for comparison to each other. Each 
data set consisted of set number of data points which were averaged. Using the methods 
described in Chapter 3.6, the data recorded was used to determine the energy balance, friction 
factor, Nusselt number, Reynolds number, uncertainty and the j-factor of each tube diameter.  

The friction factor results displayed good agreement with well-known correlations. The heat 
transfer coefficient results all showed good agreement with the most utilised correlations for 
turbulent flow. The j-factor was used to determine a correlation to calculate the heat transfer 
coefficient using only dimensionless numbers calculated from the experimentally measured 
data. When compared to existing theory, the correlation predicts the heat transfer within a 
comparably close range. 

When the newly developed equation was compared to the measurements of this study it was 
found that it can accurately predict all values within the uncertainty of the measurements. The 
newly developed equation also compared very well with the Gnielinski equation.  
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6. CONCLUSION 
 

6.1 Summary 

Existing heat transfer theory contains many correlations that have been developed and 
improved on over the last 100 years. Studies were developed by Dittus and Boelter (1930), 
Colburn (1933), Sieder and Tate (1936), Petukhov (1970) and Gnielinski (1976) which all 
contributed to the improved accuracy of heat transfer correlations. All of these studies have 
found to be varying in accuracy with no study quantifying uncertainty on any experimental 
data recorded. Further investigation showed that a number of the studies were based on the 
same set of data recorded up to 100 years ago. The purpose of this study was: to take accurate 
heat transfer measurements on a circular smooth tube and to quantify the uncertainties of the 
Nusselt numbers as a function of Reynolds number; to compare the measured data with 
existing correlations and to develop an accurate Nusselt number correlation from the data.  

Two circular and smooth horizontal test sections were used to test a Reynolds number range 
of 10 000 to 220 000 using water as the testing medium. Each of the inner tubes of a tube-in-
tube heat exchanger configuration was tested.  During testing, the mass flow rate, pressure 
drop and temperatures were recorded over the length of the test section. Using these 
measurements the dimensionless numbers of Reynolds, Nusselt and the friction factor were 
determined. The Nusselt numbers were determined using the Wilson Plot method. The 
uncertainties of the measured and reduced variables were determined.  

6.2 Conclusions 

The uncertainty analysis was performed on all measured and reduced variables. The friction 
factor uncertainty was calculated using the method of Moffat (1988) and the results show a 
higher uncertainty measurement on the low range measurements of each diaphragm used to 
measure the pressure and reducing as approaching the full scale measurement. The heat 
transfer coefficient uncertainty was determined using the method proposed by Uhia et al. 
(2013) which produced an average relative uncertainty of less than 3% over the Reynolds 
number range. It was determined that the main contributors of the uncertainty in the heat 
transfer coefficient were the result of the Wilson Plot regression analysis and the inner tube 
water thermal conductivity and viscosity. The measured wall temperature was compared to 
the derived wall temperature using the Wilson Plot results and it was found that there was a 
considerable difference in the two values. The measured wall temperature displayed a 
deviation greater than the uncertainty on the Wilson Plot wall temperature. It was determined 
that the method and location of the wall temperature thermocouples attributed to a 
measurement error during experiments and therefore the measured wall temperatures were 
not used to calculate the heat transfer coefficient. 

The results of the experimental testing displayed a good agreement to the well-known 
correlations used in turbulent heat transfer theory. The energy balance results displayed a low 
average value under 3% and showed that there was good system stability and low heat losses 
during testing. The results of the friction factor experiments displayed a low deviation when 
compared to the existing theory, below 3% and both the tube diameter results fall within the 
calculated uncertainty for the experimental data. The Nusselt number results displayed good 
agreement with the Gnielinski (1976) correlation, falling within 10% of the predicted results. 
The correlations of Dittus and Boelter (1930) and Sieder and Tate (1936) are not found to 



66 
 

compare well to the experimental data but both correlations do not take the friction factor into 
account which may contribute to the accuracy of the heat transfer coefficient calculation.  

When plotting the j-factor it was found that a relationship existed between the friction factor 
and j-factor with both sets of data following a similar gradient when plotted against the 
Reynolds number. Using the relationship, a power equation was used to plot the ratio of 
friction factor and j-factor against the Reynolds number. As a result, an equation was 
developed where the Nusselt number can be calculated using the friction factor, Prandtl 
number and Reynolds number which are all determined experimentally. When comparing the 
correlation to the calculated data using the Gnielinksi (1976) correlation it was found that the 
data fell within 10% of Gnielinski (1976). However when compared to the measurements 
recorded, the newly developed equation could predict all the measurements within the 
experimental uncertainty which was 3%. 

 
6.3 Recommendations 

As a result of the testing and experimental data obtained, some future recommendations can 
be determined. One of the future recommendations would be to test a range of different tube 
diameters to determine whether there is an effect of the diameter on the method used to 
determine the correlation to predict the Nusselt number. Once the effect of different tube 
diameters has been determined and developed, it would be beneficial to have experimental 
data recorded for fluids with varying Prandtl numbers over a very large range so that fluid 
property variations can also be investigated. The uncertainty should also be calculated using a 
different proposed numerical method to verify the results found in this study.  
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A. APPENDIX A – UNCERTAINTY ANALYSIS 
 

A1. Uncertainty Theory 

According to the theory of Moffat (1988), the uncertainty of a measurement can be 
determined by using two types of errors that occur during experimental measurements. These 
are the bias and precision errors. Bias errors are known as fixed errors and arise from 
calibration errors, defects in measuring equipment, incorrect theory and the associated 
assumptions with theory. The precision error occurs as a random error and these can be as a 
result of changing conditions in the experimental environment or equipment being used. 
Therefore, the uncertainty in a measurement can be approximated as:  

 ­I® = °�©®�� + �T®��±W� A1. 
 

Each uncertainty on a measurement contributes towards a calculated uncertainty for a desired 
system characteristic such as a Nusselt number or friction factor. Therefore, the uncertainty in 
a certain system characteristic, for example u, can be determined by quantifying the standard 
deviation of a measurement and the contribution of the variables in a data reduction step. 

The precision error Pj is defined by equation (A2) which is determined by the standard 
deviation and coverage factor for a defined number of samples per data point. During 
experiments, 100 samples were recorded per data point. The coverage factor CF is a function 
of the t-distribution of the data at a 95% confidence level.  

 T® =  ¶ tx√F A2. 

where  

  ¶ = �(KÒ)%,Ó'�) A3. 
 

In equation (A4), the standard uncertainty u, is calculated by using the partial derivative of 
the result, r, with respect to the contributing variable, v and the uncertainty of the contributing 
variable, u(v). 

 G(4) = «¬n ­4­I® G�I®�q�\
®¯=  A4.  

 

Using equation (A2), the uncertainty of each variable is calculated and this is used in turn to 
calculate the next step of the data reduction process. As a result of this, the uncertainty of a 
certain variable propagates through the process and this information can be used to design 
future systems to reduce the uncertainty of certain systems. 

To calculate the uncertainty of each of the recorded measurements, a standard deviation with 
a confidence level of 95% was used in the root sum squared method to calculate the 
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uncertainty of the measurement. A full description of this method can be found in Appendix 
A. 

A2. System Uncertainty 

Instruments 

Each of the instruments that are used to measure experimental readings have a manufacturer 
specified accuracy. This is used as the bias value when determining the uncertainty of the 
instruments.  

Table A1: Measurement Uncertainties 

Instrument Range Uncertainty 
 
Temperature (T) 
Inlets, outlets and bulk 
temperatures 
Annulus temperatures 
 

 
-200 – 350 °C 

 
0.01 °C 
 
0.05 °C 
0.1 °C 

 
Pressure Drop (∆P) 
Transducer 1 
Transducer 2 
Transducer 3 

 
 
0 – 35 kPa 
35 – 140 kPa 
140 – 860 kPa 

 
 
0.25% FS 
0.25% FS 
0.25% FS 
 

 
Mass Flow Rate (�� ) 
Inner tube low 
Inner tube high 
 

 
 
0 – 0.667 kg/s 
0.667 – 1.38 kg/s 
 

 
 
0.1%  
0.1% 

 

The thermocouple bias value is calculated from the calibration of the thermocouples using the 
Pt-100 which had an uncertainty of 0.01°C.  

The pressure transducers each have one diaphragm which is used for testing both tube 
diameters. The bias values are calculated using the full scale values of each diaphragm. The 
bias values are obtained from the calibration values provided when the transducers were 
calibrated. Due to the high pressure values that are measured, the calibration is done using an 
external company as it cannot be done in the laboratory.  

Fluid Properties 

The uncertainties of the fluid properties are obtained from the formulations of Popiel and 
Wojtkowiak (1998), which can be found in Table A2. 
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Table A2: Thermal Property Uncertainties 

Property  Uncertainty 
Thermal Conductivity (k) 2% 

Density (ρ) 0.003% 

Viscosity (µ) 1% 

Specific Heat Capacity (Cp) 0.06% 

The thermal conductivity of the tube wall, kw, is stated as 3.2% in the study of Abu-Eishah 
(2001). 

Dimension Measurements 

The uncertainties for the measurement of the dimensions of the tubes are stated below in 
Table A3. The uncertainty for the measurement of the dimensions of the length and diameter 
of the tubes used in the construction of the heat exchanger is used to calculate the heat 
transfer area uncertainty. 

Table A3: Uncertainty of Dimension Measurements 

Dimension  Uncertainty 
 
Length of tube (L) 

 
0.2% 

 
Tube diameter (D) 

 
1% 

 

A3. Friction Factor Uncertainty 

 

The friction factor is calculated using the measured pressure difference (∆P) as follows: 

 
� = 
���x)∆T8��� �  

 
A5. 

The uncertainty is therefore calculated using the equation (A6): 

­� = nD ­�­∆T �∆TE� + D­�­
 ­
E�+D ­�­�x ­�xE� + D­�­� ­�E�+D­�­�� ­�� E�qW� 
 

 

­� = ¸>
���x)8��� � ­∆TC� + >���x)∆T8��� � ­
C�+>5
���x̀ ∆T8��� � ­�xC�
+ >−
���x)∆T8���� � ­�C�+>−
���x)∆T4��� � ­�� C�¹W� A6. 
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A4. Heat Transfer Measurement Uncertainties 

Inlet and Outlet Temperatures 

The inlet, outlet and annulus wall temperatures were all measured using four thermocouples 
placed at points situated 90° apart around the outer wall of the tube. To calculate the 
temperature at a specific point, the average of the four thermocouples is calculated as 
represented in equation (A7): 

 
OÔx,x\ = Ox,x\= + Ox,x\� + Ox,x\s + Ox,x\`4  

 
A7. 

The uncertainty is calculated using equation (A8): 

 ­OÔx,x\ = Õ>­OÔx,x\=4 C� + >­OÔx,x\�4 C� + >­OÔx,x\s4 C� + >­OÔx,x\`4 C�ÖW�
 

 

A8. 

The uncertainties for all the thermocouples are the same so therefore equation (A9) can be 
simplified to: 

 ­OÔx,x\ = ³14­O A9. 

The inlet and outlet temperatures are used to determine the heat transfer rate and Nusselt 
number.  

Heat Transfer Coefficient Uncertainty 

The uncertainty analysis of experimental data was established to determine what error is 
included during testing and how this affects the quality and accuracy of the data recorded. 
Experimental testing inherently contains errors that are attributed to the accuracy of the 
measuring instrumentation, the method of record data, and the variation in the experimental 
environment. Due to these and other factors, it is not possible to record the true value of the 
experimental data and therefore the uncertainty estimates how well the data has estimated the 
true value. 

The Wilson Plot method is used to determine the Nusselt number from the experimental data. 
The motivation for using the Wilson Plot method is due to the difficulty in obtaining accurate 
temperature readings from the tube wall during testing. The Wilson Plot method uses only the 
inlet and outlet temperatures and mass flow rates for both the inner tube and annulus to 
calculate a heat transfer coefficient. The Wilson Plot method is traditionally used to calculate 
an inner tube wall temperature using regression analysis. Using this predicted wall 
temperature, the inner tube heat transfer coefficient can be calculated.  

The standard uncertainty equation is shown in (A4) where u is the standard uncertainty and vj 
represents the variable that causes the uncertainty in result r which is applied to a data 
reduction correlation. The method of data reduction requires that the uncertainty of each of 
the input variables is quantified and taken into account when calculating the uncertainty of 
the Nusselt number.  
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The uncertainty of each of the input variables is compounded during the data reduction 
process and this leads to a very complex method in determining the final uncertainty of the 
Nusselt number.  

The theory that is used to determine the Nusselt number has been determined by Uhia et al. 
(2013). The theory is based on the Wilson Plot method which is “based on the separation the 
overall thermal resistance from appropriate experimental data by means of a linear regression 
analysis” (Uhia et al. 2013). The technique of thermal resistances is used to determine an 
overall heat transfer coefficient as described in Chapter 3.6. 

 

1�y� = 1ℎL�L + �� + 1ℎ3�3 
 

A10. 

The Wilson Plot method uses an unknown constant to fit the experimental data to the 
predicted model and this is shown in equations (A11) and (A12) where Ci and Co are the 
correcting constants and ℎx∗  and ℎy∗  are the heat transfer coefficient variation models.  A 
correction factor is used by Uhia to obtain a 95% confidence interval assuming a normal 
distribution in the experimental results used to determine the heat transfer coefficient.  

 ℎx =  xℎx∗ A11. 
 

 ℎy =  yℎy∗  A12. 

Using the definition of the system in terms of thermal resistances in equation (A10) and 
equations (A11) and (A12), the calculation can be rearranged in a linear form of y = ax + b 
as shown in equation (A13). 

 (�y� − ��)ℎy∗�y = 1 x ℎy∗ℎx∗ �3�L + 1 y A13. 

 

Where the x and y values are calculated as follows: 

 � = 	ℎy∗ℎx∗ �3�L  A14. 

 

 
� = (�y� − ��)ℎy∗AØ 

 A15. 
 

Each of the terms has a degree of uncertainty due to the data reduction of each of the 
experimental values that are recorded. Each uncertainty value needs to be determined by 
applying equation (A4) to each of the terms in equations (A14) and (A15). 

The uncertainty of the x-value is described in equation (A16). 

�Ê = ¸D ­�­ℎy∗ �A�∗E� + D ­�­�y �Ù�E� + > ­�­ℎx∗ �A�∗C� + D ­�­�x �Ù�E�¹
W�
 A16. 
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The various terms of the uncertainty equation are described in equations (A17-A20). ­�­ℎy∗ = �yℎx∗�x A17. 

 ­�­�y = ℎy∗ℎx∗�x A18. 

 ­�­ℎx∗ = − ℎy∗�yℎx∗��x A19. 

 ­�­�x = − ℎy∗�yℎx∗�x� A20. 

 

Similarly the uncertainty for the y-value is calculated using equation (A21).  

�Ú = nD ­�­�y� �f��E� + D ­�­�� �f·E� + D ­�­ℎy∗ �A�∗E� + D ­�­�y �Ù�E�qW� A21. 

 

The various terms of the uncertainty equation are described in equations (A22-A25). ­�­�y� = ℎy∗�y A22. 

 ­�­�� = −ℎy∗�y A23. 

 ­�­ℎy∗ = (�y� − ��)�y A24. 

 ­�­�y = (�y� − ��)ℎy∗  A25. 

 

The uncertainty of ℎy∗  is calculated using equation (A26). 

�A�∗ = nD ­ℎy∗­��y �fg�E� + D ­ℎy∗­T4y �hi�E� + D­ℎy∗­
y �Û�E� + D ­ℎy∗­
�y �Û·�E�+ D­ℎy∗­Sy �Ð�E� + D­ℎy∗­�x ���E� + D­ℎy∗­�y ���E�qW� A26. 
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The definitions of the various terms of equation (A26) are defined in equations (A27-A33). 

 ­ℎy∗­��y = Hy��y\'=T4yWX D
y
�E(.=` Sy�x − �y A27. 

 ­ℎy∗­T4y = 13��y\�T4y'�X D
y
�E(.=` Sy�x − �y A28. 

 ­ℎy∗­
y = 0.14��y\�T4yWX D
y
�E'(.Y9 1
� Sy�x −�y A29. 

 ­ℎy∗­
� = −0.14��y\�T4yWX D
y
�E'(.Y9 1
�� Sy�x − �y A30. 

 ­ℎy∗­Sy = ��y\�T4yWX D
y
�E(.=` 1�x − �y A31. 

 ­ℎy∗­�x = −��y\�T4yWX D
y
�E(.=` Sy(�x − �y)� A32. 

 ­ℎy∗­�y = ��y\�T4yWX D
y
�E(.=` Sy(�x − �y)� A33. 

 

The uncertainty of the outer tube area is described by equation (A34). 

�Ù� = nD­�y­�y ���E� + D­�y­� �pE�qW� A34. 

 ­�y­�y = �� A35. 

 ­�y­� = ��y A36. 

 

The uncertainty of the inner tube heat transfer correction factor ℎx∗ is calculated using 
equation (A37). 



A8 
 

�A�∗ = ¸> ­ℎx∗­��x �fg�C� + >­ℎx∗­T4x �hi�C� + >­ℎx∗­
x �Û�C� + > ­ℎx∗­
�x �Û·�C�
+ >­ℎx∗­Sx �Ð�C� + >­ℎx∗­�x ���C�¹

W�
 

A37. 

 

The definitions of the terms in equation (A37) are described in equations (A38-A43). ­ℎx∗­��x = Hx��x\�'=T4xWX D
x
�E(.=` Sx�x A38. 

 ­ℎx∗­T4x = 13��x\�T4x'�X D
x
�E(.=` Sx�x A39. 

 ­ℎx∗­
x = 0.14��x\�T4xWX D
x
�E'(.Y9 1
� Sx�x A40. 

 ­ℎx∗­
� = −0.14��x\�T4xWX D 
x
�E'(.Y9 1
�� Sx�x A41. 

 ­ℎx∗­Sx = ��x\�T4xWX D
x
�E(.=` 1�x A42. 

 ­ℎx∗­�x = −��x\�T4xWX D
x
�E(.=` Sx�x� A43. 

 

The uncertainty of the inner tube area is defined by equation (A44).  

�Ù� = nD­�x­�x ���E� + D­�x­� �pE�qW� A44. 

 ­�x­�x = �� A45. 

 ­�x­� = ��x A46. 

 

The uncertainty of the total heat transfer resistance is calculated using equation (A47). 
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�f�� = ¸>­�y�­�� �ª�C� + D ­�y�­∆O�� �∆�ÆÂE�¹W� A47. 

 ­�y�­� = 1∆O�� A48. 

 ­�y�­∆O�� = − ��(∆O��)� A49. 

 

The uncertainty of the tube wall resistance is calculated using equation (A50). The various 
terms of equation (A48) are described using equations (A51-A54). 

�f· = nD­��­�y ���E� + D­��­�x ���E� + D­��­� �pE� + D­��­S� �Ð·E�qW� A50. 

 ­��­�y = ���� . =��2��S� = 1�y2��S� A51. 

 

­��­�x = − ���� . =���2��S� = − 1�y�x2��S� A52. 

 

­��­� = −ln	a����b2���S�  A53. 

 

­��­S� = −ln	a����b2��S��  A54. 

 

The uncertainty of the inner Reynolds number is calculated as described in equation (A56) 
which is based on the definition of the Reynolds number in equation (A55).  

��x = 4�� x��x
x A55. 

�fg� = nD­��x­�� x ��� �E� + D­��x­�x ���E� + D­��x­
x �Û�E�qW� A56. 

  

The various differential terms of equation (A56) are described in equations (A57-A59).  
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­��x­�� x = 4��x
x A57. 

 ­��x­�x = − 4�� x��x�
x A58. 

 ­��x­
x = − 4�� x��x
x� A59. 

 

Similarly, the uncertainty of the outer tube Reynolds number is calculated using equation 
(A61) which is based on the annular Reynolds number in equation (A60). 

��y = 4�� y�(�� + �y)
y A60. 

 

�fg� = nD­��y­�� y ��� �E� + D­��y­�� ���E� + D­��y­�y ���E� + D­��y­
y �Û�E�qW� A61. 

 

The differential terms of equation (A61) are described using equations (A62-A65). ­��y­�� y = 4�(�� + �y)
y A62. 

 ­��y­�� = − 4�� y�(�� + �y)�
y A63. 

 ­��y­�y = − 4�� y�(�� + �y)�
y A64. 

 ­��y­
y = − 4�� y�(�� +�y)�
y� A65. 

 

The Prandtl number uncertainty of the inner tube is calculated using equation (A66). 

�hi� = nD­T4x­ �x � V�E� + D­T4x­Sx �Ð�E� + D­T4x­
x �Û�E�qW� A66. 

 

The differential terms of equation (A66) are described using equations (A67-A69).  
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­T4x­ �x = 
xSx A67. 

 ­T4x­Sx = −
x �xSx�  A68. 

 ­T4x­
x =  �xSx  A69. 

 

Similarly the outer tube Prandtl number is described using equations (A70-73). 

�hi� = nD­T4y­ �y � V�E� + D­T4y­Sy �Ð�E� + D­T4y­
y �Û�E�qW� A70. 

 ­T4y­ �y = 
ySy A71. 

 ­T4y­Sy = −
y �ySy�  A72. 

 ­T4y­
y =  �ySy  A73. 

 

The uncertainty of the average heat transfer rate is calculated using equation (A74).  

�ª� = ¸> ­��­�� x ��� �C� + > ­��­ �x � V�C� + D ­�­Ox.x\ ���.��E� + > ­�­Ox,yz{ ���.���C�+ > ­��­�� y ��� �C� + > ­��­ Vy � Ü�C� + D ­�­Oy.x\ ���.��E�+ > ­�­Oy,yz{ ���.���C�¹
W�
 

A74. 

where �� = 12 ���y + �� x� A75. 

 

The differential terms of equation (A74) are described in equations (A76-A83). ­��­�� x = 12 Vx�Ox.x\ − Ox,yz{� A76. 



A12 
 

 ­��­ Vx = 12�� x�Ox.x\ − Ox,yz{� A77. 

 ­��­Ox.x\ = 12�� x Vx A78. 

 ­��­Ox,yz{ = −12�� x Vx A79. 

 ­��­�� y = 12 Vy�Oy.x\ − Oy,yz{� A80. 

 ­��­ �y = 12�� y�Oy.x\ − Oy,yz{� A81. 

 ­��­Oy.x\ = 12�� y Vy A82. 

 ­��­Oy,yz{ = −12�� y Vy A83. 

 

To calculate the uncertainty of the log mean temperature difference, equation (A84) is used. 
The calculation is simplified using equations (A85) and (A86) to define the temperature 
differences. 

�∆�ÆÂ = nD­∆O��­Ox.x\ ���.��E� + D­∆O��­Ox.yz{ ���.���E� + D­∆O��­Oy.x\ ���.��E�+ D­∆O��­Oy.yz{ ���.���E�qW� A84. 

 ∆O= = Ox.x\ − Oy.yz{ A85. 
 ∆O� = Ox.yz{ − Oy.x\ A86. 
 

The differential terms in equation (A84) are described by equations (A87-A90). 
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­∆O��­Ox.x\ = ln a∆�W∆��b − a∆�W∆��b (∆O= − ∆O�)aln a∆�W∆��bb�  A87. 

 

­∆O��­Oy.yz{ = − ln a∆�W∆��b − a∆��∆�Wb (∆O= − ∆O�)aln a∆�W∆��bb�  A88. 

 

­∆O��­Ox.yz{ = − ln a∆�W∆��b − a∆��∆�Wb (∆O= − ∆O�)aln a∆�W∆��bb�  A89. 

 

­∆O��­Oy.x\ = ln a∆�W∆��b − a∆�W∆��b (∆O= − ∆O�)aln a∆�W∆��bb�  A90. 

 

Using all the equations described in this chapter, the uncertainty of the inner heat transfer 
coefficient can be calculated. 

The x and y values are plotted and the weighed linear least squares regression analysis is used 
to determine the coefficients of the Wilson Plot. There exists an uncertainty in both the x and 
y measurement values. To account for this combined uncertainty, equation (A91) is used.  
The value of G® takes into account the combined measured uncertainty in both G(�) and G(�) 
using the weighted least squares method.  G® = ÝÞ¢G(�)£� + ¢NG(�)£�ß® A91. 

 

This is complicated however by the fact that a is featured in the equation of uncertainty (A91) 
and the uncertainty is featured in the equation of a (A92). As a result, the values of G® and a 
have to be solved for iteratively using equations (A91) and (A92).  

The x and y values are arranged to form a straight line graph as shown in equation (A13). The 
gradient of the straight line equation is defined as a, which is calculated using equation (A92). 

N = ∑ =zà�\®¯= ∑ ÊàÚàzà� −∑ Êàzà�∑ Úàzà�\®¯=\®¯=\®¯=∑ =zà�\®¯= ∑ Êà�zà� − D∑ Êàzà�\®¯= E�\®¯=  A92. 

 

The intercept of the straight line equation is defined as b which is calculated using equation 
(A93).  
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� = ∑ Êà�zà�\®¯= ∑ Êàzà� − ∑ Êàzà�∑ ÊàÚàzà�\®¯=\®¯=\®¯=∑ =zà�\®¯= ∑ Êà�zà� − D∑ Êàzà�\®¯= E�\®¯=  A93. 

 

The uncertainty of a and b can be calculated using equations (A94) and (A95).  

G(N) = á ∑ =zà�\®¯=∑ =zà�\®¯= ∑ Êà�zà� − D∑ Êàzà�\®¯= E�\®¯=  A94. 

 

G(�) = á ∑ Êà�zà�\®¯=∑ =zà�\®¯= ∑ Êà�zà� − D∑ Êàzà�\®¯= E�\®¯=  A95. 

 

The coefficients of the Wilson Plot can be calculated once the parameters a and b are 
calculated. This is exhibited by equation (A96) and (A97).   x = 1N A96. 

 

 y = 1� A97. 

 

The uncertainties of the Wilson Plot coefficients are calculated using equations (A98) and 
(A99) and are a function of the uncertainties calculated for the parameters a and b. G( x) = ­ x­N G(N) = 1N� G(N) A98. 

 

G( y) = ­ y­� G(�) = 1�� G(N�) A99. 

 

Once the uncertainty values are calculated for the inner and outer tube Wilson Plot 
coefficients, the uncertainty of the inner and outer tube heat transfer coefficients can be 
calculated using equations (A100) and (A101).  

�(ℎx) =  ¶G(ℎx) = ³n­ℎx­ℎx∗ G(ℎx)q� ´­ℎx­ x G( x)µ� A100. 

 



A15 
 

�(ℎy) =  ¶G(ℎy) = ³´­ℎy­ℎy∗ G(ℎy)µ� ´­ℎy­ y G( y)µ� A101. 

 

The value of CF = 2 is incorporated as a coverage factor which is used for a 95% confidence 
level assuming a normal distribution and infinite number of data points. The t-distribution 
approaches a normal distribution with a number of data points larger than 30. Due to the large 
number of data points recorded during testing, it is assumed that a coverage factor of 2 is 
acceptable to use in this case.   

A5. Uncertainty of the Wall Temperature using the Wilson Plot Results 

The wall temperature is calculated using the Wilson Plot as described in section 3.6.4. The 
uncertainty of the wall temperature can be calculated by applying the general uncertainty 
equation (A4). This is defined in equation (A102). 

��· = ¸D ­O�­OL(0) �OL(0)E� + D ­O�­∆O�(0)�∆O�(0)E� + D­O�­ ∗ � ∗E� + D­O�­�� L ��� LE�+ >­O�­ �L � �LC� + D­O�­�3I��3IE� + D­O�­ℎL �ℎLE� + >­O�­�L ��LC�+ D­O�­� ��E�¹W� 
A102. 

 

The uncertainty of the wall temperature with regards to the inner tube bulk temperature is 
described in equations (A103) and (A104).  ­O�­OL(0) = 1 A103. 

 �OL(0) = ���(0) = �� A104. 
 

The uncertainty of the bulk temperature difference is described in equations (A105) to 
(A109). 

�∆O�(0) = ¸>­O�(0)­OL(0) �OL(0)C� + >­O�(0)­O3(0)�O3(0)C�¹
W�
 A105. 

where ­O�(0)­OL(0) = 1 A106. 

 ­O�(0)­O3(0) = −1 A107. 
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 ∴ �∆O�(0) = √2�� A108. 
 ­O�­∆O�(0) = − 1 ∗�� L �L + ��3I�L ∗� n 1 ∗�� L �L − �3IℎL q A109. 

 

The uncertainty of the wall temperature with regards to C* is described by equation (A110). ­O�­ ∗ = ∆O�(0) n 1 ∗2�� L �L − �−�3I�L ∗� > 1 ∗2�� L �L + �3I�L� â 1 ∗�� L �L + �3IℎL ãCq A110. 

 

where uncertainty in C* is calculated using equation (A111): 

� ∗ = ¸D­ ∗­�� L��� LE� + >­ ∗­ �L � �LC� + D­ ∗­�� 3 ��� 3E� + > ­ ∗­ �3 � �3C�¹
W�
 A111. 

 

The terms of equation (A111) are defined as: ­ ∗­�� L = − 1�� L2 �L A112. 

 ­ ∗­ �L = − 1�� L �L2  A113. 

 ­ ∗­�� 3 = − 1�� 32 �3 A114. 

 ­ ∗­ �3 = − 1�� 3 �32  A115. 

 

The uncertainty of the wall temperature with regards to the mass flow rate and heat capacity 
rate for the inner tube is found in equations (A116) and (A117). ­O�­�� L = ∆O�(0) ∗�� L2 �L �1 − ��3I�L ∗�¡ A116. 

 ­O�­ �L = ∆O�(0) ∗�� L �L2 �1 − ��3I�L ∗�¡ A117. 
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The wall temperature uncertainty with respect to the overall heat transfer coefficient is 
described by equation (A118). ­O�­�3I = ∆O�(0)ℎL �−�3I�L ∗��−1 + �3I�L ∗�¡ A118. 

 

The wall temperature uncertainty with respect to the inner tube heat transfer coefficient is 
found in equation (A119). ­O�­ℎL = ∆O�(0)ℎL2 �3I�−�3I�L ∗� A119. 

 

The wall temperature uncertainty with respect to the perimeter is: ­O�­�L = ∆O�(0)ℎL �3I2 ∗��−�3I�L ∗� A120. 

 

�V� = ­�x�x ��� A121. 

where ­�x�x = � A122. 

 

The wall temperature uncertainty with respect to the position along the length of the tube is 
described by equation (A123). ­O�­� = ∆O�(0)ℎL �3I2 ∗�−�3I�L ∗� A123. 
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B. APPENDIX B – EXPERIMENTAL DATA 
 

The experimental raw data that was recorded during testing can be found on the attached CD. 
All the measured data as well as the calculated data are included. An example of the data can 
be found below for a Reynolds number of 11 905 on the inner tube flow for the 8.3 mm tube. 

 

Measured Variable Symbol Units Value 
Inner Tube:    
Reynolds Number Re_i [-] 11905.37 
Mass Flow Rate m_i [kg/s] 0.045819334 
Diameter D_i [m] 0.00829 
Dynamic Viscosity mu_i [kg/m.s] 0.000591 
Density rho_i [kg/m3] 989.99 
Specific Heat Cp_i [J/kg.K] 4179.695 
Thermal Conductivity k_i [W/m.K] 0.637024189 
Inlet Temperature T_i_en [°C] 57.73850015 
Outlet Temperature T_i_ex [°C] 33.16353373 
Pressure Drop P_drop [Pa] 5338.49 
Nusselt Number Nu [-] 69.7046 
Friction Factor f [-] 0.03090015 
Prandtl Number  Pr [-] 3.87837 

 

The data for the 14.2 mm tube diameter is similarly calculated and also included on the 
attached disc.  

 


