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ABSTRACT

The objective of this study is to use Artificial Neural
Network for boiling heat transfer at various operating
conditions using the experimental data for different liquids.
For training the networks, the standard feed forward back
propagation algorithm was used and several types of structures
were tested to obtain the most suitable network for the
prediction of boiling curves. In this study four network
structures were used with the variation of neurons and hidden
layers. The suitability of the network depends upon the type of
system and data chosen for training. It was observed that the
predicted results were close to the actual experimental data for
all liquids. The predictability of the network is extremely good
if the training data are chosen appropriately. When all the data
of the system were considered together for the training of the
network, the performance was extremely good. The prediction
of ANN results was very close to the actual experimental
values with a mean absolute relative error less than 2.0 %.

INTRODUCTION

Boiling is one of the efficient means of heat transfer that
finds application in variety of industrial appliances such as
kettle reboilers, flooded evaporators, steam generators and
other chemical process equipment. A substantial amount of
work [1-8] has been carried out by many workers on different
aspects of nucleate pool boiling heat transfer with a variety of
liquids. In a number of experimental work efforts have been
made to investigate the effect of governing parameters on heat
transfer coefficient.
Artificial neural networks (ANNSs) have been used in many
industrial applications because providing better and more
reasonable solutions. Some typical examples are: analysis of
thermosiphon solar water heaters, heat transfer data analysis
among others. Cladio et al. [9] used NN approach for
optimization of industrial chemical proceeses. The procedures
for training and testing the ANN and its history can be found in
the text by Haykin and others [10-14]. Such non-linear mapping
enables the ANNs to estimate any function without the need of
an explicit mathematical model of the physical phenomenon.

Kalogirou [15] used ANNSs for performance prediction of forced
circulation type solar domestic water heating, Lin and Tseng
[16] for optimal design using ANN by taking the example of
bicycle derailler system, Dasguta et al. [17] trained ANN
controller with steady state input-output data for a heat
exchanger, Pandharipande et al. [18,19] for optimizing ANN
network for shell and tube heat exchanger and modeling of
packed column, Farshad et al. [20] for predicting temperature
profiles in producing oil wells used an ANN algorithm.
Cabassud and LeLann [21], .Islamoglu and Kurt [22] used
ANNs for heat transfer analysis in corrugated channels.
Tianging Liu et al. [23] developed a model to evaluate and
predict boiling heat transfer enhancement using additives. The
proposed model is based on the molecular structures of the
additives and uses ANN technology. Heydari et al. [24]
predicted hydrate formation temperature for natural gas using
artificial neural network. Other applications of ANNs is reported
by Chouai et al. [25]. Recently Hakeem and Kamil [26-29]
predicted temperature profiles, circulation rate, heat transfer and
wall superheat for water in a vertical thermosiphon reboiler
using ANNs. Sreekanth et al. [30] used NN approach for
evaluation of surface heat transfer coefficient at the liquid solid
interface. Diaz et al. [31] used ANN for simulation of heat
exchanger performance. ANNs are able to produce a set of
outputs for a given set of inputs according to some mapping
relationship. During training period such relationship is coded
into the network structure depending upon the network
parameters. The number of hidden layers and nodes may vary in
different applications and depend on the user specifications. No
specific technique is available to decide its optimum value. It is
usually determined through trial and error procedure. However,
not much work has been reported on the application of ANN
methods for heat transfer analysis in a pool boiling system.
Therefore present study has been carried out on the applicability
of ANNs for predicting boiling curves choosing training data
obtained from the experimentation on a pool boiling apparatus.
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ARTIFICIAL NEURAL NETWORKS APPROACH

To train and test the neural networks, input data patterns and
corresponding targets are required. In developing an ANNs
model, the available data [6,7] are divided into two sets: the
network is trained using the first data set and then it is
validated with the remaining data. The training of the network
is accomplished by comparing the output with the target by
continuously updating the weights and biases of the same.
Thus the configuration of the ANNs is set by selecting the
number of hidden layers and the number of nodes in it. The
number of nodes in the input and output layer are governed by
the input and target data. The main advantage of neural
network over conventional regression analysis is: free of
supposition, large degrees of freedom and more effectively
deal with nonlinear functional forms. Therefore in the present
work multi layered feed forward network with the back
propagation algorithm have been used for the prediction of
wall superheat in a pool boiling apparatus . The modified
form of Newton Raphson optimization technique is employed
to minimize the error. For training the networks, the goal was
fixed based on SSE and errors built in the updating the weight
and biases. For input and hidden layers, tanh sigmoidal
function and linear function for the output layer was taken.

EXPERIMENTAL

The experimental set up consisted mainly of vessel, test
section and other necessary accessories as per details given
elsewhere [6,7]. A cylindrical vessel of 196 mm i.d. and 305
mm height with a flat bottom and flanged top cover, was used
to hold the pool of test liquids. An auxiliary heater was fitted
near the bottom to raise the liquid temperature to the desired
value and to boil off the dissolved air form the test liquids
before conducting the experimental runs. The test section was
held horizontally in the vessel at a height of 80 mm from the
bottom. Two diametrically opposite view ports were provided
in the vessel wall at the level of test section for visual
observation of bubbles formation and their dynamics on and
around the heat transfer surface. In order to observe and
maintain the liquid level in the vessel a level indicator was
provided. Pressure guage, feeding connections, condensers
and thermocouple probes were fitted in the top cover while a
gate valve was provided in the bottom of the vessel. The
vessel was thoroughly lagged with glass wool insulation
which was finally covered by an aluminium sheet to minimize
the heat losses to the surroundings.

The heat transfer section was a horizontal 158.84 mm
long stainless steel tube of 31.9 mm outside diameter and 5.95
mm thickness having an effective heat transfer area of
1.59x10 m”. The outer surface of the test section was made
smooth by turning and polishing with emery paper. The test
section was heated by an electric heater made of nichrome
wire wound uniformly on a porcelain rod. The heater was
carefully wrapped with thin mica sheet placed inside the test
section. In order to accommodate the thermocouples for
measuring the wall temperatures, axial holes of 4 mm
diameter were drilled in the wall thickness upto a distance of
75 mm from one end. Five such holes were drilled at the
angles of "84, 39, 8, 33 and 90° from the horizontal plane

968

passing through the axis, in order to obtain the variation in
wall temperature along the circumference.

A water cooled spiral coil condenser fitted just below
the top cover and helical coil condenser above the cover of the
vessel condensed the vapours generated during boiling and
returned the condensate back to the pool of the liquid. The
condensers were connected in series with counter current
arrangement of cooling water. The condensate drips are likely
to generate additional turbulence in the vicinity of the heat
transfer surface. To safeguard against this source of error a
clearnance of about 140 mm. between the condenser and the
top of the pool liquid was maintained in order to heat up the
descending condensate drips, by the ascending vapors, before
joining the pool of liquid. This was essential for maintaining
the liquid temperature and composition constant. Besides this
the test section was submerged to a depth of 150 mm from the
top of the pool to keep apart, the vicinity of heat transfer
surface from the region which was affected by the condensate
joining the liquid pool. A vent cock was fitted at outlet of
condenser tube and then to a plastic tubing with its free end
kept submerged in the test liquid placed in a glass bottle. This
arrangement was found to be useful for visual observation of
the removal of traces of dissolved air from the test liquid.

The stabilized electrical power input to the test

section heater was regulated by means of an autotransformer
and measured by a calibrated precision wattmeter. Five copper
constantan thermocouples, placed in the axial holes of the test
section wall thickness, sensed the heat transfer surface
temperature. The liquid temperature was measured by a
copper-constantan thermocouple probe. The bead of the probe
was placed at a distance of 30 mm from the test section
surface in the horizontal plane passing through the axis of the
test section. All t he six thermocouples were connected,
through a six point selector switch to a high precision
multilogger with a built in arrangement for reference point
temperature compensation. The resolution was 0.1 °c and the
accuracy of measurement was + 0.2 percent.
After the fabrication and installation of the experimental
facility, the tube wall boiling characteristics were stabilized by
boiling of liquid for several hours followed by aging. This
ensured the reproducibility of data. The experiments were
conducted wherein for each run a heat flux was adjusted, and
boiling was allowed to take place. The readings of wattmeter
and thermocouples were recorded after the steady state of
about 15 min duration was attained. The data were generated
with decreasing heat flux at atmospheric pressure. The
condenser water was always kept flowing throughout the
experimentation. The ranges of parameter covered during the
experimentation are given in Table 1.

The temperatures at the outer surface of the tube
corresponding to various thermocouple locations were
obtained by correcting the thermocouple readings for
temperature drop across the wall thickness between the bead
and the outer surface. There existed a circumferential variation
in the tube surface temperatures which may be attributed to
the turbulence produced by nucleation, growth and
detachment of vapor bubbles accompanied by the movement
of colder liquid towards the surface. The temperature indicated
by the wall thermocouple lying in the horizontal plane passing



through the axis of the tube was found to be almost equal to
the average value of other four thermocouples and hence was
chosen to represent the wall temperature in all calculations.
The liquid thermocouple probe also lies in the same plane.
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RESULTS AND DISCUSSION

During nucleate pool boiling of liquids, the rate of heat
transfer is mainly dependent upon the number of active sites
for bubble nucleation on the heat transfer surface. The radius
of a cavity becoming active on which thermal and mechanical
equilibrium exist is expressed in terms of degree of superheat,
slope of the vapor pressure curve and surface tension as
discussed by earlier workers. As the heat flux is increased, the
heat transfer surface temperature rises resulting in increased
wall superheat and hence the value of radius of cavity gets
reduced. This enables smaller size cavities becoming active
thus the site density increases enhancing the heat transfer
coefficient.

Training and test data are given in Table 1 for cyclohexane.
Figure 1 shows ANN predicted results of wall superheat for
ethanol at two heat fluxes of 25700 and 19000
W/m? respectively. Four ANN structures have been used .for
all the training . All the results lie within the maximum error
of 10 %. Similarly Fig. 2 shows the comparison of superheat
for Kerosene at two heat fluxes of 9400 and 15600
W/m’ respectively. Similar results have been shown for
cyclohexane and water at different values of heat fluxes. For
all these systems the simulated results are quite well In
Figures 1-4 input and output layers have one neuron and one
or two hidden layers with 5 and 10 neurons. Figure shows the
comparison of predicted superheat vs. experimental superheat
for all the components with heat flux and Prandtl number as
inputs. In this Figure 5 input layers have two neurons
corresponding to the heat flux and Prandtl number
representative of the physical properties of the components.
ANN structure 1-10-10-1 stands for input and output layers
with one neuron each and two hidden layers each having 10
neurons. Except for this Figure all others have more value of
error. Less error in it may be attributed to the large number of
training data hence very comprehensive training is established
as is evident in the Table2. Except few data all lies in the
acceptable limits. For all predictions the mean absolute
deviation was found to be less than 0.8%. All the simulation
was done using MATLAB 6.5 with ANN toolbox.

CONCLUSIONS

In the present study ANN model was developed for the
prediction of boiling curves for the pool boiling of different
liquids. The boiling curves wee predicted and compared with
experimental data for all the four liquids. There is large error
for the prediction of boiling curves for individual systems
However, in case of all the systems together the small error
was observed as discussed earlier. The values so obtained can
be used to predict the pool boiling heat transfer coefficients.
For all predictions the mean absolute deviation was found to
be less than 2.0 %.
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Tablel Training and testing data for cyclohexane

Training data for ANN output for set I
set |
L Input, Input,
S.No. Heat Target, ANN Heat Dutput, Actual,
(TW'TL) : T\V'TL) (Tw'
flux K Architecture | flux K T) K
W/m? W/m? L
1 6300 12 1-5-1 17.2
2 13700 17.1 1-10-1 15
3 29100 22 1-5-5-1 9600 15.4 15
4 31700 | 24.5 1-10-10-1 13.8
5 36000 33.8
- Set I1 Set IT
6 6300 12 1-5-1 25.3
7 9600 15 1-10-1 26.7
8 13700 17.1 1-5-5-1 31700 27.3 243
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10 36000 33.8
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Table2 Training and testing data for all the four components taken together

S.No. | Training Data ANN simulated result
Input Target | Input Output, (T,,-Ty) K for architecture
Pr  QWm’|(Ty-Ty) | Pr  |Q Wm?[l-5-1 [1-10-1 [1-5-5-1[1-10- |Actual
K 10-1  |value
1 9.18 | 12200 22.1 | 9.18 | 25700 | 27.03 | 25.89 | 2748 | 24.34 | 27
2 9.18 | 19000 242 | 7414 | 9400 | 22.53 [ 21.91 | 21.11 | 20.52 | 22.1
3 9.18 | 22000 26.1 | 9.64 | 9600 | 17.21 | 15.28 | 15.22 | 14.15 15
4 9.18 | 32000 31.5 | 1.68 | 19500 | 13.43 | 12.89 | 15.05 | 15.36 | 14.3
5 7.414 | 2300 15
6 7.414 | 8800 17.1
7 7.414 | 12200 29.1
8 7.414 | 16500 29.1
9 7.414 | 17200 29.1
10 9.64 | 6300 12
11 9.64 | 13700 17.1
12 9.64 | 29100 22
13 9.64 | 31700 24.5
14 9.64 | 36000 33.8
15 1.68 | 7539 8.3
16 1.68 | 15000 12.5
17 1.68 | 27300 16.8
18 1.68 | 35000 18.2
19 1.68 | 38800 20
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