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Abstract 

The Upper Zone is situated at the top of the Rustenburg Layered Suite and according to 

Kruger et al. (1987) represents the final stages of magma recharge. The Upper Zone, which is 

comprised of gabbro, anorthosite layers and magnetite layers, shows a number of 

mineralogical and geochemical reversals. Previous studies by Tegner et al. (2006) identified 

nine cycles (I-IX) that makes up the Upper Zone. Two of the most prominent cycles: Cycle V 

and Cycle VI were studied to gain a greater understanding of the changes occurring within as 

well as in between two cycles. The data collected included petrological and electron 

microprobe data from plagioclase, olivine, pyroxene, apatite, biotite and secondary 

amphibole. Although the current data showed some similarities to Tegner et al. (2006), this 

study has provided a number of additional features to the two cycles. Firstly, the cycles vary 

in terms of lithology. Secondly, the An% and Mg# from Cycle V shows greater fluctuations 

than previously identified. Lastly, the An% and Mg# trends within each cycle are not as 

similar as previously thought. The data clearly shows that the two cycles are different and 

therefore the conditions responsible for the formation of each cycle are different. Using this 

data, a new position of the boundary between the two cycles is suggested. The genesis of the 

Upper Zone has been proposed in a number of models however, this study has shown that the 

model responsible for the formation of the Upper Zone is yet to be established. Despite the 

theory from Kruger et al. (1987), the possibility of the Upper Zone having formed from more 

than one magma injection needs to be reconsidered.  
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Chapter 1 – Introduction 

 

The study of layered intrusions provides important information regarding the cooling, 

crystallisation and solidification processes of magmas in plutonic environments.  The 

cumulate mineralogy and the geochemistry of the minerals are the primary sources of 

information about such processes, and thus detailed petrographic and mineralogical studies 

are required to improve our understanding of processes active during cumulate formation.  

The purpose of this study is to document the mineralogy and geochemistry of cycles 

V and VI of the Upper Zone of the mafic Rustenburg Layered Suite, part of the Bushveld 

Complex in northern South Africa. The data collected may provide insight into the genesis of 

the Upper Zone, and include petrological studies of the mineralogy and electron microprobe 

analyses of the silicate minerals. 

The 2.1 km thick Upper Zone is characterised by a number of features. The lithology 

transitions from gabbronorite and ferro-gabbronorite to ferro-diorite, and contains a number 

of anorthosite and magnetitite layers. In addition to these layers, previous studies have found 

the geochemistry to be cyclic. The cyclic nature of the Upper Zone was first documented by 

Tegner et al. (2006), who defined cycles based on geochemical reversals in the An content 

([Ca/(Ca+Na+K) x 100]) of plagioclase and  in the Mg# of olivine and pyroxene. The study 

identified nine cycles, (I to IX), with Cycles V and VI being the most obvious. The two 

cycles are located within the top third of the Upper Zone lithology and feature the most 

prominent reversals in An% and Mg#. Cycles V and VI are found in what is known as 

subzone UZc, the topmost section of the Upper Zone, which is characterised by the first 

appearance of cumulus apatite (Wager & Brown 1968).  

The identification of these subzones and cycles originates from studies conducted on 

three boreholes drilled through the Upper Zone of the Western Limb of the Rustenburg 

Layered Suite. The boreholes, known as the Bierkraal cores (BK1, BK2 and BK3), extend 

from the top portion of the Main Zone, through the Upper Zone and into an overlying section 

of the younger Lebowa Granite Suite (Walraven & Wolmarans, 1979). The samples 

examined in this study came from BK1 that intersected the UZc. 

Key aspects involved in petrological studies are mineral identification, mineral 

proportion estimation and measured grain size distribution. Textural relationships between 
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cumulus and intercumulus minerals as well as the variations in the proportions and grain sizes 

will provide added insight into the formation of the Upper Zone. 

Electron Microprobe Analysis (EMPA) of the cumulus and intercumulus minerals 

provide the necessary insight into the nature and origin of the geochemical variations. 

Geochemical breaks and fluctuations in the An % (plagioclase) and Mg # (olivine and 

pyroxene) have previously been used to identify the cyclicity of the Upper Zone. The 

increased sampling density in this study will allow for a more detailed examination of the 

trends within a cycle. 

Examination of the trends identified within the An% and Mg# provides a great deal of 

insight into the possible conditions that potentially affected the crystallisation of an 

intrusions. Fractional crystallisation within an intrusion is characterised by gradual decreases 

in the An% and Mg#. Irregularities in the trends such as jumps back to higher An% and/or 

Mg# are most commonly interpreted as additions of new, more primitive magma. 

Hypotheses regarding the genesis of the Upper Zone will be tested using the data 

collected. The results may shed additional light onto the conditions prevailing during the 

crystallisation of a single pulse of magma,   with changes in pressure and/or temperature 

resulting in petrological and geochemical variations. On the other hand, the variations may 

point towards multiple injections of magma under a specific set of conditions. 
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Chapter 2 – Geological Background  

 

 The Bushveld Complex is a large igneous intrusion formed during the 

Palaeoproterozoic and is located in the northern part of South Africa. The complex consists 

of a number of intrusions all variable in morphology, chemistry and age. The best-known 

component of the Bushveld Complex is the ultramafic-mafic intrusion known as the 

Rustenburg Layered Suite, which has a generally accepted age of ~2.06 Ga (Buick et al., 

2001; Zeh et al., 2015).  

The remainder of the intrusions include the Lebowa Granite Suite, the Rashoop 

Granophyre Suite and the Rooiberg volcanics. Isotopic studies (mainly Rb-Sr data) show that 

the formation of the Rooiberg volcanics predates the intrusive formations (Lenhardt & 

Eriksson, 2012). Subsequent to crystallisation, the Rooiberg felsites formed the roof rock of 

the Rustenburg Layered Suite and, following the emplacement of the Rustenburg Layered 

Suite, the Lebowa Granite Suite intruded. The Rashoop Granophyre Suite formed at the 

contacts between the Lebowa Granite Suite and the Rustenburg Layered Suite. 

The areal extent of the complex is estimated at ~65000 km
2 

(Eales & Cawthorn, 1996) 

with the surface expression of the Bushveld Complex is illustrated in Figure 1. The 

Rustenburg Layered Suite outcrops as a series of discrete limbs: Eastern Limb, Western 

Limb, Northern/Potgietersrus Limb and the poorly exposed South-eastern/Bethal Limb (Eales 

& Cawthorn, 1996). The lithology between the Eastern and Western Limb has been described 

as continuous, which led to the theory that the two limbs are connected at depth (Eales & 

Cawthorn, 1996; Cawthorn & Webb, 2001; Webb et al., 2010).  

The relationship between the stratigraphy of the Northern Limb with the Eastern and 

Western Limbs is much less apparent, as the mafic rocks of the Northern Limb are in contact 

with progressively older stratigraphy extending from the south to the north of the limb 

(Kinnaird et al., 2005).  Certain sections have also been noted as being absent, such as the 

upper portion of the Main Zone, or as unique to the Northern Limb, such as the Platreef 

(Ashwal et al., 2005). 
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Figure 2.  A geological map illustrating the extent of the Rustenburg Layered Suite (Eastern, Western, 

Northern and South-Eastern (Bethal) Limbs) relative to the Bushveld Complex (Cawthorn & 

Walraven, 1998). 

The formation of the Bushveld Complex remains speculative owing to the complex 

relationships between the various intrusions and extrusions, and the lack of outcrop. Despite 

this, a number of models have been proposed, which generally involve mechanisms that 

require the generation of large volumes of magma over a short period. 

The most popular model involves the impingement of a plume beneath the Kaapvaal 

Craton (Hatton & Schweitzer, 1995). A second theory, proposed by Hatton (1988), has the 

Bushveld Complex forming due to the melting of detrital material at a subducting plate 

margin near the edge of the Kaapvaal Craton. The third and most radical hypothesis is that of 

Rhodes (1975 & references therein) who proposed multiple meteorite impacts responsible for 

the generation of magma, as well as the subsequent shape of the Bushveld Complex. 

The Bushveld Complex was emplaced as a series of magmas within the clastic and 

chemical sedimentary rocks of the Pretoria Group of the much larger Transvaal Supergroup 

(Cawthorn & Walraven, 1998). According to Cawthorn & Walraven (1998) the emplacement 

of the Bushveld Complex occurred as a series of magma injections with each pulse occurring 

within short succession of the previous pulse. Recent studies using U–Pb titanite ages, the 
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emplacement of the Bushveld Complex into the Transvaal Basin took place over a period of 

less than 1 Ma (Buick et al., 2001). 

After the emplacement of the Bushveld Complex, the density of the magma resulted 

in the central portion of the complex sagging, creating strata gently dipping towards the 

centre of the complex. This sagging was accompanied by a number of faults all trending N-S 

with the stratigraphy dipping approximately 15-20 degrees towards the centre (Webb et al., 

2011). 

The Rustenburg Layered Suite comprises a large portion of the Bushveld Complex. 

This massive layered intrusion formed due to multiple pulses of ultramafic to mafic magma 

(Eales & Cawthorn, 1996). The injection of compositionally variable magma into the 

crystallising crystal mush resulted in the formation of various zones distinguishable by their 

characteristic geochemistry. The subdivision of the Rustenburg Layered Suite into different 

zones is based on mineralogical, geochemical and isotopic variation (Eales & Cawthorn, 

1996). The subdivisions of the layered intrusion are the Lower Zone, Critical Zone, Main 

Zone and The Upper Zone (Figure 2). The Upper Zone represents the area of interest for this 

study. 

 

Figure 2.  A stratigraphic section of the Rustenburg Layered Suite illustrating the mineralogical 

variation throughout the suite (Cawthorn & Walraven, 1998). 
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Stratigraphy of the Rustenburg Layered Suite 

There is a distinct contrast between the more evolved Upper Zone and the more 

ultramafic to mafic underlying zones. The Marginal Zone is not always present but is inferred 

to be limited to the base of the intrusion (Eales & Cawthorn, 1996). Where present, the 

thickness of the Marginal Zone varies between 150-800m with the rock types varying 

between pyroxenite and norite (Eales & Cawthorn, 1996).  

The Lower Zone is variable in thickness between the Western and Eastern Limbs 

(~1050m). The overall rock types alternate with dunites grading into harzburgites and then 

into orthopyroxenites, with layers varying in thickness from 1m to hundreds of metres. Nine 

cycles have been identified using the oscillatory change in Mg# that has been attributed to 

smaller pulses of magma being injected from the same, yet evolving magma chamber hence 

the increasing initial 
87

Sr/
86

Sr
 
ratio illustrated in Figure 2 (Eales & Cawthorn, 1996). 

The Critical Zone, which overlies the Lower Zone, contains the largest chromite ore 

reserve in the world (Eales & Cawthorn, 1996). Layers of chromitite are found throughout the 

stratigraphy, inter-layered with norite, orthopyroxenite and anorthosite, with minor dunite 

and harzburgites. The variation in isotopic ratio shown in Figure 2 implies that the Critical 

Zone, and the subsequent chromitite layers, formed due to multiple pulses of magma (Eales 

& Cawthorn, 1996). In order to form chromitite layers, injections of a primitive, chromite-

rich magma into a fractionally crystallised residual magma will result in the supersaturation 

of chromite. The formation of the monomineralic layers forms by cooling and crystallisation 

of chromite followed by the accumulation at the base of the intrusion (Mondal & Mathez, 

2007). 

The Main Zone represents the thickest section of the mafic suite and has an average 

thickness of ~3km. The stratigraphy is a relatively continuous succession of norite and 

gabbro-norite with minor anorthosite and pyroxenite layers. The Pyroxenite Marker, a 

homogenous layer of orthopyroxenite, is found at ~2.4 km above the base of the Main Zone, 

and represents the final magma recharge event of the Rustenburg Layered Suite (Kruger et 

al., 1987). The final pulse of magma mixed and rapidly homogenised with the residual melt 

of the crystallising Main Zone resulting in a magma with a constant Sr value of 0.7073 

(Tegner et al., 2006). Magnetite appears as a minor phase towards the top of the Main Zone 

but it is at the first appearance of cumulus magnetite that the upper boundary of the Main 

Zone is drawn.  
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Based on the study by von Gruenewaldt (1973) the Main Zone is subdivided into 

three subzones using the Ca-poor pyroxenes, subzones A, B and C. The bottom subzone A 

contains Ca-poor orthopyroxene throughout norite, anorthosite and gabbronorite. Subzone B 

is made up of relatively homogenous gabbronorite that once contained pigeonite but has 

inverted to orthopyroxene. This subzone consists of both original orthopyroxene and inverted 

orthopyroxene. The Pyroxenite Marker represents the base of subzone C. Orthopyroxene is 

the only Ca-poor pyroxene present throughout this zone. Above the Pyroxenite Marker, the 

remainder of subzone C consists of orthopyroxene with a reversal in both Mg# and Cr 

content. More recent studies of the Western Limb by Nex et al. (1998) incorporated the 

works of von Gruenewaldt (1973) but outlined five subzones, A to E.  

Upper Zone 

The 2.1 km thick Upper Zone represents the final stages of crystallisation of the 

Rustenburg Layered Suite (Kruger et al., 1987). The Upper Zone is commonly believed to 

have formed from a single and final pulse of magma injected in at the Pyroxenite Marker 

(Kruger et al., 1987). The crystallisation of this final pulse of magma formed the most felsic 

and differentiated compositions found throughout the Rustenburg Layered Suite. 

The lithology of this zone is predominantly ferro-gabbronorite to ferro-diorite with a 

highly differentiated mineralogy (Figure 3). The first appearance of cumulus magnetite 

represents the lower boundary of the Upper Zone (SACS, 1980), and occurs 200-300 m 

above the Pyroxenite Marker (von Gruenewaldt, 1973; Kruger et al., 1987; Cawthorn et al., 

1991). A number of magnetitite and anorthosite layers occur throughout the Upper Zone.  

 

Figure 3.  A stratigraphic column of the Upper Zone showing the position of the Pyroxenite Marker, 

the compositional variation in the  mineralogy, the position of the various magnetitite layers, 

and the relatively homogenous Sr initial ratios (Cawthorn & Walraven, 1998). 
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Figure 3 shows the general changes in the cumulus minerals. The Upper Zone 

minerals include plagioclase, olivine, orthopyroxene, clinopyroxene, magnetite and apatite. 

The silicates range from primitive compositions at the bottom to increasingly more evolved 

compositions further up, with the appearance of apatite towards the top of the Upper Zone 

supporting extensive differentiation and crystallisation of more evolved mineral phases (Eales 

& Cawthorn, 1996).  

Subdivisions of the Upper Zone 

Kruger et al. (1987) proposed that the Upper Zone experienced no magma recharge 

and was therefore crystallised from a single isotopically homogenous magma, based on the 

measurement of consistent 
87

Sr/
86

Sr ratios of 0.7073 from the Pyroxenite Marker up through 

the Upper Zone. Crystallisation and differentiation from the Pyroxenite Marker up into the 

Upper Zone would thus drive the mineralogical evolution of the Upper Zone lithology 

(Kruger et al., 1987). 

Wager and Brown (1968) identified three subdivisions of the Upper Zone; UZa, UZb 

and UZc. The appearance of unique cumulus minerals at particular depths led to the 

delineation of three subunits. The first appearance of cumulus magnetite (UZa) is followed by 

the first appearance of cumulus olivine (UZb) and finally the first appearance of apatite (UZc). 

Numerous authors have presented additional subdivisions, but the majority are based 

on those of Wager & Brown (1968). Table 1 below summarises the three most commonly 

accepted divisions. The subdivisions of Wager & Brown are used in this study. 
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Table 2. Comparison of stratigraphic subdivisions of the Upper Zone (after Scoon & Mitchell, 2012) 

The mineralogy of the Upper Zone reveals a number of cyclic geochemical reversals. 

Tegner et al. (2006) showed distinct changes in composition with depth. These geochemical 

changes were identified after examining the An% of plagioclase and the Mg# of olivine and 

pyroxene, with some cycles are more distinct than others (Figure 4).  

Authors Scoon & Mitchell (2012) Von Gruenewaldt (1973) Wagner & Brown (1968) 

Study 

area 

Roossenekal Roossenekal Eastern Limb 

Subzones 

Subzone E Subzone D Subzone C 

Upper contact of Upper 

magnetite layer 21 (height of 

1968m) 

Appearance of cumulus apatite Appearance of cumulus 

apatite 

Subzone D 

Appearance of cumulus 

apatite (height of 1300m) 

Subzone C Subzone C Subzone B 

Appearance of cumulus 

olivine (height of 705m) 

Appearance of cumulus olivine Appearance of cumulus 

olivine 

Subzone B Subzone B Subzone A 

Geochemical transition 

approximately 80m below the 

MML (height of 200m) 

Lower contact of Main 

magnetitite layer (MML) 

Lower contact of Lower 

magnetitite layer 1 

Subzone A Subzone A 

Appearance of cumulus Ti-

magnetite (67m below Lower 

magnetitite layer 1) 

Appearance of cumulus Ti-

magnetite 
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Figure 4. The nine cycles identified within the Upper Zone based on the variation in plagioclase 

content and the Mg # (Tegner et al., 2006) using the subdivisions of Wager & Brown (1968). 

Inserted red block to show the position of Cycle V and Cycle VI.  

Emplacement of the Upper Zone 

The crystallisation of the Upper Zone from a single pulse of magma is the most 

readily accepted theory regarding the Upper Zone emplacement. Numerous studies 

presenting additional 
87

Sr/
86

Sr analyses agree with the study of Kruger et al. (1987). One such 

study is that of Tegner et al. (2006) where, after the analysis of an additional 24 samples, they 

confirmed the 
87

Sr/
86

Sr ratio of 0.7073 ± 0.0001. 

Despite the strong support for Kruger et al. (1987), recent studies have proposed that 

the emplacement of the Upper Zone may have involved multiple injections of magma. Scoon 

& Mitchell (2012) hypothesise that the Upper Zone did indeed experience multiple injections 

of magma but from a basaltic, isotopically homogenous magma chamber. Using whole rock 

data and cumulate textural variation based on samples collected from boreholes in the 

Roossenekal area in the Eastern Limb, the authors suggest multiple injections are responsible 
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for the lack of a complete differentiation trend throughout the Upper Zone, until the topmost 

sections where the final pulse of magma was injected and continuous differentiation took 

place.  

Vantongeren & Mathez (2013) discussed a similar model whereby multiple recharge 

events took place at the Pyroxenite Marker. These multiple pulses were of a small volume 

and took place with large enough intervals to allow enough time for the magma to 

homogenise.  Thermodynamic examination of the plagioclase grains below, within and above 

the Pyroxenite Marker show that no drastic temperature changes occurred, such as might be 

associated with a single large pulse of magma (Cawthorn et al., 1991). 

Eruption of the Upper Zone 

The lack of a silica-rich end member to the Upper Zone crystallisation sequence led to 

the idea that eruption had occurred during the crystallisation of the Upper Zone (Cawthorn & 

Walraven, 1998). According to this hypothesis, the eruption of the Upper Zone took place as 

a series of periodic eruptions.  Owing to the overall low estimates of Zr concentrations for a 

parental magma for the Main and Upper Zone, the authors argued that the remainder of the Zr 

had been lost due to eruption. Using Zr and K concentrations, Cawthorn & Walraven (1998) 

estimated the volume of erupted material to be in the order of 40% of the total volume of 

magma. K data collected by Von Gruenewaldt (1970) indicated similar results. Erosion is 

held to have subsequently removed all evidence of these eruptives. 

Vantongeren et al. (2010) calculated a possible parent magma composition for the 

Upper Zone. Using this theoretical parental magma, the volume of the material lost from the 

Upper Zone was estimated to be between 15 and 25 %. According to this model, the Upper 

Zone evolved towards a felsic end member, erupting to form part of the Rooiberg rhyolites.  

Initially, according to Huppert & Sparks (1984), the increased densification of an 

iron-rich magma due to differentiation would substantially reduce the probability of an 

eruption. The density contrast between the host country rock and the increasingly more dense 

magma would reduce the effect of pressure-induced eruption. However, according to Namur 

et al. (2012) the density of a Fe-Ti-rich residual magma would increase through fractional 

crystallisation. Following the liquid line of decent, Fe-Ti oxides would arrive on the liquidus 

and upon crystallisation would lead to significant decrease in the density of the now Fe-Ti 

poor liquid. Namur et al. (2012) showed that the density of felsic magmas is therefore less 

than mafic magmas. The effect of this on previously published eruption volumes by 
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Cawthorn & Walraven (1998) and Vantongeren et al. (2010) are in sharp contrast to the 

estimated eruption volumes for modern basaltic volcanoes (White et al., 2006; Crisp, 1984), 

which are generally much less than 10%. 

Background to the Bierkraal Boreholes 

The Upper Zone of the Rustenburg Layered Suite originated from a drill core taken 

through the Western Limb, just a few kilometres NE of Rustenburg. The Council for 

Geosciences, formerly known as the Geological Survey of South Africa, drilled three 

boreholes in 1974 in order to obtain the full stratigraphy of the Upper Zone (Walraven & 

Wolmarans, 1979). The boreholes, known as BK1, BK2 and BK3, were drilled on the farm 

Bierkraal just NE of Rustenburg in the Western Limb of the Rustenburg Layered Suite 

(Figure 5).  

 

Figure 5.  Map showing the locations of the BK1, BK2 and BK3 boreholes through the Upper Zone of 

the Rustenburg Layered Suite just NE of Rustenburg.  

Previous work (Walraven & Wolmarans 1979; Kruger et al., 1987) provided 

correlations between the boreholes using the appearance of apatite and the V2O5 content in 

magnetite. Figure 6 illustrates the correlation between these boreholes with the depths 

corrected to surface. These boreholes have previously been utilised by Cawthorn & 

McCarthy (1985), Reynolds (1985a, 1985b), Merkle & von Gruenewaldt (1986), Kruger et 

al. (1987), Cawthorn & Walsh (1988), von Gruenewaldt (1993), Tegner et al. (2006).  
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Figure 6.   Illustration of the correlation of the BK1, BK2 and BK3 boreholes using previously existing 

data. 

BK1 starts in the Lebowa Granite Suite and reaches a depth of approximately 1600 m where 

it intersects a relatively thick magnetitite layer.   BK2 extends from the Main Magnetitite 

layer through to the Main Zone until the intersection of the Pyroxenite Marker. Drilling of the 

third borehole, BK3, covered the gap between the base of BK1 and the top of BK2.  

Models of anorthosite layer formation  

A number of anorthosite layers occur throughout the ultramafic-mafic sequence of the 

Rustenburg Layered Suite. The anorthosite layers found in the Upper Critical Zone are 

considerably different to the anorthosite layers located in the Main and Upper Zones.  Some 

of the most significant anorthosite layering occurs in the Upper Zone, with some layers 

measuring tens of metres in thickness. The genesis of these particular layers has engendered 

some debate and several models regarding the Upper Zone anorthosite layers have been 

proposed.  
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Field mapping of the Skaergaard Intrusion by Wager & Brown (1968) led to the 

description of the layering of the intrusion being almost sedimentary in appearance. It was 

proposed that differential setting between the dense mafic minerals and the lesser dense 

plagioclase led to the formation of the modal layers, especially the anorthosite layers. The 

multiple layers formed were attributed to pulses of crystallisation followed by a period of 

more static conditions were crystal settling was allowed to take place, resulting in the sharp 

contact at the base of the layer with a gradational decrease in darker, mafic minerals and 

increasing amounts in the modal proportions of plagioclase. 

The formation of anorthosite layers due to supercooling and rapid nucleation is a 

theory first proposed by Maaloe (1978), based on studies carried out on the Skaergaard 

intrusion. The model suggests supercooling of a magma, which would result in rapid 

nucleation and the simultaneous supersaturation of the various stable mineral phases.  

In a study carried out by Irvine et al. (1983) regarding the J-M Platinum-Palladium 

Reef of the Stillwater Complex, the formation of the anorthosite layers was attributed to 

double-diffusive convection. Generation of these convection cells resulted from multiple 

injections of magma. The large variations in the proportions of the various minerals present 

represented mineralogical breaks caused by additional injections of magma. The model 

proposed the injection of a plagioclase-saturated magma with the subsequent development of 

anorthosite layers at the top of the double-diffusive convective cell. Irvine et al. (1983) also 

discussed the possible relevance of this model to the formation of the Merensky Reef in the 

Bushveld Complex. 

Eales et al. (1990) investigated the anorthosite layers of the Critical Zone and 

attributed the cyclic reversals in the mineralogy and changes in the mineral crystallisation to 

magma replenishment. According to Eales et al. (1990), the formation of the anorthosite 

layers resulted from differentiation of a magma to form pyroxenite, norite and finally 

anorthosite. In order to crystallise pyroxene again, and the following anorthosite layer, a new 

batch of magma would need to be injected.   

The lateral continuity of the Upper Zone anorthosite layers led to the suggestion of 

changes in a large-scale variable. Naslund & McBirney (1996) discussed the effect of 

changes in pressure and the generation of anorthosite layers. With a decrease in pressure, the 

liquidus temperature of plagioclase and pyroxene would decrease at different rates (Cawthorn 

& Ashwal, 2009). According to Naslund & McBirney (1996) and Cawthorn & Walraven 
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(1998), an eruption would trigger a considerable decrease in pressure leaving the magma at 

superheated conditions. Due to the different rates of the shifting liquidus between plagioclase 

and pyroxene, the first mineral to crystallise would be plagioclase until the co-tectic is 

reached. 

Scoon & Mitchell (2012) proposed the formation of the anorthosite layers by means 

of disequilibrium partial melting. Additions of hotter pulses of magma into a crystal mush 

would result in the melting of the mafic mineralogy and the ―survival‖ of plagioclase as a 

refractory material (Naslund, 1986). Mitchell & Manthree (2002) have previously 

investigated the formation of the Critical Zone anorthosites by disequilibrium partial melting.  

Bédard et al. (2007) presented a study into the Jurassic Ferrar dolerite sills of the 

McMurdo Dry Valleys of Antarctica that showed the presence of large anorthosite-rich layers 

that were of uniform plagioclase composition compared to the hanging and footwall 

lithologies. The authors proposed a model whereby the homogenisation of the plagioclase 

compositions was achieved through local sourcing of plagioclase from the surrounding 

crystal mush and consequently the enrichment of pyroxene. The result would be the near 

identical An composition of the anorthosite sill with the hanging wall and footwall.  

In a study carried out by Cawthorn & Ashwal (2009), models concerning the 

formation of anorthosite layers were reviewed. Using the density of sampled rock types, the 

various mineral proportions were determined. A number of the above-mentioned models 

were re-examined in their study. The model proposed by Cawthorn & Ashwal (2009) noted 

that the formation of the anorthosite layers within the Upper Zone would require an extreme 

form of differential settling after periods of pulsed crystallisation of plagioclase and 

pyroxene. Compared to the model proposed by Wager & Brown (1968) the periods of 

quiescence would not have been as extensive as in the Skaergaard layers and complete 

separation between mafic minerals and plagioclase would not be possible. As a result, more 

leucocratic rocks types border the upper and/or lower boundaries of many of the anorthosite 

layers.  

According to Cawthorn & Ashwal (2009), the model set out by Maaloe (1978) 

involving the supersaturation of plagioclase would result in the prolific crystallisation of 

smaller plagioclase grains. Additionally, supercooling within the Skaergaard intrusion is 

plausible; however, the calculated rate of cooling within the Rustenburg Layered Suite, 
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according to Cawthorn & Walraven (1998), is significantly slower. As a result, supercooling 

within the mafic series is highly unlikely. 

Cawthorn & Ashwal (2009) discussed the generation of double-diffusive convection 

cells by multiple magma injections (Irvine et al., 1983). The model involved the injection of a 

plagioclase-saturated melt at the base of a resident crystallising mush. The mush, described as 

containing predominantly plagioclase, pyroxene and possible magnetite, would then produce 

an anorthosite layer at the base of the chamber. In order to be plausible, the An% of the 

anorthosite layer and the footwall would need to vary by more than 2%. Cawthorn & Ashwal 

(2009) incorporated data from Tegner et al. (2006) and observed that the An% very seldom 

varied more than 2%. 

According to Cawthorn & Ashwal (2009), the cyclic mineralogy of the Upper Zone 

makes the application of the theory from Eales et al. (1990) plausible. However, additions of 

a plagioclase-saturated melt would result in abrupt contacts as well as drastic changes in the 

mineral compositions. Despite the mineralogical cyclicity, no significant reversals in the 

mineral compositions, as seen in the Critical Zone, were observed. In addition to this, the 

cycles within the Upper Zone transition through magnetitite-gabbronorite-anorthosite, not 

pyroxenite-norite-anorthosite. 

The formation of the anorthosite layers by magma addition has been argued against 

based on the unlikely event that the incoming magma pulses contain plagioclase 

compositions similar to the resident crystal mush. In the model described by Bédard et al. 

(2007), the incoming magma sourced plagioclase from the resident crystal mush and 

subsequently formed anorthosite layers with identical plagioclase compositions. However, 

Cawthorn & Ashwal (2009) pointed out that enrichment of pyroxene would result through the 

removal of plagioclase from the crystal mush. No pyroxene-rich rocks are found either above 

or below the Upper Zone anorthosites. 

Models of magnetitite layer formation 

Numerous magnetitite layers have been identified in different portions of the Upper 

Zone. Twenty-one magnetitite layers identified by Molyneux (1974) are shown in Figure 3 

(represented by the numbers 1-21) and Figure 4 (represented by the triangular symbols on the 

right of the figure). Tegner et al. (2006) identified twenty-six magnetitite layers and six 

nelsonite layers (titanium-magnetite-apatite rich layers). The most prominent feature of the 

Upper Zone cyclicity is the sharp contact between the underlying anorthosite and the 
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overlying magnetitite layers which show a gradual transition into gabbro and then into 

anorthosite again. The sharpness of the contact is however variable. The thickness of the 

layers varies between 2 and 710 cm thick, with some layers containing economic 

concentrations of vanadium.  

Wager & Brown (1968) proposed that the magnetitite layers formed through 

differential density settling. This model, however, is inapplicable to the magnetitite layers of 

the Upper Zone. Settling out of heavier minerals after cotectic crystallisation of plagioclase 

and mafic minerals would result in a gradational contact transition onto into rocks containing 

an intermediate density of cumulus pyroxene followed by cumulus plagioclase. The 

lithologies overlying the magnetitite layers differ in that there is no overlying cumulus 

pyroxene, only cumulus plagioclase.  

A shift of the oxygen fugacity within a system would affect the crystallisation of 

magnetite and not that of the plagioclase crystallising before and after the magnetitite layers 

(Klemm et al., 1985). However, a mechanism to create such a shift in the oxygen fugacity 

and create the observed contacts is not commonly accepted (Cawthorn & Ashwal, 2009).  

Studies published by Reynolds (1985a, b) proposed the formation of magnetitite 

layers by means of liquid immiscibility. A clear contrast in both the densities and the 

viscosities between the two melts would be evident. The variations between these two 

variables would result in the percolation of the ferric melt through the silica melt, leading to 

the formation of two distinct layers separated by a sharp contact. However, more gradational 

contacts are observed in the magnetitite layers of the Upper Zone. 

According to Cawthorn & McCarthy (1980), changes in pressure, as opposed to 

geochemistry, would result in the formation of magnetitite layers. The observed fluctuations 

in the Cr concentrations are achieved through crystallisation of magnetite at the base of the 

magma chamber rather than crystallisation and settling out from the magma. In addition, the 

lateral consistency of these layers implies a model capable of causing a large-scale phase 

boundary shift towards the crystallisation of magnetite.  

The works of Cawthorn & Ashwal (2009) and Cawthorn & McCarthy (1980) agree 

that this model involves a large-scale effect of the mechanism resulting in the formation of 

the magnetitite layers. Changes in pressure resulting from tectonic forces could cause a shift 

of the liquidus crystallising out only magnetite. 
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Despite the near-homogenous Sr
87

/Sr
86

 data, the formation of the Upper Zone due to 

magma mixing remains contentious. The cyclic mineralogy of the Upper Zone, in addition to 

the sharp contacts observed beneath some magnetitite layers supports magma mixing. Harney 

et al. (1990) and Harney et al. (1996) proposed the formation of magnetitite layers by one of 

two models: firstly, from magma mixing by the addition of small volumes of magnetite-rich 

magma, which would not drastically affect the general isotopic ratios; and secondly, by the 

collapse of a density-separated stratified column. With magma additions, the liquid mixed in 

with the residual magma would be less differentiated and therefore reversals in the An% 

should be evident. Although cyclic reversals in An% throughout the Upper Zone are evident, 

Tegner et al. (2006) noted that the positions at which the reversals were identified showed no 

distinct relationship with the position of the magnetitite layers.   

Zhang et al. (2012) proposed a highly evolved; Fe-Ti-rich parental magma was 

responsible for the deposits of the Baima Intrusion in China. The formation of these deposits 

from this parental magma would require a system closed to oxygen and extreme silicate 

fractionation. Subsequently, this would allow for the crystallisation of Ti-rich Fe deposits as 

the magma began to rise to shallower depths. Multiple pulses of magma led to the 

crystallisation and crystal settling which then led to the formation of stratiform Ti-Fe-rich 

oxides at the base of the intrusion. Scoon & Mitchell (2012) proposed a similar mechanism 

for the formation of the Upper Zone, in which each magnetitite layer or cluster of smaller 

layers would represent a separate injection of a crystal rich mush. Rapid crystallisation within 

these intruded sills would result in the formation of dense crystal slurries rich in Ti-rich 

oxides that would then settle to form magnetitite layers.  
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Chapter 3 – Methodology 

Sampling 

The Bierkraal boreholes were drilled through the Upper Zone in the Western Limb of 

the Rustenburg Layered Suite, where the three boreholes combined cover the entirety of the 

2.1 km thick Upper Zone. The two most pronounced cycles, according to the subdivisions of 

Tegner et al. (2006), are Cycles V and VI. Thirty samples were taken from BK1; fifteen from 

Cycle V and fifteen from Cycle VI (Table 2). The sampling positions were determined 

through core logging and through the examination of pre-existing whole rock data.  

The Rustenburg Layered Suite in BK1 extends from a depth of ~1650 m up to a depth 

of ~430 m, where the Lebowa Granite Suite caps the borehole. Prior to sampling, BK1 was 

logged in extensive detail in order to identify the relevant cycles. Core logging revealed three 

main rock types namely: magnetitite, gabbro and anorthosite. 

Cycle V is from ~1460 m to ~1105 m and Cycle VI from ~1100 m to ~900 m. Both 

cycles appeared to contain similar lithologies. Changes in the proportions of plagioclase, 

olivine and pyroxene in hand specimen were obvious, but the identification of apatite was 

impossible due to the relatively small grain size. Unfortunately, some uncertainty as to the 

exact depth of sampling exists due to the lack of core loss information throughout BK1, but 

the sampled depths are correlated with those used by Tegner et al. (2006). Core loss was 

calculated by measuring the exact amount of core present in each tray versus the recorded 

depths from which the core was extracted. The estimated loss varied from tray to tray with 

calculations estimating losses between 20 cm and reaching as high as 100 cm in highly 

fractured sections of the core.  

The use of whole rock data allowed for the identification of potential changes in the 

modal mineralogy. Whole rock XRF data was provided courtesy of Professor R.K.W. Merkle 

of the University of Pretoria. In Figure 7, whole rock XRF data for CaO is shown with the 

CaO of plagioclase from Tegner et al. (2006) and the CaO of plagioclase from this study. 
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Figure 7. Comparison of whole rock CaO, plagioclase CaO (Tegner et al., 2006) and plagioclase CaO 

from this study. Cycles V and VI are indicated by the boxes. 

Table 2.  Samples collected from Cycles V and VI from BK1 of the Upper Zone. 

CT_5 Sample 

# 

Depth 

(m) 

Description CT_6 Sample 

# 

Depth 

(m) 

Description 

 1 -1105.5 Gabbro  1 -902.3 Mottled anorthosite 

2 -1119.3 Magnetite-rich gabbro 2 -904.5 Mottled anorthosite 

3 -1133.85 Gabbro 3 -911.66 Anorthite-rich gabbro 

4 -1155.92 Gabbro 4 -914.99 Anorthosite 

5 -1166.52 Mottled anorthosite 5 -918.69 Gabbro 

6 -1179.8 Anorthite-rich gabbro 6 -923.61 Anorthosite 

7 -1199.75 Gabbro 7 -925.91 Anorthosite 

8 -1223.85 Gabbro 8 -942.4 Gabbro 

9 -1285.65 Gabbro 9 -990.09 Gabbro  

10 -1371.05 Gabbro 10 -1016.5 Gabbro  

11 -1385.04 Gabbro 11 -1053.67 Gabbro 

12 -1403.32 Gabbro 12 -1074.04 Gabbro 

13 -1411.03 Gabbro 13 -1085.54 Gabbro 

14 -1427.95 Gabbro 14 -1090 Gabbro 

15 -1458.12 Magnetite-rich gabbro 15 -1094 Gabbro 
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Microscopy 

 Polished thin sections were prepared from the 29 samples collected throughout cycles 

V and VI at the University of Hanover courtesy of Dr B. Charlier. The petrographic study 

involved mineral identification, estimation of modal proportions of the main mineral 

assemblage, examination of important textural relations between minerals and textural 

changes. 

The determination of the modal proportions of each sample was carried out using a 

form of spectral analysis. Spectral analysis involves the quantification of each of the mineral 

proportions based using the colour of the mineral in standard light (i.e. hand specimen). Each 

thin section was scanned at 2400 dpi. Each image was then imported into Adobe Photoshop 

CS4 and cropped so that only the rock was analysed. The total pixel count was used to 

determine the proportion of each mineral in the rock. An example of this method is given in 

the table below. 

Table 3. Scanned image of sample CT5_10 (left) and the mineral proportion estimation using the pixel 

count for each mineral. 

 

 CT_10 

Pixels Proportion 

Magnetite 258397 9.9 

Plagioclase 1580463 60.3 

Apatite 39420 1.5 

Olivine 648545 24.8 

Pyroxene 69458 2.7 

Biotite 23722 0.9 

Amphibole 0 0 

Silica 0 0 

Total 2620005 100 
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 In Adobe Photoshop, a number of tools were used to enhance and isolate each of the 

individual minerals. The first of these tools adjusted the contrast of the image to enhance the 

discrimination between pyroxene and olivine. The second tool enabled the isolation of each 

mineral based on its colour. In order to distinguish between different minerals a particular 

―tolerance‖ was assigned to each mineral. Plagioclase and amphibole was assigned a 

tolerance of 40, olivine, apatite and silica 10, pyroxene 30 and finally biotite and magnetite 

70. Using these features, the number of pixels making up each of the respective minerals was 

determined and calculated as part of the total pixels of the image.  

The grain size variation was calculated as follows: Each thin section was divided into 

a 4 by 5 grid (total of 20 blocks). Within each block between three and five grains of each of 

the respective minerals were measured and recorded. In the case of inequant grains such a 

plagioclase, only the long axis was measured. The median was considered to be the most 

representative of the grain size variation and used in conjunction with the upper and lower 

and minimum and maximum values in box-whisker plots, as seen for instance in Figure 15. 

Electron Microprobe 

 Major element data was collected for each of the thin sections using a JEOL JXA 

8230 Superprobe, with four WD spectrometers at the Department of Geology at Rhodes 

University. The analytical conditions employed were an acceleration voltage of 15kV, a 

probe current of 20nA; counting times were at ten seconds on peaks and five seconds on 

background, and the beam spot size less than 1 micron. Characteristic x-rays were measured 

and the ZAF matrix correction was used for quantification. 

 Examination and mapping of each thin section took place to indentify suitable grains 

for each mineral phase. The number of grains analysed for each mineral varied between 

minerals based on the proportions of the relative mineral. In extreme cases, low apatite 

bearing samples for example, a minimum of five grains per slide for each mineral were 

analysed. A single spot at the core of each mineral was analysed except pyroxene. Exsolution 

of an oxide phase along the cleavage planes required additional points on a single mineral. 

The following X-ray lines, spectrometer crystals and standards (in brackets) were 

used for plagioclase & silica: SiKα, TAP (Plag-An65_SPI); CaKα, PETJ (Plag-An65_SPI); 

TiKα, PETJ (Rutile_SPI); NaKα, TAP (Plag-An65_SPI); AlKα, TAP (Almandine_SPI); 
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FeKα, LIF (Almandine_SPI); KKα, PETL (Biotite_SPI); MnKα, LIFL (Rhodonite_SPI); 

BaLα, PETL (Barite_SPI); MgKα, TAPL (Olivine_SPI); SrLα, PETL (SrTiO3). 

Olivine: SiKα, TAP (Almandine_SPI); CaKα, PETJ (Cr_Diopside_SPI); MgKα, TAP 

(Olivine_SPI); AlKα, TAP (Almandine_SPI); FeKα, LIF (Almandine_SPI); MnKα, LIFL 

(Rhodonite_SPI); NiKα, LIFL (Pentlandite_SPI); TiKα, PETL (Rutile_SPI); CrKα, PETL 

(Chromium_Oxide_SPI). 

Pyroxene: SiKα, TAP (Almandine_SPI); CaKα, PETJ (Cr_Diopside_SPI); TiKα, 

PETL (Rutile_SPI); NaKα, TAP (Albite_SPI); AlKα, TAP (Almandine_SPI); FeKα, LIF 

(Almandine_SPI); KKα, PETL (Biotite_SPI); MnKα, LIFL (Rhodonite_SPI); CrKα, PETL 

(Chromium_SPI); MgKα, TAPL (Olivine_SPI). 

Apatite: SiKα, TAP (KP Garnet); CaKα, PET (KP Garnet); PKα, PETJ (Apatite_SPI); 

MgKα, TAP (Dolomite_SPI); AlKα, TAP (Almandine_SPI); FeKα, LIF (Almandine_SPI); 

ClKα, PETL (Tugtupite1); MnKα, LIFL (Rhodonite_SPI); BaLα, PETL (Barite_SPI); FKα, 

TAPL (MgF2); NaKα, TAPL (Albite_SPI); SrLα, PETL (Celestite_SPI).  

Biotite & amphibole: SiKα, TAP (Olivine_SPI); CaKα, PETJ (Cr_Diopside_SPI); 

TiKα, PETL (Rutile_SPI); NaKα, TAP (Albite_SPI); AlKα, TAP (Almandine_SPI); FeKα, 

LIF (Almandine_SPI); KKα, PETL (Biotite_SPI); MnKα, LIFL (Rhodonite_SPI); CrKα, 

PETL (Chromium_SPI); FKα, TAPL (MgF2); ClKα, PETL (Tugtupite1); MgKα, TAPL 

(Olivine_SPI). 

The aim of the project was to obtain a greater understanding behind the cyclic 

variations in the main mineralogy (excluding opaque minerals) present throughout the Upper 

Zone, therefore the grains selected included plagioclase, olivine, orthopyroxene, 

clinopyroxene and apatite. Other minerals such as biotite, amphibole and silica were analysed 

due to their relative abundance. In Table 4, a list of all the elements measured for each of the 

respective minerals is presented.  
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Table 4.      Compounds analysed for each mineral. 

 Compounds Analysed 

Plagioclase SiO2 Al2O3 CaO MgO MnO FeO TiO2 Na2O  K2O SrO BaO   NiO 

Olivine SiO2 Al2O3 CaO MgO MnO FeO TiO2  Cr2O3       

Orthopyroxene SiO2 Al2O3 CaO MgO MnO FeO TiO2 Na2O Cr2O3 K2O      

Clinopyroxene SiO2 Al2O3 CaO MgO MnO FeO TiO2 Na2O Cr2O3 K2O      

Apatite SiO2 Al2O3 CaO MgO MnO FeO  Na2O   SrO BaO F Cl P2O5 

Biotite SiO2 Al2O3 CaO MgO MnO FeO TiO2 Na2O Cr2O3 K2O   F Cl  

Amphibole SiO2 Al2O3 CaO MgO MnO FeO TiO2 Na2O Cr2O3 K2O   F Cl  

Silica SiO2               
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Chapter 4 – Petrography 
 

The results include the identification of the primary mineralogy, the relative 

proportions of each mineral, the characteristic shape and size distribution of each mineral 

followed by a petrogenetic sequence for each sample. The geochemical data obtained through 

EPMA is discussed in Chapter 5.  

Sampling of Cycle V and Cycle VI includes a range of rock types but the general 

lithology includes two magnetite-rich gabbros, nineteen gabbros; comprising of olivine 

gabbro and plagioclase-rich gabbro, and finally six anorthosites. Each sample is discussed in 

terms of the depth rather than sample name. 

Figure 8 below shows the rock types sampled in Cycle V as well as the depths at 

which the samples were taken. On the right-hand side of the figure the relative proportions of 

each mineral in each sample is provided. Cycle V consists of twelve gabbros, two magnetite-

rich gabbros and one anorthosite. A magnetite-rich gabbro is situated at the bottom of Cycle 

V at 1458.12 m. Above this gabbros dominate the next ~250 m. In hand specimen the 

gabbros were observed to increase in plagioclase content as depth decreases. An anorthosite 

was intersected at 1166.52 m. Above this the rock type transitions back into a plagioclase-

rich gabbro. At 1119.3 m, a magnetite-rich gabbro was intersected again, with another 

overlying gabbro sample overlying at 1105.5 m. 

The proportions of plagioclase and magnetite are inversely related when examining 

the gabbro samples; the higher the proportion of plagioclase, the lower the proportion of 

magnetite. The proportions of pyroxene increase above the magnetite-rich gabbro at 1458.12 

m until the anorthosite is encountered at 1166.52 m. The gabbro above this is contains 

considerably higher proportions of pyroxene than lower gabbros. These proportions decrease 

again in the next magnetite-rich gabbro.  

Biotite is present throughout the whole of Cycle V, and apatite is present in the 

gabbros from 1458.12 m through to 1285.65 m. Above this  apatite is intermittently present in 

the gabbro samples but only in small quantities. The proportion of apatite appears to increase 

again above the magnetite-rich gabbro at 1119.3 m. An additional interstitial mineral was 

identified within the anorthosite sample at 1166.52 m. The amphibole identified in the 

gabbros at 1223.85 m and 1105.5 m was secondary and was found as thin veins and/or layers 

within the sample. 
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An additional interstitial mineral was identified in the anorthosite at 1166.52 m. Initial 

observations under plane polarised light and crossed polarised light suggested quartz however 

the interference figures revealed both uniaxial and biaxial positive. Additional analysis is 

required to confirm the structure of the silica polymorph. 

 

Figure 8. Illustration of the sampling heights for Cycle V (left). Sample 15 is at the bottom of the cycle 

with Sample 1 at the top of the cycle. The mineralogical proportions of each sample are 

provided in the bar on the right of each sample. 

In Figure 9 below, the sampled rock types at the respective depths for Cycle VI are 

shown. The proportions of the primary mineral phases within each sample are provided again 

on the right-hand side of the figure. Cycle VI consists of ten gabbros and five anorthosites. 

No magnetite-rich gabbros were found throughout Cycle VI. 

Cycle VI consist of mainly gabbros from the bottom at 1094.0 m of the cycle through 

to 942.4 m. Anorthosites make up the majority of the samples at the top of Cycle VI with 

only two plagioclase-rich gabbros being sampled in between the anorthosite samples. The 
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anorthosites extend from 925.91 m through to 902.3 m. The two gabbros are situated at 

918.69 m and 911.66 m. 

The gabbros making up the bottom section of Cycle VI contain less plagioclase and 

more olivine compared the gabbros from Cycle V. A single gabbro at 1053.67 m contained 

more plagioclase and less olivine making the two mineral phases inversely proportional. 

Higher proportions of magnetite are observed in the gabbros at the bottom of the cycle. The 

proportion of pyroxene in the gabbros decreases with depth. The proportions decrease 

relative to the amount of plagioclase in the anorthosites. The amount of amphibole is higher 

in Cycle VI and is found in the anorthosites, not in the gabbros. The amphibole is interstitial 

and appears to be crystallising at the same time as pyroxene. Apatite is limited to the gabbro 

samples at the bottom of Cycle VI. High proportions of apatite are found at 1094.0 m and 

decrease steadily towards 925.91 m. Above this, no apatite was identified in the anorthosites 

or the two gabbro samples. Varying proportions of biotite were identified throughout Cycle 

VI. The silica polymorphs were identified once again in all the majority of the anorthosite 

samples, with large amounts observed at 904.5 m and 902.3 m.  
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Figure 9. Illustration of the sampling heights for Cycles VI (left). Samples 15 start at the bottom of the 

cycles and move up to samples 1 at the top of the cycle. The mineralogical proportions of each 

sample are provided on the right of each sample. 

Plagioclase 

Microscopy 

Plagioclase was identified throughout the gabbro and anorthosites from both Cycle V 

and Cycle VI. Plagioclase was present in one of two habits, large tabular grains or much 

smaller, rounded grains. The tabular grains exhibited typical polysynthetic twinning (Figure 

10). The second habit of plagioclase occurs in clusters, generally situated between two or 

three larger tabular grains of plagioclase (Figure 10).   
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Figure 10. XPL image from a magnetite-rich gabbro (1458.12 m) showing the relationship of small 

grains of plagioclase at the grain boundaries between larger, tabular grains of plagioclase. 

The petrogenetic sequence of the gabbros varies from sample to sample. In a gabbro 

from 911.66 m depth large grains of plagioclase were surrounded by olivine (Figure 11Figure 

a). In a gabbro from 1427.95 m depth, large grains of pyroxene were overgrown by 

plagioclase (Figure 11b). Throughout the majority of the samples, olivine was observed to 

surround plagioclase usually observed as a rim around plagioclase. Where present, apatite 

was found as inclusions in plagioclase as well as in all other minerals.  
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Figure 11.  a. XPL image from a gabbro (911.66 m) showing the overgrowth of plagioclase by olivine. b. 

XPL image from a gabbro (1427.95 m) showing the overgrowth of pyroxene by plagioclase. 

Olivine can also be seen to overgrow cpx and opx. 

Platy grains of biotite were observed at the grain boundaries between interstitial 

magnetite and plagioclase (Figure 12a and b). 
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Figure 12. a. PPL image from a gabbro (1133.85 m) showing the grain boundary growth of biotite 

between magnetite and plagioclase. b. XPL image from a gabbro (1133.85 m) showing the 

grain boundary growth of biotite around magnetite. 
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In the anorthosite samples, plagioclase was present as large tabular grains with 

interstitial pyroxene and sometimes the silica (Figure 13). Magnetite was also present in 

small amounts but as an interstitial mineral and as smaller, subhedral grains (Figure 13). 

Once again, biotite was present and observed within the interstitial spaces between 

plagioclase grains. 

 

Figure 13. XPL image from an anorthosite from 1166.52 m depth showing interstitial growth of silica 

and the overgrowth of magnetite by plagioclase. 

A number of plagioclase grains showed unusual textures in the magnetite-rich gabbros 

from Cycle V. In Figure 14a, a deformed tabular-shaped plagioclase grain is visible. The 

presence of the smaller, more rounded grains of plagioclase usually accompanied these 

deformed grains. The bulk of the larger plagioclase grains showed some form of preferred 

horizontal orientation. A number of these grains showed deformation similar to that in the 

figure below. In the magnetite-rich gabbro from 1119.3 m depth, symplectites were observed 

between plagioclase, magnetite and what appeared to be olivine (Figure 14b). The 

symplectites were observed at the grain boundaries between tabular grains of plagioclase. 

These symplectites were only observed in this sample. 
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Figure 14.  a. XPL image from a magnetite-rich gabbro at 1458.12 m depth showing deformation of a 

tabular plagioclase grain. b. XPL image from a magnetite-rich gabbro at 1119.3 m depth 

showing a symplectite texture propagating into two tabular plagioclase grains. 
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Grain shape and size 

The grain size variation of the plagioclase grains in Cycle V is given in Figure 15. 

The highest median grain size of the plagioclase grains was 1.75 mm in an anorthosite at 

1166.52 m depth. The lowest median grain sizes were recorded in the gabbros in the middle 

portion of the cycle. Grain sizes of 0.9 mm were recorded at 1053.67 m, 1016.5 m and 990.09 

m depth. The maximum grain size of 4mm was recorded in an anorthosite at 923.61 m depth. 

The smallest grain size of 0.1 mm was measured in the gabbros at 1155.92 m, 1133.85 m and 

1105.5 m depth. 

 

Figure 15. Box and whisker plot showing the grain size variation for plagioclase recorded for Cycle V. 

The overall median grain size of the plagioclase grains from Cycle VI (Figure 16) is 

larger than Cycle V. The highest median grain size was 2.25 mm in an anorthosite at 923.61 

m depth. The lowest median grain size of 0.5 mm was recorded in a gabbro at the top of the 

cycle at 1105.5 m depth. The maximum grain size of 7 mm was recorded in a magnetite-rich 

gabbro at 1458.12 m depth. The smallest grain size of 0.2 mm was recorded in a gabbro at the 

bottom of the cycle positioned 1090.0 m depth. 
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Figure 16.      Box and whisker plot showing the grain size variation for plagioclase recorded for Cycle VI. 

Magnetite 

The term magnetite has been used in a general sense but includes all opaques present 

throughout the two cycles. Magnetite, although not analysed for in this study, is an important 

mineral in Cycle V and Cycle VI. The textural relationships between the silicates and 

magnetite are important, as these will provide information about the paragenetic sequence.  

Magnetite was identified in every sample including the anorthosites. The bulk of the 

magnetite within each sample was identified as interstitial (Figure 17a). However, a number 

of anorthosite and gabbro samples showed small, round grains of magnetite most commonly 

included in plagioclase, olivine and pyroxene (Figure 17b). 
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Figure 3.  a. XPL image from a magnetite-rich gabbro (1458.12 m) showing interstitial magnetite. b. 

XPL image from a gabbro (1427.95 m) showing a small, round grain of magnetite included in 

plagioclase. 

Inclusions of magnetite were observed in plagioclase, olivine and pyroxene. The more 

anhedral interstitial magnetite was commonly associated with biotite. Either biotite was seen 

surrounding the magnetite grain (Figure 18a) or the biotite was identified in the interstitial 
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spaces between magnetite and plagioclase (Figure 18b). Euhedral grains of apatite are found 

within the interstitial magnetite in the magnetite-rich gabbros.  

 

Figure 4. a. PPL image of biotite surrounding magnetite in a sample taken from Cycle VI. b. XPL 

image of platy grains of biotite in the interstitial spaces between magnetite and plagioclase. 
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Two altered samples were determined as gabbro based on the presence of plagioclase, 

magnetite and apatite. The altered gabbros originated from 1155.92 m and 990.09 m. In both 

samples, altered grains of subhedral to euhedral magnetite were observed. Examples of these 

can be seen in Figure 19 below.  

 

 

Figure 19. Altered euhedral grains of magnetite in gabbros from 1155.92 m from Cycle V (a) and 990.09 

m from Cycle VI (b).  
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Olivine 

Microscopy 

All gabbros contained varying proportions of olivine as illustrated in Figure 8 and 

Figure 9. The olivine was identified as fayalite based on the pale yellow to pale orange 

pleochroism, low 2V angle and the biaxial negative interference figure. Some gabbros 

contained significantly high amounts of olivine leading to the name olivine-gabbro for some 

samples. No olivine was identified in the anorthosites. 

 Olivine is observed to overgrow plagioclase in some samples but is found as 

inclusions in plagioclase in other samples (Figure 20a). Similar observations were made 

between olivine and pyroxene. In Figure 11b, olivine is overgrowing clinopyroxene, whereas 

in Figure 20b, clinopyroxene includes two small grains of olivine. The alternating 

petrogenesis between samples does not appear to be systematic. Magnetite was found as 

small cubic or rounded grains included in olivine, but was also observed to overgrow olivine 

in the majority of the gabbros. Olivine was observed to overgrow biotite and include apatite.  
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Figure 20. a. XPL image from a gabbro at 1094.0 m depth showing the inclusion if olivine in plagioclase. 

b. XPL image from a gabbro at 1105.5 m depth showing the inclusion of two small grains of 

olivine by clinopyroxene. 
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Grain shape and size 

The grain size variation of the olivine in Cycle V is shown in Figure 21.The highest 

median grain size in the gabbros was 1.3 mm at 1427.95 m depth. The lowest median grain 

size was recorded at 1458.12 m depth. The maximum grain size of 3.6 mm was recorded at 

1411.03 m depth. The smallest grain sizes of 0.1mm was recorded in the gabbros at 1458.12 

m, 1403.32 m, 1371.05 m and 1223.85 m depth. 

 

Figure 21. Box and whisker plot showing the grain size variation for olivine recorded for Cycle V. 

The grain sizes of the olivine from Cycle VI (Figure 22) are relatively similar to 

Cycle V. The highest median grain size was 1.05 mm at 1094.0 m and 1074.04 m depth. The 

lowest median grain size was recorded at 1016.5 m depth. The maximum grain size of 3.0 

mm was recorded at 1090.0 m depth. The smallest grain sizes of 0.1 mm was recorded at 

911.66 m depth. 
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Figure 22.      Box and whisker plot showing the grain size variation for olivine recorded for Cycle VI. 

Pyroxene 

Microscopy 

Both clinopyroxene and orthopyroxene were identified in Cycle V and Cycle VI 

(Figure 11b). Not all rocks contained pyroxene and those that did, did not necessarily contain 

both clinopyroxene and orthopyroxene. Clinopyroxene was the most predominant of the two 

pyroxenes; however one anorthosite at 925.91 m depth contained only orthopyroxene (Figure 

23). 
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Figure 23. XPL image of an anorthosite from 925.91 m depth showing the poecilitic interstitial texture 

of the orthopyroxene. 

 The petrogenetic sequence of the pyroxenes has been indirectly discussed under the 

plagioclase and olivine sections. To reiterate, the relationship between plagioclase, olivine 

and the pyroxenes varies from sample to sample. In Figure 11b, plagioclase overgrows both 

orthopyroxene and clinopyroxene. In Figure 24, both orthopyroxene and clinopyroxene 

overgrow plagioclase. The relationship between orthopyroxene and clinopyroxene is more 

ordered. In the samples where both orthopyroxene and clinopyroxene are present, the former 

is always overgrown by the latter.  
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Figure 24. XPL image of a gabbro from 942.4 m depth showing the overgrowth of plagioclase by 

orthopyroxene and clinopyroxene. 

Magnetite was found as small cubic or rounded grains included in both clinopyroxene 

and orthopyroxene. Inclusions of apatite were identified within pyroxene with biotite 

crystallising within the interstitial spaces between plagioclase and pyroxene. In the 

anorthosites, orthopyroxene and/or clinopyroxene were interstitial. A number of the pyroxene 

grains showed exsolution along cleavage planes (Figure 24). The textural relationship 

between amphibole and pyroxene in the anorthosites in Cycle VI is discussed under the 

amphibole section. 

Grain shape and size 

The median grain sizes show no particular trend throughout Cycle V (Figure 25). The 

lowest medians of 0.3 mm and 0.25 mm were recorded in the magnetite-rich gabbros at 

1458.12 m and 1119.3 m depth respectively. The median grain size throughout the remainder 

of the gabbros was between 0.6 mm and 0.9 mm. No pyroxenes were identified in the altered 

gabbro at 1155.92 m depth. The maximum grain size becomes steadily higher with a decrease 

in depth. The largest grain was 2.3 mm at 1105.5 m depth.  
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Figure 25. Box and whisker plot showing the grain size variation for pyroxene recorded for Cycle V. 

The median grain sizes of the pyroxenes from Cycle VI (Figure 26) in the gabbros 

from 1074.04 m to 942.4 m depth vary between 0.9 mm and 1.1 mm.  The gabbro at 990.009 

m depth contained the smallest grain sizes with the median recorded as 0.5 mm. The gabbros 

at 918.69 m and 911.66 m were 1.15 mm and 0.9 mm respectively. The pyroxenes in the 

anorthosites that dominate the top of Cycle VI consisted of similarly sized grains between 1 

mm and 0.9 mm. 



46 
 

 

Figure 26. Box and whisker plot showing the grain size variation for pyroxene recorded for Cycle VI. 

Apatite 

Microscopy 

Cumulus apatite was found in most of the gabbros throughout Cycle V and Cycle VI. 

The grains varied in size but the majority were subhedral to euhedral. In the gabbros 

containing apatite, cumulus grains were found as inclusions in plagioclase, olivine, pyroxene 

and magnetite (Figure 27a). Overgrowths of apatite by biotite were observed in a few 

samples (Figure 27b). 
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Figure 5. a. PPL image from a gabbro at 1085.54 m depth showing the inclusion of apatite in 

magnetite, plagioclase and olivine. b. XPL image from a gabbro at 1403.32 m depth showing 

biotite surrounding a cumulus grain of apatite. 
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Grain shape and size 

The median grain sizes of the apatite in Cycle V (Figure 28) show minor variation 

throughout the apatite-containing gabbros. The highest median grain sizes were 0.1 mm in 

gabbros at 1458.12 m, 1411.03 m, 1403.32 m, 1385.04 m, 1371.05 m and 1199.75 m. The 

lowest median grain size was at 1223.85 m. The maximum grain size of 0.9 mm was at 

1403.32 m depth. The smallest grain size of 0.03 mm was recorded in the gabbros at 1411.03 

m, 1403.32 m, 1371.05 m and 1285.65 m depth. 

 

Figure 6.      Box and whisker plot showing the grain size variation for apatite recorded for Cycle V. 

Although apatite is not as prevalent in Cycle VI (Figure 29), the grain sizes were 

larger. The highest median grain size of 0.15 mm was recorded in samples 1090 m, 1085.54 

m and 990.09 m. The lowest median grain size of 0.09 mm was at 1016.5 m and 942.4 m 

depth. The largest grains were recorded at 1094 m and 1085.54 m depth, while the smallest 

occurred at 1074.04 m and 1016.5 m depth. 
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Figure 7.      Box and whisker plot showing the grain size variation for apatite recorded for Cycle VI. 

Biotite 

Microscopy 

Biotite was observed throughout all rock types from Cycle V and Cycle VI, gabbros 

and anorthosites, most commonly with plagioclase and magnetite. Biotite occurred within the 

interstitial spaces between magnetite and plagioclase. Biotite can be seen in Figure 14a, 

Figure 18a and b associated with plagioclase and magnetite and in Figure 27b associated with 

plagioclase, magnetite and apatite. Observations of biotite within the interstitial spaces 

between olivine and pyroxene (Figure 30). 
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Figure 30. XPL image from at gabbro at 1199.75 m depth showing the presence of biotite between 

magnetite and olivine. 

Amphibole 

Microscopy 

Amphibole occurs in two different forms when comparing Cycle V and Cycle VI. The 

textures observed in Cycle V occur mainly in the form of reaction rims surrounding 

magnetite grains in a gabbro from 1105.5 m (Figure 31a) or clinopyroxene in the anorthosite 

at 1166.52 m (Figure 31b). The largest amount of amphibole in Cycle V occurs as an 

amphibole rich vein. These veins were limited to two gabbros 1105.5 m (Figure 31c) and 

1223.85 m (Figure 31d). Visible in these figures is the presence of a series of green veins 

running throughout the rock. 
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Figure 31. a. Amphibole rim around magnetite grain. b. Amphibole rim around clinopyroxene grains in 

an anorthosite from 914.99 m. 
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Figure 31. c. Scanned image of a gabbro from 1105.5 m. d. Scanned image of a gabbro from 1223.85 m. 

Referring to Figure 31c and d, the amphibole ―layer‖ can be seen propagating across 

the thin section. The presence of this layer appears to have had little effect on the mineralogy 

above and below it, although small cumulus grains of magnetite were seen to be 

accumulating above the amphibole layer and near horizontal plagioclase grains lying on top 

of the layer.  

The majority of amphiboles present in Cycle VI were identified as pargasite based on 

the strong brown-green-turquoise pleochroism under plane polarised light. Smaller amounts 

of amphibole were found as reaction rims in the gabbro samples of Cycle VI but the greatest 

amount of amphibole was identified within the anorthosites (Figure 32a). The clinopyroxene 

in an anorthosite from 914.99 m shows an unusual, poorly defined texture that can be seen in 

Figure 32b. Despite the pargasite having crystallised around the clinopyroxene, the two 

minerals appear to have crystallised synchronously.  
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0 

Figure 32. a. PPL image illustrating the interstitial texture of pargasite within anorthosite (914.99 m). b. 

XPL image illustrating the replacement of clinopyroxene by pargasite (914.99 m). 
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Silica 

Microscopy 

A mineral was observed to have low relief and no pleochroism under plane polarised 

light. Under crossed polarised light the interference colours showed a range and first order 

colours. The initial observations would suggest the mineral was quartz however, the 

interference figure revealed both uniaxial and biaxial positive interference figures. Additional 

XRD or RAMAN analysis of the silica mineral is essential to determine the state of the silica 

mineral.  
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Figure 33. XPL images of interstitial silica from two anorthosites from a. 1166.52 m and, b. 923.61 m. 

Summary 

The general paragenetic sequence of the gabbros varies with depth, which may 

suggest that a number of phases were crystallising within short time spans of one another. 

Plagioclase, olivine, pyroxene, magnetite and apatite crystallised from the bulk magma. 

Although magnetite appears to be interstitial, oxides crystallising later on in the crystal mush 

layer could overgrow early formed grains of magnetite. 

The paragenetic sequence of the magnetite-rich gabbros is different as the two rocks 

contain different minerals. The magnetite-rich gabbro at the bottom of Cycle V has the 

paragenetic sequence of plagioclase, magnetite, apatite, and the simultaneous crystallisation 

of olivine, clinopyroxene and orthopyroxene followed by biotite. The magnetite-rich gabbro 

at the top of Cycle V has the paragenetic sequence of magnetite, biotite, clinopyroxene and 

simultaneous crystallisation of plagioclase and olivine. 

 The paragenetic sequence of the anorthosites for Cycle V and Cycle VI remains 

relatively consistent. The single anorthosite from Cycle V contained large grains of 

plagioclase with interstitial orthopyroxene and minor clinopyroxene and magnetite.  

Amphibole was found as alteration around clinopyroxene and magnetite (Figure 31)). Three 

out of the five anorthosites from Cycle VI were identical to the anorthosite in Cycle V.  
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Chapter 5 – Analytical Results 

All analytical data from this study, which are presented graphically in this chapter, is 

presented in the appendix. The analytical procedure was highlighted in Chapter 3. 

Plagioclase 

The An% for Cycle V is presented in Figure 34. The data shows a wide spread in 

between andesine and labradorite, with a larger proportion of the data plotting as andesine. 

No analyses from Cycle V contained more than 5% K2O. 

 

Figure 34. Ternary plots illustrating the compositions of the feldspars analysed in Cycle V. 

A single data point can be seen at 60% anorthite.  The grain analysed originated from 

a depth of 1403.32 m and showed no distinct variation in size but did appear to be somewhat 

zoned (grain 1 in Figure 35). The core of the grain displayed no albite twinning, but the outer 

edges did. 
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Figure 35.       XPL image of the labradorite grain (labelled 1) analysed at 1403.32 m. 

The plagioclase analyses for Cycle VI showed less variation than in Cycle V. The 

majority of the analyses plotted as andesine (between 50-60% albite) and a few points as 

labradorite (>50% anorthite). The percentage of K2O is in general higher in Cycle VI 

compared to Cycle V.  

 

Figure 36. Ternary plots illustrating the compositions of the feldspars analysed in Cycle VI. 
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The analyses contained between 1-2% higher K2O in Cycle VI with a single grain 

plotting as sanidine. The analysed grain originated from a depth of 911.66 m. The orthoclase 

grain can be seen in Figure 37 below. 

 

Figure 37.       XPL image of the sanidine grain (labelled 6) analysed at 911.66m. 

 The fluctuation in An% with a decrease in depth is shown in Figure 38. A general 

observation shows two possible trends within the data, as indicated by the two red lines. Both 

trends show higher An% at the bottom and top of the trend, and lower values in the middle. 

The two separate trends are of Cycles V and VI.  

6 
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Figure 38.  Scatter plot illustrating the An% fluctuations throughout Cycle V (solid line) and Cycle VI 

(dashed line). Red lines inserted to illustrate possible trends within the data. 

The data for Cycle V (blue diamond symbols) and Cycle VI (yellow triangle symbols) 

have been re-plotted in Figure 39, along with data from Tegner et al. (2006) and the position 

of the magnetitite layers, as recorded by Tegner et al. (2006).  

Cycle V starts at a depth of 1458.12 m with An% varying between 46-50. The An% 

decreases to values as low as 40% at a depth of 1199.75 m. From 1166.52 m, the An% begins 

to gradually increase until a depth of 1119.3 m where values as high as 52 An% were 

recorded and the average plagioclase composition were found to be 49 An%. From 1105.5 m 

the An% begins to decrease again.  

According to the data from Tegner et al. (2006), the upper boundary of Cycle V is 

located between 1190.1 m and 1158.6 m depth.  Using the unpublished data from Professor 

-1500

-1400

-1300

-1200

-1100

-1000

-900

-800

35 40 45 50 55 60 65

Depth  

(m) 

An % 

Feldspar 

An% 



60 
 

R.K.W. Merkle of the University of Pretoria, the upper boundary of Cycle V was estimated 

around ~1100 m. Based on the data collected and the observed decrease in the An% at 1105.5 

m depth, the upper boundary of Cycle V most likely lies at ~1119.3 m depth. 

From the top of Cycle V (i.e. the base of Cycle VI), the average An% decreases 

gradually from around 48. The lowest values were recorded at depths of 1016.5 m and 942.4 

m where the average compositions are at 45 An%. The sample taken at 990.09 m was found 

to be altered after microscopic examination and therefore no clear points could be found for a 

reliable analysis. After the analyses at 942.4 m, the An% begins to increase again although 

the overall plagioclase compositions showed a greater deal of variation compared to the 

previous trend. Despite this, the average An% increases from 45 An% at 942.4 m to 47 An% 

at 914.99 m. Plagioclase compositions showed a small decrease in the An% of 46.5% at 

911.66 m to 46% at the top of the sample set at 902.3 m. Thus, Cycle VI is much shorter with 

an overall height of approximately 200 m compared to Cycle V at approximately 350 m. 
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Figure 39. Scatter plot illustrating the An% fluctuations throughout Cycle V (blue diamonds) and Cycle 

VI (yellow triangles). Included data from Tegner et al. (2006) is plotted as squares for the 

silicates and black lines for the magnetitite layers. 

From the data from Tegner et al. (2006), three observations can be made. The lower 

cycle (V) is very much in agreement with the previously published data, with the An% 

reported by Tegner et al. (2006) slightly higher than the current data. The upper cycle (VI) 

deviates greatly from the trend noted by Tegner et al. (2006), and a large amount of variation 

is present in the An content of the plagioclases. The third observation is that there is a spike 

in the An% between 1138.2 m and 1050.5 m, which was not detected by Tegner et al. (2006).  

The magnetitite layers appear to be located at the top and bottom of each of the 

cycles. Cycle V shows a package of magnetitite layers at the bottom with two layers located 
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above the magnetite-rich rock sampled at 1458.12 m. Another magnetitite layer is located 

almost below the gabbro sample taken at 1199.75 m where low proportions of magnetite 

were observed. The next package of magnetitite layers is located between Cycle V and Cycle 

VI. A single layer was recorded at 1099 m, between two gabbro samples with proportions of 

~20% magnetite. These proportions are considered low for rocks overlying and underlying a 

magnetitite layer. 

Olivine 

The olivine compositions from Cycle V are shown in Figure 40. The olivine is 

predominantly fayalite with a wide spread in the values between 60 and 90%. The majority of 

the analyses plot between 75 and 85% fayalite, with a small group around 70% fayalite. Two 

points plot at ~60% fayalite, both originating from a magnetite-rich gabbro at a depth 

1458.12 m.  

 

Figure 40.       Ternary plot illustrating the compositions of the olivine analysed in Cycle V. 

The olivine compositions from Cycle VI (Figure 41) appear to be more closely 

grouped compared to Cycle V. All the analyses plot as fayalite with all the data plotting 

between 70% and 90% fayalite. The number of olivine analyses is fewer due to the overall 

lower proportions of olivine throughout Cycle VI. 
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Figure 41.       Ternary plot illustrating the compositions of the olivines analysed in Cycle VI. 

 The fluctuation in the Mg# of olivine with depth in Cycle V and Cycle VI is shown in 

Figure 42. The boundary between the two cycles is based on the study by Tegner et al. (2006) 

and the unpublished data from Merkle. However, the actual boundary is debatable and not 

necessarily in the suggested location based on the An%.  
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Figure 42. Scatter plot illustrating the Mg# fluctuations of the olivines throughout Cycle V (solid line) 

and Cycle VI (dashed and dotted line). Red lines inserted to illustrate possible trends within 

the data. 

The data for Cycles V (blue diamond symbols) and Cycle VI (yellow triangle 

symbols) have been re-plotted in Figure 43, along with data from Tegner et al. (2006) and the 

position of the magnetitite layers, as recorded by Tegner et al. (2006).  

The trend observed throughout Cycle V shows a Mg# of ~40 at the bottom of the 

cycle. Olivine compositions become increasingly fayalitic as depth decreases, and reach the 

lowest values of 16 at a depth of 1199.75 m. From here, the Mg# begins to increase once 

again where a maximum of 31 is reached at a depth of 1105.5 m.  
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The olivine analyses from 1105.5 m depth does not show the same trend that was 

observed in the An% plot. At this depth, the Mg# continues to increase rather than decrease 

as the data continues into Cycle VI.  

Following the peak in the Mg# at 1105.5 m depth, the Mg# then begins to decrease 

again to Mg# of 20 at a depth of 942.4 m. The trend of the data towards the top of Cycle VI is 

somewhat ambiguous (indicated by the two dashed lines at the top of Cycle VI). The Mg# 

may continue to decrease after 911.66 m or begin to increase from 918.69 m. An increased 

density of analytical points higher up in the stratigraphy is required to clarify the trend.  

  

Figure 43. The Mg# variation of the olivine for Cycle V (blue diamond) and Cycle VI (yellow triangle). 

Included is data from Tegner et al. (2006) - squares for the silicates and black lines for the 

magnetitite layers. Red lines inserted to illustrate possible trends within the data. 
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The data from Tegner et al. (2006) appears to be following an almost identical trend 

to the current data. However, an absence of sampling between 1130 m and 1050 m depth 

means that the peak in the Mg# values observed by between the previously defined Cycle V 

and Cycle VI was not recorded. Data from Tegner et al. (2006) is limited for Cycle VI 

therefore no concrete correlation could be made between the two datasets. 

Pyroxene 

 The pyroxene data from Cycle V is presented in Figure 44. The data shows a great 

deal of variation, with the bulk of the data plotting between diopside and hedenbergite. A few 

analyses plotted as augite, one as pigeonite and two as ferrosilite. The pigeonite analysis 

originated from a depth of 1105.5 m as did one of the ferrosilite analyses. The other 

ferrosilite analysis originated from the bottom of Cycle V at a depth of 1427.95 m. 

 

Figure 44.       Ternary plot illustrating the compositions of the pyroxenes analysed in Cycle V. 

The ferrosilite analysis from 1427.95 m was taken from the grain shown in Figure 45a 

(grain 2). The second ferrosilite analysis taken at a depth of 1105.5 m originated from a core-

rim analysis of a partially overgrown pyroxene. The grain is visible in Figure 45b and is 

labelled as 1 and 2 in the image. Both the ferrosilite and pigeonite analyses originated from 

the core of the grains, whereas diopside was analysed at the rim of the grain. 
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Figure 45. a. XPL image of the ferrosilite grain (labelled 2) analysed at 1105.5 m. b. XPL image of the 

partially overgrown pyroxene grain at 1105.5 m. The core (labelled 1) contained pigeonite, 

ferrosilite and diopside at the rim (labelled 2). 

a 

b 
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The data from the line analysis is presented in Figure 46 for the grain illustrated in 

Figure 45 (core 1 and rim 2). The centre of the grain (second order blue and green section) 

was made up of predominantly ferrosilite with smaller amounts of pigeonite. Surrounding the 

core is diopside (second order pink).   

  

Figure 46. Line analysis of overgrown pyroxene grain from a depth of 1105.5 m. The core (labelled 1) 

contains enstatite and ferrosilite. The rim (labelled 2) is diopside. 

The pyroxene analyses from Cycle VI show much less variation with the bulk of the 

data plotting as hedenbergite (Figure 47). The hedenbergite and augite analyses were taken 

from both gabbro and anorthosite samples. The remainder of the analyses plot as augite and 

two plot as ferrosilite. The ferrosilite analyses originated from a gabbro at a depth of 911.66 

m. 
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Figure 47.       Ternary plot illustrating the compositions of the pyroxenes analysed in Cycle VI. 

The two augite analyses originated at two different depths. In Figure 48a and b, the 

two augite grains are shown. No textural differences were identified between the two grains 

save for the difference in size.  
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Figure 48. a. XPL image of the augite grain (labelled 4) analysed at 942.4 m. b. XPL image of the augite 

grain (labelled 2) analysed at 1016.5 m. 
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The fluctuation in the Mg# of the pyroxenes with depth is shown in Figure 49. The 

individual analyses showed a large amount of variation within a single sample. The trends 

observed throughout the pyroxene analyses are quite different from the previous minerals. 

The boundary between the two cycles is notably sharper than previously observed.  

 

Figure 49. The Mg# variation for the pyroxenes of Cycle V and Cycle VI. Red lines inserted to illustrate 

possible trends within the data. 

Cycle V and Cycle VI have been re-plotted in Figure 50 below. The highest Mg# was 

recorded at the base of Cycle V with values ranging in between 50 and 60. The Mg# begins 

to decrease towards minimum values as low as 24 at a depth of 1166.52 m. Above 1166.52 

m, the Mg# begins to increase rapidly (short dashed line) to 47 and then 55 at a depth of 

1105.5 m where another peak in the Mg# is reached. The low Mg# values at 1427.95 m and 
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1105.5 m correspond to the previously discussed augite and ferrosilite analyses. The highest 

Mg# was recorded in the magnetite-rich gabbros and the lowest values were recorded in the 

anorthosites. 

 

Figure 50. The Mg# variation in the pyroxenes in Cycle V (diamonds) and Cycle VI (triangles). Data 

from Tegner et al. (2006) is plotted as squares for the silicates and black lines for the 

magnetitite layers. Red lines inserted to illustrate possible trends within the data. 

The trend observed for the Mg# of the pyroxenes of Cycle VI bears some resemblance 

to that of the Mg# of the olivines from Cycle VI. From the higher Mg# of Cycle V at 1105.5 

m, the Mg# decreases from 48% to 42%. The pyroxene compositions are highly variable 

between the depths of 942.4 m and 902.3 m, with Mg# ranging between 43% and 26%. The 
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presence of primary amphibole, which was recorded in the anorthosite samples between these 

depths, may be affecting the compositions of the pyroxenes. 

Data from Tegner et al. (2006) has been included once again. The lower portion of 

this data appears to be following an identical trend to that of the current dataset. The upper 

portion of Tegner’s data gives no additional insight into the composition of the current 

dataset. The spike in Mg# at 1105 m was not obvious in the Tegner et al. (2006) data. 

Apatite 

Cumulus apatite was analysed for Cycle V and Cycle VI from the gabbro samples 

only, as no apatite was identified in the anorthosites. The halogen concentrations of the 

apatites are shown in Figure 51a and b. All apatite analyses were corrected for oxygen before 

the analysis of the halogen concentrations. 

The fluorine concentrations in the apatite from Cycle V showed large degrees of 

variation. No textural variations were observed between these apatites, so the chemical 

variations could possibly be attributed to the error when analysing for fluorine. However, the 

higher fluorine concentrations between 1427.95 m and 1403.32 m follow a generally 

decreasing trend towards 1105.5 m. 

Cumulus apatite in Cycle VI was limited to the gabbros from 1094 m to 942.4 m. The 

F content varies between 2 wt% and 5 wt%, with the lower fluorine concentrations at the 

bottom of Cycle VI and the higher values towards the top.  

The chlorine concentrations at the bottom of Cycle V show similar variations to those 

seen in the fluorine concentrations. A decrease in the chlorine concentrations is observed 

between 1371.05 m and 1199.75 m. The chlorine concentrations increase again at 1119.3 m 

and 1105.5 m. 

Examining the chlorine concentrations of Cycle VI, the data is better grouped. The 

chlorine concentrations at the bottom of Cycle VI are slightly variable but there is a notable 

decrease of ~0.4 wt% at the bottom to ~0.3 wt% towards 1016.5 m. The values then increase 

again at towards ~ 0.5 wt% at 942.4 m. 

The most abundant ion that could compensate for the decrease in the halogen 

concentration would be hydroxyl ion (OH
-
). Cycle V shows a steady decrease in the fluorine 
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and chlorine concentration from the base towards the top of the cycle that could then imply 

that the OH
- 
concentrations are increasing. 

 

Figure 51.  a. Variation in the fluorine in apatites in Cycles V and VI. b. Variation in the chlorine in 

apatite in Cycles V and Cycle VI. 

Biotite 

 The variations in Mg# with depth in the biotite show noticeable trends in the two 

cycles (Figure 52), with a very different trend in each. The Mg# from Cycle V shows a 

decrease with a decrease in depth.  
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Figure 52.   The Mg# variation in the biotites in Cycle V (diamonds) and Cycle VI (triangles). Red lines 

inserted to illustrate possible trends within the data. 

A biotite analysis from a depth of 1458.12 m was found to be more Fe-rich. Beside 

the variations in size, no distinct petrological observations were made between other biotite 

grains analysed from the same depth. Grains ―1‖, ―2‖ and ―3‖ were all analysed with grain 

―1‖ being the Fe-rich grain in Figure 53 below. 
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Figure 53. XPL image of the analysed biotite grains (labelled 1, 2 and 3) analysed at 1458.12 m. 

A minimum in the Mg# of 34 is reached at a depth of 1133.85 m. The Mg# then 

shows a jump in the values to ~50 at a depth of 1119.3 m. The values remain high until the 

top of Cycle V. The nature of the trend of the biotite analyses from the top of Cycle V is 

arguable as the increase in the Mg# does coincide with a number of magnetitite layers. 

The trend observed throughout Cycle VI is different to Cycle V. The values at the 

bottom of Cycle VI remain between 50 and 55, similar to the top of Cycle V. The Mg# then 

begins to decrease sharply with a decrease in depth. Between the depths of 1053.67 m and 

942.4 m, the Mg# remains ~35. The top of Cycle VI becomes variable with values ranging 

from 18 through to 41. 
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Amphibole 

Reliable amphibole analyses were collected from Cycle VI where large, isolated 

grains were identified. The identification of amphibole in Cycle V was limited to small grains 

of what appeared to be alteration surrounding magnetite and clinopyroxene in some thin 

sections. Due to the altered or un-equilibrated nature (Figure 32b from Chapter 4) of some of 

the grains, a number of the analyses were unreliable. No reliable analyses were collected 

from Cycle V. The anorthosites from Cycle VI yielded the most reliable analyses.  

The Mg# of the amphiboles from Cycle VI (Figure 54) shows a general increase in 

Mg content with a decrease in depth. The lowest Mg# of 3.64 is recorded in an anorthosite at 

923.61 m depth. The anorthosite at this depth contained a number of amphiboles with 

variable amounts of Mg ranging between ~3.5 and ~8. The Mg# of the amphibole in the 

anorthosite from 914.99 m depth was recorded at 6.65. The highest Mg# of 10.67 was 

recorded at the top of the cycle in the anorthosite at 904.5m depth. 

  

Figure 54. Scatter plots illustrating the various trends within the geochemistry of the analysed 

amphiboles.  
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Summary 

The gabbros from Cycle V and Cycle VI contain various proportions of plagioclase, 

magnetite, olivine and pyroxene. Apatite and biotite are minor phases with apatite not always 

present in many of the gabbro samples towards the top of Cycle V and Cycle VI. In Cycle V, 

amphibole is present in small quantities in a number of samples: both gabbro and anorthosite. 

Where present, amphibole is commonly found as alteration surrounding grains such as 

magnetite or clinopyroxene. In Cycle VI, amphibole is present in much larger quantities in 

the anorthosites towards the top of the cycle.  

The variations in the proportions between the two cycles show some similarities. 

Moving up the cycle towards anorthosite shows increases in the plagioclase content and 

decrease in the amount of magnetite. Apatite is present in both cycles with the higher 

amounts found at the base of the cycles. The amounts of apatite are higher in Cycle VI than 

in Cycle V. Larger proportions of olivine and pyroxene are observed in the gabbros from 

Cycle VI. Two anorthosite samples from Cycle VI contained large quantities of interstitial 

amphibole. Cycle V, on the other hand, contains significantly lower proportions of 

amphibole, which is present as rims around grains (Figure 31a and b from Chapter 4) and 

veins and thin layers running through the rock (Figure 31c and d from Chapter 4). 

The grain sizes of the plagioclase and olivine in Cycle V is generally larger compared 

to Cycle VI. The grain sizes of pyroxene in Cycle VI are generally larger than Cycle V. The 

grain sizes of apatite in Cycle V show little variation. The apatite grain sizes, which are 

limited to the bottom of the cycle, show a steady decrease in the grain size with a decrease in 

depth.  

The general paragenetic sequence of the gabbros varies with depth but a few features 

remain consistent. Magnetite is always present in two forms: 1. small rounded grains 

included in plagioclase, olivine and pyroxene, 2. interstitial magnetite that overgrows the 

majority of the mineralogy. When present, apatite is the first mineral to crystallise, followed 

by the smaller grains of magnetite and then biotite. The paragenetic sequence between 

plagioclase, olivine and pyroxene varies from sample to sample as was highlighted 

throughout Chapter 4. 

The two magnetite-rich gabbros, while both containing high proportions of magnetite, 

were texturally and mineralogically different. The magnetite at the base of Cycle V contained 

plagioclase, magnetite, olivine, pyroxene, apatite and biotite. The magnetite-rich gabbro at 
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the top of Cycle V contains no orthopyroxene or apatite but did contain symplectite textures 

between the plagioclase and olivine (Figure 14b from Chapter 4).  

 The paragenetic sequence of the anorthosites for Cycle V and Cycle VI remains 

relatively consistent. The single anorthosite from Cycle V contained large grains of 

plagioclase with interstitial orthopyroxene and minor clinopyroxene and magnetite.  

Amphibole was found as alteration around clinopyroxene and magnetite (Figure 31 from 

Chapter 4). Three out of the five anorthosites from Cycle VI were similar to the anorthosite in 

Cycle V. Two anorthosites from 923.61 m and 914.99 m depth contained large proportions of 

interstitial amphibole (Figure 32b from Chapter 4). Interstitial silica is found in all of the 

anorthosites except for the two anorthosites at 925.91 m and 914.99 m depth. 

The variations in the An% of Cycle V and Cycle VI show different trends with a 

decrease in depth. Cycle V shows a gradual decrease in the An% until a minimum is reached 

at 1199.75 m depth. From 1166.52 m depth the An% begins to increase more rapidly. At 

1119.3 m depth, the An% reaches a maximum followed by a decrease in the An% again at 

1105.5 m depth. The An% trend observed in Cycle VI is more symmetrical with a decrease in 

depth. High An% are recorded at the bottom and top of the cycle with the lowest values being 

recorded in the central portion of Cycle VI. The highest An% are recorded at the top of Cycle 

VI, similar to that seen in Cycle V.  

The trends in the Mg# of the olivine analyses between Cycle V and Cycle VI vary 

significantly. Cycle V shows similar trends to the An% with a gradual decrease in the Mg# 

until 1199.75 m depth. Observing the data from Tegner et al. (2006), a gap in the sampling 

between 1199.75 m and 1133.85 m resulted in the inability to analyse potentially lower Mg# 

in olivine. The Mg# begins to increase rapidly from 1133.85 m depth until 1105.5 m depth 

where a maximum is reached. This is unlike the An% with a maximum being reached at 

1119.3 m depth. Cycle VI shows a significantly different trend in the Mg# compared to the 

An% trend in Cycle VI. The Mg# decreases more rapidly towards the top of the cycle. Above 

942.4 m depth the trend becomes ambiguous as either one of two scenarios could occur with 

improved sampling densities. The Mg# at 918.69 m depth begins to increase which could 

produce a trend similar to that seen in the An%. Alternatively, the Mg# at 911.66 m depth 

continues to decrease without indication of what the trend may result in. 

The trends observed in the Mg# from the pyroxene analyses from Cycle V and Cycle 

VI show a great deal of variation compared to the An% trends and the Mg# trends from the 
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olivines. The Mg# decreases steadily from 1458.12 m until 1166.52 m depth. Above 1166.52 

m, the Mg# begins to increase more rapidly compared to the Mg# of the olivines. A 

maximum is reached at 1105.5 m, the same situation as the An% trend. The Mg# of the 

pyroxenes from Cycle VI is uncertain due to the large amount of scattered observed at the top 

of the cycle. Generally, the Mg# shows a decrease from 1090.0 m to 1016.5 m. Above this 

depth, the Mg# varies significantly. The Mg# between 942.4m and 902.3m depth varies 

between 41 and 30 with apparent trend. The variable values coincide with the presence of 

significant proportions of amphibole. 
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Chapter 6 – Discussion 

 The Upper Zone is characterised by a number of thick magnetitite and anorthosite 

layers, and cyclic geochemical variations within the silicate mineralogy. The current study set 

out to investigate two of the Upper Zone cycles that contain magnetitite layers, anorthosite 

layers as well as the most pronounced cyclic variations in plagioclase, olivine and pyroxene.  

 The study involved the detailed investigation of Cycle V and Cycle VI using an 

increased sampling density. Petrological data and EMPA data was collected from fourteen 

samples from Cycle V and fifteen samples from Cycle VI. The higher sampling density has 

revealed a number of newly discovered features, which becomes apparent when the data is 

compared to that of Tegner et al. (2006). Additionally, the current dataset can now be applied 

to previously published models of the Upper Zone evolution, to see if they still remain valid 

with new and additional data.  

Comparison of Cycle V and Cycle VI to Tegner et al. (2006) 

 In the study by Tegner et al. (2006), a relatively detailed study of the Upper Zone 

mineralogy was carried out. The study led to the identification of nine cycles (I-IX) within 

the Upper Zone. Twelve samples were collected over Cycle V and Cycle VI, which led to the 

general outline of the geochemical variations within each of these two cycles. This study has 

provided not only additional EMPA data but also detailed petrological data. 

The results obtained throughout these works can be summarised briefly as follows: 

1. The lithologies of the two cycles are similar; however, there are a few notable 

differences. Both cycles are made up of gabbro and anorthosite but Cycle V contained two 

magnetite-rich gabbros, whereas Cycle VI contained no magnetite-rich gabbros. Cycle VI 

included five anorthosites that are found towards the top of the cycle but Cycle V only 

included one anorthosite. This single anorthosite from Cycle V was identical to three of 

anorthosites from Cycle VI in terms of the interstitial pyroxene as opposed to interstitial 

amphibole in the remaining two anorthosites. The remaining two contained little to no 

pyroxene but did include high proportions of interstitial amphibole. Cycle V contained only 

small proportions of amphibole that was present in the form of veins and small layers and as 

alteration rims around silicates and oxides. 

2. The previously defined boundary between Cycles V and VI by Tegner et al. (2006) 

needs to be re-considered, as the additional data collected in this study provides better 
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discrimination. Based on the petrology and the An% data, the boundary is more likely to be 

situated between 1130 m and 1120m as opposed to ~1180m. 

 3. Cyclic behaviour in mineral chemistry is present in both cycles. Figure 55 shows 

the variations in the An% and the Mg# throughout Cycle V and Cycle VI. In Tegner et al. 

(2006), Cycle VI appeared to show identical variations to Cycle V although the An% and 

Mg# were generally lower in Cycle VI. 

 

Figure 55. The variations in An% and the Mg# of olivine and pyroxene from Cycle V and Cycle VI from 

Tegner et al. (2006). Initial 
87

Sr/
86

Sr data from Kruger et al. (1987) showing near-homogenous 

isotopic ratios.  

A comparison of the current data to that of Tegner et al. (2006) (Figure 56) shows a 

number of features. Firstly, Cycle V and Cycle VI are not as similar to one another as 

previously thought. Secondly, although the data from Tegner et al. (2006) shows some 

similarities compared to the current data, there are a number of notable differences.  

a) The peak in the An% and the Mg# is much higher at the boundary between Cycle 

V and Cycle VI than originally recognised.  
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b) Using the An% and the presence of the second magnetite-rich gabbro, the 

boundary between Cycle V and Cycle VI is situated above 1119.3m but below 

1105.5m depth. 

c) The An% in Cycle VI shows greater variation compared to Tegner et al. (2006). 

d) Data from Cycle VI from Tegner et al. (2006) was limited, therefore the variable 

Mg# of the olivines (Figure 56) and pyroxenes (Figure 50 from Chapter 5) at the 

top of Cycle VI were not recognised.  

 

Figure 56. Geochemical trends observed in Cycles V and VI.  a. An% from the plagioclase analysis, and 

b. Mg# from the olivine analysis. Positions of some magnetitite layers from Tegner et al. 

(2006) have been included. Red and green lines inserted to illustrate possible trends within 

the data. 
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The fluctuations of An% in plagioclase and Mg# in clinopyroxene with stratigraphic 

height depth is one of the main criteria for defining Cycle V and Cycle VI within the 

succession. However, Figure 38 shows the An% plotted against the Mg#, and shows that the 

inter-relationship of these two parameters is more complex than previously appreciated. Only 

the Mg# from the pyroxenes has been plotted, as olivine is not found in anorthosite. The 

triangular symbols represent Cycle V and the circular symbols represent Cycle VI. 

In Figure 57a, the An% in the gabbros generally decreases as the Mg# decreases, as 

might be expected in a fractionally crystallising system. However, there is a clear division 

between the anorthosites and gabbros, with the anorthosites showing more primitive An% 

than would be expected from the Mg# of the clinopyroxenes present. Since the anorthosites 

form part of the gabbroic succession and are unlikely to represent unique new additions of 

magma, this would imply that either the clinopyroxenes in the anorthosites have lost Mg, or 

the plagioclases have gained Ca. In either case, the implication is that the anorthosites in 

Cycle V have been altered during their formation.  

 

Figure 57.        An% versus Mg# from gabbros and anorthosites for a. Cycle V and b. Cycle VI. 

In Figure 57b, no clear trend is evident. All the rock types appear to have similar An% 

but variable Mg#. The majority of the gabbros have higher Mg# than the anorthosites except 

for a small group of gabbros that have particularly low Mg#  Although no discernible trend 

20

25

30

35

40

45

50

55

60

65

38 43 48 53

Mg# 

An% 

Cycle V 

Gabbro

Anorthosite

20

25

30

35

40

45

50

55

60

65

38 43 48 53

Mg# 

An% 

Cycle VI 

Gabbro

Anorthosite

a b 



85 
 

can be identified within each group, one aspect is clear; the conditions operating during the 

crystallisation of each cycle is different for Cycle V and Cycle VI. 

Possible mechanisms for the evolution of Cycles V & Cycle VI 

The majority of models proposed for the Upper Zone assume the entire succession to 

have crystallised from a single batch of magma. Kruger et al. (1987) provided isotopic data 

from the Pyroxenite Marker to the top of the Upper Zone (Figure 55), which revealed 

homogenous ratios of 0.7073 ± 0.0001. These data were interpreted as strong evidence for the 

crystallisation of the Upper Zone from a single magma.  

A number of studies have proposed models regarding the formation of the Upper 

Zone magnetitite layers and/or anorthosite layers. Many of these models incorporate the 

formation of these layers through the crystallisation of the whole Upper Zone magma. 

Therefore, the formation of the magnetitite and anorthosite layers overlap with the formation 

of the cyclic mineralogy and geochemistry. Using the data from Cycle V and Cycle VI, the 

proposed models can be put to the test as any one of these models, if the model is correct, 

should be able to reproduce the mineralogical, petrological and geochemical results collected 

in this study. Should none of the models fit perhaps the additional insight may give some 

evidence as to what mechanisms could have resulted in the formation of Cycle V and Cycle 

VI and by extension the whole Upper Zone.  

a) Crystal fractionation, crystal settling and pressure fluctuations 

Fractional crystallisation within the Rustenburg Layered Suite is said to occur up 

through the succession towards the top of the complex. Observing the An% and the Mg# 

shown in Figure 2 in Chapter 2, the compositions move from ultramafic to mafic 

compositions in the Lower Zone to more evolved compositions in the Upper Zone (Eales & 

Cawthorn, 1996). Wager & Brown (1968) posited that the crystallisation and fractionation of 

minerals by differential settling could result in the formation of graded modal layers. This 

theory, applied under extreme circumstances, could lead to the formation of pure anorthosite 

or magnetitite layers (Cawthorn & Ashwal, 2009).  

Cawthorn & Ashwal (2009) discussed the theoretical application of Wager & Brown 

(1968) to the formation of magnetitite and anorthosite layers. The formation of the 

anorthosite layers would require fractional crystallisation until plagioclase is the sole 

crystallising phase. Plagioclase would then accumulate at the top of the modally graded 
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lithology to form the anorthosite layers. The formation of magnetitite layers, according to 

Cawthorn & Ashwal (2009), would form through crystallisation of a magma saturated in 

magnetite, pyroxene and plagioclase. Based on the density, magnetite would accumulate first 

followed by pyroxene and then plagioclase. However, Cawthorn & Ashwal (2009) noted a 

discrepancy in the Upper Zone lithology as little cumulus pyroxene was observed overlying 

the magnetitite layers. Although fractional crystallisation does take place to a certain degree 

within the Upper Zone, is such an extreme would need to be the cause for the formation of 

these monomineralic layers.  

The re-examined model of Cawthorn & Ashwal (2009) suggested the formation of the 

anorthosite and magnetitite layers by pulsed yet rhythmic crystallisation. Fluctuations in 

pressure resulted in rhythmic crystallisation that was induced by fluctuations in pressure, and 

associated crystal settling. Evidence supporting this model was based on the lack of reversals 

in An% over a number of anorthosite layers. The gradational upper contact of some of the 

magnetitite layers was also said to represent crystal settling. The An% was found to fluctuate 

above and below a number of the magnetitite layers and was subsequently interpreted as 

support for a mechanism controlled by fluctuations in pressure.  

The formation of monomineralic layers could also form through fluctuations in 

pressure. Naslund and McBirney (1996) proposed the crystallisation of a single mineral phase 

due to changes in pressure. Laterally extensive and continuous layers could form due to a 

large-scale change in pressure. An increase in pressure would crystallise magnetitite layers 

and a reduction in pressure could crystallise anorthosite layers.  

According to the current data, the geochemical reversals are more exaggerated than 

previously recorded. Using changes in pressure proposed by Cawthorn & Ashwal (2009), a 

number of observations would need to be explained. Firstly, the sharper boundary observed 

between Cycle V and Cycle VI. Due to the steep gradients before and after the boundary, the 

pressure change would have to be fast-acting and not to mention effective over an extremely 

large area based on the lateral continuity between the Eastern and Western Limbs (Eales & 

Cawthorn, 1996).   

Observing the mineralogical proportions of Cycle V and Cycle VI, the plagioclase 

increases moving upwards in a cycle while magnetite decreases. The plagioclase grains also 

show some form of preferred alignment throughout the majority of the samples. These 

observations support fractional crystallisation. However, the periodic appearance and 
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disappearance of olivine and cumulus apatite between Cycle V and Cycle VI challenges the 

validity of pressure being the only controlling variable on the formation of the Upper Zone 

cycles. The effect of pressure would control the proportions of plagioclase and magnetite 

crystallising but the disappearance of a mineral phase from Cycle V and reappearance in 

Cycle VI cannot simply be caused by changes in pressure.  

By comparing Cycle V and Cycle VI, it is clear that the conditions affecting Cycle V 

are not the same as the conditions affecting Cycle VI. The An% for Cycle VI showed a more 

symmetrical trend whereas Cycle V showed gradual decreases in the An% followed by more 

rapidly increasing An%. Should the pressure conditions for two initially ―identical‖ cycles be 

different, what then are the pressure conditions for the whole of the Upper Zone? 

An additional point to consider is the cause of the pressure changes. According to 

Naslund & McBirney (1996) and Cawthorn & Walraven (1998), pressure changes could be 

brought about by an eruption. Cawthorn & Walraven (1998) noted the absence of a cumulus 

silica phase towards the top of the Upper Zone lithology. An erupted volume of 40% was 

calculated to have erupted from the Upper Zone. Although an eruption is plausible, a volume 

as much as 40% is somewhat excessive considering the overall mafic nature of the Upper 

Zone magma.  

The eruptive mechanism would encompass multiple eruptions due to the presence of 

several anorthosite layers. Considering the number of layers, the mechanism responsible for 

triggering each eruption would need to be repetitive. A mechanism capable of inducing an 

eruption repeatedly would most likely be multiple injections of magma.  

b) Double diffusive convection 

A double diffusive convection system develops when two or more components have 

opposing effects on density and different molecular diffusivities. How double diffusive 

convection forms within a magma remains a field in need of additional research. According 

to Huppert and Sparks (1984), silicate melts are ideal fluids in which double diffusive 

convection can take place due to the differences in the diffusivity between heat and the 

molecular components making up the system. 

In Figure 58, the variable ―T‖ represents temperature and is depicted as the solid line 

whereas ―S‖ represents the chemical components and is represented as the dashed line. The 

four graphs below illustrate the stable and unstable configurations between these two 
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variables. In Figure 58, four temperature-composition settings are illustrated. Graph 58(a) 

represents the most stable condition where temperature increases upwards and density 

increases downwards. Graph 58(b) illustrates an unstable situation where temperature 

decreases upwards and the density increases upwards.  Graph 58(c) and (d) illustrate the two 

instances where double diffusive convection would most likely develop.  

 

Figure 58. Graphical illustration of the four possible scenarios between two varying components within 

a magma. Temperature (T) is represented as the solid line. Composition (S) is represented as 

the dashed line (Huppert and Sparks, 1984). 

Tegner et al. (2006) proposed a mechanism whereby stratification of the magma and 

subsequent cyclic mineralogy was achieved through double diffusive convection (DDC). The 

application of DDC to the formation of layers within an intrusion is discussed in detail by a 

number of authors but especially in the study by Irvine et al. (1983) and more recently by 

Tegner et al. (2006). 

To maintain the single magma theory proposed by Kruger et al. (1987) and to explain 

the periodic appearance of olivine and apatite, Tegner et al. (2006) proposed the stratification 

of the Upper Zone magma by crystallisation and mixing between the underlying crystallising 

layer and the overlying Fe-rich magma. The model proposed included bottom crystallisation 

of a gabbronoritic rock type that led to the increased densification of the magma due to the 
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increased iron content of the liquid. The higher density of the liquid would result in the 

magma pooling at the base of the magma chamber above the crystallised material. The 

difference in the diffusivities between the major elements and the heat within the magma 

would result in the separation of the magma body into separate double diffusive convection 

cells.  

Once magnetite begins to crystallise the density of the overlying magma becomes 

increasingly lower. Eventually the density of the residual liquid becomes equivalent to that of 

the overlying magma layer, which in turn allows the mixing between a more evolved liquid 

and a less evolved liquid. A reversal in the Mg# as well as the An% would result. A 

simplified illustration of this setting is provided in Figure 59 below. 

 

Figure 59. Schematic representation of Tegner’s double diffusive convection to the formation of the 

upper Main Zone and the Upper Zone (Tegner et al. (2006). 

The conditions resulting in the stratification of the whole Upper Zone magma resulted 

in the formation of at least nine convection cells or layers. The variables responsible for the 

formation of these layers are responsible for the separation of significantly iron-rich layers 

overlying one another including layer 21 that is situated in UZc. 
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According to Tegner et al. (2006), only small amounts of diffusion of the major 

elements would take place between cells. Referring to Figure 56 and Figure 57, the 

geochemical shifts in the An% and Mg# vary from cycle to cycle which leads to question the 

conditions affecting diffusion and the amount of diffusion. Although stratification of the 

magma chamber is achieved through DDC, other processes besides (or in addition to) 

fractional crystallisation appears to have occurred for Cycle VI.  

The model proposed by Tegner et al. (2006) acknowledges the disappearance of both 

olivine and apatite from the cycles in UZc. After density-controlled mixing, fractional 

crystallisation continues until olivine crystallises once again. Although the crystallisation of 

olivine could easily be explained, the issue of the periodic appearance of apatite remains 

ambiguous. 

In the study by Tegner et al. (2006), the periodic crystallisation of apatite is attributed 

to the mixing of the residual magma with an apatite-undersaturated magma. These particular 

magma-mixing events were subsequently used in Tegner et al. (2006) to place the cycle 

boundaries. This study has shown that the cycle boundary just between Cycle V and Cycle VI 

clearly needs to be relocated. In light of this, the theory of in situ magma mixing from Tegner 

et al. (2006) becomes questionable. 

At this point, it is necessary to re-evaluate the fundamental data supporting the closed 

nature of the Upper Zone. The initial strontium (Sr/Sr0) data from Kruger et al. (1987) and 

Tegner et al. (2006) are provided in Figure 60 plotted alongside the plagioclase data from this 

study. The Sr/Sr0 data is only available for Cycle V as no data for Cycle VI could be found. 

Regardless, the trends between the two sets of data in Cycle V cannot be ignored. 

In Figure 60, the An% and the initial strontium data in Cycle V show somewhat 

similar trends. The Sr/Sr0 data shows a steady decrease until ~1200m depth. Above this, the 

ratios begin to increase until a maximum is reached at 1158.6m depth after which the ratio 

begins to decrease again. The An% also decreases until ~1200m depth and increases until 

1105.5m depth. The turning point between these two may differ but the correlation between 

the two sets of data indisputable. This data shows two things- firstly, the Sr/Sr0 ratio for the 

Upper Zone is NOT homogeneous, and the isotopic ratios show distinct cyclic behaviour in 

the same manner as the plagioclase chemistry. This in turn brings into question the basic 

assumption that a single magma created the Upper Zone. 
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Figure 60. Similarities in the median of the An% trend and the initial strontium data trend and the 

initial strontium data from Kruger et al. (1987) and Tegner et al. (2006). 

c) Multiple injections of magma  

Magma mixing is one of the other processes next to fractional crystallisation that is 

responsible for the change in composition of a magma. Although a number of intrusions, 

especially layered intrusions, have proven to form from multiple magma recharge events, the 

Upper Zone is commonly accepted to have crystallised from a single magma (Kruger et al., 

1987). Important indicators of magma mixing include changes in isotopic ratios, sharp 

lithological breaks as well as geochemical breaks. 
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Although the concept is not favoured, the formation of the Upper Zone by multiple 

injections of magma has been recently argued. Scoon & Mitchell (2012) provide an 

alternative interpretation of field observations and previously published data. According to 

the authors, the formation of macro-layering and the geochemical reversals cannot be formed 

through closed system fractional crystallisation. Similar interpretations are discussed by 

Ashwal et al. (2005) based on similar results in a study of Bellevue core from the Upper Zone 

in the Northern Limb. 

Kruger et al. (1987) acknowledged the possibility of the Upper Zone forming from 

multiple magma pulses but considered it improbable as the incoming magma would have to 

have an isotopic ratio similar to that of the mixed magma (the residual Main Zone magma 

and the incoming Upper Zone magma). Therefore, according to Scoon & Mitchell (2012), the 

relatively homogenous Sr
87

/Sr
86 

data was achieved by sourcing the additional magma from a 

fractionally crystallising felsic tholeiite.  

According to Scoon & Mitchell (2012), the magnetitite and anorthosite layers could 

also be formed through additional injections of magma into the Upper Zone. Mitchell & 

Manthree (2002) discussed a model whereby a new magma pulse injected into a crystal mush 

would result in disequilibrium partial melting of cumulates at the boundary between the 

Critical and the Main Zone. According to Naslund (1986), the first author to describe 

disequilibrium partial melting, plagioclase would survive as a refractory material while the 

mafic phases would undergo partial melting. Scoon and Mitchell (2012) suggested a two-

stage process. Firstly, the crystallisation of plagioclase within the resident melt was followed 

by the additional enrichment through the removal of pyroxene from anorthosite-rich layers by 

means of disequilibrium partial melting. Scoon and Mitchell (2012) proposed that magnetitite 

layers could also form through multiple magma pulses, a theory based on the study by Zhang 

et al. (2012) on the Baima layered intrusion in SW China. 

The study by Mitchell & Manthree (2002) presented the data in Figure 61 as evidence 

for disequilibrium partial melting. The data collected in this study, as discussed in Chapter 5, 

shows noticeably different trends. By comparing Critical and Main Zone data to the current 

Upper Zone data, it is evident that the Upper Zone anorthosites were unlikely to have formed 

by disequilibrium partial melting. In addition to this, no textural evidence was found in the 

anorthosite samples that would suggest the rocks had been subjected to any sorts of heat-

induced disequilibrium. 
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Figure 61. EMPA data from a study of the Critical Zone by Mitchell & Manthree (2002) showing the 

variations in the Mg# of the orthopyroxene and the variations in the An% of the plagioclase 

from the Bastard Unit overlying the Main Zone. 

The formation of magnetitite layers through the extensive silicate mineral 

fractionation of a magma chamber at depth, and closed to oxygen, could produce a highly 

enriched Fe-Ti melt. The migration of the melt to shallower depths would result in magnetite 

crystallising as an early liquidus phase and based on the extent of the Fe-Ti enrichment could 

lead to thick successions of magnetite i.e. magnetitite layers (Zhang et al., 2012). Reversals 

in the An% were interpreted as magma recharge events which were caused by the incoming 

Fe-Ti rich melt. Figure 62 is a figure from Zhang et al. (2012) that has been enhanced for 

clarity.  
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Figure 62. Edited figure from Zhang et al. (2012) showing the lithology and geochemistry of the Baima 

layered intrusion in SW China. 

Comparing the current data to that of Zhang et al. (2012), the An% from Cycle V 

shows similar reversals. The boundary between Cycle V and Cycle VI, the An% reaches as 

maximum which coincides with a package of magnetitite layers. The data presented by Zhang 

et al. (2012) appears to show some similarity to the current data but additional research 

would be required to confirm the validity of these interpretations.  

Vantongeren and Mathez (2013) discussed the formation of the Pyroxenite Marker by 

multiple injections of magma. Each successive pulse was introduced at a slow enough rate to 

allow for homogenisation between the residual melt and the incoming magma. A sufficient 

amount of cooling and crystallisation took place prior to the next injection of magma. The 

data from this study is provided in Figure 63. 
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The trend of the data is of particular interest to the current Upper Zone data. 

Highlighted in the red block is the geochemical data from just below the Pyroxenite Marker. 

Here the trends for Mg# from the pyroxenes has been plotted in addition to the An% from the 

plagioclase analyses. These trends show some form of resemblance to the current An% and 

Mg# data from Cycle V.  

 

Figure 63. Data from Vantongeren and Mathez (2013) illustrating the trends observed within the An% 

and Mg# throughout the upper Main Zone and Upper Zone. Red block inset illustrating the 

observable similarities between the current dataset and data from Vantongeren and Mathez 

(2013). 

The consecutive pulses of hotter and more mafic magma would allow the 

crystallisation of magnetite and olivine once again as well as reintroduce apatite to the 

liquidus once again. The data presented in this study bears some resemblance to the data from 

Vantongeren and Mathez (2013) regarding the sharp contacts between anorthosite and 

magnetitite layers and the geochemical breaks in the modal mineralogy (Figure 56). 
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Implications for the rest of the Upper Zone 

The Upper Zone represents the most evolved state of magma compositions for the 

Rustenburg Layered Suite. Previously, the magma from which the Upper Zone crystallised 

was believed to be the last stage of magma recharge of the layered intrusion. The data 

presented for Cycle V and Cycle VI has shown that the conditions responsible for their 

evolution are not as simple as previously throughout.  

Cycle V shows a fractional crystallisation trend followed by a sudden increase in the 

An% either attributed to small scale diffusion from the overlying, less evolved magma layer 

(Tegner et al., 2006) or from an injection of a less evolved magma (Scoon & Mitchell, 2012). 

In contrast, Cycle VI shows different results. The An% shows a symmetrical trend with a 

decrease in the An% followed by an increase in the An%. The trends observed within the 

Mg# from the olivine pyroxene analysis are inconclusive. The Mg# from the pyroxene 

analysis shows a great deal of variation with no discernible trend visible. As mentioned 

previous chapters, the variable analysis of pyroxene does coincide with the appearance of 

large proportions of amphibole. Considering the hydrous nature of amphibole, a considerable 

percentage of fluid is present within Cycle VI. 

The results presented in this study have provided a great deal of insight regarding two 

of the cycles from the Upper Zone. Despite studies providing strong evidence for the Upper 

Zone crystallising from a single pulse of magma, the unusually cyclic repetition of the modal 

mineralogy has posed complex set of circumstances that could possibly be explained by 

multiple injections of magma. Based on the dissimilarities between Cycle V and Cycle VI, if 

the Upper Zone did crystallise from a single magma, the model responsible for the evolution 

of the Upper Zone is still unknown. The assumption that a single model is responsible for the 

formation of each cycle is unrealistic. A more likely situation would involve a combination of 

particular features from each model that could result in the formation of the Upper Zone.  

The small-scale study of the Upper Zone cycles revealed detailed information 

regarding the evolution of the Upper Zone and has shown that the model responsible for the 

formation of the Upper Zone has not been resolved. Further similar work on the remaining 

cycles of the Upper Zone needs to be done in order to determine whether the changes 

observed between Cycles V and VI are replicated elsewhere, and whether there is a 

progressive change in the nature of the cycles through the sequence in the UZ.  An additional 

point to consider, although initially considered improbable, is the possibility of the Upper 
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Zone forming from multiple additions of magma. Should this theory hold some truth, the 

implications of on the theories regarding the Upper Zone eruption need to be reassessed?  
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Chapter 7 – Summary and Conclusions 

The purpose of this study set to evaluate the mineralogical and geochemical changes 

that took place throughout Cycle V and VI of the Upper Zone. The collected petrological data 

and electron microprobe data has been presented and discussed. The relevance of these 

results has been presented through the comparison with existing models. Examination and the 

comparison of the collected data have provided new insights into the nature of two cycles 

within the Upper Zone. 

The Upper Zone, popularly accepted as having crystallised from a single pulse of 

magma, consists of gabbronorite, gabbro and ferrodiorite. Throughout the stratigraphy, a 

number of anorthosite and magnetitite layers are present. Data presented by Tegner, et al. 

(2006) showed the mineralogy of the Upper Zone to be cyclic. Nine cycles were identified by 

electron microprobe analysis of samples taken from the upper Main Zone all through the 

Upper Zone. Although a model involving double diffusive convection was proposed for the 

formation of the Upper Zone, this model leaves many questions unanswered.  

The cyclic nature of the Upper Zone has led to a complex set of questions regarding 

the evolution of the Upper Zone. The large sampling density of two particularly distinct 

cycles forms the basis of this study. Thirty samples were collected over the six hundred 

metres represented by Cycles V and VI, from a borehole through the UZc, the BK1 borehole. 

Examination of the samples included petrography, which included modal mineralogy 

identification, modal mineralogy proportions and grain size variations within each modal 

mineral phase. The modal mineralogy was analysed using EMPA. The data collected from 

these samples could help in uncovering the controlling factors behind the mineralogical and 

geochemical cyclicity of the Upper Zone. 

The lithology of Cycles V and Cycle VI include magnetite-rich gabbro, gabbro, 

plagioclase-rich gabbro and anorthosite. The modal mineralogy included plagioclase, olivine, 

pyroxene and magnetite. Other minerals included cumulus apatite, biotite amphibole and 

minor proportions of silica. The proportions were calculated and the grain sizes were 

measured for each of the mineral phases. Using electron microprobe analysis, the 

geochemistry for plagioclase, olivine, pyroxene, apatite, biotite and amphibole were 

collected. The minerals important for this study are plagioclase, olivine, pyroxene and apatite. 
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The proportions of each mineral phase, whether primary of secondary, were 

calculated using spectral identification Adobe Photoshop. The largest proportions consisted 

of plagioclase, which was predominantly present as larger, tabular shaped grains. Smaller, 

rounded grains were identified in between grain boundaries of larger plagioclase grains. The 

gabbro samples consisted of varying proportions of magnetite, olivine and sometimes 

pyroxene and apatite. Pyroxene and plagioclase dominated the anorthosite samples.  

The electron microprobe analysis was conducted on plagioclase, olivine, pyroxene, 

apatite, biotite and amphibole. The minerals of particular interest were plagioclase, olivine, 

pyroxene and apatite. The An% from the plagioclase and the Mg# number from the olivine 

and pyroxene provided the most beneficial insight into the trends of Cycles V and VI 

geochemistry. 

The trends in the An% between Cycles V and VI are similar. Both cycles show 

increases in An% at the bottom at top of the cycles and lower An% values in the middle of 

the cycles. Cycle V exhibits an obvious decrease in the An% whereas Cycle VI is not as 

pronounced perhaps due to a sampling gap. The included data from Tegner et al. (2006) 

displayed similar trends although limited sampling resulted in the oversight of a much higher 

shift in the An% between Cycles V and VI. 

The trends in the Mg# of olivines and pyroxenes between Cycle V and Cycle VI 

exhibit a greater amount of variation. The Mg# of olivine and pyroxene show similar trends 

of high Mg# at the base of the cycle and reach a minimum just before the top of the cycle. 

The steadily declining Mg# shows a rapid increase in Mg# towards the boundary between 

Cycles V and VI. 

The Mg# of olivine and pyroxene from Cycle VI is notable different to Cycle V. After 

the spike in the Mg# of Cycle V, the values begin to decrease once again and far more rapidly 

compared to the base of Cycle V. The olivine Mg# showed much less variation compared to 

the Mg# from the pyroxene analyses.  

The models regarding the formation of magnetitite or anorthosite layers or the cyclic 

mineralogy of the Upper Zone were discussed and assessed based on the current dataset. The 

validity of a number of models is questionable while others are promising, but additional 

research is required.  
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The study by Kruger, et al. (1987) provided strong evidence for the crystallisation of 

the Upper Zone from a single magma injected at the Pyroxenite Marker. The residual magma 

from the crystallising Main Zone homogenised with the newly injected magma from which 

the Upper Zone crystallised. Although this model is most commonly accepted, new studies 

have argued that multiple injection of a isotopically homogenous magma formed the Upper 

Zone. However, the majority of the models attempt to explain the formation of the Upper 

Zone through the crystallisation of a single pulse of magma.  

Cawthorn & Ashwal (2009) discussed mechanisms resulting in the formation of 

anorthosite and magnetitite layers. Changes in pressure were accompanied pulsed 

crystallisation followed by crystal settling. The model would require repetitive changes in 

pressure in order to form the number of layers present. Despite the possibilities of the model 

proposed by Cawthorn & Ashwal (2009), the periodic disappearance of olivine and apatite 

from the liquidus rules this model as unlikely especially if pressure changes are considered in 

isolation. 

Tegner et al. (2006) realised this discrepancy and subsequently proposed that the 

evolution of the Upper Zone involved stratification of the magma closely followed by 

crystallisation of an iron-rich magma. Crystallisation and density controlled mixing 

subsequently resulted in the resetting of the fractional crystallisation sequence in each 

successive layer. According to Tegner et al. (2006), stratification of the magma explained the 

periodic appearance of phases such as olivine and apatite.  

Although stratification could be achieved through double diffusive convection, the 

effectiveness of density in DDC is questionable especially when considering crystallisation of 

extremely thick and iron-rich layers much higher in the Upper Zone stratigraphy. A layer of 

magma with enough iron to crystallise the 7m thick magnetitite layer, aka Layer 21,  

The assessment of two popular models involving the evolution of the Upper Zone in a 

system closed to additional pulses of magma has provided some possible explanation to what 

is observed through the Upper Zone. However, the data collected has resulted in more 

questions regarding these models rather than affirmation. 

The study by Scoon & Mitchell (2012) reassessed the formation of the Upper Zone 

and concluded that the Upper Zone more likely formed from multiple magma pulses. The 

anorthosite layers were attributed to disequilibrium partial melting (Mitchell & Manthree, 
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2002) and the magnetitite layers to crystallisation of a Fe-Ti rich magma due to a reduction in 

pressure through the migration of the melt to shallower depths (Zhang et al., 2012). The 

cyclic trends observed in the An% and the Mg# throughout the Upper Zone are easily 

explained by the addition of slightly more primitive magmas from a fractional crystallising 

staging chamber. 

The formation of the anorthosite layers by disequilibrium partial melting was ruled 

out due to the lack of textural evidence and the dissimilarities between the data provided in 

Mitchell & Manthree (2002) and the current dataset. The application of Zhang et al. (2012) 

remains possible and the newly discovered trends in the An% and Mg# may support multiple 

magma injections.  

A model discussed by Vantongeren and Mathez (2013) involved the formation the 

Pyroxenite Marker. However, such a model could be proposed for the formation of the Upper 

Zone. Such a model could easily explain the sharp increase in both the An% and Mg# 

between Cycles V and VI. The appearance and disappearance of apatite could also be 

explained using this model in addition to creating a homogenous isotopic ratio throughout the 

Upper Zone. 

Vantongeren and Mathez (2013) proposed the addition of multiple pulses of magma 

that were injected at specific intervals and at slow enough rates. Addition of magma in such a 

manner would allow for the homogenisation of the magma, after which cooling would then 

take place. The formation of a crystal mush before the next injection of magma would allow 

for a sufficient volume of melt to remain and then mix with the next injection of melt. The 

result would be an isotopically homogenous lithology.  

The evolution of the Upper Zone by multiple injections of magma appears to be a 

model worth revisiting. Although the near homogenous isotopic data has served as the 

strongest support for a system closed to multiple injections of magma, the near-identical 

fluctuations between the initial strontium data and the An% cannot be ignored. 

In conclusion, the data collected throughout this study has provided important insight 

into two of the cycles from the Upper Zone. The data collected included petrological data in 

the form of minerals present, modal proportions and variations in grain sizes. Additional 

electron microprobe data was also collected for the modal mineralogy. The applicability of 

previously existing models was examined. Based on the additional data, support for a model 
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encompassing multiple additions of magma is favoured. However, the application of such a 

model to the entire Upper Zone is yet to be explored. 

Future research 

In light of the data presented in this project, the genesis of the Upper Zone is just one 

avenue where research will continue. Additionally, a number of interesting features are 

mentioned but unfortunately, did not fall within the scope of the project. In future, studies of 

the remaining Upper Zone cycles will take place; secondly, documenting the state of the 

silica polymorph throughout the Upper Zone using RAMAN analysis; and lastly, recording of 

the distribution and mineral associated minerals of the symplectites and implication these 

features hold for the Upper Zone. 

The increased sampling density simply between two cycles revealed detail behind the 

cyclic nature of the Upper Zone. If a thorough understanding of the Upper Zone mineralogy 

and cyclicity is to be achieved, more of the cycles will need to be studied. The cycles both 

above and below Cycle V and Cycle VI, have the potential to answer some of the questions 

brought up throughout this study. 

 Future research will include larger sampling densities throughout Cycles I-IV and 

from Cycles VII-IX. Petrography and microprobe analysis will form part of the database; 

however, incorporation of Selfrag analysis will allow for the improved accuracy of both 

mineral proportions estimations and grain size distributions. Petrography will include detailed 

studies of the microstructures throughout the Upper Zone. 

The ambiguous nature of the silica component in the anorthosites remains an 

unanswered. The use of RAMAN analysis will provide crystallographic information 

regarding the two silica polymorphs. Perhaps the state of the silica could provide insight into 

the pressure fluctuations throughout the crystallisation of the Upper Zone. 

Notable observations of symplectites in one magnetite-rich gabbro represent an 

interesting problem. Firstly, additional studies will include investigations into what formed 

the symplectites and why this magnetite-rich sample differs from the remaining samples. 

Secondly, do these symplectites occur elsewhere in the Upper Zone, and if so, why? 
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