

Proceedings of a pre-conference workshop of the 27th International Cartographic Conference:

Spatial data infrastructures, standards, open source and open data for geospatial (SDI-Open 2015)
20-21 August 2015, Brazilian Institute of Geography and Statistics (IBGE), Rio de Janeiro, Brazil

	
 45

A solution for processing large files in the LASer (LAS) format using the
message passing interface (MPI) and parallel file systems

Jeffrey Wendel1, Michael P. Finn1, John Kosovich2, Jeff Falgout2, Yan Liu3

1U.S. Geological Survey, Center of Excellence for Geospatial Information Science

mfinn@usgs.gov
2U.S. Geological Survey, Core Science Analytics, Synthesis, & Libraries

3CyberInfrastructure and Geospatial Information Laboratory, National Center for Supercomputing
Applications, University of Illinois at Urbana-Champaign

Keywords: parallel throughput architecture, lidar, MPI, geospatial data, message passing interface, point

clouds, raster datasets

1. Introduction
In recent high-performance computing (HPC) research, a persistent, restrictive case problem

arises when designing scalable computational solutions for geospatial data with regard to
input/output (I/O) (Behzad et al., 2012; Finn et al., 2015). We inspected high performance I/O
for supporting parallel read and write of raster (grid) datasets, and more particularly, very large
lidar point clouds that were interpolated to grid datasets. We illustrate a fresh solution for
processing large lidar datasets by taking advantage of HPC power through the use of the
Message Passing Interface (MPI) and the Lustre Parallel File System (Piernas et al., 2007).

2. Study Area, data, and test design

We acquired lidar point cloud data over areas of the Great Smoky Mountains and the Grand
Canyon National Parks in the United States. We used the lasmerge application (Isenburg, 2014)
to merge a subset of the Great Smoky Mountains data into one file of approximately 16
gigabytes (GB) with 572,693,051 points over a 40,000 X 20,000 meter area. Also, we used
the lasmerge application to merge a subset of the Grand Canyon data into one file of
approximately 120 GB with 4,294,967,295 points (maximum for LAS v.1.2) over a 25,000 X
30,000 meter area.

Producing	
 a DEM	
 typically involves filtering and transforming (e.g. reprojecting) LASer
(LAS) file format (ASPRS, 2011) data, and using that result to produce a DEM. We named our
programs p_las2las and p_points2grid and tested them using the two large test files on the
Extreme Science and Engineering Discovery Environment (XSEDE). Initial testing of our
compiled parallel implementations in this environment using both the 16 GB and 120 GB point
cloud files provided good results, which will be described below.

3. Description, implementation, and results
3.1 p_las2las
3.1.1 Description:

The las2las application and supporting LASlib library were extended with the MPI
application programming interface (API) to allow the application to be run in parallel on a
cluster. Our goal is an application that scales to arbitrarily large input, limited only by the

Proceedings of a pre-conference workshop of the 27th International Cartographic Conference:

Spatial data infrastructures, standards, open source and open data for geospatial (SDI-Open 2015)
20-21 August 2015, Brazilian Institute of Geography and Statistics (IBGE), Rio de Janeiro, Brazil

	
 46

volume of disk space needed to store the input and output files. Figure 1 shows the high level
view of the application. The processes across the top are run in parallel, while the vertical flow
describes the job flow.

Figure 1. The high level view of the application. The vertical flow describes the job flow while
the processes across the top are run in parallel on the flow.

3.1.2 Results

The test of p_las2las on the XSEDE Stampede cluster used a Lustre parallel file system with
64 Object Storage Targets (OSTs – Factor et al., 2005) available. We striped our 16 GB Smoky
Mountains and 120 GB Grand Canyon test files over all 64 OSTs and specified a 4 megabyte
(MB) stripe size; a common stripe size for large files managed by Lustre. The output directory
was configured similarly. Table 1 shows the results of running the p_las2las program on the
Stampede supercomputer using the 16 GB Smoky Mountains dataset using various numbers of
processes. The asterisk in the table refers to execution runs with native, “unmodified” las2las
source code from LAStools compiled on Stampede with the Intel C++ compiler. Table 2 shows
the same data for the 120 GB Grand Canyon dataset. For both sets of results, the tables describe
the difference in elapsed time between the various test cases, as a function of number of
processors.

Proceedings of a pre-conference workshop of the 27th International Cartographic Conference:

Spatial data infrastructures, standards, open source and open data for geospatial (SDI-Open 2015)
20-21 August 2015, Brazilian Institute of Geography and Statistics (IBGE), Rio de Janeiro, Brazil

	
 47

Table 1. Smoky Mountains 16 GB File Results on Stampede.
Number of Processes Filter / Transformation Output Size Elapsed Time (seconds)
Native* None 16 GB 138
Native* Keep Class 2 2 GB 73
Native* Reproject 16 GB 502
64 None 16 GB 20
64 Keep Class 2 2 GB 6
64 Reproject 16 GB 26
256 None 16 GB 8
256 Keep Class 2 2 GB 4
256 Reproject 16 GB 9
1024 None 16 GB 8
1024 Keep Class 2 2 GB 5
1024 Reproject 16 GB 8

* Native unmodified las2las source code from LAStools compiled on Stampede with the Intel C++
compiler.

Table 2. Grand Canyon 120 GB File Results on Stampede
Number of Processes Filter / Transformation Output Size Elapsed Time (seconds)
Native* None 120 GB 1211
Native * Keep Class 2 25 GB 623
Native* Reproject 120 GB 6969
64 None 120 GB 128
64 Keep Class 2 25 GB 59
64 Reproject 120 GB 150
256 None 120 GB 33
256 Keep Class 2 25 GB 18
256 Reproject 120 GB 42
1024 None 120 GB 18
1024 Keep Class 2 25 GB 9
1024 Reproject 120 GB 24

* Native unmodified las2las source code from LAStools compiled on Stampede with the Intel C++
compiler.

3.2 p_points2grid
3.2.1 Description
Our goal is an application that scales to an arbitrarily large input, limited only by the amount of

disk space needed to store the input and output files. When run on a cluster, the number of
processes used by p_points2grid is determined as a parameter to the scheduler. Figure 2
shows the high level view of the application. The job flow is described by the boxes on the
right side while the processes along the left are the internal processes of the flow functions.

Proceedings of a pre-conference workshop of the 27th International Cartographic Conference:

Spatial data infrastructures, standards, open source and open data for geospatial (SDI-Open 2015)
20-21 August 2015, Brazilian Institute of Geography and Statistics (IBGE), Rio de Janeiro, Brazil

	
 48

Figure 2. The high level view of the application. The job flow is described by the boxes on the
right side while the processes along the left are the internal processes of the flow functions.

3.2.2 Results

The Smoky Mountains and Grand Canyon LAS input files were read from a Lustre File
System on the “work” partition of Stampede. The files were striped over 64 OSTs with a 4MB
strip size. The DEMs were written to the same directory that held the input files. The directory
was configured to write files over 64 OSTs with a 4MB stripe size. Table 3 shows the results for
the Smoky Mountains dataset and Table 4 shows the results for the Grand Canyon dataset. These
results, in these two tables, show the varying time reading and communicating versus writing as
the number of readers or writers are varied at execution time.

Table 3. Smoky Mountains 16 GB Input File Results, (12, 1 meter resolution DEMs totaling 70
GB of output for p_points2grid runs, 12, 6 meter resolution DEMs totaling 2 GB of output for

native run. Times are in seconds.)
Number of
Processes

Number of
Readers

Number of
Writers

Time: Reading,
Communication

Time:
Writing

Elapsed Time
(seconds)

Native 1 1 NA NA 328
128 32 96 33 56 105

Proceedings of a pre-conference workshop of the 27th International Cartographic Conference:

Spatial data infrastructures, standards, open source and open data for geospatial (SDI-Open 2015)
20-21 August 2015, Brazilian Institute of Geography and Statistics (IBGE), Rio de Janeiro, Brazil

	
 49

128 64 64 26 84 125
512 32 480 20 13 40
512 64 448 10 17 33
512 128 384 8 23 36
512 256 256 7 26 40
512 384 128 11 44 68
1024 64 940 10 11 32
1024 384 640 2 14 29
1024 768 256 6 28 46

Table 4. Grand Canyon 120 GB Input File Results, (12, 1 meter resolution DEMs totaling 71 GB
of output for p_points2grid runs, 12, 6 meter resolution DEMs totaling 2 GB of output for native

run. Times are in seconds.)
Number of
Processes

Number of
Readers

Number of
Writers

Time: Reading,
Communication

Time:
Writing

Elapsed Time
(seconds)

Native 1 1 NA NA 1548
512 64 448 104 15 135
512 128 384 55 21 90
512 256 256 60 30 110
1024 64 960 80 7 101
1024 128 896 39 11 62
1024 256 768 27 8 51
1024 384 640 24 15 53
1024 512 512 26 19 56
1024 768 256 47 24 90
1024 896 128 89 44 167
4096 256 3840 17 10 63
4096 512 3584 10 11 53
4096 1024 3072 8 8 46
4096 2048 2048 8 18 76

Our test runs of p_points2grid specified a grid resolution of 1 meter. No output or cell value

types were specified, so each run produced 12 1-meter-resolution DEMs. In the Smoky
Mountains test case, each DEM has a dimension of 40,000 columns by 20,000 rows and the total
size of all 12 files is approximately 70 GB. In the Grand Canyon test case each DEM has a
dimension of 31,000 columns by 26,500 rows and the total size of all 12 files is approximately
71 GB. We also ran the native “unmodified” points2grid application against our test datasets. We
had to specify a 6 meter grid resolution because the memory requirements for 1 meter resolution
were well beyond what the native application supports. These runs produced 12 DEMS totaling
about 2 GB, or 36 times smaller than the 1 meter grid resolution DEMS produced by
p_points2grid.

4. Conclusions

Proceedings of a pre-conference workshop of the 27th International Cartographic Conference:

Spatial data infrastructures, standards, open source and open data for geospatial (SDI-Open 2015)
20-21 August 2015, Brazilian Institute of Geography and Statistics (IBGE), Rio de Janeiro, Brazil

	
 50

By creating parallel processing algorithms based on the open source las2las and points2grid
code bases, we have shown greatly reduced run times processing extremely large datasets (over
100 GB), both in classifying the points and in generating DEMs. Using these programs,
p_las2las and p_points2grid, we have shown through preliminary testing approximately two or
more orders of magnitude reduction in processing time. In addition, we have shown scalability
up to 4,096 processes.

Disclaimer

Any use of trade, product, or firm names in this paper is for descriptive purposes only and does not
imply endorsement by the U.S. Government.	

References
ASPRS (American Society for Photogrammetry and Remote Sensing) (2008) LAS Specification, Version

1.2. Internet at http://www.asprs.org/a/society/committees/standards/asprs_las_format_v12.pdf.	
 Last
accessed 24 November 2014.

Behzad, B., Y. Liu, E.Shook, M. P. Finn, D. M. Mattli, and S. Wang (2012). A Performance Profiling
Strategy for High-Performance Map Re-Projection of Coarse-Scale Spatial Raster Data. Abstract
presented at the Auto-Carto 2012, A Cartography and Geographic Information Society Research
Symposium, Columbus, OH.

Factor, M., K. Meth, D. Naor, O. Rodeh, and J. Satra (2005) Object storage: the future building block for
storage systems. In LGDI ’05: Proceedings of the 2005 IEEE International Symposium on Mass
Storage Systems and Technology, pages 119–123, Washington, DC, USA. IEEE Computer Society.

Finn, Michael P., Yan Liu, David M. Mattli, Babak Behzad, Kristina H. Yamamoto, Qingfeng (Gene)
Guan, Eric Shook, Anand Padmanabhan, Michael Stramel, and Shaowen Wang (2015). High-
Performance Small-Scale Raster Map Projection Transformation on Cyberinfrastructure. Paper
accepted for publication as a chapter in CyberGIS: Fostering a New Wave of Geospatial Discovery
and Innovation, Shaowen Wang and Michael F. Goodchild, editors. Springer-Verlag.

Isenburg, Martin (2014) lasmerge: Merge Multiple LAS Files into a Single File. Internet at
http://www.liblas.org/utilities/lasmerge.html. Last accessed 03 March 2015.

Piernas, J., J. Nieplocha, and E. Felix (2007). Evaluation of active storage strategies for the lustre parallel
file system. Proceedings of the ACM/IEEE Conference on Supercomputing. ACM, New York.

rapidlasso GmbH (2014) Lastools. Internet at http://rapidlasso.com/lastools/. Last accessed 24 November
2014.

