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ABSTRACT

The optimum values of the modified buoyancy
parameter (Gr/Re)opimen at which the entropy generation
assumes its minimum for fully developed mixed convection in
vertical channel between parallel plates have been obtained
analytically and presented in this article for thermal boundary
condition of the 4™ kind. This thermal boundary condition is
obtained via subjecting one plate to uniform heat flux (isoflux)
while keeping the opposite plate isothermal. The effects of
other operating parameters on the entropy generation are also
discussed.

INTRODUCTION

Recently, increasing attention has been focused on
the parallel-plate ducts since it is encountered in many of
energy related applications. This configuration is relevant to
solar energy collection, as in the conventional flat plate
collector, and in the cooling of modern electronic systems.
Electronic components are mounted on circuit cards, an array
of which is positioned vertically in a cabinet forming vertical
flat channels through which coolants are passed, Otani and
Tanaka [1] and EPP [2]. The coolant may be propelled by
forced/mixed convection for large applications. Mixed
convection takes place when the effect of buoyancy force on
forced convection becomes significant. This effect is
especially pronounced in situations where the forced-flow
velocity is low and the temperature difference is large. In
mixed convection flows, the forced-convection effects and the
free-convection effects are of comparable magnitudes. Mixed
convection flow is called buoyancy-aided flow if the buoyancy
forces act in the flow direction while it is called buoyancy-
opposed flow if the buoyancy forces oppose the flow
direction. Design information for mixed convection should
reflect the interacting effects of free and forced convection.

Laminar flow exists in the majority of compact heat
exchangers because of their low hydraulic diameters. The
huge amount of the research related to flow and heat transfer
through parallel plate channels has been well cited by Peterson
and Alfonso [3] in their analysis of thermal control of

electronic equipment and the more recent work reported by
[4-8]. The vertical parallel plate configuration is applicable in
the design of cooling systems for electronic equipment and of
finned cold plates in general. When the spacing between the
plates is small relative to the height of the channel, the fully
developed flow approximation can be invoked. Constant-
property fully developed mixed convection between vertical
parallel plates has been of interest in research for many years
[9-14].

It is well known that flow and heat transfer processes
are always irreversible. In other words, for all heat transfer
processes, there will exist an entropy generation. This
thermodynamic irreversibility, or entropy generation, is
attributed to two main sources. One of these sources is the heat
transfer due to finite temperature difference, which is referred
to as the thermal entropy generation. The other source of
irreversibility is attributed to the viscous friction due to fluid
flow. This source of entropy generation is referred to as the
viscous entropy generation. The entropy generation of the
process, irreversibility, is directly proportional to the amount
of dissipated useful energy in the process. Understanding how
entropy is being generated, one can reduce the irreversibility
of the heat transfer process and consequently enhances its
efficiency. An optimal design can be obtained by
compromising the pertinent operating parameters.

Among the huge amount of literatue regarding the
flow and heat transfer in vertical channels between parallel
plates, only a few literature was devoted to the analysis of
entropy generation due to flow through channels between
parallel plates. However, entropy generation due to different
modes of flow and heat transfer in vertical channels between
two vertical parallel plates has recentely received an
increasing attention of researchers. In this regard, Bejan [15]
investigated the mechanism of entropy production encountered
in forced convective heat transfer process in four fundamental
flow configurations. It was found that the design features and
the geometry selection are very essential to minimize
production of entropy and hence minimize the destruction of
available work in convective heat transfer processes. Abbasi et
al. [16] investigated the entropy production in Poiseuille-
Benard channel flow. The study included a numerical solution

827



2 'Topics

of Navier-Stokes and energy equations utilizing the finite
control volume method. The study showed that the maximum
entropy generation is located at the heat transfer area and no
significant entropy is generated in the main flow area.
Andreozzi et al. [17] have numerically predicted the entropy
generation for a natural convective flow between
symmetrically heated plates at a uniform heat flux. The study
focused on the effect of Rayleigh number and aspect ratio
values. It was shown that different behaviors of local entropy
generation occur at different Rayleigh numbers. Also, a
correlation was derived in the range of 10° < Ra < 10° and 5 <
L/b < 20 to relate the global entropy generation, Rayleigh
number, and the aspect ratio (L/b). On the other hand, Erbay et
al. [18] have conducted a two dimensional numerical analysis
of entropy generation during transient convective heat transfer
for laminar flow between two parallel plates. The plates were
kept at constant equal temperatures higher than that of the
fluid. The bottom plate moves in either parallel or in inverse
direction to the flow.

Mahmud and Fraser [19] gave special focus to the
entropy generation characteristics and its dependency on the
various dimensionless parameters during their analysis of the
mixed convection-radiation interaction in a vertical channel. In
this study, a steady-laminar flow of an incompressible-viscous
fluid was assumed through the channel with negligible inertia
effect. Fluid was further considered as an optically thin gas
and electrically conducting. Governing equations in Cartesian
coordinate were solved analytically under fully developed
conditions. Expressions for velocity, temperature, local and
average entropy generation rate are derived and presented
graphically. The results of this study showed that the optimum
radiation parameters determined based on the concept of
entropy generation minimization, increase with (Gr x Ri)*®
where Ri is the Richaedson number that equals to Gr/Re’.
This means that the value (Gr x Ri)*® used in [19] is
equivalent to the modified buoyancy parameter (Gr/Re) used
in the present work. Boulama et al. [20] investigated the
steady-state, laminar, fully-developed mixed convection of a
binary non-reacting gas mixture flowing upwards in a vertical
parallel-plate channel from the second law of thermodynamics
point of view. Analytical expressions were derived for the
entropy generation rate for two combinations of boundary
conditions: uniform wall temperature with uniform wall
concentration and uniform wall heat flux with uniform wall
concentration. These expressions include three sources of
irreversibility: heat conduction, fluid friction and species
diffusion. The results showed that for humid air, the
contribution of fluid friction is negligible for both cases while
heat conduction and species diffusion effects appear to be of
comparable orders of magnitude.

Cheng et al. [21] have numerically predicted the
entropy generation of developing laminar mixed convection
flow in vertical parallel plates with a series of transverses fins
placed on the hotter plate. Their study showed that although
fins enhance heat transfer, they cause a significant increase in
entropy generation. In their study, local entropy generation
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profiles for different height of fins were obtained and
compared with the entropy generation in smooth channels.
Demirel [22] have studied the entropy generation in the planar
and circular Couette flow with constant properties under
asymmetric wall temperature condition. The study showed that
entropy generation rate is influenced by the pressure gradient
and Brinkman number. The study reported minimum entropy
generation at Y = 0.3 and at Y = 0.7 at a dimensionless
pressure gradient = — 3.0 and 3.0, respectively. Investigating
the existence of thermodynamic irreversibility exrtrema,
Sekulic et al. [23] have studied fully developed laminar flow
through different geometric channels. These channels include
parallel pates channel, circular channel, triangular channel,
rectangular channel, square channel, sine channel and
longitudinal finned circular tube channel. They have reported
that the improvement and/or deterioration of the performance
of one geometry with respect to the other, is dependent on the
channel geometric parameters, Reynolds number, and the inlet
to wall temperature ratio. Balaji et al. [24] reported the results
of their numerical investigation of turbulent mixed convection
from a symmetrically heated vertical channel, bathed by a
steady upward flow of cold air. In this regard, they reported
that the optimal inlet velocities at which the total entropy
generation rate reaches a minimum value were found to exist,
for every set of heat flux and aspect ratio. Further, this
optimum velocity turns out to be independent of the aspect
ratio and increases linearly with the heat flux. Simple and easy
to use correlations for the optimum Reynolds number and the
dimensionless average wall temperatures corresponding to the
optima were developed. For the range of parameters
considered in this study, it is seen that for optimum conditions,
the ratio of the entropy generation due to fluid friction to total
entropy generation rate, known in literature as the Bejan
number, varies within a narrow band (0.14-0.22).

Focusing on the applied side of the optimization of
the flow and heat transfer in one of the fundamental flow
geometries, flow in channels between parallel plates, Ordofiez
and Bejan [25] investigated the possibilities of entropy
generation minimization in parallel-plates counter flow heat
exchangers. The study showed that the entropy generation is
directly affected by the spacing ratios between the two
channels and the heat transfer area between the two streams
which gives the opportunity to minimize the irreversibility by
controlling these two factors. Moreover, the study showed that
the ratio of the heat capacity rates of the two streams is
another strong factor that should be utilize as a design
optimization factor. Yang et al. [26] recently presented
thermal optimization of a stack of printed circuit boards using
entropy generation minimization (EGM) method. In this study,
Yang et al. [26] numerically integrated the governing thermal-
fluid flow equations in the laminar-flow regime subject to the
appropriate boundary conditions. After the flow and
temperature fields were solved, the volumetric rate of local
entropy generation was integrated to determine the total
entropy generation rate in the system which consists of two
components, one by heat transfer and the other by viscous



friction. The Reynolds number, block geometry and bypass
flow area ratio were varied to search for an optimal channel
spacing. Having the same interest in optimizing stacked
packaging of laminar-convection-cooled printed circuits,
Takahiro et al. [27], also used the entropy generation
minimization (EGM) method to optimize the fin pitch of heat
sink in a free-convection environment. In connection with the
electronic printed circuit packaging and electronic cooling
devices, Ilis et al. [28] numerically investigated the effect of
aspect ratio on entropy generation in a rectangular cavity with
differentially heated vertical walls. The vertical walls of the
cavity were at different constant temperatures while the
horizontal walls were adiabatic. Heat transfer between vertical
walls occurs by laminar natural convection. Based on the
obtained dimensionless velocity and temperature values, the
distributions of local entropy generation due to heat transfer
and fluid friction, the local Bejan number and local entropy
generation number were determined and related maps were
plotted for Pr=0.7. On the same area of interest, Zahmatkesh
[29] analyzed the importance of thermal boundary conditions
of the heated/cooled walls in heat transfer and entropy
generation characteristics inside a porous enclosure, heated
from below.

It is clearly noted from the thorough literature cited
above that there is little quantitative information available on
the analysis of entropy generation due to mixed convection
through parallel plate vertical channels. It can be also
concluded that there exists no attempt in the literature to
estimate the values of the modified buoyancy parameter Gr/Re
that would result in a minimum entropy generation due to
mixed convection through vertical channels between parallel
plates. This lack of information regarding the optimum values
of the modified buoyancy parameter as well as the lack of
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information regarding the effects of other operating
parameters on the entropy generation motivated the author to
conduct a comprehensive study on the buoyancy effects on
entropy generation due to mixed convection in vertical
channels with different cross sections under different thermal
boundary conditions [30] due to its importance for the
scientific and applied research applications in the industry of
heat transfer equipment. The present article presents the
results and analysis of an analytical solution for entropy
generation due to mixed convection in the fully developed
region between two vertical parallel plates under
isoflux/isothermal boundary conditions.

PROBLEM DESCRIPTION AND FORMULATION

The main objective of the present article is to obtain
analytically the values of the modified buoyancy parameter
(Gr/Re)optimum at which the entropy generation assumes its
minimum values. These optimum values are obtained via
solving the problem of fully developed laminar mixed
convection in open-ended vertical channel between two
parallel plates under thermal boundary condition of 4™ kind.
This type of boundary condition is obtained via having one of
the plates subjected to a constant heat flux while having the
other plate kept isothermal at a given temperature. In this
regard, Figures I(a & b) depict two-dimensional channel
between two vertical parallel plates. The distance between the
plates is ‘b’ i.e., the channel width. The Cartesian coordinate
system is chosen such that the z-axis is in the vertical direction
that is parallel to the flow direction and the gravitational force
‘g’ always acting downwards independent of flow direction.
The y-axis is orthogonal to the channel walls, and the origin of
the axes is such that the positions of the channel walls are y =
Oandy=bh.
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Fig. 1: Schematic view of the system and coordinate axes corresponding to (a) Upflow (b) Downflow
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The flow is assumed to be laminar and the fluid is assumed to
be a Newtonian fluid with constant properties but obeys the
classic Boussinesq approximation according to which the fluid
density is treated as constant in all terms of the governing
equations except in the buoyancy term of the vertical flow
direction momentum equation where it is considered as
function of temperature. The flow is assumed to be thermally
and hydrodynamically fully developed with no internal heat
generation. It is also assumed that the viscous dissipation
effect on the temperature distribution is neglected while its
effect on the entropy generation is considered [15 —29].

The general governing equations of flow and heat
transfer are the conservation equations of mass, momentum,
and energy along with the entropy production equation that is
used to predict the irreversibility associated with the heat and
fluid flow. Assuming constant physical properties, one can
write the full conservation and entropy production equations in
a vectorial form as follows.

Continuity Equation
V.V =0 ey

Momentum Equation
p%zF—Vp—i—,quV )

Energy Equation

pcp%ﬂcVzT 3)

Local Entropy Equation
S

gen = SThermal + SI"iscous

gen

s :%(VT)z +¥q> @)

Along with the
o= o1z 7T

Under the thermal and hydrodynamic fully developed
conditions and assumptions listed above, the differential form
of the continuity equation, eq. (1) is readily satisfied and the

general governing equations (1- 3) are reduced to:
z— Momentum Equation

d —
o) g g pir -,

(5)

+u —dzlé =0
dy

where plus and minus signs indicate buoyancy aiding flow

and buoyancy opposing flow respectively.

Boussinesq approximation

Energy Equation:
a’T ©
dy 2
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To complete the mathematical model to solve for the three
unknowns, u, T and p, one more equation is required. This
equation is the integral form of the continuity equation.

Integral Continuity Equation:

_ 1
u=z_([udy ©)

The volumetric rate of local total entropy generation
can be expressed as the sum of thermal entropy generation and
viscous entropy generation as given by equation (4). The
thermal entropy generation is attributed to the heat transfer
across the fluid due to temperature difference while the
viscous entropy generation is attributed to the viscous
dissipation associated with the flow of viscous fluids. The total
local entropy production equation under the thermal and
hydrodynamic fully developed conditions can be written as:

ok (arY u(du
Sow =—5| — | +| == ®)
T\ dy T \dy

Obtaining the local entropy generation via the direct
substitution of the temperature and velocity gradients in the
above equation, one can obtain the total entropy by integrating
the local entropy over the volume under consideration. This
integration can be expressed in the following form:

Stotal = -‘-V Sgen (y 525X )dV
w b (9)
= J‘“‘sw v,z ,x)dydzdx
000
Considering vertical channel between parallel plates whose
width (w) is much larger than the distance between the two
plates, one can reduce the problem into a two dimensional
problem. Moreover, invoking the fully developed conditions,
one can reduce the above integration to:
b
Sua 100 1) =51 =[5, (0 )y (10)
0

where S;ml is the entropy generation per unit channel width
and height.

Thermal Boundary Conditions

One fundamental kind of isothermal boundary
conditions is to be presently investigated. This boundary
condition can be obtained via having one wall subjected to a
constant uniform heat flux (isoflux) while the other wall is
kept at constant temperature (isothermal). This boundary
condition is referred to in the literature as fundamental thermal
boundary condition of the fourth kind according to Reynolds
et al. [31]. This boundary condition is presented
mathematically as:



. (de
aty=0:q"=¥Fk| — ,
dy v =0

y=b:T=T, (11)
No slip conditions
Aty =0: u=0,aty =b: u=0 (12)

Using the dimensionless parameters given in the
nomenclature, the dimensionless form of the governing
equation can be written as:

7. — Momentum Equation

2
d U2 __dP  Gry (13)
dy dZ Re

Energy Equation:
d’e

=0 14

N (14)

Integral Continuity Equation:

1
j Udy =1 (15)
0

Local Entropy Equation:

m

S _ SgenDlzz _ 1 (ﬁjz

ko (9+r)\dY
, (16-a)
Ec Pr (d_U )
(60+7)\ay
or: S gen =S Thermal +S Viscous
where:
1 (dey
S - - | ZZ 16-b
Thermal (9+T)2 (dY ) ( )
S _ Ec Pr (d_sz (16 c)
Viscous (04—1’) dY

Total Entropy Equation:
Substituting for the dimensional local volumetric entropy
generation in eq. (10) in terms of its dimensionless value as
shown in the nomenclature, one can write:

b

"

SToIal /(W N l ) = Sto!al = Js;en (y )dy

0

Heat and mass transfer

£S.. k
5o

2
Stoa D

1
S = =(s dY 17
Total (W ] l) k .(l). gen (Y ) ( )

Dimensionless form of the Thermal Boundary Conditions:

i)
aty=0: | 22| =-1,
ay )y

atY=1: =0 (18)

No slip conditions: at Y =0:U =0,at Y =1:U =0 (19)

ANALYTICAL SOLUTIONS

In order to obtain a closed form solution for the local
and total entropy generation, the temperature and velocity
profiles for the fully developed flow regions need to be
obtained first. These solutions are obtained via double
integrating of the momentum equation, eq. (12) and the energy
equation, eq. (13) with respect to ¥ and applying the pertinent
boundary conditions. The closed form solutions of the velocity
and temperature profiles, and consequently the local entropy
generation profiles, depend on the thermal boundary
conditions employed. The required closed form solutions
under the fourth kind of thermal boundary conditions are
derived and presented hereinafter.

The solution of the energy equation (14) under thermal
boundary condition of fourth kind is given by the following
equation:

oY)=1-Y 20)
which have the following temperature gradient:

ﬁ =-1 21
dYy

Substituting for the temperature profile given by eq. (20) into
the momentum equation (13) and solving for the velocity
profile, one gets the velocity profile:

de,mxd =—6Y (¥ -1

22
+i(iﬂJ(2Y3—3Y2+Y) @2
121 Re
which has the velocity gradient given as:
au
—=-6(2Y -1)
dy G 23)
+— 2L =6 +1)
12 Re

Substituting for the local temperature, local temperature
gradient and the local velocity gradients given by eqgs. (20 —
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23), in equations (16-b and 16-c), the volumetric rates of local
thermal and local viscous entropy generations can be written
as:

1
(1-Y +z)’
—6(2¥ ~1)

Sy =P G 25)
(17 +0)| #5676 +1)

24

Thermal —

The above two equations clearly show that the thermal and
viscous entropy generation are strong functions of the
operating parameters. It is quite clear from equation (24) that
the thermal part of the entropy generation is function of the
dimensionless reference temperature (7). However, eq. (24),
shows that fully developed thermal entropy generation is not a
function of modified buoyancy parameter, Gr/Re. On the other
hand, eq. (25) clearly shows the viscous contribution to
entropy generation is a strong function of all the operating
parameters which are namely, the dimensionless reference
temperature( 7), Eckert number (Ec), Prandtl number (Pr) and
the modified buoyancy parameter G7/Re.

Substituting (24) and (25) into (17) the dimensionless total
entropy can be calculated as:

EcPr
144

= (STot )Vs /=

GrY

S ]
P
(1Y +7)
Sy = (o — > |dy
B £+ Ec Pr 6522 )
(1-Y +7) +—2—r(6Y —6Y +1)

Now we can integrate for thermal and viscous entropy one at a
time:

oo (59)2
S.) =[|l——|==| Wr
(To )Tm '([(¢9+r)2 oY
(26)

1 dY=1

1
l(l—Y +7)’ 47
l 1 and d ’
mx Y
(Sr ), '([ 6’+z’)( oY

—6(2¥ —1)

Ec Pr
é@(ﬁ —-6Y +1)

(l—Y +r)

Il
& ey —

{[[367* +72¢° + 487 +120 +1][In(z + 1) - In(z )]

—3-(122° +182% + 87 +1)] (R—) —144[(120° +187 + 87 +1)[In(r + 1)~ In(z)] @7)
(&

—3.(4c2 + 47 +1)) (%) +5184[ (42> + 4z +1)[n(c +1) - In(z)]- 2 (2 + 1) ]}

It is worth mentioning that unlike thermal entropy generation,
viscous entropy generation depends on Gr/Re, Ec, and Pr in
addition to z. The thermal entropy generation given by eq.(26)
and the viscous entropy generation given by eq.(27) have been
plotted for different operating parameter as it is presented in
section 4 hereinafter. Plotting the total entropy generation for
a given value of Ec, Pr and 7 over a wide range of the
modified buoyancy parameter that covers the both of the
buoyancy-opposed and buoyancy-aided flows, -375 < Gr/Re <
375, it was found that there is a unique value of the modified
buoyancy parameter (only for buoyancy-aided flow) at which
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the entropy generation assumes its minimum. This unique
value of the modified buoyancy parameter is referred to as the
optimum value of the modified buoyancy parameter
(Gr/Re) opsimum- To obtain the exact values of these optimum
modified buoyancy parameters for different values of the
operating parameters, one can differentiate the previous
lengthy expression for the viscous entropy generation given by
eq. (27) (since the thermal entropy generation is not function
of the modified buoyancy parameter) with respect to Gr/Re in
order to find the value of Gr/Re at which the total entropy is
minimal. Once differentiation is granted, the expression is then
equated to zero and solved for the optimum value of Gr/Re.



d (Stot ) _ d (Stot )Tm d (Stot )V.v _ d (Stot )Vs

d(Gr/Re) d(Gr/Re) d(Gr/Re) d(GriRe)

Ec Pr
144

Gr

Heat and mass transfer

{ 2[ [ 367 +727° + 4877 +122’+1J [ln(r+1)—ln(r):|

—3'(1213 +1872 +87+1)} (R_)_144[(1213 +187° +87+1) I:ln(r+1)—ln(r)}—3-(472 +4r+1)} } =0

(&

The above expression is then reduced to a simple closed form
for the optimum value of Gr/Re.

Gr 72-[2-7+1]
— = (28)
Re ) opimum 67° +67+1

RESULTS PRESENTATION AND DISCUSSIONS
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Fig. 2(a): Fully developed temperature profiles

On the other hand, the velocity profile is obtained via
the solution of eq. (13) after substituting the pertinent
temperature profile given by eq. (20) and applying the no slip
conditions at the two plates. The obtained velocity profile for
the fourth kind thermal boundary condition is given by eq.
(22) and is plotted in Fig. 2(b). Equation (22) shows that the
velocity profile under this thermal boundary condition is not
function of the operating parameters Ec, Pr nor 11 []However,
eq. (22) shows clearly that the velocity profile under this kind
of thermal boundary conditions is a strong function of the
modified buoyancy parameter. Figure 2(b) depicts the effect of
the modified buoyancy parameter. This figure along with eq.
(22) shows clearly that for Gr/Re = 0, the second term of eq.
(22) vanishes and the velocity profile is typically the same as
the parabolic isothermal velocity profile for forced flow.
Moreover, the figure shows that all of the velocity profiles
have the same value at ¥ = 0.5 for any value of Gr/Re. This
can be clearly explained from eq. (22) in which the second
term includes the effect of Gr/Re. This term includes the
expression (2Y° — 3Y? + Y) that vanishes at ¥ = 0.5. On the
other hand, the velocity gradient which plays an important role
in the entropy generation is function of the modified buoyancy

The solution of the fully developed energy equation, eq. (14),
under isothermal boundary conditions of fourth kind is given
by eq. (20) and is shown in Fig. 2(a). Equation (20) and Fig.
2(a) show that the temperature profiles for this kind of
isothermal boundary conditions are neither function of the
modified buoyancy parameter (Gr/Re) nor the other operating
parameters Ec, Pr and the dimensionless reference temperature
T.

Gr/Re = 375

250

100

-100

-375

-250

72 0 0 »

-100 100

2+

1 1 1 1
0 02 04 0.6 0.8 1

Y
Fig. 2(b): Fully developed velocity profiles at different Gr/Re

parameter Gr/Re. The variation of the velocity gradient
profiles for different values of the modified buoyancy
parameter is shown graphically in Fig. 2(c) and is given
mathematically by eq. (23). Figure 2(c) shows that the velocity
gradient profiles for all values of the modified buoyancy
parameter intersect (have the same values) at two locations
between the two plates. These two locations are the values of
Y at which the second term of eq. (23) that includes the effect
of the modified buoyancy parameter Gr/Re vanishes. These
values of Y are nothing but the values that make the
expression (6Y° — 6Y + 1) of eq. (23) equals to zero which are
namely ¥ = 0.211 and Y = (.78. Flow reversal takes place
when the velocity gradient in the transverse direction becomes
less than or equal to zero; dU /dY < 0. This condition is

usually encountered at the walls where the flow suffers the
highest retarding resistance due the viscous effects. Applying
the above conditions for buoyancy-aided and buoyancy-
opposed flows revealed that the values of the buoyancy
parameter (Gr/Re) that makes flow reversal commence at one
of the channel walls is given as (Gr/ Re)272. It is worth

emphasizing here that the flow reversal starts at the first wall
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(Y = 0) for buoyancy-opposed flow and at the second wall (Y
= 1) for buoyancy-aided flow.
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Fig.2(c): Fully developed velocity gradient profiles at different
Gr/Re

As discussed earlier the entropy generation is a result of two
irreversibilities associated with the heat and fluid flow. The
entropy generation associated with the heat transfer due the
finite temperature gradient is referred to as the thermal entropy
generation. The viscous entropy generation is used to refer to
the entropy generation associated with the fluid flow.

The volumetric rate of the local thermal entropy
generation is given by eq. (24) that indicates clearly that the
thermal entropy generation is not function of the operating
parameters Gr/Re, Ec nor Pr. However, eq. (24) show that the
thermal entropy generation is function of the dimensionless
reference temperature, tlJonly[] The variation of the local
thermal entropy generation with 7 is given graphically in Fig.
3(a). Figure 3(a) depicts the volumetric thermal entropy
generation rate profiles for different values of t. The figure
shows a higher thermal entropy generation rate for lower t
values.

12

Strermal

Y

Fig. 3(a): Fully developed volumetric thermal entropy profiles
for different t

The volumetric rate of the local the viscous entropy generation

under this kind of thermal boundary conditions is given by eq.

(25). The volumetric viscous entropy generation rate under
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thermal boundary condition of fourth kind is a function of the
Eckert number Ec, Prandtl number Pr, modified buoyancy
parameter Gr/Re and the dimensionless reference temperature
7. Figures 3(b) and 3(c) depict the profiles of the volumetric
rates of viscous and total entropy generation for different
values of t[1 while Figs. 3(d) and 3(e) show the profiles of the
volumetric rates of viscous and total entropy generation for
different values of Gr/Re. The figures show that the highest
viscous entropy is generally anticipated at the walls, and lower
values are expected at the core of the flow. However, the flow
field gets distorted for high values of modified buoyancy
parameter Gr/Re which increases the volumetric viscous
entropy, consequently increasing the volumetric rate of total
entropy generation at the core of the flow.

7

0 1
0 0.2 0.4 0.6 0.8 1

Y

Fig. 3(b): Fully developed volumetric viscous entropy profiles
for different T at: Ec = 0.1, Pr= 0.7, Gr/Re =
10

0

Y
Fig. 3(c): Fully developed total volumetric entropy profiles for
different t at: Ec = 0.1, Pr=0.7, Gr/Re = 10
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Fig. 3(d): Fully developed volumetric viscous entropy profile
for different Gr/Re at: Ec=0.1,Pr=0.7, t =2
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100
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Fig. 3(e): Fully developed total volumetric entropy profile
different Gr/Re at: Ec=0.1,Pr=0.7,1=2

Figure 3(b) and 3(c) along with a similar set of figures [30]
(not presented here due to space limitations) reveal similar
trends for low range of modified buoyancy parameter, Gr/Re <
72. However, for values of the modified buoyancy parameter
Gr/Re > 72 where the flow reversal commences at the cooler
wall for the case of upward heated flow or at the hotter wall
for the case of downward cooled flow (buoyancy-aided flow)
and vice versa for the buoyancy-opposed flow where the flow
reversal commences at Gr/Re < -72, this trend is distorted. It
can be noted from Fig. 3(d), and all other Figures 3 (b —¢), that
the highest local viscous entropy generation takes place at the
walls where the highest velocity gradients exist due to the
presence of the walls and the no slip conditions. For the case
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of forced flow (Gr/Re = 0), the minimum local viscous
entropy generation occurs in the core of the flow and equals
exactly zero at the center of the channel (Y = 0.5) where the
velocity gradient is exactly zero. However, for different values
of the modified buoyancy parameter other than zero, the
velocity profile becomes distorted and deviates much from its
parabolic shape (for the case of Gr/Re =0). The distortion of
the velocity profile and its deviation from its parabolic profile
depends on the value of the modified buoyancy parameter and
depends on whether the buoyancy is aiding or opposing the
main flow as shown in Fig. 2(b). For the situations in which
the flow reversal commences at one of the walls (at Gr/Re =

+ 72, where dU /dY Iwa” =0) a zero viscous entropy

generation occurs at this wall where the velocity gradient is
exactly zero, as shown in Fig. 2(c). On the other hand, for the
situations in which the flow reversal extended to the core of
the flow (Gr/Re >> 72 , or Gr/Re << - 72) the local viscous
entropy generation becomes significant at the core of the flow
as shown in Fig. 3(d). It is worth noticing here that the
volumetric rate of local viscous entropy generation will have
the value of zero at two spots between the two plates
depending on the value of the modified buoyancy parameter as
shown in Fig. 3(d). It is worth mentioning here that the
profiles of the volumetric rate of local total entropy generation
shown in Fig. 3(e) have similar trends to those presented in
Fig. 3(d) for the local viscous entropy generation with
expected differences due to the addition of the local thermal
entropy generation to the local viscous entropy generation.
This indicates that the viscous entropy generation is dominant.
The variation of overall rate of total entropy generation in the
fully developed region with t is shown in Fig. 4(a) for
different values of Gr/Re. The figure clearly shows that the
overall rate of total entropy generation for buoyancy-opposed
flow is usually greater than that for pure forced flow (Gr/Re =
0) and buoyancy-aided flow for the same value of Gr/Re. The
figure shows also that for some values of the modified
buoyancy parameter, Gr/Re, for buoyancy-aided flow
situations the entropy generation is less than that for pure
forced flow. This indicates the existence of an optimum value
of the modified buoyancy parameter (Gr/Re)optimum at Which
the entropy generation assumes its minimum as obtained
analytically by eq. (28). To show the existence of these values
clearly, the variation of the overall rate of total entropy
generation with the modified buoyancy parameter (Gr/Re) has
calculated and presented hereunder.
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Fig. 4: Variation of fully developed overall rate of total entropy generation: (a) with t for different Gr/Re at: Ec = 0.1, Pr = 0.7, (b)

with Gr/Re for different T at: Ec = 0.1, Pr=0.7

The variation of overall rate of total entropy generation with
Gr/Re for different values of t is presented in Fig. 4(b). On the
other hand, the variation of Bejan number with Gr/Re is given
in Fig. 4(c) for different values of t[1. The two figures show
the existence of an optimum value of modified buoyancy
parameter at which the total entropy generation rate is
minimum. This value of buoyancy corresponds to the same
value at which Bejan number assumes its maximum. The
optimum values of the modified buoyancy parameter Gr/Re is
given by eq. (28). Some values of optimum modified
buoyancy parameter are tabulated below in Table 1 for
different possible values of t.

0
375 300 225

-150 75 75 150 225 300 375

Gr/uRe
Fig. 4(c): Variation of Bejan number with Gr/Re for different

tat: Ec=0.1,Pr=0.7

Table 1: Optimum values of the modified buoyancy parameter for fully developed flow under thermal boundary conditions of fourth

kind at different values of t

T 0.1 0.25 0.5

0.75

1 1.25 1.5 1.75 2

(Gr/Re)ptimum 52.05 | 37.57 | 26.18

20.28

16.62 | 14.10 | 12.26 | 10.85 9.73

It is clear from eq. (25) that the Eckert number and the Prandtl
number are going to scale up or down the local viscous and
consequently the local total entropy generation. In other
words, the larger the value of the product (Ec Pr), the larger is
the associated viscous entropy generation and vice versa. It is
worth reminding here that the Prandtl number is a fluid
property with Prandtl of order 107 represents liquid metals,
Prandtl of order 1 represent gases, order 10 for liquids (such as
water) and order 10° for oils. On the other hand, (Ec Pr) is a
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measure of the importance of the viscous dissipation relative
to the change of the energy flux [32]. It is also worth reporting
here that the dimensionless reference temperature t can take
any arbitrary value. However, the reference temperature is
used to be taken as the ambient temperature. The effect of
Eckert and Prandtl numbers on the overall rate of total entropy
generation and Bejan number are shown hereunder in Figs. 5
and 6 respectively.
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Fig. 5: Variation of (a) the overall rate of total entropy generation, (b) Bejan number with Gr/Re for different [Ic at: T=2, Pr=0.7.
25 0.8

Pr=10
20
0.6 -
15
US§ B oat
10
1.0 02
5
I

0.1

0

=

Pr=10
0.1
0 I 0 L e
375 300 225 -150 75 0 75 150 225 300 375 375 300 225 -150 75 0 75 150 225 300 375
Gr/Re Gr/iRe
(a) (b)

Fig. 6: Variation of (a) the overall rate of total entropy generation, (b) Bejan number with Gr/Re for different Pr at: t =2, Ec = 0.1.

These two figures show that both of Eckert and Prandtl
numbers have no effect on the optimum value of the modified
buoyancy parameter. However, both has the effect of scaling
up or down the levels of entropy generations.

CONCLUSIONS

The entropy generation due to fully developed mixed
convection between two vertical parallel plates under fourth
kind of isothermal boundary condition has been obtained
analytically. This kind of thermal boundary condition is
obtained via having one plate subjected to constant heat flux
while the other plate is kept isothermal. The effects of the
operating parameters on the local and total entropy generation
have been investigated and discussed. The analysis of the total
entropy generation revealed the existence of optimum values
of the modified buoyancy parameter Gr/Re at which the total
entropy generation assumes its minimum value. These values
have been obtained analytically for different values of the

dimensionless reference temperature. The effects of Eckert
and Prandtl number on the entropy generation for this
particular case has been also investigated, presented and
discussed.
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NOMENCLATURE

B Gap width between the parallel
plates

¢,  Specific heat of fluid at constant

pressure
Hydraulic or equivalent diameter
of the vertical channel; b

D,
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dp/ dz Pressure gradient
dP/dZ Dimensionless pressure gradient

2
Ec Eckert number,

4

8hq" D,
v’k

Gr/Re  Modified buoyancy parameter

Gr Grashof number,

g Gravitational body force per
unit mass (acceleration)

h Convective heat transfer
coefficient

/ Channel height

P Local pressure at any cross

section of the vertical channel

Po Hydrostatic pressure, pygz at
channel entrance

P Dimensionless pressure inside
the channel at any cross
. (p-p,)
section, e
pu,
Pr Prandtl number, ——
q" Constant heat flux at the
isoflux plate
D
Re Reynolds number, Py
)7
S ;he,,ml Local thermal entropy

generation per unit volume

"

S yisous Local Viscous entropy

generation per unit volume

s Total local entropy generation

per unit volume

St Overall rate of total entropy
generation

Segen Dimensionless local total

838

C,, -1,

S Total

(S Tot) Tm

(S T ot) Vs

" 2

. Sgen h
entropy generation, ———

Dimensionless overall total
entropy generation,

STotal ‘Dl12 1
Srow Zh 5 (¥ )dY
w.l) k l &)

Dimensionless overall rate of
thermal entropy generation

Dimensionless overall rate of
viscous entropy generation

Dimensional temperature at any
point in the channel

Ambient (reference)
temperature and temperature of
the isothermal plate

Axial velocity component

Average axial velocity
Uniform entrance axial velocity

Dimensionless axial velocity at

.u
any point, —
u

o

Transverse velocity component
Dimensionless transverse

. VRRC
velocity, ——
u

o

Transverse coordinate of the
vertical channel between parallel
plates

Dimensionless transverse

coordinate, 2
h

Axial coordinate (measured from
the channel entrance)

Dimensionless axial



coordinate,
, Re
Greek Letters
7, Dynamic viscosity of the fluid
) Kinematic viscosity of the
fluid, 4/,
0 Dimensionless temperature,
(r-1,)/q"D, 2k
pU0 Density of the fluid
Po Density of the fluid at the
channel entrance
T Dimensionless entrance
TO
temperature, ———
T, -T,)
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