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ABSTRACT

In this article, the natural convection flow in eccentric
annulus is simulated numerically by Lattice Boltzmann Model
(LBM) based on double-population approach. A numerical
strategy presents for dealing with curved boundaries of second
order accuracy for both velocity and temperature fields. The
effect of eccentricity at various locations is examined under
three scenarios: vertical, horizontal, and diagonal eccentricity
arrangements at Ra=10* and o=2. Velocity and temperature
distributions as well as Nusselt number are obtained. The
results are validated with published results and shown that
double-population approach can evaluate the wvelocity and
temperature fields in curved boundaries with a good accuracy
in comparison with the previous studies. The results show that
the average Nusselt number increases in when the inner
cylinder moves downward rcgardless of the radial position.
INTRODUCTION

The lattice Boltzmann method (LBM) is a powerful
numerical technique based on kinetic theory for simulating
fluid flows and modeling the physics in fluids [1-4]. In
comparison with the conventional CFD methods, the
advantages of LBM include simple calculation procedure,
simple and efficient implementation for parallel computation,
easy and robust handling of complex geometries, and others.
Various numerical simulations have been performed using
different thermal LB models or Boltzmann-based schemes to
investigate the natural convection problems [5-7].

The lattice Bolizmann equation (LBE) is a minimal form of
the Boltzmann kinetic equation, and the result is a very elegant
and simple evolution equation for a discrete distribution

function, or discrete population /', (x,¢) =/ (x,c,t), which
describes the probability to find a particle at lattice position x at
time t, moving with speced ¢, .With respect to the more

conventional numerical methods commonly used for the study
of fluid flow situations, the kinctic nature of LBM (Lattice
Boltzmann Method) introduces several advantages, including
easy implementation of boundary conditions and fully parallel
algorithms. In addition, the convection operator is linear, no

NOMENCLATURE

Discrete lattice velocity in direction k

Cy [-] Speed of sound in Lattice scale
F;( [-1 Extcrnal foree in dircetion of lattice vclocity
/ “ [-] Equilibrium distribution
3
g > [ms®] Acceleration due to gravity,
k [w/mk] Thermal conductivity
Nu, [-] Average Nusselt number
Nu [-] Mean Nusselt number
Nu,,; [-] Local Nusselt number along surfaces
Pr [-1 Prandt] number
r [-] dimensionless radial position (= R / (R,. -R ) )
R [-] radial coordinate
rr [-1 radius ratio, = Ro/Ri
Ri; R, [m] radii of the inner and outer cylinders, respectively
Ra [-] Rayleigh number (g SATH '/ av)
T [K] Hot temperature
T. [K] Cold temperature
Ty [K] bulk temperature Ty= (Ty+T)/2
u,v [m/s] Horizontal and vertical components of velocity
w [-] Weighting factor
Greek symbols
& eccentricily
o annulus gap width ratio (2Ri/(R,-R1))
@ tangential direction

Poisson equation for the pressure must be resolved and the
translation of the microscopic distribution function into the
macroscopic  quantities consists of simple arithmetic
calculations.

Tn general, there exist three approaches for incorporating the
heat transfer effect into the LBGK method in the literature, one
is concerned with multi-speed models [8-10] and the other is
passive-scalar approach [11] and the last one is double-
population models [12-16]. The first approach can particularly
deal with density distribution function and introduce additional
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discrete velocities to obtain macroscopic energy equations and
equilibrium distribution which usually include higher order
velocity terms. In the second approach, a separate distribution
function which is independent of the density distribution
function proposed [l11] and in the third approach, an
independent LBGK equation temperature is introduced in
addition to the original distribution function of density.

The comnlineg hatween the twn T RGGK annatinne can he
10e couping oetween the two LUK equalions can be

implemented in different ways [17-22]. This type of model is
usually adopted in practical application, because the multi-
speed approach suffers from severally numerical instability [12]
and limits in a rather narrow temperature range and in the
passive-scalar approach, the viscous heat dissipation and
compression work done by the pressure can not be taken into
account [12]. Therefore, in the present study, a type of double-
population model is integrated in the numerical scheme.

The geometry of the horizontal annuli is commonly found
in solar collector-receiver, under ground electric transmission
cables, vapor condenser for water distillation and food process.
Numerical simulation of natural convection in concentric and
eccentric circular cylinder has been studied rigorously in the
literatures [23-25]. Kuhen and Goldsein [26-28] conducted an
experimental and theoretical study of natural convection in
concentric and eccentric horizontal cylindrical annuli. Their
experimental data is commonly used to validate most of the
recent numerical studies. Ho and Lin [29] presented heatlines
for steady laminar two-dimensional natural convection in
concentric and eccentric horizontal cylindrical annuli with
mixed boundary conditions. Glakpe et al. [30] presented
numerical solutions for steady laminar two-dimensional natural
convection in annuli between concentric and vertically

accentric horizontal cirenlar cvlinders
CCCeniric aorizonia: Circuiar Cy:naers.

presented numerical and experimental buoyancy driven flow in
horizontal annulus. They studied the effect of the horizontal
eccentricity and found that the average Nusselt number is
nearly independent of the horizontal eccentricity.

In the present study, an extrapolation Method based on Gou
et al. [32] was used to simulate natural convection in horizontal
eccentric annulus. The method combined with the velocity
boundary presented in Mei et al. [33] can indeed achieve
second-order accuracy for both velocity and temperature on the
curved wall. The effect of vertical, horizontal and diagonal
eccentricity is examined in this study and the numerical results
are compared with previous experimented and numerical data.
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LATTICE BOLTZMANN METHOD

The Lattice Boltzmann Method (LBM) divide time and space
into steps to form a lattice and discretize the fluid as particles,
which are positioned at certain points in space, called lattice
sites or cells. These fluid particles are only allowed to move in
certain and fixed directions, which are derived by a
discretization of wvelocity space. In the LBM, the particle
represented by distribution function .This distribution function
is calculated by solving the Lattice Boltzmann equation
(without external force) equation (1), which is a special
discretization of the kinctic Boltzmann cquation. The
macroscopic quantities of the simulated fluid can then be
derived by calculating the hydrodynamic moments of the

1558

distribution function. In contrast to the second-order PDEs in
the NS approach, the LBM uses only first order PDEs.

of 1

L s ef ==2(/ 1) W
ot T

Where ¢ is the particle velocity vector, f“7is the equilibrium
distribution function and 7is the relaxation time due to
collision [20] and depending on the fluid viscosity.

By a discretization in velocity space, a finite set of velocity
vectors is derived, which have to conserve mass, momentum
and energy of the fluid particles (conservation laws). Equation
(2) shows the discretized formulation of equation (1). f,
denotes the corresponding distribution function in direction &r ,

which is associated with the discrete velocity ¢, in direction

aand f7is the corresponding equilibrium distribution
function [20]:

Lo s, ¥y ==2(f - 120)

In this work the velocity space discretization in the two
dimensional case is the D2Q9 model [20]. In this model, the
velocity space is discretized in 9 distribution functions, which
is the most popular model for the 2D casc (Figure 1).

(2)

Figure 1 Discrete velocity vectors for the D2Q9 model for 2D LBM
In the following, e, will denote the discrete velocity set, where
a is between 0 and 8.

(0,0) a=0 (3)
e, =i(cos[(a—Dx/4]sin[(a-Dx/4))c a=123,4

V2(cos[(a —1)z ! 4],sin[(a — D/ 4])e a=5,6,7,8
Wherec = Ax/ At, Ax and Ar are the lattice cell size and the
lattice time step size, respectively.
For the D2Q9 model, the equilibrium distribution function of
equation (2) is expressed as:

fe =w, 1+ %eu.u+ %(ea )’ - i_,u.u) €
c” 2c e
Where:
4/9 a=0 (5)
w, =91/9 a=123,4
1736 @ =5678

w, is the equilibrium distribution weight for direction c .

The fluid density o can be evaluated with equation (6), whereas
the velocity u is contained in the momentum fluxes of equation
7): ,
p=31 (6)

pPu=Ye,f, (7)

Equation (2) is called the discrete velocity model (DVM). This
cquation can be solved by the standard numerical approaches,



for example Finite Difference Method. The LBM approach uses
this method for discretization of equation (2):

1 ®)
fxse ai+ A= (1) ==—[f. (D) =f" (D) + At e
T

Where 7, denotes the lattice relaxation time (r,, =3v+1/2) .

For incompressible flow the lattice Boltzmann equation of
temperature field can be given by:

©)

1 .
£a (X + g 807+ AN = g, (%.1) = ——| g, (%,1) - £ (1)
T

Where g, is temperature distribution function in thea
direction, 7, is the relaxation time (r, =30 +1/2)and g& is the
corresponding equilibrium distribution function and can be
expressed as [21, 22]:

(10)

3
g, =w,I(1+—e, )
c

Where T is the fluid temperature and can be evaluated from:

T= Z Sy (11
a

Finally, equation (8) and equation (10) is usually solved in two

steps:

Collision step

]’a(x.t—A[):—LE/;,(X,!)—]:"(X,L)]—/;x(x.t) (12)
Strcaming step
So(x+ e ALt + AL) = f,(x,1 + Af) (13)

Where f,.3, denotes the post-collision distribution function,
Equation (12) is the so called collision step. This step models
various fluid particle interactions like collisions and calculates
new distribution functions according to the distribution
functions of the last time step and the equilibrium distribution
functions, which are calculated with equation (4) and equation
(10). The second step is called stream step. In this step, fluid
particles are streamed from one cell to a neighbouring cell
according to the velocity and temperature of the fluid particles
in this cell.

Curve boundary treatment

Consider Figure 2 is a part of an arbitrary curved wall
geometry, where the black small circles on the boundaryx,,,
the open circles represent the boundary nodes in the fluid
regionx, and the grey circles indicate those in the solid

region x, .In the boundary condition f(x,.1).%(x,.r) are needed

to perform the streaming steps on fluid nodes x .

The fraction of an intersected link in the fluid regionA is
defined by:

_xrx
s —m
To calculate the distribution function in the solid region
fz(x,,2) based upon the boundary nodes in the fluid region, the

(14)

bounce-back boundary conditions combined with interpolations
including a one-half grid spacing correction at the boundaries
[15].

Natural convection
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Figure 2 lattices in curved wall boundary

Then the Chapman—Enskog expansion for the post-collision
distribution function on the equation (12a) is conducted as:

Ty, 1+ A = (1= ) fo, (X 1+ ALY+ A1 (X1 + AF)

3 (15)
—20—211fap(xj~, t+Afe,.u,
Where
*
Ty Ot + A0 = £ (x 0+ AD + (16)
3
C—zwup(xf,r + Al)eu.(ubf —uf)
P e (17a)
Uy =g, = , f0<As—
or =Ny S ”
3 3 2A-1 1 (17b)
u,=(1-—ju,+—u,, A=—— if —<As=l
’ 2A 2A r, +1/2 2

m

u_denotes the velocity of solid wall, u,, is the imaginary

b
velocity for interpolations ande_ = -e .

For temperature field in curved boundary this study use the
method is based on the method reported in [15]. Distribution
function for temperature divided two parts, equilibrium and non
cquilibrium:

8 (%) = 82 (%, 1)+ 827 (%) (1)
By substituting equation (18) into equation (12) we have:
Equilibrium and non equilibrium parts of cquation (19) arc
define as:

= oy WRLIp, 20
87 (3p0)=wgl (1+C—2e(;‘u,,) (20)
e ()= g5 (X o) if A20.75 (21a)

g;ﬁq(xb.t) :Ag{'—;‘)q(xf,f)Jr(lfA)g{'fq(xﬁ,t) if A<0.75 (21b)

RECIIIT ANDND DNECCILICINN
= n [ B4 mbe

The present investigation considers two infinite horizontal
circular cylinder of inner and outer radius, R; and R,,
respectively. A radial temperature gradient (AT) is applied with
subjecting the walls of the inner cylinder to a higher
temperature (Ty) than its outer cylinder counterpart (T.).

To validate the numerical simulation, local and equivalent
thermal conductivity is obtained at for a natural convection in
eccentric horizontal annulus. Results have been compared with
the study of Kuehn and Goldstein [26]. An equivalent thermal
conductivity, K., is used to compare the accuracy of the present
computations. The average equivalent heat conductivity defined
for inner and outer cylinder by:
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- In(rr)y poT
K =————|—4d
“ z(rr =1)1 or

- . In(m) 7 0T
g mhenor,

m(rr=1)7, or
This parameter is defined as the actual heat flux divided by the

heat flux that would be occurred by pure conduction in the
absence of fluid motion. The computed average equivalent heat
conductivity for eccentric annulus at Pr=0.71 and rr=2.6 are
compared with the previous study [27]. Results of local
equivalent thermal conductivity are shown in Fig. 5 and
represent good agreement between the present computations
and experiments of Kuhen and Goldstein [27]. In particular, the
present local equivalent thermal conductivity results are well
within £3% of the benchmark data by Kuehn and Goldstein.

12
present study Inner cylinder
10 — — — — present stucfy ,Quter cvlinder
L A Kuhen& Guldesteinf27] Inner cylinder
| o Kuhen& Guldestein[27] ,Outer cylinder
sl & .0
s £
< 6 ‘\Q
4 O A a4 a %
N A a A=
3T
2 Ay
A, A g
P S N SR BP0 S VY |
o 30 60 0 120 150 180
@

Figure 5. Comparison of Equvalent thermal conducivity on
inner and outer cylinder with experimental deta [27], for
£=(3/4,0) at Ra=5x10* and rr=2.6.

For further validation of the Numerical procedure isotherms
and streamlines pattern for different eccentric annulus are
compared with the experimental results obtained by Guj &
Stella [31]. a wvertical eccentric location &=(1/4.,-n/2)) is
examined at 6=1.47 and found to establish a good agreement
between them, which is shown in Figure 6.

The effect of eccentricity at various locations is examined
under three scenarios: vertical, horizontal, and diagonal
eccentricity arrangements at Ra=10" and o=2. The effect of
vertical eccentricity on the flow and thermal fields is shown in
Figure 7(a)-(d), with streamlines (left) and the isotherms
(right). Two large recirculation cells appear within the annular
cylinders. While the inner cylinder moves upward, the narrow
space above the inner cylinder inhibits the circulation of the hot

movino flnid ac chown in Fioure 7(a) Acg a reault. Conduction
moving TiUIg as shiown 1n rigure /(a). As a resuit, conguction

heat transfer becomes dominant. When the fluid returns along
the outer cylinder, the flow cools and approaches a region of
relatively stagnant fluid where convection is weak. An increase
in the cell strength occurs when the inner cylinder moves
downward, so, the convection heat transfer becomes dominant
(Fig 7(c) and (d)). For better discussion present investigation is
concluded by exploring the effect of the vertical eccentricity on
the local Nu number outcome.

Figure 8(a) and (b) show that the local Nusselt number for
£=(3/4,0) starts from a local maximum (top of the annulus)
which is due to the domination of the conduction heat transfer
between the inner and the outer cylinders.
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Present study

Guj and Stella [31]

Figure 6. Comparison of streamlines (top) and isotherms
(bottom) for e=(1/4,-n/2), Ra=4.59x10* between the present
work and experimental study of Guj and Stella [31] using
c=1.47.

The effect of convection becomes more inhibited in the region
between the inner and outer cylinders for &= (3/4, 0); this is
understandable since the upper region is now inadequate to
permit rapid acceleration of fluid motion around the inner

cylinder.
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(@ ()
Figure 7. Streamline (left) and isotherm (right) under different
vertical eccentricity locations for 6=2 at Ra=104 using:
(a)e=(3/4,0); (b)e=(1/2,0) ; (c)e=(1/2,n) ; (d)e=(3/4,m)

When the inner cylinder move downward, Nu number starts

from local minimum and then increases smoothly.
6

1 o

sk ——— o

45F

4k

&=(3/4.m)

L 1= | .
90 120 150 180
@
Figure 8. Local Nusselt number variation at the: (a) inner and
(b) outer cylinder different vertical eccentricity locations for
o=2 at Ra=10"

When the flow approaches the top of the inner cylinder,
buoyancy causes the fluid to arise. Thus, the boundary layer
decelerates at the top of the inner cylinder and separates from
the surface and consequently, convection becomes dominant.
As the flow travels around the inner cylinder; the conduction
heat transfer dominates between the two cylinders at the bottom
of the inner cylinder.

The effect of horizontal eccentricity locations is shown in
Figure 9. when the inner cylinder moves to the right (or left) of
the outer cylinder, two rotating cell form in the enclosure, the
main and the larger rotating cell on the left, the small and
secondary cell at the right. It’s due to flow inhibition between
two cylinder surfaces at the right; convection heat transfer
decreases and conduction increases. This effect can be seen in
local Nusselt distribution. The effect of convection becomes

Natural convection

(b)

(© (©
Figure 9. Streamline (left) and isotherm (right) patterns under
different horizontal eccentricity locations for 0=2 at Ra=10*
using: (a)e=(0,0); (b)e=(1/2,-n/2) ; (c)e=(3/4,-1/2)

25

Vertical Eccentericity
— Horizontal Fecentericity
v Diagonal Eccentericily

2251

&
Figure 13. Average Nusselt number versus eccentricity

more inhibited in the region between cylinder surfaces for e=
(3/4, -m/2). Similar phenomena can be observed for the inner
cylinder moving aligned. local Nu values tend to peak when the
inner cylinder moving closer to the outer cylinder (e=(3/4,-n/4)
and £=(3/4,-31/4)).

Figure 13 shows the effect of eccentricity positioning on
average Nu number. The results show that the cccentricity
significantly influences the heat transfer. It can be scen that
heat transfer augmentation is higher for a dimensionless radial
position of r=3/4, which is the casc when the inner cylinder is
placed away from the center and closer to the outer cylinder.
‘When the inner cylinder, moves downward closer to the outer
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cylinder, i.e r=3/4, the Nusselt number increases approximately
25% in comparison with the concentric configuration.
Furthermore, Figure 13 shows an increase in the average
Nussclt number when the inner cylinder moves downward
regardless of the radial position.

CONCULSION

Natniral canvaction flaw in e

coantrin anmlog wa nlatad
ANALULIAL VWVLIY WAV LLWVIL LIVYY 1L W L

numerically at Ra=10* and 6=2. The Lattice Boltzmann method
based on double-population was used for dealing with curved
boundarics for flow and thermal ficlds. The problem was
solved and some conclusions were summarized as follows:

a. Lattice Boltzmann method based on double-population
is a powerful approach for simulating natural
convection in the geometry that include curved
boundaries. This method can simulate the velocity and
temperature fields with second order accuracy.

b. Heat transfer augmentation is higher for a dimensionless
radial position of r=3/4, which is the case when the
inner cylinder is placed away from the center and
closer to the outer cylinder.

¢. An increase in the average Nusselt number occurred
when the inner cylinder moves downward regardless
of the radial position.

d. Computational results support data previously published
in the literature.
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