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The purpose of this dissertation is to solve an optimal investment, consump-

tion and life insurance problem described by jump-diffusion processes in two

settings.

First, we consider a problem with random parameters of a wage earner

who wants to save to his beneficiary for his death. Using one risk-free asset

and one risky asset price given by a geometric jump-diffusion process, we

obtain the optimal strategy via the dynamic programming approach, com-

bining the Hamilton-Jacobi-Bellman equation with a backward stochastic

differential equation with jumps.

Secondly, we discuss the optimal investment, consumption and life insur-

ance problem with capital constraints. The problem consists of one risk-free

asset and two risky asset prices defined in an independent Brownian motion

and Poisson process. We derive the optimal strategy of the unconstrained

problem via martingale approach, from which, the problem with capital con-

straint is solved applying the option based portfolio insurance method.



Acknowledgement

I would like to express my very great appreciation to Dr R Kufakunesu my

research supervisor, for his patient guidance, enthusiastic encouragement and

useful critiques of this research work. I would also like to thank him for his

valuable and constructive recommendations on this dissertation.

I am also grateful to my parents for their unmeasurable support in my life.



Contents

1 Introduction 1

1.1 Background information . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of the dissertation . . . . . . . . . . . . . . . . . . . 4

2 Review on stochastic calculus 6

2.1 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . 6
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Notations

Throughout this dissertation, we will assume the following notations:

• B(E) the Borel σ-field of any set E ⊂ R and P the predictable σ-field

on Ω × [0, T ], where R denote the set of real numbers.

• C the space of continuous functions.

• L2(R)- the space of random variables ξ : Ω 7→ R, such that E[ |ξ|2] <∞.

• L2
ν(R)- the space of measurable functions υ : R 7→ R such that∫

R
|υ(z)|2ν(dz) <∞ ,

where ν is a σ-finite measure.

• S2(R)- the space of adapted càdlàg processes Y : Ω × [0, T ] 7→ R such

that

E[sup |Y (t)|2] <∞ .

• H2(R)- denote the space of predictable processes Z : Ω × [0, T ] → R
satisfying

E
[∫ T

0

|Z2(t)|dt
]
<∞.

• H2
N(R)- the space of predictable processes Υ : Ω× [0, T ]×R 7→ R, such

that

E
[∫ T

0

∫
R
|Υ(t, z)|2ν(dz)dt

]
<∞ .

• x ∧ y := min{x, y}.

• AT denote the transpose of the matrix A.

• U− is the negative part of U defined by U− := max{−U, 0} and U+ is

the positive part of U given by U+ := max{U, 0}.
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• ⟨·, ·⟩ is the inner product defined as follows:

⟨a, b⟩ :=
n∑
k=1

akbk, a, b ∈ Rn .

• 1A is a characteristic function defined by

1A(x) :=

{
1, if x ∈ A;

0, otherwise.



Chapter 1

Introduction

1.1 Background information

The problem of an investor who wants to invest in order to maximize his

expected utility has received much attention in mathematical finance due to

a variety of reasons. For instance, the solution to the problem is a major

concern of an investor (individual or institutional) who need to allocate the

wealth in each security over a certain/uncertain time horizon. Besides, it

is a stochastic optimal control problem, which can be solved via different

approaches, such as, the dynamic programming approach, the martingale

method and the maximum principle.

Since the mean-variance analysis by Markowitz in the early 1960’s, this

problem has received numerous studies. The first results in continuous time

optimal investment-consumption problem were obtained by Merton [25, 26]

via dynamic programming approach. An alternative martingale method was

developed later by Karatzas et al. [18], Karatzas et al. [19], Karatzas and

Shreve [20], among others.

Concerning investments, one natural question may arise: what will happen

to investor’s dependent if a premature death occur? This is an interesting

question during the investor’s planning because his death may affect the well

being of his dependent. Thus, it suggests an inclusion of a new variable

1
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in the investment-consumption problem, a life insurance1. Life insurance is

an important tool to solve the question of uncertain lifetime. Richard [32],

extended the Merton’s optimal investment-consumption problem to include a

life insurance purchase. Pliska and Ye [30], studied the optimal investment,

consumption and life insurance problem for a wage earner with a random

lifetime. Similar works include Huang and Milevsky [16], Kwak et al. [23],

Duarte et al. [10], Shen and Wei [35], Kronborg and Steffensen [22].

In all these works, the problem has been solved assuming a market in

which the asset prices are described by a continuous time process. However,

as was pointed out by Merton, the analysis of the price evolution reveals

some sudden and rare breaks (jumps) caused by external information flow.

These behaviours constitute a very real concern of most investors and they

can be modeled by a Poisson process, which has jumps occurring at rare and

unpredictable time. In this dissertation, we solve an optimal investment, con-

sumption and life insurance problem described by jump-diffusion2 processes.

For further reading in jump-diffusion models, see e.g., Jeanblanc-Picque and

Pontier [17], Benth et al. [2], Runggaldier [34], Daglish [7], Oksendal and

Sulem [29], among others.

Essentially, the optimization problem consists of three elements, namely

decision variables, the objective function and the constraints. The problem

with lack of constraints is called unconstrained problem, while the others are

referred to as constrained optimization problems. This dissertation focus in

both unconstrained and constrained problems.

1.2 Objectives

The main objective of this dissertation is to solve an optimal investment,

consumption and life insurance problem in a jump-diffusion framework. As

mentioned in the abstract, we consider two settings namely a model with

1See Definition 3.4.1.
2See Section 2.2
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random parameters and a model with capital constraints.

We first solve the optimal investment, consumption and life insurance prob-

lem of a wage earner with random coefficient parameters, which include

jumps, where his/her preference follows a power utility function. The pa-

rameters under consideration are the interest rate, the appreciation rate, the

force of mortality, the dispersion rates, premium insurance ratio and dis-

count rate. These parameters are not necessarily bounded. We consider a

financial market described by one risk-free asset and one geometric jump-

diffusion risky asset, and an insurance market, where the life insurance is

given by infinitesimally small terms. The aim of the wage earner is to choose

an optimal strategy that maximizes the expected discounted utility derived

from consumption, legacy and terminal wealth over an uncertain time hori-

zon. Motivated by [35], where a similar problem was solved over a diffusion

framework and the theory of backward stochastic differential equations (BS-

DEs) with jumps studied by Delong [9], we obtain the optimal solution based

on a dynamic programming approach, using a combination of the Hamilton-

Jacobi-Bellman (HJB) equation and a BSDE with jumps. We do so, since

the value function of our model cannot be determined from the partial dif-

ferential equation as usual due to the parameters randomness. We conclude

this problem providing the closed form solution to the BSDE related to the

problem in special examples of geometric jump-diffusion mortality rate and

the appreciation rate with jumps.

Then, we solve the optimal investment, consumption and life insurance

problem when the investor is restricted to fulfil the American capital con-

straints. The capital constraints were first introduced in the optimization

problem by Tepla [37] and then studied by El Karoui et al. [11]. They can

be considered for many reasons, such as, the restrictions of the savings to

become negative, that is, a non-borrowing constraints or the existence of a

minimum return in savings, i.e., the interest rate guarantee. As in [17], we

consider a financial market described by one risk-free asset and two risky as-

sets. The risky assets are constructed on a space of pair processes, consisting
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of independent Brownian motion and Poisson processes. A single risky asset

consists of two source of randomness, which implies incompleteness of the

market and infinitely many martingale measures. Therefore, defining two

risky assets, the number of risky assets is equal to the number of driving

processes, thus the market is complete and the martingale measure is unique

( [34]). In addition, we suppose existence of insurance market, where the sum

insured3 is to be paid out upon death before the time horizon. Using the

martingale approach developed by Karatzas et al. [18], Karatzas et al. [19],

Karatzas and Shreve [20], we solve the unrestricted control problem. This is

because the solution to the restricted capital guarantee problem is based on

terms derived from the martingale method. The optimal solution to the re-

stricted problem is derived from the unrestricted optimal solution, applying

the option based portfolio insurance (OBPI) method developed by El Karoui

et al. [11]. These results are an extension of the results in [22].

1.3 Structure of the dissertation

The rest of the dissertation is structured as follows:

We start in Chapter 2, by presenting a review of relevant concepts used

in this dissertation. We focus on random measures, compensated random

measures and Lévy processes. We also give the Itô’s formula for Lévy SDEs,

the Girsanov’s theorem, the HJB equation as well as the introduction of

BSDEs with jumps and the utility functions.

Chapter 3 is devoted to the derivation of the wealth process. We start by

deriving the wealth in the presence of investment-consumption in the mar-

ket, then we consider the case were the investor is having external sources.

Finally, we consider the case where, in addition to investment and consump-

tion, the investor is paying a life insurance.

In Chapter 4, we solve the optimization problem with random parameters.

We obtain the optimal solution using the combination of HJB equation and

3See page 32
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BSDE with jumps. We conclude this chapter by giving two special examples.

The results of this chapter have been published in Insurance: Mathematics

and Economics Journal.

In Chapter 5, we solve the constrained optimization problem. First, we

obtain the optimal solution for the unconstrained control problem, then the

constrained optimal solution is derived from the unconstrained optimal so-

lution using the option based portfolio insurance method.

Finally, in Chapter 6, we conclude.



Chapter 2

Review on stochastic calculus

In this chapter, we review important results in stochastic calculus which we

use in this dissertation. We begin with stochastic and Lévy processes in

Section 2.1. Section 2.2 deals with Itô calculus for Lévy stochastic integrals

and stochastic differential equations. In Section 2.3, we give the concept of

a martingale and the Girsanov’s theorem for Itô-Lévy processes. Backward

stochastic differential equations with jumps are considered in Section 2.4.

Section 2.5 deals with stochastic control for optimization problems. Finally,

in Section 2.6, we introduce the utility functions, which are very important

in the resolution of our optimization problems in Chapters 4 and 5.

2.1 Stochastic processes

In this section, we present the key concepts of this dissertation. We mainly

focus on the concepts of a probability space, conditional expectation, random

measures, compensated random measures and Lévy processes. The defini-

tions in this section are taken from ( [1], Chapter 1 and [9], Chapter 2),

unless otherwise stated.

Definition 2.1.1.

Let Ω be a non-empty set and F a collection of subsets of Ω. We call F a

σ-algebra if the following hold:

6
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(1) Ω ∈ F ,

(2) A ∈ F ⇒ Ac ∈ F ,

(3) if (An, n ∈ N) is a sequence of subsets in F , then
∪∞
n=1An ∈ F .

The pair (Ω,F) is called a measurable space.

Definition 2.1.2.

A measure on (Ω,F) is a mapping µ : F → [0,∞] satisfying

(1) µ(∅) = 0;

(2)

µ

(
∞∪
n=1

An

)
=

∞∑
n=1

µ(An)

for every sequence (An, n ∈ N) of mutually disjoint sets in F .

The triple (Ω,F , µ) is called a measure space. If µ(Ω) < ∞, µ is said to

be finite. More generally, a measure µ is σ-finite if we can find a sequence

(An, n ∈ N) in F such that Ω =
∪∞
n=1An and each µ(An) <∞.

If µ(Ω) = 1, the triple (Ω,F , µ) is called a probability space. In a proba-

bility space, µ is usually denoted by P.

Definition 2.1.3.

Let F be a σ-algebra of subsets of a given set Ω. A family (Ft, t ≥ 0) of sub

σ-algebras of F is called a filtration if

Fs ⊆ Ft whenever s ≤ t.

A probability space (Ω,F ,P) equipped with such a family (Ft, t ≥ 0) is said

to be filtered.

Throughout this dissertation, we consider a complete probability space

(Ω,F ,P) with a filtration (Ft)0≤t≤T and a finite time horizon T < ∞. We

assume that the filtration satisfies the usual conditions (F0 contains all sets

of P-measure zero and Ft is right continuous, i.e., Ft = Ft+, where Ft+ =∩
ϵ>0Ft+ϵ).
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Definition 2.1.4.

A stochastic process X = X(ω, t) with respect to the filtration (Ft)t∈[0,T ] is a

collection of random variables defined on Ω × [0, T ].

Two stochastic processes X = (X(t))t∈[0,T ] and Y = (Y (t))t∈[0,T ] are in-

dependent if, for all m,n ∈ N, all 0 < t1 < t2 < · · · < tn = T and all

0 < s1 < s2 < · · · < sm = T , the σ-algebras σ(X(t1), X(t2), . . . , X(tn))

and σ(X(s1), X(s2), . . . , X(sm)) are independent. Similarly, a stochastic

process X = (X(t))t∈[0,T ] and a σ-algebra F are independent if F and

σ(X(t1), X(t2), . . . , X(tn)) are independent for all n ∈ N, 0 < t1 < t2 <

· · · < tn = T .

Definition 2.1.5.

Let X = (X(t), t ∈ [0, T ]) be a stochastic process defined on a filtered

probability space (Ω,F ,P). We say that X is adapted to the filtration (or

Ft-adapted) if X(t) is Ft-measurable for each t ∈ [0, T ].

Definition 2.1.6.

Let X = (X(t), t ∈ [0, T ]) be a stochastic process defined on a filtered

probability space (Ω,F ,P). We say that X is progressively measurable with

respect to a filtration Ft if the function X(t, ω) : [0, T ]×Ω → R is (B([0, T ])×
Ft)-measurable for each t ∈ [0, T ].

Definition 2.1.7.

An F -adapted process W := (W (t) , 0 ≤ t ≤ T ) is called a Brownian motion

if

(i) W (0) = 0 a.s.;

(ii) for 0 ≤ s < t ≤ T , W (t) −W (s) is independent of Fs;

(iii) for 0 ≤ s < t ≤ T , W (t) −W (s) is a Gaussian random variable with

mean zero and variance t− s, i.e., W (t) −W (s) ∼ N (0 , t− s);

(iv) for any ω ∈ Ω , W (t) is a continuous function.

We then introduce the concept of conditional expectation.
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Figure 2.1: Paths of simulated Brownian motion.

Definition 2.1.8. ( [4], Definition 2.4)

Let X be an FT -measurable integrable random variable on a probability

space (Ω,F ,P). The conditional expectation of X given Ft is defined to be a

random variable E[X | Ft] such that:

1. E[X | Ft] is almost surely Ft-measurable;

2. for any A ∈ Ft, ∫
A

E[X | Ft]dP =

∫
A

XdP.

The following proposition gives the general properties of the conditional

expectation.

Proposition 2.1.1. ( [4], Proposition 2.4) Let Ft be a filtration on Ω and

X, Y integrable random variables on the probability space (Ω,F ,P). The

conditional expectation has the following properties:

(1) E[aX + bY | Ft] = aE[X | Ft] + bE[Y | Ft] (linearity), a , b ∈ R;

(2) E[E[X | Ft]] = E[X];

E[XY | Ft] = XE[Y | Ft] a.s. if X is Ft-measurable and XY integrable;
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(3) E[X | Ft] = E[X] if X is independent of Ft;

(4) E[X | F0] = E[X] and E[X | FT ] = X almost surely;

(5) E[E[X | Ft] | Fs] = E[X | Fs] a.s. for s < t (tower property);

(6) If X ≥ 0, then E[X | Ft] ≥ 0 (positivity).

Proof. See [4], Proposition 2.4.

Definition 2.1.9.

A function N defined on Ω × [0, T ] × R is called a random measure if

(i) for any ω ∈ Ω, N(ω, ·) is a σ-finite measure on B([0, T ]) ⊗ B(R);

(ii) for any A ∈ B([0, T ])⊗B(R), N(·, A) is a random variable on (Ω,F , P ) .

Remark.

N(ω, [0, T ], A) may be equal to infinity.

Example 2.1.1.

Let (Tn)n≥1 denote the sequence of jump times of a Poisson process. The

function

N(ω, [s, t]) = ♯{n ≥ 1, Tn ∈ [s, t]} , 0 ≤ s < t ≤ T,

which counts the number of jumps of the Poisson process in the interval [s, t]

defines a random measure.

If we fix ω, then the sequence of jump times (Tn)n≥1 is given on the time

axis and N as a function of [s, t] is finite measure which counts the number

of (Tn)n≥1 are in the interval [s, t].

If we fix [s, t], then N is a Poisson distributed random variable which

counts the number of random jump times (Tn)n≥1 in the interval [s, t].

Definition 2.1.10.

A random measure N is called F -predictable if for any F -predictable1 process

X such that
∫ T
0

∫
R |X(t, z)|N(dt, dz) exists, the process

(
∫ t
0

∫
RX(s, z)N(ds, dz) , 0 ≤ t ≤ T ) is F -predictable.

1A predictable process is a real-valued stochastic process whose values are known, in a

sense just in advance of time. Predictable processes are also called previsible.
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Definition 2.1.11.

For a random measure N , we define

EN(A) = E
[∫

[0,T ]×R
1A(ω, t, z)N(ω, dt, dz)

]
, A ∈ F ⊗ B([0, T ]) ⊗ B(R).

If there exists an F -predictable random measure ν such that

(i) Eν is a σ-finite measure on P ⊗ B(R);

(ii) the measures EN and Eν are identical on P ⊗ B(R).

Then we say that the random measure N has a compensator ν.

Given the compensator ν of a random measure N , we define the compen-

sated random measure by

Ñ(ω, dt, dz) := N(ω, dt, dz) − ν(ω, dt, dz) . (2.1)

Remark.

The compensator is uniquely determined ( [15], pp 295–297) and the random

measures are usually related to jumps of discontinuous processes.

Definition 2.1.12.

A Lévy process is an Ft-adapted process η := (η(t) , 0 ≤ t ≤ T ) such that

(i) η(0) = 0 a.s.;

(ii) for 0 ≤ s < t ≤ T , η(t) − η(s) is independent of Fs;

(iii) for 0 ≤ s < t ≤ T , η(t) − η(s) has the same distribution as η(t− s);

(iv) the process η is continuous in probability, i.e., for any t ∈ [0, T ] and

ϵ > 0,

lim
s→t

P (|η(t) − η(s)| > ϵ) = 0.

Next, we consider two special examples of Lévy processes.

Example 2.1.2. (Brownian motion)

A Brownian motion in RN is a Lévy process W = (W (t))t∈[0,T ] for which
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(i) W (t) ∼ N (0, tI) for each t ∈ [0, T ],

(ii) W has continuous sample paths.

Example 2.1.3. (The Poisson process)

The Poisson process of intensity λ > 0 is a Lévy process N taking values

N ∪ {0}, so that

P(N(t) = n) =
(λt)n

n!
e−λt

for each 0, 1, 2, . . ..

The compensated Poisson process is given by Ñ = (Ñ(t))t∈[0,T ] where each

Ñ(t) := N(t) − λt. Note that E[Ñ(t)] = 0 and E[(Ñ(t))2] = λt. This will be

useful in Chapter 4.

We conclude this section giving the concept of Lévy measure.

Definition 2.1.13.

Let ν be a Borel measure2 defined on RN \ {0} = {x ∈ RN , x ̸= 0}. We say

that ν is a Lévy measure if∫
RN\{0}

(
|y|2 ∧ 1

)
ν(dy) <∞ .

2.2 Itô calculus and Lévy stochastic differen-

tial equations

The purpose of this dissertation is to obtain the optimal strategy of an in-

vestor whose wealth is given by stochastic differential equation (SDE) and

the Itô’s formula plays a very important role in solving such equations. In

this section, we give the Itô’s formula for one-dimensional as well as for mul-

tidimensional equations. Furthermore, we give the theorem about existence

and uniqueness of solutions of the Lévy SDE. For detailed information see

e.g. ( [1], Chapters 4 and 6 or [29], Sections 1.2-1.3).

2A measure defined o a Borel σ-algebra of a set Ω. See ( [1], page 2 or [8], Chapter 2)

for more details.
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Definition 2.2.1. (Itô-Lévy processes)

Let W (t), 0 ≤ t ≤ T be a Brownian motion and N(dt, dz) a random mea-

sure with the compensated random measure Ñ(dt, dz). Itô-Lévy process (or

stochastic integral) is a stochastic process X(t) on (Ω,F ,P) of the form

X(t) = X(0) +

∫ t

0

α(s, ω)ds+

∫ t

0

β(s, ω)dW (s) (2.2)

+

∫ t

0

∫
R
γ(s, z, ω)Ñ(ds, dz),

where α : [0, T ] × Ω → R, β : [0, T ] × Ω → R and γ : [0, T ] × R × Ω → R
satisfy the following conditions:∫ t

0

|α(s, ω)|ds <∞;

∫ t

0

β2(s, ω)ds <∞;

∫ t

0

∫
R
γ2(s, z, ω)ν(dz)ds <∞.

The Equation (2.2) can be written in a differential form as

dX(t) = α(t, ω)dt+ β(t, ω)dW (t) +

∫
R
γ(t, z, ω)Ñ(ds, dz), (2.3)

or equivalently

dX(t) = α(t, ω)dt+ β(t, ω)dW (t) + γ(t, z, ω)dÑ(s). (2.4)

The Equation (2.3) ((2.4)) is called stochastic differential equation (SDE).

Remark.

In some literatures, we can also find the form

dX(t) = α(t, ω)dt+ β(t, ω)dW (t) + dJ(t),

where J(t) :=
∑Ñ(t)

k=1 γ(Tk, ζk). Here {(TK , ζk), k ∈ {1, 2, . . . , Ñ(t)}} is the

sequence of pairs of jump times and corresponding marks generated by the

Poisson random measure.

The following theorem gives the Itô’s formula for a one dimensional space.

Theorem 2.2.1. (The 1-dimensional Itô’s formula). Suppose that X(t) ∈ R
is an Itô-Lévy process of the form

dX(t) = α(t, ω)dt+ β(t, ω)dW (t) +

∫
R
γ(t, z, ω)Ñ(ds, dz),
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where α, β, γ ∈ R and

Ñ(dt, dz) =

{
N(dt, dz) − ν(dz)dt, if |z| < a;

N(dt, dz), if |z| ≥ a,

for some a ∈ [0,∞]. Let f ∈ C2([0, T ] × R). Then Y (t) = f(t,X(t)) is also

an Itô-Lévy process and

dY (t) =
∂f

∂t
(t,X(t)) +

∂f

∂x
(t,X(t))

[
α(t, ω)dt+ β(t, ω)dW (t)

]
+

1

2
β2(t, ω)

∂2f

∂x2
(t,X(t))dt+

∫
|z|<a

[
f(t,X(t−) + γ(t, z, ω))

−f(t,X(t−)) − ∂f

∂x
(t,X(t))γ(t, z, ω)

]
ν(dz)dt

+

∫
|z|<a

[
f(t,X(t−) + γ(t, z, ω)) − f(t,X(t−))

]
Ñ(dt, dz) .

Theorem 2.2.2. (Itô-Lévy isometry) Let X(t) ∈ R, X(0) = 0 be a SDE

(2.3), for α = 0. Then

E[X2(t)] = E
[∫ t

0

β2(s)ds+

∫ t

0

∫
R
γ2(s, z)ν(dz)ds

]
provided that the right hand side is finite.

Proof. From Theorem 1.2.1. applied to f(t, x) = x2.

We then formulate the multidimensional version of the Itô’s formula.

Theorem 2.2.3. Let Xi(t) ∈ R , i = 1, ..., N be an Itô-Lévy process of the

form

dXi(t) = αi(t, ω)dt+
M∑
j=1

βij(t, ω)dWj(t) +
ℓ∑

j=1

∫
R
γij(t, zj, ω)Ñj(dt, dzj),

(2.5)

where αi : [0, T ]×Ω → R, βi : [0, T ]×Ω → RM and γi : [0, T ]×Rℓ×Ω → Rℓ

are adapted processes such that the integrals exist. Here Wj(t) , j = 1, ...,M

is 1-dimensional Brownian motion and

Ñj(dt, dzj) = Nj(dt, dzj) − 1|zj |<ajνj(dzj)dt,
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where Nj are independent Poisson random measures with Lévy measures

νj coming from ℓ independent (1-dimensional) Lévy processes η1, ..., ηℓ and

1|zj |<aj is a characteristic function, for some aj ∈ [0,∞]. Let f ∈ C1,2([0, T ]×
RN). Then Y (t) = f(t,X1(t), ..., XN(t)) is also an Itô-Lévy process and

dY (t) =
∂f

∂t
dt+

N∑
i=1

∂f

∂xi
(αidt+ βidW (t)) +

1

2

N∑
i,j=1

(ββT )ij
∂2f

∂xi∂xj
dt

+
ℓ∑

k=1

∫
|zk|<ak

[
f(t,X(t−) + γ(k)(t, zk)) − f(t,X(t−))

−
N∑
i=1

γ
(k)
i (t, zk)

∂f

∂xi
(X(t−))

]
νk(dzk)dt

+
ℓ∑

k=1

∫
|zk|<ak

[
f(t,X(t−) + γ(k)(t, zk)) − f(t,X(t−))

]
Ñk(dt, dzk),

where X(t) = (X1(t), ..., XN(t)), β ∈ RN×M , W (t) = (W1(t), ...,WM(t)) and

γ(k) ∈ Rℓ is the column number k of the N × ℓ matrix γ.

Proof. See [1], Theorem 4.4.7.

The following theorem states the existence and uniqueness of the solution

of the SDE driven by Lévy processes.

Theorem 2.2.4. (Existence and uniqueness of solutions of Lévy SDEs).

Consider the following Lévy SDE in RN : X(0) = x0 ∈ RN and

dX(t) = α(t,X(t))dt+ β(t,X(t))dW (t) +

∫
R
γ(t,X(t), z)Ñ(ds, dz),

where α : [0, T ]×Ω → RN , β : [0, T ]×Ω → RN×M and γ : [0, T ]×Rℓ×Ω →
RN×ℓ satisfy the following conditions:

(At most linear growth) there exists a constant C1 <∞, such that

|α(t, x)|2 + ∥β(t, x)∥2 +

∫
R

ℓ∑
k=1

|γk(t, x, zk)|2νk(dzk) ≤ C1(1 + |x|2)

for all x ∈ RN ;
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(Lipschitz continuity) there exists a constant C2 <∞, such that

|α(t, x) − α(t, y)|2 + ∥β(t, x) − β(t, y)∥2

+

∫
R

ℓ∑
k=1

|γk(t, x, zk) − γk(t, y, zk)|2νk(dzk) ≤ C2|x− y|2,

for all x, y ∈ RN .

Then there exists a unique càdlàg3 adapted solution X(t) such that

E[|x(t)|2] <∞, ∀t ∈ [0, T ].

Proof. See [1], Theorem 6.2.3.

The solution of a Lévy SDE in the time-homogeneous case, i.e., α(t,X) =

α(X), β(t,X) = β(X) and γ(t, x, z) = γ(x, z) is called jump-diffusion process

or Lévy-diffusion process.

Next we introduce the concept of a generator operator A of X, where X

is a solution of a Lévy SDE (2.5).

Definition 2.2.2.

Let X(t) ∈ RN be a jump-diffusion process. Then the generator A of X is

defined on functions f : RN → R by

Af(x) = lim
t→0+

1

t
{Ex[f(X(t))] − f(x)} (if the limit exists),

where Ex[f(X(t))] = E[f(X(x)(t))], X(x)(0) = x.

The following theorem gives the solution of Af(x).

Theorem 2.2.5. Consider f ∈ C2
0(RN). Then Af(x) exists and is given by

Af(f) =
n∑
i=1

αi(x)
∂f

∂xi
(x) +

1

2

n∑
i,j=1

(ββT )ij(x)
∂2f

∂xi∂xj
(x) (2.6)

+

∫
R

ℓ∑
k=1

[
f(x+ γ(k)(x, zk)) − f(x) −∇f(x) · γ(k)(x, zk)

]
νk(dzk).

3right continuous with left limit.
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Proof. Let X ∈ RN be given by

dXi(t) = αi(x)dt+
M∑
j=1

βij(x)dWj(t) +
ℓ∑

j=1

∫
R
γij(x, zj)Ñj(dt, dzj),

Xi(0) = xi,

for i = 1, . . . , N . Define Y = f(X). By Itô’s formula (Theorem 2.2.3.), we

have

dY (t) = Af(x)dt+
N∑
i=1

βi(x)
∂f

∂xi
(x)dW (t))

+
ℓ∑

k=1

∫
R

[
f(x+ γ(k)(x, zk)) − f(x)

]
Ñk(dt, dzk),

where Af(x) is given by (2.6). Integrating the above equation we obtain

f(X(t)) = f(X(0)) +

∫ t

0

Af(X(s))ds+

∫ t

0

N∑
i=1

βi(X(s))
∂f

∂xi
(x)dW (s))

+
ℓ∑

k=1

∫ t

0

∫
R

[
f(X(s) + γ(k)(X(s), zk)) − f(X(s))

]
Ñk(ds, dzk).

Taking expectation on both sides we obtain

E[f(X(t))] − f(X(0)) = E
[∫ t

0

Af(X(s))ds

]
. (2.7)

From Lebesgue convergence theorem, it follows that

d

dt
E[f(X(t))] |t=0= lim

t→0

E[f(X(t))] − f(X(0))

t
. (2.8)

Then combining (2.7) and (2.8), leads to

d

dt
E[f(X(t))] |t=0 = lim

t→0

1

t
E
[∫ t

0

Af(X(s))ds

]
= Af(x) .
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2.3 Martingales and Girsanov’s theorem

In Financial Mathematics, martingales are crucial for option pricing mod-

els, for instance, in Chapter 5, we obtain the optimal strategy for a model

restricted to satisfy the American put guarantee. It is through martingales

that we solve the backward stochastic differential equation in Chapter 4. In

this section, we introduce the concept of martingales and give the so-called

Girsanov’s theorem for Itô-Lévy processes. This section is adapted from ( [1],

Chapter 2; [9], Section 2.5 and [29], Section 1.4).

Definition 2.3.1.

Given a filtered measure space (Ω,F), we say that a random time T : Ω →
[0,∞] is a stopping time of the filtration (Ft) if the event (T ≤ t) ∈ Ft for

each t ≥ 0.

Definition 2.3.2.

Consider a filtered probability space (Ω,F ,P). An adapted process X =

(X(t))t∈[0,T ] on a probability space (Ω,F ,P) is a martingale if

(i) E[|X(t)|] <∞, for all t ∈ [0, T ];

(ii) E[X(t) | Fs] = X(s) a.s., for all s ≤ t, s, t ∈ [0, T ].

If, for all 0 ≤ s ≤ t <∞, E[X(t) | Fs] ≥ X(s) a.s., then X is a submartingale

and a supermartingale if −X is a submartingale.

We define a local martingale as an adapted process X = (X(t), t ∈ [0, T ])

for which there exists a sequence of stopping times τ1 ≤ · · · ≤ τn → T (a.s.)

such that each of the process (X(t ∧ τn), t ∈ [0, T ]) is a martingale.

We introduce below the concept of uniform integrability

Definition 2.3.3. Let X = {Xi, i ∈ I} be a family of random variables, for

some index I. We say that X is uniformly integrable if

lim
n→∞

sup
i∈I

E
[
|Xi|1|Xi|>n

]
= 0
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or equivalently

if Xi is bounded in L1 and ∀ϵ > 0, ∃δ > 0: ∀A ∈ F , P(A) < δ ⇒
supi∈I E

[
|Xi|1A

]
< ϵ.

Definition 2.3.4.

It is said that a measure ν is absolutely continuous with respect to µ (denoted

by ν ≪ µ), if µ(A) = 0 implies that ν(A) = 0, for any A ∈ Ft.

Theorem 2.3.1. (Radon-Nikodym theorem). Let µ and ν be σ-finite mea-

sures on space (Ω,F). If ν ≪ µ, then there is a function f ∈ F such that

for all A ∈ F , ∫
A

fdµ = ν(A).

The function f is usually denoted by dν
dµ

and is called Radon-Nikodym deriva-

tive.

Proof. See [8], pp. 139-141, Theorem 5.

Definition 2.3.5.

Let (Ω,F , (Ft)0≤t≤T ,P) be a filtered probability space and Q an other proba-

bility measure on FT . We say that Q is equivalent to (P | FT ) if (P | FT ) ≪ Q
and Q ≪ (P | FT ), i.e., P and Q have the same zero sets in FT .

Remark.

By the Radon-Nikodym theorem, dQ
dP = Z(T ) and dP

dQ = Z−1(T ) on FT , for

some FT -measurable variable Z(T ) > 0 almost surely.

Theorem 2.3.2. (Girsanov’s Theorem for Itô-Lévy processes). Let W and

N be (P,F)-Brownian motion and (P,F)-random measure with compensator

ν(dz). Moreover, consider X(t) be a 1-dimensional Itô-Lévy process of the

form

dX(t) = α(t, ω)dt+ β(t, ω)dW (t) +

∫
R
γ(t, z, ω)Ñ(dt, dz), 0 ≤ t ≤ T .

Assume there exist predictable processes θ(t) = θ(t, ω) ∈ R and ψ(t, z) =

ψ(t, z, ω) ∈ R such that

β(t)θ(t) +

∫
R
γ(t, z)ψ(t, z)ν(dz) = α(t),
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for a.s. (t, ω) ∈ [0, T ] × Ω and such that the process

Z(t) := exp
[
−
∫ t

0

θ(s)dW (s) − 1

2

∫ t

0

θ2(s)ds

+

∫ t

0

∫
R

ln(1 − ψ(s, z))Ñ(ds, dz)

+

∫ t

0

∫
R
{ln(1 − ψ(s, z)) + ψ(s, z)}ν(dz)ds

]
, 0 ≤ t ≤ T

is well defined and satisfies E[Z(T )] = 1. Furthermore, define the probability

measure Q on FT by dQ(ω) = Z(T )dP(ω). Then X(t) is a local martingale

with respect to Q and

WQ(t) = W (t) +

∫ t

0

θ(s)ds , 0 ≤ t ≤ T,

ÑQ(t, A) = N(t, A) −
∫ t

0

∫
R
(1 + ψ(s, z))ν(dz)ds , 0 ≤ t ≤ T, A ∈ B(R)

are (Q,F)-Brownian motion and (Q,F)-compensated random measure re-

spectively.

Proof. See [29], Theorem 1.31 and [9], Theorem 2.5.1.

2.4 Backward stochastic differential equations

with jumps

In this section we introduce the concept of backward stochastic differential

equation (BSDE). In this type of Lévy SDEs, instead of an initial condition

Y (0) = y0 a.s., we impose a final condition Y (T ) = ξ a.s. For more details

see ( [9], Chapter 3).

Given the data (ξ, f), where ξ : Ω → R is an FT -measurable random

variable and f is a P ⊗ B(R) ⊗ B(R)-measurable function. We consider the

following backward stochastic differential equation (BSDE)

dY (t) = −f(t, Y (t), Z(t),Υ(t, z))dt+ Z(t)dW (t) (2.9)

+

∫
R

Υ(t, z)Ñ(dt, dz) ;

Y (T ) = ξ ,
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where the processes Z and Υ are called control processes. They control an

adapted process Y so that Y satisfies the terminal condition.

Definition 2.4.1.

A triple (Y, Z,Υ) ∈ S2(R) × H2(R) × H2
N(R) is said to be a solution to a

BSDE (2.9) if

Y (t) = ξ +

∫ T

t

f(s, Y (s−), Z(s−),Υ(s−, ·))ds−
∫ T

t

Z(s)dW (s)

−
∫ T

t

∫
R

Υ(s, z)Ñ(ds, dz) , 0 ≤ t ≤ T .

Definition 2.4.2.

A pair (ξ, f) is said to be a standard data for BSDE (2.9), if the following

conditions hold:

(C1) the terminal value ξ ∈ L2(R);

(C2) the generator f : Ω × [0, T ] × R × R × L2
ν(R) 7→ R is predictable, i.e.,

f ∈ P × B(R) × B(L2
ν(R)) and Lipschitz continuous in the sense that,

|f(ω, t, y, z, υ) − f(ω, t, y′, z′, υ′)|2 ≤ K(|y − y′|2 + |z − z′|2

+

∫
R
|υ(z) − υ′(z)|2ν(dz)) ,

a.s., (ω, t) ∈ Ω× [0, T ] a.e. for all (y, z, υ), (y′, z′, υ′) ∈ R×R×L2
ν(R) ;

(C3)

E[

∫ T

0

|f(t, 0, 0)|2dt] <∞ .

We state below the theorem of existence and uniqueness of the solution

to the BSDE (2.9).

Theorem 2.4.1. Let (ξ, f) be a standard data. Then the BSDE (2.9) has a

unique solution (Y, Z,Υ) ∈ S2(R) ×H2(R) ×H2
N(R).

Proof. See [9], Theorem 3.1.1.
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2.5 Stochastic control

In Chapter 4, we solve the optimal investment-consumption-insurance prob-

lem using the combination of BSDE with jumps introduced in the previous

section and Hamilton-Jacobi-Bellman (HJB) equation we consideer in this

section. For more details concerning to the HJB equation see e.g. ( [29],

Chapter 3 or [38], Chapter 3).

Consider the domain S ⊂ RN (the solvency region) and X(t) and RN -

valued stochastic process of the form

dX(t) = α(X(t), u(t))dt+ β(X(t), u(t))dW (t) (2.10)

+

∫
R
γ(X(t−), u(t−), z)Ñ(dt, dz) ;

X(0) = x ∈ RN ,

where α : RN×U → RN , β : RN×U → RN×M and γ : RN×U×RN → RN×ℓ

are given functions. Here U ⊂ Rk is a given set.

A measurable map u(·) : [0, T ] → U is called a control. u is assumed to be

càdlàg and adapted. A solution of (2.10) is called a controlled jump diffusion.

Given a functional measuring the performance of the controls

J (u)(x) = Ex
[∫ τs

0

f(X(t), u(t))dt+ g(X(τs))

]
, (2.11)

where τs < ∞ denote a stopping time and f : S → R and g : Rn → R are

given continuous functions. The first and second terms on the right hand

side of (2.11) are called running cost and terminal cost respectively.

Definition 2.5.1.

We say that the control process u is admissible and write u ∈ A if:

(1) the SDE (2.10) has a unique strong solution X(t), for all x ∈ S;

(2)

Ex
[∫ τs

0

f−(X(t), u(t))dt+ g−(X(τs))

]
<∞ .
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The stochastic control problem can be stated as follows:

Problem (P1).

Find the value function V (x) and an optimal control u∗ ∈ A defined by

V (x) = sup
u∈A

J (u)(x) = J (u∗)(x) .

Under mild conditions ( [28], Theorem 11.2.3), it suffices to consider

Markov4 controls, i.e. u(t) = u(X(t−)). Note that if u = u(x) is a Markov

control, then X(t) = Xu(t) is a jump diffusion process with a generator

Aϕ(x) = Auϕ(x) =
N∑
i=1

αi(x, u(x))
∂ϕ

∂xi
(x) +

1

2

N∑
i,j=1

(ββT )ij(x, u(x))
∂2ϕ

∂xi∂xj
(x)

+

∫
R

ℓ∑
k=1

[
ϕ(x+ γ(k)(x, u(x), zk)) − ϕ(x)

−∇ϕ(x) · γ(k)(x, u(x), zk)
]
νk(dzk) .

We then formulate a verification theorem for the optimal control prob-

lem (P1) analogous to the classical Hamilton-Jacobi-Bellman (HJB) for Itô

diffusion processes ( [28], Chapter 11).

Theorem 2.5.1. (HJB for optimal control of jump diffusion process). Let

S be a solvency region and S the closure of S. Denote by ∂S, the boundary

of S and by U , a control set.

(a) Suppose ϕ ∈ C2 ∩ C(S) satisfies the following conditions:

(i) Auϕ(x) + f(x, u) ≤ 0, for all x ∈ S and u ∈ U ;

(ii) X(τs) ∈ ∂S, a.s. on τs ∈ [0, T ] and

lim
t→τ−s

ϕ(X(t)) = g(X(τs)) a.s.,

for all u ∈ A and g a function defined in (2.11);

4A Markov process is a stochastic model that has the Markov property, i.e., P(Xt ∈
A | Fs) = P(Xt ∈ A | Xs), where s < t.
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(iii)

Ex
[
|ϕ(X(τ))| +

∫ τs

0

|Aϕ(X(t))|dt
]
<∞ ,

for all admissible u ∈ A and all τ ∈ T , where T is a set of

stopping times;

(iv) {ϕ−(X(τ))}τ≤τs is uniformly integrable for all u ∈ A and X ∈ S.

Then ϕ(x) ≥ V (x), for all x ∈ S;

(b) Moreover, suppose that for each x ∈ S there exists u = û ∈ U such that

(v) Aû(x)ϕ(x) + f(x, û(x)) = 0 and

(vi) {ϕ−(X û(τ))}τ≤τs is uniformly integrable.

Define u∗ := û(X(t−)) ∈ A. Then u∗ is an optimal control and

ϕ(x) = V (x) = J (u∗)(x) , ∀x ∈ S.

Proof. See [29], Theorem 3.1.

We then summarize the key points of the stochastic control approach.

The stochastic control or dynamic programming approach follows the

following steps:

1. Introduce the problem;

2. define the value function;

3. derive the principle of optimality;

4. derive the (HJB) equation and then follow the Steps 1–3 to obtain an

optimal pair.
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2.6 Utility functions

In this section, we develop the properties of the utility function to be con-

sidered. For more details see e.g. [19] or ( [20], Chapter 3).

Definition 2.6.1.

A utility function is a concave, non-decreasing, upper semi-continuous func-

tion U : (0,∞) → R satisfying the following conditions:

(i) the half-line dom(U) := {x ∈ (0,∞) : U(x) > −∞} is a nonempty subset

of [0,∞);

(ii) the derivative U ′ is continuous, positive and strictly decreasing on the

interior of dom(U) and

U ′(0) := lim
x→0

U ′(x) = ∞ , U ′(∞) := lim
x→∞

U ′(x) = 0 . (2.12)

Definition 2.6.2.

Define a function λ : R → R by

λ(x) := −xU
′′(x)

U ′(x)
.

A utility function U is said to be of Constant Relative Risk Aversion (CRRA)

type if λ is a constant.

Example 2.6.1.

A CRRA utility function to be used in this dissertation is of the form

U (δ)(x) :=


xδ/δ, if x > 0,

limϵ→0 ϵ
δ/δ, if x = 0,

−∞, if x <∞,

(2.13)

for δ ∈ (−∞, 1) \ {0}.

Definition 2.6.3.

Let U be a utility function. We define a strictly decreasing, continuous
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inverse function I : (0,∞) → (0,∞) by I(y) := (U ′(y))−1. By analogous

with (2.12), I satisfies

I(0) := lim
y→0

I(y) = ∞ , I(∞) := lim
y→∞

I(y) = 0 . (2.14)

Define a function

Ũ(y) := max
x>0

[U(x) − xy] = U(I(y)) − yI(y) , 0 < y <∞ , (2.15)

which is the convex dual of −U(−x), with U extended to be −∞ on the

negative real axis. The function Ũ is strictly decreasing, strictly convex and

satisfies

Ũ ′(y) = −I(y) , 0 < y <∞

U(x) = min
y>0

[Ũ(y) + xy] = Ũ(U ′(x)) + xU ′(x), 0 < x <∞ . (2.16)

Then from (2.15) and (2.16), we have the following useful inequalities:

U(I(y)) ≥ U(x) + y[I(y) − x] , ∀x > 0, y > 0 , (2.17)

Ũ(U ′(x)) ≤ Ũ(y) − x[U ′(x) − y] , ∀x > 0, y > 0 . (2.18)

Chapter summary

As mentioned at the beginning of the chapter, we reviewed some impor-

tant results that are used in this dissertation. The random measures and

compensated random measures were considered. We also provided the Itô’s

formula for one-dimensional and multidimensional cases as well. The theo-

rem of existence and uniqueness solution of a Lévy SDE was established. We

introduced the concepts of martingale, BSDE with jumps as well as the HJB

equation for jump diffusion processes. We ended the chapter considering the

utility functions and their properties. In the next chapter, we shall derive

the wealth process in three different contexts.



Chapter 3

Portfolio dynamics and life

insurance

The aim of this chapter is to derive the wealth process of an investor in the

presence of the triple (investment, consumption and life insurance). We start

by defining the general financial market under consideration in this disser-

tation. Then we derive the wealth process when we just have portfolios and

consumption in the market. Other than the sources received from the invest-

ments, an investor may have some external sources. This case is considered

in Section 3.3. In Section 3.4, we obtain a wealth process when an investor,

in addition to the consumption, pays a life insurance.

3.1 Financial market

Consider a complete probability space (Ω,F ,P) on which is given an M -

dimensional Brownian motionW (t) = (W1(t), . . . ,WM(t)) and an ℓ-dimensional

Poisson random measure N(t, A) = (N1(t, A), . . . , Nℓ(t, A)) with a Lévy mea-

sure ν(A) = (ν1(A), . . . , νℓ(A)), such that W and N are independent. Here,

W (0) = 0 and N(0, ·) = 0 almost surely. This section is adapted from ( [20],

section 1.1).

We introduce a risk-free share with a price S0(t), 0 ≤ t ≤ T strictly

27
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positive, Ft-adapted and continuous defined by

dS0(t) = r(t)S0(t)dt , S0(0) = 1, ∀t ∈ [0, T ] , (3.1)

or equivalently

S0(t) = exp

(∫ t

0

r(s)ds

)
; ∀t ∈ [0, T ] ,

where r(t) is called the risk-free interest rate at time t ∈ [0, T ]. The risk-free

rate process r(·) is a random and time-dependent, Ft-measurable.

Next, we introduce N stocks with price per share S1(t); . . . ;SN(t) which

are continuous, strictly positive and satisfy the following Lévy stochastic

differential equation

dSn(t) = Sn(t)
[
αn(t)dt+

M∑
m=1

βnm(t)dWm(t) (3.2)

+
ℓ∑

k=1

∫
R
γnk(t, zk)Ñk(dt, dzk)

]
; ∀t ∈ [0, T ] ,

Sn(0) = sn > 0 ,

where αn : [0, T ]×Ω → R, βn : [0, T ]×Ω → RM and γn : [0, T ]×Rℓ×Ω → Rℓ

are adapted processes, for n = 1, . . . , N . By Itô’s formula (Theorem 1.2.3),

the solution of (3.2) is given by

Sn(t) = sn exp
{∫ t

0

[
αn(s) − 1

2

M∑
m=1

β2
nm(s)

]
ds+

M∑
m=1

∫ t

0

βnm(s)dWm(s)

+
ℓ∑

k=1

∫ t

0

∫
|zk|<ak

{ln(1 + γnk(s, zk)) − γnk(s, zk)}νk(zk)ds

+
ℓ∑

k=1

∫ t

0

∫
R

ln(1 + γnk(s, zk))Ñk(ds, dzk)
}
.

Definition 3.1.1.

A financial market, hereafter denoted by M, consists of

(i) a probability space (Ω,F ,P);
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(ii) a positive constant T called the terminal time;

(iii) an M -dimensional Brownian motion {W (t), Ft; 0 ≤ t ≤ T} and an ℓ-

dimensional Poisson random measure {N(t, ·), Ft; 0 ≤ t ≤ T} defined

on (Ω,F ,P), where (Ft)0≤t≤T is a filtration, with W independent of N ;

(iv) a progressively measurable risk-free rate process r(·) satisfying∫ T

0

|r(t)|dt <∞ , a.s. ;

(v) a progressively measurable N -dimensional mean-rate of return process

α(t) satisfying ∫ T

0

∥α(t)∥dt <∞ , a.s. ;

(vi) a progressively measurable, N×M -matrix-valued volatility process β(t)

satisfying
N∑
n=1

M∑
m=1

∫ T

0

β2
nm(t)dt <∞ , a.s. ;

(vii) a progressively measurable, N × ℓ-matrix-valued jump-coefficients pro-

cess γ(t, ·) satisfying

N∑
n=1

ℓ∑
k=1

∫ T

0

γ2nk(t, zk)νk(dzk)dt <∞ , a.s. ;

(viii) a vector of positive constant initial stock prices S(0) = (s1, . . . , sN)T .

Remark.

When γnk = 0, for any n = 1, . . . , N and k = 1, . . . , ℓ, we have a diffusion

financial market considered in [20].

3.2 Portfolio and Gain processes

We consider a financial market M consisting of one risk-free asset (money

market) given by (3.1) and N risky shares given by (3.2). The main objective
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of this section is that of deriving the dynamics of the value of a so-called self-

financing portfolio in continuous time. This section is adapted from ( [3],

Chapter 6 and [20], Section 1.2), were a diffusion framework has been done.

As in [3, 20], We start by studying a model in discrete time, then let the

length of the time step tend to zero, thus obtaining the continuous time.

Let 0 = t0 < t1 < · · · < tM = T be a partition of the interval [0, T ].

Assumption 3.1.

hn(tm) = the number of shares of stock n held during the period [tm, tm+1),

for n = 1, . . . , N and m = 0, . . . ,M − 1;

h0(tm) = the number of shares held in the risk-free asset;

c(tm) = the amount spent on consumption during the period [tm, tm+1);

We also assume that for n = 0, 1, . . . , N , the random variable hn(tm) is Ftm-

measurable, i.e., anticipation of the future is not permitted.

Let us define the value of the portfolios V by the stochastic difference

equation

V (0) = 0 ;

V (tm+1) − V (tm) =
N∑
n=0

hn(tm) [Sn(tm+1) − Sn(tm)] ; m = 0, . . . ,M − 1 .

Then V (tm) is the amount of the portfolios during the period [0, tm]. On

the other hand, the value of the portfolios at today’s price is given by

V (tm) =
N∑
n=0

hn(tm)Sn(tm) ; m = 0, . . . ,M ,

if and only if there is no exogenous infusion or withdrawal of funds on the

interval [0, T ]. In this case, the trading is called self-financing.

Suppose that h(·) = (h0(·), . . . , hN(·))T is an Ft-adapted process defined

on the interval [0, T ], not just on the partition points t0, . . . , tM . The associ-

ated value process is now defined by the initial condition V (0) = 0 and the
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stochastic differential equation

dV (t) =
N∑
n=0

hn(t)dSn(t); ∀t ∈ [0, T ] . (3.3)

If we consider that the cost for the consumption rate c(tm) given by

c(tm)(tm+1 − tm), the value process in continuous time becomes

dV (t) =
N∑
n=0

hn(t)dSn(t) − c(t)dt; ∀t ∈ [0, T ] . (3.4)

We then give a mathematical definition of the central concepts.

Definition 3.2.1.

Let S0(t) be a risk-free price process given by (3.1) and (Sn(t), t ∈ [0, T ]) be

the risky price process given by (3.2), n = 1, . . . , N .

(1) A portfolio strategy (h0(·), h(·)) for the financial market M consists of

an Ft-progressively measurable real valued process h0(·) and an Ft-

progressively measurable, RN -valued process h(·) = (h1(·), . . . , hN(·))T ;

(2) the portfolio h(·) is said to be Markovian if it is of the form h(t, S(t)),

for some function h : [0, T ] × RN+1 → RN+1;

(3) the value process V corresponding to the portfolio h is given by

V (t) =
N∑
n=0

hn(t)Sn(t) ;

(4) a consumption process is an Ft-adapted one dimensional process {c(t); t ∈
[0, T ]};

(5) a portfolio-consumption pair (h, c) is called self-financing if the value

process V satisfies the condition

dV (t) =
N∑
n=0

hn(t)dSn(t) − c(t)dt; ∀t ∈ [0, T ] .
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For computational purposes it is often convenient to describe a portfolio

in relative terms, i.e., we specify the relative proportion of the total portfolio

value which is invested in the stock.

Define

πn(t) :=
hn(t)Sn(t)

V (t)
; n = 1, . . . , N

and π(·) = (π1(·), . . . , πN(·))T , where

π0(t) = 1 −
N∑
n=1

πn(t) .

From (3.1) and (3.2), the value process (3.4) becomes

dV (t) =

[
V (t)

(
r(t) +

N∑
n=1

πn(t)(αn(t) − r(t))

)
− c(t)

]
dt

+V (t)
N∑
n=1

M∑
m=1

πn(t)βnm(t)dWm(t) (3.5)

+V (t)
N∑
n=1

ℓ∑
k=1

πn(t)

∫
R
γnk(t, zk)Ñk(dt, dzk); 0 ≤ t ≤ T ,

or equivalently

V (t) =

∫ t

0

[
V (t)

(
r(t) +

N∑
n=1

πn(t)(αn(t) − r(t))

)
− c(t)

]
dt

+
N∑
n=1

M∑
m=1

∫ t

0

V (t)πn(t)βnm(t)dWm(t) (3.6)

+
N∑
n=1

ℓ∑
k=1

∫ t

0

V (t)πn(t)

∫
R
γnk(t, zk)Ñk(dt, dzk); 0 ≤ t ≤ T ,

where ∫ T

0

|πT (t)(α(t) − r(t)1)|dt <∞;

∫ T

0

∥π(t)β(t)∥2dt <∞ (3.7)

and ∫ T

0

∫
R
∥π(t)γ(t, z)∥2ν(dz)dt <∞ (3.8)
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hold almost surely, where 1 represents an N -dimensional vector of units

1 = (1, . . . , 1) and α ∈ RN , β ∈ RN×M and γ ∈ RN×ℓ.

Remark.

The definition of the value process in (3.6) does not take into account any

cost for trading. A market in which there are no transaction costs is called

frictionless.

The Conditions (3.7)-(3.8) are imposed in order to ensure the existence of

the integrals in (3.6).

If π0(·) < 0, means that the investor is borrowing money from the money

market. The position πn(·); n = 1, . . . , N in stock n may be negative, which

corresponds to the short-selling of the stocks.

In this dissertation, we consider a frictionless market and only the case

where borrowing money from the market and short-selling are not permitted,

i.e., πn(t) ≥ 0; ∀t ∈ [0, T ]; n = 0, . . . , N .

3.3 Income and wealth processes

An investor may have sources of income and expenses other than those from

investments in the assets discussed in the previous section. Here, we include

this possibility in the model. This section is mainly adapted from ( [20],

Section 1.3).

Definition 3.3.1.

Let M be a financial market. A cumulative income process (Γ(t); 0 ≤ t ≤ T )

is a cumulative wealth received by an investor on the time interval [0, T ]. In

particular, the investor is given initial wealth Γ(0). If Γ has the structure

dΓ(t) = i(t)dt, 0 ≤ t ≤ T (3.9)

or equivalently

Γ(t) =

∫ t

0

i(s)ds, 0 ≤ t ≤ T , (3.10)

for some progressively measurable process i(·), representing and income rate,

then we say that the investor receives an income continuously.
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Definition 3.3.2.

Let M be a financial market, Γ(·) in (3.9), a cumulative income process

and (π0(·), π(·)) a portfolio process. The wealth process associated with

(Γ(·), π0(·), π(·)) is

dX(t) := dV (t) + dΓ(t) ,

where V (·) is the value process defined by (3.3).

The portfolio-consumption (π0(·), π(·), c(·)) is said to be Γ-financed if

dX(t) = dV (t) + dΓ(t) ,

where dV is given by (3.5) and dΓ by (3.9).

3.4 Life insurance process

In this dissertation, we solve the optimal investment, consumption and life

insurance problem. This section is devoted to introduce the concept of life

insurance contract and the hazard function. For more details see e.g. [30],

( [33], Chapter 7) and ( [24], Chapter 3).

Definition 3.4.1.

A general life insurance contract is a vector ((ξ(t), δ(t))t∈[0,T ]) of t-portfolios,

where for any t ∈ [0, T ], the portfolio ξ(t) is interpreted as a payment of the

insurer to the insurant (benefit) and δ(t) as a payment of the insurant to the

insurer (premium), respectively taking place at time t.

As in the previous section, in the presence of life insurance contract in

the portfolio, if the premium is continuously given by δ(t), from (3.6) and

(3.10), the portfolio-consumption and life insurance (π0(·), π(·), c(·), δ(·)) is

said to be Γ-financed if



3.4. Life insurance process 35

V (t) =

∫ t

0

[
V (t)

(
r(t) +

N∑
n=1

πn(t)(αn(t) − r(t))

)
+ i(t) − c(t) − δ(t)

]
dt

+
N∑
n=1

M∑
m=1

∫ t

0

V (t)πn(t)βnm(t)dWm(t)

+
N∑
n=1

ℓ∑
k=1

∫ t

0

V (t)πn(t)

∫
R
γnk(t, zk)Ñk(dt, dzk); 0 ≤ t ≤ T .

3.4.1 Survival function and force of mortality

Let τ be the random lifetime or age-at-death of an individual. Set F (t) =

P (τ < t), the distribution function of τ . We assume that an individual is

alive at time t = 0, that is, once has been born, his/her lifetime is not equal

to zero (F (0) = 0). We define the survival function F̄ (t), by

F̄ (t) = P (τ > t | Ft) = 1 − F (t) ,

where Ft is the filtration at time t. Clearly, F̄ (0) = 1 because F (0) = 0.

Hereafter, we assume that the distribution function F (t) is continuous,

thus the distribution has density f(t) = F ′(t). For an infinitesimal ϵ > 0, we

have that

P (t < τ ≤ t+ ϵ) = f(t) · ϵ . (3.11)

Consider P (t < τ ≤ t + ϵ | τ ≥ t), the probability that the individual

under consideration will die within the interval [t, t + ϵ], given that he/she

has survived t years, i.e., τ ≥ t. From (3.11), the force of mortality or a
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hazard function of τ is defined by

µ(t) := lim
ϵ→0

P (t < τ ≤ t+ ϵ | τ ≥ t)

ϵ

= lim
ϵ→0

P (t < τ ≤ t+ ϵ)

ϵP (τ ≥ t)

=
1

F̄ (t)
lim
ϵ→0

F (t+ ϵ) − F (t)

ϵ

=
f(t)

F̄ (t)

= − d

dt
(ln(F̄ (t))) , (3.12)

provided that F̄ (t) ̸= 0, ∀t. If F̄ (t) = 0, the force of mortality µ(t) = ∞ by

definition. The larger µ(t) is equivalent to the larger the probability that an

individual of age t will die soon, i.e., within a small time interval [t, t+ ϵ].

From (3.12), the survival function of an individual is given by

F̄ (t) = exp

(
−
∫ t

0

µ(s)ds

)
(3.13)

and consequently, the conditional probability density of death of the individ-

ual under consideration at time t, by

f(t) = F ′(t) = µ(t) exp

(
−
∫ t

0

µ(s)ds

)
. (3.14)

Remark.

The filtration Ft is defined in such a way that it includes the information

from the market as well as the information of lifetime of an individual.

Under a life insurance contract, the benefit insured consists of a single

payment, called the sum insured. The time and amount of the payment may

be random variables. Let ϕ(t) be the sum insured to be paid out upon death

time t < T and X, the policyholder’s wealth. Choosing ϕ, the policyholder1

agrees to hand over the amount of money X − ϕ to the pension company

1A policyholder is an individual who pays an amount of money to the insurance com-

pany
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upon death, i.e., the pension company keeps the wealth X for themselves

and pays out ϕ as a life insurance. If the contract is frictionless, the risk

premium rate to pay for the life insurance ϕ at time t is µ(t)(ϕ(t) −X(t))dt

( [22]). Then the wealth process becomes

dV (t) =

[
V (t)

(
r(t) +

N∑
n=1

πn(t)(αn(t) − r(t))

)
− c(t) − µ(t)(ϕ(t) −X(t))

]
dt

+V (t)
N∑
n=1

M∑
m=1

πn(t)βnm(t)dWm(t)

+V (t)
N∑
n=1

ℓ∑
k=1

πn(t)

∫
R
γnk(t, zk)Ñk(dt, dzk); 0 ≤ t ≤ T . (3.15)

Chapter summary

In this chapter, we have derived the wealth process of an investor facing

three different scenarios: first we obtained a wealth process for investment-

consumption portfolios, then we included an income and a life insurance as

well. In the first two, was an extension of [20], where the similar cases were

considered in a geometric diffusion model. The inclusion of the life insurance

is similar to that in [30].

In the next two chapters, we shall solve the optimal investment, consump-

tion and life insurance problem when the the investor’s wealth is given by

(3.15), for N = M = ℓ = 1 and N = 2, M = ℓ = 1 respectively.



Chapter 4

Optimal investment,

consumption and life insurance

problem with random

parameters

In this chapter, we extend the results in [35] to a geometric Itô-Lévy jump

process. Our modelling framework is very general as it allows random pa-

rameters which are unbounded and involves some jumps. It also covers pa-

rameters which are both Markovian and non-Markovian functionals. Unlike

in [35] who considered a diffusion framework, ours solves the problem using a

novel approach, which combines the Hamilton-Jacobi-Bellman (HJB) intro-

duced in Section 2.5 and a backward stochastic differential equation (BSDE)

with jumps in Section 2.4. In Section 4.1, we provide the modeling dynamics

and problem formulation. In Section 4.2, we provide a verification theorem

for the combined HJB equation and the BSDE related to our problem. In

Section 4.3, we give the main result of this chapter and finally, in Section 4.4,

we give two special examples to illustrate the main result. This chapter is

based on results from [13].

38
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4.1 The Model formulation

We consider a frictionless financial market M consisting of a risk-free asset

S0 := (S0(t)t∈[0,T ]) and a risky asset S := (S(t))t∈[0,T ] defined as follows:

dS0(t) = r(t)S0(t)dt, S0(0) = 1 , (4.1)

dS(t) = S(t)

[
α(t)dt+ β(t)dW (t) +

∫
R
γ(t, z)Ñ(dt, dz)

]
, (4.2)

S(0) = s > 0 ,

where r(t), α(t), β(t) are R+-valued and γ(t, ·) > −1 are both Ft-adapted

and predictable processes. Ñ is the compensated Poisson random measure

defined by (2.1).

We assume that the wage earner is alive at time t = 0, whose lifetime is

a non-negative random variable τ defined on the probability space (Ω,F ,P).

From subsection 3.4.1, the conditional survival probability of the wage earner

is given by (3.13) and the conditional survival probability density of the death

of the wage earner by (3.14).

We suppose existence of an insurance contract, where the term life in-

surance is continuously traded. We assume that the wage earner is paying

premiums at the rate p(t), at time t for the life insurance contract and the

insurance company will pay p/η(t) to his beneficiary for his death, where the

Ft-adapted process η(t) > 0 is the premium insurance ratio. This parameter

η is allowed to be stochastic due to stochastic mortality or safety loading.

When the wage earner dies, the total legacy to his beneficiary is given by

ℓ(t) := X(t) +
p(t)

η(t)
,

where X(t) is the wealth process of the wage earner at time t and p(t)/η(t)

the insurance benefit paid by the insurance company to the beneficiary if

death occurs at time t.

Let c(t) be the consumption rate of the wage earner and π(t) the fraction

of the wage earner’s wealth invested in the risky share. The wealth process
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X(t) is defined by the following stochastic differential equation (SDE):

dX(t) = [X(t)(r(t) + π(t)µ(t)) − c(t) − p(t)] dt+ π(t)β(t)X(t)dW (t)

+ π(t)X(t)

∫
R
γ(t, z)Ñ(dt, dz), t ∈ [0, τ ∧ T ] , (4.3)

X(0) = x > 0 ,

where µ(t) := α(t) − r(t) is the appreciation rate.

The main problem of this chapter is to choose the optimal investment,

consumption and life insurance problem, so that the wage earner maximizes

the expected discounted utilities derived from the intertemporal consumption

during [0, τ ∧ T ], from the legacy if he dies before time T <∞ and from the

terminal wealth if he is alive until time T . We suppose that the discount

process rate ρ(t) is positive and Ft-adapted process.

Given the utility function U for the intertemporal consumption, legacy

and terminal wealth, the wage earner’s problem is then to choose an invest-

ment, consumption and insurance strategy so as to optimize the following

performance functional:

J(0, x0;π, c, p) := sup
(π,c,p)∈A

E
[∫ τ∧T

0

e−
∫ s
0 ρ(u)duU(c(s))ds (4.4)

+e−
∫ τ
0 ρ(u)duU(ℓ(τ))1{τ≤T} + e−

∫ T
0 ρ(u)duU(X(T ))1{τ>T}

]
,

where U is the utility function for the consumption, legacy and terminal

wealth. We consider a utility function of the constant relative risk aversion

(CRRA) type, given by (2.13).

From (3.13) and (3.14), the maximum utility (4.4) is equivalent to the

following performance functional

J(0, x0, π, c, p) = sup
(π,c,p)∈A

E
[∫ T

0

e−
∫ s
0 ρ(u)du[F̄ (s)U(c(s)) + f(s)U(ℓ(s))]ds

+e−
∫ T
0 ρ(u)duF̄ (T )U(X(T ))

]
.

Hence,
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J(0, x0;π, c, p) = sup
(π,c,p)∈A

E
[∫ T

0

e−
∫ s
0 (ρ(u)+λ(u))du[U(c(s)) + λ(s)U(ℓ(s))]ds

+e−
∫ T
0 (ρ(u)+λ(u))duU(X(T ))

]
. (4.5)

As we are studying a model with random parameters and jumps, the

following assumptions are essential to guarantee the existence and uniqueness

of a solution to the BSDE related to our problem in the next section. (See

[35]):

(A1) the appreciation rate of the share is greater than the interest rate;

(A2) the interest rate, force of mortality, premium insurance ratio and dis-

count rate are bounded away from zero, that is,

∃ϵ > 0 : |Λ(t)| ≥ ϵ , a.e.,

where Λ := r, λ, η, ρ ;

(A3) the random parameters satisfy the exponential integrability conditions

E
[
exp(θ

∫ T

0

|Λ(t)|dt)
]
<∞ ,

for a sufficient large θ, where Λ := r, λ, η, ρ.

Definition 4.1.1.

The set of strategies A := {(π, c, p) := (π(t), c(t), p(t))t∈[0,T ]} is said to be

admissible if the following conditions hold:

(1) a triple (π, c, p) ∈ (0, 1) × R+ × R is F -adapted process such that∫ T

0

c(t)dt <∞ ,

∫ T

0

|p(t)|dt <∞ and

∫ T

0

π2(t)dt <∞ , P−a.s.,

(2) the SDE (4.3) has a unique strong solution associated with (π, c, p)

such that:

X(t) ≥ 0 , P− a.s.,
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(3) and finally:

E
[∫ T

0

e−
∫ s
0 (ρ(u)+λ(u))du[U−(c(s)) + λ(s)U−(ℓ(s))]ds

+e−
∫ T
0 (ρ(u)+λ(u))duU−(X(T ))

]
< ∞ .

To use the dynamic programming principle, we consider the dynamic

version of the performance functional (4.5) given by

J(t, x, π, c, p) = Et,x
[∫ T

t

e−
∫ s
t (ρ(u)+λ(u))du[U(c(s)) + λ(s)U(ℓ(s))]ds

+e−
∫ T
t (ρ(u)+λ(u))duU(X(T ))

]
, (4.6)

where Et,x represents the conditional expectation E[ · |X(t) = x,Ft]. The

wage earner wishes to maximize the dynamic performance functional (4.6)

under the admissible set A, subject to the wealth process (4.3). Therefore,

the value function of the problem is given by

V (t, x) = sup
(π,c,p)∈A

J(t, x, π, c, p) = J(t, x, π∗, c∗, p∗) ,

where (π∗, c∗, p∗) ∈ A is the optimal investment, consumption and life in-

surance strategy to be determined in the next section. We point out that

the value function V (t, x) is an Ft- measurable random variable, since all

model parameters are random in our model, so the value function can not

be determined from the partial differential equation as usual. To determine

the value function, we will use a combination of the (HJB) equation and the

(BSDE) equation. Although it is not possible to obtain an explicit solution

to the optimal π∗, we will show the sufficient conditions to guarantee that

the solution π∗ ∈ (0, 1) exists. The optimal c∗ and p∗ are derived explicitly.
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4.2 Combination of HJB equation with BSDE

with jumps

In this section, we employ a combination of HJB equation introduced in

Theorem 2.5.1. with BSDE with jumps introduced in section 2.4 to solve our

optimal problem.

Let S := [0, T ]×R×R be the solvency region. We define Ψ : S 7→ R such

that Ψ(·, ·, ·) ∈ C1,2,2(S). We suppose that Ψt,Ψx,Ψy,Ψxx,Ψyy are partial

derivatives with respect to t, x, y respectively. We define the following partial

differential generator:

Lπ,c,p[Ψ(t, x, y)]

= −(ρ(t) + λ(t))Ψ(t, x, y) + Ψt(t, x, y)

+ [X(t)(r(t) + π(t)µ(t)) − c(t) − p(t)] Ψx(t, x, y)

−Ψy(t, x, y)f(t, Y (t),Υ(t)) +
1

2
π2(t)β2(t)X2(t)Ψxx(t, x, y)

+

∫
R

[
Ψ(t, x+ πxγ(t, z), y) − Ψ(t, x, y)

−πxγ(t, z)Ψx(t, x, y)
]
ν(dz) +

∫
R

[
Ψ(t, x, y + Υ(t, z))

−Ψ(t, x, y) − Υ(t, z)Ψx(t, x, y)
]
ν(dz) .

The following theorem is a verification result for the combination of the HJB

equation and the BSDE associated with our problem. We prove similarly as

in ( [35], Theorem 3.1.).

Theorem 4.2.1. (Verification theorem). Suppose that (ξ, f) satisfy the con-

ditions (C1) − (C3). Let S be the closure of the solvency region S. Moreover,

let Φ denote the following function:

Φ(t, x, Y (t), π, c, p) := Lπ,c,p[Ψ(t, x, y)] + U(c) + λ(t)U(x+ p/η(t)) . (4.7)

Suppose there is a function Ψ ∈ C2 and an admissible control (π∗, c∗, p∗) ∈ A
such that:
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(1) Φ(t, x, Y (t), π, c, p) ≤ 0 for all (π, c, p) ∈ A;

(2) Φ(t, x, Y (t), π∗, c∗, p∗) = 0;

(3) for all (π, c, p) ∈ A,

lim
t→T−

Ψ(t, x, y) = U(x);

(4) let K be the set of stopping times κ ≤ T . The family {Ψ(κ,X(κ), Y (κ))}κ∈K
is uniformly integrable.

Then

Ψ(t, x, y) = sup
(π,c,p)∈A

J(t, x;π, c, p)

= J(t, x;π∗, c∗, p∗)

and (π∗, c∗, p∗) is an optimal control.

Proof. To prove this theorem, we first define a sequence of localizing stopping

times (see [1], Section 2.2 for more details) as follows

K(N)
S := T ∧ inf{t ≥ 0 | (t,X(t), Y (t)) /∈ S}

∧ inf{t > 0 | t ≥ N or |X(t)| ≥ N or ∥Y (t)∥ ≥ N}.

Then, Dynkin formula ( [29], Theorem 1.24.),

Ψ(t, x, Y (t)) = Et,x
[
e−

∫K(N)
S

t [ρ(s)+λ(s)]dsΨ
(
K(N)

S , X(K(N)
S ) , Y (K(N)

S )
)

−
∫ K(N)

S

t

e−
∫ s
t [ρ(u)+λ(u)]duLπ,c,p[Ψ(s,X(s), Y (s))]ds

]
.(4.8)

Hence, for all (π, c, p) ∈ A, using Condition 1 to (4.8) gives

Ψ(t, x, Y (t))

≥ Et,x
[∫ K(N)

S

t

e−
∫ s
t [ρ(u)+λ(u)]du[U(c(s)) + λ(s)U(X(s) + p(s)/η(s))]ds

+e−
∫K(N)

S
t [ρ(s)+λ(s)]dsΨ

(
K(N)

S , X(K(N)
S ) , Y (K(N)

S )
) ]
. (4.9)
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Using Conditions 3-4, Fatou’s lemma ( [8], Theorem 3. p 57) and the Domi-

nated Convergence Theorem ( [8], Theorem 10. p 63) yield

Ψ(t, x, Y (t))

≥ lim
N→∞

inf Et,x
[∫ K(N)

S

t

e−
∫ s
t [ρ(u)+λ(u)]du[U(c(s)) + λ(s)U(X(s) + p(s)/η(s))]ds

+e−
∫K(N)

S
t [ρ(s)+λ(s)]dsΨ

(
K(N)

S , X(K(N)
S ) , Y (K(N)

S )
) ]

≥ Et,x
[

lim
N→∞

inf
{∫ K(N)

S

t

e−
∫ s
t [ρ(u)+λ(u)]du[U(c(s)) + λ(s)U(X(s) + p(s)/η(s))]ds

+e−
∫K(N)

S
t [ρ(s)+λ(s)]dsΨ

(
K(N)

S , X(K(N)
S ) , Y (K(N)

S )
)}]

= J(t, x, π, c, p) . (4.10)

Similarly, we can use Conditions 2-4 to derive that

Ψ(t, x, Y (t)) = J(t, x, π∗, c∗, p∗) . (4.11)

Consequently, combining (4.10) and (4.11) completes the proof.

From the above theorem, the value function is the solution of the following

system of the HJB equation and BSDE with jumps:

{
sup(π,c,p)∈A Φ(t, x, Y (t), π, c, p) = 0, Ψ(T, x, ξ) = U(x)

dY (t) = −f(t, Y (t),Υ(t))dt+
∫
R Υ(t, z)Ñ(dt, dz), Y (T ) = ξ .

(4.12)

4.3 General solutions

In this section, we investigate the solutions to the investment, consumption

and life insurance problem (4.12) for a wage earner with power utility (2.13).

Theorem 4.3.1. Under the assumptions (A1) − (A3), the optimal invest-

ment, consumption and life insurance strategy of the problem is:

c∗ = xe−Y (t) , p∗ = η(t)x

{[
λ(t)

η(t)

] 1
1−δ

e−Y (t) − 1

}
,
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and π∗ is the solution of the equation

µ(t) − (1 − δ)πβ2(t) −
∫
R

[
1 − (1 + πγ(t, z))δ−1

]
γ(t, z)ν(dz) = 0 ,

where Y ∈ S2(R) is given by

Y (t) = EQ

{∫ T

t

ln

[
1 +

∫ s

t

(
1 +

λ
1

1−δ

η
δ

1−δ

)
du

]
K(s)ds

}
,

for K(·) to be specified later.

Proof. To obtain the optimal solution (π∗, c∗, p∗), from the terminal condi-

tion, we try the value function of the form:

V (t, x) = Ψ(t, x, Y (t)) =
1

δ
xδe(1−δ)Y (t), (4.13)

where Y is the solution of the BSDE (2.9), for ξ = 0, Z = 0 and f to be

defined later. With this choice, it is clear that Φ in equation (4.7) fulfils

the standard procedures to solve equation (4.12), i.e. Φππ < 0, Φcc < 0 and

Φpp < 0.

Applying the first order conditions of optimality to Φ with respect to

(π, c, p) we obtain

−Ψx(t, x, Y (t)) + U ′(c) = 0 , (4.14)

−Ψx(t, x, Y (t)) + λ(t)
∂U(x+ p/η(t))

∂p
= 0 (4.15)

and

µ(t)xΨx(t, x, Y (t)) − (1 − δ)πβ2(t)x2Ψxx(t, x, Y (t)) (4.16)

+

∫
R

[Ψπ(t, x+ πxγ(t, z), Y (t)) − γ(t, z)xΨx(t, x, Y (t))] ν(dz) = 0 .

Substituting (2.13) and (4.13) into (4.14)-(4.16) give the following optimal

investment, consumption and life insurance strategy

c∗(t) = xe−Y (t) , (4.17)

p∗(t) = η(t)x

{[
λ(t)

η(t)

] 1
1−δ

e−Y (t) − 1

}
(4.18)
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and π∗(t) is the solution of the following equation

xδe(1−δ)Y (t)
{
µ(t) − (1 − δ)π(t)β2(t)

−
∫
R

[
1 − (1 + π(t)γ(t, z))δ−1

]
γ(t, z)ν(dz)

}
= 0 . (4.19)

Furthermore, from (4.18), the optimal legacy is given by

ℓ∗(t) = x

[
λ(t)

η(t)

] 1
1−δ

e−Y (t) .

To ensure the existence of the unique solution π ∈ (0 , 1) in (4.19) we

follow the ideas in [2]. To this end, we define a function

h(π) = µ(t) − (1 − δ)πβ2(t) −
∫
R

[
1 − (1 + πγ(t, z))δ−1

]
γ(t, z)ν(dz) .

If π = 0, h(π) = µ(t) := α(t) − r(t) > 0 and

h′(π) = −(1 − δ)

[
β2(t) +

∫
R
(1 + πγ(t, z))δ−2γ2(t, z)ν(dz)

]
< 0 .

Then, the solution exists and is unique if

h(1) = µ(t) − (1 − δ)β2(t) −
∫
R

[
1 − (1 + γ(t, z))δ−1

]
γ(t, z)ν(dz) < 0 ,

hence

(1 − δ)β2(t) +

∫
R

[
1 − (1 + γ(t, z))δ−1

]
γ(t, z)ν(dz) > α(t) − r(t) .

To complete the proof, we need to obtain the function Y . Substitut-

ing (4.17), (4.18) and π∗ into the HJB equation (4.12) gives the following

expression

1 − δ

δ
xδe(1−δ)Y

{
−f − 1

1 − δ
(ρ+ λ) +

δ

1 − δ
(r + η)

+
δ

1 − δ

{
π∗µ− 1 − δ

2
(π∗)2β2 +

1

δ

∫
R

[
(1 + π∗γ(t, z))δ − 1 − δπ∗γ(t, z)

]
ν(dz)

}
+

[
1 +

λ
1

1−δ

η
δ

1−δ

]
e−Y +

∫
R

{ 1

1 − δ

[
e(1−δ)Υ − 1

]
− Υ

}
ν(dz)

}
= 0 .
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Then, taking the coefficient of xδe(1−δ)Y equal to zero, leads to

f(t, Y (t),Υ(t)) = K(t) +

[
1 +

λ
1

1−δ (t)

η
δ

1−δ (t)

]
e−Y (t) (4.20)

+

∫
R

{ 1

1 − δ

[
e(1−δ)Υ(t,z) − 1

]
− Υ(t, z)

}
ν(dz) ,

where

K(t) = − 1

1 − δ
(ρ(t) + λ(t)) +

δ

1 − δ
(r(t) + η(t)) +

δ

1 − δ

{
π∗(t)µ(t)

−1 − δ

2
(π∗(t))2β2(t) +

1

δ

∫
R

[
(1 + π∗(t)γ(t, z))δ − 1

−δπ∗(t)γ(t, z)
]
ν(dz)

}
.

Under the Assumptions (A1) − (A3), the BSDE (2.9) with the generator

(4.20), the control Z = 0 and the terminal value ξ = 0, satisfies the Condi-

tions (C1) − (C3). Then, by Theorem 2.4.1, there exists a unique solution

(Y,Υ) ∈ S2(R) × H2
N(R). As in ( [9], Chapter 11), to obtain this solution,

we define the probability measure Q equivalent to P on FT as follows:

dQ
dP

∣∣∣
F(T )

= M , (4.21)

where M is the Radon-Nikodym derivative given by the dynamics

dM(t)

M(t)
:=

∫
R

[
e(1−δ)Υ(s,z) − 1

(1 − δ)Υ(s, z)
− 1

]
Ñ(ds, dz) .

Suppose that

υ := υ(t, z) =
e(1−δ)Υ(s,z) − 1

(1 − δ)Υ(s, z)
− 1 . (4.22)

By Theorem 2.3.2.,

ÑQ(dt, dz) := N(dt, dz) − (1 + υ(t, z))ν(dz)dt, 0 ≤ t ≤ T ,

is a (Q,F)- compensated random measure. Then, under the probability Q,

the BSDE (2.9) with generator (4.20) and Z = 0 becomes:

dY (t) = −

{
K(t) +

[
1 +

λ
1

1−δ (t)

η
δ

1−δ (t)

]
e−Y (t)

}
dt

+

∫
R

Υ(t, z)ÑQ(dt, dz) ; (4.23)

Y (T ) = 0 .
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By ( [9], Theorem 11.2.1), the solution of (4.23) has the representation

Y (t) = EQ

{∫ T

t

ln

[
1 +

∫ s

t

(
1 +

λ
1

1−δ

η
δ

1−δ

)
du

]
K(s)ds

}
(4.24)

and Υ can be determined by the martingale representation theorem.

As in [35], Y can be interpreted as an intuitive actuarial value process

of a consumption rate from current to τ ∧ T , λ
1

1−δ

η
δ

1−δ
insurance benefit paying

at death time τ < T and a legacy at terminal T if the wage earner survives

until time T .

4.4 Special Examples

In this section, we present two examples which are particular cases of Theo-

rem 4.3.1. In each example, we consider a model with one random parameter

and all others deterministic functions of t. We derive the explicit solution Y

and consequently the Theorem 4.3.1. is verified.

In the first example, we consider a stochastic mortality with jumps.

Jumps in a mortality process might occur for a variety of reasons: sudden

changes in environmental conditions or a radical medical changes [5]. At the

second example, we consider the case of stochastic appreciation rate with

jumps. This case is motivated by the cointegrated model in [6], where the

log-prices depend on the diffusion appreciation rate.

Example 4.4.1. We consider the force of mortality given by the following

geometric jump-diffusion model:

dλ(s) = λ(s)[ads+bdW (s)+

∫
z>−1

zÑ(ds, dz)], λ(t) = λ > 0, 0 ≤ t ≤ s ≤ T,

(4.25)

where a, b ∈ R are constants and z > −1.
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Then, Y (t) in (4.24) is represented as follows:

Y (t) =

∫ T

t

EQ

{
ln

[
1 +

∫ s

t

(
1 +

λ
1

1−δ

η
δ

1−δ

)
du

]}
L(s)ds (4.26)

− 1

1 − δ
EQ

{∫ T

t

ln

[
1 +

∫ s

t

(
1 +

λ
1

1−δ

η
δ

1−δ

)
du

]
λ(s)ds

}
,

where

L(s) := − ρ(s)

1 − δ
+

δ

1 − δ
(r(s) + η(s)) +

δ

1 − δ

{
π∗µ(s) − 1 − δ

2
(π∗)2β2(s)

+
1

δ

∫
R

[
(1 + π∗γ(s, z))δ − 1 − δπ∗γ(s, z)

]
ν(dz)

}
and EQ[ · ] is the conditional expectation under Q, given Ft.

Under the probability Q, the dynamics of the mortality process is given

by

dλ(s) = λ(s)

[(
a+

∫
z>−1

zυ(s, z)ν(dz)

)
ds+ bdWQ(s) +

∫
z>−1

zÑQ(ds, dz)

]
.

Then, the conditional expectation EQ[λ(s)] , given Ft is given by

EQ[λ(s)] = λ exp

{∫ s

t

[
a+

∫
z>−1

zυ(s, z)ν(dz)

]
ds

}
. (4.27)

We define a new probability measure Q̃ equivalent to Q as follows:

dQ̃
dQ

:=
λ(s)

EQ[λ(s)]
= exp

{∫ s

0

[
−1

2
b2 +

∫
z>−1

(ln(1 + z) − z) ν(dz)

]
du

}
.

By change of measures, (4.26) becomes:

Y (t) =

∫ T

t

EQ̃

{
ln

[
1 +

∫ s

t

(
1 +

λ
1

1−δ

η
δ

1−δ

)
du

]}
L(s)ds (4.28)

− 1

1 − δ

∫ T

t

EQ̃

{
ln

[
1 +

∫ s

t

(
1 +

λ
1

1−δ

η
δ

1−δ

)
du

]}
· EQ[λ(s)]ds .
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Applying the Itô’s formula to λ
1

1−δ under Q̃, we obtain:

dλ
1

1−δ (s) = λ
1

1−δ (s)
{ 1

1 − δ

{
a+

2 − δ

2(1 − δ)
b2 +

∫
z>−1

{
(1 − δ)

[
(1 + z)

1
1−δ − 1

]
+zυ(s, z) − δz

}
ν(dz)

}
ds+

1

1 − δ
bdW Q̃(s)

+

∫
z>−1

[
(1 + z)

1
1−δ − 1

]
Ñ Q̃(ds, dz)

}
.

Hence, taking expectation E[ · ] , under Q̃ , gives:

EQ̃[λ
1

1−δ (s)] = λ
1

1−δ exp
{∫ s

t

1

1 − δ

{
a+

2 − δ

2(1 − δ)
b2

+

∫
z>−1

{
(1 − δ)

[
(1 + z)

1
1−δ − 1

]
+ zυ(u, z) − δz

}
ν(dz)

}
du
}
,

since ∫
z>−1

{
(1 − δ)

[
(1 + z)

1
1−δ − 1

]
+ zυ(u, z) − δz

}
ν(dz) <∞ .

To obtain the expectation EQ̃[ · ] in (4.28), we consider:

Z(s) =

∫ s

t

(
1 +

λ
1

1−δ (u)

η
δ

1−δ (u)

)
du .

By linearity of conditional expectation, we see that

EQ̃[Z] = EQ̃

[∫ s

t

(
1 +

λ
1

1−δ (u)

η
δ

1−δ (u)

)
du

]
=

∫ s

t

1 +
EQ̃
[
λ

1
1−δ (u)

]
η

δ
1−δ (u)

 du .

(4.29)

Then from [36], we know that, for a random variable X such that E[X] ≫
0, the third derivative is small and the Taylor approximation series to E[ln(1+

X)] is very accurate, that is:

E[ln(1 +X)] = ln(1 + E[X]) − V(X)

2(1 + E[X])2
+RX ,
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where RX > 0 is very small. Applying this techniques in (4.28), we have:

EQ̃

{
ln

[
1 +

∫ s

t

(
1 +

λ
1

1−δ (u)

η
δ

1−δ (u)

)
du

]}

= ln

1 +

∫ s

t

1 +
EQ̃
[
λ

1
1−δ (u)

]
η

δ
1−δ (u)

 du

− Π +RX , (4.30)

where

Π =

V
[∫ s

t

(
1 + λ

1
1−δ (u)

η
δ

1−δ (u)

)
du

]
2(1 +

∫ s
t

(
1 +

EQ̃
[
λ

1
1−δ (u)

]
η

δ
1−δ (u)

)
du)2

.

We then need to obtain the variance

V(Z) := EQ̃[Z2] −
(
EQ̃[Z]

)2
.

Provided that the integrand of Z is absolutely convergent, by Fubini’s the-

orem we can change the order of integration and applying the linearity of

conditional expectation, leads to

EQ̃[Z2] = EQ̃

[∫ s

v=t

(
1 +

λ
1

1−δ (v)

η
δ

1−δ (v)

)
dv ·

∫ s

u=t

(
1 +

λ
1

1−δ (u)

η
δ

1−δ (u)

)
du

]

= EQ̃

[∫ s

v=t

∫ s

u=t

(
1 +

λ
1

1−δ (v)

η
δ

1−δ (v)

)
·

(
1 +

λ
1

1−δ (u)

η
δ

1−δ (u)

)
dudv

]

=

∫ s

v=t

∫ s

u=t

{
1 +

EQ̃
[
λ

1
1−δ (u)

]
η

δ
1−δ (u)

+
EQ̃
[
λ

1
1−δ (v)

]
η

δ
1−δ (v)

+
EQ̃
[
λ

1
1−δ (u) · λ

1
1−δ (v)

]
η

δ
1−δ (u) · η

δ
1−δ (v)

}
dudv . (4.31)

It remains to get the expectation EQ̃
[
λ

1
1−δ (u) · λ

1
1−δ (v)

]
in the right hand

side of (4.31). By Itô’s formula, we know that
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d
[
λ

1
1−δ (u) · λ

1
1−δ (v)

]
= λ

1
1−δ (u) · λ

1
1−δ (v)

{ 1

1 − δ

{
a+

2 − δ

2(1 − δ)
b2 +

∫
z>−1

{
(1 − δ)

[
(1 + z)

1
1−δ − 1

]
+zυ(u, z) − δz

}
ν(dz)

}
du+

1

1 − δ
bdW Q̃(u)

+

∫
z>−1

[
(1 + z)

1
1−δ − 1

]
Ñ Q̃(du, dz) +

1

1 − δ

{
a+

2 − δ

2(1 − δ)
b2

+

∫
z>−1

{
(1 − δ)

[
(1 + z)

1
1−δ − 1

]
+ zυ(v, z) − δz

}
ν(dz)

}
dv

+
1

1 − δ
bdW Q̃(v) +

∫
z>−1

[
(1 + z)

1
1−δ − 1

]
Ñ Q̃(dv, dz)

+
{ 1

(1 − δ)2
b2 +

∫
z>−1

[
(1 + z)

1
1−δ − 1

]2
ν(dz)

}
du ∧ dv

+

∫
z>−1

[
(1 + z)

1
1−δ − 1

]2
Ñ Q̃(du ∧ dv, dz)

}
.

Hence

EQ̃
[
λ

1
1−δ (u) · λ

1
1−δ (v)

]
= λ

2
1−δ exp

{ 1

1 − δ

∫ u

t

{
a+

2 − δ

2(1 − δ)
b2

+

∫
z>−1

{
(1 − δ)

[
(1 + z)

1
1−δ − 1

]
+ zυ(x, z) − δz

}
ν(dz)

}
dx

+
1

1 − δ

∫ v

t

{
a+

2 − δ

2(1 − δ)
b2 +

∫
z>−1

{
(1 − δ)

[
(1 + z)

1
1−δ − 1

]
+zυ(x, z) − δz

}
ν(dz)

}
dx

+

∫ u∧v

t

{ 1

(1 − δ)2
b2 +

∫
z>−1

[
(1 + z)

1
1−δ − 1

]2
ν(dz)

}
dx
}
.

Then, substituting (4.27) and (4.30) into (4.28) we obtain Y . Taking Y

into Theorem 4.3.1., we obtain the optimal investment, consumption and life

insurance strategy and the value function.

We conclude this example illustrating the effect of the jump in the mor-

tality rate. We consider the following parameters a = −0.035, b = 0.1, λ(0) =
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0.05 and T = 40 years. The equations to be simulated are: Given the geo-

metric jump-diffusion model studied in this example,

dλ(s) = λ(s)[ads+ bdW (s) + dN(t)], λ(t) = λ > 0, 0 ≤ t ≤ s ≤ T

and a geometric diffusion mortality given by

dλ(s) = λ(s)[ads+ bdW (s)], λ(t) = λ > 0, 0 ≤ t ≤ s ≤ T.

Graphically, we see that the jump-diffusion mortality can capture the high

rates of mortality (solid curve) in the figure given below. This can happen in

the cases of radical change in environmental conditions such as war, earth-

quakes, sudden pandemics etc. Which can not be captured by a geometric

brownian motion (dashed curve).
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Figure 4.1: Mortalities with diffusion and jump-diffusion processes.

Example 4.4.2. We consider an appreciation rate with jump µ(s) governed

by the following dynamics

dµ(s) = (a(s) − bµ(s))ds+

∫
R
ψ(s, z)Ñ(ds, dz), µ(t) = µ+; 0 ≤ t ≤ s ≤ T,
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where a(t) ∈ R is deterministic and uniformly bounded, b ∈ R is constant.

Under the probability Q, the appreciation rate µ(s) follows the dynamics

dµ(s) =

[
a(s) − bµ(s) +

∫
R
ψ(s, z)υ(s, z)ν(dz)

]
ds+

∫
R
ψ(s, z)ÑQ(ds, dz) .

(4.32)

Then, taking the conditional expectation E[ · ], under Q, we obtain

EQ[µ(s)] = e−b(s−t)µ0 +

∫ s

t

[
a(u) +

∫
R
ψ(u, z)υ(u, z)ν(dz)

]
e−b(u−s)du ,

(4.33)

since ∫
R
ψ(u, z)υ(u, z)ν(dz) <∞ .

The solution (4.24) becomes

Y (t) =

∫ T

t

ln

[
1 +

∫ s

t

(
1 +

λ
1

1−δ

η
δ

1−δ

)
du

]
·
(
M(s) +

δ

1 − δ
π∗EQ[µ(s)]

)
ds ,

(4.34)

where

M(s) = −ρ(s) + λ(s)

1 − δ
+

δ

1 − δ
(r(s) + η(s)) +

δ

1 − δ

{
−1 − δ

2
(π∗)2β2(s)

+
1

δ

∫
R

[
(1 + π∗γ(s, z))δ − 1 − δπ∗γ(s, z)

]
ν(dz)

}
.

Taking Y in (4.34) into Theorem 4.3.1., we obtain the optimal investment,

consumption and life insurance strategy and the value function.

Chapter summary

In this chapter, we solved the optimal investment, consumption and life insur-

ance problem with random parameters using a combination of HJB equation

and BSDE with jumps method. We obtained the optimal strategy, where

the BSDE is solved via martingale approach, representing its solution by the
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expected value under Q martingale measure. Then in section 4.4, we derived

the explicit expected value in two cases. The remainder are similar to those

in Examples 4.4.1 and 4.4.2.



Chapter 5

Optimal investment,

consumption and life insurance

problem with capital guarantee

In this chapter, based on the results in [22], we solve a geometric jump-

diffusion optimization problem. We use the martingale approach applied

in [19] to obtain the optimal solution to the unrestricted problem in sec-

tion 5.2. In section 5.3, we obtain the solution to the restricted capital

guarantee problem based on terms derived from the martingale method in

the unrestricted problem.

5.1 Financial Model

We consider a real Brownian motion W = {W (t),FW
t ; 0 ≤ t ≤ T} associated

to the complete filtered probability space (ΩW ,FW , (FW
t ),PW ) and a Poisson

process N = {N(t),FN
t , 0 ≤ t ≤ T} associated to the complete filtered

probability space (ΩN ,FN , (FN
t ),PN) with intensity λ(t) and

Ñ(t) := N(t) −
∫ t

0

λ(t)dt ,

57
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a PN -martingale compensated poisson process. We assume that the intensity

is Lebesgue integrable on [0, T ].

We consider the product space:

(Ω,F , (Ft)0≤t≤T ,P) := (ΩW × ΩN ,FW ⊗FN , (FW
t ⊗FN

t ),PW ⊗ PN) ,

where (Ft)t∈[0,T ] is a filtration introduced in Definition 2.1.3. On this space,

W and N are independent processes.

We consider a frictionless financial market M consisting of a risk-free

asset S0 := (S0(t)t∈[0,T ]) and a risky asset S := (S1(t), S2(t))t∈[0,T ] defined

by the following jump-diffusion model:

dS0(t) = r(t)S0(t)dt, S0(0) = 1 , (5.1)

dSi(t) = Si(t) [αi(t)dt+ βi(t)dW (t) + γi(t)dN(t)] , S(0) = s , (5.2)

where r(t), αi(t), βi(t) and γi(t), i = 1, 2 satisfy the following assumption:

Assumption 5.1.

The interest rate r(t), the vector of mean rate of returns

α(t) := (α1(t), α2(t)), the dispersion coefficients β(t) := (β1(t), β2(t)) and

γ(t) := (γ1(t), γ2(t)) are measurable Ft-adapted uniformly bounded processes

and γi(t) > −1 for i = 1, 2.

Let us consider a policyholder whose lifetime is a nonnegative random

variable τ defined on the probability space (Ω,F ,P). As in Chapter 4, the

conditional survival probability of the policyholder is given by (3.13) and the

conditional survival probability density of the death of the policyholder by

(3.14).

Let c(t) be the consumption rate of the policyholder, π := (π1, π2) the

fraction of the policyholder’s wealth invested in the risky assets S and p(t)

the sum insured paid for the life insurance.

Definition 5.1.1.

The consumption rate c is measurable, Ft-adapted process, nonnegative and∫ T

0

c(t)dt <∞, a.s.
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The allocation process π := (π1, π2) is an Ft-predictable process with

2∑
i=1

∫ t

0

π2
i (t)dt <∞, a.s. (5.3)

The insurance process p is measurable Ft-adapted process, nonnegative and∫ T

0

p(t)dt <∞, a.s.

Suppose that the policyholder receives a labor income of rate ℓ(t) ≥ 0,

∀t ∈ [0, τ ∧T ]. The wealth process X(t) is defined by the following stochastic

differential equation (SDE):

dX(t) = [(r(t) + µ(t))X(t) + ⟨π(t), ϕ(t)⟩ + ℓ(t) − c(t) − µ(t)p(t)] dt

+ ⟨π(t), β(t)⟩dW (t) + ⟨π(t), γ(t)⟩dN(t), t ∈ [0, τ ∧ T ] , (5.4)

X(0) = x0 > 0 ,

where π satisfying (5.3) is the vector amount invested in the risky share

S := (S1, S2), ϕ := (α1− r, α2− r) is the vector of appreciation rate, β(t) :=

(β1(t), β2(t)), γ(t) := (γ1(t), γ2(t)). The expression µ(t)(p(t)−X(t))dt corre-

spond to the risk premium rate introduced in subsection 3.4.1. Notice that

choosing p > X corresponds to buying a life insurance and p < X corre-

sponds to selling a life insurance, that is buying an annuity ( [22]).

Assumption 5.1 and Definition 5.1.1. guarantee that the wealth process

(5.4) is well defined and has a unique solution given by

X(t) = x0e
∫ t
0 (r(s)+µ(s))ds +

∫ t

0

e
∫ t
s (r(u)+µ(u))du

[
⟨π(s), ϕ(s)⟩ + ℓ(s) − c(s)

−µ(s)p(s)
]
ds+

∫ t

0

⟨π(s), β(s)⟩e
∫ t
s (r(u)+µ(u))dudW (s)

+

∫ t

0

⟨π(s), γ(s)⟩e
∫ t
s (r(u)+µ(u))dudN(s) . (5.5)

We define a new probability measure Q equivalent to P in which Si are

local martingales. As in [34], the Radom-Nikodym derivative is given by:

dQ
dP

:= Λ(t) = exp
{∫ t

0

[(1 − ψ(s))λ(s) − 1

2
θ2(s)]ds+

∫ t

0

θ(s)dW (s)

+

∫ t

0

ln(ψ(s))dN(s)
}
. (5.6)
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Under Q, we have that:{
dWQ(t) = dW (t) − θ(t)dt,

dÑQ(t) = dN(t) − ψ(t)λ(t)dt .

where

θ(t) =
γ1(t)(α2 − r) − γ2(α1 − r)

β1γ2 − γ1β2
(5.7)

ψ(t)λ(t) =
β2(α1 − r) − β1(α2 − r)

β1γ2 − γ1β2
. (5.8)

For existence of (5.7)-(5.8), we assume that β1γ2 − γ1β2 ̸= 0.

Remark.

An asset price defined by jump-diffusion process consists of two sources of

randomness, which implies infinitely many martingale measures. For in-

stance, for i = 1 in (5.2), the Radom-Nikodym derivative is given by (5.6),

where the market price of risk (MPR) θ is given by

θ(t) =
r(t) − α1(t) − γ1(t)ψ(t)λ(t)

β1(t)
, (5.9)

for an arbitrary ψ(t) ≥ 0. Thus, if we consider another asset price S2 in

(5.2), for i = 2, as a price of a derivative asset with underlying S1 and using

the Itô’s formula, we obtain the same MPR, i.e.,

r(t) − α1(t) − γ1(t)ψ(t)λ(t)

β1(t)
=
r(t) − α2(t) − γ2(t)ψ(t)λ(t)

β2(t)
,

which gives (5.8). Substituting (5.8) into (5.9), gives (5.7) and consequently

a unique martingale measure. See [34], for more details.

From (5.7) and (5.8), we have that:

[⟨π(s), ϕ(s)⟩ + ⟨π(s), θ(s)β(s)⟩ + ⟨π(s), ψ(s)λ(s)γ(s)⟩] = 0 ,

then under Q, the dynamics of the wealth process (5.4) is given by

dX(t) = [(r(t) + µ(t))X(t) + ℓ(t) − c(t) − µ(t)p(t)] dt

+⟨π(t), β(t)⟩dWQ(t) + ⟨π(t), γ(t)⟩dÑQ(t) ,



5.1. Financial Model 61

which gives the following representation:

X(t) = x0e
∫ t
0 (r(s)+µ(s))ds +

∫ t

0

e
∫ t
s (r(u)+µ(u))du

[
ℓ(s) − c(s) − µ(s)p(s)

]
ds

+

∫ t

0

⟨π(s), β(s)⟩e
∫ t
s (r(u)+µ(u))dudWQ(s)

+

∫ t

0

⟨π(s), γ(s)⟩e
∫ t
s (r(u)+µ(u))dudÑQ(s) . (5.10)

Definition 5.1.2.

Define the set of admissible strategies {A} as the consumption, investment

and life insurance strategies for which the corresponding wealth process given

by (5.10) is well defined and

X(t) + g(t) ≥ 0, ∀t ∈ [0, T ] , (5.11)

where g is the time t actuarial value of future labor income defined by

g(t) :=

∫ T

t

e−
∫ s
t (r(u)+µ(u))duℓ(s)ds

and

EQ
[∫ t

0

⟨π(s), β(s)⟩e
∫ t
s (r(u)+µ(u))dudWQ(s)

]
= 0 , (5.12)

EQ
[∫ t

0

⟨π(s), γ(s)⟩e
∫ t
s (r(u)+µ(u))dudÑQ(s)

]
= 0 . (5.13)

From the conditions (5.12)-(5.13), we see that the last two terms in (5.10)

are Q local martingales and from (5.11), a supermartingale (see Definition

2.3.2.). Then, the strategy (c, π1, π2, p) is admissible if and only if X(T ) ≥ 0

and ∀t ∈ [0, T ],

X(t) + g(t) = EQ
[∫ T

t

e−
∫ s
t (r(u)+µ(u))du[c(s) + µ(s)p(s)]ds

+e−
∫ T
t (r(u)+µ(u))duX(T ) | Ft

]
. (5.14)
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At time zero this means that the strategies have to fulfil the following budget

constraint:

X(0) + g(0) = EQ
[∫ T

0

e−
∫ t
0 (r(u)+µ(u))du[c(t) + µ(t)p(t)]dt

+e−
∫ T
0 (r(u)+µ(u))duX(T )

]
. (5.15)

As in [22], the following remark is useful for the rest of the chapter.

Remark.

Define

Z(t) :=

∫ t

0

e−
∫ s
0 (r(u)+µ(u))du[c(s) + µ(s)p(s) − ℓ(s)]ds

+X(t)e−
∫ t
0 (r(u)+µ(u))du , t ∈ [0, T ] . (5.16)

By (5.10) we have that the Conditions (5.12) and (5.13) are fulfilled if and

only if Z is a martingale under Q. The natural interpretation is that, under

Q, the discounted wealth plus discounted pension contributions should be

martingales. It is useful to note that if Z is a martingale under Q, the

dynamics of X can be represented in the following form:

dX(t) = [(r(t) + µ(t))X(t) + ℓ(t) − c(t) − µ(t)p(t)]dt

+ϕ(t)dWQ(t) + φ(t)dÑQ(t), t ∈ [0, T ] , (5.17)

for some FW
t -adapted process ϕ and FN

t -adapted process φ, satisfying

ϕ(t), φ(t) ∈ L2, ∀t ∈ [0, T ], then under Q, Z is a martingale.

The condition (5.11) allows the wealth to become negative, as long as it

does not exceed in absolute value the actuarial value of future labor income.

Doubling strategies are ruled out as this condition puts a lower boundary on

the wealth process.

5.2 The Unrestricted control problem

We consider a power utility function U : R → [−∞,∞), of constant relative

risk aversion (CRRA) type given by (2.13).
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The policyholder chooses his strategy (c(t), π(t), p(t)) in order to opti-

mize the expected utility from consumption, legacy upon death and terminal

pension. Similar to Chapter 4, his strategy fulfils the following:

sup
(π,c,p)∈A′

E
[∫ τ∧T

0

e−
∫ s
0 ρ(u)duU(c(s))ds+ e−

∫ τ
0 ρ(u)duU(p(τ))1{τ≤T}

+e−
∫ T
0 ρ(u)duU(X(T ))1{τ>T}

]
. (5.18)

Here, ρ is a deterministic function representing the policyholder’s time pref-

erences. A′ is the subset of the admissible strategies (feasible strategies)

given by:

A′ :=
{

(c, π, p) ∈ A
∣∣∣ E

[∫ τ∧T

0

e−
∫ s
0 ρ(u)du min(0, U(c(s)))ds

+e−
∫ τ
0 ρ(u)du min(0, U(p(τ)))1{τ≤T}

+e−
∫ T
0 ρ(u)du min(0, U(X(T )))1{τ>T}

]
> −∞

}
. (5.19)

The feasible strategy (5.19) means that it is allowed to draw an infinite

utility from the strategy (π, c, p) ∈ A′, but only if the expectation over the

negative parts of the utility function is finite. It is clear that for a positive

utility function, the sets A and A′ are equal ( [22]).

Using (3.13) and (3.14), we can rewrite the policyholder’s optimization

problem (5.18) as:

sup
(c,π,p)∈A′

E
[∫ T

0

e−
∫ s
0 ρ(u)du[F̄ (s)U(c(s)) + f(s)U(p(s))]ds

+e−
∫ T
0 ρ(u)duF̄ (T )U(X(T ))

]
.

Hence,

sup
(c,π,p)∈A′

E
[∫ T

0

e−
∫ s
0 (ρ(u)+µ(u))du[U(c(s)) + µ(s)U(p(s))]ds

+e−
∫ T
0 (ρ(u)+µ(u))duU(X(T ))

]
. (5.20)

The following theorem, gives the optimal investment, consumption and life

insurance strategy (c∗(t), π∗
1(t), π∗

2(t), p∗(t)), for any t ∈ [0, T ] of the unre-

stricted control problem (5.18).
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Theorem 5.2.1. Given the problem (5.18), the optimal investment, con-

sumption and life insurance strategy (c∗(t), π∗
1(t), π∗

2(t), p∗(t)), for any t ∈
[0, T ] is given by the following expressions:

c∗(t) = c∗(0) exp
{∫ t

0

[
r(s) − r̃(s) +

1
2
− δ

(1 − δ)2
θ2(s)

−ψ(s)λ(s)
(
ψ− 1

1−δ (s) − 1
)]
ds− 1

1 − δ

∫ t

0

θ(s)dW (s)

+

∫ t

0

(
ψ− 1

1−δ (s) − 1
)
dN(s)

}
,

π∗
1(t) =

(
1 − ψ− 1

1−δ (t)
)
β2(t) − 1

1−δθ(t)γ2(t)

β1γ2 − β2γ1
(X∗(t) + g(t)) ,

π∗
2(t) =

1
1−δθ(t)γ1(t) +

(
ψ− 1

1−δ (t) − 1
)
β1(t)

β1γ2 − β2γ1
(X∗(t) + g(t)) ,

and

p∗(t) = p∗(0) exp
{∫ t

0

[
r(s) − r̃(s) +

1
2
− δ

(1 − δ)2
θ2(s)

−ψ(s)λ(s)
(
ψ− 1

1−δ (s) − 1
) ]
ds− 1

1 − δ

∫ t

0

θ(s)dW (s)

+

∫ t

0

(
ψ− 1

1−δ (s) − 1
)
dN(s)

}
,

where

X∗(t) + g(t) = (x0 + g(0)) exp
{∫ t

0

[
r(s) + µ(s) − 1 + µ(s)

f(s)

+
1
2
− δ

(1 − δ)2
θ2(s) − ψ(s)λ(s)

(
ψ− 1

1−δ (s) − 1
) ]
ds

− 1

1 − δ

∫ t

0

θ(s)dW (s) − 1

1 − δ

∫ t

0

lnψ(s)dN(s)
}
,

f(t) :=

∫ T

t

e−
∫ s
t (r̃(u)+µ(u))du(1 + µ(s))ds+ e−

∫ T
t (r̃(u)+µ(u))du ,

r̃(t) := − δ

1 − δ
r(t) +

1

1 − δ
ρ+

δ

2(1 − δ)2
θ2(t)

+
(
ψ− δ

1−δ (t) − 1 +
δ

1 − δ
(ψ(t) − 1)

)
λ(t)
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and

g(t) :=

∫ T

t

e−
∫ s
t (r(u)+µ(u))duℓ(s)ds .

Proof. Consider the inverse of the derivative of the utility function U , I :

(0,∞] → [0,∞) in (2.13), i.e., I(x) = x−
1

1−δ . By the concavity of U , the

inequality (2.17) is satisfied.

From (5.6), let us define the adjusted state price deflator Γ by

Γ(t) := Λ(t)e
∫ t
0 (ρ(s)−r(s))ds

= exp
{∫ t

0

[ρ(s) − r(s) − 1

2
θ2(s) + (1 − ψ(s))λ(s)]ds+

∫ t

0

θ(s)dW (s)

+

∫ t

0

ln(ψ(s))dN(s)
}
.

Then the dynamics of Γ is given by:

dΓ(t) = Γ(t)
[
(ρ(t) − r(t))dt+ θ(t)dW (t) + (ψ(t) − 1)dÑ(t)

]
. (5.21)

We define ζ∗ as a constant satisfying:

H(ζ∗) := EQ
[∫ T

0

e−
∫ t
0 (r(u)+µ(u))du

[
I(ζ∗Γ(t)) + µ(t)I(ζ∗Γ(t))

]
dt

+e−
∫ T
0 (r(u)+µ(u))duI(ζ∗Γ(T ))

]
= x0 + g(0) . (5.22)

For any strategy (c, π, p) ∈ A′ with corresponding wealth process X(t) given,
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using (2.17), the budget constraint (5.15) and (5.22), we have:

E
[∫ T

0

e−
∫ s
0 (ρ(u)+µ(u))du[U(c(s)) + µ(s)U(p(s))]ds

+e−
∫ T
0 (ρ(u)+µ(u))duU(X(T ))

]
≤ E

[∫ T

0

e−
∫ t
0 (ρ(u)+µ(u))du

[
I(ζ∗Γ(t)) + µ(t)I(ζ∗Γ(t))

]
dt

+e−
∫ T
0 (ρ(u)+µ(u))duI(ζ∗Γ(T ))

]
−E
[∫ T

0

e−
∫ t
0 (ρ(u)+µ(u))duζ∗Γ(t)

[
(I(ζ∗Γ(t)) − c(t)) + µ(t)

(
I(ζ∗Γ(t))

−p(t)
)]
dt+ ζ∗Γ(T )e−

∫ T
0 (ρ(u)+µ(u))du (I(ζ∗Γ(T )) −X(T ))

]
= E

[∫ T

0

e−
∫ t
0 (ρ(u)+µ(u))du

[
I(ζ∗Γ(t)) + µ(t)I(ζ∗Γ(t))

]
dt

+e−
∫ T
0 (ρ(u)+µ(u))duI(ζ∗Γ(T ))

]
.

Then, since (c, π, p) was arbitrary, we obtain the candidate optimal strat-

egy (c∗, π∗, p∗) given by:

c∗(t) = I(ζ∗Γ(t)) , (5.23)

p∗(t) = I(ζ∗Γ(t)) , (5.24)

X∗(T ) = I(ζ∗Γ(T )) . (5.25)

Since (c∗, π∗, p∗) by definition of ζ∗ fulfils the budget constraints, it is well

known that, in a complete market, there exists an allocation strategy π∗

such that X(T ) = X∗(T ) and (c∗, π∗, p∗) is admissible ( [20]). We need to

calculate the allocation strategy π∗ and to obtain the explicit solutions to c∗

and p∗.

From the definition of I, we get from (5.22) the following:

H(ζ∗) := E
[∫ T

t

Γ(t)e−
∫ t
0 (ρ(u)+µ(u))du(ζ∗Γ(t))−

1
1−δ (1 + µ(t))dt

+Γ(T )e−
∫ T
0 (ρ(u)+µ(u))du(ζ∗Γ(T ))−

1
1−δ

]
= (ζ∗)−

1
1−δ f(0) , (5.26)
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where we have defined:

f(t) = E
[∫ T

t

e−
∫ s
t (ρ(u)+µ(u))du

(
Γ(s)

Γ(t)

)− δ
1−δ

(1 + µ(t))dt

+e−
∫ T
t (ρ(u)+µ(u))du

(
Γ(T )

Γ(t)

)− δ
1−δ ∣∣∣ Ft

]
.

Note that from (5.21) and using Itô’s formula (Theorem 2.2.1.), we get:

dΓ− δ
1−δ (t) = Γ− δ

1−δ (t)
{[

− δ

1 − δ
(ρ(t) − r(t)) +

δ

2(1 − δ)2
θ2(t)

+
(
ψ− δ

1−δ (t) − 1 +
δ

1 − δ
(ψ(t) − 1)

)
λ(t)

]
dt− δ

1 − δ
θ(t)dW (t)

+
(
ψ− δ

1−δ (t) − 1
)
dÑ(t)

}
and

E[Γ− δ
1−δ (t)] = exp

{∫ s

t

[ δ

1 − δ
(r(u) − ρ(u)) +

δ

2(1 − δ)2
θ2(u)

+
(
ψ− δ

1−δ (t) − 1 +
δ

1 − δ
(ψ(t) − 1)

)
λ(t)

]
dt
}
.

Then

f(t) =

∫ T

t

e−
∫ s
t (r̃(u)+µ(u))du(1 + µ(s))ds+ e−

∫ T
t (r̃(u)+µ(u))du , (5.27)

where

r̃(t) = − δ

1 − δ
r(t) +

1

1 − δ
ρ+

δ

2(1 − δ)2
θ2(t) +

(
ψ− δ

1−δ (t) − 1

+
δ

1 − δ
(ψ(t) − 1)

)
λ(t) . (5.28)

Since H(ζ∗) = x0 + g(0), we get from (5.26) that

ζ∗ = (x0 + g(0))δ−1f(0)1−δ .

Inserting this ζ∗ into (5.23)-(5.25) and using the budget constraint (5.15)

we obtain the following expressions:

c∗(t) = D∗(t) =
X(t) + g(t)

f(t)
, (5.29)

X∗(T ) =
X(t) + g(t)

f(t)

(
Γ(T )

Γ(t)

)− 1
1−δ

. (5.30)
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From (5.21), by Itô’s formula, we know that(
Γ(T )

Γ(t)

)− 1
1−δ

= exp
{ 1

1 − δ

∫ T

t

[
r(s) +

1

2
θ2(s) − ρ(s) + [ψ(s) − 1

− lnψ(s)]λ(s)
]
ds− 1

1 − δ

∫ T

t

θ(s)dW (s)

− 1

1 − δ

∫ T

t

lnψ(s)dÑ(s)
}
.

Then we have:

dX∗(t) = Odt− 1

1 − δ
θ(t)(X∗(t) + g(t))dW (t)

+
(
ψ− 1

1−δ (t) − 1
)

(X∗(t) + g(t))dN(t) , (5.31)

where O := O(t,X∗(t), g(t)). Comparing (5.31) with (5.4), we obtain the

optimal allocation ⟨π∗(t), β(t)⟩ = − 1
1−δθ(t)(X

∗(t) + g(t))

⟨π∗(t), γ(t)⟩ =
(
ψ− 1

1−δ − 1
)

(X∗(t) + g(t))


and

π∗
1(t) =

(
1 − ψ− 1

1−δ (t)
)
β2(t) − 1

1−δθ(t)γ2(t)

β1γ2 − β2γ1
(X∗(t) + g(t)) , (5.32)

π∗
2(t) =

1
1−δθ(t)γ1(t) +

(
ψ− 1

1−δ (t) − 1
)
β1(t)

β1γ2 − β2γ1
(X∗(t) + g(t)) . (5.33)

Inserting (5.29), (5.32) and (5.33) into (5.4) we obtain

d(X∗(t) + g(t))

X∗(t) + g(t)
=

[
r(t) + µ(t) − 1 + µ(t)

f(t)
+

1

1 − δ
θ2(t)

−ψ(t)λ(t)
(
ψ− 1

1−δ (t) − 1
) ]
dt− 1

1 − δ
θ(t)dW (t)

+
(
ψ− 1

1−δ (t) − 1
)
dN(t) . (5.34)
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Hence, by Itô’s formula, we get the following solution:

X∗(t) + g(t) = (x0 + g(0)) exp
{∫ t

0

[
r(s) + µ(s) − 1 + µ(s)

f(s)
+

1
2
− δ

(1 − δ)2
θ2(s)

−ψ(s)λ(s)
(
ψ− 1

1−δ (s) − 1
) ]
ds− 1

1 − δ

∫ t

0

θ(s)dW (s)

− 1

1 − δ

∫ t

0

lnψ(s)dN(s)
}
. (5.35)

Since f is bounded away from zero, ∀t ∈ [0, T ], we have that X∗(t) is

well defined and (5.11) is fulfilled. From (5.29), (5.27) and (5.34), by Itô’s

formula, we have that:

dc∗(t) =
d(X∗(t) + g(t))

f(t)
− X∗(t) + g(t)

f2(t)
f ′(t)dt

= c∗(t)
{[
r(t) − r̃(t) +

1

1 − δ
θ2(t) − ψ(t)λ(t)

(
ψ− 1

1−δ (t) − 1
) ]
dt

− 1

1 − δ
θ(t)dW (t) +

(
ψ− 1

1−δ (t) − 1
)
dN(t)

}
,

which gives ∀t ∈ [0, T ], the following solution:

c∗(t) = c∗(0) exp
{∫ t

0

[
r(s) − r̃(s) +

1
2
− δ

(1 − δ)2
θ2(s)

−ψ(s)λ(s)
(
ψ− 1

1−δ (s) − 1
) ]
ds− 1

1 − δ

∫ t

0

θ(s)dW (s)

+

∫ t

0

(
ψ− 1

1−δ (s) − 1
)
dN(s)

}
(5.36)

and similarly

p∗(t) = p∗(0) exp
{∫ t

0

[
r(s) − r̃(s) +

1
2
− δ

(1 − δ)2
θ2(s)

−ψ(s)λ(s)
(
ψ− 1

1−δ (s) − 1
) ]
ds− 1

1 − δ

∫ t

0

θ(s)dW (s)

+

∫ t

0

(
ψ− 1

1−δ (s) − 1
)
dN(s)

}
, (5.37)

which complete the proof.
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5.3 The restricted control problem

In this section, we solve the optimal investment, consumption and life insur-

ance problem for the constrained1 control problem. We obtain an optimal

strategy for the case of continuous constraints (American put options)2 by

using a so-called option based portfolio insurance (OBPI) strategy. The OBPI

method consists in taking a certain part of capital and invest in the optimal

portfolio of the unconstrained problem and the remaining part insures the

position with American put. We prove the admissibility and the optimality

of the strategy. For more details see e.g. [11,22].

Consider the following problem

sup
(c,π,p)∈A′

E
[∫ T

0

e−
∫ s
0 (ρ(u)+µ(u))du[U(c(s)) + µ(s)U(p(s))]ds (5.38)

+e−
∫ T
0 (ρ(u)+µ(u))duU(X(T ))

]
,

under the capital guarantee restriction

X(t) ≥ k(t, Z(t)), ∀t ∈ [0, T ] , (5.39)

and

Z(t) :=

∫ t

0

h(s,X(s))ds ,

where k and h are deterministic functions of time. The guarantees discussed

above are covered by

k(t, z) = 0 (5.40)

and

k(t, z) = x0e
∫ t
0 (r

(g)(s)+µ(s))ds + ze
∫ t
0 (r

(g)(s)+µ(s))ds , (5.41)

with

h(s, x) = e−
∫ s
0 (r

(g)(u)+µ(u))du[ℓ(s) − c(s, x) − µ(s)p(s, x)] ,

1The problem (5.38) with the restriction (5.39).
2An American option is an option contract in which not only the decision whether to

exercise the option or not, but also the choice of the exercise time is at the discretion of

the option’s holder ( [27]).
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where r(g) ≤ r is the minimum rate of return guarantee excess of the objective

mortality µ. Then

k(t, z) = x0e
∫ t
0 (r

(g)(s)+µ(s))ds +

∫ t

0

e
∫ t
s (r

(g)(u)+µ(u))ds[ℓ(s) − c(s) − µ(s)p(s)]ds .

(5.42)

We still denote by X∗, c∗, π∗ and p∗ the optimal wealth, optimal con-

sumption, investment and life insurance for the unrestricted problem (5.18),

respectively. The optimal wealth for the unrestricted problem Y ∗(t) :=

X∗(t) + g(t) has the dynamics

dY ∗(t) = Y ∗(t)
{[
r(t) + µ(t) − 1 + µ(t)

f(t)
+

1

1 − δ
θ2(t)

−ψ(t)λ(t)
(
ψ− 1

1−δ (t) − 1
) ]
dt− 1

1 − δ
θ(t)dW (t)

+
(
ψ− 1

1−δ (t) − 1
)
dN(t)

}
= Y ∗(t)

{[
r(t) + µ(t) − 1 + µ(t)

f(t)

]
dt− 1

1 − δ
θ(t)dWQ(t)

+
(
ψ− 1

1−δ (t) − 1
)
dÑQ(t)

}
, ∀t ∈ [0, T ] ; (5.43)

Y ∗(0) = X∗(0) + g(0) = y0 ,

where y0 := x0 + g(0). Let P a
y,z(t, T, k + g) denote the time-t value of an

American put option with strike price k(s, Z(s)) + g(s), ∀s ∈ [t, T ], where

Z(t) = z and maturity T written on a portfolio Y , where Y (s), s ∈ [t, T ]

is the solution to (5.43), with Y (t) = y. By definition ( [11], Section 4), the

price of such put option is given by

P a
y,z(t, T, k + g) := sup

τs∈Tt,T
EQ
[
e−

∫ τs
t (r(u)+µ(u))du[k(τs, Z(τs)) + g(τs)

−Y (τs)]
+
∣∣∣Y (t) = y, Z(t) = z

]
, (5.44)

where Tt,T is the set of stopping times τs ∈ [t, T ].

Given an underlying unconstrained allocation (5.43) with an American

put option (5.44), suppose that ϱ is a part of capital invested in the uncon-

strained problem and 1 − ϱ, the remaining part which insures the position
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with American put. The American put option-based portfolio insurance is

given by

X̂(ϱ)(t) := ϱ(t, Z(t))Y ∗(t) + P a
ϱY ∗,Z(t, T, k + g) − g(t), t ∈ [0, T ], (5.45)

where ϱ ∈ (0, 1) is determined by the budget constraint

ϱ(t, Z(t))Y ∗(0) + P a
ϱY ∗,Z(0, T, k + g) − g(0) = x0. (5.46)

By definition of an American put option, P a
ϱY ∗,Z(t, T, k+g) ≥ (k(t, z)+g(t)−

ϱY ∗(t))+, ∀t ∈ [0, T ]. Hence

X̂(ϱ)(t) := ϱ(t, Z(t))Y ∗(t) + P a
ϱY ∗,Z(t, T, k + g) − g(t)

≥ ϱ(t, Z(t))Y ∗(t) + (k(t, z) + g(t) − ϱY ∗(t))+ − g(t)

≥ k(t, z), ∀t ∈ [0, T ] , (5.47)

i.e., X̂(ϱ) fulfils the American capital guarantee.

Consider the strategy (ϱc∗, ϱπ∗, ϱp∗), where ϱ(t) is defined by

ϱ(t) = ϱ0 ∨ sup
s≤t

(
b(s, Z(s))

Y ∗(s)

)
, (5.48)

ϱ0 is given by the budget constraint (5.46) and b(t, Z(t)) is the exercise bound-

ary of the American put option given by

b(t, z) := sup
{
y : P a

y,z(t, T, k + g) = (k(t, z) + g(t) − y)+
}
. (5.49)

We recall some basic properties of American put options in a Black-Scholes

market ( [27], pp. 219-221)

P a
y,z(t, T, k + g) = k(t, z) + g(t) − y, ∀(t, y, z) ∈ Wc

∂
∂y
P a
y,z(t, T, k + g) = −1, ∀(t, y, z) ∈ Wc

AP a
y,z(t, T, k + g) = (r(t) + µ(t))P a

y,z(t, T, k + g), ∀(t, y, z) ∈ W ,

where from (5.43), the generator operator A is given by (see Theorem 2.2.5)

(Aϕ)(y) =
∂ϕ

∂t
+

(
r(t) + µ(t) − 1 + µ(t)

f(t)

)
y
∂ϕ

∂y
+

1

2(1 − δ)2
θ2(t)y2

∂2ϕ

∂y2

+

[
ϕ(t, yψ− 1

1−δ , z) − ψ(t, y, z) − y
(
ψ− 1

1−δ − 1
) ∂ϕ
∂y

]
λ(t)
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and

W := {(t, y, z) : P a
y,z(t, T, k + g) > (k(t, z) + g(t) − y)+}

defines the continuation region. Wc is the stopping region, that is the com-

plementary of the continuation region W . From the exercise boundary given

in (5.49), we can write the continuation region by

W = {(t, y, z) : y > b(t, z)} .

Define a function H by

H(t, y, z) := y + P a
y,z(t, T, k + g) − g(t) ,

then we have

X̂(ϱ)(t) = H(t, ϱ(t, Z(t))Y ∗(t), Z(t)) .

From the properties of P a
y,z(t, T, k + g), we deduce that

H(t, y, z) = k(t, z), ∀(t, y, z) ∈ Wc,

∂

∂y
H(t, y, z) = 0, ∀(t, y, z) ∈ Wc (5.50)

AH(t, y, z) =
∂

∂t
k(t, z) + h(t, z)

∂

∂z
k(t, z) ∀(t, y, z) ∈ Wc, (5.51)

AH(t, y, z) = (r(t) + µ(t))P a
y,z(t, T, k + g) + ℓ(t) − (r(t) + µ(t))g(t)

+

(
r(t) + µ(t) − 1 + µ(t)

f(t)

)
y

+

(
P a

yψ
− 1

1−δ ,z
(t, T, k + g) − P a

y,z(t, T, k + g)

)
λ(t)

= (r(t) + µ(t))H(t, y, z) + ℓ(t) − 1 + µ(t)

f(t)
y +

[
H(t, yψ− 1

1−δ , z)

−H(t, y, z) − y
(
ψ− 1

1−δ (t) − 1
) ]
λ(t), ∀(t, y, z) ∈ W .(5.52)

Proposition 5.3.1. The strategy (ϱc∗, ϱπ1, ϱπ2, ϱp
∗), where ϱ is defined by

(5.48) and (5.46), is admissible.

Proof. For ϱ constant and linearity of Y ∗(t), ∀t ∈ [0, T ], we have that ϱY ∗(t)

and Y ∗(t) have the same dynamics. Then, using Itô’s formula, (5.51)-(5.52),
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(c∗(t), p∗(t)) in Theorem 5.2.1 and the fact that ϱ increases only at the bound-

ary, we obtain (here, ∂
∂y

means differentiating with respect to the second

variable)

dH(t, ϱ(t, Z(t))Y ∗(t), Z(t))

= [dH(t, ϱY ∗(t), Z(t))] + Y ∗(t)
∂

∂y
H(t, ϱ(t, Z(t))Y ∗(t), Z(t))dϱ(t, Z(t))

= AH(t, ϱY ∗(t))dt− 1

1 − δ
θ(t)ϱY ∗(t)

∂

∂y
H(t, ϱY ∗(t), Z(t))dWQ(t)

+
[
H(t, ϱY ∗(t)ψ− 1

1−δ (t), Z(t)) −H(t, ϱY ∗(t), Z(t))
]
dÑQ(t)

+Y ∗(t)
∂

∂y
H(t, ϱ(t, Z(t))Y ∗(t), Z(t))dϱ(t, Z(t))

=
{

(r(t) + µ(t))H(t, ϱY ∗(t), Z(t)) + ℓ(t) − ϱc∗(t) − ϱµ(t)p∗(t)

+
[
H(t, ϱY ∗(t)ψ− 1

1−δ (t), Z(t)) −H(t, ϱY ∗(t), Z(t))

−ϱY ∗(t)
(
ψ− 1

1−δ (t) − 1
) ]
λ(t)

}
1(ϱ(t,Z(t))Y ∗(t)>b(t,Z(t)))dt[

∂

∂t
k(t, Z(t)) + h(t, Z(t))

∂

∂z
k(t, Z(t))

]
1(ϱ(t,Z(t))Y ∗(t)≤b(t,Z(t)))dt

+Y ∗(t)
∂

∂y
H(t, ϱ(t, Z(t))Y ∗(t), Z(t))1(ϱ(t,Z(t))Y ∗(t)=b(t,Z(t)))dϱ(t, Z(t))

− 1

1 − δ
θ(t)ϱY ∗(t)

∂

∂y
H(t, ϱY ∗(t), Z(t))dWQ(t)

+
[
H(t, ϱY ∗(t)ψ− 1

1−δ (t), Z(t)) −H(t, ϱY ∗(t), Z(t))
]
dÑQ(t) .

From (5.50) we know that ∂
∂y
H(t, ϱ(t, Z(t))Y ∗(t), Z(t)) = 0 on the set
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{(t, ω) : ϱ(t, Z(t))Y ∗(t) = b(t, Z(t))}, then

dH(t, ϱ(t, Z(t))Y ∗(t), Z(t))

=
{

(r(t) + µ(t))H(t, ϱY ∗(t), Z(t)) + ℓ(t) − ϱc∗(t) − ϱµ(t)p∗(t)

+
[
H(t, ϱY ∗(t)ψ− 1

1−δ (t), Z(t)) −H(t, ϱY ∗(t), Z(t))

−ϱY ∗(t)
(
ψ− 1

1−δ (t) − 1
) ]
λ(t)

}
dt+

[ ∂
∂t
k(t, Z(t))

+h(t, Z(t))
∂

∂z
k(t, Z(t)) − [(r(t) + µ(t))k(t, Z(t)) + ℓ(t) − ϱ(t, Z(t))c∗(t)

−ϱ(t, Z(t))µ(t)p∗(t)]
]
1(ϱ(t,Z(t))Y ∗(t)≤b(t,Z(t)))dt

− 1

1 − δ
θ(t)ϱY ∗(t)

∂

∂y
H(t, ϱY ∗(t), Z(t))dWQ(t)

+
[
H(t, ϱY ∗(t)ψ− 1

1−δ (t), Z(t)) −H(t, ϱY ∗(t), Z(t))
]
dÑQ(t).

Hence, since

{(t, ω) : ϱ(t, Z(t))Y ∗(t) ≤ b(t, Z(t))} =
{

(t, ω) : ϱ(t, Z(t)) = b(t,Z(t))
Y ∗(t)

}
has a

zero dt⊗ dP-measure, we conclude that

dH(t, ϱ(t, Z(t))Y ∗(t), Z(t))

=
{

(r(t) + µ(t))H(t, ϱY ∗(t), Z(t)) + ℓ(t) − ϱc∗(t) − ϱµ(t)p∗(t)

+
[
H(t, ϱY ∗(t)ψ− 1

1−δ (t), Z(t)) −H(t, ϱY ∗(t), Z(t))

−ϱY ∗(t)
(
ψ− 1

1−δ (t) − 1
) ]
λ(t)

}
dt

− 1

1 − δ
θ(t)ϱY ∗(t)

∂

∂y
H(t, ϱY ∗(t), Z(t))dWQ(t)

+
[
H(t, ϱY ∗(t)ψ− 1

1−δ (t), Z(t)) −H(t, ϱY ∗(t), Z(t))
]
dÑQ(t),

i.e. by (5.17), the strategy (ϱc∗, ϱπ∗, ϱp∗) is admissible.

We then state the main result of this section, which we prove similarly as

in [22].



5.3. The restricted control problem 76

Theorem 5.3.2. Consider the strategy (ĉ, π̂1, π̂2, p̂), ∀t ∈ [0, T ] given by

ĉ =
ϱ(t, Z(t))Y ∗(t)

f(t)
= ϱ(t, Z(t))c∗(t), (5.53)

π̂i = ϱ(t, Z(t))π∗
i (t), (5.54)

p̂ =
ϱ(t, Z(t))Y ∗(t)

f(t)
= ϱ(t, Z(t))p∗(t), (5.55)

where the strategy (c∗, π∗
i , p

∗), i = 1, 2 is defined in Theorem 5.2.1. Combined

with a position in an American put option written on the portfolio (ϱ(s)Y ∗(s))

with strike price k(s, Z(s))+g(s), ∀s ∈ [t, T ] and maturity T , where ϱ(s), s ∈
[t, T ] is a function defined by (5.48) and (5.46).

Then, the strategy is optimal for the American capital guarantee control

problem given by (5.38)-(5.39).

Proof. Let (c, π1, π2, p) be any feasible strategy with corresponding wealth

process (X(t))t∈[0,T ] satisfying X(0) = x0 and X(t) ≥ k(t, Z(t)), ∀t ∈ [0, T ].

Since u is concave by definition of a utility function (Definition 2.6.1), we get

that ∫ T

0

e−
∫ t
0 (ρ(s)+µ(s))ds[u(c(t)) + µ(t)u(p(t))]dt+ e−

∫ T
0 (ρ(s)+µ(s))dsu(X(T ))

−
(∫ T

0

e−
∫ t
0 (ρ(s)+µ(s))ds[u(ĉ(t)) + µ(t)u(p̂(t))]dt

+e−
∫ T
0 (ρ(s)+µ(s))dsu(X̂(ϱ)(T ))

)
=

∫ T

0

e−
∫ t
0 (ρ(s)+µ(s))ds[u(c(t)) − u(ĉ(t)) + µ(t)(u(p(t)) − u(p̂(t))]dt

+e−
∫ T
0 (ρ(s)+µ(s))ds

(
u(X(T )) − u(X̂(ϱ)(T ))

)
≤

∫ T

0

e−
∫ t
0 (ρ(s)+µ(s))ds[u′(ĉ(t))(c(t) − ĉ(t)) + µ(t)u′(p̂(t))(p(t) − p̂(t))]dt

+e−
∫ T
0 (ρ(s)+µ(s))dsu′(X̂(ϱ)(T ))

(
X(T ) − X̂(ϱ)(T )

)
=: (∗) . (5.56)

Since (c, π1, π2, p) was arbitrary chosen, we end the proof by showing that
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E[(∗)] ≤ 0. By the CRRA property u′(xy) = u′(x)u′(y), we have

u′(ĉ(t))(c(t) − ĉ(t)) = u′(λ(t, Z(t)))u′(p∗(t))(c(t) − ĉ(t)) , (5.57)

u′(p̂(t))(p(t) − p̂(t)) = u′(λ(t, Z(t)))u′(p∗(t))(p(t) − p̂(t)) . (5.58)

Observing that Y ∗(T ) = X∗(T ), the the terminal value becomes

X̂(ϱ)(T ) = ϱ(T, Z(T ))X∗(T ) + [k(T, Z(T )) − ϱ(T, Z(T ))X∗(T )]+

= max[ϱ(T, Z(T ))X∗(T ), k(T, Z(T ))] . (5.59)

By use of (5.59) and using the fact that u′ is a decreasing function (Definition

2.6.1.), we get that

u′(X̂(ϱ)(T ))
(
X(T ) − X̂(ϱ)(T )

)
= min[u′(ϱ(T, Z(T )))u′(X∗(T )) , u′(k(T, Z(T )))]

(
X(T ) − X̂(ϱ)(T )

)
= u′(ϱ(T, Z(T )))u′(X∗(T ))

(
X(T ) − X̂(ϱ)(T )

)
−[u′(ϱ(T, Z(T )))u′(X∗(T )) − u′(k(T, Z(T )))]+(X(T ) − k(T, Z(T ))) ,

where the last equality is established by using that X̂(ϱ)(T ) = k(T, Z(T )) on

the set {(T, ω) : u′(ϱ(T, Z(T ))X∗(T )) ≥ u′(k(T, Z(T )))}. Since by assump-

tion X(t) ≥ k(t, Z(t)), ∀t ∈ [0, T ], we conclude that

u′(X̂(ϱ)(T ))
(
X(T ) − X̂(ϱ)(T )

)
≤ u′(ϱ(T, Z(T )))u′(X∗(T ))

(
X(T ) − X̂(ϱ)(T )

)
.

(5.60)

Inserting (5.57), (5.58) and (5.60) and then (5.23)-(5.25) into (5.56), we get

E[(∗)] ≤ E
[∫ T

0

e−
∫ t
0 (ρ(s)+µ(s))ds

[
u′(ϱ(t, Z(t)))u′(c∗(t))(c(t) − ĉ(t))

+µ(t)u′(ϱ(t, Z(t)))u′(p∗(t))(p(t) − p̂(t))
]
dt

+e−
∫ T
0 (ρ(s)+µ(s))dsu′(ϱ(T, Z(T )))u′(X∗(T ))

(
X(T ) − X̂(ϱ)(T )

) ]
= ζ∗EQ

[∫ T

0

e−
∫ t
0 (r(s)+µ(s))dsu′(ϱ(t, Z(t)))(c(t) − ĉ(t) + µ(t)(p(t)

−p̂(t)))dt+ e−
∫ T
0 (r(s)+µ(s))dsu′(ϱ(T, Z(T )))

(
X(T ) − X̂(ϱ)(T )

) ]
.
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Since u′(ϱ(t, Z(t))) is a decreasing function3, we can use the integration by

parts formula to get

E[(∗)] (5.61)

= ζ∗
(
EQ
[∫ T

0

e−
∫ t
0 (r(s)+µ(s))dsu′(ϱ(t, Z(t)))(c(t) − ĉ(t) + µ(t)(p(t) − p̂(t)))dt︸ ︷︷ ︸

(⋆)

+

∫ T

0

u′(ϱ(t, Z(t)))d
(
e−

∫ t
0 (r(s)+µ(s))dsu′(ϱ(t, Z(t)))

(
X(t) − X̂(ϱ)(t)

))
︸ ︷︷ ︸

(⋆⋆)

]

+EQ
[∫ T

0

e−
∫ t
0 (r(s)+µ(s))dsu′(ϱ(t, Z(t)))

(
X(t) − X̂(ϱ)(t)

)
du′(ϱ(t, Z(t)))︸ ︷︷ ︸

(⋆⋆⋆)

])
.

The third term in (5.61) can be rewritten as

EQ[(⋆⋆⋆)]

= EQ
[∫ T

0

e−
∫ t
0 (r(s)+µ(s))dsu′(ϱ(t, Z(t))) (X(t) − k(t, Z(t))) du′(ϱ(t, Z(t)))

]
+EQ

[∫ T

0

e−
∫ t
0 (r(s)+µ(s))dsu′(ϱ(t, Z(t)))

(
k(t, Z(t))

−X̂(ϱ)(t)
)
du′(ϱ(t, Z(t)))

]
.

The first term is non-positive since per definition X(t) ≥ k(t, Z(t)), ∀t ∈
[0, T ] and du′(ϱ(t, Z(t))) ≤ 0, ∀t ∈ [0, T ] (u′ is decreasing and ϱ is increasing).

The second term equals zero since du′(ϱ(t, Z(t))) ̸= 0 only on the set {(t, ω) :

X̂(ϱ)(t) = k(t, Z(t))}. We conclude that EQ[(⋆⋆⋆)] ≤ 0. The two first

terms of (5.61) can be written as

EQ[(⋆) + (⋆⋆)] = EQ
[∫ T

0

u′(ϱ(t, Z(t)))dB1(t)

)
−EQ

[∫ T

0

u′(ϱ(t, Z(t)))dB2(t)

)
,

3This ensures that the stochastic integral in (5.61) is well defined
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where

B1(t) :=

∫ t

0

e−
∫ t
0 (r(s)+µ(s))ds(c(s) + µ(s)p(s) − ℓ(s))ds+ e−

∫ t
0 (r(s)+µ(s))dsX(t) ,

B2(t) :=

∫ t

0

e−
∫ t
0 (r(s)+µ(s))ds(ĉ(s) + µ(s)p̂(s) − ℓ(s))ds+ e−

∫ t
0 (r(s)+µ(s))dsX̂(ϱ)(t) .

Since both strategies are admissible, we note that by (5.16), B1 and B2

are martingales under the equivalent measure Q. Since u′(ϱ(t, Z(t))) ≤
u′(ϱ(0, z0)), ∀t ∈ [0, T ], we get that

EQ[(⋆) + (⋆⋆)] = 0 .

Finally, we conclude that

E[(∗)] = EQ[(⋆) + (⋆⋆)] + EQ[(⋆⋆⋆)] ≤ 0 .

Chapter summary

In this chapter, we have solved the optimization problem with American

capital guarantee. We obtained the constrained optimal strategy from the

unconstrained optimal solution using the so-called option based portfolio

insurance approach. The unconstrained control problem was solved via mar-

tingale approach.



Chapter 6

Conclusion

6.1 Summary

In this dissertation, we solved an optimization problem under jump-diffusion

framework in two settings, namely a problem with random parameters and

a problem with American capital constraints.

Chapter 2 was devoted to the introduction of the relevant concepts used

in this dissertation. We point out the following: random and compensated

random measures, which constitute the key concepts to define a Lévy SDE,

the Itô’s formula, which is the important tool in solving the SDEs in our

optimization problems, the Radon-Nikodym derivative used when solving

an equation (SDE or BSDE) using a martingale approach, the conditions

to obtain the solution of a BSDE, the verification theorem for optimization

problem using a dynamic programming approach and finally the power utility

functions and its properties.

In Chapter 3, we derived the wealth process in a market with investment,

consumption, income process and life insurance respectively.

In Chapter 4, we obtained an optimal investment, consumption and life

insurance in a problem with random parameters which include jumps. These

random parameters need not to be bounded. By including jumps in parame-

ters, we may cover all the possibilities that may occur in the real market. For
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instance, sudden changes in environmental conditions implies the inclusion of

jumps in a mortality rate. An application a dynamic programming approach,

combining the HJB equation with BSDE made it possible to characterize the

optimal solution and the value function in terms of a unique solution of a

BSDE with jumps. We have solved our problem using one risk-free and one

risky asset in our modeling framework. We concluded this chapter by pro-

viding two special examples. By choosing the cases of random mortality and

appreciation rates in our examples, we have covered all the other possibil-

ities of parameters randomness. In fact, if the premium insurance ratio is

random, the explicit solution of our BSDE can be derived similarly as in

Example 4.4.1. On the other hand, if one of the parameters (interest rate,

discount rate or the dispersion rates) is random, the explicit solution of the

BSDE can be derived as in Example 4.4.2. The results in this chapter have

been published in an accredited journal ( [13]). Similar work can be done for

a market with n risky assets.

Chapter 5 solved the optimal investment, consumption and life insurance

problem with capital constraints, specifically the American capital guaran-

tee. We have solved the unconstrained optimization problem applying the

martingale approach. We did so, since the solution to the restricted capital

guarantee problem is based on terms derived from the martingale method.

Finally, we proved the admissibility of the solution in the restricted problem

and its solution was obtained from the solutions of the unconstrained prob-

lem using the so-called OBPI approach. Our contribution in the existing

literature is that of adding capital constraints in a model described by jump-

diffusion processes. The results obtained in this chapter have been submitted

for publication as well. They can also be extended to a market with n + m

risky assets in which the driving processes are an n-dimensional Brownian

motion and m-dimensional Poisson processes.
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6.2 Future research

In all our models, we have considered a power utility function. We would like

to solve the similar problems in a general utility case. We also would like to

take model risk into account and therefore study ‘robust’ optimal control for

similar problems in both complete and incomplete markets. Furthermore,

the stability of the optimization problem considered in Chapter 4 it is also

an interesting question for a future research.
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