School for Information Technology
Computer Science Technical Report

Parameterised Three-Valued Model Checking —
Proofs

Nils Timm and Stefan Gruner
Department of Computer Science, University of Pretoria, South Africa
{ntimm, sgruner}@cs.up.ac.za

October 2, 2015

Abstract. In this technical report we prove Theorem 1 and Theorem 2
of the article Parameterised Three- Valued Model Checking submitted to
the journal Science of Computer Programming SI: SBMF 2014.

ps
B1e I/

oy
.

&

o
.w'i: ﬁ

* e
£ DV

“/,-_"

N

LR
5

3

X

v

e

S

a3

e

T g T g
ol ri T

AL S F o

University of Pretoria’

Proof of Theorem 1

In the following we present the proof of Theorem 1 from Section 4. The proof
was originally introduced in our SBMF 2014 paper where we used a slightly
different but equivalent notation for Kripke structures: M = (S, sy, R, L) is the
same as K = (S, R, L) and [M |= "] is the same as [K, sy |= ¢']. Hence, in this
proof we explicitly refer to the initial state sy € S in the model checking problem
(K, sy |= v] instead of referring to sy in the tuple K = (S, R, L), whereas in the
current article it is vice versa. For our proof we use the following Proposition
1 from [8] (pp. 64-65) which establishes the relation between the two-valued
Kripke structure K modelling the concrete system and the three-valued Kripke
structure K- modelling the abstract system.

Proposition 1

Let Sys = ||™_, Proc; be a concurrent system and Spot = Spot(Proc)USpot(Pred)
be a given spotlight abstraction for Sys. Let K = (S, R, L) over a set AP be a
two-valued Kripke structure modelling the concrete state space of Sys, i.e. every
temporal logic property over AP that holds for Sys also holds for K and vice
versa. Let K+ = (§+,RY, L*) over AP+ = Spot(Pred) U {pc; =35 | Proc; €
Spot(Proc) \j € Loc:} with AP+ C AP be a pure three-valued Kiipke structure
modelling the abstract state space corresponding to Spot. Moreover, let s; € S
and si- € St be states representing the initial configuration of Sys in K resp.
K+ and let < over AP+ be an LTL formula. Then the following holds:

L [K+ st B] <i, [K,s1 = 1, i.e. every definite verification result
obtained for the pure three-valued Kripke structure K+ can be transferred
to the two-valued Kripke structure K,

2. for each path mt € TI(KL,si) there exists a path 7 € TI(K,s;) with
Vi> 0: Ri(ni,mihy,) = true = R(mi,mip1) = true A Vp € APL .
Lt (ri,p) <gy L(mi,p),

3. for each path m € TI(K,s1) there exists a path 7+ € TI(K*,si) with
Vi > 0: R(m,mipy) # false = RY(wi,mly,) # false A Vp e APL:
]‘J_(Wl-'l_7p) SK:} L(”‘-i:p)‘

Hence, for each path in K+ there exists a corresponding 'more or equal definite’
path in K, and for each path in K there exists a corresponding ’less or equal
definite’ path in K+. Based on this proposition we can prove Theorem 1.

Theorem 1

Let Sys = ||}=, Proc; be a concurrent system and Spot = Spot(Proc)USpot(Pred)
be a given spotlight abstraction for Sys. Let K over AP be a two-valued KS
modelling the concrete state space of Sys and let K+ over AP+ = Spot(Pred)U
{pc; =j | Proc; € Spot(Proc) i j € Loc;} with AP+ C AP be a pure three-
valued KS modelling the abstract state space corresponding to Spot. Moreover,
let s; and si be states representing the initial configuration of Sys in K resp.
K*. Then for any parameterisation K+(r) of K+ obtained by applying the

rules I and II, and for any safety or liveness LTL formula " over AP+ the
following holds:

(K, st Ev] <x, (K5)

Proof. (Theorem 1)
Theorem 1 immediately follows from Lemma 1 where we split [K+(Z),si =
U] Zg, [K,s [1] into two different cases:

Lemma 1
Let all definitions as in Theorem 1. Then the following holds:

(1) [KH(z), st =] =true = [K,s] = true.
and

(2) [K*(2),si =] =false = [K,s =)= false

Proof. (Lemma 1)
The proof of Part (1) of Lemma 1 is as follows. We start with the following
equivalent transformations (note that K is two-valued, whereas K+ and K1(z)

are three-valued):
[KL(Z), si o) = true = [K,s = v] = true

o [K+(2),s¢ | v] # true V [K, s =) = true

& [K,s] =true vV [KX(Z), si =] # true

& [K,s1 vl = false = [KY(2),si |] # true

& [K,s1 o] = folse = [K(Z),si |=v] € {false, L}

& [K,s =) = false = 3J(a) € {¢t,f}"3r € I(K+(a),st) : [7
Y] € {false, L}
(compare Definition 4 and Definition 6 of the submitted paper)

Hence, we have to show that if checking [K,s; |= v yields false, then there
exists an instantiation K+ (a) of K*(z) such that checking [K*(a), s{- = 1]
vields false or unknown, i.e. for some K+ (a) there exists a path 7 with [7 |=
v] € {false, L}.
We know that for K and K+ Proposition 1 holds and we have that 1" is of the
form

(a) 1" = Gp (safety)
i.e. areal counterexample for 1* would be of the form # = (7, ... 7)) with

V1<i<k:R(w,m41) = true and L(my, p) = true (whereas an uncon-
firmed counterexample would be of a similar form but could also contain
L-transitions and L-labellings)

or

(b) v = GFp (liveness)
i.e. a real counterexample for 2* would be of the form 7 = (m...m_1) e
(7r...mp)® with V1 < ¢ < k: R(m,®i41) = true, R(my, 7)) = true, and
Vi< i<k: Lm,p) = false (whereas an unconfirmed counterexample
would be of a similar form but could also contain L-transitions and L-
labellings)

where p € APL.

Thus, Lemma 1 Part (1) immediately follows from Lemma 2 where we dis-
tinguish the following cases:

Lemma 2
Let all definitions as in Theorem 1 and let p € AP*. Then the following holds:

(a) If there exists a path = € II(K,s1) and @ is of the form @ = (71 ...7})
with Y1 <@ < k: R(m;,miy1) = true and L(my, p) = true, then there is
an instantiation K+(a) of K+(x) such that there exists a path 't (a) =
(ni(a)... rk,("‘)) withV1 < i < k' : R+(a)(mi(a), mir1(a)) € {true, L}
and L*(a)(ni(a), p) € {true, L}.

(b) If there exists a path m € II(K, s1) and 7 is of the form 7w = (71 ...m—1) e
(mp...mg) withV1 < i < k: R(mi,mi41) = true, R(mg, 7)) = true and
Vi< i<k Lm,p) = false, then there is an instantiation KJ-("‘) of

K+ () such that there exists a path ©+(a) € TI(K*(a), si) and ©+(a) is
of the form nt(a) = (ni(a)...7mp_,(a)) o (7 (a) ... 75 (a))* withV1 <
i < k' : RH(a)(m(a),7H,(a)) € {t”le L}, R*(a)(ms(a),mir(2) €

{true, L} and VI' <i < k': L*(a)(x}(a),p) € {false, L}.

Proof. (Lemma 2)
Case (a): Based on Proposition 1.3 we can conclude that in the pure three-
valued Kripke structure K1 there exists a path =+ € II(K*, si) which is of
the form 7t = (7 ...m%5) with V1 < i < k' : RY(wh, i) € {true, L} and
L (ns, p) € {true, L}.

Without loss of generality we can assume that along 7% each transition
and state occurs at most once. Otherwise 7+ must contain cycles (7 ... 7w)"
that are left after a finite number of n run-throughs. We can remove such

cycles by replacing 7t = (r{...7}) e (wf ...)" o (mhy,...7F) by 7wt =

(7{...mF7wky .. 7)), which is still a prefix with V1 < ¢ < k' : RY(nt,mfy,) €
{true, L} and Lt (ni5,p) € {true, L}.

Since K*(z) is a parameterisation of K+, there must exist and instantiation
K1(a) such that there existb a path nt(a) € TI(K*(a),si) with 7t(a) =
(ri(a)...mu(a)) with Y1 < i < &' : R*+(a)(mi(a), mir1(a)) € {true, L} and
Lt (a)(rik(a),p) € {true, L}.

The explanation is as follows: According to the definition of our param-
eterisation rules, the path 7+ € TI(K*,si) must have a corresponding path

L(z) € TI(K+(z), si°) where some formerly unknown transitions and labellings
might now be paranleteribed and similar to 71, each transition and state occurs
at most once along 71 (z). We now choose (a) € {true, fa:’se}"’ such that each
parameterised transition along 7+ () evaluates to true along 7 (a) This is pos-
sible because we have that each state occurs at most once along 7+ (). Hence,
the starting state of a parameterised complementary branch can occur at most
once, and thus, only one branch of each parameterised complementary branch
can occur along 7+ (Z) at all. Moreover, if L+ (z)(n{s (%), p) is parameterised,
then we instantiate the labelling parameters such that L (a)(ni (a), p) = true.

This implies Lemma 2 (a) and thus ends this case of the proof.

Case (b): Based on Proposition 1.3 we can conclude that in the pure three-
valued Kripke structure K there exists apathmt = (x{ ... 7p_,)e(np ... 75)¥
with V1 < i < k' : Rt (nt,my,) € {true, L}, R (ni,np) € {true, L} and
VI <i<k': L*(ni,p) € {false, L}.

Without loss of generality we can assume that along 71’s finite unfolding
it = gt oy) (m n'kl,) e (7j7) each transition and state occurs at
most once, except the state 7r1, which occurs twice. The explanation is the
same as in Case (a). For w1/ we still have that V1 < i < k' : R+(nt (M) €
{true, L}, R (n,7ib) € {true, L} and VI < i < k' : LJ'(r ,p) € {false L},

Since K+ (z) is a parameterisation of K L, there must exist and instantia-
tion K1 (a) such that there exists a path = (1) € H(K-'-("') &) with 7+ (a) =
(mi-(@)...mi_y (a)e(mpr(a) ... w5 (@) withV1 < ¢ < k' ()(mi(a), mit1(a)
€ {true, L} and VI' < i < k' : L*(a)(n}(a), p) € {false, L}

The explanation is as fOllOWb Accordmg to the definition of our param-
eterisation rules, the path 7+ € TI(K*,s{) must have a corresponding path

7t (z) € I(K+(Z), si+) where some formerly unknown transitions and labellings
might now be pdramet.erised, and similar to 7+, each transition and btate occurs
at most once along 7+ (z)’s finite unfolding #+/"(z) = (ai(Z)...73_, (7)) o
(mi(x) - nkl,(ﬂc')) o (73 (x)), except the state 73 () which occurs twice. We
now choose (a) € {true, false}™ such that each parameterised transition along

mlfin(z) evaludteb to true along 7" (@). This is possible because along 7/ (i)
each state s has a unique successor state s’, and thus, at most one branch tran-
sition of each parameterised complementary branch can occur along 77 (z) at
all. 71/ (z) can be straightforwardly extended to an infinite path that repeti-

~

tively runs through the same transitions. Thus, with our evaluation we also get
the infinite path 7t (a) = (7{(a)...7p_,(a)) o (7§ (@)... 75 (a))” where each
formerly parameterised transition is now true.

It remains to show that we can choose (@) € {true, false}™ such that ad-
ditionally VI’ < i < k' : L*(a)(n}(a),p) € {false, L} holds for the cycle part
(riF(a)...m(a)) of mt(a). According to our rules, the parameterisation of
predicates is always independent from the parameterisation of transitions. Thus,
we can argument independently from our formerly chosen (@) € {true, false}™
for transitions here.

It is sufficient to show that along the cycle part (3 (z)... 75 (%)) of the
parameterised 7+ (Z) there exists no complementary parameterisation with re-
gard to the predicate p, i.e. =31 < i,j < k' with L*(Z)(r (%), p) = b and
L—L(x)(m'f(i) p) = b where b is a logical expression over {z, ...,z }.

Remember that K correctly represents the concrete state space of the con-
sidered system Sys, in K there exists the path m = (7y...m~1) @ (m...7)%
with V1 < i <k : L(m;,p) = false, and K= is a corresponding sound abstract
state space model (compare Proposition 1). The parameterisation of predicates
in K is always done with respect to the systems operations associated with tran-
sitions in K+ (compare Rule II). Thus, in anv parameterised Kripke structure
K*+(z) constructed by the application of Rule II to K+, there must be a cycle
(75 (z) ... w5 (Z)) corresponding to concrete cycle (m; ...) without a comple-
mentary parameterisation with regard to the predicate p.

This implies Lemma 2 (b) and thus ends the proof of Lemma 2.
a

The proof of Part (2) of Lemma 1 is analogous to the proof of Part (1) goes as
follows. We start with the following equivalent transformation (note that K is
two-valued, whereas K+ and K= (z) are three-valued):

[K*(z), si |Ev) = false = [K,s =] = false

& Y(a) € {t,f}" 37 € I(K*(a),s1) : [r =] = false = [K,s |
U] = false
(compare Definition 4 and Definition 6 of the submitted paper)
Hence, we have to show that if checking [K+(a), si- = ¥] yields false for all
instantiations K*(a) of K+ (), then checking [K, s; }= 1] also yields false. Le.
if for all K+(a) there exists a path 7+ with [x+ |= v)] = false then there exists
a path 7 in K with [z = ¢'] = false.
We know that for K and K+ Proposition 1 holds and we have that 1" is of the
form
(a) v = G-p (safety)
i.e. a real counterexample for 1> would be of the form 7 = () ...7) with
V1 <i<k: R(my,miy1) = true and L(my, p) = true (whereas an uncon-
firmed counterexample would be of a similar form but could also contain

L-transitions and L-labellings)
or

(b) 1* = GFp (liveness)
i.e. a real counterexample for 1) would be of the form 7 = (m...m_1) e
(mp...7)? with V1 <4 < k: R(mi,®ip1) = true, R(mg,7) = true, and
Vi< i<k L(m,p) = false (whereas an unconfirmed counterexample
would be of a similar form but could also contain 1-transitions and -
labellings)

where p € AP+,

Thus, Lemma 1 Part (2) immediately follows from Lemma 3 where we dis-
tinguish the following cases:

Lemma 3
Let all definitions as in Theorem 1 and let p € APL. Then the following holds:

(a) If for all instantiations K+ (a) of K*+(z) there exists a path (@) =
(ri(a)...75(a)) withV1 < i < k' : RY(a)(mi(a), mi41(a)) = true and
L*(a)(wi(a), p) = true, then there exists a path w € TI(K, ;) and 7 is
of the form m = (wy...7) withV1 < i < k : R(mi,m41) = true and
L(mg, p) = true.

(b) If for all instantiations K+(a) of K*+(z) there exists a path w+(a) €
II(K1(a),si) and wt(a) is of the form nt(a) = (v (a)...7j_,(a)) e
(mib(@)...75(a)) with V1 < i < k' : RY(a)(n (@), 75.(a) = true,

R (a)(nh(a), i (a) = true and VI < i < k' : L*(a)(ni(a),p) =

false, then there exists a path m € II(K,s1) and 7 is of the form © =

(my .. mp—r)o(myp. . wg)¥ withV1 < i< k: R(mi, mip1) = true, R(mg,m;) =

true and V1 < i < k: L(x;, p) = false.

Proof. (Lemma 3)
Case (a): Without loss of generality we can assume that along each 7+ (a) =
(7 (a)...m(a)) each transition and state occurs at most once. Otherwise
7t (@) must contain cycles (m;-(a@)...m;-(a))" that are left after a finite num-
ber of n run-throughs. We can remove such cycles by replacing 7+ (a) =
(7i(a)...m+(a)) o (mi-(a) ... w5 (@)™ @ (w74, (@) . .. 7 (@) by 7 (@) = (71 (a)
comr(@)mi (@) .. .7k (@), which is still a path prefix with Y1 < 4 < k' :
RY(a)(r} (a), 7w, (a)) = true and L*(a)(mis(a), p) = true. We denote such
paths as a single-occurrence prefizes.

Each K+(a) is an instantiation of K+(z), where K1(&) is a parameterisa-
tion of K+ obtained by the application of Rule I and Rule II. Moreover, for

each single-occurrence prefix 7+ in K+ there exists a single-occurrence prefix =
in K with Vi > 0 : RY(ni 7)) = true = R(mi,mit1) = true A Vp €
APL : Lt (rf,p) <g, L(m,p) (Proposition 1.2). A parameterisation of
K+ only substitutes certain unknowns with boolean expressions over the set
of parameters {z1,...,z,}. Thus, for each parameterised single-occurrence
prefix 7+ (x) in K+(z) there exists a single-occurrence prefix 7 in K with
Vi > 0: R (z)(n(z),71,(2)) = true = R(mi,miy1) = true A Yp €
APL (LJ'(af)(wl»J*(f'rf), p) <k, L(mi,p) Vv L*E)(xt(E),p) = b) where b s a
boolean expression over {z,...,Zn}.

We now show that we can instantiate the parameters {z,...,7,} with
truth values {ai,...,an} such that for each single-occurrence prefix 7t (a) =
(7 (a)...7¢(a)) in K+ (a) there exists a single-occurrence prefix 7 = (7 ... 7y)
in K with V0 < ¢ < k : RY(a)(n}(a), w5, (a)) = R(mi,mip1) A ¥p € APL:
L*(a) (w3 (a), p) = L(m;, p). The explanation is as follows: If K+(Z) would be
a parameterisation of K1 where each parameterised predicate in a state and
each parameterised transition is associated with an individual parameter, then
there exists an instantiation K+ (a) such that for each single-occurrence prefix
m+(a) = (n{(a)...miH(@)) there exists a single-occurrence prefix # = (7 ... 7)
in K with V0 < i < k : Rt (a)(n;-(a),m#,(a)) = R(mi, mip1) A Vp € APL:
L*(a)(7+(a),p) = L(mi,p). This immediately follows from Proposition 1 to-
gether with the definitions 5 and 6 from the submitted paper and the fact that
we are only considering single-occurrence prefixes.

We still have to show, that this also holds for parameterisations obtained by
the application of Rule I and Rule II, which means each parameterised predi-
cate in state and each parameterised transition is now not necessarily associated
with an individual parameter. The application of Rule I associates complemen-
tary branches with complementary expressions over the set of parameters. The
application of Rule II associates predicates in different states with the same pa-
rameter as long as the value of the predicate does not change between this states.
This generally reduces the amount of parameters and thus the amount of pos-
sible instantiations in comparison to an individual parameterisation. However,
the application of the rules solely leads to the exclusion of infeasible behaviour
(e.g. that both branches of an if-statement are executable at the same time) of
the original system in the Kripke structure. Feasible behaviour of the original
system will be never excluded by applying the rules, since the application of the
rules always takes the systems original program code into account. Thus, for a
parameterisation K+(z) of K+ obtained by the application of the rules I and II
there must also exist an instantiation K+ (a) of K (z) such that for each single-
occurrence prefix 7+(a) = (7 (a)...m+(a)) there exists a single-occurrence
prefix 7 = (m...w) in K with Y0 < ¢ < k : R*(a)(n(a),74,(a) =
R(Firﬂi—f'l) A Vp € APJ- : LJ_(E)(WTJ_(E')~}7) = L(Fﬁp)'

Hence, there exists one instantiation K (a) that exactly characterises single-
occurrence prefixes of K. We can conclude that if a single-occurrence prefix of
the form 71 (a) = (ni(a)... 7w (a)) withV 1 < i < k' : RH(a)(mi (@), mi41(@)) =

true and L*(a)(mis(a), p) = true exists in all instantiations K+ (a) of K+(z),
then it also exists in the one instantiation that exactly characterises single-
occurrence prefixes of K, which immediately implies that a path of the form
m=(my... %) withV1 < i < k: R(m,m41) = true and L(my, p) = true exists
in K.

This implies Lemma 3 (a) and thus ends this case of the proof.

Case (b): Lemma 3 (a) together with Proposition 1 guarantees us that for
K*(z) there must be one instantiation K+ (@) such that each single-occurrence
prefix! 7t(a) = (i (a)... 7 (a)) € IM(K+(a), si-) has a corresponding single-
occurrence prefix 7 = (m;...m) € II(K,) with VO < i < k : Rt (a)(xi(a),
m1(6)) = R(mi,mip1) A Vp € AP+ 2 IH(a)(ni (@), p) = L(mi, p). We say,
nt (@) can be simulated in K by m. The reason why we can simulate single-
occurrence prefixes but not necessarily infinite paths is that we have abstract
states in K*(a) (resp. in K+ () and in K*). An abstract state s;-(a) of K+(a)
may characterise two (or more) concrete states s; and s/ in K (i.e. Vp € AP*:
L4 (8) (s (@), p) <icy Lls:,p) and LH(8)(s(8), p) <k, L, p)). Thus, for an
infinite path 71(a) = (ri(a)...wt (@) (7(a)... 7 (@) in K+ (a) with
V1 <i<k:RY(a)(r(a), 7, (a)) = true, R-(a)(nif(a), 7 (a)) = true, and
Vi< i <k:La)(rt(a),p) = false where abstract states and transitions

m

occur multiple times, we can assume that the simulation of 7+ (a) in K is only

possible for a finite number of runs through the —p-cycle (7j*(a)... 7} (a)).
Le. we will find a prefix 7" = (m)...m_1) ® (M ... T 171 ... 7E)" ®

(mp...m—7)) in K with n > 0 and | < ¢ < k which is equivalent (wrt.
transition values and labellings) to the prefix of 7t (a) of the same length,
but there is no transition R(7},m;41), i.e. no way to continue the simulation
of 7t(a) in K. Evidently, m; and 7 must be two different concrete states
that are characterised by the same abstract state 73 (a) in K+(a) (resp. in
K+(z) and in K+). The only reason why the simulation of 7t(a) cannot
be continued in K after a finite number of runs through the —p-cycle, is that
R*(a)(ri(a), 75, (a)) corresponds to a parameterised transition in K () and
R(mi,mix1) = true but R(w},mi+1) = false in the concrete K. Parameterised
transitions only arise due to the application of Rule I. Hence, we must have that

R (Z)(r(Z), 75, (%)) = b with b € {@1,..., %, 71, ..., T} and there must
be also a transition R*(z)(r;- (z), /%, (¥)) = —b. Thus, the simulation of 7+ (&)
by 7" = (my...m=1) ® (W ... Mim1MiTig1 ... Tk)"™ @ (M7 ... My 7}) cannot be

continued by a concrete transition corresponding to R+ (z) (i (z), 75 (7)) but
there must be a some concrete state 7/, ; and a concrete transition R(7}, 7],)

corresponding to R*(z)(ni* (%), mi%, (%)) (i.e. with¥p € AP L*(z2)(nl%, (%), p)

LAlong a single-occurrence prefix @ = (7 ... 7)) of a Kripke structure K, each state and
each transition of K occurs at most once.

<v, L(mj,, p)) that we can take next: 7rﬁ" =(my...w—1) @ (7). . Ti_1TiTiq41

Lomg)"t e (m ... mimiw,,,). From 7f" we can derive the loop-free single-
occurrence prefix 7" = (m;...m_1) ® (... Ti_y1wiw,). 7 hints at a par-
tial instantiation K+(d,?) of the parameterised Kripke structure K L(z) such

that thereembtb<1preﬁx7—’-L(ma1 T)=(xt(d,T)...75,(a,Z))e(xt(d,E). ..
i

ﬂ.ii_l("c'll '}2) /’L("C‘Ll,';rz) ,il(m) mz)) with Y0 <] /lﬂ_jml R_L(ml "‘2)(7(;.(0;,
my my

2),m5.1(4, %)) = R(my,mjp1) A Vp € APL : L1(@,7)(x}(3,2),p) =
L(mj,p) in K+ (@,7). According to the prerequisite of this lemma, there must
be a complete instantiation K+(a) of K*('d,) buch that 7/+('d,'7) can be
extended to an infinite path r'l(a) (7i(a)... 71 (a) o (xf(a)... 75 (@)
with V1 < ¢ < & : RH(a)(ri(a), 7} (7)) = true, RE(a)(nf(a), 7 (a) =
true, and VI < i < k' : [l(a)(+(a),p) = false, and for the finite unfold-
ing (ri(a)...m_ (@)n}(a).. ﬂk,(a)rl, (@) of 7L (a) there exists an equiva-
lent blngleoccurlence prefix (my...7wp_ymp ... mpwp) in K. Either this single-

occurrence prefix can be extended to the inﬁnite path 7’ = (my...7mp—1) @
(mp ...m)% in K, which means the lemma is proven. Or the prefix can only
be extended to a prefix #" = (m...7p_1) ® (Fp ... Wi 1TiTig1 .. . Tp)"

(7 ... mim1ws) with n > 0 and I’ << i < k/, but the simulation of the mﬁmte
path 7'+ (@) of K (a) cannot be further continued in K. Then we can (repet-
itively) extend 7" as we have done it before to get 7" out of 7/, After a
finite number of repetitions, we will get a prefix that can be actually extended to
an infinite path 7’ = (my ... 7p_1) @ (wp ... 7k/)¥ in K, which means the lemma
is proven. Otherwise there would exist a complete instantiation K+(a) where
no path w4 (&) = (rt(8) ... wf (&) o (- (3) ... m(8))° € (K™ (&), st) with
V1< i< k:RY(a)(ni(a),nh,(a)) = true, RH(a)(ri (), 7 (@) = true, and

<4 <k:L*(a)(ri(a),p) = false exists - which however is be a contradic-
tion to the prerequisite of Lemma 3 (b).

This implies Lemma 3 (b) and thus ends the proof of Lemma 3. Lemma 2
together with Lemma 3 establishes the correctness of Lemma 1 (a) and (b).
o

We now can immediately conclude that Theorem 1 holds.
[m]

Proof of Theorem 2

In the following we prove Theorem 2 from Section 6. We show that our
algorithm CheckFG(p) is correct in the sense that for a parameterised three-
valued Kripke structure M(z) = (S, sy, B, L) over AP with p € AP as input, its
output corresponds to the result of checking [M () =3 FGp]. Our proof makes
use of the following auxiliary definition:

Definition 8 (Path Constraint)

Let M(z) = (8,50, R, L) be a parameterised three-valued Kripke structure over
AP and X. Moreover, let p € AP and 7 be a path of the form (sy...s_1) e
(s1...8:)% in M(2). Then the path constraint of 7 is defined as

constraint(mw) = /\f:_(,1 R(si, Sit1) I\ /\f:z L(si, p).

Hence, we extend our notion of propositional logic constraints to entire paths of
Kripke structures, whereas in Section 6 we only defined and used this constraints
for single states and strongly connected components. The theorem that we prove
is the following:

Theorem 2

Let M(x) = (S, s0, R, L) be a parameterised three-valued Kripke structure over
AP and X. Moreover, let p € AP. Then after the termination of the algorithm
CheckFG(p) with input M (x) the following holds:

true iff constraint(sy) is tautological
[M (7) 3 FGp} = false iff constraint(sy) is unsatisfiable
L otherwise

Proof. (Theorem 2)
We prove Theorem 2 by showing the following:

o [M(Z) =3 FGp| = true iff constraint(s,) is tautological (Theorem 2.1)

o [M(z) =3 FGp| = false iff constraint(sy) is unsatisfiable (Theorem 2.2)

Proof. (Theorem 2.1)
The proof of Theorem 2.1 is as follows. We start with the following equivalent

transformations.

[M(z) =3 FGp] = true iff constraint(sy) is tautological

m

& For all instantiations M (@) of M () there exists a path of the form
m=(5...5-1)®(s...5)% in M(a) with VO <4 <k:
R(a)(8i,8i41) = true and Y1 < i < k: L(a)(s;,p) = true
iff
constraint(sy) is tautological

< For all interpretations [: X — {true, false} of X there exists a path
T=(s0...5-1)0(s...5)* in M(Z) with I(constraint(r)) = true
iff
for all interpretations I : X — {true, false} : I(constraint(sy)) = true

The correctness of this assertion now immediately follows from Lemma 4.

Lemma 4

Let M (z) = (8,50, R, L) be a parameterised three-valued Kripke structure over
AP and X. Moreover, let I : X — {true, false} be an arbitrary interpretation
of X. Then the following holds:

1. Let 7 be an arbitrary path of the form (sy...51—1) e (s;...8x)% in M(z)
with I(constraint(m)) = true. Then I(constraint(sy)) = true after the
termination of CheckFG(p).

2. If I(constraint(sy)) = true after the termination of CheckFG(p), then
there exists a path © = (sy...81-1) ® (8;...58;)% with I{constraint(r)) =
true.

Proof. (Lemma 4.1)

Our premise is I(constraint(mw)) = true. Consequently, for all transitions (s, s’)
along the path = with R(s,s’) € BE(X) we have that I(R(s,s’)) = true, and
for all states s along the strongly connected component C' formed by (s; ... sg)*
with L(s,p) € BE(X) we have that I(L(s,p)) = true (Definition 8). Hence,
after the execution of the lines 1 to 13 we have that I(constraint(C)) = true
and for all states s along C we have that I (constraint(s)) = true. After line 14,
all states of C, in particular the state s;, will be contained in the set 7. Thus,
during the execution of the while-loop, s will be eventually chosen in line 16.
Consequently, s;’s predecessor state s;—) along 7 will be contained in the set 7’
(line 18) and eventually selected in line 19. Now we distinguish the following
mutually exclusive cases:

Case (a) The if-condition in line 20 holds, which means we have that
=(R(s1—1, 81) / constraint(s;)) = constraint(s;—). Then constraint(s;_,)
is updated: constraint(s;—1) := constraint(s;—1)" (R(si—1, s1)/\contstraint(s;)).
Now I (constraint(s)—1)) = true, since we already have that I(R(s;—1,s)) =
true and I (contstraint(s;)) = true. After the update of constraint(s;—,)
the state s;_1 will be added to the set T (line 22). If s, is already the

initial state of = we have that I(constraint(sy)) = true, which completes
the proof of Lemma 4.1.

Otherwise, in a later iteration of the while-loop the state s;; will be
chosen from T in line 16 and its predecessor s;—o will be contained in the
set T’ (line 18) and eventually selected in line 19. Now we can distinguish
the cases (a) and (b) again with [:={— 1.

Case (b) The if-condition in line 20 does not hold, which means we
have that (R(s;—1,s;) A constraint(s;)) = constraint(s;—;). Since we al-
ready have that I(R(s;—1,s;)) = true and I(contstraint(s;)) = true, the
premise of (b) allows us to conclude that contstraint(s;—;) # false and
I(contstraint(s;—1)) = true. If s is already the initial state of # we
have that I(constraint(sy)) = true, which completes the proof of Lemma
4.1.

The body of the if-condition will not be executed, which means the state
s1—1 is not added to the set T. However, since constraint(s;—1) was ini-
tialised with false in line 3 and the premise of Case (b) implies that
constraint(s;—,) # false, contstraint(s;—;) must have been updated and
the state s;—; must have been added to T at some point in the past. (Up-
date and addition to T either had happened in lines 13 and 14, or in lines
21 and 22.) Thus, in some iteration of the while-loop the state s;—; will be
chosen from T in line 16 and its predecessor s;_» will be contained in the
set 7”7 (line 18) and eventually selected in line 19. Now we can distinguish
the cases (a) and (b) again with [:=1— 1.

Proof. (Lemma 4.2)

We show that under the premise I(constraint(sy)) = true such a path 7 can
be gradually constructed (i.e. found) in M (). We initialise 7 := (sy), i.e. the
finite prefix consisting of the state s). Moreover, we initialise a state variable
81 ‘= 8.

In accordance with the algorithm CheckFG(p), constraint(s;) will be of the
following form after termination: constraint(s;) = false\/ constraint(Cy)\ ...V
constraint(Cy,) V' (R(sy, s1) /\ constraint(sy)) V...V (R(s1, $m) /\ constraint(s,,))
where Ci,...,C, € SCC and sy, ..., s, € S. Our premise is I (constraint(s;))
true. Hence, there must exist a C; € {C),..., C,} with I{constraint(C;))
true or there must exist an s; € {s1,...5,,} with I(R(s;, s;) A\ constraint(s;))
true. Thus, at least one of the following cases holds:

Case (a) There exists a strongly connected component C; € {C}, ..., C,}
with I(constraint(C;)) = true. Then s is a state along C;. Let s;,..., s
be the states of C; such that the sequence (s; ... s;) forms a cycle (s; ... s.)%
in M(z). Let the current prefix 7 be # = 7’ o (5). Then we set 7 :=
e (s...8)%. We get that I(constraint(mw)) = true (Definition 8), which
completes the proof of Lemma 4.2.

Case (b) There exists an s; € {s1,... s, } with I(R(s;, s;)Aconstraint(s;)) =
true. The current 7 is a finite prefix whose last state is s;. Now we set

7= e (s;) We get that for all transitions (s, s’) along 7 : I(R(s,s’)) =
true. We set s; := s;. For the updated state s; we again have that
I(constraint(s;)) = true and constraint(s;) is of the form constraint(s;) =
false V constraint(Cy) V...V constraint(C,,) v (R(s), s1) A constraint(s;))

NV (R(s1, 8m)/\constraint(s,,)) where Cy,...,C, € SCC and sy,...,8, €
S. For the updated s; we now distinguish the cases (a) and (b) as before.

Eventually Case (a) must hold because of the following: constraint(s;) and
all other state constraints are initialised with false in CheckFG(p) (line 3).
During the execution of the algorithm the state constraints are updated in
line 13 and in line 21. In line 21 the updates happen dependent on other
state constraints. Thus, if all updates of constraint(s;) and its subformulae
would be based on line 21, then constraint(s;) would be still false after
termination. In line 13 the updates happen dependent on constraints of
strongly connected components. Since we have that I(constraint(s;)) =
true and thus constraint(s;) # false, constraint(s;) or a subformulae must
have been updated dependent on the constraint of a strongly connected
component C; in line 13. Hence, at one point of our construction of «
Case (a) will hold.

Proof. (Theorem 2.2)
The proof of Theorem 2.2 is as follows. We start with the following equivalent
transformations.

[M (%) =3 FGp| = false iff constraint(sy) is unsatisfiable

& For all instantiations M (a) of M () there exists no path of the form
w=1(80...8-1)®(s...8:)% in M (a) with VO <i < k:
R(a)(si, siq1) = true and VI < i < k: L(a)(s;,p) = true
iff
constraint(sy) is unsatisfiable

& For all interpretations I : X — {true, false} of X and all paths of the
form m = (sy...5-1) 0 (s;...5:)” in M(Z) : I(constraint(r)) = false
iff
for all interpretations I : X — {true, false} : I(constraint(sy)) = false

The correctness of this assertion now immediately follows from Lemma 5.

Lemma 5
Let M(z) = (S, so, R, L) be a parameterised three-valued Kripke structure over
AP and X. Moreover, let I : X — {true, false} be an arbitrary interpretation
of X. Then the following holds:

1. If I(constraint(mw)) = false for all paths m of the form (so...s;—1)e(s;...8;)
in M (), then I(constraint(sy)) = false after the termination of CheckFG(p).

2. If I(constraint(sy)) = false after the termination of CheckFG(p), then
I (constraint(w)) = false for all paths = of the form (sy...s1—1)e(s; ... sx)*
in M(T).

Proof. (Lemma 5)
Lemma 5 is an immediate consequence of Lemma 6.

Lemma 6

Let M(x) = (8,50, R, L) be a parameterised three-valued Kripke structure over
AP and X. Moreover, let I : X — {true, false} be an arbitrary interpretation
of X. Then the following holds:

1. If I{constraint(sy)) # false after the termination of CheckFG(p), then
there exists a path m = (sp...8—1) ® (8. ..8;) with I(constraint(m)) #
false.

2. Let w be an arbitrary path of the form (so...s-1) e (s;...8:)* in M(Z)
with I(constraint(r)) # false. Then I(constraint(sy)) # false after the
termination of CheckFG(p).

Proof. (Lemma 6)

The proof of Lemma 6.1 is analogous to the proof of Lemma 4.2 and the proof
of Lemma 6.2 is analogous to the proof of Lemma 4.1.

This completes the proof of Theorem 2.

