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ABSTRACT

The time dependent natural convection in an inclined closed
thermosyphon with the lower % surface isothermally heated
and the upper Y4 surface isothermally cooled is investigated.
The vertical temperature gradient creates a buoyancy-driven
flow in the cylinder. Depending on the Rayleigh number Ra,
the resulting natural convection can be simple or complex
three-dimensional flow structures.

The three-dimensional time-dependent Navier-Stokes
equations  (with  Boussinesq approximation) for an
incompressible viscous fluid arc approximated using finite-
differences. The energy and vorticity transport equations are
solved using a modified alternating direction implicit scheme.
The elliptic equation for the vector-potential is solved directly
using a fast Fourier transform algorithm.

Numerical results are presented for an aspect ratio (length to
radius) of 4. A Prandtl number of 7 is used for the fluid. The
time-dependent flow structures, total kinetic energy within the
cylinder and heat transferred are presented for various values of
Rayleigh number.

INTRODUCTION

Convection phenomena driven by thermally induced
buoyancy forces present applications in thermal engineering.
Japikse [1971] reviewed the use of thermosyphons as heat
exchange devices including gas turbine blade cooling,
transformer cooling and cooling of nuclear reactors.

Considerable research has been directed to closed
thermosyphons in 2-D and 3-D geometries. The collective
studics on thc cffects of boundary layer interactions, aspcct
ratios, fluid properties and three-dimensionality have been
reviewed by Fusegi and Hyun [1993] and Ostrach [1988].
Hsieh and Yang [1996] noted that the complex 3-D flows are
not effectively captured by numerical studies in 2-D
geometries.

Numerical models available for cylindrical tubes are
limited, largely in part due to complications involving
singularity along the axis. Transient solutions were undertaken
by Leong [2009] for a vertical case, where complex cross-over
flow in figure ‘8 formations formed across the mid-plane.

The relative simplicity of inducing inclination makes the
parameter a critical point of interest for stability and heat
transfer determination. Lock & Kirchner [1988] and Japikse et
al. [1971] experimentally studied the effect of minor
inclinations on cylindrical thermosyphons. The formation of
two opposing strcams that accompanics incrcasing inclination
was observed,

In the present study, the numerical results will be presented
for a cylinder inclined at 30 degrees with isothermal heating of
the lower three-quarter (%) region, and cooling of the upper
quarter (%4). The cylinder has an aspect ratio of
(a=length/radius) of 4 and contains fluid of Prandtl number (Pr)
7.

The specific temperature boundary conditions poses more
realistic boundary conditions than differentially heated vertical
walls and adiabatic end wall problems (de Vahl Davis et al.
[1983]; Ozoe et al. [1985]; Sammouda et al. [1999]). In the
later problem type, prior research indicates that maintaining
perfectly adiabatic end walls can be difficult in industrial
applications (Gaa et al. [1998]). In contrast, a fluid-filled
cylinder partially submerged in a hot body (e.g. nuclear reactor
core) and exposed in the upper section to a cooler environment
can be modelled by the selected boundaries.

NOMENCLATURE

aspect ratio, R/H

height of cylinder

relative kinetic energy

number of radial mesh points
number of azimuthal mesh points
number of axial mesh points
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Nusselt number
Prandtl number
radius of cylinder
Rayleigh number
radial coordinate
velocity vector
radial velocity
azimuthal velocity
axial velocity
dimensioniess temperature
kinematic viscosity
thermal diffusivity

vector potential
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vorticity vector

Subscripts

h hot

c cold

o azimuthal component

GOVERNING EQUATIONS

The energy and momentum equations are non-
dimensionalised using R (radius of the cylinder), R*/x and /R
as scale factors for length, time and velocity respectively. x is
the fluid thermal diffusivity. Applying the Boussinesq
approximation, the energy and vorticity transport equations are
given by:
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where =(T-Ty)/AT is the dimensionless temperature,
To=(Ty+T,)/2, AT=(Ty-T,) and T}, and T, are the temperature at
the hot and cold walls respectively. ¢ is the vorticity vector,
Pr=uv/xc is the Prandtl number, Ra=ﬂg(Th—Tu)R3/UK is the
Rayleigh number and v is the kinematic viscosity. The

components of the velocity vector u are u, v and w in the radial
(»), azimuthal (@) and axial (z) directions respectively. The
eloc1ty vector is evaluated from solenoidal vector potential

field ¥ , which satisfies the continuity equation and the curl of
which gives the velocity ficld, that is:

V=0 (3)
u=Vxy )

The relationship between vorticity E and vector potential i is
given by:
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BOUNDARY CONDITIONS

The fluid has zero velocitics at the rigid walls (u=v=w=0).
The thermal boundary conditions are £=0.5 at 0<z<3a/4, 6=0 at
z=3a/4 and 6=-0.5 at 3a/4<z<a.

A uniform cylindrical mesh distribution over the cylinder
consists of LxMxN discrete points in the r, ¢ and z directions
respectively. The radial mesh points are given by r=(i-1/2)Ar
for i=1,2,3,...L; the azimuthal mesh points are given by ¢=(/-
DA for j=1,2,3,..M and the axial mesh points are given by
n=(k-1)Az for k=1,2,3,...N, where Ar=1/(L-1/2), Ad=2n/M and
Az=a/(N-1). Finite different approximations are used to solve
(1) and (2). Second order forward differences are necessary to
solve along the circumferential boundary at r=Ar/2. The
resulting finite difference equations are then solved by a
modified Samarskii-Andreyev Alternating Direction Implicit
(ADI) at each time-step. The elliptic equation (5) is solved
directly by a Fast Fourier Transform.

MESH VALIDATION

Three different time-steps of 5x107, 1x10° and 5x10° are
tested for the mesh sizes 17x32x33, [7x64%65 and 21x64x65.
The transient KE plots in Figure 1 show reasonable agreement
between the various meshes and time-steps. The KE values at
steady state are the same for equal number of mesh points in
the axial direction. This demonstrates that a finer axial mesh
choice improves the solution more than smaller time-step
sclections. The steady state values for KE arc higher at N=65
than N=32 due to additional heating and cooling at the
longitudinal walls for the finer mesh.

The error term is effectively zero for mesh sizes finer than
21x64x65 and time-steps smaller than 5x107, indicating that
the independence condition has been reached at these values.
Therefore, for lower Ra (Ra<2x10"), a mesh of 17x64x65 is
sufficiently accurate at a time-step 5% 107,

RESULTS

Solutions are obtained for Prandtl number Pr=7, Rayleigh
number 7ﬂn<l?n<4>(1ﬂ qﬂr’l agnect ratio =4 Temmnerature ()

number 700<Rq and aspect ratio a=4. Temperature (6)
isotherms and angular component of vector potential (i) in the
secondary (¢#=0,7) planes are illustrated in Figure 2. The
contour plots show the range of contour levels and the number
of contour levels [min, max, no. of levels]. Dashed lines along
contour boundaries indicate negative values.



250
soensenees | F232%33, 1 00E-05
o0 | ; — — — 17x32%33, 5.00E-06
v | — . = 176465, 1.00E-05
21x64=635 500E.03

700 | 1
] - = = 21xfdx=65 5 00E-06

6350

i S
Meon b e e L R T N T

550 N
500
450
4nn
0 0z 04 0.6 ng 1

Time
Figure 1 Transient plots of KE for Re=700 for various
mesh sizes and time-steps

0 and v are axisymmetric in the secondary plane. ¢ contours
spread longitudinally in an elliptical formation. From Figure
2b, y;, illustrates two pairs of counter rotating vortices
separated by the heat exchange region.

(a) 0[-0.5,0.5,11] (b) w,[-0.5,0.5, 11]

Figure 2 Secondary plane plots of and y, at stcady
state for Ra=700

The dominant flow structure consisting of yy m,—=4.6 in
Figure 3a is asymmetric and exists in the primary plane (¢=7/2,
372). At Ra=700, incipient stages of a unicellular vortex
consist of a weak ascending stream rising along the hot leading
side towards the end wall and an opposing stream along the
lower (trailing) wall. The pairs of rotating cells in the secondary
plane indicate cross-over flow between coupled streams,
occurring towards the axis and laterally in line with the heat
exchange region. In effect, this phenomenon shares cross-over
characteristics with the figure ‘8’ structures observed by
Ishihara et al. [2002] and TLeong [2009] in vertical
thermosyphons.
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(a) Ra=700  (b) Ra=2x10"  (¢) Ra=5x10"  (d) Ra=4x10’

Figure 3 Plots of #[-0.5,0.5,11] at steady state

(a) Ra=700
‘//45 [_4a075]

(b) Ra=2x10"
W, [-40,0,5]

(¢) Ra=5x10"
vy [-60,15,6]

(d) Ra=4x10°
s [-160,32,13]

Figure 4 Plots of y; at steady state

The axial velocity Figure 5 is therefore positive on the right
leading wall and negative on the trailing wall. When the flow
becomes steady, axial velocity at z=3a/4 is larger than at z=7a/8
demonstrating deceleration of the rising stream. The two-
stream behaviour, referred to herein as bifilamental flow, is
commonly observed in inclined geometries with circular
(Japikse et al. [1971]; Lock and Kirchner [1988]; Gaa et al
[1997]) or rectangular (Lock and Zhao [1990]) cross-sections.

(a) z=T7a/8

(b) z=3a/4 (c) z=5a/8

Figure 5 Cross-sections plots of axial velocity w[-10,8,10] at
steady state for Ra=700

The main flow structure in the primary plane persists for
Ra=2x10" with the intensity of the bifilamental flow increasing.
@ isotherms increase in density along the boundaries, forming a
boundary layer along the longitudinal walls as shown in Figure
3b. The hot boundary layer is thicker along the leading edge,
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which encourages upward movement of the ascending stream
(Figure 4b).

The flow for 5x10'<Ra<2.8x10° is similar to the fields
observed in Ra=2x10" albeit with increasing intensity. Within
this range, a secondary clockwise (CW) cell initially forms in
the upper right corner at Ra=5x10" (Figure 4c), with a further
cell accompanying higher Ra in the lower left-corner at (Figure
4d). The two CW cells form at the end-points of the opposing
streams as the particles bifurcate upon collision with the end-

a1
wdll.

(a) z=7a/8

(b) z=3a/4 (c) z=5a/8

Figure 6 Cross-sections plots w[-160,160,9] at steady state for
Ra=5x10"

Figure 6 shows the axial velocity plots at various cross-
sections for Ra=5x10°. As the rising stream passes the heat
exchange region the particles deflect inwards towards the axis.
The subsequent collision with the end-wall causes radial
dispersal of flow, shown by the downward travelling annulus at
z=T7a/8. Japikse et al. [1971] noted similar end-wall behaviour
caused opposing flow to form vortices in a cylinder. Lock and
Zhao [1990] referred to this phenomenon as refluent flow and
suggested this behaviour occurred above a critical Ra leading to
the formation of a Bénard cell in which an upward core flow is
balanced by a downward flow.

(a) Secondary Plane
W, [-40, -40, 17]

(b) Primary Plane
v, [-180, 36, 13]

Figure 7 Contour plots of 7 for Ru=4x10°

At Ra=4x10, the flow enters an oscillatory state with no
convergence to steady state. i, in the secondary plane becomes
increasingly distorted from the elliptic shapes observed in the
laminar range. From Figure 7, the dominant vortex in the
primary plane is similar to Ra=2.8x10°. However, the main
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flow becomes impeded near the end-walls due to the shifting
CW cells in opposing corners (Figure 7b).

Figure 8 illustrates the transient behaviour of the axial
velocity profile under unstable conditions. At Ra=4x10, flow
near the axis and at z=3a/4 is turbulent and forms a complex
3-D stagnation zone (Figure 8). The ascending stream has a
distinct peak at all time intervals, suggesting a sustained
structure consisting of a concentrated ascending stream.

(a) +=0.25

(b) +=0.50

(c) 10.75

(d) ~1.00

Figure 8 Axial velocity w[-600, 540, 10] at z=3a/4 for
Ra=4x10°

Bifurcation of the primary stream upon collision with the end-
wall is shown in Figure 9. The effect of the inclination is
twofold; it destroys the axisymmetry in the primary plane and
modifics the vortex structurc at the end-wall. The ascending
stream has sufficient inertia to penetrate to the top wall, where
only a vestige remains in the stagnation region in the upper
right corner of Figure 9b. The remaining flow sweeps across
the end-wall to form the opposing stream on the trailing wall.

End-wall collision

(a) Seenndary (h) Pri

(a) Secondary (b) Pr

Figure 9 Refluent flow in the secondary and primary planes at
end walls under inclined conditions

Plots of Nu against Ra arc shown in Figures 10, 11 and 12. At
low Ra the system reaches steady state consisting of constant
heat transfer from the hot wall to cold wall. As Ra increases to
Ra=5x10", initial oscillations occur in the interval 0<t<0.17.
Figure 11 shows the Nu as a function of time for
5%10*<Ra<2.8x10°. The oscillations increase as Ra increases.
As seen in Figure 11, the Nu reaches steady state by /=0.419 for
Ra=2.8x10".




50
a F e Ra=700
A0 Ra=2,000
35
30
Z 25
20
15
10 _
g | Seemrmremse o s
0 ‘ i
0 0.5 1 1.5 2 2:5 3
Time
Figure 10 Transient plots of Nu for Ra=700, 2x10°
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Figure 11 Transient plots of Nu for Ra=5x10* Ra=1.1x10",
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Figure 12 Transient plots of Nu for Ra=3.5%10°, Ra=4x10’

Figure 12 shows that there is no steady state solution at
Ra=3.5%10°. This represents the transition into the turbulent
oscillatory region of flow, and corresponds to the bifilamental
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flow with pockets of instability as seen in Figure 8 and Figure
9.

KEY TRENDS
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Figure 13 Average Nu as a function of Ra

The relationship between Nu and Ra is non-linear. The
relationship is more effectively portrayed as a monotonically
upward Nu versus Log(Ra) plot in Figure 13. At Ra<2,000, heat
transfer increases marginally as a result of the superposition of
conduction and lncmiem convection. As the bounda‘fy 1ayer
forms at Ra>2x10", the curve becomes approximately linear.
Average heat transfer in the turbulent regime (Ra>3.5x10°%)
becomes increasingly erratic due to the unsteady oscillations
for the transient plots. KF and Nu values during the turbulent
region or obtained by averaging the transient values in the
interval 0.5<r<2.0. Nevertheless, it is clear that a heat transfer
rate is sensitive to Ra. Further increases to Nu are limited by the
convergence of the temperature gradient along the curved wall
boundary layers as Ra increases.
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Figure 14 Average KE as a function of Ru
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Steady state values for KE are plotted against Ra in Figure 14.
A linear correlation exists between KE and Ra over the
laminar-convective region of Ra. Sustained oscillations
commence above a critical Ra 2.8%10°<Ra.<3.5%10°, which
eventually leads to increasing amplitudes as Ra increases. The
spreading of the dotted lines, representing minimum and
maximum KF in the post-peak oscillatory period, confirms the
turbulent range.

700 =700

600 -600

500 -500

3 400 | 400
E =
2 =
300 | 300 =
z

200 -200

—— Max Axial Velocity
100 =8=—Min Axial Velocity -100
0 0
1] 100 200 300 400
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Figure 15 Axial velocity at z=3a/4 as a function of Ra

The maximum and minimum velocity values across the heat
exchange region (z=3a/4) are shown in Figure 15. Axial
velocity is maximum along the leading edge and positively
correlated with Ra. The maximum negative flow falls away in
magnitude compared to the positive curve at Ra>1.6x10°, As
shown in Figure 8, the descending stream at high Ra forms
from irregular refluent flow at the upper end wall. The
instability causes the irregularity of the downward axial
velocity profile and therefore limits the efficiency of the
downward stream.

CONCLUSION

The collective results on modelling a variation of Ra at an
angle of 30 degrees have shown that the flow progresses from
incipient convection fo turbulence. There was:

1. Superposition of incipient convection and conduction for
T00<Ra<2x10%

2. Weak convection at Ra=2x10";

3. Strong convection for 5%10*<Ra<2.8x10% and

4. Irregular oscillatory convection for Ra >3.5%10°.

The flow was found to depend on three key features: a two-
stream formation in the core region referred to as bifilamental
flow; end region behaviour where the streams collided with the
walls to form refluent flow; and stream coupling which caused
cross-over behaviour in the secondary plane. These
characteristics were consistent with the experimental flow
model developed by Lock and Kirchner [1988] and
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observations of Japikse et al. [1971]. The bifilamental flow
consisted of a rising stream on the leading edge of the cylinder,
and a descending stream along the trailing edge. At sufficiently
high Ra, counter-rotating cells formed in opposing corners as a
result of the stream colliding with the end-wall.

Ra had a large effect on heat transfer rates and KE. Heat
transfer, in the form of Mu, was positively correlated with Ra,
but at a decreasing rate. This was due to a convergence in the
thickness of thc boundary layer as Ra incrcased. Total KE
incroascd lincarly with respect to Ra over the laminar rogion. It
was unclear whether the linearity extended into the turbulent
region (Ra>3.5%10%) duc to irrcgular oscillations over time.
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