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Abstract

We present a model of biofilm growth in a long channel where the biomass is as-
sumed to have the rheology of a viscous polymer solution. We examine the competition
between growth and erosion-like surface detachment due to the flow. A particular focus
of our investigation is the effect of the biofilm growth on the fluid flow in the pores,
and the issue of whether biomass can grow sufficiently to shut off fluid flow through
the pores, thus clogging the pore space. Net biofilm growth is coupled along the pore
length via flow rate and nutrient transport in the pore flow. Our 2D model extends
existing results on stability of 1D steady state biofilm thicknesses to show that, in
the case of flows driven by a fixed pressure drop, full clogging of the pore can indeed
happen in certain cases dependent on the functional form of the detachment term.
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1 Introduction
Biofilm appears to be the preferred form of life for bacteria in many environments and
conditions: bacterial cells embed themselves in a slime matrix of secreted polysaccharides
(EPS) and water, usually adhered to a surface [5]. Biofilm is practically ubiquitous on
Earth, wherever there is water. Biofilm-forming bacteria subsist and often flourish across an
astonishing diversity of environments, requiring only a minimum sufficient supply of essential
nutrient elements in viable form and an exploitable form of energy (usually chemical or light)
[27].

In general, water flow is required to provide the nutrient supply and prevent the build-
up of metabolic products. In groundwater flows, microbial action transforms diverse organic
contaminants into less harmful products, constituting the primary mechanism for ground-
water purification in aquifers.

Where biofilm grows in a constrained space, whether in the pore spaces of soil and
aquifer porous materials or in industrial or physiological tubes, there is potentially a feedback
interaction between the biofilm and the water flow. Constriction of flow width can increase
flow resistance and lead to reduced flow; reduced flow reduces the supply of nutrients along
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the flow path and thereby limits growth downstream. Furthermore, flow-induced shear stress
can cause loss of biofilm either as surface detachment or as catastrophic sloughing at any
point along the flow path.

In many settings biofilm growth is insufficient to affect flow appreciably, either because
flow channels are wide, or because the biofilm growth is limited by nutrient supply, chemical
disinfection, predation, or detachment/sloughing. In settings where the growth is sufficient
to impinge on flow, the effect is termed clogging or bioclogging. Clogging in industrial and
physiological applications generally has undesirable effects on process efficiency and health.
In typical nutrient-poor groundwater conditions, biomass is sparsely distributed and has
little effect on flow, but deliberate encouragement of excess growth blocking the pore space
can be exploited in the form of ‘biobarriers’ so as to prevent (or slow) contaminated flow
reaching a sensitive location [2, 6].

The focus of the present study is the competition between the factors of flow, nutrient
supply, and detachment in determining biofilm growth. There is an extensive biofilm liter-
ature which has examined many aspects of this at the biofilm and pore scale, though it is
clear that the detachment process remains poorly understood. Rittmann [17] suggested a
power-law dependence of detachment on flow shear stress. Wanner and Gujer [26] suggested
instead a quadratic dependence on the biofilm thickness (much repeated in the modelling
literature, largely to ensure a steady state for numerical simulations), which received some
support from arguments based on uniform probability of failure through the biofilm thickness
in a 1D model by Stewart [20]. Kommedal and Bakke [12] fitted experimental data to a wide
variety of functional forms for detachment, concluding that dependence on both shear stress
and biofilm thickness/age are important. Duddu et al. [8] made a detailed numerical study
of biofilm microcolony growth with shear-dependent and thickness-dependent detachment
rates. Recent theoretical studies [1, 11] have examined the existence and stability of steady
states in simple one-dimensional models of biofilm growth with loss terms due to decay or
detachment.

These biofilm scale models contrast with models of pore clogging where the effect of
biofilm growth on flow is examined at a larger scale. Early models using a basic geometric
caricature of biofilm growth in the pore space of porous media [e.g. 4, 22] have largely given
way to large numerical simulations of biomass growth in imaged or simulated geometries of
porous medium samples [e.g. 14]. An alternative conceptual approach is provided by pore
network models [e.g. 10, 21, 23] of clogging, which, out of computational necessity, are based
on a lumped model of the flow–biofilm growth interaction in an individual pore.

The immediate aim of the present paper is to develop a model for a single channel and
to examine the circumstances in which the interaction between flow and detachment can
lead to a steady state solution. Most of the modelling literature on biofilm growth and pore
clogging is predicated on the reasonable assumption that the biofilm thickness is limited,
whether via a steady state balance between growth and loss terms, or via episodic sloughing
events whose time-averaged effect is similar. Two recent theoretical studies have investigated
the existence and stability of steady state biofilm thickness under the influence of thickness-
and shear-dependent detachment terms [1, 11]. While these models considered a strictly one-
dimensional biofilm, our model expands on their work by (a) taking into account nutrient
transport in the pore water flow, and (b) including coupling along the pore length through the
effect of biofilm thickness variation on flow resistance and nutrient supply. This longitudinal
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coupling varies according to the flow regime: if flow rate in the pore is specified, coupling is
due to nutrient transport considerations alone; for flow driven by a specified pressure drop,
a further nonlocal coupling exists as both the flow rate and nutrient supply are dependent
on the biofilm thickness at all points along the pore. In applications such as porous media,
where pores form an interconnected network with parallel flow paths, flow in an individual
pore is effectively driven by a network-dependent combination of these extreme cases.

We use a similar single pore setting to that of van Noorden et al. [24], but where they
undertook a theoretical exercise of upscaling by homogenisation, we seek to examine the
behaviour of the pore scale model to gain insight into the form of the detachment term and
the possibility of steady state biofilm distributions within the pore. This exercise may then
provide a basis for comparison to experimental observations of biomass distribution so as
to better constrain future modelling. The eventual purpose of this approach is to allow a
parameterised lumped model of the individual pore for use in pore network models, where, in
addition to any steady states of the single pore models, there is the possibility of limit cycle
behaviour with ‘flip-flop’ switching between parallel flow paths due to alternating growth
and net loss phases in each.

We consider a single pore channel saturated with nutrient-bearing water (see figure 1),
which has biofilm attached symmetrically to the pore walls. Bacterial growth rate is assumed
to be dependent on a single limiting nutrient, and we consider loss of the biofilm through
first-order degradation in addition to detachment at the surface due to fluid shear stress.
Our material model of the biofilm draws on previous work based on polymer solution theory
[28].

The outline of the paper is as follows: in section 2, we derive what we refer to as a
microscopic model for the growth of a biofilm attached to the soil matrix in a single pore.
The model is non-dimensionalised and simplified in section 3. In section 4 we provide some
analytical insight before providing numerical solutions in section 5. Conclusions are set out
in section 6.

2 Mathematical model
We consider a single pore channel between parallel planar walls, having length l and half-
width h, with ε = h/l � 1. We define coordinate axes so that the full domain is (x, z) ∈
[0, l]× [0, 2h]. Biofilm grows on the pore walls to a thickness s(x), and we assume symmetry
across the pore centreline z = h so that the model only considers the half-domain (x, z) ∈
[0, l]× [0, h].

The unobstructed pore space z ∈ (s, 2h − s) is taken to be fully saturated and the
longitudinal volume flux or flow rate is q [L2T−1]. The flow velocity is u = (u1, u2).

The biofilm is assumed to be predominantly extracellular slime matrix, a viscous solution
of secreted bacterial extracellular polymeric substances (EPS). Its growth is dependent on
the uptake of nutrient from the surrounding pore water, and the nutrient supply is thereby
dependent on the flow. Biofilm growth constricts the pore space and increases flow resistance.

We ignore flow of water through the biofilm itself, despite its high water content, on the
basis of recent results indicating that the effective permeability of biofilm is very low [25].
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Figure 1: Definition sketch

2.1 Biofilm model
We start with the two phase biofilm growth model of Winstanley et al. [28], which describes
the biofilm as a weak solution of EPS (volume fraction φ, velocity v, viscosity µb) in water
(volume fraction (1− φ), velocity w). Growth is dependent on the local concentration of a
single limiting nutrient c. The model can be written dimensionally as

φt + ∇· (φv) = g(φ, c), [T−1]
−φt + ∇· [(1− φ)w] = −%g(φ, c), [T−1]

µb∇· [φ(∇v + ∇vT )]− ζ0φ(1− φ)(v−w)− φ∇ps = 0, [ML−2T−2]
ζ0φ(1− φ)(v−w)− (1− φ)∇p = 0, [ML−2T−2]

D∇· [(1− φ)∇c] = r(φ, c), [ML−3T−1]

(2.1)

applying in the region 0 < z < s(x) and 2h − s(x) < z < 2h. Equations (2.1)1,2 repre-
sent conservation of EPS and water, while (2.1)3,4 correspondingly expresses conservation
of momentum. Conservation of nutrient is given by equation (2.1)5. % = ρm

ρl
is the ratio of

EPS and water densities, and ζ0 is an interphase drag coefficient. The EPS and water phase
pressures ps and p, respectively, are related via

ps = p+
∫ φ

φeq

Ψ(ϕ) dϕ
ϕ

, (2.2)

with an osmotic pressure term

Ψ(φ) = EL
(
ln(1− φ) + φ+ χφ2

)
based on the long-chain limit of Flory-Huggins theory for polymer solutions. The value of
the Flory parameter χ is assumed to be such that a non-zero EPS volume fraction φeq exists
with Ψ(φeq) = 0. The nutrient uptake rate and biofilm (EPS) growth rate are given by
r(φ, c) and g(φ, c), respectively.

Boundary conditions for this system are

c = cs0, φ = φeq, p = p̄(x), σ · n = 0, on z = s(x),
∂c

∂z
= 0, ∂φ

∂z
= 0, ∂p

∂z
= 0, v = 0, w · n = 0, on z = 0,

(2.3)
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implying EPS adhesion to the impermeable, inert wall, and no stress and equilibrium swelling
of the gel-like biofilm at the biofilm-water interface. The polymer phase stress tensor is given
by

σ = µb(∇v + ∇vT )− psI, (2.4)

and the biofilm surface evolves according to the kinematic condition,

∂s

∂t
= (v− En) ·∇(z − s)|z=s , (2.5)

which includes a surface detachment rate E [LT−1] as a non-negative erosive velocity normal
to the biofilm surface. Using the scales

c ∼ c0, g ∼ g0, φ ∼ φ0 =
(
ζ0g0Dc0

r0EL

)1/3

, s,x ∼ d =
(
Dc0

r0

)1/2
,

t ∼ t0 = φ0

g0
, r ∼ r0, Ψ, p ∼ p0 = ζ0g0Dc0

r0
, v,w, E ∼ v0 = g0d

φ0
,

(2.6)
where c0, g0, and r0 are representative values of nutrient concentration, EPS growth, and
nutrient uptake, respectively. Winstanley et al. [28] used parameter estimation—and in
particular the low volume fraction typically occupied by the EPS—to justify a simplified
approximate model which may be written non-dimensionally as

φt + ∇· (φv) = g,

∇· v = −∇·
(

∇Ψ
φ

)
,

∇×∇· [φ(∇v + ∇vT )] = 0,
∇2c = r,

with Ψ = 1
3φ

2(φ− 3λ),

(2.7)

where the right-hand term in (2.1)2 for displacement of water by EPS growth and the viscous
term in (2.1)3 have been neglected as small. Equation (2.7)2 comes from rearranging and
taking the divergence of (2.1)3, whilst equation (2.7)3 only arises for models in greater than
one spatial dimension, for which the inviscid limit in (2.1)3 is singular. The polymer solution
is in swelling equilibrium for φ = 3λ, where the biofilm material parameter λ = (χ− 1

2)/φ0 is
estimated as O(1). The limit ν = (9λ3)−1 � 1 is a physically relevant one in which the EPS
concentration is close to equilibrium throughout the biofilm. Substituting φ = 3λ(1 + νΦ)
and rescaling s,x,v, E ∼ (3λ)−1/2 and r, g ∼ 3λ, we have

νΦt + ∇· [(1 + νΦ)v] = g,

∇· v = −∇· [(1 + 3νΦ)∇Φ],
0 = ∇×∇· [(1 + νΦ)(∇v + ∇vT )],

∇2c = r,

(2.8)
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and thus for ν � 1 this can be rearranged simply as

∇2Φ = −g,
∇· v = g,

∇×∇2v = 0,
∇2c = r.

(2.9)

Boundary conditions are

∂c

∂z
= 0, ∂Φ

∂z
= 0, v = 0 on z = 0,

c = cs = cs0
c0
, Φ = 0, no stress on z = s(x),

(2.10)

with the kinematic condition (2.5) remaining unchanged.

2.1.1 Quasi one dimensional biofilm model

The additional simplification which we now make is to suppose that s varies slowly with
x along the pore length so that a quasi one dimensional solution is appropriate. This is
consistent with a common conceptual model of porous media in which pores are considered
as long narrow channels [cf. 3], where in this case biofilm grows on the pore walls yet still
lets flow through, and the biofilm is much thinner than it is long [see e.g. 19].

In one dimension, the system (2.9),(2.10),(2.5) is simply

Φ′′ = −g, Φ′(0) = 0, Φ(s) = 0,
c′′ = r, c′(0) = 0, c(s) = cs,

ṡ = −Φ′(s)− E,
(2.11)

where primes denote the spatial derivative with respect to z and the overdot denotes the
time derivative.

Typical dimensional forms for growth and uptake functions are

r(φ, c) = Rφc

K + c
, [ML−3T−1]

g(φ, c) = Gφc

K + c
− bφ [T−1],

(2.12)

where K is the half-saturation concentration for the nutrient. Appropriate scales for c . K
are r0 = Rφ0c0/K and g0 = Gφ0c0/K, so that the nondimensional forms consistent with
(2.9) are

r = c

1 + c/κ
, g = c

1 + c/κ
− β, (2.13)

where we define
κ = K/c0, β = bκ

G
. (2.14)
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The solution for c is in general only available in implicit form, as∫ c

cw

[A(ĉ)− A(cw)]−1/2 dĉ =
√

2 z, (2.15)

with
A(c) = κc− κ2 ln

(
1 + c

κ

)
, (2.16)

and the pore wall concentration cw given by the quadrature∫ cs

cw

[A(c)− A(cw)]−1/2 dc =
√

2 s. (2.17)

The reduced EPS content Φ and surface evolution ṡ are then given by
Φ = cs − c− 1

2β(s2 − z2),
ṡ = c′(s)− βs− E.

(2.18)

An explicit solution for c in (2.11)2 is available for the case c� κ, which we can approx-
imate with pseudolinear kinetics: r = c, g = c− β. The solution is then

c = cs
cosh z
cosh s ,

(2.19)

together with (2.18), so we see that for cs < β the biofilm thickness decreases regardless of
any detachment term and the trivial steady state s = 0 is stable. For cs > β, the form of
the detachment term E governs the existence of non-trivial steady states and the stability
of all steady states. E ∼ sn as s → ∞ for n > 1 is sufficient to ensure the s = 0 state is
unstable so that biofilm may become established [11]. Similar conclusions arise for Monod
kinetics, and indeed any kinetics for which c′(s) is monotonic increasing and c′′(s) < 0 [1].
Along the pore, depletion of nutrient from the flow ensures that any nontrivial steady state
biofilm thickness must decrease monotonically in x.

Now reverting to dimensional quantities, we can write expressions for the evolution of the
biofilm surface s(t;x) and for the nutrient uptake flux J = D ∂c

∂z

∣∣∣
s
in terms of the nutrient

concentration cs at the biofilm surface in the case of Monod kinetics as

J =
√

2DRφeq
(
cs − cw −K ln

[
K + cs
K + cw

])
, [ML−2T−1]

ṡ = G

Rφeq
J − bs− E, [LT−1]

(2.20)

where φeq = 3(χ− 1
2) is the equilibrium EPS volume fraction, and the pore wall concentration

cw is given by the quadrature√
D

Rφeq

∫ cs

cw

(
c− cw −K ln

[
K + c

K + cw

])−1/2
dc =

√
2 s. (2.21)

For the case of the pseudolinear régime, (2.19) provides the simpler expression

J = Dcs
h
α tanh

(
α
s

h

)
, [ML−2T−1]

with α2 = h2Rφeq
DK

, [−]
(2.22)
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in place of (2.20)1, (2.21), and the surface evolution is given as before by (2.20)2. We can
therefore consider the biofilm surface nutrient uptake flux to be J = J(cs, s).

We note that though the biofilm model is effectively one dimensional, the flow (and
nutrient transport) in the pore is two dimensional and the two models are coupled along
the pore length. The value of the nutrient concentration cs in the surface of the biofilm is
thus specified by requiring concentration and flux continuity at the interface connecting the
nutrient transport in the biofilm and the pore water (see figure 1).

2.2 Pore flow model
Water containing nutrients is driven through a pore by an imposed pressure gradient. For
a long narrow pore with ε = h/l � 1, we assume the thin film flow approximation is valid
(requiring ε2Re � 1, where Re = ρUl/µ for a suitable velocity scale U). The flow velocity
u = (u1, u2) in s(x) < z < h is given by

µu1zz = px,

0 = pz,

u1x + u2z = 0,
(2.23)

and we impose a no slip boundary condition at the biofilm surface, recognising that the
water velocity within the biofilm is many times smaller than the free flow velocity as a result
of the low biofilm growth velocity and low biofilm permeability. We assume symmetry at
the pore centreline z = h and note that the longitudinal pressure gradient px varies with x
due to the variation of biofilm thickness s(x). We can then write the flow field solution as

u1 = η (z − s)(2h− s− z),

u2 = h− z
h− s

s′u1,
(2.24)

with
η = 3q

4(h− s)3 . [L−1T−1] (2.25)

We note s′ = ds
dx

(x) is small in the quasi-1D biofilm solution, and we consequently ignore
the small transverse velocity component. The pressure is approximately uniform across the
width of the pore and varies longitudinally as

p(x) = p(0)− 2µ
∫ x

0
η(ξ) dξ. [ML−1T−2] (2.26)

Hydrodynamic shear stress at the biofilm surface is

τ = µ
∂u1

∂z

∣∣∣∣∣
z=s

= 3µq
2(h− s)2 . (2.27)

Combining (2.25) and (2.26) gives an expression relating the pressure difference ∆p = p(0)−
p(l) between inlet and outlet and the flow rate q,

∆p = 3µq
2h3

∫ l

0

(
1− s

h

)−3
dx. (2.28)
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The flow is then determined either by specifying some known q, or by specifying the total
pressure drop ∆p. In this latter case, we observe that these flow conditions introduce a
nonlocal coupling due to the biofilm thickness s(t;x) at every point influencing the flow (and
thence nutrient supply) throughout the pore length.

Within the pore, the nutrient is transported by advection and diffusion and we assume
symmetry across the pore centreline z = h. We neglect time derivatives as our timescale of
interest is that of biofilm growth which is much slower than diffusive nutrient equilibration
across the narrow pore, so nutrient transport is given by the equation

u1cx = D∇2c for 0 < x < l and s(x) < z < h. (2.29)

Boundary conditions are
cz = 0 on z = h, c = c0 on x = 0,

Dcz = J(c, s) on z = s, cx = 0 on x = l,
(2.30)

where the biofilm nutrient flux J(c, s) presumes nutrient concentration continuity across the
interface, i.e. cs = c|z=s+ .

3 Non-dimensionalisation
We non-dimensionalise the model (2.18), (2.20), (2.24)–(2.30) with scales

x ∼ l, s, z ∼ h, t ∼ κ

G
, E ∼ hG

κ
, c, cs, cw ∼ c0,

J ∼ α2Dc0

h
, ∆p ∼ P, q ∼ q0 = 2h3P

3µl , τ ∼ εP,
(3.1)

where c0 is the inlet nutrient concentration, and we have based the flow scale q0 on the flow
rate in the biofilm-free pore, for which the centreline flow velocity is U = 3q0

4h .
The non-dimensional model is then

ṡ = J − βs− E,

εPe(z − s)(2− s− z)
(1− s)3 qcx =

[
ε2cxx

]
+ czz,

(3.2)

where we define a pore Péclet number

Pe = Uh

D
= 3q0

4D.
(3.3)

In addition to ε� 1, we assume ε� Pe so that the dominant balance is between longitudinal
advection and transverse diffusion, and consequently neglect the O(ε2) longitudinal diffusion
term in (3.2)2.

Boundary conditions are
c = 1 on x = 0, s < z < 1,
cx = 0 on x = 1, s < z < 1,
cz = 0 on 0 < x < 1, z = 1,
cz = α2J(c, s) on 0 < x < 1, z = s,

(3.4)
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and initial conditions s = s0(x) at t = 0. Non-dimensional nutrient uptake flux for Monod
kinetics is given by

J = J(cs, s) =
√

2
α

[A(cs)− A(cw)]1/2 , (3.5)

with cw calculated from
√

2αs =
∫ cs

cw

[A(c)− A(cw)]−1/2 dc, (3.6)

and A(c) is given by (2.16). For pseudolinear kinetics, (3.5) and (3.6) are replaced by

J(cs, s) = cs
α

tanh(αs). (3.7)

Shear stress at the biofilm surface is
τ = q

(1− s)2 , (3.8)

while flow rate and pressure drop are connected via

q = ∆p
[∫ 1

0
(1− s)−3 dx

]−1
, (3.9)

so that in the case of flow driven by a specified pressure drop ∆p this relation introduces
longitudinal nonlocal coupling. By contrast, in the case of fixed flow rate q coupling arises
only in the downstream direction (when longitudinal diffusion is negligible) through nutrient
transport in the pore flow.

4 The influence of biofilm detachment
The extent of pore clogging is determined by the biofilm surface evolution from (3.2)1,

ṡ = J(cs, s)− βs− E. (4.1)
Typical forms of the biofilm detachment term in the literature [cf. 1, 11, 12] take the form

E =

θsnτm for s > 0,
0 for s = 0,

(4.2)

with constants θ, n,m ≥ 0 and common choices being n = 1, 2 and 0 ≤ m ≤ 1.
We observe that J(cs, 0) = 0, and τ = τ(s) so that E = E(s). The choice n = 0 therefore

implies that ṡ ≤ 0 close to s = 0, so that the trivial solution s = 0 is unconditionally stable
and thin biofilm is unable to become established. Since we expect new biofilm to be able to
form under suitable conditions, the n = 0 case is excluded as unphysical. Choices 0 < n < 1
can be similarly ruled out since they give E(0) = 0 and E ′(s) → ∞ as s → 0, so the
s = 0 solution is also unconditionally stable. We therefore limit ourselves to n ≥ 1, m ≥ 0.
The physical mechanisms by which the s-dependence arises are unclear, though potential
explanations may involve biofilm stratification with greater cohesiveness towards the base
[7, 18], or the size distribution of particles detached from the biofilm [cf. 20].

The trivial steady state s = 0 is unstable/stable for F (0) ≷ 0, where

F (s) = dJ

ds
− β − E ′. (4.3)
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Fixed flow rate q

In the case of a fixed flow rate q, we have τ = q(1− s)−2 and E(s) = θsnqm(1− s)−2m. We
immediately see that E(s)→∞ as s→ 1, so the biofilm is unable to clog the channel entirely
and when the s = 0 state is unstable there is a partially clogged steady state 0 < s < 1
which is stable. For n ≥ 1, we have E(0) = 0 and E ′(0) = nθqmsn−1, and the trivial steady
state s = 0 is unstable/stable if dJ

ds
−β−nθqmsn−1 ≷ 0. The biofilm can become established

if growth is strong enough, and for the particular choice n = 1 the stability is independent
of flow conditions.

For pseudolinear kinetics (3.7) we have ∂J
∂cs

= 0 at s = 0, so dJ
ds

(cs, 0) = ∂J
∂s

(cs, 0) = cs and
the biofilm will decay to extinction if

[pseudolinear] F (0) = cs − β − δ1nθq
m < 0, i.e. cs < β + δ1nθq

m, (4.4)

where δ1n = 1 for n = 1 and δ1n = 0 otherwise. Within a pore channel under fixed flow
conditions, nutrient depletion along the pore length means c and cs decrease monotonically
in x and there may be a downstream position beyond which this criterion is satisfied and
the biofilm is not viable.

For Monod kinetics, the simplest case is to approximate the situation of a pore in which
uptake of nutrient along the pore length is small so that c ≈ cs ≈ 1. In this case (2.16) and
(3.6) imply

√
2αs ≈ 2

A′1/2 (cs − cw)1/2 (4.5)

and approximating c = cs +O(α) we have

J ≈ A′s = css

1 + cs/κ
, (4.6)

from (3.5). This situation is similar to the 1D models of Klapper [11] and Abbas et al. [1].
Using (4.6) in (4.3), we see that the biofilm will decay to extinction if

[simplified Monod] F (0) = cs
1 + cs/κ

− β − δ1nθq
m < 0,

i.e. cs <
β + δ1nθq

m

1− 1
κ
(β − δ1nθqm) ,

(4.7)

where δ1n = 1 for n = 1 and δ1n = 0 otherwise.
Conversely, when the trivial steady state is unstable, the convexity of E(s) for fixed q

ensures that the nontrivial steady state in 0 < s < 1 is unique and stable provided ∂2J
∂s2 ≤ 0

in 0 < s < 1.

Fixed pressure drop ∆p

In the case of a fixed pressure drop ∆p, the flow q is dependent on the biofilm thickness s
throughout the pore via (3.9), so

τ = ∆p
(1− s)2 ∫ 1

0 (1− s)−3 dx
. (4.8)
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It is instructive first to consider the simple case of uniform s in which

τ = ∆p(1− s), and E(s) = θsnqm(1− s)m. (4.9)

We see that for n ≥ 1 and m > 0, E(s) = 0 for both the biofilm-free and fully clogged cases
s = 0, 1. Consequently, it appears fully clogged solutions s → 1 may exist under certain
conditions, and the existence and stability of partially clogged steady states 0 < s < 1 will
be dependent on the forms of J and E.

The stability of the trivial steady state s = 0 mirrors the fixed q situation, being unstable
for

[pseudolinear] cs < β + δ1nθ∆pm,

[simplified Monod] cs <
β + δ1nθ∆pm

1− 1
κ
(β − δ1nθ∆pm) .

(4.10)

If s = 0 is unstable, nontrivial steady states s > 0 must nonetheless exist if ∂2J
∂s2 ≤ 0. How-

ever, these steady states may not be unique and steady states s > 1 are not achievable as
they imply full clogging and breakdown of the model. Abbas et al. [1] analysed a simple
1D model of a well-mixed bioreactor with approximate Monod kinetics (4.6) and n = 1,
m = 1

2 . They found that for small θ∆pm < dJ
ds
−β a single nontrivial steady state existed, in

addition to the unstable trivial equilibrium, and was stable, being limited by nutrient supply
(through ∂J

∂cs
) rather than detachment; full clogging did not occur. In at least part of the

range 0 < dJ
ds
− β < δ1nθ∆pm two nontrivial equilibria, one stable and the other unstable,

coexisted with the stable trivial steady state s = 0.

In the 2D case, nutrient depletion along the pore length means c and cs decrease mono-
tonically in x, and we therefore might expect that J will similarly decrease in x. Presuming
nutrient conditions at inlet are such that the biofilm is viable F (0) > 0, the anticipated
longterm stable steady state is one in which the biofilm thickness is greatest at the inlet
x = 0 and decays monotonically with increasing x. Nutrient depletion along the channel
length may be such that no stable solution other than s = 0 exists in a downstream region
(‘death zone’) beyond a certain location.

The 2D case does not admit a straightforward analysis of nontrivial steady states as
for the 1D models, but we see that J need not be monotonically decreasing in x: dJ

dx
=

∂J
∂cs

dcs

dx
+ ∂J

∂s
ds
dx
> 0 if

[pseudolinear] sx > −
1
αcs

dcs
dx

sinh(αs) cosh(αs),

[simplified Monod] sx > −
dcs
dx

s

cs(1 + cs/κ) .

These conditions are only achievable from nonuniform initial conditions, so we investigate
their stability numerically.

A significant question to consider is whether a fully clogged steady state is possible.
Nutrient depletion appears to prevent full clogging in the well-mixed reactor model [1], but
in the 2D advective transport model nutrient is significantly depleted from the flow only
downstream of the inflow (where effectively cs = 1) and therefore does not exercise the
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Figure 2: Evolution of flow rate q, pressure drop ∆p, and biofilm thickness s(t;x) for x =
0, 0.1, . . . , 1 with pseudolinear uptake kinetics. Initial condition s0(x) = 0.01.

same limitation on clogging at inflow. If the biofilm approaches full clogging at the inflow,
downstream nutrient depletion will suppress downstream growth and increasingly skew the
biofilm thickness towards the inlet. It is unclear in this case whether the nonlocal coupling
of shear stress provides a mechanism by which full clogging can be avoided: from (4.8) we
see that a biofilm of the form 1 − s ∼ xa as x → 0 with 0 < a < 1

3 would ensure that
E →∞ locally as s→ 1 and prevent full clogging, though the attainability of this scenario
is uncertain.

If full clogging proceeds, flow and nutrient supply cease and the model breaks down.
In reality, longitudinal diffusion of nutrient from the upstream end may support a biofilm
plug whose extent and mechanical properties will determine if it can withstand the applied
pressure difference or if structural failure will reinstate pore flow and restart the process.

5 Numerical simulations
The derived scaled model is two-dimensional on a fixed region (x, z) ∈ [0, 1]×[0, 1]. However,
this region is subdivided by a moving interface, z = s into the pore region and the biofilm
region. While the biofilm model is effectively 1D and numerical methods can be implemented
directly, the pore flow model is more complicated and we consider transforming the region
(x, z) ∈ [0, 1]× [s(x), 1] into a unit square, (ξ, η) ∈ [0, 1]× [0, 1] by setting

ξ = x, η = z − s
1− s. (5.1)

13



0

0.5

1
Fl

ow

q

∆p

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

s(
t;
x

)

t

E = 0.1sτ0.5

Monod

x=0

x=1

0

0.5

1

Fl
ow

q

∆p

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

s(
t;
x

)
t

E = 0.1sτ0.5

Monod

x=0

x=1

(a) Fixed q (b) Fixed ∆p

Figure 3: Evolution of flow rate q, pressure drop ∆p, and biofilm thickness s(t;x) for x =
0, 0.1, . . . , 1 with Monod uptake kinetics. Initial condition s0(x) = 0.01.

The transformed model becomes

ṡ = J − βs− θsn
[

q

(1− s)2

]m
,

εPe(2− η)η(1− s)q cξ = cηη + εPe(2− η)(1− η)ηqsξcη,
(5.2)

with q given in the fixed ∆p case by

q = ∆p
[∫ 1

0
(1− s)−3dξ

]−1
. (5.3)

Boundary conditions are specified as

c = 1 on ξ = 0,
cη = 0 on η = 1,
cη = α2(1− s)J on η = 0,
c = cs, on η = 0,

(5.4)

and the biofilm nutrient flux term J = J(cs, s) remains unchanged. We implement numerical
solutions in Matlab using the method of lines to solve both the ODE system (5.2)1 with
suitable initial condition s(0;x) = s0(x) and the inner loop (5.2)2, (5.4) as an index-1 DAE
system in ξ. The quadrature (3.5),(3.6) for the Monod case is computed by Newton iteration
of a finite difference scheme.

For illustrative purposes we choose typical parameter values shown in table 1.
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Parameter Symbol Typical value Source

pore half-width h 50µm [9]
pore length l 600µm [9]
pore pressure drop P 0.1 Pa [9]
water viscosity µ 10−3 Pa s
inlet oxygen concentration c0 10−3 kg m−3 [28]
diffusion coefficient D 2× 10−9 m2s−1

EPS volume fraction φeq 0.02 [28]
growth coefficient G 1.3 day−1 [28]
Monod constant K 3.5× 10−4 kg m−3 [28]
decay constant b 0.12 day−1 [9]
uptake coefficient R 2.6× 103 kg m−3 day−1 [28]

Biofilm nutrient utilisation α 1.5
Decay parameter β 3.2× 10−2

Monod parameter κ 0.35
Pore aspect ratio ε 8.3× 10−2

Transverse Péclet number Pe 5.2

Table 1: Typical parameter values.

Typical solutions for detachment n = 1,m = 1
2 are shown in figures 2 (pseudolinear) and 3

(Monod) as profiles s(t;xi) against t at various positions xi. In the solutions for fixed flow rate
(a), q is set so as to coincide with the steady state flow rate of the fixed pressure drop solutions
(b) in which we set ∆p = 1. These solutions start with a uniform initial biofilm distribution
and eventually evolve to a steady state in which the biofilm persists only in a region close
to the inflow. The steady state is achieved very slowly, particularly at the downstream end
of the channel, due to non-local negative feedback from biofilm decay partially alleviating
nutrient limitation in other regions. This is most evident in the comparison of figure 2 (a)
and (b). For fixed q, feedback is downstream-only, via nutrient depletion in the flow: at
x = 0 pore constriction due to growth yields to rapid onset of detachment, while nutrient
depletion leads to decay (to s = 0 stable) in an expanding downstream region. For fixed
∆p, additional feedback from flow resistance acts both upstream and downstream: faster
initial flow rate causes higher initial growth rate throughout the channel length, but the
decrease in flow rate as the pore is constricted has the effect of smoothing the onset of
detachment limitation at x = 0 and causing a more rapid onset of decay due to nutrient
depletion downstream (i.e. expansion of the death zone). Eventual steady states for the two
flow regimes are indistinguishable.

In figure 3, differences between the two flow regimes are less evident as Monod growth
rate saturation severely restricts the initial downstream growth overshoot. The fixed pressure
drop solution evolves more slowly than the fixed flow solution, presumably due to the greater
flow rate in the initial stages increasing the detachment rate.

Numerical experimentation confirms that the choice n = 1 is qualitatively different from
n > 1 in that the stability of the trivial steady state is flow-dependent only when n = 1.
For n > 1, m > 0, simulations with viable nutrient conditions dJ

ds
> β at inflow produced

nontrivial steady states for all values of θ. However, for n = 1 larger values of θ render the
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Figure 4: Evolution of flow rate q, pressure drop ∆p, and biofilm thickness s(t;x) for x =
0, 0.1, . . . , 1 with pseudolinear uptake kinetics. Initial condition s0(x) = 0.01.
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0, 2.5, . . . , 15 with pseudolinear uptake kinetics. Initial condition s0(x) = 0.1(1− cosπx).

trivial steady state stable at the inflow, such that the saturation-limited Monod kinetics case
in figure 3 required a much smaller value of θ than the pseudolinear case of figure 2 in order
to produce a nontrivial steady state.

For n = 1, the inequalities (4.4),(4.7),(4.10) for viability of the biofilm imply a threshold
value θ = θcrit above which biofilm cannot persist at the inflow x = 0 to be tested against
the numerical model. For pseudolinear kinetics these threshold values apply accurately.
For Monod kinetics, the approximated threshold overestimates the numerically-estimated
threshold (0.23 vs. 0.15 for n = 1, m = 1

2).
We investigate numerically the question of whether the biofilm is able to clog the full pore

width when flow is driven by a fixed pressure drop. Results shown in figure 4 suggest that full
clogging is indeed possible for sufficiently small θ, in contrast to the well-mixed bioreactor
model of Abbas et al. [1]. Clearly the numerical solution becomes ill-conditioned in the
approach to the limit s → 1 where the model breaks down, and so identifying numerically
the threshold value θ = θclog for which clogging first occurs with any accuracy is problematic.

Nonetheless, we observe that only a restricted range of values θcrit < θ < θclog provide
a stable partially-clogged steady state solution. For n > 1 we have θcrit = 0, but for the
particular choice n = 1 we have θcrit > 0 and the range is more tightly constrained. The
clogging threshold θclog is an increasing function of shear exponent m. These characteristics
provide scope for comparison with experiment in order to identify realistic parameter ranges
for θ, n, and m more closely.

Simulations with a variety of nonuniform choices of initial condition s0(x) suggest also
that steady states with maximum biofilm thickness away from the inflow (or rather the
upstream extent of the initial condition) either do not exist or are only realisable under very
specific conditions. Figure 5 shows biofilm thickness profiles at various times for a typical
nonuniform solution. Maximum biofilm thickness migrates upstream to the limit of compact
support of the initial condition: biofilm growth rates are higher upstream due to the effect
of the longitudinal nutrient gradient being stronger than the variation in detachment rate.
Thus under the current model a sharp interface develops at the upstream end of the biofilm,
and we note that the assumption sx � 1 is no longer met so that a fully 2D model of the
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biofilm and pore flow would be more appropriate locally in this region. In this case, one
would still expect maximum biofilm thickness to be located close to the upstream end, but
the local biofilm profile would depend on biofilm flow under growth-generated pressures and
the 2-dimensional nutrient concentration distribution in both the fluid and the biofilm.

6 Conclusions
We describe a model of biofilm growth in a long 2D pore which aims to be a paradigm
for studying bioclogging of porous media such as soil. Transport of nutrient from the inflow
provides for a competition between nutrient supply, biofilm growth and detachment in which
biofilm growth constricts the flow and can thereby restrict or block nutrient supply. We
address the question of whether biofilm growth can proceed to the extent that it fully blocks
the pore, or whether a partially-clogged steady state exists. Previous 1D theoretical models
[1, 11] have identified conditions under which trivial and nontrivial steady states occur and
have suggested that full clogging does not arise. The present extension to 2D provides a
coupling of growth along the pore length via nutrient supply from the pore flow, which is
not present in the 1D models.

The model comprises a uniform long 2D channel in which biofilm grows on the walls in
response to nutrient supply and subject to erosion-like detachment. Following previous work
[28], the biofilm is modelled as a two phase fluid based on polymer solution theory, and its
large aspect ratio motivates a quasi-1D simplification. Pore flow is treated as thin film flow
driven either by a fixed flow rate, or by a fixed pressure drop between pore ends. Nutrient is
transported in the pore flow by advection and diffusion, and in the biofilm by diffusion and
uptake. The lack of conclusive data on the functional form of the biofilm detachment leads
us to investigate its dependence on biofilm thickness and fluid shear stress and the impact
of this on biofilm distribution and clogging along the pore.

The model largely confirms the core results of previous one dimensional studies [1, 11]
concerning the existence and stability of steady state biofilm thicknesses. In particular,
physically reasonable solutions demand that detachment have an increasing dependence on
shear stress and be at least linearly dependent on local biofilm thickness. A partially-clogged
steady state can exist for sufficient inflow nutrient levels only within a limited range of
detachment parameters. These characteristics provide scope for comparison with experiment
in order to identify realistic detachment descriptions. Unlike the 1D models, our 2D model
suggests that under conditions of flow driven by a fixed pressure drop, the longitudinal
coupling of nutrient status and flow rate results in solutions where the biofilm may clog
the full channel width. In the approach to a steady state, the biofilm thickness is always
greatest at the inflow end of the channel due to nutrient depletion in the flow downstream.
This stands in contrast to the well-mixed one-dimensional bioreactor model [1], in which
nutrient limitation due to constricted flow provides a partially-clogged stable steady state
and prevents full clogging.

The physical basis for a linear-or-greater dependence of detachment on biofilm thickness is
unclear from a theoretical perspective. Potential explanations include stratification of biofilm
cohesion [7, 15] and a probability distribution of detachment of finite sized biofilm particles
[20]. While we have modelled a surface detachment term, we note that Morgenroth [13]
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identifies an alternative ‘volumetric detachment’ approach treating detachment as applying
uniformly through the biofilm thickness (akin to an additional intrinsic decay term), though
this approach likewise suffers a lack of connection to specific physical mechanism. Further
experimental examination of biofilm detachment processes is therefore required.

The aim of our model is to provide a basis for upscaling by considering bundles and
networks of such channels to describe biofilm growth in a porous medium. We would then
envisage comparison of the upscaled model to lab-scale experiments on biofilm growth in
simple artificial porous media [cf. 16] before application to soil column experiments.
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